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1. Introduction
Among the challenges faced in molecular simulations is balancing the competing
needs of computational complexity and fidelity to the underlying chemical and
physical phenomena being studied. The challenge is made more acute when the
properties under investigation evolve over time, as many orders of magnitude ex-
ist between the fundamental time scale of molecular motions and the time scale
of collective material processes such as heat transfer, diffusion, or elastic defor-
mations. Coarse-graining methodologies have been frequently used to reduce the
complexity of molecular dynamics (MD) simulations, by reducing the number of
“particles” being studied1–5. Although the elimination of degrees of freedom (DoFs)
often leads to minor gains in the time steps that can be used in dynamic simula-
tions6, such improvements have not led to significant breakthroughs in simulation
capabilities. More advanced coarse-graining techniques are required to enable sim-
ulations of systems exhibiting structure on the micron or submillimeter scales, such
as semicrystalline materials.

In this report, we present a new approach toward that end, focusing on polymeric
materials composed of homopolymers or block copolymers. Our approach is based
on the concept of diffusion wavelets7,8, which both automatically identifies chem-
ical structures that can be reduced into coarse-grained (CG) units and also allows
for repeated application, thus providing much greater customization of the level of
simulation. Such a technique enables the potential reduction of the number of DoFs
by orders of magnitude, as well as for a vastly increased time step, which, when
taken together, permits vastly extended time scales to be simulated using currently
available computational resources.

Among the shortcomings of typical coarse-graining approaches has been that they
normally involve only 2 levels of description, the “original” atomistic level and the
coarse representation, which has typically been based on the developer’s judgment
or intuition. These techniques rely on partitionings of the atoms as the foundation
to deriving coarse DoFs, which typically replace the atomistic groupings with a sin-
gle “bead”-like entities9–15. While approaches such as the force-matching method
of Voth et al.16 and the reversible coarse-graining method for phenolic polymers
by Kremer et al.9,10,17 have greatly impacted accessible simulation scales for these
materials, they do not fundamentally change the underlying computational process.
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Furthermore, these CG approaches introduce the difficult problem of generating
consistent atomistic reconstructions, because particle-like CG beads lose informa-
tion about the particles they subsume, which has to be recaptured by other means
(e.g., the use of dummy variables as in dissipative-particle dynamics with energy
conservation18).

The present work focuses on polymeric materials, which are the target application
for many classes of coarse-graining methodologies. In particular, polymers’ long
chain lengths and low defect concentrations compound the problems of 2-scale rep-
resentations and fine-scale reconstruction, by requiring a large number of particles
and their associated DoFs. Moreover, the equilibration time for polymeric liquids
is itself computationally challenging: a melt whose chains contain N beads each
will require O(N3) time to equilibrate, making simulation essentially impossible
without advanced simulation approaches19. However, coarse-graining need not be
restricted only to polymers; even relatively “simple” fluids, such as water, have been
the subject of CG models.

Many of the previously mentioned problems can be alleviated through the selec-
tion of an appropriate basis set for describing the internal structure of individual
molecules. Consider the analogy of a time-varying quantity f(t). One naturally
represents f(t) in terms of an infinitely local basis (Dirac delta functions). A more
sophisticated approach, suitable for analyzing certain average properties of the sig-
nal, might employ the Fourier basis, sines of varying frequency. However, the latter
basis is global in nature, challenging processing and storage for signals that are
infrequent or have sharply varying features only over small durations in time. In
signal processing, wavelets are often used as a basis to differentiate between local
and increasingly global features of the signal, because wavelet bases can be flexibly
defined to efficiently capture features of varying localization20,21. Few other mod-
els provide the on-the-fly adaptivity required for important problems, which in the
structural modeling sense might be problems including crack initiation, crack prop-
agation, and interfacial phenomena.22–24. By analogy to the time-varying signal,
purely atomistic models and standard 2-scale CG models represent infinitely local
Dirac distributions, which are expensive; coarse-graining methods based on glob-
ally periodic functions (e.g., plane waves) are inefficient for modeling localized
properties. In the context of time-varying signals, the mathematical inefficiency can
be quantified precisely: except for limited special cases, either basis requires in-
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finitely many coefficients to approximate a signal to within tolerance of a given
error metric (e.g., the l2 or l∞ metrics). In contrast, the number of coefficients re-
quired for a wavelet-based representation is usually O(log2N), where N is the size
of the signal (e.g., number of time samples).

Wavelet ideas have already been used extensively to analyze time-series data21.
Our application of wavelet ideas to structural representation extends the work of
Ismail25,26. In particular, the earlier work employed Monte Carlo and did not cap-
ture dynamical information. The work here develops an approach suitable for MD
simulation by interpreting the wavelet transform of Ismail in terms of the equations
of motion. The method provides a consistent and systematic framework to derive
multiple levels of model resolution while also reducing simulation complexity.

This approach has numerous advantages, whose theoretical basis we address in this
report; follow-on work will illustrate more concrete applications. The general theme
of the advantages is that for the dynamical and nonequilibrium metrics of interest,
this approach especially captures molecular information relevant to both thermody-
namics and kinetics. In particular, application of diffusion wavelets to the chemical
topology of the molecule leads to the identification of what we call collective action
modes (CAMs) that represent coordinated motions within the molecule at various
length and time scales. Our approach is rigorously tied to the underlying physics
and has the potential to increase simulation size and duration by several orders of
magnitude. Moreover, the approach is agnostic to the kind of material being studied
and can be applied both to structures of arbitrary chemical complexity, including
both relatively simple molecules such as water or benzene, as well as more compli-
cated chain molecules such as polymers and biopolymers. Finally, it is also capable
of capturing minor effects such as mass effects from chemical substitution (e.g.,
partial deuteration or fluorination). This may be of special importance for materials
design, where the task is to link macroscopic behavior (e.g., Young’s modulus) to
the atomic structure of the monomer unit.

We proceed by introducing the type of classical Hamiltonian model we seek to
accelerate, as well as the wavelet methodology and its basic properties. We then
discuss how wavelets can be applied to uncover the CAMs for a given molecule
and how to use CAMs to systematically reconstruct finer resolutions, as well as
deriving mixed resolutions. We present several examples showing the application

3



Approved for public release; distribution is unlimited.

of the method for small molecules such as water and hydrogen cyanide (HCN)
before summarizing our conclusions.

2. Methodology
We begin by analyzing the equations of motion in MD for a physics-based wavelet
construction. The foundations of MD lie in the application of Newtonian mechanics
to the energy functional

E =
1

2
tr(ẋTMẋ) + V (x), (1)

where x ∈ RN×3 are particle positions, ẋ ∈ RN×3 are particle velocities, N is
the number of particles, M is the diagonal matrix of particle masses, and V is
the potential. For the macromolecular systems we are interested in, V is usually
partitioned as

V = Vharmonic + Vnon−harmonic, (2)

where Vharmonic(x) =
∑

i 6=jKij(‖xi − xj‖ − r(ij)
0 )2/2, Kij is the force constant of

the harmonic oscillator, xk is the position of particle k, and r(ij)
0 is the equilibrium

distance of particles i and j. The atoms and the bonds between them define a graph
in which the atoms are the vertices and an edge between atoms i and j has weight
Kij . The maximum number of edges for a vertex in organic materials is 4, and
even in organometallic complexes, the number of edges is unlikely to exceed 6 (the
typical maximum coordination number). Consequently, the matrix representation
of this graph, defined by K, should be highly sparse.

Our multiresolution approach begins with the graph Laplacian of the weighted
graph defined using particles as vertices and the bonds as edges weighted by the
harmonic force constant. This graph Laplacian, denoted ∆, is here a matrix that can
be defined as

∆ := diag(K1)−K, (3)

∆ij =

{∑
jKij, i = j

−Kij, i 6= j
(4)

where 1 denotes a vector of all ones and diag(v) denotes a diagonal matrix defined

4



Approved for public release; distribution is unlimited.

in terms of a vector v, so that if A = diag(v) then Aii = vi. An example of the
weighted graph Laplacian ∆ for a linear triatomic molecule can be found in Figure
1.

Using Eq. 1 and our definition of ∆, we derive the equations of motion

Mẍ = −∇V (x) = −∆x− V ′(x), (5)

where V ′(x) = ∇V (x) − ∆x is the force for x not due to ∆. ∆ is the graph
Laplacian of the weighted graph with particles as vertices and the bonds as edges
weighted by the harmonic force constant (Figure 1).

1 2

3

K12 = 1.3

K23 = 2.1 → ∆ =

1 2 3
1 1.3 -1.3 0
2 -1.3 3.4 -2.1
3 0 -2.1 2.1

Fig. 1 Example of a weighted graph Laplacian derived from a simple weighted graph

By letting r = M1/2x, p = ṙ, and q = ∆̃1/2M1/2x where ∆̃ = M−1/2∆M−1/2,
the harmonic energy term can be expressed as (‖p‖2 + ‖q‖2) /2 and the equations
of motion become

ṗ = −∆̃
1
2 q − V ′(x) = −∆̃

1
2 q − Ṽ (r), (6)

where Ṽ (r) = V ′(M−1/2r) is the effective potential in terms of r. If Ṽ = 0, the
system can be solved analytically,

y(t) = eΥty0, (7)

where

Υ =

(
0 ∆̃

1
2

−∆̃
1
2 0

)
, y(t) =

(
q(t)

p(t)

)
, and y0 =

(
q0

p0

)
. (8)

It can be shown that ∆̃ is positive semi-definite, and that the eigenvectors of the
exponential operator in Eq. 7 are (Uj,±iUj), where Uj is an eigenvector of ∆̃.

5
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The solutions to Eq. 7 oscillate with frequencies ±ωj , respectively, where ω2
j is

the eigenvalue of ∆̃ corresponding to the eigenvector Uj . For this analytical case,
any eigensolution of Υ can be propagated through time independently of any other
solution. Unfortunately, this simplicity is in general broken by Ṽ , which nonlin-
early couples all of the eigensolutions to one another. As a consequence, all solu-
tions have to be simulated concurrently according to the highest frequency associ-
ated with an eigenvector. Hence, the transformation from particle space coordinates
(x, ẋ)† to the harmonic solution coordinates offers no advantage. To circumvent
this issue, a basis that isolates the coupling effects from high- and low-frequency
components is needed.

The key motivation for our work is the recognition that the mass-weighted graph
Laplacian ∆̃ relates spatial coordinates to temporal frequencies, which suggests that
its eigenvector matrix is a promising basis for compression. The weighted graph
Laplacian ∆̃ and its matrix of eigenvectors are then analogous to the Laplace oper-
ator and the Fourier transform, respectively, in conventional wavelet theory.

2.1 Basic Multiresolution
Here we introduce the wavelet transform used in this work and its derivation. We
use the multiresolution analysis for diffusion wavelets as introduced by Coifman
and Maggioni7. In essence, the multiresolution decomposition partitions the eigen-
values and eigenvectors of ∆̃, effectively strongly coupling high frequencies in the
time domain to high-frequency eigenvectors of ∆̃ in the “particle” domain. This
is an important point for the applicability of our approach: not only can DoFs be
reduced, but the time step may also be increased considerably, approximately by a
factor of 2 at each subsequent resolution.

The multiresolution scheme (Figure 2) relies on a positive-definite low-pass filter
T with ‖T‖∞ = 1 (i.e., an operator that suppresses high-frequency vectors) and an
accuracy operator Pε that projects eigenvectors of a matrix X ∈ span{T 2n|n ∈ N}
with associated eigenvalue less than a given accuracy ε > 0 to zero. The effect and
purpose of the filter is to project out DoFs associated with high frequencies, thereby
producing a hierarchy of CAMs in respective vector spaces. After each application,
the associated frequencies roughly halve, and concomittantly, the minimum time
step size roughly doubles.

6
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a) V0

V1

V2

V3

Pε(T
2)V2

W3

P⊥ε (T 2)V2

Pε(T )V1

W2

P⊥ε (T )V1

Pε(T )V0

W1

b) CH3CH2CH2CH3

•
•
•
•

•
•
•
•

• •

• • •

•
•
•
•
•
•
•
•

HHH
,

HHH
,

HH
,

HH
,

HHH ,HHH ,

CHHH ,

C HHH ,

C HH
, C HH

,

Fig. 2 Dyadic trees generated by multiresolution formalism using a filter T . Shaded spaces are
final subspaces of the multiresolution. All other spaces are intermediates of the construction.
a) Generic scheme; and b) an example using butane. In the final spaces in gray, red and blue
denote opposite signs of weights in the construction from the finer scale.
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The recursively defined vector spaces Vn = Vn+1 ⊕Wn+1, where

Vn+1 = Pε(T
2n+1

)Vn (9)

and
Wn+1 = kerPε(T

2n+1|Vn) (10)

are iteratively associated with orthonormal bases via QR-decompositions,

T 2n = QnRn, (11)

where Qn is unitary, Rn is upper triangular, and both are dependent on the basis
used to express T 2n .

One advantage of this approach is the inherent invariance of the wavelet spaces with
respect to permutations of the graph vertices and its ability to deal with arbitrary
matrices T with ‖T‖∞ ≤ 1. The wavelet space at scale n (Wn) is approximately
spanned by eigenvectors of T whose eigenvalues obey

2−n+1 ln ε < lnλ ≤ 2−n ln ε. (12)

Only a limited degree of mixing with eigenvectors associated with eigenvalues out-
side of these bounds is possible (see Section 9 for details). Since T is positive semi-
definite, T can be rewritten as an exponential elnT . The application of the previous
procedures are equivalent to doubling the spectrum of lnT followed by projecting
out the high-frequency components of the spectrum of lnT .

2.1.1 Properties of ∆̃ as a Filter
With an efficient means of computing the wavelet transform in hand, we consider
exclusively in the following the low-pass filter T = I−∆̃/C, where C is a constant
sufficiently large to render T positive semi-definite. To minimize the number of
matrix-matrix multiplications, in particular, with kerPε(T

2n)|Vn = ∅, the normal-
ization constant C = ‖∆‖∞ would generally be optimal as Ψ1 6= ∅. Eigenvalues
for graph Laplacians, such as ∆, are known to lie in [0, 2 maxi ∆ii].27 Hence, C is
chosen to be between maxi ∆̃ii and 2 maxi ∆̃ii for all numerical examples.

As implied by Eq. 12, the frequency range ∆ lnλ = 2−n ln ε for each wavelet space
Wn is drawn ever tighter with each iteration while the eigenvalues λ approach 1.

8
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Thus generally, more CAMs correspond to scales of high frequency than scales of
low frequency. As a result, each successive scale corresponds to an increase in the
minimum time step size of that scale in MD simulations of approximately ε−2n as
well as a significant reduction of CAMs. Furthermore, unless the effective potential
Ṽ couples involved scales strongly, sufficiently coarse scales (n � m) are quasi-
static compared to a given scale m, while sufficiently fine scales (n � m) only
influence the target scale via their static mean. Therefore, only the relevant scales
need to be propagated through time, reducing the DoFs and allowing us to raise the
time step size to match the scales.

Assuming that eigenvalues of T are distributed approximately exponentially, ε =

e−1/2 would lead to log2N scales, where N is the dimensionality of ∆̃. This leads
to many DoFs per scale due to issues discussed in the following sections. Instead,
a higher resolution of ε1/2

machine is used. Although this wastes some computation on
the first few iterations because kerPεT

2n|Vn = ∅, it is equivalent to choosing a
tolerance on the scale of δmax, εeffective = ε2−m

machine ≈ 1− δmax.

2.1.2 How Molecular Information Influences ∆̃

Since the filter T and the weighted graph Laplacian ∆̃ derived from the MD po-
tentials share the same eigenvectors albeit with reversed order of eigenvalues, we
discuss its properties in greater detail. These properties have a major impact on the
performance of the wavelet transform. In the following, we discuss shortly the con-
ditions under which separate groups of atoms are strictly independent of each other
leading to highly localized CAMs.

Due to the small number of bonds an atom generally has, vertices are also gener-
ally of low degree. As a result, there are highly localized modes due to invariant
subspaces of chemical motifs. For example, any methylene (CH2) group has an as-
sociated medium-frequency, highly localized eigenvector of ∆̃. This follows from
the fact that the hydrogens are leaves on the graph (i.e., the weighted subgraph
Laplacian

∆̃CH2 =


2KCH

12
+ o −KCH√

12
−KCH√

12

−KCH√
12

KCH 0

−KCH√
12

0 KCH

 , (13)

where o collects the contributions from further bonds with the carbon atom, shows

9
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only contributions from CH2 for the hydrogens). If the hydrogens are identified with
indices i and j on the full graph Laplacian, then (ei−ej)/

√
2 is an eigenvector with

an associated frequency
√
KCH/mH of a CH vibration.

A slightly more involved example that also shows that this phenomenon is not re-
stricted to leaves on the graph is the repeat unit of the energetic polymer poly-
1,2,4,5-tetrazine (Figure 3), which has an invariant subspace spanned by 2 indepen-
dent eigenvectors. The repeat unit block of the weighted graph Laplacian ∆̃ is

A =



2X+Z1

12
− X√

12·14
0 − X√

12·14

− X√
12·14

X+Y
14

− Y√
12·14

0 − Y√
12·14

X+Y
14

− X√
12·14

− X√
12·14

X+Y
14

− Y√
12·14

0

− Y√
12·14

X+Y
14

− X√
12·14

− X√
12·14

0 − X√
12·14

2X+Z6

12


, (14)

where X is the bond constant for the C–N bond, Y for the N–N bond, and Z1/6 for
the contributions of vertices outside the repeat unit. The 2 vectors (0, 1, 1,−1,−1, 0)

and (0, 1,−1, 1,−1, 0) span a subspace invariant under application of A but which
is mapped to zero for operators B with entries Bij 6= 0 ⇐⇒ i/j 6∈ {2, 3, 4, 5}.
Hence, these vectors are highly localized (see Section 10 for details of the general
case).

N N

NN( )
n

Fig. 3 Chemical structure of polytetrazine

In large linear homopolymers, discussed in later sections, the invariant subspaces
represent highly degenerate eigenvalues due to the polymer’s repetitive structure.
Degeneracies in ∆̃ reduce the effectiveness of the wavelets because no choice of
accuracy can be used to separate them into subscales. In such cases, it may be
possible to incorporate more information from the potential Ṽ , but this is outside of
the current scope.

As an example, butane (H(CH2)4H) has 14 atoms and, therefore, the graph Lapla-
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cian associated with H(CH2)4H is the 14-dimensional square matrix

∆ ∝



1 −1

−1 3 + κ −1 −1 −κ
−1 1

−1 1

−κ 2 + 2κ −1 −1 −κ
−1 1

−1 1

−κ 2 + 2κ −1 −1 −κ
−1 1

−1 1

−κ 3 + κ −1 −1 −1

−1 1

−1 1

−1 1



,

(15)
where κ = 44/31 is the ratio of force constants for a CC-bond to a CH-bond in
the polymer-consistent force field (PCFF)28 and the units of kcal/mol/Å2 have been
subsumed in the proportionality constant. The individual CH2 repeat units have
been boxed for emphasis. Since 660 kcal/mol/Å2 is an upper bound for ∆, using
the filter T = I −∆/(660 kcal/mol/Å2) and εmachine as the cutoff criterion yields 6
scales. The first 4 applications (T, T 2, T 4, T 8, T 16) did not lead to any unit vectors
below the threshold. At n = 5, the 4 highest frequency modes of ∆ (λ = 517.1,
524.0, 556.3, and 556.3 kcal/mol/Å2, respectively),


H C H H C H H C H H C H H H

−0.50 0.46 −0.50 −0.50

0.33 −0.53 −0.53 0.21 −0.36 −0.36

−0.24 0.35 0.35 0.35 −0.52 −0.52

−0.46 0.50 0.50 0.50

 ,

(16)
approximately map to zero for T 32, that is, the logarithm of the expectation values
with T do not exceed 2−5 ln ε ≈ −1.13 (log(1 − λ/660) < −1.53) . These CAMs
correspond to the symmetric stretches of the methyl groups.

The 6 second-highest frequencies (λ =440 kcal/mol/Å2 for all, log(1 − λ/660) ≈

11
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−1.10),



H C H H C H H C H H C H H H

0.81 0 −0.39 −0.43

0 0.72 −0.69

0.10 0 −0.70 0.70 0

0 −0.71 0.71

0 0.82 −0.41 −0.41

0.71 −0.71


,

(17)
are computed for n = 6 and their expectations with T are between 2−5 ln ε ≈=

−1.13 and 2−6 ln ε ≈= −0.56. These CAMs correspond to individual HH stretches.
The CAMs on the first and last 2 rows cover the degeneracy between the 3 hydro-
gens within the respective methyl groups, whereas the third and fourth rows show
isolated HH vibration modes.

The next 2 powers of T (T 128, T 256) do not filter out any new spaces. The third
wavelet subspace is spanned by a single vector (λ =72.7 kcal/mol/Å2, log(1 −
λ/660) ≈ −0.12),(
H C H H C H H C H H C H H H

0 −0.22 0 0 0.59 0.20 0.20 −0.59 −0.20 −0.20 0.22 0 0 0

)
,

(18)
with exponent n = 9 for T 2n . The logarithm of its expectation value with T is be-
tween 2−6 ln ε ≈= −0.56 and 2−9 ln ε ≈= −0.070. This CAM isolates the asym-
metric stretch between the terminal carbons and the centers of mass of the bridging
methylene groups.

The fourth wavelet subspace is spanned by another vector (λ =42.1 kcal/mol/Å2,
log(1− λ/660) ≈ −0.066),

(
H C H H C H H C H H C H H H

0.13 0.43 0.13 0.13 −0.46 −0.15 −0.15 −0.46 −0.15 −0.15 0.43 0.14 0.14 0.14

)
,

(19)
with exponent n = 10 for T 2n = T 1024. The logarithm of its expectation value with
T is between 2−9 ln ε ≈= −0.070 and 2−10 ln ε ≈= −0.035. This CAM captures
the symmetric stretch between the center of mass of the bridging methylenes and
the centers of mass of the terminal methyl groups.

12
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The last nontrivial wavelet subspace also is spanned by a single vector (λ = 12.2
kcal/mol/Å2, log(1− λ/660) ≈ −0.019),(

H C H H C H H C H H C H H H

−0.17 −0.59 −0.17 −0.17 −0.24 0 0 0.24 0 0 0.59 0.17 0.17 0.17

)
,

(20)
with exponent n = 11 for T 2n = T 2048. The logarithm of its expectation value
with T is between 2−10 ln ε ≈= −0.035 and 2−11 ln ε ≈= −0.018. This CAM
captures the symmetric stretch of the bridging carbons and the centers of mass of
the terminal methyl groups.

The coarsest level (0 kcal/mol/Å2) is described by(
H C H H C H H C H H C H H H

0.13 0.45 0.13 0.13 0.45 0.13 0.13 0.45 0.13 0.13 0.45 0.13 0.13 0.13

)
.

(21)
This last CAM is just the center of mass.

2.1.3 Multiresolution Construction from Fragments
Since the previously mentioned invariant subspaces are inherent to molecular frag-
ments and some molecular fragments are particularly common, the question of how
much can be gained by precomputing the internal scales of these fragments arises.
For example, proteins are long heterogeneous polymers, but they are mostly com-
posed of only 20 amino acids. Hence, it is instructive to characterize the effects of
modifying bonds or substituting different atoms. Indeed, connecting fragments (see
Section 11 for details) affect a small portion of precomputed CAMs, such that only
a few CAMs need to be adjusted. Precomputed fragments can therefore speed up
the computation of scales considerably when the perturbations due to connecting
them are relatively small.

2.1.4 Example: Linear Homopolymers
Linear homopolymers are an important class of materials, whose graph Laplacians
exhibit convenient structures that we exploit in the following to derive their CAMs.
Linear homopolymers are a successive addition of edges between identical build-
ing blocks. We can derive computationally inexpensive algorithms to compute the
eigenvalues of their weighted graph Laplacians and thereby the successive construc-
tion of the respective wavelet spaces. The eigensystems are computed by exploiting
the recursive structure of ∆̃ to solve n much smaller eigensystems, where n is the

13
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number of repeat units in a single chain of the polymer. The graph Laplacian of
linear homopolymers can be ordered to have a block Toeplitz structure, where each
nonterminal block is a constant m×m matrix for the off-diagonal B and diagonal
A, respectively,

∆̃ =


A B∗ 0 B

B
. . . . . . 0

0
. . . B∗

B∗ 0 B A

 , (22)

where m is the number of particle DoFs in the repeat unit of the polymer. Further-
more, the off-diagonal block B generally consists of a single nonzero entry repre-
senting a single bond connecting repeat units, such as B1,m (off-diagonal blocks in
Eq. 15 for an example). This highly repetitive structure can be exploited to compute
eigenvectors and eigenvalues very efficiently and hence the CAMs (Section 12).

2.2 Computational Methods
The following simulation exemplifies the effectiveness of the approach. All MD
simulations were performed in the the Large-scale Atomistic/Molecular Massively
Parallel Simulator (LAMMPS)29. A crystalline model of polyethylene (PE) consist-
ing of 100,800 atoms in a single infinite chain was simulated in the NVT ensemble
under periodic boundary conditions with 1-fs time steps, PCFF28 at 500 K. The
monoclinic unit cell has edge vectors a = (103.432 , 0, 0), b = (0, 147.87 , 0), and
c = (73.88 , 0, 50.78 ). The initial structure is depicted in Figure 5.

2.3 Simulation Results and Analysis
We witnessed this behavior in computations of PE as well as polyglucose. Fur-
thermore, when applied to the alanine dipeptide model, commonly used for testing
coarse-graining methods for proteins, the wavelet decomposition correctly identi-
fied the various chemical groups at the finer scales, while the coarse scales captured
the partitioning corresponding to single bond rotations. Figure 4 illustrates the de-
composition for tetra-1,4-D-glucose and Figure 5 demonstrates the informational
content in the wavelet DoFs for PE.

14
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Fig. 4 Heat map of selected wavelet DoFs in 1,4-D-glucose tetramer. Blue denotes positive
coefficients, red negative. From left to right: fine-grained wavelet DoF covering a single repeat
unit; CG wavelet DoF covering one half of the oligomer; coarser wavelet DoF covering the
oligomer isolating repeat units with sign changes; coarsest wavelet.

a) b)

c) d)

Fig. 5 Selected reduced wavelet representations of a PE crystal. From a) to d) wavelet infor-
mation is successively added. a) Coarse representation highlights the anisotropy in 1-D chain
averaged over all chain segments; b) Coarse representation of the 2-D chain plane; c) 3-D
representation; d) full resolution.

Figure 6 shows the superimposed Fourier-transformed time series of 1,000 atoms
from the 500 K trajectory, which due to the high temperature shows the highest
mobility of atoms. Although, the zero frequency is by far the most intense signal
(and is omitted from the figure for clarity), a wide range of other frequencies are
active, most importantly around 0.45 PHz, which limits the time step of atomistic
simulations of PE to 1.2 fs or less.
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Fig. 6 Fourier transform of the y-component of 1,000 atoms in crystalline PE (100,800 atoms)
excluding zero frequency to allow detail at other frequencies. MD at 500 K and 1 atm. Left:
Individual power spectra per atom. Right: Power spectrum of magnitude of optimal represen-
tation.

On the other hand, Figure 7 shows the effects of scales on time-series analysis. The
finest scale out of 25 still retains the high-frequency components (top, left) as may
be expected, but they are much less intense than the remaining modes. Traversing
the scales, it is noteworthy that a decreasing number of DoFs at the coarser scales
show significant peaks at all. At the medium scale (top, right), no high-frequency
components are found anymore. Therefore, medium scale and coarser DoFs are
quasi-static compared to the finer scales. Furthermore, the signals are clearly sepa-
rated and very sharp despite the high temperature, which speaks for strongly decou-
pled modes and justifies dropping the finer scales, which in turn facilitates speed-up
by reducing not only DoFs but also increasing the propagation time step.

Fig. 7 Top row: Fourier transform of the y-component of a 100,800 atom crystalline PE sam-
pled at 1 fs. 3 scales are shown: 1st (left, finest scale), 5th (middle), and 12th scale (out of 25,
right).

The same is witnessed for alanine dipeptide and polyglucose (not shown). Figure
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8 shows the power spectra for all 22 DoFs. Clearly, a large number of frequencies
are active for all atoms. The spectrum of optimal representation shows some clear
peaks around 0.13 and 0.10 PHz. But in Figure 9, the 0.13-PHz peak is absent after
the second scale and the 0.10-PHz peak including noise down to about 0.06 PHz
vanishes from the fourth scale on through the remaining 4 scales.

Fig. 8 Fourier transform of the z-component of alanine dipeptide in vacuum excluding zero
frequency to allow detail at other frequencies. MD at 500 K and 1 atm. Left: Individual power
spectra per atom. Right: Power spectrum of magnitude of optimal representation.
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Fig. 9 Fourier transforms of alanine dipeptide DoF time series in vacuum excluding zero
frequency to allow detail at other frequencies. MD at 500 K and 1 atm. a) z-component of opti-
mal representation; b) second finest optimal wavelet DoF z-component; c) third finest optimal
wavelet DoF z-component; d) fourth finest optimal wavelet DoF z-component.

We investigated the correlation matrices of the various coordinate systems to quan-
tify the extent of interdependence. Figure 10 shows the correlation matrices,

Cij =

∫
x∗i (t)xj(s− t) ds dt(∫

x∗i (t)xi(s− t) ds dt
∫
x∗j(t)xj(s− t) ds dt

) 1
2

, (23)

where xi(t) is a time-dependent coordinate, as heat maps. As may be expected, all
particle coordinates are strongly correlated, but in both the water case as well as
the alanine dipeptide case, much less correlation is witnessed for the wavelet DoFs
(Figure 10, right), despite the few DoFs involved in these small systems. The extent
of overall correlation can be assessed by the `1-norm of the correlation matrices,
about 28 versus about 21 for water, and about 315 versus about 168 for alanine
dipeptide.
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Fig. 10 Top: Heat maps of the DoF correlations of a water dimer in vacuum. Bottom: Heat
maps of the DoF correlations of alanine dipeptide in vacuum. Left: Correlations of the carte-
sian DoFs. Right: Correlations of the wavelet DoFs.

A further indication of the appropriateness of the diffusion wavelet DoFs, is the
`1-norm of structures and forces in a given representation basis. The `1-norm is
bounded by the `2-norm for any orthonormal basis and there exists at least one
coordinate system in which ‖x‖1 = ‖x‖2. These coordinate systems optimally de-
scribe a state x.

We compared the `1-norm in the Cartesian coordinate system, the nonlossy wavelet
coordinate system, and the optimal coordinate system on each scale. For alanine
dipeptide, a reduction by a factor of about 2 was achieved by switching to wavelets
(3 times the optimum), while the optimal wavelet system managed to reduce to
twice the optimum. For polyglucose, the full wavelet DoFs reduce the `1-norm to
half of the Cartesian coordinate system, and the optimal wavelet system reduces it to
within 20% of the optimum. For crystalline PE, the full wavelet DoFs improve the
structural `1-norm by a factor of about 7, while the optimal wavelet representation
comes in below 1% of the Cartesian coordinate system to a factor of roughly twice
the optimal representation. Similar results were obtained for amorphous PE and
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nanocellulose.

2.4 Adaptive Multiresolution
In the previous sections, our goal was to identify scales of the physical system to
remove unimportant CAMs, thereby increasing time step size and reducing DoFs.
However, for some phenomena, such as phase transitions like melting of a polymer,
fine details that are unimportant at one point in time can play a major role at another.
So we now turn to the problem of reconstruction, that is, reintroducing dropped
CAMs. We find that reconstruction is systematically possible for numerical (e.g.,
derived from an iterative Boltzmann inversion) as well as analytical (where such
exists, e.g., quadratic potentials) coarse-graining hierarchies.

2.4.1 Reconstruction Theory
We begin by putting coarse-graining into a wider context. In general, a coarsening
γ : α → β is a continuous surjection between 2 topological state spaces α, the
fine space, and β, the coarse space, which can be parameterized by n > m state
variables, respectively. As an example, one can consider mapping the positions of
groups of particles to their centers of mass. In statistical mechanics, the fine-grained
state space α is associated with a probability measure Pα : {X ⊂ α} → [0, 1] and
a corresponding probability space. For systems in equilibrium, α would further fol-
low a Boltzmann distribution. The coarsening γ thereby induces a probability space
on the coarse states in β as well, with the probability measure Pβ(k) = Pα(γ−1(k)),
where k ⊂ β and γ−1(k) ⊂ α is the preimage of k. Pβ constitutes the mean proba-
bility distribution of the coarsened DoFs. It is thus possible to select (reconstruct) a
precursor for a state b ∈ β by sampling γ−1({b}) with Pα via the conditional proba-
bility P (a|b) = Pα({a}∩ γ−1(b))/Pα(γ−1(b)) (e.g., using Monte-Carlo sampling).
Since n > m, there is also a complementary coarsening γ⊥ : α → ker γ with its
complementary probability measure.

In MD, the state spaces consist of the positions and their associated momenta and
thermodynamic state variables, such as temperature or pressure. The probability
distributions are Boltzmann distributions that depend on the studied thermodynam-
ical ensemble. In a sequence of coarsenings (γn : βn → βn+1)n spanning several
scales, such as derived from the preceding multiresolution scheme, it is generally
not cost effective to sample fully in the largest space α =: β0 and analytical deriva-
tions for Pβn are rarely available. Hence, approximations need to be made. Com-
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mon solutions in the MD community are probability measures from iterative Boltz-
mann inversions or (successive) force matching to generate effective potentials that
are themselves Boltzmann-distributed. Hierarchical iteration thereby produces not
only probability distributions on the coarser space, but also conditional probability
distributions for a fine state mapping to a coarse state. Furthermore, the probabil-
ity distributions can be used to indicate when a previously undersampled coarse
state subspace is encountered at some state x (e.g., using an expected improvement
measure30 or a sensitivity analysis of the potential − lnPβ(x) with respect to the
sampled points for which the trust boundaries can be precomputed).

2.4.2 Coarse-Graining Hierarchies
In the context of MD, mixed resolutions are necessary for the concurrent treatment
of, for instance, gross rigid protein orientations and flexible active site residue inter-
actions with a binding molecule. State spaces with mixed levels of fine and coarse
CAMs arise naturally from the multiresolution scheme laid out in Eqs. 9 and 10
(see Section 13 and Figure 11 for details).

βn

βAA⊥

β⊥A

µ⊥A

βA

µA

µA ⊕ µ⊥A

AB

µA ⊕ µB

βBB⊥

βB

µB

β⊥B

µ⊥B

µB ⊕ µ⊥B

AB⊥

Fig. 11 Dyadic tree generated by separable coarsenings. Shaded spaces are final subspaces of
the multiresolution. All other spaces are intermediates of the construction with γ1 = µA ⊕ µ⊥

A

and γ2 = µA ⊕ µB .

The sequence of coarsenings (γn : Vn → Vn+1)n generates a full dyadic tree, due
to the complementary coarsenings γ⊥n (i.e., each state space can be split into ker γ⊥n

and ker γn). A sequence of separable coarsenings (γn, βn, µAn , µBn) thereby in-
duces a hierarchy of coarsenings and associated probability measures, induced as
described previously.
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2.4.3 The Wavelet Hierarchy
A minimal set of separable coarsenings that generates a full given hierarchy is
fundamental and characterizes said hierarchy. One such sequence for coarsenings

based on CAMs for Vm = (
⊕b2−mNc

n=1 W2mn−1)
log2N
m=0 is

µAm :
⊕b2−m−1Nc

n=1 W2mn−1 →
⊕b2−m−2Nc

n=1 W2m+1n−1, (24)

µBm =
⊕b2−mNc

n=b2−m−1Nc+1W2mn−1 →
⊕b2−m−1Nc

n=b2−m−2Nc+1W2m+1n−1, (25)

where N is the number of particles in the finest resolution.

We note that these intermediate probability distributions are available both analyt-
ically and numerically, since an accurate fundamental coarsening has to include
proper statistics for the intermediate state space to be consistently sampled. Recur-
sive application of conditional probabilities enables concurrent mixed resolutions.
Since the construction of CAMs from the multiresolution analysis produces a hier-
archy of frequencies, it induces a hierarchy of coarsenings by dropping successively
higher-frequency CAMs (i.e., by applying the low-pass filter Pε(T 2n)).

2.4.4 A Priori Approximations for Reconstruction
Implementation of reconstruction algorithms as discussed above requires a starting
point. In the following, methods are proposed for finding good starting points based
on ∆̃ and other molecular information that is available prior to simulation (i.e.,
without the need for MD or Monte Carlo sampling). To second order, a quadratic
potential around the equilibrium positions of the transformed coordinates approx-
imates the full potential. We assume dominance of harmonic terms, both in the
orginal and transformed basis of the potential,

Vbond(M− 1
2UTr̃) ≈ 1

2
(r̃ − r̃0)TU∆̃UT(r̃ − r̃0), (26)

where r̃ = UM1/2x is the position vector in the wavelet basis, and UM1/2 is the
wavelet transformation matrix. From statistical mechanics, the root mean square
deviation from equilibrium of a harmonic oscillator is

√
kT/λ, where λ is the force

constant. In other words, the higher frequency components are found increasingly
close to their energy minima. This implies that finer scales only have small devi-
ations from their equilibrium positions, while coarser scales may access a much
larger space.
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We start by approximating ‖xi−xj‖ by a Taylor expansion around r(0)
ij . This trans-

forms the bond potential Vbond into

Vbond ≈
1

8

∑
ij

Kij

r
(0)2

ij

(
‖xi − xj‖2 − r(0)2

ij

)2

. (27)

Hence to find equilibrium distances for r̃ = UM1/2x, we solve the minimization
problem

min
r̃0

∑
Cij

(
‖(M− 1

2UT r̃0)i − (M− 1
2UT r̃0)j‖2 − r(0)2

ij

)2

, (28)

where Cij = Kij/r
(0)2

ij .

For example, the 2 nonzero eigenvalues of H2O correspond to a unique solution for
reconstructing H2O. The harmonic Laplacian for H2O,

∆̃H2O =


2KOH
mO

−KOH

m
1
2
O

−KOH

m
1
2
O

−KOH

m
1
2
O

KOH 0

−KOH

m
1
2
O

0 KOH

 , (29)

shares the same structure as CH2. The eigenvalues λ0,1,2 of this simple matrix
are 0, KOH , and (1 + 2/mO)KOH , respectively, with corresponding eigenvectors
(m

1/2
O , 1, 1), (0, 1,−1), and (2m

−1/2
O ,−1,−1). The transformation matrix from r̃ to

x is

W =

m
− 1

2
O

1

1


m

1
2
O 0 2m

− 1
2

O

1 1 −1

1 −1 −1


(mO + 2)−

1
2

2−
1
2

(2 + 4/mO)−
1
2

 .

(30)

The corresponding harmonic potential for water is

VH2O(x0, x1, x2) =
1

2
KOH (‖x0 − x1‖ − rOH)2 +KOH (‖x0 − x2‖ − rOH)2 .

(31)
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This attains its minimum when

‖x0 − x1‖2 =‖r̃2‖2

(
1

2
+m−1

O

)
−
√

1 + 2m−1
O r̃T1 r̃2 +

1

2
‖r̃1‖2 = r2

OH , (32)

‖x0 − x2‖2 =‖r̃2‖2

(
1

2
+m−1

O

)
+
√

1 + 2m−1
O r̃T1 r̃2 +

1

2
‖r̃1‖2 = r2

OH , (33)

where we have used that x0−x1 = r̃2

√
1/2 + 1/mO−r̃1/

√
2, x0−x2 = r̃2

√
1/2 + 1/mO+

r̃1/
√

2. Hence, r̃1 and r̃2 must be perpendicular to each other (subtracting Eqs. 32
and 33) and ‖r̃2‖2 (1/2 + 1/mO)+ 1

2
‖r̃1‖2 = r2

OH . As these solutions are exact, the
hydrogens are always at a distance of rOH from the oxygen. Since there is no angu-
lar potential, the solution is indeterminate with 2 extreme solutions, the first being
‖r̃2‖ = 0. In this case, the molecule is linear, while for ‖r̃1‖ = 0 the 2 hydrogens
overlap.

Another instructive example is HCN. Its harmonic Laplacian,

∆̃HCN =


KCH+KCN

mC
− KCH√

mCmH
− KCN√

mCmN

− KCH√
mCmH

KCH
mH

0

− KCN√
mCmN

0 KCN
mN

 , (34)

is no longer as simple as for H2O, nor are the eigenvalues except 0 simple functions
of the variables in Eq. 34; for the generalized amber force field (GAFF), they are
14.7 and 42.8. Eq. 28 was numerically solved. The numerical GAFF CAM distances
in one dimension are (r̃

(0)
1 , r̃

(0)
2 ) = (3.26, 0.66) and r̃

(0)
1 = 2.61, r̃

(0)
2 = −1.32.

Knowing that the molecule is linear at equilibrium selects the first solution to re-
construct the equilibrium structure.

In both examples it was necessary to include angle information to make the best
choice. The numerical solution to Eq. 28 can be computed efficiently using a va-
riety of nonlinear least-squares algorithms, but more direct methods are still under
investigation. Similar derivations are possible for angle potentials and under current
investigation.
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3. Operator Wavelets Theory
To perform efficient wavelet representations of DoFs, there also needs to be an
appropriate effective operator that can exploit the wavelet structure of the CAMs.
Ideally, this operator can itself be constructed in a hierarchical fashion. The follow-
ing explores the properties of operator hierarchies that arise from doubling and shift
operators. Repeated application of an invertible doubling operator D : L1 → L1

and an invertible shift operator σ : L1 → L1 on an operator space L1 generates a
scaling operator Φ analogous to a scaling function in wavelet theory on functions.
Then,

D(I + σ)Φ = Φ. (35)

Since the identity is subject to D and Dσ, there are associated operators d ∈ L1

and ds ∈ L1, respectively. If furthermore D and σ are endomorpisms on L1, then

(d+ ds)Φα = (DI +DσI)(DΦ +DσΦ)α = Φα⇒ (36)

(d+ ds)α = α (37)

for any eigenfunction α of Φ. Hence the eigenfunctions of Φ are scaling functions
under the doubling operator d and shift operator s. The corresponding operator
wavelets are

Ψnk = DnσkD(I − σ)Φ, (38)

ψα,n,k = dnsk(d− ds)α. (39)

An approximate procedure to develop a hierarchy that is not based on endomor-
phism on L1 is to use the doubling operator Φ 7→ 2Φ and use polynomial filtering
on the spectrum (i.e., Φ 7→ F (Φ) =

∑
i FiΦ

i where the polynomial F approxi-
mates a low-pass filter). Under this construction any scaling operator is unitarily
equivalent to any other (i.e., they share the same spectrum).

4. Trotter Factorization for Use with Operator Wavelets
A hierarchical decomposition of the infinitesimal generator of time propagation (Li-
ouville operator) into operator wavelets enables the separation of time scales rigor-
ously using Trotter factorizations for numerical propagation. We split the Liouville
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operator into

H =
N∑
i=0

Hi +
∑

i,j∈{0,...,N}

Hij, (40)

where Hi are individually solved subsystems and Hij are the interactions between
these, such as the operator wavelets introduced in Section 3. Preferably, these parti-
tions coincide with inherent time scales ti and tij . Let the time scales be in ascend-
ing order and readjusted to the closest integer multiple (i.e., t̃I+1 =

⌊
tI+1/t̃I

⌋
t̃I)

and τ = max t̃I . If t̃I+1 = t̃I , it is useless to separate HI+1 and HI . So then,

eiH τ ≈
N∏
I=0

(
eiHI t̃I/2

)τ/t̃I 0∏
I=N

(
eiHI t̃I/2

)τ/t̃I
. (41)

When the time propagator eiHI t̃I has analytical solutions, such as with harmonic os-
cillators, then the analytical solution eiHIτ/2 can be used instead of the τ/t̃I applica-
tions of the approximation. If τ/t̃I is large, considerable savings may be expected.

In particular, consider a quadratic potential with matrix ∆̃ (i.e., iHq = −(x −
x)T ∆̃ d

dp
+ pTM−1 d

dx
), then

eiH τ ≈ ei(H −Hq)τ/2eiHqτei(H −Hq)τ/2. (42)

The middle term,

(
x(τ)

p(τ)

)
= eiHqτ

(
x

p

)
= e

 I

−∆̃

τ (
x(0)− x
p(0)

)
+

(
x

0

)
, (43)

can be solved analytically, so any time interval τ can be computed exactly, whereas

H −Hq =
(
−∇TV + (x− x)T ∆̃

) d

idp
(44)

requires only a single force evaluation similar to other reversible reference system
propagator algorithms.

To leverage this factorization, an appropriate origin x needs to be assessed either
by running short bootstrapping trajectories or analytical expressions specific to the
system. For high frequencies, the propagation by Hq may wildly oscillate through
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the origin. Which origin is optimal may actually depend on the amount of energy
in the quadratic term.

5. Solutions to "Harmonic" Oscillators
The Trotter factorization in Section 4 is most useful if analytical solutions exist for
the involved operators. The Liouville operator L for bond oscillators in MD is

iL =
∑
ij

−kij
(
‖xi − xj‖ − r(0)

ij

) xi − xj
‖xi − xj‖

∂

∂pi
+
∑
i

pi
mi

∂

∂xi
. (45)

We set η = Ex, where E is the incidence matrix (i.e., η are the edges of the graph
spanned by the bonds). Furthermore, let ET θ = p. Then

∇x = ET∇η, (46)

E∇p = ∇θ. (47)

Inserting these into Eq. 45, gives

iL =
∑
i

−k̃I(‖ηI‖ − r(0)
I )

ηI
‖ηI‖
∇θI + θTEM−1ET∇η. (48)

Assuming a simple ansatz that

− k̃I(‖ηI‖ − r(0)
I )

ηI
‖ηI‖
∇θIfI + θTI EIjM

−1
jj EIj∇ηIfI = λIfI , (49)

then
iL g(η, θ) = θT (EM−1ET −D)∇ηg + Λg, (50)

where g =
∑
cIfI(ηI , θI) and Λg =

∑
cIλIfI(ηI , θI).

The Liouville operator L is rotationally invariant (i.e., L commutes with any ro-
tation R(φ)). Hence, there are simultaneous eigenfunctions of L and ηT R̂∇η +

θT R̂∇θ, where R̂ =

(
0 1

−1 0

)
. Eigenfunctions are compositions of (1± iR̂)η and

(1± R̂)θ with eigenvalues ±i.

The following equations are some helpful identities that were used in the previous
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derivations:

η = ηr

(
cosφ sinφ

− sinφ cosφ

)
v (51)

θ = θr

(
cosφ − sinφ

sinφ cosφ

)
v (52)

∇v = ηrR(φ)T∇η + θrR(φ)∇θ (53)
d

dηr
= vTR(φ)T∇η (54)

d

dθr
= vTR(φ)∇θ (55)

d

dφ
= vT

dR

dφ
(φ)T∇η + vT

dR

dφ
(φ)∇θ (56)

−k(ηr − r0)vTRT (φ)∇θ + θrv
TR(φ)M∇η (57)

6. Hermite Functions for Approximating Potentials
In the decomposition of the Liouville operator in Sections 3 and 4, a suitable basis
of potential functions is needed. This basis is preferably sufficiently localized to
avoid the need for global integrals. The Hermite functions,

ψn =(−1)n
(
2nn!
√
π
)− 1

2 e
1
2
x2 dn

dxn
e−x

2

=(−1)n
(
2nn!
√
π
)− 1

2 Hn(x)e−
1
2
x2 , (58)

ψ2n =(−1)2n
(
22n2n!

√
π
)− 1

2 e
1
2
x2 d2n

dx2n
e−x

2

=(−1)2n
(
22n2n!

√
π
)− 1

2 H2n(x)e−
1
2
x2 , (59)

are an orthonormal complete set of basis functions that obey a 3-term recursion
formula,

ψn+1(x) =

√
2

n+ 1
xψn(x)−

√
n

n+ 1
ψn−1(x), (60)

ψ2n+2 =
(2x2 − 4n− 1)√
(2n+ 2)(2n+ 1)

ψ2n −

√
2n(2n− 1)

(2n+ 1)(2n+ 2)
ψ2n−2. (61)

The recursion formula enables a fast transform of functions. Since "harmonic" po-
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tentials are merely functions that capture 3 aspects of bonding, it is possible to use
Hermite functions in their stead. The boundary conditions are

f(0) = r2
0 −D, (62)

df
dx

(r0) = 0, (63)

f(r0) = −D, (64)

d2f

dx2
= k (65)

f(x) = f(−x), (66)

where D is the dissociation energy, k is the force constant, and r0 is the equilibrium
distance. These conditions result in a linear system for coefficients in an expansion
of Hermite functions,

f =

(
α + β

(x
σ

)2

+ γ
(x
σ

)4
)
e−

1
2( xσ )

2

. (67)

A simple decomposition converts this equation into the coefficients of the Hermite
functions of scale σ! The Liouville operator for such a potential would be

iL =−∇T
i f(‖xi − xj‖)

d
dpi
−∇T

j f(‖xi − xj‖)
d

dpj
+m−1

i pTi
d

dxi
+m−1

j pTj
d

dxj

=
xi − xj
σ

(
f +

(
2β + 4γ

∥∥∥∥xi − xjσ

∥∥∥∥2
)
e
− 1

2

∥∥∥xi−xjσ

∥∥∥2)( d
dpi
− d

dpj

)
+

m−1
i pTi

d
dxi

+m−1
j pTj

d
dxj

. (68)

A further point of note is the fact that this expansion only includes quadratic terms
with respect to the DoFs, which allows much simpler decomposition into compo-
nent terms after linear transformation of the DoFs into CAMs. Finally, geometries
may be defined by distances obviating the need for angular and dihedral potentials.
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7. Koopman for MD
In the following, the relationship between operator wavelets and the Koopman
modes of the Liouville operator is demonstrated. The Liouville operator L is a
Koopman operator for MD systems. Let x̂(x, p) =

∑
{λ} xλKλ(x, p), where Kλ is

an eigenfunction of L and x̂ : (x, p) 7→ x. Then,

x(t) = e−iL tx̂(x0, p0) =
∑

eiλjtxλjKλj(x0, p0), (69)

where λj is the corresponding eigenvalue to Kλj . A decomposition of L using
an operator hierarchy as in Section 3 naturally separates the scales by the wavelet
operators. Therefore, Kλj is in the kernel of all nontrivial operator wavelets save
one. The eigenvalues λj are generally degenerate. Grouping eigenfunctions Kλ,k

with the same eigenvalue

x(t) =
∑

eiλj
∑

xj,kKj,k(x0, p0) =
∑

Aje
iλj , (70)

reduces the number of actually free variables, where Aj are the effective free vari-
ables. Assume 2 observables evolve in time

x(t) = e−iL tx̂(x0, p0) =
∑

eiλjtxλjKλj(x0, p0), (71)

y(t) = e−iL tŷ(y0, q0) =
∑

eiλjtyλjKλj(y0, q0). (72)

Then, cross-correlation indicates

〈x|y〉 =
∑

x∗λjyλjKλj(x0, p0)Kλj(y0, q0). (73)

It follows that the eigenvectors of the correlation matrix of a set of observables is
the optimal linear representation of same observables. This includes the original
DoFs as well as CAMs.

We can further characterize the eigenfunctions Kλ of L for physical systems by its
distributive property,

L (f · g) = g ·L f + f ·L g. (74)
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Hence, any power of an eigenfunction of L is itself an eigenfunction of L via

LKλ = λKλ ⇒ LKn
λ =

n−1∑
m=0

Km
λ (LKλ)K

n−m−1
λ = nλKn

λ . (75)

This motivates a simple shift operator K−1
λ and a doubling operator D : f(Kλ) 7→

f(K2
λ), where f is a formal series in polynomial powers of Kλ.

The effect of the Koopman operator can be captured by bootstrapping. With an
initial trajectory, the effective frequencies can be found by solving

min
{x̃j},{wj}

N∑
n=0

∥∥∥∥∥x(n∆t)−
M∑
j

eiwjn∆tx̃j

∥∥∥∥∥
2

+ C
∑
‖x̃j‖, (76)

where N is the number of time steps in the initial run, ∆t is the time step, M is the
number of frequencies to capture, and C is a cost factor to control overfitting with
regularizer

∑
‖x̃j‖. By comparison with Eq. 71, x̃j ≈ xwj . Then ∆x := x(t) −∑M

j eiwjtx̃j is the residual due to ∆L := L − L̃ , where L̃ is the linear operator
with eigenfunctions and eigenvalues (Kwj , wj) such that f 7→ 0∀f 6∈ span {Kwj}.
It follows that L̃ and ∆L are orthogonal operators and commute. Thus

eiL t = ei∆L t+iL̃ t = ei∆L teiL̃ t = eiL̃ tei∆L t. (77)

At time t, the action of ∆L on x is ∆p := p(t)−
∑
iwjx̃je

iwjt, whereas the action
on ∆p is −∇V (x(t)) +

∑
w2
j x̃je

iwjt.

Using the usual Velocity-Verlet factorization going from time t = 0 to t = ∆t,

∆x1 = ∆p0∆t/2 + ∆x0, (78)

∆p2 = ∆p0 −
(
∇V (∆x1 + x̃(∆t/2))− ˙̃p(∆t/2)

)
t, (79)

∆x3 = ∆x1 + ∆p2t/2 = ∆x0 + (∆p0 + ∆p2) t/2, (80)

x(∆t) = ∆x3 + x̃(∆t), (81)

p(∆t) = ∆p2 + p̃(∆t). (82)

This approach is equivalent to introducing new variables αj and βj := α̇j and
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changing the Liouville operator to

iL = tr
[
(∇T

xV )
(
x+

∑
αj

)
∇p

]
+ tr pTM−1∇x +

∑
βTj ∇αj − ω2

jα
T
i ∇βj .

(83)

8. Derivation of Wavelet Spaces
The wavelets are derived iteratively from a filter T using the QR decomposition. At
each iteration, T is cast in the “Q” basis of the previous iteration,(

n∏
i=0

Qi

)T

T 2n+1

(
n∏
i=0

Qi

)
= Qn+1Rn+1. (84)

Therefore, repeated application (with infinite precision) is equivalent to the QR al-
gorithm for finding eigenvectors. Since T is positive definite and ‖T‖∞ = 1, the
squaring introduces a de facto projection operator Pε via the machine precision. It
is this projection that distinguishes a conventional QR algorithm for finding eigen-
values and eigenvectors from the wavelet decomposition into CAMs.

We separateQn into a low-frequency submatrix Φn and a high-frequency submatrix
Ψn, where the latter are the columns Qn,i of Qn for which QT

n,iT
2nQn,i < ε. The

matrix Φn collects the remaining columns of Qn. Thus,(
n−1∏
i=0

Qi

)T

T 2n+1

(
n−1∏
i=0

Qi

)
≈ ΦT

nQnRnR
T
nQ

T
nΦT

n ≈ (
n∏
i=0

ΦT
i )T 2n+1

(
n∏
i=0

Φi).

9. Error Bounds on Scales
The contamination of the wavelet spaces Wn by eigenvectors U> of larger eigen-
values λ2n > ε of the filter operator T is limited by

S
(n)
T :=

ε− ωn,max
ωn,min − ε

, (85)

where ωn,min = min{λ2n > ε|λ ∈ σ(T )}, ωn,max = max{λ2n ≤ ε|λ ∈ σ(T )},
and σ(T ) denotes the spectrum of T . In classical wavelet theory, wavelets are lo-
calized both in real and reciprocal space (e.g., the Fourier transform of the Mexi-
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can hat wavelet transform Wf(x) = −σ−2∆
∫
e−(y−x)2/(2σ2)f(y)dy is W̃ f̃(ω) =

ω2σ−2e−ω
2/(4σ2)f̃(ω)). The sensitivity S(n)

T of T at scale nmeasures the localization
of Wn in the frequency domain. In practical terms, small S(n)

T implies that the bases
Φn and Ψn are generally sparse matrices if T 2n is sparse, and the wavelet transform
can thus be computed efficiently.

10. Invariant Subspaces
∆̃ is positive semi-definite and ∆̃JJM

1/21J = 0 for each set of indices J , where
∆̃JJ is the square submatrix of ∆̃ with indices in J , and 1J is the vector of ones
on indices in J and 0 otherwise. It is possible to block tridiagonalize ∆̃ using only
transpositions with diagonal blocks ∆̃J,J and off-diagonal blocks ∆̃J,K , where J
and K are disjoint index sets and J,K, J ∪ K are contiguous index sets. Without
loss of generality, we let j < k∀j ∈ J, k ∈ K. The rank of ∆̃JK is generally
low due to the low maximum degree of a vertex in ∆̃. If Λ = span ∆̃KJ and ∆̃JJ

has a nontrivial, invariant vector space Γ perpendicular to Λ, then Γ is localized
to indices preceding K. Examples include linear homopolymers discussed in de-
tail in Section 2.1.4 and Section 12, but also disconnected graphs from individual
molecules. Invariant subspaces {Γ} are computationally convenient because they
allow a separation of the problem into independent smaller subproblems.

11. Perturbation Theory for Molecular Fragments
Changing the mass of atom i by δ leads to M ′−1/2 = M−1/2 + δeie

T
i , and similarly

∆̃ becomes

∆̃′ =(M− 1
2 + δeie

T
i )∆(M− 1

2 + δeie
T
i ) (86)

=∆̃ + δm
1
2
i (eie

T
i ∆̃ + ∆̃eie

T
i ) + δ2mi∆̃iieie

T
i . (87)

For an eigenvector ν of ∆̃ contained in some wavelet space Wn with nondegen-
erate eigenvalue ην , the first-order correction to the eigenvalue is m1/2

i δ|νi|2(2ην +

m
1/2
i ∆̃iiδ), and the first-order correction to the eigenvector is

∑
µ6=ν µ·δµiνim

1/2
i (ην+

ηµ + δmi∆̃ii)/(2ηµ− 2ην), where {µ} is an orthonormalized set of eigenvectors of
∆̃. Hence the scale of ν is unaffected if |νi|2 is 0 or sufficiently negligible. Correc-
tions to the eigenvector are only of significance if some eigenvector µ outside of
Wn additionally has a significant component µi.
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By a similar argument, first-order corrections can be computed for a perturbation of
the edge weights (e.g., changing bond spring constants),

∆̃′ =∆̃ + δM− 1
2 (eie

T
i + eje

T
j − eieTj − ejeTi )M− 1

2 , (88)

η(1)
ν =δ|m−

1
2

i νi −m
− 1

2
j νj|2, (89)

ν(1) =
∑
µ 6=ν

δ
(m
− 1

2
i µi −m

− 1
2

j µj)(m
− 1

2
i νi −m

− 1
2

j νj)

ηµ − ην
µ. (90)

Hence, a wavelet subspace Wn only changes if ∃ν ∈ Wn : ‖Tν‖2 + δ‖ν‖∞ ≥
ε1/2n or ‖Tν‖2 − δ‖ν‖∞ ≤ ε1/2n−1 .

12. Derivation of Homopolymer Wavelets
The computation of wavelet spaces for linear homopolymers with n repeat units can
be subdivided into n subproblems. The recursive structure of linear homopolymers
implies that ∆̃ for a linear homopolymer of n repeat units can be reordered by a
permutation κ of indices such that κT ∆̃κ = A ⊗ In + B ⊗ (ΣT

n + ene
T
1 ) + BT ⊗

(Σn + e1e
T
n ), where In is the n×n identity matrix, and Σn is the n×n-matrix with

all ones on the first subdiagonal only and zeros elsewhere. Then, κT ∆̃κ takes the
simple form

A1,1In A1,2In · · · A1,mIn +B1,m(Σn + e1e
T
n )

A2,1In A2,2In · · · A1,mIn
... . . . ...

Am,1In +B1,m(ΣT
n + ene

T
1 ) · · · · · · Am,mIn

 .

(91)

LetU = (ei2πkl/m/
√
m)kl be a unitary matrix that diagonalizesA1,mIn+B1,m(ΣT

n+

ene
T
1 ), then U := Im ⊗ U transforms κT ∆̃κ into

A1,1In A1,2In · · · D∗

A2,1In A2,2In · · · A1,mIn
...

... . . . ...
D Am,2In · · · Am,mIn

 = U∗κT ∆̃κU, (92)

whereD is a complex diagonal matrix with eigenvaluesDk,k = A1,m+B1,me
ikπ/m.
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Applying the similarity transform by κT produces a block diagonal matrix (κU∗κT

∆̃κUκT ) with square blocks Ãi = A − (A1,m + Di,i)e1e
T
m − (A1,m + D∗i,i)eme

T
1 .

Hence, the computation of the wavelet spaces has been reduced to n problems of
size m instead of one problem of size nm. Furthermore, any eigenvector ν of A
with eTmν = eT1 ν = 0 has an n-fold degenerate eigenvalue.

13. Derivation of Mixed Resolution from Separable Coarsenings
Let βτn : Rmn → βn denote a parameterization of the mn-dimensional state space
βn (e.g., the positions and momenta of particles). A coarsening γn can be separated
into components if there exist parameterizations βτn : An ⊕ Bn → βn and βτn+1 :

An+1⊕Bn+1 → βn+1, such thatAn⊕Bn = Rmn ,An+1⊕Bn+1 = Rmn+1 , and there
exist continuous surjective mappings µAn : An → An+1 and µBn : Bn → Bn+1

with

βτn(µ−1
An

(tA), µ−1
Bn

(tB)) = γ−1
n (βτn+1(tA, tB)) (93)

for tA ∈ An+1, tB ∈ Bn+1. µA and µB map a fine parametrization to a coarse
parameterization. An example parametrization is the representation of Vn as Vn+1⊕
Wn+1 with fine-to-coarse mappings as per Eqs. 9 and 10. See Figure 11.

A separable coarsening for which neither µAn nor µBn are bijections induces inter-
mediate coarsenings. The state space An × Bn+1 is an intermediate state space
with the coarsenings γ : βτn(tAn , tBn) 7→ (tAn , µBn(tBn)) ∈ An × Bn+1 and
γ′ : (tAn , tBn+1) 7→ βτn+1(µAn(tAn), tBn+1) ∈ βn+1. Finally, mixed resolution
spaces An × Bn+2 are induced via function composition, γ : βτ (tAn , tBn) 7→
(tAn , µBn+1 ◦ µBn(tBn).

The reconstruction from a fundamental coarsening can be achieved by reconstruct-
ing its separable components separately and independently via the conditional prob-
abilities P (tAn|tAn+1 , tBn+1) = Pβn(({tAn}∩µ−1

An
(tAn+1))×µ−1

Bn
(tBn+1))/Pβn+1(tAn+1 , tBn+1).

The same can be achieved for the complements analogously.
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14. Conclusions and Outlook
We have characterized a coarse-graining procedure for accelerating molecular sim-
ulations through a systematic, hierarchical algorithm based on multiresolution dif-
fusion wavelets. The proposed wavelet-CG approach goes beyond conventional ap-
proaches based on expert knowledge: because our proposed method can acceler-
ate calculations of novel classes of molecules without requiring extensive expert
insight and model parameterization. This advantage is especially important for in-
verse problems in materials design, wherein the materials engineer aims to optimize
material performance in an essentially infinite design space (the chemical space of
polymer repeat units). Our demonstration of the perturbation theory for chemical
variations in the repeat unit illustrates this key advantage for the wavelet CG ap-
proach.

Importantly, these advantages are obtained in a framework that automatically re-
capitulates the physical insights underlying existing coarse-graining methods such
as united-atom models. On the other hand, diffusion-wavelet CG models are si-
multaneously more general (they do not require a priori expert modeling and pa-
rameterization) and more specific. In fact, the diffusion-wavelet CG approach leads
to system-specific CG models derived automatically from the system’s underlying
bonding topology and atomistic force field, without further input other than an er-
ror tolerance. The systematic and purely algorithmic basis offers the opportunity for
adaptive error control, whose obvious importance has motivated significant analysis
already31–33.

Future work will establish the relationship between time steps and simulation accu-
racy34. Currently, the bootstrapping procedure for optimal Koopman mode approxi-
mation requires embedding in the propagation scheme and linking to stochastic dy-
namics. The operator wavelet approach has implications for developing new opera-
tor decompositions, which require derivation and solution of analytical subsystems.
Meanwhile, a proper effective operator decomposition using Hermite functions or
conventional harmonic, angle, and dihedral functions as a basis for fitting can be
achieved.
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15. Publications and Presentations
The following are previously published presentations and publications that docu-
ment work in this effort:
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tions for coarse-graining of polymer chains. Paper presented at: American Insti-
tute of Chemical Engineers. 2015 Nov10; Salt Lake City, UT.

2. Rinderspacher BC, Bardhan JP, Ismail AE. Diffusion wavelet decomposition
for coarse-graining of polymer chains. MRS Proceedings. 2015;1753.

3. Rinderspacher BC, Bardhan J, Ismail AE. Multiresolution of molecular dynam-
ics in the particle domain. Paper presented at: SIAM Mathematical Aspects of
Materials Science Conference. 2016 May 8; Philadelphia, PA.

4. Rinderspacher BC, Bardhan JP, Ismail AE. Diffusion wavelet decomposition
for coarse-graining of polymer chains. Paper presented at: Materials Research
Society Fall Meeting. 2014 Dec 1; Boston, MA.

5. Rinderspacher BC, Bardhan J, Ismail AE. Diffusion wavelet-based decompo-
sitions for coarse-graining of polymer chains. Paper presented at: University of
Delaware, Applied Mathematics. 2015 Oct 5; Newark, DE.

6. Rinderspacher BC, Bardhan J, Ismail AE. Wavelet analysis for molecular dy-
namics. Paper presented at: MEDE. 2014 Oct 16; Towson, MD.

7. Rinderspacher BC, Bardhan J, Ismail AE. Diffusion wavelet decomposition for
coarse-graining of polymer chains. Paper presented at: American Chemical So-
ciety National Meeting. 2015 Aug 16; Boston, MA.

8. Rinderspacher BC, Bardhan J, Ismail AE. Diffusion wavelet decomposition for
coarse-graining of polymer chains. Paper presented at: Hopkins Extreme Mate-
rials Institute. 2015 Jul 30; Baltimore, MD.

9. Rinderspacher BC, Bardhan JP, Ismail AE. Theory of wavelet-based coarse-
graining hierarchies for molecular dynamics. Physical Review E. ; submitted.
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List of Symbols, Abbreviations, and Acronyms

CAM collective action mode

CG coarse-grained

DoF degree of freedom

GAFF generalized amber force field

LAMMPS Large-scale Atomistic/Molecular Massively Parallel Simulator

MD molecular dynamics

PCFF polymer-consistent force field

PE polyethylene
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