

AFRL-RX-WP-JA-2016-0345

A NEW THERMODYNAMIC PARAMETER TO PREDICT FORMATION OF SOLID SOLUTION OR INTERMETALLIC PHASES IN HIGH ENTROPY ALLOYS (POSTPRINT)

O.N. Senkov and D.B. Miracle

AFRL/RX

5 November 2015 Interim Report

> Distribution Statement A. Approved for public release: distribution unlimited.

© 2015 ELSEVIER LTD

(STINFO COPY)

AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE

REPORT			Form Approved OMB No. 0704-0188						
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS .									
1. REPORT DATE (DD-MM-YY)		2. REPORT TYPE			3. DA	TES COVE	RED (From - To)		
5 November 2015		Inter	im		22 September 2014 – 21 September 2015				
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER				
A NEW THERMODYNAMIC PARAMETER TO PREDICT FORMATION OF SOLID SOLUTION OR INTERMETALLIC PHASES IN HIGH ENTROPY ALLOYS (POSTPRINT)					FA8650-10-D-5226-0005				
					5b. GRANT NUMBER				
					5c. PROGRAM ELEMENT NUMBER 62102F				
6. AUTHOR(S)					5d. PROJECT NUMBER				
O.N. Senkov and D.B. Miracle - AFRL/RX					4347				
					5e. TASK NUMBER 0005				
					5f. WORK UNIT NUMBER				
					X0UP				
7. PERFORMING ORGANIZATION NAM	ME(S) AN	D ADDRESS(ES)			8. PE	RFORMING	ORGANIZATION REPORT NUMBER		
AFRL/RX	р	011 45 400							
Wright-Patterson Air Ford	ce Base	OH 45433							
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSORING/MONITORING AGENCY ACRONYM(S)				
Air Force Research Laboratory					AFRL/RXCM				
Materials and Manufacturing Directorate				-	11. SPONSORING/MONITORING AGENCY				
Air Force Materiel Command	se, OH 4	-3433-7730			REPORT NUMBER(S)				
United States Air Force					AFRL-RX-WP-JA-2016-0345				
12 DISTRIBUTION/AVAILABILITY STATEMENT									
Distribution Statement A. Approved for public release: distribution unlimited.									
13. SUPPLEMENTARY NOTES									
PA Case Number: 88ABW-201	5-5382;	Clearance Date: 5 No	ov 2	015. This de	ocume	ent contain	s color. Journal article published		
in Journal of Alloys and Compound, Vol. 658, 15 Feb 2016. © 2016 Elsevier Ltd. The U.S. Government is joint author of the									
work and has the right to use, modify, reproduce, release, perform, display, or disclose the work.									
The final publication is available at http://www.elsevier.com/locate/jaicom/nttps://doi.org/10.1016/j.jaicom.2015.10.279									
A simple thermodynamic criteri	ion is pro	posed to predict the	pres	sence or abse	ence of	f equilibriu	im intermetallic phases in a high		
entropy alloy at a given tempera	ature T. T	The criterion was ver	ified	d using 45 cu	rrentl	y available	e HEAs, for which equilibrium		
phases and respective annealing temperature are reported. The present model shows good correlation with experiment and gives									
an improved ability to predict formation of solid solution and intermetallic phases compared to earlier models.									
High entropy alloy. Phase selection: Equilibrium phases									
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER					19a.	NAME OF	RESPONSIBLE PERSON (Monitor)		
a. REPORT b. ABSTRACT c. THI	S PAGE	OF ABSTRACT:		OF PAGES		Andrew	Nauss		
Unclassified Unclassified Uncla	assified	SAR		7	19b.	TELEPHO	NE NUMBER (Include Area Code)		
						(937) 25	05-1150		

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18

Journal of Alloys and Compounds 658 (2016) 603-607

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys

癯

ALLOYS AND COMPOUNDS

O.N. Senkov^{*}, D.B. Miracle

Air Force Research Laboratory, Materials and Manufacturing Directiorate, Wright-Patterson AFB, OH 45433, USA

ARTICLE INFO

Article history: Received 29 September 2015 Received in revised form 28 October 2015 Accepted 29 October 2015 Available online 2 November 2015

Keywords: High entropy alloy Phase selection Equilibrium phases

ABSTRACT

A simple thermodynamic criterion is proposed to predict the presence or absence of equilibrium intermetallic phases in a high entropy alloy at a given temperature T. The criterion was verified using 45 currently available HEAs, for which equilibrium phases and respective annealing temperature are reported. The present model shows good correlation with experiment and gives an improved ability to predict formation of solid solution and intermetallic phases compared to earlier models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the first reports of high entropy alloys (HEAs), a number of attempts have been made to predict phase formation in these alloys, in particular to predict compositions, which would favor formation of solid solution phases. The formation of disordered solid solution phases in HEAs was initially suggested to be governed by high entropy of mixing of alloying elements in these phases [1,2]:

$$\Delta S_{\rm mix} = -R \sum c_i \ln c_i \tag{1}$$

Here R is the gas constant and c_i is the atomic fraction of element *i*. Indeed, the high value of ΔS_{mix} may reduce the Gibbs free energy, ΔG_{mix} , of the solid solution (SS) below that of competing intermetallic (IM) phases. However, in spite of having high ΔS_{mix} values, many HEAs are multi-phase and can also contain IM phases. For example, Otto et al. [3] studied the effects of entropy and enthalpy on phase formation in 5-component equimolar alloys. They started from a single-phase solid solution CoCrFeMnNi HEA [4] and made 5 other alloys by substituting Co, Cr, Fe or Ni, one element at a time, with, respectively, Ti, Mo or V, V and Cu. Although ΔS_{mix} was the same, the modified alloys contained multiple SS and/or IM phases. Thermodynamic analysis showed that formation of multiple phases was consistent with minimization of the total Gibbs free energy, which includes both entropy and enthalpy contributions. It was concluded that ΔS_{mix} stabilizes single-phase SS microstructures in rare cases. In many cases, the entropy effect is insufficient to counteract the driving forces that favor formation of secondary phases based on strongly interacting component pairs.

Several additional semi-empirical criteria for predicting solid solution phase formation in HEAs were introduced recently [5–9]. Similar to Hume-Rothery rules for binary substitutional solid solutions [10], these criteria focus on the differences of the atomic sizes (δr), electronegativities ($\delta \chi$), and valence electron concentrations (VEC) of the alloying elements. Additionally, the enthalpy of mixing (ΔH_{mix}) and a parameter Ω were also used to develop criteria for the stability of SS, IM and/or amorphous phases in ascast HEAs [11].

Zhang et al. [5] were the first who identified the importance of δr and ΔH_{mix} in the formation of SS, IM, SS + IM, or even amorphous phases, in as-cast HEAs. These parameters are calculated using the following equations:

$$\delta r = \sqrt{\sum c_i (1 - r_i/\bar{r})^2} \cdot 100\%$$
⁽²⁾

$$\Delta H_{mix} = \sum_{i < j} 4H_{ij}c_ic_j \tag{3}$$

* Corresponding author. E-mail address: oleg.senkov.ctr@us.af.mil (O.N. Senkov). Here r_i and c_i are atomic radius and atomic fraction of element i; $\bar{r} = \sum c_i r_i$ is the average atomic radius; and H_{ij} is an enthalpy of mixing of elements i and j, which values are calculated by using

http://dx.doi.org/10.1016/j.jallcom.2015.10.279 0925-8388/© 2015 Elsevier B.V. All rights reserved. Miedema's model as given in Ref. [12].

Statistical analysis of existing experimental data for HEAs produced by casting revealed that SS phases can be present if $\delta r < 6.2\%$ and -12 kJ/mol $< \Delta H_{mix} < 5$ kj/mol, while IM phases can be present in HEAs for which $\delta r > 3\%$ and $\Delta H_{mix} < 0$ kJ/mol [5,13]. HEAs with $\delta r > 6.2\%$ and -40 kJ/mol $< \Delta H_{mix} < -12$ kJ/mol can contain amorphous phases. The ΔH_{mix} range for IM HEAs overlaps with the ΔH_{mix} ranges for SS and amorphous HEAs. Therefore, the ΔH_{mix} parameter cannot be used for the separation of SS and IM HEAs, but it can be used to predict whether SS or amorphous phase would form. Such selectivity of ΔH_{mix} can be easily understood because ΔH_{mix} is a characteristic of disordered phases, to which SS and amorphous phases belong, while the enthalpy of formation ΔH_{IM} should be used for IM phases, which is different from ΔH_{mix} .

Trying to separate SS and IM phase fields, Yang and Zhang [6] proposed a parameter Ω , which contains both ΔS_{mix} , and ΔH_{mix} , and is calculated as:

$$\Omega = T_m \Delta S_{mix} / |\Delta H_{mix}| \tag{4}$$

Here $T_m = \sum c_i T_{mi}$ and T_{mi} is the melting point of element *i*. Only SS phases are found in as-cast HEAs for which $\Omega \ge 1.1$ and $\delta r < 3.6\%$. SS and IM HEAs share the space of $3.6\% \le \delta r < 6.6\%$ and $1.1 \le \Omega \le 10$, while at $\Omega > 10$ only SS HEAs are identified. Most of the IM alloys have $\delta r \ge 6.6\%$ and $1 \le \Omega \le 2$, and metallic glasses have $\delta r \ge 5\%$ and $\Omega \le 2$ [6].

These empirical criteria for phase selection were developed and tested using as-cast HEAs, which often contain non-equilibrium phases. Wang et al. [14] have recently evaluated these criteria to predict formation of equilibrium SS or IM phases in well homogenized and annealed HEAs. Using a limited number of data (27 alloys) available in the literature at that time, Wang et al. [14] found that the ΔH_{mix} and δr ranges for HEAs with only SS phases after annealing narrowed significantly. Annealed HEAs with FCC and BCC solid solutions had $\Delta H_{mix} > -7.5$ kJ/mol and $\delta r < 3.3\%$, while as-cast SS HEAs had $\Delta H_{mix} > -12.5$ kJ/mol and $\delta r < 6.2\%$. Annealed HEAs with intermetallic compounds appeared at $\Delta H_{mix} < -7.5$ kJ/mol and $\delta r > 3.3\%$. However, three Al-containing HEAs that were identified as BCC structures had ΔH_{mix} between -17 and -10 kJ/ mol and δr between 5 and 6%, which are typical for IM HEAs. They suggested that the Al-containing HEAs probably have a B2 phase. However, ΔH_{mix} and δr are characteristics of the alloy composition only and are not affected by alloy processing. Therefore, narrowing the $\Delta H_{mix} - \delta r$ range for the SS HEAs after annealing may indicate that IM phases formed after annealing in other HEAs, which were solid solutions after casting, or this can just be due to much smaller number of the assessed alloys.

While the effect of δr on the formation of SS or IM phases can be understood from Hume-Rothery rules, the influence of ΔH_{mix} and/ or \varOmega values on the phase selection is not so clear. The authors who derived these criteria [5,6,11,15] state that phase selection among different phases is determined by the *competition* between ΔH_{mix} and T ΔS_{mix} . However this statement is thermodynamically incorrect, because these terms are not in competition, but rather work together to reduce the Gibbs free energy of the SS phase.

Troparevsky et al. [16] (2015) proposed a model that, through the use of high-throughput computation of the enthalpies of formation of binary compounds, seemed to predict single-phase SS equiatomic HEAs. The stability of the competing SS and IM phases was analyzed by comparing the contributions to the Gibbs free energy from only mixing entropy $(-T\Delta S_{mix})$ for SS alloys and from only the enthalpy of formation (ΔH_{ij}^{IM}) for the ordered binary compounds. Thus they assumed that $\Delta H_{mix} = 0$ and $\Delta S_{IM} = 0$, which is generally incorrect as ΔH_{mix} can be very negative in some cases and ΔS_{IM} can be comparable with ΔS_{mix} in ordered structures in which the number of alloying elements is higher than the number of sublattices. Troparevsky et al. also assumed that an HEA will have a single SS phase at a temperature T if ΔH_{ii}^{IM} values for any binary system present in the alloy are above $-T\Delta S_{mix}^{9}$. According to their model, among the currently developed non-refractory HEAs only those consisting of Co, Cr, Fe, Mn and/or Ni are truly singlephase solid solutions, while other alloys should form multiple phases during annealing at $T_{cr} = 0.55 T_m$. The conclusion may be correct for equiatomic alloys, however, many non-equiatomic HEAs containing other elements than listed above also retain their singlephase SS structure after annealing (see Table 1). Using their approach, Troparevsky et al. provided a list of new HEAs, which should be single-phase solid solutions, to guide experimental searches. In addition to the combinations of 5 elements listed above, these alloys can also contain such elements as Ir, Os, Rh, Pd, Ru, Pt, - all are very expensive.

1.1. A simple thermodynamic criterion for SS or IM phase formation

In this paper we propose a new approach for the phase selection, which takes into account both enthalpy and entropy terms of the competing phases. The main assumption in this approach is that ΔH_{mix} and ΔH_{IM} are related. Both terms can be calculated by summing bond energies between first-neighbor atom pairs and thus some relationship between these terms should exist. The entropy of formation, ΔS_{IM} , of binary and/or ternary compounds is close to zero. However, it can be high in multi-component compounds that have more constituents than sublattices and/or have a large solubility range, although ΔS_{IM} should not be higher than $\Delta S_{\text{mix}}.$ For example, using the sublattice model for configurational entropy [17], it can be shown that ΔS_{IM} of $(A,B)_1(C,D,E)_3$ compound is 0.997R, where R is the gas constant. This is more than 60% of ΔS_{mix} of a 5-component equiatomic SS HEA. As the first approximation, we assume linear relationships between ΔH_{IM} and ΔH_{mix} , and between ΔS_{IM} and ΔS_{mix} for HEAs with negative values of ΔH_{mix} :

$$\Delta H_{\rm IM} = \kappa_1 \cdot \Delta H_{\rm mix} \text{ and } \Delta S_{\rm IM} = \kappa_2 \cdot \Delta S_{\rm mix} \tag{5}$$

where $\kappa_1 > 1$ and $0 \le \kappa_2 < 1$. The thermodynamic condition for the formation of a SS phase at a temperature T is:

$$\Delta H_{\rm mix} - T\Delta S_{\rm mix} < \Delta H_{\rm IM} - T\Delta S_{\rm IM} \tag{6}$$

Combining Eqs. (5) and (6) results:

$$\kappa_1 = \frac{\Delta H_{IM}}{\Delta H_{mix}} < -\frac{T\Delta S_{mix}}{\Delta H_{mix}} (1 - \kappa_2) + 1 \equiv \kappa_1^{cr}(T)$$
(7)

Equation (7) indicates that a SS phase with given ΔS_{mix} and ΔH_{mix} values ($\Delta H_{mix} < 0$) is thermodynamically preferable at a temperature T, if the $\Delta H_{IM}/\Delta H_{mix}$ ratio (i.e. κ_1) for any competing IM phase is below the critical value $\kappa_1^{cr}(T) = T\Delta S_{mix}/|\Delta H_{mix}|(1 - \kappa_2) + 1$. It can be seen that κ_1^{cr} increases with a decrease in $|\Delta H_{mix}|$ and an increase in the level of ordering of an intermetallic phase. Thus the condition for suppression of IM phases at a temperature T is:

$$\kappa_1^{\rm Cr}(T) > \Delta H_{\rm IM} / \Delta H_{\rm mix} \tag{8}$$

Table 1 shows 45 HEAs, including 27 alloys analyzed by Wang et al. [14], for which information about phase contents in the annealed condition, as well as the annealing temperature, is available. We calculated δr , ΔH_{mix} , ΔH_{IM} , $\Omega(T_A)$, $\kappa_1^{cr}(T_m)$ and $\kappa_1^{cr}(T_A)$ parameters for these alloys (T_A is the absolute annealing temperature) and compared how well these parameters can predict phases at a given annealing temperature. ΔH_{IM} values were calculated

Table 1
Phases in several HEAs after annealing at a temperature T _A . Calculated parameters discussed in the paper are also shown.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Material	T ₄ (K) [refs]	Phases at T ₄	δr	AH _{min} (kI/mol)	AHma (kI/mol)	$\Omega(T_{\Lambda})$	$\kappa^{cr}(T_A)$	ΔH_{IM}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1272 [19]	FCC	2 15	6.79	14.10	2 20	1.05	ΔH _{mix}
$ \begin{array}{c} A_{12} Core P(N) & 177 [10] & PCC + 10 & 1.33 & -7.30 & -1.5.76 & 1.06 & 1.02 & 1.02 \\ A_{10} Crefe P(N) & 11, A_{10}, Zr_{1,1} & 177 [21] & PCC + 10 & 1.33 & -7.30 & -1.5.76 & 2.17 & 1.67 & 2.48 \\ A_{10} A_{10} A_{11,1} & A_{10}, Zr_{1,1} & 1473 [21] & PCC + FCC + \sigma & 3.13 & -5.53 & -1.462 & 2.17 & 1.67 & 2.48 \\ A_{10} A_{10} A_{10} A_{11,1} & A_{10}, Zr_{1,1} & 1473 [21] & PCC + BCC & 4.25 & -4.43 & -5.66 & 4.20 & 2.68 & 1.41 \\ A_{10} A_{10} A_{10} A_{10} A_{11} & 1.27 & 1473 [22] & PCC & 4.25 & -1.196 & -2.25 & 1.52 & 1.77 & 1.02 \\ A_{10} A_{10} A_{10} A_{10} A_{11} & 1.27 & 1.473 [22] & PCC + FCC + IM & 3.60 & -3.64 & -1.287 & 4.21 & 2.68 & 3.79 \\ A_{10} A_{10} A_{10} A_{10} A_{11} & 1.37 & 2.41 & 1.08 & 3.552 & 0.59 & 1.24 & 1.79 \\ A_{10} A_{10} A_{10} A_{11} & 1.37 & 2.21 & PCC + \sigma & 3.56 & -7.29 & -1.73 & 1.69 & 1.68 & 2.37 \\ A_{10} A_{10} A_{10} A_{11} & 1.37 & 2.21 & PCC + \sigma & 3.56 & -2.178 & 1.34 & 1.34 & 1.34 & 2.33 \\ A_{10} A_{10} A_{10} A_{11} & 1.37 & 2.21 & 1.33 & -3.368 & 0.99 & 1.40 & 2.56 \\ A_{11} CoFrehi & 973 [18] & PCC + PZ & 4.29 & -1.133 & -3.368 & 0.99 & 1.40 & 2.56 \\ A_{12} CoFrehi & 973 [18] & PCC + RZ & 4.42 & -1.289 & -3.570 & 0.73 & 1.29 & 1.57 \\ A_{10} A_{10} CoFrehi & 973 [18] & PCC + RZ & 4.42 & -2.089 & -3.570 & 0.73 & 1.29 & 1.71 \\ A_{10} A_{$	Al CoCr-FeNi	073 [10]	$BCC + ECC + \sigma$	3.09	-0.78	-14.19	2.39	1.95	2.09
$ \begin{array}{c} \mbox{Aug} Creht Ann Nigs. A model of the constraint of th$	Al CoCrEeNi	1173 [20]	BCC + B2	3 3 3	7 30	15.76	2.06	1.00	2.16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Al CrFe, - MpNi	073 [10]	$BCC + BCC + \sigma$	3.13	-7.50	13.40	2.00	1.02	2.10
$ \begin{array}{c} \mbox{Add} \mboox{Add} \mbox{Add} \mbox{Add} \mbox{Add} \mbox{Add} \mbox{Add} \mbox{Add}$	Ale aNbTa aTi V_{2} a $7r_{1}$	1/72 [21]	BCC + FCC + 0	4.80	-5.55	-13.49	2.17	1.07	2.44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Al NbTaTi,	1473 [21]	BCC + BCC	4.35	-0.54	6.26	4.20	2.68	1 / 1
$\begin{split} & \begin{array}{ccccc} & \begin{array}{cccccc} & \begin{array}{ccccccc} & \begin{array}{ccccccc} & \begin{array}{ccccccc} & \begin{array}{ccccccc} & \begin{array}{ccccccc} & \begin{array}{ccccccc} & \begin{array}{ccccccccccccccccccccccccccccccccccc$	Al. CoCrEeMpNiV	073 [10]	Dec + Dec	3.54	11.06	-0.20	1.20	1.52	1.41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ale Hfe NbTaTiZr	1473 [22]	BCC	4 25	_9.04	_9.25	1.25	1.52	1.05
$\begin{array}{cccc} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		073 [22]	BCC + ECC + IM	3.60	3.40	12.87	4.21	2.68	3 70
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Alo - CrFeNiTiV	973 [19]	IMs	4 77	_19.85	-35.52	0.59	1 24	1 79
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Al. CrMpEe. Ni.	073 [10]	BCC	3.56	7 20	17.30	1.60	1.68	237
$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$	Ale sNbT2 $aTit sVa 7r$	1473 [21]	BCC + BCC	4 77	12.06	11.04	1.05	1.50	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Alos CrFe1 5 MnNio 5	973 [19]	BCC/B2	4.00	-9.36	-21.78	1 34	1.54	2 33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Al _{1,17} CoCrFeNi	973 [18]	BCC + B2	4 90	-13.13	-33.68	0.99	1.01	2.55
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Al ₁ CrFe ₁ MnNi ₀ c	1273 [19]	BCC/B2	4 54	-12 39	-28.27	1 32	1.10	2.30
$\begin{array}{ccccc} & 1.25 & 1.26 & 1.26 & 1.26 & 1.26 & 1.26 & 1.27 & 1.21 & 1.476 & -1.171 & 0.02 & 1.23 & 1.29 & 1.29 & 1.69 \\ & AlCo_{0,2}C_{0,2}Fe_{0,3}MnNv_{0,5} & 973 & 19 & BCC/B2 & 4.42 & -20.89 & -35.70 & 0.73 & 1.29 & 1.71 \\ & AlCo_{0,2}C_{0,2}Fe_{0,3}MnNv_{0,5} & 973 & 19 & \sigma & 3.76 & -11.74 & -22.88 & 1.31 & 1.52 & 1.95 \\ & AlMo_{0,3}NTa_{0,3}NTa_{0,3}NTa_{0,3}TI & 107 & 129 & 1.71 & -22.88 & 1.31 & 1.52 & 1.95 \\ & AlMo_{0,3}NTa_{0,3}NTa_{0,3}TI & 107 & 129 & 1.71 & -22.88 & 1.31 & 1.52 & 1.95 \\ & AlMo_{0,3}NTa_{0,3}NTa_{0,3}NTa_{0,3}NTa_{0,3}TI & 27 & 1.68 & -23.76 & -25.96 & 0.84 & 1.33 & 1.09 \\ & AlNh_{1,5}Ta_{0,5}Ti_{1,2}Z_{0,5} & 1673 & 21 & BCC & 47 & 2.29 & -4.03 & -7.89 & 3.12 & 2.25 & 1.96 \\ & Co_{0,4}CrEMno_{0,7}Ni & 973 & 19 & FCC & 2.08 & -3.49 & -6.26 & 3.53 & 2.41 & 1.80 \\ & CoC_{1,25}FeMno_{25}Ni & 973 & 19 & FCC & 1.98 & -4.13 & -5.43 & 2.97 & 2.19 & 1.31 \\ & CoC_{1,2}FeMno_{25}Ni & 973 & 19 & FCC & 1.89 & -4.45 & -3.77 & 3.17 & 2.27 & 0.85 \\ & CoCrCuFeMn & 1123 & 19 & FCC & 1.89 & -4.45 & -3.77 & 3.17 & 2.27 & 0.85 \\ & CoCrCuFeMn & 1123 & 19 & FCC & 2.30 & 4.18 & 1.13 & 3.60 & 2.44 & 0.27 \\ & CoCrFeo_{3}Mn_{0,5}Ni_{1,5} & 973 & 19 & FCC & 1.72 & -3.78 & -5.09 & 1.75 & 1.7 & 1.35 \\ & CoCrEuFMNi & 1273 & 19 & FCC & 1.72 & -3.78 & -5.09 & 1.75 & 1.7 & 1.35 \\ & CoCrEuFNI & 573 & 2.4 & FCC & 1.17 & -3.78 & -5.09 & 1.75 & 1.7 & 1.35 \\ & CoCrEMNNi & 973 & 13 & FCC + IM & 4.25 & -9.98 & -16.63 & 3.27 & 2.31 & 4.17 \\ & CoFeMNNIV & 973 & 13 & FCC + IM & 4.25 & -3.98 & -16.63 & 3.27 & 2.31 & 4.17 \\ & CoFeMNNIV & 973 & 19 & FCC + IM & 4.25 & -3.98 & -16.63 & 3.27 & 2.31 & 4.17 \\ & CoFeMNNIV & 973 & 19 & FCC + IM & 4.48 & -1.32 & -28.61 & 0.98 & 1.39 & 2.16 \\ & CrMo_{0,5}NTa_{0,5}TZ' & 1473 & 26 & BCC + BCC & 1.63 & 0.51 & -1.92 & 3.253 & 1.51 & 1.78 \\ & CrMo_{0,5}NTa_{0,5}TZ' & 1473 & 27 & BCC + IM & 7.17 & -4.70 & -9.17 & 4.19 & 1.84 & 1.95 \\ & CrMo_{0,5}TZ' & 1473 & 27 & BCC + IM & 7.17 & -4.70 & -9.17 & 4.19 & 1.84 & 1.95 \\ & CrMo_{0,5}TZ' & 1473 & 27 & BCC + IM & 7.13 & -5.25 & -12.37 & 3.23 & 1.65$	Al ₂ CoCrEeNi	973 [18]	$BCC \perp B2$	5 38	-15.48	_41 14	0.82	1.33	2.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AlCoasCrasFeasMnNiV	973 [19]	BCC/B2	4 25	-21 42	-36.20	0.02	1.55	1.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AlCos = Cros = Feo = MnNiVo =	973 [19]	BCC/B2	4.23	_20.89	-35.70	0.72	1.29	1.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AlCo ₁ cCr ₂ Fe ₁ cMn ₂ NiV	973 [19]	бсс/ <i>Б</i> 2	3.76	_11 74	_22.88	1 31	1.23	1.71
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AlMo _o NbTao Ti7r	1673 [22]	BCC + BCC	4 76	-23.76	-25.96	0.84	1.32	1.09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AlNh ₁ = Tao = Ti ₁ = 7ro =	1673 [21]	BCC	3 99	-15.04	-21.93	1 39	1.55	1.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$C_{0,2}$ CrFeMn ₁ Ni	973 [19]	$FCC + \sigma$	2 29	-4.03	-7.89	3 12	2.25	1.10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$C_{0,1}$ $C_{1,2}$ C_{1	973 [19]	FCC	2.23	_3.49	-6.26	3 53	2.23	1.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CoCrozeFeMnozeNi	973 [19]	FCC	2.00	-4.08	-6.83	3.17	2.11	1.60
Coch_2sternDisplay </td <td>$CoCr_{1,25}$FeMn_{0,25}Ni</td> <td>973 [19]</td> <td>FCC</td> <td>1.98</td> <td>-413</td> <td>-5.43</td> <td>2.97</td> <td>2.27</td> <td>1 31</td>	$CoCr_{1,25}$ FeMn _{0,25} Ni	973 [19]	FCC	1.98	-413	-5.43	2.97	2.27	1 31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CoCr ₂ FeNi	1273 [19]	FCC	1.89	-4.45	-3.77	3 17	2.13	0.85
CochrequentFree <td>CoCrCuFeMn</td> <td>1123 [3]</td> <td>FCC + FCC</td> <td>2.30</td> <td>4 18</td> <td>1 13</td> <td>3.60</td> <td>2.44</td> <td>0.00</td>	CoCrCuFeMn	1123 [3]	FCC + FCC	2.30	4 18	1 13	3.60	2.44	0.00
Cochredmini1273 [3]FCC2.30-4.19-6.894.062.631.64CoCrFeNi573 [24]FCC1.72-3.78-5.091.751.71.35CoCrFeNiTi _{0.5} 973 [25]FCC + IM4.12-11.59-19.371.101.441.67CoCrMnNiV973 [3]FCC + IM2.87-9.18-17.181.421.571.87CoFeMnNiV973 [3]FCC + IM2.87-9.18-16.633.272.314.17CoFeMnNiV973 [3]FCC + IM3.02-8.86-18.741.471.592.11CrFeI_5MnNi0.5973 [19]FCC + IM3.02-2.86-18.741.471.592.11CrFeMnNiTi973 [3]BCC + FCC + IM4.48-13.23-28.610.981.392.16CrMonjo,SNDTa0.5TiZr1473 [26]BCC + BCC + IM6.79-6.89-12.282.531.511.78CrNbTiVZr1473 [27]BCC + IM7.17-4.70-9.174.191.841.95Cuo_5CoCrFeNi1273 [28]FCC1.630.51-1.9232.5814.03-3.73HfNbTaTiZr1473 [29]BCC5.37-6.63-14.454.782.913.08MoNbTaW1673 [30]BCC5.70-4.69-14.454.782.913.08MoNbTaW1673 [31]BCC5.37-6.63-12.882.912.161.94NbTiV2zr1473 [27] <t< td=""><td>CoCrFeo 5Mno 5Ni 1 5</td><td>973 [19]</td><td>FCC</td><td>2.11</td><td>-4.89</td><td>-6.23</td><td>2.52</td><td>2.01</td><td>1.27</td></t<>	CoCrFeo 5Mno 5Ni 1 5	973 [19]	FCC	2.11	-4.89	-6.23	2.52	2.01	1.27
CocreenFrid <t< td=""><td>CoCrFeMnNi</td><td>1273 [3]</td><td>FCC</td><td>2.30</td><td>-4.19</td><td>-6.89</td><td>4.06</td><td>2.63</td><td>1.64</td></t<>	CoCrFeMnNi	1273 [3]	FCC	2.30	-4.19	-6.89	4.06	2.63	1.64
Cocreening97325FCC + IM4.12-11.59-19.371.101.441.67CocreMnNiV9733FCC + IM2.87-9.18-17.181.421.571.87CoFeMnMoNi9733FCC + IM2.87-9.18-17.181.421.571.87CoFeMnNiV9733FCC + IM4.25-3.98-16.633.272.314.17CoFeMnNiV9733FCC + IM3.02-8.86-18.741.471.592.11CrFednNiv597319FCC + σ 2.02-2.13-6.125.033.012.88CrFednNiTi9733BCC + FCC + IM4.48-13.23-28.610.981.392.16CrMo _{0.5} NbTa _{0.5} TiZr1473[26]BCC + BCC + IM6.79-6.89-12.282.531.511.78CrNbTiVZr1473[27]BCC + IM7.17-4.70-9.174.191.841.95CrNbTiZr1473[27]BCC + IM7.13-5.25-12.373.231.652.36Cu _{0.5} CoCrFeNi1273[28]FCC1.630.51-1.9232.5814.03-3.73HfNbTaTiZr1473[29]BCC5.70-4.69-14.454.782.913.08MoNbTaVW1673[31]BCC5.37-6.63-12.882.912.161.94NbTiV_Zr1473[27]BCC + BCC + BCC6.5	CoCrFeNi	573 [24]	FCC	1.72	-3.78	-5.09	1.75	1.7	1.35
CocrMnNiV973 [3]FCC + IM1.811.811.711.711.421.751.87CoCrMnNiV973 [3]FCC + IM2.87 -9.18 -17.18 1.421.571.87CoFeMnNiV973 [3]FCC + IM4.25 -3.98 -16.63 3.272.314.17CoFeMnNiV973 [3]FCC + IM3.02 -8.86 -18.74 1.471.592.11CrFe _{1.5} MnNi _{0.5} 973 [19]FCC + σ 2.02 -2.13 -6.12 5.033.012.88CrFeMnNiTi973 [3]BCC + FCC + IM4.48 -13.23 -28.61 0.981.392.16CrMo _{0.5} NbTa _{0.5} TiZr1473 [26]BCC + BCC + IM6.79 -6.89 -12.28 2.531.511.78CrNbTiVZr1473 [27]BCC + IM 7.17 -4.70 -9.17 4.191.841.95CrNbTiZr1473 [27]BCC + IM 7.13 -5.25 -12.37 3.231.652.36Cu_0.5CoCrFeNi1273 [28]FCC1.630.51 -1.92 32.5814.03 -3.73 HfNbTaTiZr1473 [29]BCC3.932.662.36 7.42 3.970.89MoNbTaVW1673 [30]BCC5.70 -4.69 -14.45 4.782.913.08MoNbTaW1673 [31]BCC5.37 -6.63 -12.88 2.912.161.94NbTiV_Zr1473 [27]BCC + BCC + BCC6.50 -1.14 1.0814.36	CoCrFeNiTios	973 [25]	FCC + IM	4.12	-11.59	-19.37	1.10	1.44	1.67
CoFeMnMoNi973 [3]FCC + IM4.25-3.98-16.633.272.314.17CoFeMnNiV973 [3]FCC + IM3.02-8.86-18.741.471.592.11CrFe _{1.5} MnNi _{0.5} 973 [19]FCC + σ 2.02-2.13-6.125.033.012.88CrFeMnNiTi973 [3]BCC + FCC + IM4.48-13.23-28.610.981.392.16CrMo _{0.5} NbTa _{0.5} TiZr1473 [26]BCC + FCC + IM6.79-6.89-12.282.531.511.78CrNbTiVZr1473 [27]BCC + IM7.17-4.70-9.174.191.841.95CrNbTiVZr1473 [27]BCC + IM7.13-5.25-12.373.231.652.36Cu _{0.5} CoCrFeNi1273 [28]FCC1.630.51-1.9232.5814.03-3.73HNbTaTiZr1473 [29]BCC5.70-4.69-14.454.782.913.08MoNbTaW1673 [30]BCC5.37-6.63-12.882.912.161.94MoNbTaW1673 [27]BCC + BCC + BCC6.50-1.141.0814.366.74-0.95NbTiVZr1473 [27]BCC + BCC + BCC6.50-1.141.0814.366.74-0.95NbTiVZr1473 [27]BCC6.13-0.181.5297.0239.81-8.68	CoCrMnNiV	973 [3]	FCC + IM	2.87	-9.18	-17.18	1.42	1.57	1.87
CoFeMnNiV973 [3]FCC + IM3.02-8.86-18.741.471.592.11 $CrFe_{1.5}MnNi_{0.5}$ 973 [19]FCC + σ 2.02-2.13-6.125.033.012.88 $CrFeMnNiTi$ 973 [3]BCC + FCC + IM4.48-13.23-28.610.981.392.16 $CrMo_{0.5}NbTa_{0.5}TiZr$ 1473 [26]BCC + BCC + IM6.79-6.89-12.282.531.511.78 $CrNbTiVZr$ 1473 [27]BCC + IM7.17-4.70-9.174.191.841.95 $CrNbTiZr$ 1473 [27]BCC + IM7.13-5.25-12.373.231.652.36 $Cu_{0.5}CoCrFeNi$ 1273 [28]FCC1.630.51-1.9232.5814.03-3.73HfNbTaTiZr1473 [29]BCC3.932.662.367.423.970.89MoNbTaWW1673 [30]BCC5.70-4.69-14.454.782.913.08MoNbTaW1673 [31]BCC5.37-6.63-12.882.912.161.94NbTiV_Zr1473 [27]BCC + BCC + BCC6.50-1.141.0814.366.74-0.95NbTiVZr1473 [27]BCC6.13-0.181.5297.0239.81-8.68	CoFeMnMoNi	973 [3]	FCC + IM	4.25	-3.98	-16.63	3.27	2.31	4.17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CoFeMnNiV	973 [3]	FCC + IM	3.02	-8.86	-18.74	1.47	1.59	2.11
CrFeMINITI 973 [3] BCC + FCC + IM 4.48 -13.23 -28.61 0.98 1.39 2.16 CrMo _{0.5} NbTa _{0.5} TiZr 1473 [26] BCC + BCC + IM 6.79 -6.89 -12.28 2.53 1.51 1.78 CrNbTiVZr 1473 [27] BCC + IM 7.17 -4.70 -9.17 4.19 1.84 1.95 CrNbTiZr 1473 [27] BCC + IM 7.13 -5.25 -12.37 3.23 1.65 2.36 Cu _{0.5} CoCrFeNi 1273 [28] FCC 1.63 0.51 -1.92 32.58 14.03 -3.73 HfNbTaTiZr 1473 [29] BCC 3.93 2.66 2.36 7.42 3.97 0.89 MoNbTaVW 1673 [30] BCC 5.70 -4.69 -14.45 4.78 2.91 3.08 MoNbTaW 1673 [31] BCC 5.37 -6.63 -12.88 2.91 2.16 1.94 NbTiV_Zr 1473 [27] BCC + BCC + BCC 6.50 -1.14 1.08 14.36 6.74 -0.95 NbTiV_Zr 1473 [27] BCC	CrFe _{1.5} MnNi _{0.5}	973 [19]	$FCC + \sigma$	2.02	-2.13	-6.12	5.03	3.01	2.88
CrMo _{0.5} NbTa _{0.5} TiZr 1473 [26] BCC + BCC + IM 6.79 -6.89 -12.28 2.53 1.51 1.78 CrNbTiVZr 1473 [27] BCC + IM 7.17 -4.70 -9.17 4.19 1.84 1.95 CrNbTiZr 1473 [27] BCC + IM 7.13 -5.25 -12.37 3.23 1.65 2.36 Cu _{0.5} CoCrFeNi 1273 [28] FCC 1.63 0.51 -1.92 32.58 14.03 -3.73 HfNbTaTiZr 1473 [29] BCC 3.93 2.66 2.36 7.42 3.97 0.89 MoNbTaVW 1673 [30] BCC 5.70 -4.69 -14.45 4.78 2.91 3.08 MoNbTaW 1673 [31] BCC 5.37 -6.63 -12.88 2.91 2.16 1.94 NbTiV_Zr 1473 [27] BCC + BCC + BCC 6.50 -1.14 1.08 14.36 6.74 -0.95 NbTiVZr <td>CrFeMnNiTi</td> <td>973 [3]</td> <td>BCC + FCC + IM</td> <td>4.48</td> <td>-13.23</td> <td>-28.61</td> <td>0.98</td> <td>1.39</td> <td>2.16</td>	CrFeMnNiTi	973 [3]	BCC + FCC + IM	4.48	-13.23	-28.61	0.98	1.39	2.16
CrNbTiVZr 1473 127 BCC + IM 7.17 -4.70 -9.17 4.19 1.84 1.95 CrNbTiZr 1473 27 BCC + IM 7.13 -5.25 -12.37 3.23 1.65 2.36 Cu _{0.5} CoCrFeNi 1273 28 FCC 1.63 0.51 -1.92 32.58 14.03 -3.73 HfNbTaTiZr 1473 29 BCC 3.93 2.66 2.36 7.42 3.97 0.89 MoNbTaVW 1673 30 BCC 5.70 -4.69 -14.45 4.78 2.91 3.08 MoNbTaW 1673 31 BCC 5.37 -6.63 -12.88 2.91 2.16 1.94 NbTiV_Zr 1473 27 BCC + BCC + BCC 6.50 -1.14 1.08 14.36 6.74 -0.95 NbTiVZr 1473 27 BCC 6.13 -0.18 1.52 97.02 39.81 -8.68	CrMo ₀ 5NbTa ₀ 5TiZr	1473 [26]	BCC + BCC + IM	6.79	-6.89	-12.28	2.53	1.51	1.78
CrNbTiZr 1473 27 BCC + IM 7.13 -5.25 -12.37 3.23 1.65 2.36 Cu _{0.5} CoCrFeNi 1273 28 FCC 1.63 0.51 -1.92 32.58 14.03 -3.73 HfNbTaTiZr 1473 29 BCC 3.93 2.66 2.36 7.42 3.97 0.89 MoNbTaVW 1673 30 BCC 5.70 -4.69 -14.45 4.78 2.91 3.08 MoNbTaWW 1673 31 BCC 5.37 -6.63 -12.88 2.91 2.16 1.94 NbTiV_Zr 1473 27 BCC + BCC + BCC 6.50 -1.14 1.08 14.36 6.74 -0.95 NbTiVZr 1473 27 BCC 6.13 -0.18 1.52 97.02 39.81 -8.68	CrNbTiVZr	1473 [27]	BCC + IM	7.17	-4.70	-9.17	4.19	1.84	1.95
Cu _{0.5} CoCrFeNi 1273 28 FCC 1.63 0.51 -1.92 32.58 14.03 -3.73 HfNbTaTiZr 1473 29 BCC 3.93 2.66 2.36 7.42 3.97 0.89 MoNbTaVW 1673 30 BCC 5.70 -4.69 -14.45 4.78 2.91 3.08 MoNbTaW 1673 31 BCC 5.37 -6.63 -12.88 2.91 2.16 1.94 NbTiV_2Zr 1473 27 BCC + BCC + BCC 6.50 -1.14 1.08 14.36 6.74 -0.95 NbTiVZr 1473 27 BCC 6.13 -0.18 1.52 97.02 39.81 -8.68	CrNbTiZr	1473 [27]	BCC + IM	7.13	-5.25	-12.37	3.23	1.65	2.36
HfNbTaTiZr 1473 [29] BCC 3.93 2.66 2.36 7.42 3.97 0.89 MoNbTaVW 1673 [30] BCC 5.70 -4.69 -14.45 4.78 2.91 3.08 MoNbTaW 1673 [31] BCC 5.37 -6.63 -12.88 2.91 2.16 1.94 NbTiV_2Zr 1473 [27] BCC + BCC + BCC 6.50 -1.14 1.08 14.36 6.74 -0.95 NbTiVZr 1473 [27] BCC 6.13 -0.18 1.52 97.02 39.81 -8.68	Cuo 5CoCrFeNi	1273 [28]	FCC	1.63	0.51	-1.92	32.58	14.03	-3.73
MoNbTaVW 1673 [30] BCC 5.70 -4.69 -14.45 4.78 2.91 3.08 MoNbTaW 1673 [31] BCC 5.37 -6.63 -12.88 2.91 2.16 1.94 NbTiV_2Zr 1473 [27] BCC + BCC + BCC 6.50 -1.14 1.08 14.36 6.74 -0.95 NbTiVZr 1473 [27] BCC 6.13 -0.18 1.52 97.02 39.81 -8.68	HfNbTaTiZr	1473 [29]	BCC	3.93	2.66	2.36	7.42	3.97	0.89
MoNbTaW 1673 [31] BCC 5.37 -6.63 -12.88 2.91 2.16 1.94 NbTiV2Zr 1473 [27] BCC + BCC + BCC 6.50 -1.14 1.08 14.36 6.74 -0.95 NbTiVZr 1473 [27] BCC 6.13 -0.18 1.52 97.02 39.81 -8.68	MoNbTaVW	1673 30	BCC	5.70	-4.69	-14.45	4.78	2.91	3.08
NbTiV ₂ Zr 1473 [27] BCC + BCC + BCC 6.50 -1.14 1.08 14.36 6.74 -0.95 NbTiVZr 1473 [27] BCC 6.13 -0.18 1.52 97.02 39.81 -8.68	MoNbTaW	1673 31	BCC	5.37	-6.63	-12.88	2.91	2.16	1.94
NbTiVZr 1473 [27] BCC 6.13 -0.18 1.52 97.02 39.81 -8.68	NbTiV ₂ Zr	1473 27	BCC + BCC + BCC	6.50	-1.14	1.08	14.36	6.74	-0.95
	NbTiVZr	1473 [27]	BCC	6.13	-0.18	1.52	97.02	39.81	-8.68

using equation similar to Eq. (3) and the enthalpy of formation values ΔH_{ii}^{IM} for binary intermetallics reported in Ref. [16]:

$$\Delta H_{IM} = \sum_{i < j} 4H_{ij}^{IM} c_i c_j \tag{9}$$

 κ_1^{cr} was calculated for a partially ordered condition of an IM phase ($\kappa_2 = 0.6$). $\Omega(T_A)$ was calculated using Eq. (4) in which T_A was used instead of T_m.

The ΔH_{mix} vs. δr , $\Omega(T_A)$ vs. δr and $\kappa_1^{cr}(T_A)$ -vs. $\Delta H_{\text{IM}}/\Delta H_{\text{mix}}$ plots for the annealed alloys are shown in Fig. 1(a), (b) and (c), respectively. It can be seen that HEAs with the FCC crystal structures are well separated from IM HEAs with the use of ΔH_{mix} and δr parameters. Six out of seven of them fall within a top left rectangle (Fig. 1a) identified by Wang et al. [14] ($-7.5 < \Delta H_{mix} < 5 \text{ kJ/mol}$, $\delta r < 3.3\%$) and one is slightly beyond of this rectangle (at $\Delta H_{\rm mix} = -6.8$ kJ/mol and $\delta r = 3.47\%$). All alloys containing IM phases have $\Delta H_{mix} < -6.8$ kJ/mol and $\delta r > 3.47\%$. However SS HEAs consisting of BCC phases have ΔH_{mix} and δr values, which are common to both FCC and IM alloys. Thus $(\Delta H_{mix} - \delta r)$ criterion does not work for HEAs containing BCC phases. The Ω criterion does not work at all (see Fig. 1b): The analyzed SS and IM alloys fall in the same range of Ω and FCC HEAs are separated from all other alloys on the $\Omega(T_A) - \delta r$ plot by atomic size difference only. This observation supports our statement that $T\Delta S_{mix}$ and ΔH_{mix} terms from which Ω is derived are not competing with each other but represent the same state of a SS phase.

When $\kappa_1^{cr}(T_A)$ are plotted versus $\Delta H_{IM}/\Delta H_{mix}$, clear separation of SS alloys from IM-containing alloys can be seen (Fig. 1c). To visualize this, a dashed line corresponding to the condition $\kappa_1^{cr}(T_A) = \Delta H_{IM} / \Delta H_{mix}$ is also shown in Fig. 1c. Almost all SS alloys, except two with a BCC structure, fall above the dashed line ($\kappa_1^{cr}(T_A)$) for SS alloys are above $\Delta H_{IM}/\Delta H_{mix}$) and almost all IM-containing HEAs fall below this line ($\kappa_1^{cr}(T_A)$ for these alloys are below ΔH_{IM} / ΔH_{mix}). This analysis indicates that the κ_1^{cr} parameter has an improved ability to predict the presence or absence of equilibrium IM phases in HEAs at a given annealing temperature than δr , ΔH_{mix} and/or Ω parameters. However, the κ_1^{cr} parameter cannot predict what types of solid solution phases (FCC, BCC or HCP) will form. Other criteria should be used to estimate this.

2. Conclusions

A simple thermodynamic criterion ($\kappa_1^{cr}(T)$ vs. $\Delta H_{IM}/\Delta H_{mix}$) is

Fig. 1. (a) The $\Delta H_{mix} - \delta r$, (b) $\Omega(T_A) - \delta r$ and (c) $\kappa_1^{cr}(T_A) - \Delta H_{IM} / \Delta H_{mix}$ plots for annealed HEAs with different phase contents after annealing.

proposed to predict what types of equilibrium phases (solid solutions or intermetallics) are present in a high entropy alloy at a given temperature T. The criterion was verified using 45 currently available HEAs and showed good correlation with experiment. It is shown that the new criterion gives an improved ability to predict whether solid solution or intermetallic phases will form at a given temperature compared to earlier $\delta r vs \Delta H_{mix}$ or $\delta r vs \Omega$ criteria.

Acknowledgments

Discussions with Drs. J.D. Miller and C. Woodward are much appreciated. Work by O.N. Senkov was supported through the U.S. Air Force on-site contract No. FA8650-10-D-5226 operated by UES, Inc., Dayton, Ohio.

References

- J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303.
- [2] J.-W. Yeh, S.-K. Chen, J.-Y. Gan, S.-J. Lin, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A 35 A (2004) 2533–2536.
- [3] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater. 61 (2013) 2628–2638.
- [4] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218.
- [5] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (2008) 534–538.

- [6] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132 (2012) 233–238.
- [7] S. Guo, C.T. Liu, Phase stability in high entropy alloys: formation of solidsolution phase or amorphous phase, Prog. Nat. Sci. 21 (2011) 433–446.
- [8] S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109 (2011).
- [9] S. Guo, C.T. Liu, Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions, Chin. J. Nat. 35 (2013) 85–96.
- [10] W. Hume-Rothery, R.W. Smallman, C.W. Haworth, The Structure of Metals and Alloys, The Institute of Metals, London, 1969.
- [11] S. Guo, Phase selection rules for cast high entropy alloys: an overview, Mater. Sci. Technol. 31 (2015) 1223-1230.
- [12] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. JIM 46 (2005) 2817–2829.
- [13] G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloys Compd. 591 (2014) 11–24.
- [14] Z. Wang, S. Guo, C.T. Liu, Phase selection in high-entropy alloys: from nonequilibrium to equilibrium, JOM 66 (2014) 1966–1972.
- [15] S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropy in high-entropy alloys: forming solid solutions or amorphous phase, Intermetallics 41 (2013) 96–103.
 [16] M.C. Tropareysky, I.R. Morris, P.R.C. Kent, A.R. Lupini, G.M. Stocks, Criteria for
- [16] M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, G.M. Stocks, Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys, Phys. Rev. X 5 (2015) 011041, 6.
- [17] M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations, second ed., Cambridge University Press, Cambridge, UK, 2007.
- [18] Y.-F. Kao, T.-J. Chen, S.-K. Chen, J.-W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, J. Alloys Compd. 488 (2009) 57–64.
- [19] M.-H. Tsai, K.-Y. Tsai, C.-W. Tsai, C. Lee, C.-C. Juan, J.-W. Yeh, Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys, Mater. Res. Lett. 1 (2013) 207–212.
- [20] T.T. Shun, Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy, J. Alloys Compd. 479 (2009) 157–160.
- [21] O.N. Senkov, C. Woodward, D.B. Miracle, Microstructure and properties of

aluminum-containing refractory high-entropy alloys, JOM 66 (2014) 2030–2042.

- [22] O.N. Senkov, S.V. Senkova, C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high entropy alloys, Acta Mater. 68 (2014) 214–228.
- [23] C. Ng, S. Guo, J.H. Luan, S.Q. Shi, C.T. Liu, Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy, Intermetallics 31 (2012) 165–172.
- [24] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131–140.
- [25] L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, T. Li, Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot, Intermetallics 44 (2014) 37–43.
- [26] O.N. Senkov, C.F. Woodward, Microstructure and properties of a refractory

NbCrMo0.5Ta0.5TiZr alloy, Mater. Sci. Eng. A 529 (2011) 311-320.

- [27] O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis, Acta mater. 61 (2013) 1545–1557.
- [28] C.-M. Lin, H.-L. Tsai, H.-Y. Bor, Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy, Intermetallics 18 (2010) 1244–1250.
- [29] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Cmpds 509 (2011) 6043–6048.
- [30] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory highentropy alloys, Intermetallics 18 (2010) 1758–1765.
- [31] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb₂₅Mo₂₅Ta₂₅W₂₅ and V₂₀Nb₂₀Mo₂₀Ta₂₀W₂₀ refractory high entropy alloys, Intermetallics 19 (2011) 698–706.