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LONG-TERM GOALS 

Current state-of-the-art techniques for measurement of ocean surface waves based on radar 
measurements predominantly use Fourier transforms (FFTs) to extract information about the ocean 
surface wave field from the measured signal (e.g., Young et al., 1985). In addition, the methods often 
rely on filtering the FFT of radar backscatter or Doppler velocities using the linear dispersion 
relationship for surface gravity waves to remove artifacts associated with the measurement (e.g., "sea 
spikes"). Because natural wave fields are neither linear nor stationary, one might raise the question of 
whether FFTs are the optimal tool? Furthem1ore, when the end-goal of the wave retrieval is space- and 
time-resolved sea surface elevation maps (i.e., rather than a wave spectrum), the back-and-forth 
translations between Fourier and spatiotemporal domains can introduce artifacts and impose additional 
sensing requirements that would not exist if data were processed exclusively in the spatiotemporal 
domain. The long-tenn goal of this research is to improve and explore alternative signal processing 
methods to extract ocean wave fields from sea clutter. Advancement of these techniques enables 
accurate sea surface elevation maps surrounding ships, offshore platforms, and shorelines to be 
produced. These maps can provide important information regarding sea conditions to inform 
operational decisions such as intra- and inter-ship transfers, small-boat launch and recovery, and 
helicopter landings. Such detailed sea state information generally improves the fleet's maritime 
domain awareness. 

OBJECTIVES 

The objective of this research is to develop and evaluate the use of proper orthogonal decomposition 
(POD) for wave field retrieval from radar Doppler measurements. Specifically, the following sub­
objectives enable this objective to be achieved: 

(i) Determine whether the basis functions of the POD of Doppler measurements have 
physical significance that can be associated with the wave field 

(ii) Develop methodology for applying POD to data obtained with a rotating radar system 
(iii) Compare the wave field retrievals obtained via POD to those obtained with 

conventional FFT and dispersion curve filtering techniques 
(iv) Compare both results of(iii) to ground truth sensors (i .e., wave buoys), both in-terms of 

wave statistics as well as phase-resolved comparisons, when possible. 



APPROACH 

Radar returns from the sea surface are complex and contain contributions from the environment (e.g., 
wind, waves, currents) as well as artifacts associated with electromagnetic (EM) (wave) propagation 
(e.g. , multi path, multi bounce, shadowing, "sea spikes"). Most methods for processing sea clutter data 
for extraction of wave field information utilize three-dimensional (3D) fast Fourier transforms (FFTs) 
(Young et al. , 1985). Typically, these 3D spectra are subsequently filtered based on the linear 
dispersion relationship for surface gravity waves to remove contributions deemed to be not associated 
with the wave field . Oceanic wave fields, particularly in high sea states, are not linear or stationary, 
and therefore, application of linear, stationary techniques such as FFTs may not be best suited for this 
application. They are often used because of simplicity of their application and a lack of alternative 
options. Furthermore, at least a portion of the nonlinear wave field does not lie on the dispersion curve, 
and thus, filtering the Doppler spectrum based on the linear dispersion curve undoubtedly discards part 
of the wave field information. Nonlinear ocean wave and EM propagation effects overlap too much in 
frequency-wavenumber space to separate them using these current techniques. For example, Figure 1 
shows a typical wavenumber-frequency spectrum computed from (radar) Doppler measurements. The 

dashed white line in the figure is the linear dispersion curve for surface gravity waves: w = Uc · k + 
-J gktanh(kh) , where Uc is the surface current, g is acceleration due to gravity, k is wavenumber (and 
k is wavenumber magnitude), and h is water depth. In Figure 1, the primary energy peaks lie on the 
dispersion curve; one peak for swell and another for wind seas. In addition to this energy, the presence 
of the first harmonic is evident above the main energy peaks (on the dispersion curve), and clearly 
there is a broad spectral distribution of energy at frequencies and wavenumbers smaller than that 
associated with the dispersion curve (hereafter referred to as the "group line"). The latter contains 
contributions from the nonlinear portion of the wave field (e.g. , wave breaking), EM effects (e.g. , 
shadowing), and interference between wave systems (Plant and Farquharson, 2012; Nieto Borge eta!. , 
2004; Smith et a!. , 1996). All these contributions to the signal are removed with the procedure of 
filtering the spectrum based on the dispersion curve denoted with the dotted lines in Figure 1. This 
procedure may be sufficient for obtaining general information about the wave field directionality and 
frequency content, but the accuracy of time-space resolved sea surface elevation maps is unclear when 
constructed from inverse FFTs after some wave field contributions have been neglected. For Navy 
applications, this shortcoming could be significant because it is measurement/prediction of the 
anomalous/large wave event that is the most critical. 

This research evaluates use of proper orthogonal decomposition (POD) to separate and extract the 
wave field information from the measured signal. This technique can be applied to non-stationary and 
nonlinear processes, and is also referred to as principal component analysis (PCA), Karhunen-Loeve 
decomposition/transform, or singular value decomposition (SVD). In general, it is used to obtain a 
low-dimensional approximation for high-dimensional processes, such as chaotic systems (Chatterjee, 
2000). Although the method is a linear technique, it is optimal relative to other linear techniques, such 
as FFTs, for representation of nonlinear processes and has been applied extensively in the areas of 
turbulence and image processing (Kerschen and Golinval, 2002). Although there is no physical 
basis/interpretation inherent to the method because it is purely a mathematical tool, there has been an 
increasing body of work in several different research areas suggesting that POD can be linked with 
physical interpretations (e.g., Diamessis et al. , 2010; Kerschen and Golinval, 2002; Hackett et al. , 
2014). 
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The central idea in POD is that a signal, S(r,t), can be represented by a set of modes, (/Jk(r), and 
coefficient functions, ck(t): 

M 

S(r, t) = L ck(t)¢k(r) (1) 
k=l 

such that as M-oo the true signal is reconstructed exactly by the summation. It is the choice of the 
basis functions or modes that differentiates POD from other methods. Instead of choosing the basis 
functions a priori, e.g., sines and cosines, Legendre polynomials, etc., they are determined from the 
data itself. They are orthonormal and minimize the number of modes required to account for the 
majority of the variance in the signal. For example, they are chosen such that a three mode (k=3) 
approximation is the best possible 3-mode approximation, and the same for four modes, five, and so­
on. This particular selection of modes is referred to as the proper orthogonal modes, which can be 
computed from a singular value decomposition of the signal. The idea is that inclusion or neglect of 
certain modes can act as a filter on the signal enabling different aspects of the wave field to be 
retrieved. This mode selection could permit an improved wave field extraction by including content 
associated with the wave field that does not lie on the dispersion curve. In Eqn ( 1 ), the signal, S, is a 
function of range and time, but the same method can be applied for any 2D configuration, for example 
two spatial coordinates. 

k (rad m'1) 

Figure 1: Power spectral density of Doppler velocities (Fvv)· The white dashed line is the linear 
dispersion curve for ocean surface waves and the white dotted lines show the width of a typical dispersion 
curve filter. 

There are also a number of other potential advantages to this technique over FFT processing. First, 
translation between Fourier and spatiotemporal domains requires application of windowing functions, 
which can introduce artifacts into the data, and these translations also impose certain sensing 
requirements because the sample interval and length of the time/spatial series sets the 
frequency/wavenumber resolution, minimum frequency, and Nyquist limit. Using the POD technique, 
all the data remains in the spatiotemporal domain for all the computations; thus, introduction of 
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artifacts is minimized and sensing requirements could be relaxed. Second, sea surface elevation maps 
and/or raw radar measurements can be saved much more efficiently in-terms of data storage, and the 
POD method is computationally less intensive than FFTs. It is also feasible that by neglecting certain 
modes in the reconstructed signal that are due to noise, a cleaner signal can be used for the FFT 
analysis thereby improving results obtained by FFT methods. 

Prior research has shown viability of POD based-on results of application of POD to modeled wave 
fields of various complexity (Hackett et al. , 2014). This prior research has not included any radar 
artifacts (e.g. , shadowing, range-dependent noise, multipath, etc.) into the simulated wave data; thus, 
these results assume a "perfect" radar performance. Thus, the proposed research would extend this 
research to examine the impact of such artifacts. Furthermore, the technique has not yet been applied 
to rotating or staring radar-based wave measurements, which is a primary focus of this effort. 

The results from the method are compared to those from conventional FFT -based processing that 
filters on the dispersion relationship for surface gravity waves. Both the FFT -based and POD-based 
results are also compared to ground truth sensors (i.e. , wave buoys), both in terms of wave statistics 
and phase-resolved comparisons, when possible. The data used for these comparisons come from two 
different tests completed by performers under the Environmental and Ship Motion Forecasting 
(ESMF) ONR FNC program (Alford et al. , 2015; Connell et al. , 2015), an experiment performed by 
the Naval Surface Warfare Center Carderock Division (NSWCCD) at the Scripps Institution of 
Oceanography pier (SIO) (Hackett et al. , 2015) for the ESMF program, and radar emulator results 
generated by Gordon Farquharson at the University of Washington Applied Physics Laboratory (also 
partly developed under the ESMF program). Thus, the results span a variety of environmental 
conditions and radar systems. An overview of the three radar systems evaluated as well as the 
environmental conditions during the various experiments are provided in Tables 1, 2, and 3 (for the 
datasets used in this study). The emulated radar data was produced using a wave directional spectrum 
that is similar to the conditions of dataset 13 in Table 3 and a modeled antenna that is the same as the 
UM radar system (see Table 1). Multiple emulator runs were produced using the same wave 
directional distributions with Hs and Vrms similar to the values in Table 3 for dataset 13 as well as with 
Hs and V,.ms slightly smaller than that shown in the table. 

Table 1: Radar parameters for Doppler measurements for the three radars examined in this study: center 
frequency ({c), bandwidth (A./), polarization, range resolution, range footprint (range covered), pulse 
repetition frequency (PRF), and rotation rate. Note that the information for the APS radar is for one of 
four anten h h f d f C 360 d h) nas t at eac covers one quarter o an entire ra ar rame 1.e., eg m az1mut 

Radar fc A/ Resolution 
Radar 

PRF 
Rotation 

Polarization Footprint Rate 
System (GHz) (MHz) (m) (Hz) 

(m) (RPM) 

DREAM 9.30 500 w 0.30 615 800 0 
UM 9.41 30 w 3.75 960 2000 24 

APS* 9.20 28 w 4.80 998 25000 5 

*one of the four APS antennas 
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Table 2: Wave field and other environmental conditions for two SIO pier experimental datasets examined 
in this study. H, is significant wave height, Tis mean wave period, Tp is peak wave period, Op is peak wave 
direction, 0,. is wind d' · d U · · d d (H k I 2015) uectwn, an wls wm spee ac ett eta., 

Run Date 
Radar Hs T ()p TP (} w Uw 
Time (m) (s) (0) (s) (0) (rnls) 

246 7/27/2010 21:34 0.60 7.0 282 9.8 297 3.9 
269 7/29/2010 20:22 0.62 5.1 296 5.2 296 3.9 

WORK COMPLETED 

The work completed under this grant involves several main components: (i) evaluation of any physical 
connection of POD basis functions to the wave field, (ii) development of a procedure for applying the 
POD method to rotating radar system data, (iii) comparison of results of POD method with 
conventional FFT-based methods over a variety of environmental conditions and for multiple radar 
systems, and (iv) comparison of both methods to ground truth sensors. More details regarding each of 
these components are provided in the following subsections as well as in Kammerer (2017). 

Table 3 : Rotating radar datasets examined in this study. Information includes: dataset number, test 
associated with the data collected, date and time of data collection, availability of APS radar system and 
UM radar system data, buoy measured environmental conditions (H,: significant wave height, J.P: peak 
wavelength, V,111,: RMS of orbital velocity, and number of wave systems), directional spread between swell 
and wind waves (LIO) as applicable and measured by the radars, and ship (anemometer) measured wind 
speed, U,.. 

H ,. u,. J.P Vrms Wave LIB 
Dataset Test Date Time APS UM 

(m) (mls) (m) (mls) Systems (D) 

I • CKI5 I7-May-15 20:08:00 ./ ./ 0.10 6.0 167 0.03 2 53 

2++ CK15 17-May-15 21:20:00 .)( ./ 0.19 7.5 111 0.09 1 0 

3 Melville 15-Sep-13 I7:10:40 ./, ./ 1.62 12 I05 0.39 I 0 
4++ Melville 16-Sep-13 1:36:00 ./ ./ 1.42 15 95 0.46 1 0 

5 • Melville 16-Sep-13 I5:43:00 ./ ./ 1.29 II 82 0.43 2 23 

6 
. 

Melville 16-Sep-13 18:29:32 ./ ./ 1.29 12 98 0.44 2 50 

7 Melville 17-Sep-13 0:08:45 ./ ./ 1.65 II 77 0.54 2 41 
8 Melville 17-Sep-13 0:33:34 ./ ./ 1.48 11 78 0.49 2 46 

9 Melville 17-Sep-13 0:58:10 ./ ./ 1.68 11 78 0.52 2 44 

10 Melville 17-Sep- 13 2:00:00 ./ ./ 1.59 12 92 0.51 2 30 

II •• CK15 17-May-15 22:20:00 .)( ./ 1.64 7.0 111 0.53 2 61 

12+ CK15 21-May-I5 20:32:00 ./ ./ 1.07 2.3 97 0.28 1 0 

13+ Melville 17-Sep-13 14:28:53 ./ ./ 2.10 8.9 I08 0.63 2 59 .. 
Melville 17-Sep-13 19:27:33 ./ ./ 2.15 9.9 105 0.63 2 0 14 

* Lowest H_, for respective test Lowest U w for respective test 

** Highest H _, for respective test ++ Highest U w for respective test 
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Physical Significance of POD Modes 

POD mode basis functions are derived from the data a posteriori; thus, they are not restricted to sines 
and cosines as in Fourier methods. The interpretation of POD mode functions however, is more 
complex than Fourier methods, as there is no inherent physical interpretation of the mode functions. 
This subsection examines the physical interpretation of the POD basis functions as applied to Doppler 
radar measurements of the ocean surface. Mode basis functions from applying POD to data acquired 
from an emulated rotating radar, rotating radar, and staring (or non-rotating) radar are examined. 

First, the physical interpretation of POD mode functions as related to wave-field physics from the 
staring radar SIO experiment are examined. This experiment was chosen to examine first because the 
data format (i.e. , D(r,t)) most closely matches the simulated idealized radar data from 2D wave-fields 
examined in Hackett et al. (2014), which showed that leading POD modes of this simulated data shared 
characteristics of the wave-field physics. To investigate the effect of the number of wave systems 
present, two datasets were selected to examine. Dataset 246 was collected under mixed seas with both 
swell and wind-wave energy present, while dataset 269 was collected during wind sea only conditions 
(also see Table 2). 

....... 

k(radtm) 

""'" ' 

~ w·F?h~ I ~ "'._-l..!L~_j ~ ... '----'--"-~_j ~ "'._--l....l.~_j 
'" k(mdml) ....... 

~ .. .[J\ff\~ I ~ ... 
,., '--...J__J.-"',.,-----.J 

k(radiml k!llldM!l 

Figure 2: Power spectral densities (PSD) of the leading 20 modes 
computed from POD applied to spatiotemporal Doppler velocity 
distributions (dataset 269 from NSWCCD's SIO pier experiment). 

Figure 2 shows the ID power 
spectral densities (PSD) (or 
energy spectrum) of each of the 
leading twenty mode functions 
from POD applied to 
spatiotemporal Doppler velocity 
for dataset 269 during wind sea 
only conditions. The vertical 
dashed line shows the peak 
wavenumber during the time 
period that the data was 
collected. All of the leading 
modes, with the exception of 
mode one, show spectral peaks 
at or surrounding the peak 
wavelength, which indicates that 
a significant portion of the 
variance of the mode function is 
associated with wavelengths 
near the waves ' peak 
wavelength. Figure 3 shows the 

second mode function, further confirming that the function is oscillatory with a wavelength that is 
similar to the peak wavelength of the measured wave-field. These results suggest that under uni-modal 
sea conditions the leading POD mode functions are oscillatory and oscillate at similar wavelengths as 
the peak wavelength of the measured wave-field and thus have clear correspondence to the physics of 
the measured wave-field. Also note from Figure 2 that aside from the fust mode (that is interpreted to 
be associated with a large scale trend, such as the range-dependent signal decay), the magnitude of the 
spectral peak near the peak wavelength is greatest in the smallest modes and decreases and broadens as 
the mode number increases. This result implies that the smallest modes are more tightly coupled to the 
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wave field physics than higher modes. Similar results were found for run 246 during mixed sea 
conditions. From those results, it can be deduced that mixed seas do not significantly change the 
ordering of the basis functions and in a mixed sea scenario the basis functions incorporate both swell 
and wind-seas in the same functions. 

In order to evaluate if the POD method preferentially reconstructs wave energy as opposed to non­
wave contributions to the radar Doppler measurement, energy in each n mode reconstruction is 
examined as well as energy only inside swell and wind-wave spectral "bands". Figure 4 shows total 
reconstructed energy, as well as energy within only the swell and wind-wave energy bands, in each n 
mode reconstruction. For each n mode reconstruction, modes 1 through n are used for reconstruction. 
The PSD of velocity is calculated for each POD mode velocity reconstruction and integrated twice to 
compute energy captured by that reconstruction. The swell and wind-wave wavelength bands are based 

0.05 

0 

·0.05 

0 200 400 600 
Range (m) 

Figure 3: Second mode function from 
decomposition of spatiotemporal Doppler 
velocity from dataset 269. 

on the width of the spectral energy peaks of the 
original Doppler velocity data associated with the 
swell and wind-waves for each data set. Specifically, 
the swell energy wavelength band is defined as 
wavelengths from 87 m to 210 m, and the wind-wave 
band is defined as wavelengths from 20 m to 70 m. 
The vertical axis in Figure 4 shows percentage of total 
energy. The results in this figure show that the POD 
mode reconstructions accumulate energy from within 
the swell and wind-wave wavenumber bands at a faster 
rate than total energy is accumulated. The 
reconstruction of modes 1-20 represents 70% of the 
swell and wind-wave energy, but only 28% of the total 
energy. The reconstruction of modes 1-100 represents 

99% of the energy in the swell and wind wave spectral bands. This result demonstrates that a leading 
mode reconstruction would contain more energy in the wave bands than energy outside of these bands, 
where the latter could be associated with potential non-wave contributions to the radar measurement. 

The mode basis functions of emulated rotating radar data were also examined to determine if the mode 
basis functions correspond to the physics of the measured wave-field. The rotating radar data differs 
from the staring radar data because the Doppler velocity is a function of two spatial coordinates (i.e., 
D(x,y) ) rather than range and time (i.e., D(r,t)) and therefore it cannot be assumed a priori that the 
basis functions derived from the POD method will be the same for the rotating and staring radars. 
However, the Doppler data are first rotated so that the predominant wave propagation is along the x­
direction, which is the same direction that the mode functions are associated (see next subsection for 
further details). Due to this rotation, similar behavior as observed with the starting radar is expected. 

Figure 5a shows the frrst mode basis function of POD applied to a frame of emulated rotating radar 
Doppler velocity data. This figure shows that the mode function is oscillatory and Figure 5b shows the 
PSD of this mode where it can be seen that the mode's spectral peaks are consistent with the peak 
wavelengths from the directional wave spectrum from which the emulator run was initiated. 

Figure 6 shows the 1D wavenumber spectrum for each individual mode reconstruction for POD 
applied to a frame of Doppler velocity data measured using the rotating radar developed by the 
University of Michigan (UM) under the ESMF program. The 2D (kx-ky) spectrum is calculated from the 
individual mode velocity reconstructions and integrated over ky to yield a 1D wavenumber spectrum 
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Figure 4: Normalized cumulative energy versus n 
mode reconstruction, and normalized cumulative 
energy within swell and wind-wave (WW) wavelength 
bands. Swell and wind-wave energy is accumulated at a 
faster rate than total energy. 

physical significance in relation to the wave field. 
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for each mode reconstruction. The vertical 
dashed white line represents the peak 
wavelength during the time when the dataset 
was collected. Energy based-on mode 1 
through 10 velocity reconstructions is largest 
around the peak wavelength. Above the 
mode 10 reconstruction, small amounts of 
energy are spread across the remaining 
reconstructions and across many 
wavelengths. This energy is presumably part 
of non-wave contributions to the radar 
Doppler velocity measurement. Note that the 
UM rotating radar range resolution is much 
coarser than the staring DREAM radar (see 
Table 1). 

From these results, we conjecture that the 
POD performs similarly for the rotating radar 
as the staring radar in that the leading POD 
mode functions are oscillatory and have 
wavelengths representative of the measured 
wave field and therefore, have a clear 

~ 

~ 
co 

<") ..... 10"3 

.s 
0 
g: 1 o-4 

10-5 L-----~----~----
10-3 1 o-2 1 o-1 1 o0 

k (rad/m) 

b 

Figure 5: (a) First mode function from POD applied to a single frame of emulated rotating radar Doppler 
velocity measurements. (b) Wavenumber spectrum of the first POD mode function presented in (a). 

Method Development of POD Applied to Rotating Radar Data 

Because prior research has applied POD to 2D Doppler distributions in range and time only (Hackett et 
al. , 2014), the method had to be adapted in order to generate time-space resolved wave orbital velocity 
maps based on Doppler measurements from rotating radar. This section provides an overview of the 
method developed. First, several data preparation steps are performed: 
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(i) Translate data from a ship-based coordinate system into a geo-referenced East-North 
coordinate system 

(ii) Detrend the data along each azimuth 
(iii) Compute the directional wave spectrum and determine the peak wave direction 
(iv) Rotate the original Doppler frame to translate the peak wave direction to the East-West 

direction 
(v) Convert to a Cartesian coordinate system (waves now propagating along the x­

direction) 
(vi) Insert zeroes in any blanking region dictated by a minimum range of the radar 
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Figure 6: Integrated 2D wavenumber spectra of individual mode velocity reconstructions versus mode 
number for rotating UM radar. (a) shows the full range of POD modes and (b) shows a zoom-in of the 
leading 25 modes. 

Once these preparatory steps have been completed, then the application of the POD method is 
performed. The POD method takes a signal, in the case of the rotating radar data, one Doppler 
velocity radar frame, D(x,y) in which x andy are spatial coordinates and decomposes the signal into a 
series of orthonormal basis functions and spatial coefficients. The basis functions are referred to as 
modes . The shape of the mode is determined by the data itself and is not an assumed function a priori, 
as discussed in the previous section. The modes are ranked such that the first mode accounts for the 
most variance of the signal, the second mode - the second order contributor to the variance, and so-on. 
A summation of all the modes multiplied by the corresponding coefficients results in the reconstruction 
of the original measured signal exactly. A singular value decomposition is used to perform the POD: 

(2) 

where U, r, and V are matrices. The mode functions are encompassed in V, and the diagonal elements 
of rare the singular values of matrix D. Let Q = U .L, then, 
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D = QVr = L qk vi 
(3) 

k=l 

where qk are the spatial coefficients of the signal, and v/ are the basis functions of the signal, or the 
proper orthogonal modes, and superscript T denotes transpose. The singular values occur in ranked 
order along the diagonal elements of 1: and signify the relative importance of each mode. 

A low-order representation of the signal can be obtained by reconstructing the signal with a subset of 
the mode functions and spatial series coefficients. By associating particular modes with particular 
physical characteristics of the waves, this technique could be used to filter, or extract, the wave field 
signal from the radar measurements, which also contains contributions from other sources aside from 
the wave field. Some of these artifacts include: shadowing, sea-spikes, and range decay (e.g., Smith et 
al., 1996; Nieto Borge et al., 2004). Evaluation of whether or not the mode functions can be used as a 
filter in this way is a primary component of this research. 

The reconstructed Doppler velocities, based on this sub selection of modes, is considered as one phase­
resolved wave orbital velocity map. This procedure is applied to all radar frames in the time series 
(N); thus, the result is a time series of phase-resolved wave orbital velocity maps covering frames 1 to 
N. For purposes of comparison to the FFT-based approach only the results from frame 16 to N-16 are 
considered because the FFT-based approach requires use of a stack of 32 radar frames to generate one 
wave orbital velocity map. 

Evaluation of POD Method 

In this subsection POD wave orbital velocity reconstructions are compared to traditional dispersion 
curve filtering FFT-based methods (similar to that described in Young et al., 1985). Wave statistics 
from both methods are compared to "ground truth" buoy calculated statistics. Dependencies of wave 
statistics' accuracy on environmental conditions are examined, and phase-resolved velocity 
reconstructions are also compared to buoy measured velocity time series. 

The reconstructed ocean wave-fields are characterized by three statistics: significant wave height (Hs), 
peak wavelength (Jcp), and root mean squared orbital velocity (Vrms). Conversion between orbital 
velocity and significant wave height is performed using linear wave theory for both the FFT -based and 
POD-based methods following the procedure described in Hackett et al. (2015). These three statistics 
are computed from 1D spectra and time series along the radar-identified peak wave direction. These 
statistics are computed along the peak wave direction because Doppler radar measures a projection of 
the total velocity along the radar look direction; thus, the measured Doppler velocity only contains all 
of the orbital velocity along the wave propagation direction. When two wave systems are present, two 
different bearings will contain the maximum orbital velocity for the wind seas and swell assuming they 
are not propagating in the same direction. Thus, we chose to compute the statistics along the radar 
identified peak wave direction with the understanding that any secondary wave system will only be 
encompassed as a projection of their orbital velocity along that (primary system) direction. This 
procedure is also adopted because in the conversion between orbital velocity and wave height it is 
assumed that the radar is looking into the wave propagation direction. These statistics are calculated 
for the "best" wave-field reconstruction using both reconstruction methods (i.e. , FFT-based and POD­
based). The best reconstruction for each method is defined as that which results in an Hs that most 
closely matches the buoy significant wave height statistic. Dispersion curve filter widths of 1Liw to 
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1 OL1w for the dispersion filtering method and all possible leading mode reconstructions for the POD 
method were examined, and the best for each method was selected for comparison. 

Figure 7a shows the best mode reconstruction (1 through n) versus the buoy measured significant wave 
height for all rotating radar datasets examined, which span a range of environmental conditions (see 
Table 3). The UM radar is marked in black dots and the radar developed by Applied Physical Sciences, 
Inc. (APS) under the ESMF program are denoted by magenta crosses. The best mode shows a weak 
trend with increasing significant wave height. Note that the majority of datasets are optimally 
reconstructed with fewer than the leading 20 modes (approximately 14% of the total modes). The low 
number of modes required for an accurate reconstruction could reduce storage demands for large 
datasets because only this subset of information must be saved. As wave height increases, the 
complexity of the wave field increases, presumably slightly increasing the number of required modes 
to accurately reconstruct the wave field. 
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Figure 7: (a) Most accurate mode (as evaluated by best match to buoy H,.) versus buoy measured H ,. (b) 
Most accurate dispersion filter width (as evaluated by best match to buoy H ,) versus buoy measured H ,. 

Figure 7b shows the best dispersion curve filter width versus buoy measured significant wave height. 
Typically a filter width of 1L1w to 3L1w visually encompasses the majority of energy associated with the 
linear dispersion curve. However, this figure shows that in the majority of the datasets examined the 
most accurate reconstruction resulted from dispersion curve filtering widths greater than 3Llw, and 
often at or near the upper limit of filter widths examined (i.e. , 1 OL1w ). This result implies that some of 
the energy off of the linear dispersion curve is needed to obtain accurate Hs statistics when the Hs 
statistic is computed from 1D spectra along the peak wave propagation direction. Use of such a large 
dispersion curve filter width is unlikely to be chosen a priori. 
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Figure 8: Histograms of the distribution of .A.P errors of POD-based orbital velocity reconstructions 
(orange) versus FFT dispersion filtered-based orbital velocity reconstructions {blue) for (a) the APS radar 
system and (b) the UM radar system. Lower panels show histograms of the distribution of Vrms errors for 
(c) the APS radar system and {d) the UM radar system. 

Figure 8 shows histograms of the error of the peak wavelength (A.p) and Vrms of the wave field 
reconstructions. The blue bars are FFT -based accuracies and the orange bars are for the POD-based 
results. Peak wavelengths are compared based-on the buoy identified dominant wave system when two 
wave systems were present. In such two wave system cases (see Table 3), particularly when the two 
systems were of similar magnitude, the buoy often measured the higher energy on the wind wave peak 
while the radar the swell peak. This discrepancy is likely due to the fact that the radar revisit rate to 
the same ocean patch results in a maximum observable frequency (Nyquist frequency) near the wind 
wave frequency peak, particularly when the ship had a non-negligible forward speed into the wave 
propagation direction. Thus, the radar is more sensitive to the swell, while the buoy is small in size 
(~0.5 m diameter) and is therefore sensitive to the wind seas. Panels (a) and (c) in Figure 8 shows the 
APS radar datasets and panels (b) and (d) show the UM datasets. This figure demonstrates that the 
majority of all reconstructions for both methods and radar systems are within less than 10% error in A.p, 
and all datasets are within 25% error. This result confirms that both reconstruction methods are 
accurately capturing the buoy identified dominant wave system. The UM radar POD results appear 
more normally distributed and with a smaller spread compared to the APS radar POD results. The 
POD results also show greater frequency of lower Ap errors than the dispersion filtered FFT-based 
results for both radars. The V,·ms errors are greater in magnitude than the Ap errm:s for both radars and 
both methods. These errors are larger because the V,·ms is computed from time series along the peak 
wave direction as identified by the radar, which was often the swell for the reasons previously 
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discussed; while the buoy orbital velocity time series contains both swell and wind sea contributions 
(that are along different directions-see Table 3). Consequently, the wind sea contribution of the radar 
computed Vrms is often only a projection of the total wind wave orbital velocity along the peak swell 
direction. In other words, the buoy Vrms encapsulates both swell and wind seas while the radar V rms is 
predominantly associated with the swell orbital velocities and only a projection of the wind sea 
component along the swell direction is included (when multiple wave systems existed) . This 
explanation is further supported by the fact that the datasets with the lowest v;ms errors in Figure 8 are 
associated with one wave system datasets in Table 3. Nonetheless, the POD results in Figure 8 (c) and 
(d) show greater frequency of lower errors for both radars . Overall and generally, both methods 
performed similarly for both radars and both statistics with only slight differences in distribution and 
frequency of lower errors. 
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Figure 9: H,. POD-, dispersion filtered- (DF), and buoy-based estimates, with error bars, for (a) APS 
radar datasets and (b) UM radar datasets (see Tables 1 and 3). 

Figure 9 shows the buoy, POD, and dispersion filtered estimated significant wave height with error 
bars calculated as described in the National Data Buoy Center (NDBC) manual (Earle, 1996). Panel (a) 
shows APS datasets and panel (b) shows UM datasets. For all datasets but the lowest Hs for the APS 
radar and the lowest three Hs for the UM radar, the POD Hs estimate falls within the error of the buoy 
measurement. The dispersion filtering method fails to accurately measure the significant wave height 
for the same datasets as the POD method as well as underestimates the significant wave height for an 
additional dataset for the UM radar system. Overall the POD and dispersion filtering methods perform 
comparably in terms of accurately estimating significant wave height, but the POD method is able to 
accurately estimate Hs for one more dataset than the FFT -based method. The large errors associated 
with the low wave height cases likely occur because of insufficient signal-to-noise ratios of the radar 
measurement. 
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Figure 10: An example frame from UM 
radar dataset 8 with buoy tracks overlaid in 
red. 

Relationships of wave statistics' accuracy (in terms of 
Hs, V,-ms, and Ap percent error) were examined with 
respect to various environmental conditions. The 
environmental conditions examined were wind speed 
(Uw), Hs, and Ap (for swell and wind waves), Vrms, and 
the directional separation between swell and wind 
wave systems. However, no dependency of 
reconstruction accuracy with any specific 
environmental condition was identified, suggesting the 
accuracy of the POD method is not strongly dependent 
on the environmental conditions. 

In summary, POD and dispersion filtered orbital 
velocity reconstructions were statistically comparable. 
Both methods accurately captured the buoy identified 

dominant wavelength, while the POD method and the UM radar appear to have slightly better A.P 
accuracy. While both methods' Hs estimate is within the error bars of the Hs buoy measurement for the 
majority of cases examined, the dispersion filtering method failed to fall within the buoy Hs error bars 
one more time than the POD method. 
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Figure 11: (a) Correlation coefficient (C) between buoy time series and POD-based (black) orbital velocity 
time series versus number of modes used for the POD reconstruction. Also shown in red is correlation 
between the FFT-based DF orbital velocity time series and the buoy time series for the dispersion filter 
width that yielded the highest C (red). {b) Same as in (a) except showing root-mean-square error (Erms) of 
orbital velocity in meters per second on the vertical axis. Results are forUM rotating radar dataset 7. 

In order to characterize the phase accuracy of the wave-field reconstructions, comparisons to buoy 
time series are necessary. Radar reconstructed wave fields are geo-located and velocity time series of 
buoys as they travel through various range bins of the radar are compared. Figure 10 shows an example 
of a frame of UM Doppler velocity data and the overlaid buoy tracks within the radar field of view. 
Pearson's correlation coefficient (C) and root mean squared error (Erms) are calculated between buoy 
velocity time series and the corresponding POD and dispersion filtered orbital velocity time series for 
each available instance when a buoy was within the field of view of the radar. The correlation and Erms 
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statistics are calculated individually for each buoy-radar time series pair, and then averaged over all 
available buoys. 

Figure 11 shows correlation and Erms respectively for UM dataset 7 with three available buoy time 
series for comparison. The POD mode reconstruction with the highest correlation is essentially equal 
to that of the dispersion filter width with the highest C (shown as a red dashed line in Figure 11a), 
while the POD Erms is lower for most mode reconstructions than Erms for the dispersion filter width that 
produced the highest correlation. Overall, in this particular comparison, the two methods are fairly 
comparable in-terms of performance. 

Figure 12 shows correlation and E rms respectively for UM dataset 8 with four available buoy time 
series for comparison. For all POD mode reconstructions, the POD reconstruction correlation is 
significantly higher than the dispersion filter width with the highest correlation for this dataset. Erms for 
the POD and dispersion filtering methods are within approximately 3 cm/s of each other, but the POD 
E rms is slightly lower than that of the highest correlation dispersion filter width for all mode 
reconstructions. 
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Figure 12: (a) Correlation coefficient between buoy orbital velocity time series and POD-based (black) 
orbital velocity time series versus number of modes used for the POD reconstruction. Also shown in red 
is correlation for the FFT -based DF orbital velocity time series for the dispersion filter width that yielded 
the highest correlation (red). (b) Same as in (a) except showing root-mean-square error of orbital velocity 
in meters per second on the vertical axis. Results are for UM rotating radar dataset 8. 
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Figure 13: (a) Correlation coefficient between buoy time series and POD-based (black) orbital velocity 
time series versus number of modes used for the POD reconstruction. Also shown in red is correlation 
coefficient for the FFT-based DF orbital velocity time series for the best dispersion filter width (red). (b) 
Same as in (a) except showing root-mean-square error of orbital velocity in meters per second on the 
vertical axis. Results are for APS rotating radar dataset 8. 

Figure 13 shows the same results as in Figure 12 for APS radar dataset 8. Results show similar trends 
for the two radars except in the APS radar results the Erms for the dispersion filtering results are lower 
than the POD results . For dataset 8, the POD performs much better than the dispersion filtering in 
terms of correlation for both radars, while RMS velocity errors are comparable for the UM radar, and 
POD-based results show errors that are more than twice as large as the dispersion filtering-based RMS 
velocity errors for the APS radar. Discrepancies between the correlation results and RMS velocity 
errors are attributed to errors resulting from phasing versus amplitude. In other words, correlation is 
high when the phasing of the waves is coherent between the two time series, while magnitudes of the 
orbital velocities are more accurate when Erms is small. Thus, a high correlation and high E rms implies 
that the phasing is accurate but the magnitude of the orbital velocities is either over or underestimated. 
Figure 14 (a)-(c) shows the k-w spectrum for these three examples, where it is apparent that the group 
line in dataset 8 is significant relative to the energy on the dispersion curve (i.e., either greater or 
similar in magnitude), while the group line in dataset 7 is small in magnitude relative to the energy on 
the dispersion relationship. 

Collectively, these results suggest that when group line energy is significant that dispersion curve 
filtering the data can result in inaccurate wave phasing, presumably because it does not adequately 
capture the interference effects associated with the group line energy (Plant and Farquharson, 2012). 
Conversely, the energy on the dispersion curve seems to impact most directly Erms and the POD 
method does not isolate the energy on the dispersion curve causing the dispersion filtering method to 
outperform the POD method in a statistical sense (i.e. , E,.,5) over short time periods (~30 s). However, 
the statistical results previously shown indicate that over a larger period of time and space this effect is 
diminished because when examining statistics over several minutes (rather than ~30 s) the statistics 
from both methods were comparable. Figure 14 (d)-(f) shows an example k-w spectral distribution for 
the best mode orbital velocity reconstruction (see Figure 7), where energy on and off the dispersion 
curve are clearly retained, but not all the energy on the dispersion curve is present in the 
reconstruction. 
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Figure 14: k-w spectrum of Doppler velocity for (a) UM radar dataset 7, (b) UM radar dataset 8, and (c) 
APS radar dataset 8. k-w spectrum for best mode orbital velocity reconstruction (see Figure 7) for (a) 
UM radar dataset 7, (b) UM radar dataset 8, and (c) APS radar dataset 8. 

These sample phase-resolved results suggest that although the POD- and FFT -based results are 
statistically similar that there may be advantages to the POD method when determining phase-resolved 
ocean wave field maps. Improved performance of the POD-based method over the FFT -based method 
occurred most commonly when there was significant energy lying off the dispersion relationship for 
linear surface gravity waves (i .e. , large group line energy). 

The results from the radar emulator also support these conclusions. Figure 15 shows k-w emulated 
Doppler velocity spectral distributions for an emulator run with and without a group line but that are 
otherwise identical. The group line appears due to increasing the magnitude of the orbital velocities to 
values large enough to generate wave field interference and breaking (those magnitudes are similar to 
the V rms for dataset 13 in Table 3). By slightly lowering the orbital velocities (reduction by about .J2), 
the interference effects are diminished and the group line is no longer apparent. Figure 15 (c) shows 
the average correlation coefficient, where the correlation coefficient is computed between POD 
reconstructed velocity time series and simulated wave orbital velocity (projected onto each direction) 
time series for each range bin and averaged over all range bins. This average correlation coefficient is 
computed for both emulator runs for all possible n mode reconstructions. Also shown is the average 
correlation coefficient for the dispersion filter width that produced the highest average correlation 
coefficient. Note that for the emulator run without a group line the optimal dispersion filter width is 
L1w, while for the emulator run with a group line it is 1 OLiw. This result is also consistent with the 
measured Doppler results, where larger dispersion filter widths are needed when group line energy is 
significant. Figure 15 (c) shows that when the group line energy is present that the POD-based average 
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correlation coefficient is higher than the optimal dispersion filtered correlation coefficient and the 
results are reversed for the emulator run without the group line. These results further support the 
conclusion that the POD-based method has advantages over FFT -based approaches in correctly 
estimating wave phase when group line energy is significant. 
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Figure 15: k-w spectrum of Doppler velocity for (a) emulated UM radar measurements without a group 
line (b) emulated UM radar measurements with a group line, and (c) average correlation coefficient 
between POD-based reconstructed orbital velocities and simulated wave field orbital velocities for each n 
mode reconstruction along with the average correlation coefficient between dispersion filtered orbital 
velocities and simulated wave field orbital velocities for the dispersion filter width that produced the 
largest average correlation coefficient. See legend. 

RESULTS 

The primary knowledge gained in this research effort involves understanding the capabilities 
(advantages and disadvantages) non-Fourier based signal processing methods have for wave field 
retrieval from Doppler radar measurements. From a wave statistics viewpoint, the POD- and FFT­
based wave retrieval methods performed similarly over a range of environmental conditions and for 
different radar systems. Because of the similar performance, POD-based methods could present 
advantages because they are more computationally efficient and can reduce data storage requirements. 
Data storage requirements are reduced because instead of storing all the information from the radar 
returns only a subset of information needs to be retained in order to recreate the relevant wave field 
information. 
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In terms of phase-resolved performance, the POD-based method presents advantages in more complex 
wave fields, specifically those that exhibit large energy levels off the dispersion relationship. The 
results of this study present evidence that at least part of this group line energy off the dispersion 
relationship is required in order to improve phase-resolved comparisons between Doppler radar-based 
orbital velocity maps and buoy orbital velocity time series. They also suggest that at least part of the 
energy within the group line is important and related to the wave field as demonstrated in the 
numerical study of Plant and Farquharson (2012). Because the entire wave field retrieval in a POD­
based method occurs in the spatiotemporal domain, use of this method can be more efficient because 
one does not need to consider time series duration as is required for FFT -based methods due to its 
dependence on spectral resolution. The primary disadvantage of the POD method is that a clear cut-off 
for the mode selection was not obvious a priori; however, a rigorous evaluation of how to perform this 
mode selection was not performed in this study. Thus, future work extending this capability should 
focus on development of methods to optimize the mode selection. However, it should be noted that in 
most of the data sets examined in this study the mode subset needed to most accurately reconstruct the 
wave field statistically required less than 15% of all the modes. 

IMPACT/APPLICATIONS 

In many applications, such as intra- and inter-ship transfers, helicopter landing, crane operations, and 
small boat launch and recovery operations, information about the wave field surrounding a ship would 
enhance safety and increase the operational envelope of such activities. In addition, such information 
would generally increase maritime domain awareness. For example, shore-based or drone-based 
radars in key areas could provide quantitative insight into ocean surface conditions that cannot be 
directly observed. Improvement of signal processing methods applied to sea clutter helps facilitate the 
development and robustness of such capabilities. Finally, there are many scientific research areas that 
would also be benefited by knowledge of the spatial distribution of ocean surface waves over large 
areas such as research on: rogue waves, ocean wave development and growth, and wave-wave energy 
exchange and interactions. 

RELATED PROJECTS 

ONR' s ESMF FNC is directly related to this research (e.g., Connell et al., 2015 ; Alford et al., 2015). 
The PI collaborated with other researchers in this community for this research. This involvement 
included use of data collected in several tests and experiments conducted for this program, use of 
simulations developed for this program, and participation at ESMF workshops and review meetings. 
PI Hackett presented results of this study to the ESMF FNC community during review meetings to 
keep them apprised of results. 

REFERENCES 

Alford, A. K., Lyzenga, D. , Beck, R. F., Nwogu, 0 ., Johnson, J. T., and A. Zundel, 2015, A real-time 
system for forecasting extreme waves and vessel motions, Prof Robert F. Beck Honoring Symposium 
on Marine Hydrodynamics, 11, American Society of Mechanical Engineers (ASME). doi: 
10.1115/0MAE201542420. 

Chatterjee, A, 2000, An introduction to the proper orthogonal decomposition, Current Science, 78, 
808-8 17. 

19 



Connell B.H., Rudzinsky J.P., Brundick C.S., Milewski W.M. , Kusters J.G. , and G. Farquharson, 
2015, Development of an environmental and ship motion forecasting system. ASME. International 
Conference on Offshore Mechanics and Arctic Engineering, Prof Robert F. Beck Honoring 
Symposium on Marine Hydrodynamics , 11, American Society of Mechanical Engineers (ASME). 
doi : 10.1115/0MAE2015-42422. 

Diamessis, P.J. , Gurka, R. , and A. Liberzon, 2010, Spatial characterization of vortical structures and 
internal waves in a stratified turbulent wake using proper orthogonal decomposition, Physics of Fluids, 
22, doi :10.1063/1.3478837. 

Earle, M.D., 1996, Nondirectional and directional wave data analysis procedures, NDBC Technical 
Document 96-01, Stennis Space Center, US Department of Commerce, National Oceanic and 
Atmospheric Administration, and National Data Buoy Center. 

Hackett, E.E., C.F. Merrill, and J. Geiser, 2014, The application of proper orthogonal decomposition to 
complex wave fields , Proceedings of the 301

" Symposium on Naval Hydrodynamics, Hobart, Australia. 

Hackett, E.E., A.M. Fullerton, C.F. Merrill, and T.C. Fu, 2015, Comparison of incoherent and coherent 
wave field measurements using dual-polarized pulse-Doppler X-band radar, IEEE Trans. Geosci. 
Remote Sens., 53 , 11 , 5926-5942. 

Kammerer, A.J. , 2017, The application of proper orthogonal decomposition to numerically modeled 
and measured ocean surface wave fields remotely sensed by radar, MS. Thesis, Coastal Carolina 
University. 

Kerschen, G., and J. C. Golinval, 2002, Physical interpretation of the proper orthogonal modes using 
the singular value decomposition, Journal of Sound and Vibration, 249, 5, 849-865. 

Nieto Borge, J. C., Rodriguez, G. R. Ressner, K. and P. I. Gonzalez, 2004, Inversion of marine radar 
images for surface wave analysis, Journal of Atmospheric and Oceanic Technology, 21 , 1291-1300. 

Plant, W. J. , and G. Farquharson, 2012, Origins offeatures in wavenumber-frequency spectra of space­
time images of the ocean, Journal of Geophysical Research, 117, 1-10. 

Smith, M. J. , Poulter, E. M. and J. A. McGregor, 1996, Doppler radar measurements of wave groups 
and breaking waves, Journal of Geophysical Research, 101, 14269-14282. 

Young, I. R. , W. Rosenthal, and F. Ziemer, 1985, A three-dimensional analysis of marine radar images 
for the determination of ocean wave directionality and surface currents, Journal of Geophysical 
Research, 90, C1 , 1049-1059. 

PUBLICATIONS 

Hackett, E.E., A.M. Fullerton, C.F. Merrill, and T.C. Fu, 2015, Comparison of incoherent and coherent 
wave field measurements using dual-polarized pulse-Doppler X-band radar, IEEE Trans. Geosci. 
Remote Sens., 53, 11 , 5926-5942. [referred, published] 

20 



Kammerer, A.J., 2017, The application of proper orthogonal decomposition to numerically modeled 
and measured ocean surface wave fields remotely sensed by radar, MS. Thesis, Coastal Carolina 
University. 

EDUCATION 

One graduate student was educated under funding from this grant that is expected to graduate in May 
2017. 

21 


