
Implicitly-Defined Neural Networks for Sequence Labeling

Michaeel Kazi
MIT Lincoln Laboratory

244 Wood St, Lexington, MA, 02420, USA
michaeel.kazi@ll.mit.edu

Abstract
We relax the causality assumption in formulating recurrent neural networks, so that the hidden states of
the network are all coupled together. This goes beyond bidirectional RNN, which consists of two explicit
recurrent networks concatenated together. The motivation behind doing this is to improve performance
on long-range dependencies, and to improve stability (solution drift) in NLP tasks. We choose an implicit
neural network architecture, show that it can be computed reasonably efficiently, and demonstrate it proof-
of-concept on the task of part-of-speech tagging.

1 Introduction
Feedforward neural networks were designed to approximate and interpolate functions. Recurrent networks were
developed to predict sequences. These recurrent networks can be ‘unwrapped’, and thought of as a very deep
feedforward network, with each layer sharing the same set of weights. Computation proceeds one step at a time,
like the trajectory of an ordinary differential equation when solving an initial value problem. However, in cer-
tain applications in natural language processing, especially those with long-distance effects, and where grammar
matters, sequence prediction may be better thought of as a boundary value problem. In this work, we propose
challenging the traditional left-to-right causality of neural networks, and demonstrate the feasibility and potential
power of implicit methods.

2 Comparison with previous work
Long-range dependencies have been an issue as long as there have been NLP tasks, and there are many effective
approaches to dealing with them. In the context of HMMs, there are the “Forward-Backward” models. In infor-
mation extraction, there are non-local sequence models that use Gibbs sampling (Finkel et al., 2005). In recent
years, there is the bidirectional LSTM (Schuster and Paliwal, 1997) that incorporates past and future hidden states
via two separate recurrent networks. Unlike most of the previous methods, this method is not able to be simplified
into a dynamic programming technique. The resulting states for each sequence element are more strongly coupled
to each other, with potential for emergent effects. Solving the equations is more difficult, however, and make use
of techniques for solving nonlinear systems of equations.

3 Recurrent Neural Networks
A typical recurrent neural network has the following specification:

• Input sequence [x1, x2, . . . , xs]

• Initial state given as order k tensor h0

• Transition Function h′ = f(x, h)

Produce order k + 1 tensor:

[h0, h1 = f(x1, h0), h2 = f(x2, h1), . . . , hs = f(xs, hs−1)]

Long-short-term-memory (Hochreiter and Schmidhuber, 1997), gated-recurrent (Cho et al., 2014), and its vari-
ants follow this formula, with different choices for the state transition function. Computation proceeds left-to-
right, with each next state depending on the previously computed hidden state. It is a very reasonable assump-
tion, and it makes computation straightforward and tractable. However, what would happen without it? Suppose

This work is sponsored by the Air Force Research Laboratory under Air Force contract FA-8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States
Government.



Figure 1: Traditional recurrent neural network structure.

ht = f(xt, ht−1, ht+1), or an even wider stencil? We arrive at a system of nonlinear equations. This setup has the
potential for arriving at nonlocal, whole-sequence dependent results. Analogously to the theory of ODEs, it may
also be more ‘stable’, whereby the predicted sequence may drift less from the true meaning, since errors will not
compound with each time step in the same way.

4 Implicit RNN
4.1 Architecture for this work
There are many possibilities of how to architect a neural network – in fact, this is one of its best features – but we
restrict our discussion to the one depicted in Figure 2. In this setup, we have the following variables:

input data X
input labels Y
parameters θ
transformed input ξ
hidden layers H

and functions:

loss function L = `(θ,H, Y )
implicit hidden layer definition H − F (θ, ξ,H) = 0
input layer transformation ξ = g(θ,X)

Our implicit definition function, F , is made up of local state transitions, and forms a system of nonlinear equa-
tions that we need to solve:

h1 = f(h0, h2, ξ1)
. . .

hi = f(hi−1, hi+1, ξi)
. . .

hn = f(hn−1, hn+1, ξn)

4.2 Computing the forward pass
To evaluate the network, we must solve the equation H = F (H). We computed this via an approximate Newton
solve:

Hn+1 = Hn − (I −∇HF )−1(Hn − F (Hn))
Hn+1 ≈ Hn − P (∇HF )(Hn − F (Hn))

We use the geometric series polynomial Pn(x) = 1 + x + x2 + . . . + xn, which converges provided that
||∇HF || < 1. For most of our experiments we even let n = 1. Note that n = 0 is fixed point iteration, which has
also worked in experiments, albeit with slower convergence.



Figure 2: For the remainder of this paper, we will focus on the following ‘word classification’ architecture.

The assumption that ||∇HF || < 1 probably works due to the initialization of the network. Weight matrices
for the bidirectional transition function (see Section 4.4) strongly affect the size of the overall gradient, and we
initialize all parameters with the range [−.1, .1]. In experiments, as the magnitudes of the weights grow, the solver
takes more iterations, however, it does not seem to reach a point where the approximation is wholly inadequate.

4.3 Gradients

In order to train the model, we perform gradient descent. Taking the gradient of the loss function:

∇θL = ∇θ`+∇H`∇θH

so we will need to know the gradient of the hidden units with respect to the parameters, which we can find via
the implicit definition:

0 = ∇θH −∇θF −∇HF∇θH −∇ξF∇θξ
(I −∇HF )∇θH = ∇θF +∇ξF∇θξ

∇θH = (I −∇HF )−1 (∇θF +∇ξF∇θξ)

The entire gradient is then

∇θL = ∇θ`+∇H`(I −∇HF )−1 (∇θF +∇ξF∇θξ)

Once again, the inverse of I −∇HF appears, and we can approximate it via the polynomial P (x) above.

4.3.1 Computing the gradient
The multiplication are best performed left-to-right; this way, they are vector-matrix multiplies, and not matrix-
matrix multiplications. The terms in the gradient calculation have the dimensions below:

∇H` 1× |H|
P (∇HF ) |H| × |H|

∇θF +∇ξF∇θξ |H| × θ

Currently, training examples are fed into the system one at a time, and the costs and gradients are accumulated
into a batch before updating. We make use of Theano’s (Bergstra et al., 2011) tensor library extensively, especially
the convenient Rop, Lop operators that right or left-multiply the jacobian of a term with a vector.



4.4 Transition Functions
The simplest RNN transition function would be the traditional RNN layer, with an extra term for the next hidden
state:

hi = σ(Wphi−1 +Wnhi+1 + bi)

Preliminary experiments did not show good convergence properties. Alternatively, we modify the Gated Recur-
rent Unit Transition Function, to be bidirectional. Recall the original GRU equations:

GRU


final hidden ht = (1− zt)ht−1 + zth̃t
candidate hidden h̃t = tanh(Wxt + U(rtht−1) + b̃)
update weight zt = σ(Wzxt + Uzht−1 + bz)
reset gate rt = σ(Wrxt + Urht−1 + br)

Now, we replace the ht−1 term with ht,c, a combination of previous and next hidden states, via a switch:

new


redefine “previous” ht,c = sht−1 + (1− s)ht+1

switch s = sl
sl+sr

left switch sl = σ(Wxslxt +Wslht−1 + bsl)
right switch sr = σ(Wxrlxt +Wsrht+1 + bsr)

5 Experiments: Part-of-speech tagging
Part of speech tagging is a natural choice for our ‘word classifier’ described above. Since part-of-speech tagging
is a mature field, our aim is not to build the best tagger in the world, but to show the new architecture in action. To
train a part-of-speech tagger, we simply let L be a softmax layer transforming each hidden unit output into a part
of speech tag. Initially, ξ consisted only of word vectors for 39,000 case-sensitive vocabulary words. Next, we
lowercased the vocabulary words, but added a single feature indicating whether case appeared in the data. Third,
we added six additional ‘word vector’ components to encode the top-2000 most common prefixes and suffixes
of words, for affix lengths 2 to 4. Finally, we added in other (binary) features to indicate numbers, symbols,
punctuation, and more rich case data, as used by (Huang et al., 2015).

We trained the POS tagger on the Wall Street Journal corpus, blocks 0-18, validated on 19-21, and tested on
22-24. We also tested it on the TED treebank (Neubig et al), and compared it to the results of the off-the-shelf
Stanford Part-of-Speech tagger. The results are indicated in Table 1. We were able to achieve comparable results,
and as Manning notes, performance gains past that point are quite difficult, due to errors/inconsistencies in the
dataset, ambiguity, and very difficult linguistics, sometimes with dependencies across sentences (Manning, 2011).

Training was done using stochastic gradient descent, with an initial learning rate of 0.5. The costs and gradients
were all done for individual sentences on a GPU, and then aggregated together in a batch of size 50 before updating
the parameters of the model. Word vectors were of dimension 200, prefix and suffix vectors were of dimension
20. Hidden unit size was equal to feature input size, so in this case, 321. Training this way is takes about 20
seconds per batch, and without the GPU, it is approximately the same speed, however it uses all 12 CPU cores of
the machine running the experiment. Therefore for a multi-gpu machine it makes more sense to use the GPU and
run several experiments in parallel.

We also visualized some of the outputs of the “switch” variables for various sentences. The switch is made up of
many features, so it does not necessarily always correspond to human judgment, but by taking the average, one can
get a sense of the flow of information. In Figure 3, we see a visualization of the switch on a very simple sentence,
and in Figure 4 we see it in action over a more complicated sentence. Interestingly, phrasal structures emerge.

6 Experiments: Sentiment analysis
We used the Stanford IMDB movie review corpus (Maas et al., 2011), training and validating on 25,000 movie
reviews (22.5K/2.5K split), and testing on a separate 25,000. The corpora are evenly split into half positive, and half
negative reviews. We set it up as a binary classification problem (like/dislike), and use the architecture inspired by
Theano’s deep learning for sentiment analysis tutorial1: after the encoding of the hidden states via either a recurrent
net (LSTM or similar) or an implicit network, the hidden states are summed together across words (and averaged)
before feeding into a final binary logistic regression classifier. The performance of our model and a few baselines
are noted in Table 3. As in the theano example, the model was trained with Adadelta (Zeiler, 2012) because this
model seems to train very poorly with stochastic gradient descent. Additionally, we used a batch size of 1, which
we surprisingly noted yielded faster convergence in this problem. Because of the extremely long sentences in each
training example, we used the third order approximation to the matrix inverse, described earlier.

1http://deeplearning.net/tutorial/lstm.html



Figure 3: Visualization of the switch variable. Values above 0 indicate a right-to-left flow of information, while
values below 0 indicate left-to-right. Note that ‘Tokyo’ is used to modify ‘market’, instead of being a noun, and
thus needs information from ‘market’ to make the correct determination.



Figure 4: A more common and complicated example. Note the entire clause about ‘Health Care Property Investors
Inc.’ propagates information from the right – without the Inc, it may not realize it is the name of a company. Also
of note are phrases “offering of 200,000 shares” and “Merrill Lynch Capital Markets.”

7 Acknowledgements
This work would not be possible without the support of the Air Force Research Laboratory, which has always
encouraged the pursuit of interesting ideas. Thanks to Brian Thompson for deep learning tips and tricks, Fred
Richardson and Nick Malyska for interesting discussion of related work, and Liz Salesky for NLP application
suggestions!



Tagger WSJ Accuracy

Word vectors only 0.9626
Single case feature 0.9650
Ensemble of above (2) 0.9683
Affix word-vectors 0.9714
Ensemble of above (4) 0.9731
Case+Symbol feats 0.9730
Ensemble of above (4) 0.9736
Stanford POS Tagger 0.9732

Table 1: Tagging performance.

Architecture WSJ Accuracy

Gated recurrent 96.51
LSTM 96.53
Bidirectional GRU 97.26
Bidirectional LSTM 97.27
Implicit 97.30

Table 2: Tagging performance relative to other recurrent architectures.

Architecture IMDB Accuracy

Gated recurrent 0.8658
LSTM 0.8784
B-LSTM 0.8836
Implicit 0.8810*

Table 3: Sentiment performance relative to other recurrent architectures. *=incomplete result



References
James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu, Olivier Delalleau, Guillaume

Desjardins, David Warde-Farley, Ian Goodfellow, Arnaud Bergeron, et al. 2011. Theano: Deep learning on gpus
with python. In NIPS 2011, BigLearning Workshop, Granada, Spain.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the properties of neural
machine translation: Encoder–decoder approaches. Syntax, Semantics and Structure in Statistical Translation,
page 103.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating non-local information into
information extraction systems by gibbs sampling. In Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 363–370. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional lstm-crf models for sequence tagging. arXiv preprint
arXiv:1508.01991.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA, June.
Association for Computational Linguistics.

Christopher D Manning. 2011. Part-of-speech tagging from 97% to 100%: is it time for some linguistics? In In-
ternational Conference on Intelligent Text Processing and Computational Linguistics, pages 171–189. Springer.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural networks. Signal Processing, IEEE
Transactions on, 45(11):2673–2681.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.


