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Abstract: 
A BOSONSAMPLING device is a quantum machine expected to perform tasks intractable for a classical 
computer, yet requiring minimal non-classical resources as compared to full-scale quantum computers. 
Theorists have proposed that a BOSONSAMPLING device implemented with as few as 10 photons will 
be able to outperform a classical machine. Photonic implementations to date employed sources based 
on inefficient processes—spontaneous parametric downconversion—that only simulate heralded 
single-photon statistics while strongly reducing emission probabilities: thus leading experimental 
teams pursuing large-scale BOSONSAMPLING have faced a hard limit of 6 photons. The ideal—
BOSONSAMPLING with only single-photon inputs—had thus never been realised before this project. 

This project is the first to operating a BOSONSAMPLING device with a bright source of highly-pure 
single-photon Fock states, using a new kind of solid-state multiphoton source. In detail, the source is 
emission from an efficient and deterministic quantum dot-micropillar system, demultiplexed into three 
partially-indistinguishable single-photons, with purity 1−g(2)(0) of 0.990±0.001 (close to the ideal 
value of unity), interfering in a 6×6 linear optics network. Our source is quiet—lacking higher-order 
photon terms that introduce noise—allowing the direct exploration of the effect of partial 
distinguishability in the complexity class of the resulting sampling distribution. Our demultiplexed 
source is between one and two orders-of-magnitude more efficient than current heralded multiphoton 
sources based on spontaneous parametric downconversion, allowing us to complete the 
BOSONSAMPLING experiment far faster than previous equivalent implementations. This intrinsic 
source superiority places BOSONSAMPLING with larger photon numbers within near reach.  

Introduction: 
A core tenet of computer science is the Extended Church-Turing thesis, which states that all 
computational problems that are efficiently solvable by physically realistic machines are efficiently 
simulatable with classical resources. In 2011 Aaronson and Arkhipov introduced BOSONSAMPLING, a 
quantum protocol for efficiently sampling the output of a multimode bosonic interferometer: a 
problem apparently intractable with classical computation. When scaled to many bosons this model of 
intermediate—i.e. non-universal—quantum computation will provide the strongest evidence against 
the Extended Church-Turing thesis.  

The most experimentally accessible boson is the photon: to date full BOSONSAMPLING protocols have 
been performed using up to 4 photons, and protocol validations with up to 6 photons. These initial 
assays are well short of the numbers of single photons required to probe the Extended Church-Turing 
thesis: scalable photonic technology is required. The three core technologies needed for scalable 
quantum photonics are: single-photon sources; large interferometric networks, with current integrated 
and programmable technology; and efficient photon detection, with demonstrated number resolution, 
and efficiencies of up to 95%. 

DISTRIBUTION A. Approved for public release: distribution unlimited.



To date, BOSONSAMPLING implementations employed photons obtained from spontaneous parametric 
downconversion, which output is far from ideal single-photon Fock states, n=1, instead producing 
primarily vacuum with a small admixture of pairs of photons. A non-heralded 2n-photon source can 
be built by using n downconverters, but it can only be used in specific protocols where the impact of 
higher photon-numbers is minimised; alternatively, it can be operated as a heralded n-photon source 
by detecting n photons—one from each downconverter—to herald the presence of their n single- 
photon partners. Multiphoton rates for state-of-the- art pulsed downconversion sources, pumped at a 
standard 80 MHz repetition rate, range from 300 kHz for 2 photons thus, yielding heralded 
single-photons at that rate down to 3 mHz for 8 photons accordingly, 4 heralded single-photons 
at that rate. For as little as 6 heralded single-photons, the rate ( 1 per year) becomes less than the 
detection rate of gravitational waves. 
 

 
Figure. Multiphoton source efficiency. n-photon probability per trial, p(n), for our n = 2-, 3-, and 
4-photon source taken at 1.2P0 (solid circles), and at 3P0 (dashed circles), where P0 is the saturation 
power of 150 µW. The p(n) is estimated for various downconversion 3-photon sources (grey circles) 
employed in previous BOSONSAMPLING experiments. Despite using non-optimised demultiplexing, 
our 3-photon source is between one to two orders-of-magnitude more efficient than the 
downconversion cases.  
 
Experiment:  Please see the attached papers for detailed descriptions of the experiments, theory, 
equipment and analyses. 
 
Results and Discussion:   
We implemented a BOSONSAMPLING device with single-photon Fock states emitted by a 
highly-efficient, deterministic, quantum dot-micropillar system. A passive temporal-to-spatial 
demultiplexing scheme—with far from optimal efficiency—resulted in multiphoton sources between 
one to two orders-of-magnitude more efficient than their downconversion versions, which allowed us 
to complete the BOSONSAMPLING protocol significantly faster than in previous experiments. 
Implementing the optimal, active, demultiplexing scheme would further boost our multiphoton 
efficiency super-exponentially—with the number of photons—enabling BOSONSAMPLING with larger 
photon numbers. 
 
Furthermore, we directly observed the effect of partial distinguishability: Our results follow closely 
the sampling of permanents and immanants of matrices with contributions modulated by photon 
indistinguishability. Moreover, by exploiting temporal-correlation measurements we showed that both 
classical and quantum 2-photon sampling distributions can be obtained simultaneously, which can be 
readily extended to multi-fold temporal-dependent measurements in a larger BOSONSAMPLING 
experiment. Potentially, this could motivate new validation protocols exploiting statistics that include 
this temporal degree of freedom. 
 
The impact of partial distinguishability in BOSONSAMPLING has been studied theoretically, and 
reported experimentally. However, identifying experimentally this property in isolation is challenging. 
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Previous experiments with downconversion exhibit photon-statistics polluted by higher-order terms, 
which can be mistakenly interpreted as decreased photon-indistinguishability. In fact, in many cases 
these higher-order terms, and not photon distinguishability, are the main cause of performance 
degradation in downconversion-based protocols. The pathway to maximise indistinguishability in 
efficient solid-state sources is well known: resonant excitation of the quantum-dot results in 
near-optimal values of photon indistinguishability, in which case the obtained output distributions will 
be close to the sampling of only permanents—functions belonging to the #P complexity class, in 
which the main complexity arguments of BOSONSAMPLING apply. 
 
We believe our results pave the way to the forthcoming advent of quantum-dot based quantum 
photonics, in which a future BOSONSAMPLING implementation with efficiently demultiplexed and 
resonantly-pumped solid-state sources may finally see the Extended Church-Turing thesis put to 
serious test. 
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