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Abstract

Scheduling techniques are typically developed for spe-
cific industries and applications through extensive inter-
views with domain experts to codify effective heuristics
and solution strategies. As an alternative, we present
a technique called Collaborative Optimization via Ap-
prenticeship Scheduling (COVAS), which performs ma-
chine learning using human expert demonstration, in
conjunction with optimization, to automatically and ef-
ficiently produce optimal solutions to challenging real-
world scheduling problems. COVAS first learns a policy
from human scheduling demonstration via apprentice-
ship learning, then uses this initial solution to provide a
tight bound on the value of the optimal solution, thereby
substantially improving the efficiency of a branch-and-
bound search for an optimal schedule. We demonstrate
this technique on a variant of the weapon-to-target as-
signment problem, and show that it generates substan-
tially superior solutions to those produced by human do-
main experts, at a rate up to ∼ 10 times faster than an
optimization approach that does not incorporate human
expert demonstration.

Introduction
Scheduling is a costly problem for many industries, both
with regard to the effort required to develop a solution tech-
nique and the time necessary to produce a schedule. How-
ever, attempts to take “shortcuts within the scheduling pro-
cess may yield low-quality schedules that result in wasted
resources. Traditionally, scheduling techniques are devel-
oped for specific industries and applications by consultants
who conduct extensive interviews with the domain experts
who manually or semi-manually perform scheduling tasks.
The goal of these interviews is to codify effective heuris-
tics and strategies for the problem, in order to then craft
efficient automated scheduling techniques. This process
is time-consuming and largely manual, because while do-
main experts can readily explain the key aspects or fea-
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tures of their problem-solving strategy, they are not typ-
ically able to precisely describe how they use those fea-
tures when making decisions (Cheng, Wei, and Tseng 2006;
Raghavan, Madani, and Jones 2006).

In this work, we propose Collaborative Optimization via
Apprenticeship Scheduling (COVAS), an approach that in-
corporates machine learning from human expert demonstra-
tion, in conjunction with optimization, to automatically and
efficiently produce optimal solutions to challenging real-
world scheduling problems. Our method performs policy
learning using a training dataset comprised of schedules
demonstrated by humans, as well as a recently developed
technique for apprenticeship scheduling (Gombolay et al.
2016a). In prior work, the technique was proposed in or-
der to simply emulate human expert scheduling decisions;
in this work, we use the apprenticeship scheduler to gen-
erate a favorable (if suboptimal) initial solution to a new
scheduling problem. To guarantee that the generated sched-
ule is serviceable, we augment the apprenticeship scheduler
to solve a constraint satisfaction problem, ensuring that the
execution of each scheduling commitment does not directly
result in infeasibility for the new problem. COVAS uses this
initial solution to provide a tight bound on the value of the
optimal solution, substantially improving the efficiency of a
branch-and-bound search for an optimal schedule.

We demonstrate our approach by solving a real-world
anti-ship missile defense problem, and report that COVAS
produces substantially superior solutions to those produced
by human domain experts, at a rate twice as fast as an op-
timization approach that does not incorporate human expert
demonstration.

Related Work
Recent research has aimed to capture goal-based knowl-
edge obtained through demonstration via a process known
as reward learning (Abbeel and Ng 2004; Berry et al. 2011;
Ijspeert, Nakanishi, and Schaal 2002; Konidaris, Osen-
toski, and Thomas 2011; Zheng, Liu, and Ni 2015; Odom
and Natarajan 2015; Terrell and Mutlu 2012; Thomaz and
Breazeal 2006; Vogel et al. 2012; Ziebart et al. 2008). In-
verse reinforcement learning (IRL), the most common ap-
proach, learns a reward function to capture the intent of the
demonstrators and then trains a policy via reinforcement
learning to maximize that reward function. However, as



noted in prior works (Gombolay et al. 2016a; Wu et al. 2011;
Wang and Usher 2005; Zhang and Dietterich 1995), the
large amount of data required to regress over the large
state spaces associated with scheduling problems remains
daunting, and RL-based scheduling solutions exist only for
simple problems (Wu et al. 2011; Wang and Usher 2005;
Zhang and Dietterich 1995).

An alternate approach specially designed for meeting
scheduling (Berry et al. 2011) requires users to complete an
extensive questionnaire in order to solicit their preferences
for scheduling meetings. This technique then maps those
preferences to an objective function and solves for the op-
timal meeting schedule via a mixed-integer linear program
(MILP). However, this approach is limited to small problems
that could be efficiently solved as an integer linear program
(Berry et al. 2011). State-of-the-art techniques for solving
scheduling problems with complex temporal constraints via
integer linear programs are limited to problems involving
five agents and 50 tasks, at most (Ciré, Coban, and Hooker
2013).

Another approach, called policy learning, focuses on
learning a mapping from states to actions (Chernova and
Veloso 2007; Huang and Mutlu 2014; Sammut et al. 1992;
Ramanujam and Balakrishnan 2011). This technique has
been applied to learn cognitive decision-making tasks from
human experts, such as determining an airport runway con-
figuration (Ramanujam and Balakrishnan 2011). Similarly,
the learning system AlphaGo incorporates an initial policy-
leaning phase (Silver et al. 2016). The AlphaGo frame-
work began by solving a supervised policy learning prob-
lem to imitate the decision-making of human Go players.
AlphaGo’s policy was then improved through self-play us-
ing a policy gradient algorithm (Sutton et al. 1999). This
approach is promising for solving scheduling problems by
learning policies through expert demonstration. However,
we are unaware of any prior attempts to apply policy learn-
ing to the scheduling domain, other than work by Gombo-
lay et al. (Gombolay et al. 2016a), which aimed to simply
emulate human expert scheduling policies, rather than im-
prove upon them. Techniques that rely upon function ap-
proximation and policy gradient descent or variants of q-
learning (such as the framework employed by AlphaGo) are
less desirable for scheduling applications, as it is inefficient
to specify or learn complex temporal constraints which are
often non-Markovian and the solution techniques are only
guaranteed to converge to a local optimal solution.

A small number of prior works have pursued approaches
outside of the family of techniques for policy learning. Some
directly modeled the trustworthiness of the demonstrations
via robust Bayesian inverse reinforcement learning (Zheng,
Liu, and Ni 2015). For example, Zheng et al. showed that
their approach was better able to capture the ground-truth
objective function from imperfect training data than regu-
lar, Bayesian IRL (Ramachandran and Amir 2007), which
does not include a trustworthiness parameter for demonstra-
tions. Zheng et al. validated their approach using a synthetic
dataset in an experiment with the goal of identifying the best
route through an urban domain.

Banerjee et al. addressed a domain in which the sys-

Figure 1: The COVAS architecture.

tem was required to repeatedly solve a scheduling problem
wherein the variables remained the same, but the constraints
for those variables changed (Banerjee et al. 2011). Using
a MILP formulation, they proposed a machine learning-
optimization pipeline in which the system performed a
branch-and-bound search over the integer variables, and
used the prediction of a regression algorithm trained on ex-
amples of previously solved problems to provide a provable
lowerbound on the optimality of the current integer variable
assignments. A shortcoming of this approach is its reliance
upon the ability to generate a large database of solutions to
train the regression algorithm. This generation requires the
costly exercise of repeatedly solving a large set of MILPs.

The technique presented in this paper was inspired by
these prior works, which synthesize machine learning tech-
niques, optimization and human demonstration. To our
knowledge, our work is the first to develop and demonstrate
an approach to learning through human demonstrations to
efficiently produce optimal solutions for complex real-world
scheduling problems. Our method employs a policy learn-
ing phase to learn from human demonstration, and uses the
resulting policy as an initial solution to provide a tight bound
on the value of the optimal solution. We show that this
policy can be used in conjunction with a MILP solver to
substantially improve the efficiency of a branch-and-bound
search for an optimal schedule. Our work is distinguished
from prior works that incorporated policy gradient descent
or variants of q-learning in that COVAS is guaranteed to pro-
duce a globally optimal solution to the scheduling problem.
Also, COVAS can be employed as an anytime algorithm that
provides a bound on the sub-optimality of the solution.

Model for Collaborative Optimization via
Apprenticeship Scheduling

Here, we provide an overview of the COVAS architecture,
and then present its two components: the policy learning
and optimization routines.

COVAS Architecture
Figure 1 depicts an overview of the COVAS framework.

The system takes as input a set of domain expert schedul-
ing demonstrations (e.g., Gantt charts, as shown in Figure 1)
that contains information describing which agents complete
which tasks, when and where. These demonstrations are
passed to an apprenticeship scheduling algorithm that learns



a classifier, fpriority(τi, τj), to predict whether the demon-
strator(s) would have chosen scheduling action τi over ac-
tion τj ∈ τ .

Next, COVAS uses fpriority(τi, τj) to construct a sched-
ule for a new problem. COVAS creates an event-based sim-
ulation of this new problem and runs the simulation in time
until all tasks have been completed. In order to complete
tasks, COVAS uses fpriority(τi, τj) at each moment in time
to select the best scheduling action to take. We describe this
process in detail in the next section.

Next, COVAS provides this output as an initial seed solu-
tion to an optimization subroutine (i.e., a MILP solver).The
initial solution produced by the apprenticeship scheduler im-
proves the efficiency of a search by providing a bound on the
objective function value of the optimal schedule.

Here, we briefly review the basic technique for solving a
MILP for a full overview, we refer the reader to (Bertsimas
and Weismantel 2005). In general, solving a MILP requires
iteratively identifying ever-tighter upper- and lowerbounds
for a given problem in order to inform a branch-and-bound
search over the integer variables. To find an upperbound,
one must satisfy the constraints of the MILP: Ax ≤ b.
To identify a lowerbound, one can solve a linear relaxation
of the problem.Such a relaxation can be computed quickly;
however, it rarely results in a feasible solution. As each new
upper- and lowerbound solution is found, the algorithm is
able to prune areas of the search tree and focus its search on
areas that can yield the optimal solution. After the algorithm
has identified an upper- and lowerbound within some thresh-
old, COVAS returns the solutions that have been proven op-
timal within that threshold. Thus, an operator can use CO-
VAS as an anytime algorithm and terminate the optimization
upon finding a solution that is acceptable within a provable
bound.

Apprenticeship Scheduling Subroutine
In this section, we review the apprenticeship scheduling sub-
routine for COVAS. Our approach incorporates policy learn-
ing using a training dataset comprised of schedules demon-
strated by humans, as well as a recently developed technique
for apprenticeship scheduling. The apprenticeship schedul-
ing algorithm (Gombolay et al. 2016a) takes as input demon-
strations in which human experts manually solve randomly
generated variants of a real-world scheduling problem. The
apprenticeship scheduler has been shown in empirical eval-
uation to learn a policy that effectively emulates the human
expert scheduling policy in a new problem variant. In this
work, we use the apprenticeship scheduler to generate a fa-
vorable (if suboptimal) initial solution to a new scheduling
problem. To guarantee that the generated schedule is ser-
viceable, we augment the apprenticeship scheduler to solve
a constraint satisfaction problem in order to ensure that each
scheduling commitment does not directly result in infeasi-
bility for the new problem through the execution of that ac-
tion.

Consider a scheduling problem containing a set of tasks
µ ∈ M , agents a ∈ A and locations to complete tasks
x ∈ X , as well as a set of scheduling actions taken at each
moment in time τi = 〈µ, a, x, t〉. For each action taken,

τi, the learning system can also compute the set of actions
not taken, τj ∈ τ . Each tuple has an associated real-valued
feature vector, γτi . Features of this vector may include the
deadline for µ, the distance from the agent’s current location
to x or how quickly the agent is able to complete the task.
The system allows, for a given moment in time, all possi-
ble tuples to share a common pointwise feature vector, ξt,
which captures features that are not well described by pair-
wise comparisons, such as the proportion of completed tasks
or of idle agents.

priority
θ
m
〈τi,τx〉 :=

[
ξτ , γτi − γτx

]
, y
m
〈τi,τx〉 = 1,

∀τx ∈ τ\τi, ∀Om ∈ O|τi scheduled inOm (1)

priority
θ
m
〈τx,τi〉 :=

[
ξτ , γτx − γτi

]
, y
m
〈τx,τi〉 = 0,

∀τx ∈ τ\τi, ∀Om ∈ O|τi scheduled inOm (2)

These vectors serve to create the training data, as shown in
Equations 1-2. For each scheduling observation (i.e., a spe-
cific time point within a schedule), the system creates a set
of positive and negative examples. For each such moment,
we take the feature vector of the action taken, γτi ; less the
feature vector of an action not taken, γτj ; concatenate to that
difference the pointwise vector, ξτ ; and, given that example,
a positive label (Equation 1). To create a negative exam-
ple, we take the feature vector of an action not taken, γτj ;
less the feature vector of the action taken, γτi ; and concate-
nate to that difference the pointwise vector, ξτ (Equation 2).
We create one positive and negative example for each ac-
tion not taken, τj , for each observation. Finally, we train
a classifier on these examples to learn a priority function,
fpriority(τi, τj), in order to predict whether scheduling ac-
tion τi is better or worse than τj . The computational com-
plexity of the algorithm vis-á-vis Equation 3 isO(|τ |2d) per
time step, where d is the maximum depth of the decision tree
(Gombolay et al. 2016a).

In this work, the learned policy fpriority(τi, τj) is applied
to obtain the initial solution to a new scheduling problem
as follows: First, the user must instantiate a simulation of
the scheduling domain; then, at each time step in the sim-
ulation, take the scheduling action predicted by Equation 3
to be the action that the human demonstrators would take.
This equation identifies the task τi with the highest impor-
tance marginalized over all other tasks τj ∈ τ .

Each selected action is then validated using a schedula-
bility test (i.e., solving a constraint satisfaction problem) to
ensure that direct application of that action does not violate
the constraints of the new problem. For example, in anti-
ship missile defense, one would check to ensure that the ac-
tion does not result in a suicidal deployment (i.e., the decoy
directly causes a missile to impact the ship). The test must
be designed to be fast (e.g., polynomial complexity) so as to
make the benefit to feasibility and optimality in the resulting
schedule worth the additional complexity. If, at a given time
step, τ∗i does not satisfy the schedulability test, COVAS uses
Equation 3 for all τi ∈ τ\τ∗i in order to consider the second-
best action. If no action τi ∈ τ passes the schedulability test,
no action is taken during that time step.

While the schedulability test forces the apprenticeship
scheduling algorithm to follow a subset of the full con-



straints in the MILP formulation, it is possible that the algo-
rithm my not successfully complete all tasks. However, our
MILP formulation is flexible in such cases, as we present in
the next section. Here, we model tasks as optional and use
the objective function to maximize the total number of tasks
completed. In turn, constraints for a task that the appren-
ticeship scheduling algorithm did not satisfactorily complete
can be turned off, with a corresponding penalty in the objec-
tive function score. Thus, an initial seed solution that has not
completed all tasks (i.e., satisfied all constraints to complete
the task) can still be helpful for seeding the MILP.

τ
∗
i = argmax

τi∈τ

∑
τx∈τ

fpriority(τi, τx) (3)

Optimization Subroutine
For optimization, we employ mathematical programming
techniques to solve mixed-integer linear programs via
branch-and-bound search. COVAS incorporates the solution
produced by the apprenticeship scheduler to seed a mathe-
matical programming solver with an initial solution. This is
a built-in capability provided by many off-the-shelf, state-
of-the-art MILP solvers, including CPLEX1 and Gurobi2.
This seed provides a tight bound on the value of the optimal
solution, which serves to dramatically cut the search space,
allowing the system to more quickly hone in on the area
containing the optimal solution and, in turn, more quickly
solve the optimization problem. Furthermore, this approach
allows COVAS to quickly achieve a bound on the optimal-
ity of the solution provided by the apprenticeship schedul-
ing subroutine. In such a manner, an operator can determine
whether the apprenticeship scheduling solution is acceptable
or whether waiting for successive solutions is warranted.

Methodology for Evaluation of COVAS with a
Real-World Scheduling Domain

Here, we demonstrate COVAS in the context of a real-
world anti-ship missile defense (ASMD) problem. First, we
formally define the problem a variant of the well-studied
weapon-to-target assignment problem (Ahuja et al. 2007)
and outline its usefulness as an appropriate test domain for
COVAS.

Overview of Anti-Ship Missile Defense Problem
In ASMD, the goal is to protect one’s naval vessel against
attacks by heterogeneous anti-ship missiles. Recent tech-
nological advances in electronic warfare have prompted the
development of what are known as “soft-kill weapons (i.e.,
decoys) that mimic the qualities of a target in order to direct
the missile away from its intended destination.

Developing tactics for soft-kill weapon coordination is
highly difficult due to the relationship between missile be-
havior and the characteristics of soft-kill weapons. The con-
trol laws governing anti-ship missiles are varied, and the
captain must select the correct decoy types in order to coun-
teract the associated anti-ship missiles. Further, decoys have

1IBM ILOG CPLEX Optimization Studio http://www-
03.ibm.com/software/products/en/ibmilogcpleoptistud

2Gurobi Optimization, Inc. http://www.gurobi.com

different financial costs and timing characteristics: Some de-
coys, such as unmanned aerial vehicles (UAVs), are able to
function during the entire engagement, while others, such as
an infrared (IR) flares, evaporate after a certain time. In turn,
a captain may be required to use multiple decoys in tandem
in order to divert a single anti-ship missile. Moreover, there
is a complex interplay between the types and locations of
decoys relative to the control laws governing anti-ship mis-
siles. For example, deployment of a particular decoy, while
effective against one airborne enemy missile, may actually
cause a second enemy missile that was previously homing
in on a second decoy to now impact the ship when it would
have missed otherwise.

The ASMD problem is characterized as the most com-
plex class of scheduling problem according to the Korsah et
al. taxonomy (Korsah, Stentz, and Dias 2013): XD [MA-
MT-TA]. The problem considers multi-task agents (MA) in
the form of decoys, each of which can work to divert mul-
tiple missiles at the same time. The problem also consid-
ers multi-agent tasks (MT): a feasible solution may require
the simultaneous use of multiple agents in order to complete
an individual task. Further, time-extended agent allocation
(TA) must be taken into consideration, given the potential
future consequences of scheduling actions taken at the cur-
rent moment. Finally, the ASMD problem falls within the
XD class, because each task may be decomposed in a vari-
ety of ways each with their own cost in order to accomplish
the same goal, and each decomposition affects the value and
feasibility of the decompositions of other tasks.

ASMD Problem Formulation
The ASMD can be formally modeled as follows: We first
define a task µ ∈ M as the job of defending a ship against
an individual missile; successfully completing all tasks re-
sults in diverting all enemy missiles. We also define an agent
d ∈ D (i.e., a decoy) as an actor used to aid in accomplish-
ing tasks. A scheduling assignment is then represented by a
four-tuple 〈d, µ, ~x, t〉, where d is a decoy,m is the associated
missile, ~x is the relative location (in Cartesian coordinates)
of the decoy relative to the ship and t is the moment when
the decoy should be deployed.

As ASMD is a time-extended problem, the formulation
must discretize time. However, note that the granularity with
which the task of protecting the ship from a given missile
is decomposed as a function of time is a modeling choice
with ramifications for the quality and computation time of a
solution. Consider a missile that will hit a ship if it tracks
a missile in some time interval [t, t′) for a duration dt =
t − t′. The captain might, at time t, deploy a decoy d, such
as a hovering UAV, that is able to last the entire duration
dt. However, it may be preferable to deploy one or more
decoys d′, each of which remains active for a portion of the
specified time interval. Furthermore, in a situation wherein
another missile m′ is launched before m, it may be best to
have a decoy deployed before t that can divert both m and
m′ during part or all of those missiles’ flights.

Because we do not know a priori the best time to deploy a
decoy that can be used for varying portions (i.e., subtasks) of
the task of mitigating each missile, we must decompose the



task into sufficiently small time steps. Discretizing time ex-
ponentially increases the search space, and thus the time to
compute the solution; therefore, there is a balance between
optimality (and feasibility) and computation time. In order
to generate an exact solution, we chose the least-common
multiple of the time constants, which is trivially 1, as the
unit of time in our simulation.

We formulate the ASMD as a mixed-integer linear pro-
gram in Equations 4-25:

min z, z = α
∑
d

cdUd − α
′ ∑
d,m,t

Ad,m,t − α
′′∑
m

Vm (4)

Ad,m,t ≤ Ad,t, ∀d,m, t (5)

Ad,m,t ≤ Ud,m, ∀d,m, t (6)

Xd,l ≤ Ud, ∀d, l (7)

S
decoy
d

≤ Sdecoy
d,m

, ∀d,m (8)

S
decoy
d,m

≤ t +M(1− Ad,m,t), ∀d,m, t (9)

F
decoy
d,m

≤ Fdecoy
d

, ∀d,m (10)

tAd,m,t ≤ F
decoy
d,m

, ∀d,m, t (11)

M(Ud,m − 1) ≤ Sdecoy
d,m

− Fdecoy
d,m

− 1 +
∑
t

Ad,m,t ≤ M(1− Ud,m) (12)

M(Ud − 1) ≤ Fdecoy
d

− Sdecoy
d

− dtevap
d

≤ M(1− Ud) (13)∑
l

Xd,l ≤ 1, ∀d (14)

Ud,m ≤
∑

l|m seduced by decoy d in location l

Xd,l, ∀d,m (15)

1 =
∑
d

Ad,m,t +
∑
g

Gg,m,t, ∀m, t (16)

t
appear
m − Fdecoy

d
≥ M(Xd,l + Vm − Jd,m − 2),

∀d, l,m s.t. decoy d in location l would cause missilem to impact the ship.
(17)

S
decoy
d

− ETAm ≥ M(Xd,l + Vm + Jd,m − 3), ∀d, l,m s.t. decoy d

in location l would cause missilem to impact the ship.
(18)

Vm ≤
∑
d

Ad,m,t, ∀m, t|t in critical region for missilem. (19)

2 ≥ Ad,m,t +Xd,l +Xd′,l′ , ∀d, d
′
, l, l
′
,m, t s.t. missile m is more

attracted to decoy d’ at location l’ than decoy d at location l at time t.
(20)

1 ≥ Ad,m,t + Ad′,m,t, ∀d, d
′
,m, t s.t. d 6= d

′

and t is in a critical region before impact.
(21)

S
ship
g,m ≤ t +M(1−Gg,m,t), ∀g,m, t (22)

t ∗Gg,m,t ≤ Fshipg,m , ∀g,m, t (23)

M(Ug,m − 1) ≤ Sshipg,m − Fshipg,m − 1 +
∑
t

Gg,m,t ≤ M(1− Ug,m) (24)

F
ship
g,m − Sshipg,m ≥ M(Gg,m,t − 1)

+

{
dtre−targetm − 1 if t < ETAm − dtre−targetm ,

ETAm − t− 1 otherwise.

+

{
−MGg,m,t−1 if t > tappearm ,

0 otherwise.

∀g,m, t|tappearm ≤ t < ETAm (25)

This formulation incorporates a set of binary decision
variables: Ad,m,t ∈ {0, 1} is set to 1 to indicate that de-
coy d is assigned to missile m at time t, and is 0 otherwise.
Ad,t ∈ {0, 1} is set to 1 to indicate that decoy d is assigned
to some missile at time t, and is 0 otherwise. Ud,m ∈ {0, 1}
is set to 1 to indicate that decoy d is used against missile
m, and is 0 otherwise. Ud ∈ {0, 1} is set to 1 to indi-
cate that decoy d is used in the solution, and is 0 otherwise.

Xd,l ∈ {0, 1} is set to 1 to indicate that decoy d is deployed
at location l, and is 0 otherwise. Vm ∈ {0, 1} is set to 1
to indicate that missile m has been effectively diverted, and
is 0 otherwise. Gg,m,t ∈ {0, 1} is set to 1 to indicate that
missile m is tracking the ship at time t. A single missile
might have multiple, separate epochs during which it tracks
the ship (e.g., it first tracks the ship, then tracks a decoy,
then tracks the ship again after that decoy evaporates); thus,
the program can choose which index g to represent the var-
ious epochs in Gg,m,t. Jd,m ∈ {0, 1} is set to 1 to indicate
that decoy d is deployed after missile m’s flight (i.e., after it
either hits the ship or is guided astray by a decoy).

The program contains the following set of continuous
variables: Sdecoyd,m represents the start time of the assignment
of decoy d to missile m, and Sdecoyd is the time at which
decoy d is deployed from the ship. Likewise, F decoyd,m repre-
sents the finish time of the assignment of decoy d to missile
m, and F decoyd is either the time at which the decoy evap-
orates or the end of the engagement. Sshipg,m indicates the
start time of missile m tracking the ship during epoch g, and
F shipg,m indicates the finish time of missilem tracking the ship
during epoch g.

The program also includes the following set of constants:
dtre−targetm is the duration for which a missile will track a
single target (i.e., decoy or ship) before re-assessing which
target is best to track. Thus, if the missile begins tracking
the ship at time t, no decoy can break its lock during the
interval [t, t + dtre−targetm ). ETAm is the time at which
missile m will reach the ship’s immediate vicinity. tappearm
is the time at which missile m is first close enough to track
the ship. cd represents the financial cost of deploying decoy
d. α, α′, and α′′ are predefined weighting terms for the ob-
jective function. The computational complexity of this for-
mulation is dominated by the integer variables, which yields
O(2dmt+dm+dt+dl+d+gmt+m).

Equation 4 is a multi-criteria objective function that min-
imizes a weighted, linear combination of the cost of all de-
coy deployments, less the total time during which missiles
are tracking decoys and the number of missiles successfully
guided away from the ship.

Equations 5-12 ensure internal consistency between the
variables.Equation 13 ensures that a decoy, if deployed, is
active for dtevapd units of time given its timing characteris-
tics. Equation 14 ensures that a decoy is deployed to no
more than one location. Equation 15 ensures that, if a de-
coy is deployed against a missile, its deployment location
will be a more attractive target for that missile than the ship.
Equation 16 requires that each missile tracks either a ship
or decoy while within range. Equations 17-18 force a de-
coy, if deployed to a location that would cause missile m to
impact the ship, to either be deployed after the missile has
already been diverted or reached the ship (Equation 17) or
to be deployed and evaporate before the missile enters tar-
geting range (Equation 18).

Equation 19 ensures that a missile must be tracking a de-
coy in the final seconds before it reaches the vicinity of the
ship, or else the missile will impact the ship. The duration of
this critical period is dependent upon missile dynamics and



the target selection process.
Equation 20 ensures that a missile will select the most

attractive decoy according to that missile’s selection logic.
Equation 21 restricts decoy deployments such that the mis-
sile heading does not “sweep” across the ship in the final
seconds of the missile’s flight. If a missile does not have
enough time to change its direction toward a newly deployed
decoy, that missile will fly into the ship.

Equations 22-25 ensure that the duration of epoch g of
missile m while tracking the ship lasts exactly as long as the
retargeting time for the missile. Equations 22-23 are akin to
Equations 9-11 and relate the start and finish times of ship-
tracking epoch g to the decision variable Gg,m,t. Equation
24 is akin to Equation 12 and relates the start and finish times
of ship-tracking epoch g to the decision variable Gg,m,t.
Equation 25 ensures that the tracking time is dtre−targetm if
the missile is airborne for at least dtre−targetm seconds. Oth-
erwise, the tracking time is equal to the time before impact-
ing the ship (i.e., ETAm − t − 1). Finally, a term (i.e.,
−MGg,m,t−1) disables the constraint for all t except for the
exact moment when t begins tracking the ship.

For the apprenticeship scheduling subroutine’s schedula-
bility test, we apply Equations 17-18 as our constraint satis-
faction check when testing the feasibility of action τ∗i , given
by applying Equation 3. With regard to tasks within the ap-
prenticeship scheduler’s seed solution that are not satisfac-
torily completed, the MILP can leave those tasks incomplete
to start by initially setting Vm ← 0.

Training Dataset for Apprenticeship
Scheduling

The algorithm trains the apprenticeship scheduler using a
dataset collected from military domain experts playing a se-
rious game that emulates the ASMD problem as formulated
in the previous section (Gombolay et al. 2016a). We con-
sidered a specific level within the game that requires players
to defend against a randomized enemy attack. In this level,
10 missiles are fired at the player’s ship from multiple direc-
tions, and the player has access to a limitted quantity of five
different types of soft-kill weapons to divert these missiles.
Although the missile bearings and launch times are fixed,
the seeking behavior of the missile is not known a priori.

We collected a dataset of 311 games played by 35 human
players across 45 threat configurations, or “scenarios.” Of
those configurations, only 40 contained a demonstration in
which the player completed an entire round. We then sub-
selected the single best demonstration from each of these 40
scenarios. The demonstrators included ASMD professionals
with expertise ranging from “generally knowledgeable about
the ASMD problem” to “domain experts” with professional
experience or ASMD training.

We trained the apprenticeship scheduling algorithm us-
ing the following features: The pointwise features for each
action included the number of decoys of each type left for
possible deployment (i.e., the ammunition). The pairwise
features for each action included, for each decoy/missile
pair (or null decoy deployment due to inaction), indicators
for whether a decoy had been placed such that the missile

Figure 2: This figure depicts the total computation time for
COVAS, as well as the amount of time COVAS required to
identify a solution superior to that resulting from a human
expert’s demonstration.

was successfully distracted by that decoy, whether the mis-
sile would be lured into hitting the ship due to decoy place-
ment, or whether the missile would be unaffected by decoy
placement. These features are identical to those employed
in (Gombolay et al. 2016a).

Results and Discussion
In this section, we empirically validate that COVAS is able
to generate optimal solutions more efficiently than state-of-
the-art optimization techniques. As a benchmark, we solve
a pure MILP formulation (Equations 4-25) using Gurobi,
which applies state-of-the-art techniques for heuristic upper-
bounds, cutting planes and LP relaxation lowerbounds. We
set the optimality threshold at 10−3.

Validation Against Expert Benchmark
First, we validate that COVAS can efficiently find optimal
solutions, as depicted in Figure 2. To generate each data
point, we trained COVAS’ apprenticeship scheduling al-
gorithm on demonstrations of experts’ solutions to unique
ASMD scenarios (save for one “hold-out scenario); we then
tested COVAS on this hold-out scenario. We also applied
a pure MILP benchmark on this scenario and compared the
performance of COVAS to the benchmark. We generated
one data point for each unique demonstrated scenario (i.e.,
leave-one-out cross validation) to validate the benefit of CO-
VAS’.

Figure 2 consists of two performance indicators: The to-
tal computation time required for the MILP benchmark and
COVAS to solve for the optimal solution is depicted on the
left; to the right is the computation time required for the
benchmark and COVAS to identify a solution better than that
given by a human expert. This figure indicates that COVAS
is not only able to improve overall optimization time, but
that it also substantially improves computation time for so-
lutions that are superior to those produced by human experts.
The average improvement in computation time with COVAS
is 6.7x and 3.1x, respectively.

Next, we evaluate COVAS ability to transfer prior learn-
ing to more challenging task sets. We trained on a level in
the ASMD game in which a total of 10 missiles of vary-



Figure 3: The total computation time needed for COVAS
and the MILP benchmark to identify the optimal solution
for the tested scenarios.

ing types came from specific bearings at given times. We
randomly generated a set of scenarios involving 15 and 20
missiles, with bearings and times randomly sampled with
replication from the set of bearings used in the 10-missile
scenario.

Figure 3 depicts the computation time required by CO-
VAS and the MILP benchmark to identify the optimal so-
lution for scenarios involving 10, 15 and 20 missiles. We
found that the average improvement to computation time
with COVAS was 4.6x, 7.9x, and 9.5x, respectively. This
evaluation demonstrates that COVAS is able to efficiently
leverage the solutions of human domain experts to quickly
solve problems twice as large as those the demonstrator pro-
vided for training.

Limitations and Future Work
COVAS is able to leverage the power of expert scheduling
demonstrations to speed up the computation of provable,
globally optimal scheduling solutions. However, the ap-
proach is still limited by the quality of the demonstrations
provided by the experts and the ability of the apprenticeship
scheduling algorithm to generalize the information within
those demonstrations. The MILP’s computation time is ex-
pedited by tight upperbounds (i.e., an initial seed) provided
by the apprenticeship scheduling algorithm. If the appren-
ticeship scheduling algorithm is unable to provide a tight
upperbound, the MILP’s computation time may not be sig-
nificantly improved.

In future work, we will explore extensions to the appren-
ticeship scheduling algorithm to improve its ability to learn
from noisy demonstrations. One approach could be to incor-
porate a trustworthiness metric á la (Zhang 2009) directly
into the training of the classifier to uncover a latent action
ranking. For example, instead of binary labels, we could
reformulate the problem to be one of regression, where pos-
itive and negative labels are proportional and inversely pro-
portional, respectively, to the fidelity of the demonstrator.

We also aim to extend COVAS to a stochastic architec-
ture to reason about uncertainty over task assignment char-
acteristics (e.g., missile behavior) and temporal dependen-
cies (e.g., start and finish times, etc.).

Conclusions
In this work, we developed and demonstrated an approach to
learning through human demonstrations to efficiently pro-

duce optimal solutions for complex real-world scheduling
problems. We showed that policies learned from human
experts can be used in conjunction with a MILP solver to
substantially improve the efficiency of a branch-and-bound
search for an optimal schedule. We empirically validated our
technique on a dataset collected from human experts solving
an anti-ship missile defense problem, which represents the
hardest class of scheduling problems. We showed that our
approach can substantially improve upon solutions produced
by human domain experts, at a rate up to ∼ 10 times faster
than as an optimization approach that does not incorporate
human expert demonstration.
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