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Report on Introducing Magneto-Optic Properties into Soft Materials 

Chia-Liang Cheng, National Dong Hwa University, Hualien, Taiwan 

Bin Hu, University of Tennessee, Knoxville, TN 37996, USA 

This project intends to introduce magneto-optical properties in soft materials including organic 

and bio materials by using magnetic nanomaterials. This final report includes the successful 

developments of magneto-optical properties in both organic and bio magnetic nanocomposites 

during the project period of three years. 

PART I: Enhanced -d electron coupling in excited state in magnetic-organic nanocomposite 

-FeOx-C60(>DPAF-C9)  

1. Objective

The objective is to understand the -d electron coupling in magnetic-organic nanocomposite 

-FeOx-C60(>DPAF-C9) in both ground and excited states. The goal is to illustrate the 

fundamental mechanisms of -d electron coupling, providing a physical understanding for 

magneto-electronic coupling in the magnetic-organic nanocomposite and developing a new 

approach to realize magneto-electronic coupling for various applications.  

2. Experimental Results

Figure 1, (a) Chemical structure of -FeOx-C60(>DPAF-C9). (b) Experiment setup for 

magnetocapacitance measurement. 
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The experimental studies on -d electron coupling have been performed in the magnetic-

organic nanocomposite -FeOx-C60(>DPAF-C9) as shown in Figure 1 (a).  electrons and d 

electrons are provided by the organic composite C60(>DPAF-C9) and magnetic composite -FeOx 

accordingly. They are found to interact with each other through magneto-current measurement.[1] 

Here, the experimental measurement was based on magnetic field effect of capacitance 

(magnetocapacitance). This measurement was carried out by putting the device with the structure 

of ITO/ -FeOx-C60(>DPAF-C9):PMMA/Al in to the electromagnet as illustrated in Figure 1(b). 

This experimental measurement allowed us to explore magneto-electric coupling in both ground 

and excited states by measuring the capacitance as a function of magnetic field without and with 

photoexcitation respectively. 

2.1 -d electron coupling in ground state 

Figure 2.  -d electron coupling in ground state demonstrated by magnetocapacitance 

It is obvious in Figure 2 that the magnetocapacitance in pure C60(>DPAF-C9) is relatively 

negligible while the magnetocapacitance in pure -FeOx shows a positive magnetocapacitance in 

ground state. In addition, the amplitude and the line-shape of magnetocapacitance of -FeOx-

C60(>DPAF-C9) is enhanced and narrowed respectively. Such enhancement and narrowing is 

clearly due to the interaction between  electron in C60(>DPAF-C9) and d electron in -FeOx. 

The spin and polarization of d electrons are coupled to generate magnetocapacitance. With the 

interaction between  electron and d electron, the applied magnetic field can further enhance the 
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capacitance through C60(>DPAF-C9). This experiment result undoubtedly indicates the 

interaction between  electron and d electron in ground state.  

2.2 -d electron coupling in ground state 

Figure 3 clearly shows that the magnetocapacitance of -FeOx-C60(>DPAF-C9) increase 

significantly from the  ground state to the excited state. It should also be noted the 

magnetocapacitance of -FeOx-C60(>DPAF-C9) is composited by two parts: the slow increasing 

with a small slope under small magnetic field (<20 mT) and the fast increasing with a large slope 

when the magnetic field exceeding 20 mT. Therefore, both the increased value and line-shape 

change of magnetocapacitance indicate that the interaction between  electron and d electron is 

enhanced in the excited state.[2] 

Figure 3, Magnetocapacitance of -FeOx-C60(>DPAF-C9) in ground state and excited state. The 

excitation light is CW 405nm laser with 31.25mW/cm2. 

 

2.3 Tuning the -d electron coupling by changing the intensity of  electrons 

-d electron coupling is the key effect for realizing the magneto-electronic coupling in 

magnetic-organic nanocomposite -FeOx-C60(>DPAF-C9). Now we use the intensity of  

electron as a parameter to control the coupling between  electron and d electron through tuning 

the photoexcitation intensities. Figure 4 clearly depicts that increasing the photoexcitation 

intensities leads to a narrower line-shape of magnetocapacitance. Additionally, the amplitude of 

0 100 200 300
0

3

6

C
/C

 (1
E

-4
)

Magnetic field (mT)

Excited State

Ground State

DISTRIBUTION A. Approved for public release: distribution unlimited.



4

the magnetocapacitance increases with the higher photoexcitation intensity as shown in inset of 

Figure 4. These experiment results demonstrate that photoexcitation intensity can tune the 

coupling between  electron and d electron based on the density change of  electrons. This 

enhancement is due to the Coulomb interaction between  electron and d electron through the 

dipole-dipole interaction between them. 

Figure 4, (a) Normalized magnetocapacitance curves for -FeOx-C60(>DPAF-C9) with 

increasing  photoexcitation intensities; inset: absolute value of  magnetocapacitance from -

FeOx-C60(>DPAF-C9). 
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2.4 Tuning the -d electron coupling by changing the intensity of d electrons 

Figure 5, Normalized magnetocapacitance curves for -FeOx-C60(>DPAF-C9) mixed with iron 

oxide nanoparticles with different weight ratios under 31.25mW/cm2; inset: absolute value of 

magnetocapacitance from -FeOx-C60(>DPAF-C9) mixed with iron oxide nanoparticles.

It is also possible to tune the -d electron coupling by changing the density of d electrons. 

Figure 5 describes the magnetocapacitance of -FeOx-C60(>DPAF-C9) changing with the 

concentration of -FeOx. Obviously, increasing the concentration of -FeOx broadens the line-

shape of magnetocapacitance. Meanwhile, the value of magnetocapacitance decreases as the 

increasing concentration of -FeOx. This results shows the evidence that increasing the 

concentration of d electrons weakens the -d electron coupling, which is ascribe to the spin 

interaction between -d electron and d electrons. 
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2.5 Mechanisms for the -d electron coupling 

Figure 6, (a) Long-range Coulomb interaction, (b) Mid-range spin-orbital coupling and (c) 

Short-range spin interaction. 

In this study we have found that the -d electron coupling can be realized through three 

different channels: long-range Coulomb interaction, intermediate-range spin-orbital coupling, 

and short-range spin-spin interactions between semiconducting  conjugated structures 

C60(>DPAF-C9)  and magnetic nanoparticles -FeOx in organic-magnetic composites -FeOx-

C60(>DPAF-C9). The long-range Coulomb interaction is due to the dipole-dipole interaction 

from  electrons and d electrons. The middle-range spin-orbital coupling originates from the 

interaction between electron spin from /d electrons and the orbital magnetic field from d/  

electrons. The short-range spin-spin interaction derives from the adjacent  electrons and d 

electrons. 

In summary, we studied the -d electron coupling in the magnetic-organic nanocomposites -

FeOx-C60(>DPAF-C9) through magnetocapacitance. An enhancement of -d electron coupling is 

observed in the excited state, demonstrated by the amplitude increase and line-shape change of 

magnetocapacitance. In addition, this coupling is proved to be controllable by changing the 

densities of   electrons and d electrons. This interaction is ascribe to the long-range Coulomb 

interaction, middle-range spin-orbital coupling and short-range spin-spin interaction. As a 

general conclusion, the -d electron coupling promise the existence of photo-adjustable 

magneto-electric coupling, paving the way for the realization of magneto-electric-optical 

applications.   
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3. Future research plan 

In general, three further works based on this research should be carried out: (i) revealing -d 

coupling mechanisms by changing the distance between them, (ii) demonstrating -d coupling 

induced multiferroic effects with optically controllable magnetic properties and magnetically 

controllable optic and electric properties, and (iii) developing new guidelines for designing next-

generation magneto-optical polymers by using -d coupling in excited states.  

 

PART II: Magneto-Electric Coupling between Fe3O4 Magnetic Nanoparticles and Human 

Serum Albumin (HSA) in Ground and Excited States 

1. Objective 

    The objective is to understand the magneto-electric coupling between Fe3O4 magnetic 

nanoparticles and Human Serum Albumin (HSA) in both ground and excited states. The goal is 

to elucidate the fundamental mechanisms of magneto-electric coupling in bio/magnetic 

composites. It is expected that the magneto-electric coupling can provide a new approach to 

develop magneto-optic properties in bio materials for various applications.  

2. Experimental Results 

 

The experimental studies on magneto-electric coupling have been performed by combining 

surface-modified soluble Fe3O4 magnetic nanoparticles and Human Serum Albumin (HSA) in 

liquid solutions. The experimental measurement was based on magnetic field effect of light 

scattering.[3] This experimental measurement allowed us to explore magneto-electric coupling in 

both ground and excited states by measuring the light scattering intensity as a function of 

magnetic field.  
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Figure 7, Bio molecules: Human Serum Albumin (HSA) and magnetic/bio composite. 

 

2.1 Magneto-electric coupling revealed by Magnetic Field Effect of Light Scattering  
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Figure 8.  Magnetic field effect of light scattering (MFELS) on the HSA + Fe3O4 composite. 

    

 It is demonstrated in Figure 8 that the magnetic field effect of light scattering (MFELS) in 

pure Fe3O4 nanoparticles solution is relatively negligible. However, when the Human Serum 

Albumin (HAS) is added into the solution, the MFELS is significantly enhanced. Such 

enhancement is undoubtedly owing to the existing interaction between HSA and Fe3O4 

nanoparticles.[4] With applied magnetic field, re-alignment of HSA molecule occurs due to the 
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anisotropic interaction between Fe3O4 magnetic nanoparticle and HSA. Through the interaction 

with Fe3O4 nanoparticles, the HSA molecules can be dragged to rotate under magnetic field and 

then MFELS is enhanced. This experimental result suggests the first evidence that the magnetic 

nanoparticles can Coulombically interact with the bio molecules, leading to a magneto-electric 

coupling between the magnetic nanparticles and bio molecules.  

2.2 Time-resolved dynamics of MFELS in ground states of HSA/Fe3O4 nanoparticle 

composites 
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Figure 9.  Time-dependent MFELS of 16.7% Fe3O4 nanoparticles concentrations at different magnetic 

field strengths. 

    Figure 9 clearly shows that in the HSA/Fe3O4 nanoparticle composites with 16.7% Fe3O4 

concentrations, with the magnetic field increasing, the MFELS signal becomes larger at the 

532nm scattering light. With the rise of magnetic field, the re-alignment of HSA molecule 

becomes more pronounced due to the Coulombic interaction between Fe3O4 magnetic 

nanoparticles. This demonstrates that stronger magnetic field leads to more complete orientation 

of HSA/Fe3O4 nanoparticle composites, and thus a higher magnitude in MFELS signal. This 

experimental result confirms that the magneto-electric coupling exists between the magnetic 

particles and bio molecules.  
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2.3 Tuning magneto-electric coupling between Fe3O4 magnetic nanoparticles and bio 

molecules by modifying the surface charge density 

The Coulombic interaction in the HSA/Fe3O4 nanoparticle composites is a key factor for the 

magneto-electric coupling composites. To probe magneto-electric coupling in the ground state of 

bio/magnetic nanoparticle composites, we first select to tune the coupling through the 

modulation of surface charge in the HSA. Thus, light scattering intensity under different 

magnetic field is systematically investigated, as a stronger MFELS signal indicates pronounced 

magneto-electric coupling in the composites (Figure 10).  
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Figure 10.  Magnetic field effect of light scattering for HSA + Fe3O4 composite with different PH values 

in suspended solution. a: MFELS as a function of magnetic field. b: Time dependent MFELS profiles at a 

fixed magnetic field of 900 mT. 

 

The surface charge of the HSA/Fe3O4 nanoparticle composites is modulated through the PH 

value of the solution. Since the isoelectric point (pI) of HSA is around 4.7, HSA have positive 

charge below pI and negative charge above pI. The isoelectric point (pI) of Fe3O4 nanoparticles 

is around PH 6.8. Thus, at PH 5, HSA have negative charge while Fe3O4 nanoparticles have 

positive charge, this can promote the electrostatic attraction between HSA and Fe3O4 

nanoparticle.[5] As a result, Figure 10 illustrates that stronger Coulombic interaction induces 

enhanced magneto-electric coupling in the HSA/Fe3O4 nanoparticle composites: at PH 5, the 

MFELS presents significant enhancement compared to the system with PH7 and PH9. At PH 9, 
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HSA and Fe3O4 nanoparticles both have negative charge, the electrostatic repulsion does not 

favor the adsorption of HSA on Fe3O4 nanoparticles thus leads to the decrease of MFE of light 

scattering. The PH effect on MFE of light scattering indicates that Coulombic interaction plays 

an important part in the magneto-electric coupling in the HSA/Fe3O4 nanoparticle system.

2.4 Magneto-electric coupling in excited states in HAS+Fe3O4 system  

We study the magneto-electric coupling of the HSA/ Fe3O4 system by measuring MFE of light 

scattering with a photoexcitation beam of 285nm to analyze the excited states effect on the 

magnetic polarization and HSA/ Fe3O4 interaction. It has been shown that adding a 

photoexcitation into light scattering experiment can present as a powerful measurement to 

elucidate the effects of excited states.[6] Figure 11 shows the magnitude of MFE increases from 

3.6% to 4%. This enhancement is possibly owing to magnetic polarization in the excited states of 

the HSA, which promotes the magneto-electric coupling.[7] 
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Figure 11.   Magnetic field effect of light scattering in excited state for HSA + Fe3O4 composite.  a: 

Magnetic field effect of light scattering in excited state as compared with ground state. b: Time dependent 

profiles for excited state as compared with ground state. 

    To investigate the effect electric polarization on the magneto-electric coupling of the system, 

the MFE of light scattering with and without external electric field is measured. By applying 2V 

electric field (Figure 12), the magnitude of MFE increases from 3% to 4%. From the time 

dependent MFE curve, shorter response time and relaxation time are observed under 2V electric 
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field. This illustrates that the excited states can enhance the magneto-electric coupling through 

increased electric polarization in magnetic/bio composites.  
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Figure 12.  MFELS on HSA + Fe3O4 under external electric field. Time dependent MFELS profiles from 

HSA/Fe3O4 under external electric field. 

        In summary, we studied the magneto-electric coupling in the HSA/ Fe3O4 system through 1) 

surface charge modulation in the ground states; 2) magnetic polarization in the excited states and 

3) electric polarization in the applied external electric field. Enhancements of magneto-electric

coupling are observed, demonstrated by the MFELS signal under excited states and applied 

electric field in HSA/Fe3O4. As a general conclusion, the optically and electrically tunable 

magnetic properties of HSA/Fe3O4 system prove the existence of magneto-electric coupling 

within the interaction between HSA and Fe3O4 nanoparticles, which can be modulated by optical 

excitation through excited states. 

3. Future research plan

    In general, a magneto-electric coupling can be realized through three different channels: 

Coulomb interaction, spin-orbital interaction, and spin-spin interaction in magnetic/bio 

composites. We plan to use materials processing and spin-physics measurements to elucidate 

these three channels and to reveal the critic parameters of controlling magneto-electric coupling 

in magnetic/bio composites in both ground and excited states. 
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