

Toxicology Study No. S.0036333-15

Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically-Disseminated M18 Red Smoke

Prepared by: Lee C.B. Crouse, Matthew A. Bazar, Charles L. Crouse¹, And Adolph Januszkiewicz¹

Toxicology Directorate Toxicity Evaluation Division Army Public Health Center

¹ORISE Consultant Toxicology Directorate Toxicity Evaluation Division Army Public Health Center

Approved for public release; distribution unlimited.

Specialty: 500C, Toxicity Study

REPO	ORT DOCUM	ENTATION PAGE			Form Approved OMB No. 0704-0188
The public reporting burden for this collecting gathering and maintaining the data needed of information, including suggestions for rec 0188), 1215 Jefferson Davis Highway, Suit any penalty for failing to comply with a colle PLEASE DO NOT RETURN YOUR FOR	ducing the burden, to e 1204, Arlington, VA ection of information	Department of Defense, Washin 22202-4302. Respondents shou if it does not display a currently	esponse, including rmation. Send com gton Headquarters Id be aware that no valid OMB control	the time for re ments regard Services, Dir twithstanding number.	eviewing instructions, searching existing data sources, ling this burden estimate or any other aspect of this collection ectorate for Information Operations and Reports (0704- I any other provision of law, no person shall be subject to
1. REPORT DATE (DD-MM-YYYY)	2. REPOR				3. DATES COVERED (From - To)
12-04-2017		Technical			April - September 2015
4. TITLE AND SUBTITLE Acute and Subacute Inhalatio				5a. CONTR	ACT NUMBER
Pyrotechnicany-Disseminate	Pyrotechnically-Disseminated M18 Red Smoke			5b. GRANT	NUMBER
				5c. PROGR	AM ELEMENT NUMBER
6. AUTHOR(S)				5d. PROJE	CT NUMBER
Lee C. B. Crouse					S.0036333-15
Matthew A. Bazar Charles L. Crouse Adolph J. Januskiewicz				5e. TASK I	NUMBER
Adolph J. Januskiewicz				5f. WORK	UNIT NUMBER
		99/F9)			
US Army Public Health Center		8. PERFORMING ORGANIZATION REPORT NUMBER			
Toxicology Directorate, MCHB-PH-TEV 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5403		S.0036333-15			
9. SPONSORING/MONITORING AGENO	CY NAME(S) AND	ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)
US Army Research Developr Environmental Acquisition as					
3072 Aberdeen Boulevard Aberdeen Proving Ground, MD 21005		11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAILABILITY STA	ATEMENT				
Distribution unlimited					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
1.92 mg/L red smoke for 30 exposure to average atmosph mortality or significant clinic observed in the anterior regio degeneration was identified a	d M18 red smo minutes did no heric concentra cal signs at any ons of the nose as the critical e	oke. Acute nose-only in the potential of the potential of	nhalation exp nale and fem d 1.5 mg/L re article-relate ats at all expo nd was used	posure to ale rats. ed smoke ed histopa osure leve to derive	an average atmospheric concentration of Subacute (2-week) nose-only inhalation e for 30 minutes/day did not result in any athological findings were primarily els. Increased incidence of nasal mucosal BMDL10 of 0.351 and 0.054 mg/L for
regression of injury followin			ological findi	ings at the	e 1.5 mg/L exposure level exhibited a
15. SUBJECT TERMS red smoke, M18 smoke, signa	aling smoke n	vrotechnic, inhalation	acute inhala	tion, suba	acute inhalation. rat
		j-steeline, initiation,	seare innutu		
16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT	c. THIS PAGE	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	Lee C.I	of responsible person B. Crouse
U U	U	SAR	395	19b. TELEI	PHONE NUMBER (Include area code) 410-436-5088 Standard Form 298 (Rev. 8/98)

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of Michael Chapman of the Army Test and Evaluation Center for his efforts in analyzing the test atmosphere during this study. We would also like to thank Angela Mound for her efforts in the statistical analysis of the data, Alicia Shiflett for processing the tissues and coordinating the histopathological evaluation, Emily Lent for performing the benchmark dose calculation, and Theresa Hanna and Art O'Neill for their assistance in the overall study conduct.

Use of trademarked name(s) does not imply endorsement by the U.S. Army but is intended only to assist in identification of a specific product.

Study Title

Toxicology Study No. S.0036333-15 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically-Disseminated M18 Red Smoke

Data Requirements

U.S. EPA Health Effects Test Guidelines OPPTS 870.1300 (1998)

OECD Guideline for the Testing of Chemicals Section 4: Health Effects, 412 (2009)

<u>Authors</u>

Lee C.B. Crouse Matthew A. Bazar Charles L. Crouse Adolph J. Januszkiewicz

Study Completed On

April 2017

Performing Laboratory

Army Public Health Center Directorate of Toxicology (MCHB-PH-TEV) 5158 Blackhawk Road Aberdeen Proving Ground, MD 21010-5403

Laboratory Project ID

Protocol No. 35-15-01-01

Good Laboratory Practice Compliance Statement

The study described in this report was conducted in compliance with Title 40, Code of Federal Regulations (CFR), Part 792, Good Laboratory Practice Standards, except for the following:

1. The statistical analyses of the data were conducted by the Army Public Health Center statisticians. It is not known if these analyses were conducted in accordance with Good Laboratory Practice (GLP) Standards.

2. Combustion gas monitoring and analysis was performed by the Army Aberdeen Test Center. Volatile organic compound analysis was performed by Eurofins Lancaster Laboratories. It is not known if these analyses were conducted in accordance with GLP Standards; however, both contract laboratories maintain the appropriate International Organization for Standardization (ISO) certification.

3. The undessiminated M18 red smoke grenades were evaluated on an "as received" basis. The manufacturer provided an ingredient composition list but the actual composition was not confirmed by a GLP analysis. However, the ingredient composition supplied with the grenades was considered sufficient characterization of the test substance for the purposes of this study.

Lee C.B. Crouse Study Director Toxicity Evaluation Division

Table of Contents

		<u>Page</u>
1	Summary	1
	1.1 Purpose1.2 Conclusions	1 1
2	References	1
3	Authority	2
4	Background	2
5	Materials	4
	 5.1 Test Substance 5.2 Animals 5.3 Quality Assurance 5.4 Study Personnel 	4 5
6	Methods	5
	 6.1 General Description 6.2 Selection of Exposure Chamber Design Concentration 6.3 Inhalation Exposure System 6.4 Characterization of Exposure Chamber Atmosphere 6.5 Body Mass and Clinical Observations 6.6 Food Consumption 6.7 Clinical Pathology Evaluations 6.8 Necropsy and Histopathology Evaluations 6.9 Statistical Analysis of Data 	7 7 9 10 10 11 11
7	Results	13
	7.1 General7.2 Acute Studies7.3 Subacute Main Study	14

8	Discussion	26
9	Conclusions	30
10	Point of Contact	31

Appendices

References	A-1
Quality Assurance Statement	B-1
Archives and Study Personnel	C-1
Chamber Distribution	D-1
Summary of Acute Exposure Results	E-1
Summary of Subacute Exposure Chamber Concentrations	F-1
Exposure Environmental Conditions	G-1
Individual and Summary of Body Mass Data	H-1
Individual and Summary of Body Mass Change Data	I-1
Individual and Summary of Food Consumption Data	J-1
Clinical Observations	K-1
Individual and Summary of Clinical Chemistry Data	L-1
Individual and Summary of Hematology Data	M-1
Individual and Summary of Prothrombin Time Data	N-1
Gross Pathology Observations	O-1
Individual and Summary of Organ Mass and Mass Ratio Data	P-1
Pathology Report	Q-1
Acute and Subacute Analytical Results	R-1
Benchmark Dose Data	S-1
Study Protocol With Modifications	T-1
	References Quality Assurance Statement Archives and Study Personnel Chamber Distribution Summary of Acute Exposure Results. Summary of Subacute Exposure Chamber Concentrations. Exposure Environmental Conditions Individual and Summary of Body Mass Data Individual and Summary of Body Mass Change Data Individual and Summary of Food Consumption Data Clinical Observations Individual and Summary of Clinical Chemistry Data Individual and Summary of Hematology Data Individual and Summary of Prothrombin Time Data Gross Pathology Observations Individual and Summary of Organ Mass and Mass Ratio Data Pathology Report Acute and Subacute Analytical Results Benchmark Dose Data Study Protocol With Modifications

Figures

1	Generation/Exhaust/Exposure System	8
Tab	les	
1	Critical Study Events	3
2	Composition of Red Smoke Formulation	4
3	Acute Histology Findings	
4	Acute Exposure Combustion Gases	17
5	Subacute Main Study: Summary of Chamber Concentrations of Red Smoke	
Part	iculate	18

6	SubacuteMain Study: Summary of Chamber Atmosphere Particle Size	19
7	Summary of Subacute Histology Findings	23
8	Subacute Exposure Combustion Gases	25

TOXICOLOGY STUDY NO. S.0036333-15 PROTOCOL NO. 35-15-01-01 ACUTE AND SUBACUTE INHALATION TOXICITY STUDY IN RATS EXPOSED TO PYROTECHNICALLY-DISSEMINATED M18 RED SMOKE APRIL - SEPTEMBER 2015

1 Summary

1.1 Purpose

This study was conducted to evaluate the acute and repeated-exposure toxicity of pyrotechnically disseminated red smoke when administered by inhalation to male and female rats. Toxicity data in a mammalian system needed to be generated to assess acute and repeated-dose inhalation toxicity health hazards associated with the material to assure its safety before use by military personnel and to determine an occupational exposure level for workers.

1.2 Conclusions

The LC₅₀ resulting from acute nose-only exposure to pyrotechnically disseminated red smoke particulate for 30 minutes was greater than 1.92 milligrams per liter (mg/L). Repeated nose-only inhalation of red smoke at average particulate concentrations of 0.1, 0.5, and 1.5 mg/L for 30 minutes did not induce mortality in male and female rats. Clinical signs observed following exposure, occurring in a concentration-related manner, included red-stained fur (primarily on the head, face, and forelimbs) from deposition of the test material and salivation. Changes in body mass only occurred in the male 1.5 mg/L recovery group and consisted of a decrease at the initiation of exposures (days 1-3) and subsequent increase during the second recovery week. Male and female organ mass and mass ratios (body and brain), for both main study and recovery groups, were unaffected by repeated exposure to red smoke relative to controls. Main study males exposed to 0.1 mg/L red smoke had reduced percent basophils while males exposed to 0.5 mg/L had increased percent basophils. Following a 4-week recovery period, males exposed to 1.5 mg/L red smoke had reduced albumin and hemoglobin. Histology on the collected tissues resulted in exposure-related changes in the nose of male and female rats. Hyperplasia of the transitional or respiratory epithelium at level 1 of the nasal turbinates, occasionally accompanied by mucosal degeneration and granulocytic infiltration, was observed in the majority of rats at all exposure levels. Male and female rats exhibited a regression of injury to the anterior regions of the nasal turbinates following a recovery period of 4 weeks. Mucosal degeneration of the level 1 nasal turbinates was identified as the critical endpoint in this study based on the exposure level-related response and was used to derive BMDL₁₀ of 0.351 and 0.054 mg/L for males and females. respectively.

2 References

See Appendix A for a list of references.

3 Authority

This study was conducted with funding from the Army Environmental Quality, Technology, Pollution Prevention Program (AMSRD-MSF) via Military Interdepartmental Purchase Request (MIPR) No.10453954. This toxicology study addresses, in part, the environmental safety and occupational health requirements outlined in Army Regulations (AR) 200-1, AR 40-5, and AR 70-1; Department of Defense Instruction 4715.4; and Army Environmental Requirements and Technology Assessments (Department of the Army (DA), 2007a and b; DA, 2003; Department of Defense (DOD), 1996; and U.S. Army Environmental Command (USAEC), 2009). It was performed as part of an on-going effort by the U.S. Army Environmental Quality Technology (EQT), Ordnance Environmental Program Pollution Prevention Team, to produce safer ordnance. This program is under the direction of the U.S. Army Research, Development, and Engineering Command (USARDECOM) Technology Acquisition Program and EQT Pollution Prevention.

4 Background

The U.S. Military uses colored smokes in a variety of ways including identification of potential targets and friendly troops, simulation of battlefield events, and as a means of communication. Previously-used colored smoke formulations were developed strictly based on their ability to produce the desired color for a specified period of time. Recent changes made to the smoke formulations and dissemination systems used in M18 colored smoke grenades have focused more on soldier safety during training and deployed scenarios as well as the public living or working near military training facilities. The primary changes made to the colored smoke formulations involved the use of sugar instead of sulfur as the fuel and the replacement of sodium bicarbonate by magnesium carbonate as the coolant; however, additional changes have also been made to refine burn times and the colors produced (Gretel Raibeck, email message to author, 10/30/13, subject: red smoke grenades).

At the onset of the transition, the Army requested the National Research Council (NRC) to independently review the available toxicity data on certain smokes and obscurants and recommend exposure guidance levels for each. In response to this request, the NRC's Committee on Toxicology (COT) convened the Subcommittee on Military Smokes and Obscurants, which published three volumes on the toxicity of military smokes and obscurants. Volume 3 of this series assesses toxicity data for seven old and new colored smoke formulations (NRC, 1999). Briefly, the Subcommittee found that the database for all seven smoke formulations, including the old and new red smokes, was inadequate for assessing the potential toxicity of the combustion products. They further recommended that acute inhalation studies be conducted in experimental animals to evaluate the toxicity of the combusted smoke formulations for emergency and short-term exposure guidance levels. Repeated exposure inhalation toxicity studies were recommended for military training instructors and people living in communities near military training facilities. Since the time of this review, the red dve proposed for use in the new red smoke formulation has changed from a mixture of solvent red 1 (α -meth-oxybenzenazo- β -naphthol) and disperse red 11 (1,4-diamino-2methoxyanthraquionone) to solvent red 169 ((1-(isopropylamino) anthraquinone) only (Gretel Raibeck, email message to author, 10/30/13, subject: red smoke grenades). Neat solvent red 169 was evaluated by this Center for acute inhalation toxicity and was found to be non-toxic in rats up to 2.4 milligrams per liter (mg/L) (USACHPPM, 2009). The toxicity of the combusted red smoke formulation has not been evaluated.

Pyrotechnic colored smoke M18 grenades are used by the military for ground-to-ground and ground-to-air signaling. It is imperative that soldiers are trained in a similar manner in which they fight, therefore, these training exercises often result in soldiers and training instructors being repeatedly exposed to materials used to simulate battlefield scenarios. Current Army policy regarding colored smokes (old formulation) states that, during training, troops must carry a protective mask, mask when passing through or operating in a dense smoke cloud (visibility < 50 meters), mask when operating or passing through a smoke haze (visibility > 50 meters) if exposure duration exceeds 4 hours, and mask anytime exposure to smoke produces breathing difficulty. In addition, production personnel who are exposed to the dyes/mixtures, or propellant and fuse system materials must wear coveralls, butyl rubber gloves, head and shoe coverings, and a NIOSH-approved full face or hood type supplied air respirator (AEHA, 1992, 1993a, 1993b). A health risk assessment was performed on the combustion products of the old red smoke grenade formulation to determine the risk associated with living near military training facilities that conduct colored smoke exercises. The risk assessment concluded that residents who live as close as 100 meters directly downwind from training areas are safe from breathing air emissions from the old red-colored M18 (AEHA, 1992, 1993a, 1993b). As the Army transitions to colored smoke formulations believed to pose less of a health risk, the toxicity of the combustion products must be evaluated so that exposure guidance can be updated.

Research, development, testing, and training with explosives and pyrotechnics potentially less hazardous to human health and the environment is vital to the readiness of the U.S. Army. The Army Environmental Quality, Technology, Pollution Prevention Program is dedicated to finding replacements for substances causing environmental and/or occupational risks to health. Toxicity assessments such as this proposed study are necessary for safeguarding the health of Soldiers, civilians, and the environment and, if begun early in the research, development, testing, and evaluation process, can save significant time and effort by identifying unacceptable replacement compounds (ASTM, 2008).

Critical Event	Date of Event
Animal Use Protocol Approved	January 27, 2015
Acute Exposure 1 Initiation	April 29, 2015
Acute Exposure 1 Necropsies	May 13, 2015
Subacute Exposure Initiation	June 2, 2015
Subacute Exposure Completion	June 16, 2015
Subacute Exposure Necropsies (Main Study Animals)	June 16 & 17, 2015
Subacute Exposure Necropsies (Recovery Animals)	July 14, 2015
Acute Exposure 2 Initiation	July 28, 2015
Acute Exposure 2 Necropsies	July 29 & August 11, 2015
Acute Exposure 3 Initiation	August 18, 2015
Acute Exposure 3 Necropsies	August 18 & September 1, 2015
Study Completion	April 2017

Table 1. Critical Study Events

5 Materials

5.1 Test Substance

Both the acute and subacute phases of this study were conducted on the emission products from the sugar-based red smoke formulation in a M18 style grenade. A list of the neat ingredients in the red smoke formulation along with their recommended parts by weight is provided in table 2. No further attempt to characterize the undisseminated test material was made by the test facility. The M18 smoke grenade is approximately 5.75 inches long, 2.50 inches in diameter and weighs approximately 14 ounces. The smoke mixture itself weighs approximately 11.5 ounces and is pressed into a total of 4 pellets inside the canister. The grenades were initiated inside the test chamber using the standard M201A1 fuse. All of the smoke grenades used to conduct this toxicity study were supplied by the Pyrotechnic Research and Development Pilot Plant Branch, U.S. Army Armament Research, Development and Engineering Center (ARDEC), Picatinny Arsenal, Picatinny, NJ and were identified as lot number PB-14D000E001. The smoke grenades were shipped to the U.S. Army Research, Development, and Engineering Command (RDECOM), Engineering Directorate, Pyrotechnics Team, APG-EA, MD 21010 and were stored at their facility until use.

Component	Recommended Parts By Weight	
Dye, Solvent Red 169	36.5	
Magnesium Carbonate	16.5	
Potassium Chlorate	20.5	
Sugar, Type 1, Style C	19	
Sugar, Type 1, Style B	6.5	
Polyvinyl Acetate	1	

 Table 2. Composition of Red Smoke Formulation

5.2 Animals^{*†}

All studies were conducted using young adult male and female Sprague-Dawley (CrI:CD(SD)CD[®]) rats obtained from Charles River Laboratories, Wilmington, Massachusetts. A total of 5 male and 5 female rats, approximately 8-weeks old at test initiation, were used for each of the three acute studies. A total of 36 male and 36 female rats, approximately 8-weeks old at test initiation, were selected for the subacute study. The attending veterinarian examined the animals and found them to be in acceptable health. The animals were quarantined/acclimated for a minimum 5-day period following their arrival to this testing facility. All animals were housed in temperature-, relative humidity-, and light-controlled rooms with the target conditions of 68-79°F, 30-70 percent humidity, and a 12:12 light/dark cycle. Room temperature averaged 74.4, 71.7, and 71.5 °F during the first,

^{*} Research was conducted in compliance with DoD and federal statutes and regulations relating to animals and experiments involving animals and adheres to principles stated in the Guide for the Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council. National Academy Press, Washington, D.C. 1996.

[†] The studies reported herein were performed in animal facilities fully accredited by the American Association for the Accreditation of Laboratory Animal Care.

second, and third acute study periods, respectively. Room relative humidity averaged 51.5, 56.7, and 56.8% during the first, second, and third acute study periods, respectively. Room temperature averaged 71.6°F and relative humidity averaged 57.6% during the subacute study period. The relative humidity exceeded the targeted range on May 27 & 30, 2015 but the problem was corrected by the following day. The 12:12 light/dark cycle was interrupted on July 6, 13, & 28, 2015 due to a combination of human error during routine caretaking duties and a malfunctioning light timer. These deviations were not considered to have compromised the integrity or validity of the study results. A certified pesticide-free rodent chow (Harlan Teklad[®], 2016C Certified Rodent Diet) and drinking quality water were available *ad libitum* except during each 30-minute exposure period and overnight fasting prior to final blood collection for the subacute study. All rats were individually housed in suspended polycarbonate boxes with Sani-Chip[®] bedding. Each rat was uniquely identified by number via cage card and tail marking. (CD[®] is a registered trademark of Charles River Laboratories International, Inc.; Teklad[®] and Sani-Chip[®] are registered trademarks of Harlan, Teklad).

5.3 Quality Assurance

The APHC Quality Systems Office audited critical phases of this study. Appendix B provides the dates of these audits, the phases audited, along with the dates that the results of the inspections were reported to the Study Director and Management.

5.4 Study Personnel

Appendix C contains the names of persons contributing to the performance of this study.

6 Methods

6.1 General Description

6.1.1 Acute Studies

A total of three acute toxicity exposures were performed with the disseminated red smoke atmosphere. The first acute exposure was designed to evaluate the toxicity associated with a single, high-concentration exposure to the disseminated red smoke. Five male rats weighing 261 ± 12.3 grams and 5 female rats weighing 193 ± 16.4 grams on the day of exposure were exposed for 30 minutes to an average atmospheric concentration of the test material targeted to at least 2 mg/L. Following the exposure, the rats were held for a 14-day recovery period and monitored for morbidity/mortality, body mass changes, and clinical signs of toxicity. On the last day of the recovery period, all of the rats were euthanized by carbon dioxide (CO₂) and necropsied. All rats received a gross necropsy with limited histopathology (lung only).

The second and third acute exposures were performed following the completion of the subacute study and were designed to confirm/clarify gross observations noted during necropsy of animals from the first acute exposure. Similar gross lesions were rarely observed during necropsy of the subacute animals. The second acute exposure was designed to repeat the same exposure scenario used for the first acute exposure to verify the presence of similar gross lesions. In addition, a modified necropsy schedule was used to determine if the gross lesion was present

shortly after exposure or was the result of a healing response mechanism during the recovery period. Five male rats weighing 254 ± 7.6 grams and 5 female rats weighing 221 ± 11.3 grams on the day of exposure were exposed for 30 minutes to an average atmospheric concentration of the test material targeted to at least 2 mg/L for the second exposure. Three rats per sex were euthanized and necropsied on the day after exposure and 2 rats per sex were held for a 14-day recovery period prior to being euthanized and necropsied. Body mass changes and clinical signs of toxicity were monitored daily during the week regardless of the recovery period length. All rats were euthanized by CO_2 and received a gross necropsy with limited tissues retained for histopathology (lung only).

Due to the apparent continued presence of gross lesions observed during necropsy, a third acute exposure was performed in an attempt to determine a safe level exposure that would not induce these lesions. Five male rats weighing 246 ± 4.8 grams and 5 female rats weighing 198 ± 7.2 grams on the day of exposure were exposed for 30 minutes to an average atmospheric concentration of the test material targeted to 0.5 mg/L for the third exposure. The same modified necropsy schedule was used for the third exposure such that 3 rats per sex were euthanized and necropsied on the day after exposure and 2 rats per sex were held for a 14-day recovery period prior to being euthanized and necropsied. Body mass changes and clinical signs of toxicity were monitored daily during the week regardless of the recovery period length. All rats were euthanized by CO_2 and received a gross necropsy with limited tissues retained for histopathology (lung only).

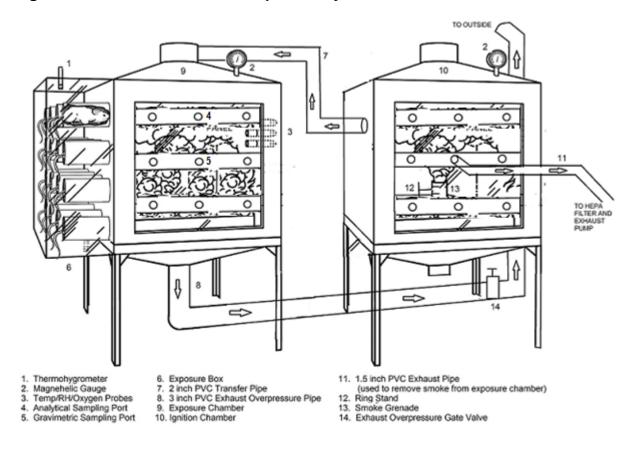
6.1.2 Subacute Study

Four groups of 12 rats each (6 rats/sex/group) were exposed to concentrations of red smoke particulate targeted to 0, 0.1, 0.5, or 1.5 mg/L. In addition, the control and high concentration level groups exposed additional rats (6 rats/sex/group) to be retained following the exposure period for a 4-week recovery period. Exposure schedules of the rats were staggered over 2 days to compensate for the limited number of animals able to be necropsied on a given day by this facility. Rats were exposed 30 minutes per day, 5 days per week over a 3-week period (weekends excluded). Due to the staggered start, rats received a partial week of exposures during the first and last weeks of the study, however, all rats received a total of 10 exposures. All rats were weighed at least once per week and were observed daily for clinical signs. The amount of food consumed by each rat was determined at least weekly during the study on the same days as body mass measurements. Blood samples were collected from all rats just prior to necropsy for clinical pathology analyses. At the end of the exposure period, 6 rats/sex/group were euthanized, necropsied, and examined for gross and microscopic pathological changes. Following a one-month recovery period, 6 rats/sex/group from the control and 1.5 mg/L groups were euthanized, necropsied, and examined for gross and microscopic pathological changes.

The experimental design of the subacute main study was modeled primarily on the Organisation for Economic Co-Operation and Development (OECD) Guideline for Testing of Chemicals, No. 412, Repeated Dose Inhalation Toxicity: 28-Day Study (OECD, 2009). Changes to the 28-day study guidelines were made to appropriately reflect a 2-week exposure period as well as accurately mimic a typical daily exposure duration to red smoke (e.g., 30 minutes).

6.2 Selection of Exposure Chamber Design Concentration

The initial particulate concentration for the high level exposure chamber for the subacute main study was targeted to be 1.5 mg/L of red smoke particulate. This concentration was based on the gross observation of respiratory tract lesions following the first acute study conducted at approximately 2 mg/L. The targeted low concentration level (0.1 mg/L) was 15-fold lower than the high concentration and was expected to be without adverse toxicological effects. The targeted intermediate concentration (0.5 mg/L) represented 3-fold reduction from the high concentration and was expected to produce some degree of toxicity. Control animals were exposed to room air only in a separate chamber each day prior to beginning the red smoke exposures.


6.3 Inhalation Exposure System (Figure 1)

6.3.1 Test Atmosphere Generation

Test atmospheres were generated in the exposure chamber by pyrotechnic dissemination of a red smoke grenade in a separate initiation chamber connected to the exposure chamber. A single grenade was used for each acute exposure. For the subacute inhalation study, a single grenade also produced adequate test atmosphere concentration levels for all 3 test groups each day (design concentration levels of 0.1, 0.5, and 1.5 mg/L). In order to facilitate the generation of test atmospheres, the grenades were placed upside down and secured to a ring stand attached to the floor of the initiation chamber. Each grenade was ignited with its own fuse by pulling the fuse pin that was attached to a lanyard run through a port in the initiation chamber. The initiation chamber was connected to the exposure chamber via a 2 inch polyvinyl chloride (PVC) pipe connected to a side port on the initiation chamber and leading to the top turret of the exposure chamber. The positive pressure created by the burning smoke grenade in the initiation chamber forced the test material through the pipe into the top of the exposure chamber. In addition, feeding the test material into the top turret of the exposure chamber promoted a uniform atmosphere throughout the exposure chamber. The exposure chamber was connected from the bottom to a 3 inch exhaust pipe to prevent both chambers from over pressurizing. A valve was placed in the exhaust pipe to contain the test atmospheres in the exposure chamber once the grenade had completed its burn (see figure 1). Extreme temperatures created by the burning grenade prevented the inhalation exposures from being performed in the same chamber as the one in which the grenade was initiated.

The burn time for each grenade was approximately one minute and was determined by fluctuations in the magnehelic gauges attached to the chambers. The exposure chamber was operated under semi-static conditions. During the initial grenade burn period, the valve in the exhaust pipe was left open and all of the ports in the faceplates attached to the wall of the exposure chamber were stoppered. The faceplate was stoppered in order to prevent the test atmosphere from leaking uncontrollably out of the chamber and the exhaust valve was opened to prevent over pressurization of both chambers. When the grenade completed its burn, the valve in the exhaust line was closed and preliminary gravimetric samples were taken to determine the particulate concentration in the exposure chamber. Once the concentration of particulate in the exposures, the stoppers in the faceplate were removed and the rats were placed in the faceplate for their 30-minute exposure period. In an attempt to minimize loss of the test atmosphere from the exposure chamber, the stoppers in the faceplate were removed one at a time and an exposure cylinder with a rat contained

in it were placed into the faceplate immediately after removing the stopper. Once all of the rats were positioned within the faceplate, a cover was placed over the faceplate to prevent leakage of the test atmosphere into the laboratory where the exposure was being conducted. Test atmospheres for the high and intermediate concentration levels were allowed to naturally settle in the exposure chamber until the appropriate concentration was obtained. For the low concentration exposures, an exhaust pump fitted with a HEPA filter was connected to the initiation chamber and the exhaust line valve was opened. The red smoke particulate was drawn out of the exposure chamber into the initiation chamber until the exposure chamber reached the appropriate concentration for the low level exposures. The exhaust pump was then disconnected and the valve in the exhaust line was closed.

Figure 1. Generation/Exhaust/Exposure System

6.3.2 Exposure Chamber

The initiation and exposure chambers were constructed of stainless steel and glass with a nominal internal volume of approximately 1200 liters. The exposure chambers were New York University (NYU) style with cubical midsections and square-pyramidal inlets and outlets (Drew, 1978). A

different but identical chamber was used for the exposure of the control rats. The chamber distribution of red smoke particulate was determined prior to animal exposure. Analyses of the distribution data indicated that the distribution of particulate test atmosphere was sufficiently homogenous for inhalation toxicology testing (USAPHC, 2013).

6.3.3 Exposure Mode

Animals were exposed to test atmospheres of red smoke via the nose-only (head-only) route of exposure. The nose-only exposure mode was selected for this study in an attempt to minimize deposition of the red smoke particulate onto the fur of the exposed rats, and therefore, minimizing inadvertent dermal and oral exposure of the test substance to the rats. Rats were individually restrained during exposures in perforated, stainless steel cylinders with conical nosepieces.

6.3.4 Exposure Duration

Rats were exposed for 30 minutes to the test atmosphere during each exposure in an attempt to accurately mimic a potential human exposure scenario. Acute study rats were exposed to a single exposure. The subacute study rats were exposed 30 minutes per day, 5 days per week over a 3-week period (weekends excluded). Due to the staggered start, rats received a partial week of exposures during the first and last weeks of the study, however, all rats received a total of 10 exposures. Control rats were exposed to air only in a separate chamber for the same daily duration as the red smoke-exposed rats. Recovery control and 1.5 mg/L animals were exposed simultaneously with their respective main study groups.

6.4 Characterization of Exposure Chamber Atmosphere

6.4.1 Test Substance Atmospheric Concentration

The atmospheric concentration of red smoke particulate in the exposure chamber was determined by gravimetric analysis at regular intervals (e.g., beginning, middle, end) during each 30-minute exposure. Known volumes of chamber atmosphere were drawn from a sampling port in the middle of the exposure chamber representative of the animals' breathing zone. Samples were drawn through a 25-mm filter cassette that contained a pre-weighed Gelman glass fiber (Type A/E) filter. All filters were weighed on a Cahn model C-30 Microbalance. The atmospheric concentration of red smoke particulate was calculated from the difference in the pre- and post-sampling filter weights divided by the volume of chamber atmosphere sampled. The final concentration of each of the daily exposures for each concentration was reported as the average of each of the three samples during the 30-minute exposure.

The vapor/gas component of the test atmosphere was also characterized via three different methods of sampling and analysis. Combustion gas concentrations were monitored during the first acute exposure and on exposure days 2, 6, and 10 for each of the 3 exposure levels during the subacute study. Continuous real-time gas measurements were made by Fourier Transform Infrared (FTIR) spectroscopy. H30 high capacity sorbent tubes were used to collect aldehyde (carbonyl) analytes in the air which were then extracted and analyzed by High Performance Liquid Chromatography (HPLC) following Environmental Protection Agency (EPA) Method TO-11. Finally, whole air (canister) samples were collected and submitted for laboratory analysis for volatile organic compounds (VOCs) by Gas Chromatography / Mass Spectrometry (GC/MS) following EPA

Method TO-15. Analyte concentrations monitored by two or more of the above methods (e.g., acrolein) were reported based on the most reliable method of sampling and/or analysis. A detailed description of the combustion gas monitoring methods is provided in Appendix R.

6.4.2 Particle Size Analysis

Samples to determine atmospheric particle size distribution (mass median aerodynamic diameter) of the red smoke particulate were collected at least once during each of the 3 acute exposures and at 3 different times during the subacute study from the low-, intermediate-, and high-concentration level exposure chambers. Each particle size sample was collected with a Sierra® Series 210 8-Stage Cascade Impactor fitted with a Cyclone Preseparator and Anderson model SE113 Constant Flow Air Sampler. Particle size sample data were analyzed by log normal regression of particle size versus cumulative relative mass (Sierra Instruments, Inc., 1979 and USAPHC, 2015; Sierra[®] is a trademark of Sierra Instruments Inc.).

6.4.3 Environmental Monitoring

Chamber temperature was targeted at 22 ± 2 °C and chamber humidity was targeted between 30 and 70 percent. Due to the static generation system, the environmental conditions of the exposure chamber were highly dependent upon the conditions of the laboratory housing the chambers and were difficult to alter regardless of the results. Chamber and exposure box temperature and humidity were monitored continually with a digital thermo-hygrometer and recorded 2-3 times during each exposure. The exposure system was a static system so chamber airflow was not monitored during this study. However, to ensure that adequate oxygen was available to the rats while they were being exposed, the exposure chamber atmosphere was monitored for oxygen content during each exposure. Minimum oxygen concentrations were targeted at 19%. Chamber oxygen concentrations were measured with a Teledyne Instruments model GB300 Oxygen Analyzer and recorded 1-2 times during each exposure.

6.5 Body Mass and Clinical Observations

Acute study rats were weighed and individually observed for clinical signs daily (weekdays only) during the exposure/recovery period. The subacute main study rats were weighed at least once each week prior to exposure and individually observed for clinical signs of toxicity on a daily basis following exposure. In addition, subacute rats were observed for morbidity/mortality during exposure and at the end of each exposure day. Body mass measurements were collected on recovery animals once each week during the recovery period and clinical observations were collected daily (weekdays only).

6.6 Food Consumption (Subacute Main Study Only)

The amount of food consumed by individual rats was determined at least once per week throughout the exposure period and during the one-month recovery period for recovery animals.

6.7 Clinical Pathology Evaluations (Subacute Main Study Only)

Blood was obtained from CO_2 anesthetized adult animals via intracardiac puncture at the termination of the study. Blood for clinical chemistry analyses was transferred to tubes free of additives, allowed to clot for at least 20 minutes, and centrifuged to obtain serum. Blood for hematology analyses was transferred immediately to tubes containing tripotassium ethylenediamine-tetraacetic acid (K₃EDTA). Blood for average activated prothrombin time was transferred to a tube containing sodium citrate, centrifuged, and analyzed using the MCA 210 Microsample Coagulation Analyzer (BioData Corporation, Horsham, PA 19044). Animals were fasted overnight prior to blood collection.

Clinical chemistry parameters including: albumin (ALB), alkaline phosphatase (ALKP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), calcium (Ca), cholesterol (CHOL), creatinine (CREA), glucose (non-fasting) (GLU), globulin (GLOB), lactate dehydrogenase (LDH), inorganic phosphorous (PHOS), total bilirubin (TBIL), total protein (TP), sodium (Na), potassium (K), and chloride (CI) were determined using the VetTest 8008 Chemistry Analyzer and VetLyte Electrolyte Analyzer (IDEXX Laboratories, Inc., Westbrook, ME 04092) on all valid serum samples.

Hematology parameters including: white blood cell count (WBC), WBC differential (% neutrophils (NEU %N), % lymphocytes (LYM %L), % monocytes (MONO %M), % eosinophils (EOS %E), % basophils (BASO %B)), red blood cell count (RBC), hemoglobin (HGB), hematocrit (HCT), mean cell volume (MCV), mean cell hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), red blood cell distribution width (RDW), platelets (PLT), and mean platelet volume (MPV) were determined using the Cell-Dyn 3700 Hematology Analyzer (Abbott Laboratories, Abbott Park, IL 60064) on all valid samples.

6.8 Necropsy and Histopathology Evaluations (Acute and Subacute Main Studies)

For the three acute exposures, 10 rats (5 male and 5 female) were euthanized with carbon dioxide and necropsied following the appropriate recovery period specified in section 6.1.1. Gross examinations were performed on all rats and the lungs were removed and preserved in a suitable medium for future histopathological examination. For the subacute main study, 6 rats/sex/group were euthanized with carbon dioxide and necropsied following the exposure period. Following a one-month recovery period, the remaining recovery rats in the control and high concentration levels (6 rats/sex/group) were also euthanized with carbon dioxide and necropsied. All rats were fasted overnight prior to the necropsy. Gross examinations were performed on all rats and the following tissues were removed, trimmed in a uniform manner, and weighed: adrenals, brain, heart, kidneys, liver, lungs, spleen, thymus, epididymides, testes, ovaries, and uterus. Any observed lesions were retained for processing. All organs, with the exception of the testes and epididymides from each animal were placed in 10% buffered formalin for at least 24 hours for fixation. The testes and epididymides were placed in modified Davidson's fixative overnight (no longer than 24 hours), rinsed, and placed in 70% ethanol. In addition to the organs listed above, samples of the pituitary, thyroid (with attached portion of trachea), lung, trachea, nose, femur bone marrow, salivary glands, gastrointestinal tract, urinary bladder, representative lymph node, peripheral nerve, sternum with bone marrow, accessory sex organs, mammary gland, thigh musculature, eye with optic nerve,

femur (including articular surface), spinal cord at three levels (cervical, midthoracic, and lumbar), and exorbital lachrymal glands were collected and placed in 10% buffered formalin.

Tissues were trimmed, placed in cassettes labeled with the protocol and animal identification numbers, routinely processed, embedded in paraffin, sectioned to a thickness of 4 microns, and stained with hematoxylin and eosin by means of an automatic stainer. Testes and epididymides were hand-stained with Periodic Acid-Schiff (PAS) reagent to facilitate evaluation of spermatogenesis. All collected tissues from rats in the main study and recovery control and high concentration groups were processed and received a full histopathological examination by the American College of Veterinary Pathology board certified military veterinary pathologist via light microscopy. The lungs, trachea, thyroid gland, tracheal lymph node, adrenal gland, kidney, liver, and nasal turbinates were processed and examined from male rats in the 0.5 mg/L group. Only the nasal turbinates were processed and examined from rats in the male 0.1 mg/L group and female 0.5 and 0.1 mg/L groups. Findings were assigned as; 0 (none) = less than 1% of the tissue section affected, 1 (minimal) = 1-5% of the tissue section affected, 2 (mild) = 6-15% of the tissue section affected, 3 (moderate) = 16-30% of the tissue section affected, and 4 (marked) = > 30% of the tissue section affected.

6.9 Statistical Analysis of Data

For variables that were measured only at the end of the subacute exposure (clinical pathology and organ mass), the exposure levels were compared using a one-factor analysis of variance (ANOVA). Organ to brain and organ to body mass ratios were calculated and analyzed similarly to the other parameters measured at the end of the study. If the dose group effect was significant, an appropriate post hoc test was used to compare pairs of dose groups and dose groups to the control group. Data was tested for normality and variance equality and adjusted if necessary. The study protocol stated that absolute organ mass would be analyzed via an analysis of covariance (ANCOVA) with body mass at the end of the study being the covariate used. The current Center statistician believed that this was not necessary because this information was captured in organ to body mass ratios. Therefore, absolute organ mass was analyzed using a one-factor ANOVA and represents a protocol deviation.

Exposure levels were also compared with respect to absolute body mass, changes in body mass and net mass changes, and changes in food consumption and net consumption using a one-factor ANOVA. If the ANOVA was significant, an appropriate post hoc test was used to compare pairs of dose groups. Data was tested for normality and variance equality and adjusted if necessary.

All in-life and end of study parameters for the control and high level recovery groups were compared using a t-test. This represents a deviation from what was stated in the study protocol. Recovery animal data was inadvertently included with the main study animals in the data analysis plan in the protocol. An ANOVA is not an appropriate statistical analysis for recovery animals due to the use of only 2 (control and 1.5 mg/L) recovery groups.

Statistical analysis on the histologic scores of animals in the subacute study was performed using a Fisher's Exact Test. The number of animals within a given exposure group with a non-zero score (i.e., lesion present) was compared to the number of control animals with a non-zero score.

An appropriate statistical software package, such as $SPSS^{\ensuremath{\mathbb{S}}\ensuremath{\mathbb$

7 Results

7.1 General

7.1.1 Purity and Stability of Red Smoke

A Good Laboratory Practice (GLP)-analysis of the test substance was not performed prior to initiation of the study since the smoke grenades were received fully-assembled. The grenade fill material information supplied by the sponsor (see Table 2) is considered to be sufficient and the red smoke grenades used in this study were considered to be stable and within acceptable limits for conduct of this study.

7.1.2 Generation Method Development

Prior to the initiation of the test exposures, pre-test trials were conducted to determine the most suitable method of generating test atmospheres of red smoke. The goal of this preliminary work was to achieve reasonably stable average atmospheric concentrations at the targeted levels of test particulate for the acute study (approximately 2 mg/L) and the subacute study (approximately 0.1, 0.5, and 1.5 mg/L). The generation system used for the animal exposures was selected based on its ability to generate relatively stable atmospheres of red smoke at the targeted concentrations for a 30 minute period while containing the overpressure generated during the time that the grenade was burning.

7.1.3 Chamber Distribution of Test Atmosphere

Prior to initiation of the test exposures, a study of the chamber distribution of the particulate concentration of red smoke was performed in the exposure chamber. A series of gravimetric sample sets were collected at each targeted exposure concentration following the ignition of a single red smoke grenade in the ignition chamber. Each sample set consisted of 5 individual samples, with 3 of the samples collected at the same time from different spatial regions of the chamber faceplate and 2 samples collected from the anticipated chamber sample port locations. This process was repeated twice for each targeted exposure concentration to determine the particulate concentration at each possible animal faceplate location in the exposure chamber. Two chamber sample port locations were included in the chamber distribution to determine which location was most representative of the animal breathing zone. No significant differences were observed between gravimetric samples collected at 6 different spatial locations in the exposure chamber faceplate for each targeted exposure concentration. Therefore, the test substance was considered to be homogenously distributed throughout the area of the exposure chamber where the rats were being exposed. Gravimetric samples collected from the 2 chamber sampling ports during this pretest trial also indicated that the chamber concentration was similar at the exposure chamber sampling ports when compared to samples collected from the chamber faceplate in the area where the rats were to be positioned during exposure. Therefore, all gravimetric chamber

samples were collected from these 2 chamber sample ports during the animal exposure and this data was considered to be representative of the breathing zone of the rats. See Appendix D for details.

7.2 Acute Studies

7.2.1 General

A total of 3 acute exposures, each with 10 rats (5 male and 5 female), were conducted. All animals were exposed nose-only for a single 30 minute period for each acute exposure. The first acute exposure was used to determine the median lethal concentration (LC_{50}) for exposure to red smoke and the results are summarized below as well as in Appendix E. The second and third acute exposures were primarily designed to confirm/clarify possible lesions observed during necropsy of animals from the first acute exposure. These exposures used a modified necropsy schedule outlined in section 6.1.1 so the results were not used for the LC_{50} determination. Exposure information for the second and third acute exposures is summarized in Appendix E and is not reported below except for histopathology results. All 3 acute exposures were performed using the same methods described in section 6.3.1.

7.2.2 Exposure Chamber Concentration and Particle Size Data

The mean atmospheric concentration of red smoke particulate in the exposure chamber for the first acute exposure was determined to be $1.92 \pm 0.312 \text{ mg/L}$. The particulate concentration during this exposure ranged from 1.56 - 2.10 mg/L. The particle size distribution of the test atmosphere during the exposure was characterized by measurement of the mass median aerodynamic diameter (MMAD). Two particle size samples were taken during the 30 minute exposure. The MMAD of the test atmosphere generated ranged from $1.6 - 1.9 \text{ microns } (\mu\text{m})$ and the geometric standard deviation (GSD) ranged from 1.9 - 2.1. The percent particles by mass were similar between the 2 particle size samples with 13 - 28% of the particles less than $1 \mu\text{m}$, 89% of the particles less than $4 \mu\text{m}$ for both samples, and 100% of the particles less than $10 \mu\text{m}$ for both samples.

7.2.3 Exposure Chamber Environmental Conditions

The internal exposure chamber temperature ranged from 74 - 75°F and the relative humidity ranged from 36 - 39%. Exposure chamber oxygen remained constant at 21%. The animal exposure box temperature ranged from 72 – 73°F and the relative humidity ranged from 40 – 55%. All environmental conditions within the exposure chamber and animal exposure box were considered to be acceptable for the conduct of this study.

7.2.4 Body Mass of Rats

Rats were weighed on test days 1, 2, 3, 6, 8, 10, 13, and 15. Slight body mass losses were observed in some rats on the day following exposure, however, all rats exhibited normal mass gain patterns following post-exposure day 1 and experienced an overall mass gain by the end of the 14-day recovery period.

7.2.5 Clinical Observation of Rats

Immediately following exposure, clinical signs observed in rats included red-stained fur (primarily on the head, face, and forelimbs), and salivation. With the exception of one female with dried red material around the nose on day 3, the red-stained fur and salivation resolved by test day 2. One female rat exhibited slight red staining of the urogenital area from test days 6 -15. Other signs observed but not necessarily attributed to the test material included one male rat with a scab on its right shoulder and one female rat with barbering (hair loss) on both forelimbs.

7.2.6 Gross Necropsy

Following a 14-day recovery period, all ten rats from the first acute exposure (1.92 mg/L) received a gross necropsy with limited histopathology of the respiratory tract (lungs only). Upon gross observation, all male rats appeared to have dark patches in various areas of the lung and 2 of 5 appeared partially atelectatic and necrotic. One male rat also appeared to have dark colored kidneys and liver. Four of 5 female rats appeared to have dark and/or necrotic areas on various regions of the lung and 1 female had small white patches throughout the lung.

Rats were exposed to an average atmospheric concentration of 1.69 mg/L red smoke nose-only for 30 minutes for the second acute exposure. Three of 5 male and 3 of 5 female rats were necropsied the day following exposure. Although all 3 male rats exhibited pale pink regions throughout the lung, 1 male also exhibited multifocal to coalescing dark brown to red regions on the ventral surface of both sides of the lung with portions of the lung having a reticular pattern. Two of 3 female rats necropsied on the day following exposure also had pale pink regions throughout the lung. One female had a focal brown area on the right side of the lung and 1 female exhibited whitish areas on the fringes of all lobes of the lung. Two of 5 male and female rats were necropsied following the standard 14-day recovery period. No gross lesions were recognized in any of these rats.

Rats were exposed to an average atmospheric concentration of 0.56 mg/L red smoke nose-only for 30 minutes for the third acute exposure. The same necropsy schedule was employed for the third acute exposure as the second exposure with 3 of 5 males and females necropsied the day after exposure and the remainder necropsied after a 14-day recovery period. Gross findings in male rats necropsied 1 day after exposure included 1 animal with multifocal dark brown areas on the ventral pulmonary surface, 1 animal with a pale pink left ventral pulmonary surface, and 1 animal with no gross lesions recognized. One female rat exhibited brown focal spots on the anterior portions of right & left lobes of the lung with pale pink outer edges, a mildly dark liver, and a 1 millimeter white focal area on the left kidney. One female rat had a pale pink right anterior portion of lung and 1 had no gross lesions recognized. Of the 2 male rats necropsied following a 14-day recovery period, 1 exhibited scattered pale, slightly raised areas, in the distal right caudal and left lobes and 1 had whitish pink parenchyma peripheral to central dark red discoloration of the lung. One female had hydronecrosis of right kidney and 1 had no gross lesions recognized.

7.2.7 Histopathology

Due to the apparent findings in the lungs observed during necropsy of animals from the first acute exposure, the lungs were preserved for future histology from all 3 acute exposures. Acute inhalation exposures typically do not employ the use of control animals. Therefore, the histology results from the acute exposures were compared against the age-matched control animals from the

subacute exposures for statistical purposes. Histology findings from the acute studies are summarized below in Table 3.

			ntrol [*] ng/L)		ite #1 mg/L)		ite #2 mg/L)		ute #3 6 mg/L)
Tissue	Histologic Finding	Males	Females	Males	Females	Males	Females	Males	Females
Lung	Congestion, alveolar septal	1/6	0/6	4/5	2/5	4/5	4/5 ¹	5/5 ¹	2/5
Lung	Congestion, venous	2/6	1/6	1/5	0/5	4/5	4/5	4/5	4/5
Lung	Erythrocyte extravasation, alveolar	4/6	1/6	4/5	2/5	5/5	1/5	5/5	3/5
Lung	Erythrophagocytosis	1/6	0/6	0/5	0/5	2/5	0/5	2/5	1/5
Lung	Hemorrhage, perivascular /peribronchiolar	4/6	3/6	2/5	1/5	3/5	2/5	5/5	4/5
Lung	Edema, perivascular	0/6	0/6	2/5	2/5	0/5	0/5	1/5	1/5
Lung	Ateletasis, alveolar	2/6	2/6	4/5	3/5	5/5	2/5	4/5	0/5
Lung	Histiocytosis, alveolar	1/6	0/6	4/5	1/5	2/5	0/5	1/5	0/5
Lung	Infiltrate, granulocytic	0/6	2/6	2/5	1/5	1/5	1/5	4/5 ¹	4/5
Lung	Edema, subpleural	0/6	0/6	3/5	3/5	1/5	0/5	0/5	0/5
Lung	Fibrosis, alveolar, focal	0/6	0/6	1/5	0/5	0/5	0/5	0/5	0/5
Lung	Crystals, eosinophilic, alveolar	0/6	0/6	0/5	0/5	1/5	0/5	0/5	0/5

Table 3. Acute Histology Findings

* = Control animals from age-matched subacute study

¹ = Increased incidence vs. subacute controls, p<0.05

The only statistically significant findings observed in the histology of the male lungs from the acute exposures included alveolar septal congestion and granulocytic infiltration from the third exposure. The recovery period length did not appear to have an effect on the presence or severity of these findings. Alveolar septal congestion was also significantly increased in female rats following the second acute exposures. Although the length of the recovery period did not affect the presence of this finding, the severity scores of those necropsied 14-days after exposure were mild to moderate compared to minimal for those necropsied on the day after exposure. In addition, both female rats with alveolar septal congestion following the third exposure were necropsied 14-days after exposure with moderate severity scores. Other lung lesions noted following the acute exposures were either common background lesions noted in the subacute control lungs or incidental findings not linked to exposure to the test article.

7.2.8 Mortality and LC₅₀ Determination

All ten rats exposed to 1.92 mg/L red smoke particulate during the first acute exposure survived the exposure and recovery period. Therefore, the 30-minute, inhalation median lethal concentration (LC_{50}) of red smoke in rats is greater than 1.92 mg/L.

7.2.9 Combustion Gas Analytical Results

Of the analytes measured using the 3 different analytical methods, a total of 24 compounds measured in the exposure chamber during these experiments were identified as the primary combustion by-products of the pyrotechnic formulation in the red smoke grenades. These analytes were detected in most of the samples collected during both the acute and subacute exposures and

are not believed to be laboratory carry-over and/or contaminants. The concentrations of these analytes were compared against applicable short-term exposure limits (STEL) when available. Both acrolein and formaldehyde concentrations exceeded reported STELs during the acute exposure. Table 4 provides a summary of the significant combustion gases monitored during the first acute study, the analytical method providing the most reliable results, and reported exposure limits. See Appendix R for details.

Analyte	Analytical Method	Concentration (ppm)	Exposure Limit (ppm)	
Carbon Dioxide	FTIR	1986	STEL ¹ 30,000 IDLH ² 40,000	
Carbon Monoxide	FTIR	149	Ceiling ³ 200 IDLH ² 1200	
Methane	FTIR	12	Asphixiant ⁴	
Acetylene	FTIR	1.1	Ceiling ³ 2500	
Ethylene	FTIR	2.6	Excursion Limit ⁵ 600	
Nitric Oxide	FTIR	5.6	Excursion Limit ⁵ 75 IDLH ² 100	
Formaldehyde	TO-11 HPLC	26	STEL ¹ 0.1 STEL ⁶ 2 Ceiling ³ 0.3 (sensitizer)	
Acetaldehyde	TO-11 HPLC	13	Ceiling ³ 25	
Propionaldehyde	TO-11 HPLC	0.44	Excursion Limit ⁵ 60	
Crotonaldehyde	TO-11 HPLC	0.61	Ceiling ³ 0.3 (skin) IDLH ² 50	
2-Butanone	TO-15 GC/MS	0.71	STEL ¹ 300 IDLH ² 3000	
Acetone	TO-15 GC/MS	3.96	IDLH ² 2500	
Acetonitrile	TO-15 GC/MS	0.83	IDLH ² 500	
Acrolein	TO-15 GC/MS	2.92	Ceiling ³ 0.1 (skin) STEL ¹ 0.3 IDLH ² 2	
Benzene	TO-15 GC/MS	0.18	STEL ¹ 1 STEL ⁷ 2.5 (skin) STEL ⁵ 5	
Butadiene	TO-15 GC/MS	0.23	Excursion Limit ⁵ 6	
Chloromethane	TO-15 GC/MS	Ceiling 2		
Ethylbenzene	thylbenzene TO-15 GC/MS 0.058 S		STEL ⁷ 125 STEL ¹ 125 IDLH ² 800	
m,p-Xylene	Xylene TO-15 GC/MS 0.21 STEI		STEL ⁷ 150 STEL ¹ 150 IDLH ² 900	
Methylene Chloride	ride TO-15 GC/MS 0.013 STEL ⁶ Excursion Li		STEL ⁶ 125 Excursion Limit ⁵ 150	
o-Xylene	TO-15 GC/MS	0.041	STEL ⁷ 150 STEL ¹ 150 IDLH ² 900	
Propylene	TO-15 GC/MS	4.42	Excursion Limit ⁵ 1500	
Styrene	TO-15 GC/MS	0.0094	Ceiling ⁸ 200 STEL ⁷ 40 STEL ¹ 100 IDLH ² 700	

 Table 4. Acute Exposure Combustion Gases

Toluene	TO-15 GC/MS	0.072	Excursion Limit ⁵ 60 STEL ¹ 150 IDLH ² 500 Ceiling ⁸ 300
GC/MS = Gas Chromotograph	ny/Mass Spectrometry		
FTIR = Fourier Transform Infra	ared Spectrometer		
HPLC= High Performance Liq	uid Chromotagraphy		
ppm=parts per million			
		H) 15-minute short-term exposure	e limit (STEL)
	ous to Life and Health (IDLH) va		
³ American Conference of Gov	vernmental Industrial Hygienists	(ACGIH) ceiling limit	
⁴ Simple asphyxiant, oxygen n	nust be maintained above 18%	· · · -	
⁵ ACGIH Excursion Limit 3 tin	hes the threshold limit value (TL	V) for no more than 15 minutes	

⁶ Occupational Safety and Health Administration (OSHA) 15-minute STEL

⁷ ACGIH 15-minute STEL

⁸ OSHA permissible exposure limit ceiling value

7.3 Subacute Main Study

7.3.1 Atmospheric Concentration of Red Smoke Particulate

A total of 11 animal exposures were conducted. In order to accommodate a reasonable necropsy schedule at the end of the exposure period, all animals (including recovery animals) were divided into 2 equal groups designated as group A and group B. The initial exposure for the 2 groups was staggered by one day. Group A rats were exposed from exposure #1 through #10 and group B rats were exposed from exposure #2 through #11. All rats received a total of 10 exposures. Although slight differences in the chamber concentrations of red smoke were noted between the 2 groups (Table 5), the slight differences between them has no toxicologically-relevant consequences in the interpretation of the data. Therefore, the combined exposure concentration data for red smoke will be reported. The gravimetrically determined overall (combined) mean concentrations ± standard deviation of red smoke in the exposure chambers targeted to 0.1, 0.5, and 1.5 mg/L were 0.11 ± 0.013, 0.50 ± 0.096 , or 1.52 ± 0.059 mg/L, respectively. Combined chamber concentrations for red smoke were calculated by including all chamber concentration data collected over the 11 exposures conducted. The overall mean concentrations were 110, 100, or 101 percent of the targeted concentrations of 0.1, 0.5, and 1.5 mg/L, respectively. The daily mean concentrations ranged from 95-132, 88-117, or 77-143 percent of the overall mean concentrations of 0.1, 0.5, and 1.5 mg/L, respectively. The difference between the overall actual mean concentrations and the targeted concentrations, the range of daily mean concentrations, and the standard deviations (daily and overall) were greater than what is typically desired (e.g., <10 percent), however, the difficulties associated with maintaining consistent particulate atmospheres are to be expected with the type of generation system used during this study. The mean concentrations of red smoke particulate were as consistent as can be reasonably expected for generating test atmospheres with pyrotechnically disseminated grenades, and therefore, were considered acceptable for evaluating the toxicity of the test substance in this study. Exposure concentration data are presented in Appendix F and summarized in Table 5.

Table 5. Subacute Main Study: Summary of Chamber Concentrations of Red Smoke Particulate

DESIGN	GROUP	MEASURED CONCENTRATION
CONCENTRATION	IDENTIFICATION	(mg/L)

(mg/L)		MEAN	S.D.	RANGE	N
	Crews A	0	NI/A	0.0	10
0	Group A	0 0	N/A	$0 - 0 \\ 0 - 0$	10
	Group B	0	N/A	0 – 0	10
	Combined	0	N/A	0 – 0	11
0.1	Group A	0.11	0.013	0.09 – 0.16	30
	Group B	0.11	0.012	0.09 – 0.16	30
	Combined	0.11	0.13	0.09 – 0.16	33
0.5	Group A	0.50	0.097	0.37 – 0.71	30
	Group B	0.50	0.094	0.37 – 0.67	30
	Combined	0.50	0.096	0.37 – 0.71	33
1.5	Group A	1.56	0.60	0.76 – 2.82	30
	Group B	1.53	0.62	0.76 – 2.82	30
	Combined	1.52	0.59	0.76 – 2.82	33

mg/L = milligrams per liter

S.D. = standard deviation

N = number of samples collected

N/A = not applicable

7.3.2 Nominal Concentration of Test Substance

The generation system used during this study utilized a single red smoke grenade to generate test atmospheres for each of the 3 acute exposures and all 3 daily exposure concentrations for the subacute study. The total amount disseminated from each grenade was determined daily and recorded in the study records but the generation system used for this study did not lend itself to the calculation of a nominal concentration at each exposure level. In addition, the actual exposure chamber concentration, therefore the determination of nominal concentrations was not considered a useful parameter for this study.

7.3.3 Particle Size Distribution of Test Substance Atmosphere

The red smoke particulate atmospheres generated during this study were within respirable ranges for rats and were similar across the 3 exposure concentrations. The mass median aerodynamic diameter (MMAD) for the test particulate atmospheres ranged from 2.0 to 2.6 μ m, the geometric standard deviation (GSD) ranged from 1.7 to 2.6 with 4-16 percent of the particles less than 1 μ m, 54-74 percent of the particles less than 3 μ m, and 95->99 percent of the particles less than 10 μ m. Particle size distribution data are summarized in Table 6.

Table 6. Subacute Main Study: Summary of Chamber Atmosphere Particle Size Data

CONCENTRATION (mg/L)	EXPOSURE NUMBER	MMAD (μm)	GSD	% PARTICLES BY MASS		
				<1 µm	<3 µm	<10 µm

0.1	4	2.6	2.0	9	54	96
	7	2.0	1.7	15	74	>99
	10	2.3	1.9	10	68	>99
0.5	3	2.4	1.7	4	70	>99
	6	2.2	1.7	8	70	>99
	9	2.4	2.0	10	66	99
1.5	2	2.4	1.7	5	68	>99
	5	2.4	2.0	11	62	98
	8	2.4	2.6	16	60	95

mg/L = milligrams per liter GSD = geometric standard deviation µm = micron MMAD = mass median aerodynamic diameter % = percent

7.3.4 Exposure Chamber Environmental Conditions

Chamber environmental conditions were reasonably similar between the exposure chamber and the control chamber. The temperature in both the exposure and control chambers during the 11 exposures ranged from 67-74 °F with a targeted range of 68-79 °F. The relative humidity in the exposure and control chambers ranged from 49-79 percent with a targeted range of 30-70 percent. The oxygen concentration in both chambers throughout all 11 exposures ranged from 20.1-21.2 percent with a targeted range of 19-22 percent. The exposure box (surrounding the faceplate on the side of the exposure chamber) temperature ranged from 68-75 °F. Exposure box relative humidity varied more than other environmental conditions since the bodies of the rats were inside an enclosed exposure box with little to no air flow during each 30 minute exposure. The relative humidity of the 2 exposure boxes ranged from 53-96 percent. Targeted exposure box environmental conditions were identical to the targeted exposure chamber environmental conditions. Although both the exposure chamber and exposure box environmental conditions were outside of targeted ranges at certain times throughout the 11 exposures, these instances did not appear to adversely affect the health of the animals based on their clinical appearance. In addition, due to the semi-static nature of the generation system used there was no way to control the environmental conditions once the grenade was initiated inside the ignition chamber. Exposure chamber environmental conditions were highly dependent upon the conditions of the laboratory housing the chambers at the time of grenade initiation. In an effort to keep the relative humidity down during the control exposures, the back plate was not placed on the exposure box starting on the fourth exposure day. This was not feasible during the smoke exposures since the smoke atmospheres would pass around the heads of the rats and leak into the laboratory without the back plates of the exposure box. Overall, the environmental conditions in the exposure chambers and boxes were within acceptable comfort levels for the rats and were considered adequate for 30 minute exposures. See Appendix G for details.

7.3.5 Body Mass, Body Mass Change, and Food Consumption

Mean male and female body mass did not differ between exposed and control groups for main study or recovery rats when measured at designated time points throughout the study. Mean body mass change in the male recovery 1.5 mg/L exposure group was decreased during exposure days 1-3 (p=0.042) and increased during recovery week 2 (p=0.027) compared to recovery controls. Body mass change did not differ between exposed and control groups for main study or female recovery rats at any time point throughout the study. See Appendices H and I for details.

Mean male and female food consumption did not differ between exposed and control groups for main study or recovery rats when measured at designated time points throughout the study. See Appendix J for details.

7.3.6 Clinical Observation of Rats

All main study and recovery rats from the study survived the exposure and subsequent recovery period. No adverse clinical observations were noted in rats while they were in the exposure chambers although visibility was somewhat limited during the 0.5 and 1.5 mg/L exposures. Immediately following exposures, clinical signs observed in an exposure level-related manner (e.g., staining was more prevalent in 1.5 mg/L rats than in the rats exposed to 0.1 or 0.5 mg/L) were limited to red-stained fur on the head, wet/red stained nose, and wet/red stains around the mouth. The presence of these signs was expected given the nature of the test substance and was not considered to be necessarily adverse. The presence of the test material on the fur/skin of the rats following exposure did not appear to have any immediate or obvious adverse effects and typically cleared by the next morning. One female rat in the 1.5 mg/L exposure group was observed with orange-colored urine on exposure day 9 which was likely a result of ingestion of the test material from grooming. Clinical observations not necessarily related to exposure to the test material noted in rats during the study and recovery period included dried red material around eves/nose and hair loss. The observation of dried red material around eyes/nose was only noted in the control groups since the test material would have obscured this observation in rats exposed to red smoke. This sign is typically observed in many animals following inhalation exposures and is treated as a stressrelated response involving the secretion of porphyrin from the Harderian gland. See Appendix K for details.

7.3.7 Clinical Chemistry and Prothrombin Time

Male and female clinical chemistry parameters and prothrombin time measurements, for both main study and recovery groups, were mostly unaffected by subacute exposure to red smoke relative to controls. Following the 4-week recovery period, albumin (ALB) concentrations in the male 1.5 mg/L recovery group were decreased (p=0.043 and 1.1 fold) relative to recovery controls. Albumin concentrations in the male 1.5 mg/L recovery group were below those of historical age-matched controls (Giknis and Clifford, 2006). Female 1.5 mg/L recovery albumin concentrations were also 1.1 fold lower, but were not decreased relative to female recovery controls. See Appendices L and N for details.

7.3.8 Hematology

Hematological differences between main study exposed and control animals was limited to the leukocyte differential in male rats. Percent basophils (BASO %) in the 0.1 mg/L group were decreased (p=0.038 and 1.7 fold) and percent lymphocytes (LYM %) in the 0.5 mg/L group were increased (p=0.014 and 1.1 fold), relative to main study controls. The percent basophils of all exposure groups were well above the ranges for historical age-matched controls. Lymphocyte percentages of all exposure groups, except the 0.5 mg/L group, were below those of historical age-matched controls (Giknis and Clifford, 2006). Neither hematological parameter was part of a relevant exposure concentration-related trend.

Following the 4-week recovery period, male hemoglobin concentrations (HGB) in the 1.5 mg/L recovery group were reduced (p=0.031 and 1 fold), relative to recovery controls. The hemoglobin concentrations of both male recovery groups remained with the ranges reported for age-matched historical controls (Giknis and Clifford, 2006). No additional hematological differences were observed in the male and female recovery groups. See Appendix M for details.

7.3.9 Gross Necropsy

Light or dark patches in the lungs were observed in male and female main study rats exposed to red smoke at concentrations of 0 mg/L (three male, two female), 0.1 mg/L (three male, three female), 0.5 mg/L (four male, three female), and 1.5 mg/L (four male, five female). This observation was only noted in two 1.5 mg/L recovery male rats. Dark or pale livers were observed in male and female main study rats at concentrations of 0 mg/L (two female), 0.1 mg/L (one male, one female), 0.5 mg/L (two male, three female), and 1.5 mg/L (four male, one female), 0.1 mg/L (one male, one female), 0.5 mg/L (two male, three female), and 1.5 mg/L (four male, one female). One recovery control female rat also appeared to have a discolored liver. One male rat in both the 1.5 and 0.1 mg/L main study exposure groups had a single, small mass on the liver and one male recovery control rat was noted as having a reticular pattern in the liver. Additional gross observations noted at necropsy included; two male main study rats (one 1.5 mg/L and one 0.5 mg/L) with dark white contents in the urinary bladder, one 0.1 mg/L main study female with orange contents in the ileum, one 1.5 mg/L recovery male with small testes, and one 1.5 mg/L female with a distended uterus. See Appendix O for details.

7.3.10 Organ Mass and Mass Ratios

Male and female organ mass and mass ratios (body and brain), for both main study and recovery groups, were unaffected by subacute exposure to red smoke relative to controls. See Appendix P for details.

7.3.11 Histopathology

Histologic changes resulting from exposure to red smoke was primarily limited to the nasal turbinates in both male and female rats. A number of level 1 nasal turbinates were coded as not present in the original pathology report. It was discovered later that the pathologist did not feel that these turbinate sections were adequate for evaluation. A second board certified military pathologist examined the level 1 nasal turbinate sections from the main study animals only, scored those that were deemed adequate, and requested duplicate slides for those that were determined to be poor quality. These results are included as an addendum to the original pathology report in Appendix Q and summarized separately in Table 7 below. Reevaluation of the level 1 nasal turbinates revealed 6 of 6 (p=0.0152) 1.5 mg/L male rats exhibited transitional or respiratory epithelial hyperplasia. Granulocytic infiltration (6 of 6) accompanied the hyperplasia in 1.5 mg/L males but was not increased compared to main study controls. Level 1 hyperplasia of the transitional or respiratory epithelium was also present in male rats exposed to 0.5 mg/L (4 of 6) and 0.1 mg/L (1 of 4) but was not increased compared to controls. In female main study rats, the incidence of level 1 transitional or respiratory epithelial hyperplasia was increased at the 1.5 and 0.1 mg/L exposure levels with 5 of 6 (p=0.0152) exposed animals affected in both groups. Granulocytic infiltration was occasionally present at all exposure levels but was not increased compared to female controls. Although the incidence of level 1 mucosal degeneration was only increased females at the 1.5 mg/L exposure

concentration (5 of 6, p=0.0152) compared to controls, this finding did exhibit an exposure concentration-related trend in both male and female rats with the small sample size obscuring the statistical significance.

At level 2 of the nasal turbinates, granulocytic infiltration was the primary histologic finding in male and female rats exposed to red smoke. This finding did not exhibit an exposure level-related trend and was only increased in the 1.5 mg/L males (5 of 6 and p=0.015) and 0.1 mg/L females (4 of 5 and p=0.048) compared to controls. At level 3, the only significant histologic finding was an increase in the incidence of respiratory epithelial hyperplasia (4 of 4 and p=0.029) in male rats exposed to 0.1 mg/L red smoke.

Red smoke exposed male and female rats (main study) did not exhibit any increase in histologic changes in the lung. Sporadic findings in the 1.5 and 0.5 mg/L males and 1.5 mg/L females were similar to those observed following the acute exposures and included alveolar septal congestion, venous congestion, alveolar atelectasis, and granulocytic infiltrates. No additional histologic changes were observed in the other tissues evaluated for the 1.5 mg/L male and female rats compared to controls.

No histologic changes were noted in male and female 1.5 mg/L recovery groups evaluated following a 4 week recovery period compared to recovery controls. Changes noted in the tissues evaluated for the main study animals (primarily nasal turbinates) were either not present in the 1.5 mg/L recovery rats or were also prevalent in the respective recovery control groups. See Table 7 and Appendix Q for details.

Tissue	Finding	Control 1.5 mg/L		0.5	mg/L	0.1 mg/L		R. Control		R. 1.5 mg/L			
		М	F	М	F	М	F	М	F	Μ	F	М	F
NT, Level 1	Hyperplasia, transitional epithelium	0/6	0/4	6/6*	5/5*	4/6	3/3*	1/1	4/4*	0/5	1/6	0/5	1/5
NT, Level 1	Hyperplasia, respiratory epithelium	2/6	2/4	5/6	3/5	2/6	1/3	1/1	2/4	2/5	2/6	1/5	3/5
NT, Level 1	Nasoturbinate, mucosal	0/6	0/4	2/6	3/5	0/6	1/3	1/1	1/4	0/5	1/6	0/5	0/5
	degeneration												
NT, Level 1	Infilitrate, granulocytic	1/6	0/4	4/6	1/5	3/6	1/3	1/1	4/4*	1/5	3/6	0/5	3/5
NT, Level 1	Infiltrate, lymphocytic	1/6	0/4	3/6	0/5	0/6	1/3	1/1	4/4*	0/5	0/6	2/5	1/5
NT, Level 2	Infilitrate, granulocytic	0/6	0/4	5/6*	2/6	0/5	0/6	3/6	4/5*	0/5	1/6	0/6	1/5
NT, Level 2	Hyperplasia, respiratory epithelium	4/6	0/4	4/6	1/6	2/5	4/6	3/6	1/5	0/5	3/6	4/6	1/5
NT, Level 2	Infiltrate, lymphocytic	2/6	1/4	0/6	0/6	0/5	0/6	1/6	4/5	1/5	2/6	2/6	2/5
NT, Level 2	Nasoturbinate, mucosal	0/6	-	3/6	-	1/5	-	0/6	-	0/5	-	0/6	-
	degeneration												
NT, Level 3	Hyperplasia, respiratory epithelium	0/3	2/6	2/2	2/5	3/6	1/5	4/4*	2/6	2/5	1/5	NE	2/3
Lung	Congestion, alveolar septal	1/6	0/6	3/6	1/6	5/6	NE	NE	NE	6/6	3/5	5/6	2/6
Lung	Congestion, venous	2/6	1/6	1/6	4/6	2/6	NE	NE	NE	4/6	1/5	5/6	2/6
Lung	Atelectasis, alveolar	2/6	2/6	5/6	4/6	3/6	NE	NE	NE	2/6	3/5	4/6	3/6
Lung	Infiltrate, granulocytic	0/6	1/6	1/6	1/6	0/6	NE	NE	NE	0/6	0/5	0/6	2/6
Lung	Hemorrhage, perivascular or	4/6	3/6	2/6	0/6	5/6	NE	NE	NE	4/6	1/5	0/6	2/6
	peribronchiolar												
Lung	Histiocytosis, alveolar	1/6	0/6	2/6	2/6	2/6	NE	NE	NE	0/6	0/5	1/6	1/6
	NASAL TURBINATE DATA	BELOV	IS FF	ROM P	ATHOL	OGY F	REPOR	T ADD	ENDU	M			
NT, Level 1	Hyperplasia, transitional or	1/6	0/5	6/6*	5/6*	4/6	2/6	1/4	5/6*	NE	NE	NE	NE
	respiratory epithelium												
NT, Level 1	Infiltrate, granulocytic	3/6	0/5	6/6	2/6	4/6	1/6	1/4	2/6	NE	NE	NE	NE
NT, Level 1	Nasal turbinate, mucosa, degeneration	0/6	0/5	4/6	5/6*	0/6	2/6	0/4	1/6	NE	NE	NE	NE

Table 7. Summary of Subacute Histologic Findings

NT, Level 1	Nasal turbinate, mucosa,	0/6	0/5	1/6	1/6	1/6	0/6	0/4	0/6	NE	NE	NE	NE
	metaplasia, squamous												
NT, Level 1	Goblet cell hyperplasia	2/6	1/5	5/6	3/6	3/6	1/6	0/4	4/6	NE	NE	NE	NE

* Increased incidence compared to controls, p<0.05

NT = Nasal turbinates

R. = Recovery

NE = Not evaluated

M = MalesF = Females

F = Females

7.3.12 Benchmark Dose Determination

Incidence of mucosal degeneration in the level 1 nasoturbinates was identified as the critical endpoint in this study based on the exposure level-related response in male and female rats. Inhibition of the nasal mucociliary function can be a sensitive indicator of toxicity in response to certain inhaled xenobiotics, such as formaldehyde. The mucociliary apparatus plays an important role as an upper airway defense mechanism and, if compromised, could lead to an increase in nasal infections and susceptibility to lower respiratory tract diseases (Harkema et al., 2006). Additional findings in the nasal turbinates associated with red smoke exposure, including hyperplasia of the transitional or respiratory epithelium and granulocytic/lymphocytic infiltration, were not selected for benchmark dose (BMD) modeling as they did not demonstrate a clear exposure concentration-response. Incidence rates of granulocytic/lymphocytic infiltration were frequently higher at the lowest exposure level and did not yield any models with an acceptable fit. Transitional epithelial hyperplasia was observed in nearly all of the turbinates microscopically evaluated and hyperplasia of the respiratory epithelium was frequently observed in control animals as well as exposed animals. Benchmark Dose Software (BMDS v.2.6) was used to fit mathematical models to the level 1 nasoturbinate mucosal degeneration data from the pathology addendum data for males and females separately and calculate a lower-bound confidence limit on a dose corresponding to a 10 percent response rate (BMDL₁₀) (EPA, 2002). Appropriate models were selected based on goodness-of-fit and statistical parameters (p>0.1, lowest AIC and residuals). A mean BMD of 1.135 mg/L was calculated for the male rats based on the Gamma, Logistic, Log Logistic, Log Probit, Multistage 3, Probit, and Weibull models. Although the incidence of level 1 mucosal degeneration in main study male and female rats was similar at the highest exposure level, several female rats exhibited this finding in the 0.5 and 0.1 mg/L exposure levels. A mean BMD of 0.099 mg/L was calculated for the female rats based on the Gamma, Multistage 2, Multistage 3, Weibull, and Quantal-Linear models for the finding of mucosal degeneration. The benchmark doses of 1.135 and 0.099 mg/L corresponded to BMDL₁₀ of 0.351 and 0.054 mg/L for males and females, respectively.

7.3.13 Analytical Results

As expected, the same 24 significant combustion gases were identified for the subacute exposures as the acute exposure. Combustion gas concentrations did not decrease proportionately with particulate concentrations due to the containment of the combustion atmosphere within the two 1200-liter exposure chambers (initiation and exposure chambers). Dilution room air was only added to reach favorable particulate concentrations for the 0.1 mg/L exposure level. Acrolein and formaldehyde exposure levels typically exceeded exposure limits at all 3 exposure levels. Table 8 provides a summary of the significant combustion gas concentrations at each exposure level for each of the 3 exposure days when they were monitored. The reporting method for each analyte

and applicable exposure limits were listed in Table 4 and also apply to the subacute exposures. See Appendix R for details.

Analyte	Exposure	Exposure Day 2	Exposure Day 6	Exposure Day 10	3-Day Avg.
,, ,	Level (mg/L)	Avg. Conc. (ppm)	Avg. Conc. (ppm)	Avg. Conc. (ppm)	Conc. (ppm)
	1.5	1940	2242	2372	2185
Carbon Dioxide	0.5	3312	3279	3933	3508
	0.5	3512	2280	2683	2826
o	1.5	133	141	190	155
Carbon Monoxide	0.5	108	121	163	131
	0.1	75	46	62	61
	1.5	9.1	10	14	11
Methane	0.5	7.6	8.6	12.1	9.5
	0.1	5.8	4.3	5.5	5.2
	1.5	ND	1.0	1.2	1.1
Acetylene	0.5	ND	1.3	1.1	1.2
· · ·) · · ·	0.1	ND	ND	ND	NA
	1.5	2.1	2.5	4.1	2.9
Ethylene	0.5	2.0	2.3	3.7	2.7
Lutytene	0.5	1.6	1.0	1.6	1.4
Nite Ordele	1.5	4.1	5.3	8.5	6.0
Nitric Oxide	0.5	3.5	4.9	6.9	5.1
	0.1	3.2	ND	3.7	3.4
	1.5	23	11	16	17
Formaldehyde	0.5	18	13	13	14
	0.1	13	8.0	8.1	9.6
	1.5	13	2.5	6.5	7.5
Acetaldehyde	0.5	12	5.3	8.5	8.5
	0.1	11	6.1	8.0	8.2
	1.5	0.44	ND	0.40	0.42
Propionaldehyde	0.5	0.54	0.22	0.40	0.40
riopionaldenyde	0.0	0.54	0.33	0.43	0.40
One terme labeles sale	1.5	0.61	0.45	0.60	0.55
Crotonaldehyde	0.5	0.66	0.58	0.60	0.61
	0.1	0.76	0.38	0.52	0.55
	1.5	0.54	0.44	0.58	0.52
2-Butanone	0.5	0.41	0.41	0.44	0.42
	0.1	0.31	0.098	0.13	0.18
	1.5	3.83	4.17	5.47	4.49
Acetone	0.5	3.79	4.00	5.47	4.42
	0.1	3.2	2.0	2.5	2.6
	1.5	0.77	0.57	1.91	1.08
Acetonitrile	0.5	0.66	0.58	0.60	0.61
/ locionitine	0.0	0.00	0.30	0.19	0.26
	1.5	1.92	2.53	3.45	2.63
A anala in					
Acrolein	0.5	2.09	2.36	3.05	2.5
	0.1	1.8	1.2	1.5	1.5
_	1.5	0.19	0.12	0.29	0.20
Benzene	0.5	0.14	0.14	0.24	0.17
	0.1	0.11	0.041	0.063	0.071
	1.5	0.068	0.021	0.045	0.045
Butadiene	0.5	0.11	0.042	ND	0.075
Butadiene	0.1	0.099	0.050	0.036	0.062
	1.5	0.13	0.10	0.11	0.11
Chloromethane	0.5	0.13	0.087	0.097	0.097
CHIOIOITIELIIAITE					
	0.1	0.082	0.034	0.030	0.049
Ethylbenzene	1.5	0.12	0.039	0.069	0.077

 Table 8.
 Subacute Exposure Combustion Gases

	0.5	0.097	0.046	0.058	0.067
	0.1	0.085	0.012	0.013	0.037
	1.5	0.46	0.13	0.23	0.27
m,p-Xylene	0.5	0.37	0.15	0.18	0.23
	0.1	0.32	0.041	0.044	0.14
	1.5	0.095	0.012	0.16	0.088
Methylene Chloride	0.5	0.086	0.014	0.16	0.088
-	0.1	0.032	0.006	0.008	0.015
	1.5	0.18	0.023	0.062	0.088
o-Xylene	0.5	0.14	0.025	0.055	0.073
	0.1	0.12	0.008	0.009	0.047
	1.5	1.80	2.27	4.01	2.69
Propylene	0.5	2.44	2.27	0.70	1.8
	0.1	2.1	0.76	1.5	1.4
	1.5	0.068	0.0023	0.026	0.032
Styrene	0.5	0.056	0.0040	0.028	0.030
	0.1	0.045	ND	0.0022	0.023
	1.5	0.69	0.042	0.19	0.31
Toluene	0.5	0.58	0.05	0.18	0.27
	0.1	0.34	0.015	0.024	0.13

ND = No data

NA = Not applicable mg/L=milligrams per liter ppm=parts per million

8 Discussion

Sugar-based colored smoke formulations are currently being developed as less hazardous replacements for the conventional sulfur-based formulations. This study was designed to provide information regarding the potential health effects resulting from acute and subacute inhalation exposure to the dissemination products of M18 red smoke grenades. Although changes, such as daily exposure duration, were made to the standard acute and subacute inhalation study exposure guidelines in an attempt to accurately mimic typical military exposures, these red smoke exposures still represent a worst-case exposure scenario for soldiers. M18 red smoke grenade burn times were estimated from observed fluctuations on the magnehelic gauges on both the initiation and exposure chambers. Visual confirmation of grenade burn times could not be performed due to the concentrated smoke atmospheres in the initiation chamber. Typical red smoke burn times were estimated to be slightly over one minute. Acute and subacute exposure durations were set at 30 minutes mainly due to the rats' ability to decrease respiration in response to harsh environmental conditions. Humans, especially in stressful situations, tend to have higher respiration rates and typically breathe more through the mouth which provides less filtration than the nose. In addition, the M18 red smoke grenade is not designed for use in enclosed spaces. In order to maintain relatively stable atmospheres of red smoke particulate for 30-minute periods, a semi-static generation method was employed for these exposures. Once each smoke grenade completed its burn, the overpressure valve in the PVC pipe leading to the exterior of the laboratory was closed for the duration of all acute exposures and for the 1.5 and 0.5 mg/L exposure concentrations of the subacute study. The overpressure valve was opened and smoke atmospheres were drawn out of the exposure chamber through the initiation chamber for the 0.1 mg/L subacute exposures. Smoke atmospheres from M-18 grenades, when used as intended, would undergo significantly higher and more immediate dilution rates than those experienced contained within the two 1200-Liter chambers used for these exposures. Red smoke particulate and combustion gas concentrations were monitored for the purpose of correlation with potential health effects resulting from these

exposures but would not necessarily mimic the numerous possible exposure scenarios experienced by soldiers on the battlefield or during training.

Acute inhalation exposure to an average atmospheric concentration of 1.92 mg/L red smoke particulate did not induce mortality in male or female rats. No test material-induced adverse clinical signs of toxicity were observed in any animals throughout the 14-day observation period. Due to the appearance of potential gross findings in the lungs of animals from the first exposure, the lungs were retained for future microscopic evaluation. Two additional acute exposures with average atmospheric concentrations of 1.69 and 0.56 mg/L were performed following the subacute exposure in an attempt to clarify the possible gross lung lesions observed and determine a safe acute exposure level. All microscopic evaluations of the lungs from these acute exposures were performed at the same time as the subacute tissues. A summary of all histologic findings in the lungs retained from the acute exposures, along with the control animals from the subacute study. was provided in Table 3. With the exception of alveolar septal and venous congestion, all other histologic findings were interpreted as incidental/background lesions or perimortem findings resulting from the CO₂ euthanasia. The incidences of minimal to mild alveolar septal and venous congestion following acute exposure may have been test article-related and could explain the gross finding of dark areas throughout the lung observed during necropsy. However, corroborating evidence of passive congestion, such as hemosiderin-laden or enlarged alveolar macrophages, was not observed in any of the lungs from the acute exposures. The lungs of acute-exposed animals were not weighed prior to preservation since acute inhalation studies do not typically include control animals for organ mass comparison.

The acute inhalation toxicity of neat Solvent Red 169 was previously evaluated by this Center in 2008 (USACHPPM, 2009). Rats exposed nose-only to an average atmospheric concentration of 2.4 mg/L Solvent Red 169 for 4 hours did not exhibit any toxic signs, body mass changes, or gross necropsy findings. Although acute exposure to neat Solvent Red 169 at similar concentrations to these acute exposures did not result in any gross lesions, atmospheres of red smoke disseminated from the M18 smoke grenade represent a complex mixture of particulate and combustion gases. In addition, the incidence of alveolar septal and/or venous pulmonary congestion observed following the 3 acute exposures did not decrease as the particulate red smoke concentration decreased. Combustion gas concentrations were not monitored during the second and third acute exposures but can be estimated from the monitoring results during the subacute study. In general, these concentrations would have been very similar between the first and second acute exposures due to the similar average atmospheric particulate concentrations of 1.92 and 1.69 mg/L. Combustion gas concentrations experienced during the third acute exposure (0.56 mg/L) would have been nearly identical to those reported for the intermediate exposure level of the subacute study (0.5 mg/L). Combustion gases did not decrease proportionately with particulate concentration during the subacute study due to the semi-static nature of the exposure system and, in some cases, actually increased with decreasing particulate concentration.

Of the combustion gases monitored during the first acute exposure, both acrolein and formaldehyde exceeded recommended short-term exposure levels and/or values considered to be immediately dangerous to life and health. Both of these aldehydes are respiratory tract irritants capable of producing histopathological changes following inhalation exposure at levels exceeding recommended exposure concentrations (ATSDR 2007 & 1999). Formaldehyde levels during the first acute exposure averaged 26.1 ppm via EPA TO-11 analysis. The 30-minute LC_{50} for formaldehyde exposure in rats is 668 ppm. Acute animal exposures have confirmed that the upper

respiratory tract is the critical target for inhaled formaldehyde with epithelial tissue damage being the primary effect at appropriate exposure concentrations. Typically lung damage is only produced at concentrations exceeding those affecting the upper respiratory tract (HSDB, 2016). Acrolein concentrations during the first acute exposure averaged 2.92 ppm via EPA TO-15 analysis. Reported rat 30-minute LC₅₀ values for acrolein range from 60 to131 ppm (HSDB, 2016 & Ballantyne et al., 1989). Acute inhalation exposure to acrolein at average analytic vapor concentrations of 14.5, 41.5, 93.5, and 251 ppm for up to 30 minutes induced clinical signs of toxicity including teary/squinted eves, nasal discharge, labored breathing, gasping, and prostration at all exposure levels. Necropsy of pre-term mortalities revealed gross histological findings of nasal turbinate congestion (41.5 ppm), congested appearance of apical and cardiac regions of lungs with failure to collapse upon incision (41.5 ppm), mouth and nose exudate (93.5 ppm), and pulmonary edema (251 ppm), among other findings. All animals survived the 14.5 ppm exposures with no treatment-related gross pathology (HSDB, 2016). Clinical observations and histological findings following the 3 acute exposures were consistent with exposure to lower concentrations of these combustion gases, however, the complex nature of the combustion atmospheres generated from M-18 red smoke grenades and limited histopathology precludes the identification of a single cause. Short-term animal exposures with aldehyde mixtures (acrolein, formaldehyde, and acetaldehyde) have resulted in more severe histopathological changes in the respiratory and olfactory epithelium of the nose of rats than exposure to identical concentrations of the individual aldehydes (HSDB, 2016).

Subacute (2-week) inhalation exposure to atmospheres of red smoke did not result in any pre-term mortality in male and female rats. No adverse clinical signs of toxicity were observed throughout the exposure period for the main study animals or during the recovery period for the recovery animals. In addition, no changes in organ mass or mass ratios were observed in the male or female main study or recovery animals compared to their respective controls. The only changes for body mass, body mass change, or food consumption compared to controls occurred in the 1.5 mg/L male recovery group. Body mass change for this group was decreased during exposure days 1-3 and subsequently increased during the second week of recovery. Reduced body mass change during the first couple days of a repeated-exposure inhalation study can occur in response to stress, regardless of the exposure level. Although this trend was not observed in any main study exposure groups or the female recovery group, net body mass change for the male 1.5 mg/L recovery group was not reduced at the end of the 4-week recovery period and may be related to the exposure process rather than the test material. Changes in male and female (main study and recovery) clinical chemistry and prothrombin time measurements were limited to albumin concentrations in the male 1.5 mg/L recovery group. Following the 4-week recovery period, male 1.5 mg/L recovery albumin levels were decreased relative to controls. Hypoalbuminemia, in most cases, is a result of acute or chronic inflammatory responses. Histologic evidence of inflammation, primarily in the nasal turbinates, observed in the main study animals at the conclusion of the exposures had resolved by the end of the recovery period. Albumin levels in the main study animals were unaffected by exposure so the relevance of this finding in the recovery male rats is not clear. Sporadic differences in leukocyte differentials were observed in the main study 0.1 and 0.5 mg/L male rats relative to controls as well as decreased hemoglobin concentrations in the male 1.5 mg/L recovery group. Although altered leukocyte counts can be indicative of an inflammatory response, these changes were not part of a relevant exposure-level related trend and could be part of a stress-induced change in circulating leukocyte counts and/or red blood cell mass parameters (Everds et al., 2013). Similar to the changes in albumin concentration, histologic evidence of

increased inflammation incidence or severity was not apparent in the exposure groups exhibiting altered leukocyte counts.

Microscopic evaluation of all tissues from the main study 1.5 mg/L and control males and females revealed that nasal turbinate injury in the anterior regions (Levels 1 and 2) of the rat nasal passages was the primary lesion associated with subacute exposure to red smoke. At level 1, transitional or respiratory epithelial hyperplasia was the predominant injury throughout all exposure levels in both male and female rats. This effect was evident in nearly all of the level 1 turbinates evaluated at the highest exposure level as well as approximately half of the 0.5 and 0.1 mg/L level 1 turbinates. Average severity scores in males and females were nearly identical between the 1.5 and 0.5 mg/L exposure levels with the 0.1 mg/L level showing a decrease in severity. In male and female rats, the hyperplasia was occasionally accompanied by mucosal degeneration and granulocytic infiltration. Mucosal degeneration was evident primarily in 1.5 mg/L males (67%) and females (83%) with a decreased incidence in the 0.5 and 0.1 mg/L exposure levels. Although the transitional or respiratory epithelial hyperplasia was observed more frequently than the mucosal degeneration, the latter was interpreted to be more of an adverse effect resulting from red smoke exposure. Degeneration of the mucosal tissue in the nasal passages could lead to an increased susceptibility to nasal infections and lower respiratory tract diseases. Hyperplasia is typically reversible upon cessation of exposure. At level 2 of the nasal turbinates, granulocytic infiltration was the primary histologic finding but was only increased in the 1.5 mg/L males and 0.1 mg/L females compared to controls. Mucosal degeneration affected the level 2 transitional or respiratory epithelium in the 1.5 mg/L males only. Hyperplasia of the respiratory epithelium was occasionally observed at all exposure levels and anatomic levels although it was only evident in the 0.1 mg/L males at level 3. As discussed earlier, complex combustion atmospheres typically prevent identification of a single cause for the health effects observed following exposure. Although the potential health effects resulting from repeated exposure to neat Solvent Red 169 have not been investigated, evidence does suggest that the nasal turbinate injury resulting from these exposures was primarily due to the combustion gases. Exposure level concentrations were monitored and reported based only on the average particulate concentration during each 30-minute exposure and the incidence of the histologic findings did not correlate well with the exposure levels. In addition, it has been reported that rodents exposed to water-soluble, gaseous irritants typically have lesions in the surface epithelium of the lateral margins of the naso- and maxilloturbinate and on the lateral wall (Renne et al., 2007). The pathologist indicated that the location of the lesions in this study matched this description. The role of the red smoke particulate as a carrier of absorbed combustion gases could not be determined since the particulate was not characterized. Average aerodynamic particle sizes were similar across the exposure levels (2.3 - 2.4 microns) and were small enough to enable passage into the lower respiratory tract with alveolar deposition. Acrolein and formaldehyde vapor concentrations during the subacute exposures were the only 2 combustion gases that frequently exceeded short-term exposure limits. Acrolein concentrations averaged 2.6. 2.5, and 1.5 ppm via EPA TO-15 analysis during the 1.5, 0.5, and 0.1 mg/L subacute exposures. Formaldehyde concentrations averaged 16.5, 14.4, and 9.6 ppm via EPA TO-11 analysis during the 1.5, 0.5, and 0.1 mg/L subacute exposures. While the entire respiratory system can be affected by acrolein and formaldehyde inhalation, the available data from acute, intermediate, and chronic duration studies in experimental animals indicate that the deeper respiratory regions are only sensitive to higher exposure levels well above those experienced during this study. Exposure to lower levels of both gases, consistent with the odor threshold and perception of nasal irritation in humans, is typically associated with irritation of the nasal epithelium as observed following the subacute exposures (ATSDR, 2007 & 1999).

Histology on the lungs of the control, 1.5, and 0.5 mg/L males and control and 1.5 mg/L females revealed nearly identical findings to those acutely exposed. Minimal to mild (in most cases) incidences of alveolar septal or venous congestion, perivascular or peribronchiolar hemorrhage, alveolar atelectasis, and granulocytic infiltration was observed in all of the exposure levels evaluated, including controls. The pathologist stated that none of the lesions showed evidence of having occurred earlier than immediately prior to euthanasia. The fact that these findings were observed in the control animals and there was no additional confirmation of congestion (macrophage accumulation or changes in lung mass) adds evidence to the interpretation that these observations were perimortem in nature for both the acute and subacute studies.

Level 1 transitional epithelial hyperplasia was only observed in 1 of 6 female recovery controls and 1 of 5 female recovery 1.5 mg/L exposed animals while mucosal degeneration was only observed in 1 of 6 female recovery controls following a 4-week recovery period. Therefore, it would appear that both effects are reversible upon cessation of red smoke exposure. Many of the histologic findings observed in the respiratory tract of main study animals were also observed in the recovery animals but the incidence was never increased compared to the recovery controls. Nasal turbinate level 1 and 2 respiratory epithelial hyperplasia was evident in both male and female recovery control and exposed animals in addition to the recovery animals and was not interpreted as a relevant test material-related finding. In addition, such hyperplastic changes in the nasal respiratory epithelium often observed following animal exposures of subchronic duration have been shown to regress following a recovery period of several weeks (Renne et al., 2007).

9 Conclusions

The LC₅₀ resulting from acute nose-only exposure to pyrotechnically disseminated red smoke particulate for 30 minutes was greater than 1.92 milligrams per liter (mg/L). Repeated nose-only inhalation of red smoke at average particulate concentrations of 0.1, 0.5, and 1.5 mg/L for 30 minutes did not induce mortality in male and female rats. Clinical signs observed following exposure, occurring in a concentration-related manner, included red-stained fur (primarily on the head, face, and forelimbs) from deposition of the test material and salivation. Changes in body mass only occurred in the male 1.5 mg/L recovery group and consisted of a decrease at the initiation of exposures (days 1-3) and subsequent increase during the second recovery week. Male and female organ mass and mass ratios (body and brain), for both main study and recovery groups, were unaffected by repeated exposure to red smoke relative to controls. Main study males exposed to 0.1 mg/L red smoke had reduced percent basophils while males exposed to 0.5 mg/L had increased percent basophils. Following a 4-week recovery period, males exposed to 1.5 mg/L red smoke had reduced albumin and hemoglobin. Histology on the collected tissues resulted in exposure-related changes in the nose of male and female rats. Hyperplasia of the transitional or respiratory epithelium at level 1 of the nasal turbinates, occasionally accompanied by mucosal degeneration and granulocytic infiltration, was observed in the majority of rats at all exposure levels. Male and female rats exhibited a regression of injury to the anterior regions of the nasal turbinates following a recovery period of 4 weeks. Mucosal degeneration of the level 1 nasal turbinates was identified as the critical endpoint in this study based on the exposure level-related response and was used to derive BMDL₁₀ of 0.351 and 0.054 mg/L for males and females, respectively.

10 Point of Contact

Questions pertaining to this report should be referred to Lee Crouse at DSN 584-3980, commercial 410-436-3980, or by e-mail: usarmy.apg.medcom-phc.mbx.tox-info@mail.mil.

Prepared By:

LÉE C.B. CROÙSE Study Director Toxicity Evaluation Division (TEV)

MATTHEW A. BAZAR

Biologist Toxicity Evaluation Division (TEV)

Charles L. CROUSE

ORISE Consultant Toxicity Evaluation Division (TEV)

ADOLPH J. JANUSZKIEWICZ ORISE Consultant Toxicity Evaluation Division (TEV)

Approved By:

ARTHUR J. O'NEILL Division Chief, Toxicity Evaluation Division

JOHNSON.MARK.STEVEN. Digitally signed by JOHNSON.MARK.STEVEN.1229380717 1229380717 Disc.eu/S. Government, curr-DOID, curr/KL our-U/SA, cm-JOHNSON.MARK.STEVEN.1229380717 Date: 2017.04.17 08:48:10 - 04'00'

MARK S. JOHNSON Director, Toxicology

12 April 2017 Date

12 Apr: 1 2017 Date

<u>4-12-17</u> Date

<u> 4-12-17</u> Date

<u>12-APR-2</u>017 Date

Date

Appendix A

References

AEHA. 1992. Initial Health Hazard Assessment Report (RCS MED 388) on the M18 Colored (Red, Green, and Yellow) Smoke Grenade Components. 69-37-XN46-92. U.S. Army Environmental Hygiene Agency, Aberdeen Proving Ground, Edgewood, MD.

AEHA. 1993a. Health Hazard Assessment Report (RCS MED 388) on the 40 MM Colored Smoke Ground Marker. 69-37-XY57-93. U.S. Army Environmental Hygiene Agency, Aberdeen Proving Ground, Edgewood, MD.

AEHA. 1993b. Health Hazard Assessment Report (RCS MED 388) on the M18 Colored (Red and Violet) Smoke Grenade Components. 69-37-XN46-93. U.S. Army Environmental Hygiene Agency, Aberdeen Proving Ground, Edgewood, MD.

Agency for Toxic Substances and Disease Registry (ATSDR). 1999. Toxicological Profile for Formaldehyde. Atlanta, GA: Agency for Toxic Substances and Disease Registry. PB/99/166654.

Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological Profile for Acrolein. Atlanta, GA: Agency for Toxic Substances and Disease Registry. PB2008-100001.

ASTM 2008. Standard Guide for Assessing the Environmental and Human Health Impacts of New Energetic Compounds. Conshohocken, PA.

Ballantyne, B., D.E. Ddd, I.M. Pritts, D.J. Nachreiner, an E.H. Fowler. 1989. Acute vapor inhalation toxicity of acrolein and its influence as a trace contaminant in 2-methoxy-3,4-dihydro-2H-pyran. Hum. Toxicol. 8(3):229-235.

Department of Defense. 1996. Department of Defense Instruction 4715.4, Pollution Prevention. http://www.dtic.mil/whs/directives/corres/pdf/471504p.pdf.

Department of the Army. 2003. Regulation 70-1, Army Acquisition Policy. http://www.apd.army.mil/pdffiles/r70_1.pdf.

Department of the Army. 2007a. Regulation 200-1, Environmental Protection and Enhancement. http://www.apd.army.mil/pdffiles/r200_1.pdf.

Department of the Army. 2007b. Regulation 40-5, Preventive Medicine. http://www.apd.army.mil/pdffiles/r40_5.pdf.

Department of the Army. 2008 (Rapid Action Revision 2009). Pamphlet 70-3, Army Acquisition Procedures for Insensitive Munitions/Unplanned Stimuli. http://www.apd.army.mil/pdffiles/p70_3.pdf.

Drew, R.T. (ed.). Technical Booklet for Proceedings Workshop on Inhalation Chamber Technology held at Brookhaven National Laboratory, Upton, New York, October 16-17, 1978. BNL 51318/UC-48. Chapter 1: The Development of the Standard Inhalation Chamber (pp 3-8).

Everds, N.E., Snyder, P.W., Bailey, K.L., Bolon, B., Creasy, D.M., Foley, G.L., Rosol, T.J., and Sellers, T.

(2013). Interpreting Stress Responses During Routine Toxicity Studies: A Review of the Biology, Impact, and Assessment. Toxicol Pathol *41:* 560-614.

Giknis, M.L.A., and Clifford, C.B. (2006). Clinical Laboratory Parameters for CrI:CD(SD) Rats (Charles River Laboratories).

Hazardous Substance Data Bank (HSDB), National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, <u>https://toxnet.nlm.nih.gov</u> (accessed 30 September 2016)

Organisation for Economic Co-Operation and Development (OECD). 2009. Health Effects Test Guidelines: OECD 412, Repeated Dose Inhalation Toxicity: 28-Day Study.

Renne, R.A., Gideon, K.M., Harbo, S.J., Staska, L.M., and Grumbein, S.L. (2007) Upper Respiratory Tract Lesions in Inhalation Toxicology. Toxicol Pathol *35*: 163-169.

Sierra Instruments, Inc., Bulletin No. 7-79-210IM, Series 210 Ambient Cascade Impactors and Cyclone Preseparator, 1979.

U.S. Army Environmental Command (USAEC) (2009). Final Report. FY09 Army Environmental Requirements and Technology Assessments (AERTA). Aberdeen Proving Ground, Maryland.

U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM). 2009. Acute Inhalation Toxicity Study (LC50) with Solvent Red 169 in Rats. Toxicology Report No. 87-XE-09FM-09, Prepared by A.J. O'Neill, USACHPPM, Aberdeen Proving Ground, MD 21010-5403.

U.S. Army Public Health Command (USAPHC) 2013. TOX SOP 058.000 Distribution of Test Atmosphere within Inhalation Exposure Chambers. Aberdeen Proving Ground, Maryland.

U.S. Army Public Health Command (USAPHC) 2015. TOX SOP 057.002, Aerodynamic Particle Size Measurement, Aberdeen Proving Ground, Maryland.

U.S. Environmental Protection Agency (USEPA). 2002. A Review of the Reference Dose and Reference Concentration Processes. EPA 630/P-02/002F. United States Environmental Protection Agency. Washington D.C.

Appendix B

Quality Assurance Statement

Toxicology Study No. S0036333-15, April - September 2015

APPENDIX B

QUALITY ASSURANCE STATEMENT

For: Toxicology Study No. S0036333-15, Protocol No. 35-15-01-01, Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically-Disseminated M18 Red Smoke, April - September 2015, the following critical phases were audited by the Quality Systems and Regulatory Compliance Office's Quality Assurance Unit:

PRE IN-LIFE PHASE OF THE STUDY

Critical Phase Inspected/Audited		Date Reported to Management/SD
Study Protocol Good Laboratory Practice Standards and Animal Care Review	01/21/2015	01/21/2015

IN-LIFE PHASE OF THE STUDY

Critical Phase Inspected/Audited	Date Inspected /Audited	Date Reported to Management/SD
Acute Study -Test System Restrainer Procedures, Pre and Post Procedural Provisions and Observations.	04/29/2015	05/11/2015
Acute Study - Test System Facilities, Identification, Husbandry, Feed and Water Supply & Enrichment	04/29/2015	05/11/2015
Acute Study - Test Substance Atmosphere Generation and Analysis of the Test Atmosphere	04/29/2015	05/12/2015
Acute Study - Administration of Test Substance and Exposure Mode	04/29/2015	05/12/2015
Acute Study - Necropsy Study Personnel Qualifications and Training Records Review	05/13/2015	05/21/2015
Acute Study - Animal Euthanasia, Necropsy & Gross Macroscopic Pathology Exam Procedures	05/13/2015	05/21/2015
Acute Study - Sub-study Endpoint Criteria Compliance	05/13/2015	05/21/2015
Subacute Study - Compliance with Protocol Study Personnel Identification and Qualifications	06/04/2015	06/11/2015
Compliance with Protocol and Test Facility Standing Operating Procedure Requirements	06/04/2015	06/11/2015
Subacute Study-Test System Husbandry, Restraint Procedures, Body Weight, Food Consumption, Observations	06/04/2015	06/15/2015
Subacute Study - Administration of Test Substance & Exposure Mode & Analysis of the Test Atmosphere	06/04/2015	06/15/2015
Subacute Study - Anesthesia / Analgesia / Tranquilization and Histopathology Procedures	06/16/2015	07/02/2015
Subacute Study - Terminal Observations - Clinical Chemistry and Hematology Assessments	06/16/2015	07/02/2015
Subacute Study - Terminal Observations - Gross Necropsy, Organ Weight, and Tissue Preservation	06/16/2015	07/02/2015
Subacute Study - Gross Necropsy, Organ Weight, and Tissue Preservation	08/11/2015	09/24/2015

APPENDIX B

QUALITY ASSURANCE STATEMENT

For: Toxicology Study No. S0036333-15, Protocol No. 35-15-01-01, Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically-Disseminated M18 Red Smoke, April - September 2015, the following critical phases were audited by the Quality Systems and Regulatory Compliance Office's Quality Assurance Unit

IN-LIFE PHASE OF THE STUDY (continued)

Critical Phase Inspected/Audited	Date Inspected /Audited	Date Reported to Management/SD	
Subacute Study - Clinical Chemistry, Hematology Assessments and Histopathology	08/11/2015	09/24/2015	
Subacute additional exposure - Test Substance Admin & Exposure Mode & Analysis of the Test Atmosphere	08/18/2015	08/25/2015	
Subacute additional exposure - Test System Husbandry, Restraint, Body Weight, Observations & GDPs	08/18/2015	08/25/2015	

POST IN-LIFE PHASE OF THE STUDY

Critical Phase Inspected/Audited	Date Inspected /Audited	Date Reported to Management/SD	
Pathology Contributing Scientist Inspection-QA audit of statistician's report and Excel Entered Data	04/25/2016	5/18/2016	
Pathology Contributing Scientist Inspection - Final Report Summary Data and Summary Table Review	04/28/2016	05/18/2016	
Pathology Contributing Scientist Inspection-Interim Pathology Report GLP Standard Regulation Review	05/17/2016	05/18/2016	
Pathology Contributing Scientist Inspection- Final Pathology Report GLP Standard Regulation Review	05/26/2016	05/26/2016	
Pathology Contributing Scientist Inspection- Final Pathology Report GLP Standard Regulation Review	06/14/2016	06/15/2016	
Pathology Addendum Report Inspection - Final Study Data GLP Standard Regulations Review	01/13/2017	4/11/2017	
Pathology Addendum Report Inspection -Final Report Summary Data and Summary Table Review	01/13/2017	4/11/2017	
Final Study Report Good Laboratory Practice Quality Assurance Review	04/11/2017	04/11/2017	

Note 1 All findings were made known to the Study Director and the Program Manager at the time of the audit/inspection. If there were no findings during the inspection, the inspection was reported to Management and the Study Director on the date shown in the table.

Note 2 In addition to the study specific critical phase inspections listed here, general facility and process based inspection not specifically related to this study are done monthly or annually in accordance with QA Standard Operating Procedure.

Note 3 This report has been audited by the Quality Assurance Unit (QSARC), and is considered to be an accurate account of the data generated and of the procedures followed

awer

Michael P. Kefauver / Quality Assurance Specialist, QSARC-QAU

<u>/17/2017</u> Date

Appendix C

Archives and Study Personnel

1. ARCHIVES.

a. All raw data, documentation, records, protocol, and a copy of the final report generated as a result of this study will be archived in room 1026, Building E-2100, APHC, for a minimum of five (5) years following submission of the final report to the Sponsor.

b. Records on animal receipt, diet, and facility environmental parameters will be archived by the Veterinary Medical Division, QSARC, for a minimum of five (5) years following submission of the final report to the Sponsor.

c. Some ancillary records pertaining to this study, such as instrument maintenance logs, animal room observation logs, etc., will not be archived until those logbooks have been completed. Once complete they will be archived in room 1026, Building E-2100, APHC.

- d. Wet tissues, histology slides, and paraffin blocks are stored in building E-5158.
- 2. PERSONNEL.
 - a. Management

(1) Management (In-Life): Dr. Mark S. Johnson, Ph.D., Director, Toxicology; Arthur J. O'Neill, Division Chief, Toxicity Evaluation Division (TEV); Dr. Michael J. Quinn, Ph.D., Division Chief, Health Effects Research Division (HEF).

(2) Management (Report): Dr. Mark S. Johnson, Ph.D., Portfolio Director, Toxicology; Arthur J. O'Neill, Division Chief, Toxicity Evaluation Division (TEV); Dr. Michael J. Quinn, Ph.D., Division Chief, Health Effects Division (HEF).

- b. Study Director: Lee C.B. Crouse, Biologist, TEV.
- c. Quality Assurance: Michael P. Kefauver, Quality Assurance Specialist, Quality Systems Office.

d. Veterinary Support and Animal Care: Dr. Mary Sprangel, DVM, MAJ, VC; Robert Sunderland, Animal Health Technician; Rebecca Kilby, Animal Health Technician; Lindsey Ward, Animal Health Technician.

- e. Pathology Lab Coordinator: Alicia Shiflett, Histotechnician, DTP.
- f. Histopathology: Erica E. Carroll, DVM, DACVP, LTC, VC, Pathologist, DTP.
- g. In-Life Support: Emily May Lent, Toxicologist, TEV.
- h. Hematology, Clinical Chemistry: Matthew A. Bazar, Biologist, TEV; Mark R. Way, Biologist, TEV.

i. Archivist: Martha L. Thompson, Data Acquisition Specialist, TEV.

Appendix D

Chamber Distribution

Table D-1

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Chamber Distribution Summary of Red Smoke Atmosphere

Sample Set #1 (High Exposure)						
SAMPLE ID #	TIME SAMPLE	SAMPLE PORT	CONCENTRATION	% COMPARISON		
	COLLECTED	LOCATION	(mg/L)			
1	0955	A	2.719	92		
2	0955	В	2.959	101		
3	0955	С	3.152	107		
	Mean = 2.943					

SAMPLE ID #	TIME SAMPLE	SAMPLE PORT	CONCENTRATION % COMPARISO	Ν
	COLLECTED	LOCATION	(mg/L)	

4	0955	R1	2.872	98
5	0955	R2	2.837	96

Sample Set #2 (High Exposure)

SAMPLE ID #	TIME SAMPLE	SAMPLE PORT	CONCENTRATION	% COMPARISON
	COLLECTED	LOCATION	(mg/L)	
1	1005	D	2.501	95

	1000		2.001	00
2	1005	E	2.796	107
3	1005	F	2.57	98
			Mean = 2.622	

SAMPLE ID #	TIME SAMPLE	SAMPLE PORT	CONCENTRATION	% COMPARISON
	COLLECTED	LOCATION	(mg/L)	
4	1005	R1	2.803	107

4	1005	R I	2.003	107
5	1005	R2	2.764	105

Sample Set #1 (Intermediate Exposure) SAMPLE ID # TIME SAMPLE SAMPLE PORT CONCENTRATION % COMPARISON

	COLLECTED	LOCATION	(mg/L)	
1	1051	A	0.591	75
2	1051	В	0.867	109
3	1051	С	0.917	116
			Mean = 0.792	

SAMPLE ID #	TIME SAMPLE	SAMPLE PORT	CONCENTRATION	% COMPARISON
	COLLECTED	LOCATION	(mg/L)	

4	1051	R1	0.804	102
5	1051	R2	0.756	95

Sample Set #2 (Intermediate Exposure)

SAMPLE ID #	# TIME SAMPLE SAMPLE PORT		CONCENTRATION	% COMPARISON			
	COLLECTED	LOCATION	(mg/L)				
1	1101	D	0.727	103			
2	1101	E	0.692	98			
3 1101		F 0.698		99			
			Mean = 0.706				

SAMPLE ID #	TIME SAMPLE	SAMPLE PORT	CONCENTRATION	% COMPARISON
	COLLECTED	LOCATION	(mg/L)	

			(
4	1101	R1	0.713	101
5	1101	R2	0.596	84

Sample Set #1 (Low Exposure)

SAMPLE ID #	TIME SAMPLE	SAMPLE PORT	CONCENTRATION	% COMPARISON			
	COLLECTED	LOCATION	(mg/L)				
1	1229	A	0.199	104			
2	1229	В	0.192	100			
3	3 1229		C 0.186				
		Mean = 0.192					

SAMPLE ID #	TIME SAMPLE	SAMPLE PORT	CONCENTRATION	% COMPARISON
	COLLECTED	LOCATION	(mg/L)	
4	4000	D4	0.005	107

4	1229	R1	0.205	107
5	1229	R2	0.206	107

Sample Set #2 (Low Exposure)										
SAMPLE ID #	TIME SAMPLE	SAMPLE PORT	CONCENTRATION	% COMPARISON						
	COLLECTED	LOCATION	(mg/L)							
1	1239	D	0.180	97						
2	1239	E	0.179	96						
3	1239	F	0.199	107						
	Mean = 0.186									

SAMPLE ID #	TIME SAMPLE	SAMPLE PORT	CONCENTRATION	% COMPARISON
	COLLECTED	LOCATION	(mg/L)	
4	1239	R1	0.190	102
5	1239	R2	0.195	105

Appendix E

Summary of Acute Exposure Results

Table E-1

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Acute Exposure Concentration and Particle Size Summary

Exposure	Date	Target	Mean Concentration	Standard	Concentration	Ν	Mass Median Aerodynamic	Geometric	Ν
Number		Concentration (mg/L)	(mg/L)	Deviation (mg/L)	Range (mg/L)		Diameter (microns)	Standard Deviation	
1	04/29/15	2.0	1.92	0.312	1.559 - 2.100	3	1.6 - 1.9	1.9 - 2.13	2
2	07/28/15	2.0	1.69	0.550	1.212 - 2.289	3	2.6	1.86	1
3	08/18/15	0.5	0.56	0.118	0.457689	3	2.2	1.83	1

Table E-2Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Acute Exposure Body Mass Summary (grams)

Exposure No.	Animal ID	Sex	Day 1	Day 2	Day 3	Day 6	Day 8	Day 10	Day 13	Day 15
1	0525	Male	273.8	279.4	287.9	307.8	319.5	340.8	352.4	374.6
1	0526	Male	255.1	262.7	271.6	291.5	300.6	326.8	340.5	364.0
1	0527	Male	272.1	266.1	276.1	299.8	312.2	335.7	344.5	369.7
1	0528	Male	260.5	262.9	272.4	297.3	304.7	330.1	342.6	361.9
1	0529	Male	244.3	241.4	249.0	263.5	273.1	294.3	297.5	315.3
1	0530	Female	171.1	164.4	171.8	179.2	189.3	188.9	200.1	205.3
1	0531	Female	197.1	202.3	204.8	212.2	216.9	224.5	222.0	234.2
1	0532	Female	208.6	202.8	207.6	222.0	225.9	235.3	235.3	245.6
1	0533	Female	181.4	179.4	184.0	192.7	197.5	212.5	212.4	223.8
1	0534	Female	207.4	211.3	215.8	217.4	224.0	241.9	234.5	252.1
Exposure No.	Animal ID	Sex	Day 1	Day 2	Day 3	Day 4	Day 7	Day 9	Day 15	
2	0732	Male	258.1	252.5	, .	,	,	,	,	
2	0733	Male	244.3	246.2						
2	0734	Male	256.9	250.2						
2	0735	Male	247.5	240.9	249.6	265.0	281.2	302.3	341.5	
2	0736	Male	262.2	267.8	271.7	289.0	313.6	338.6	390.7	
2	0737	Female	223.6	216.4						
2	0738	Female	209.0	209.9						
2	0739	Female	211.1	209.4						
2	0740	Female	227.7	224.6	231.1	234.6	248.5	255.5	276.2	
2	0741	Female	235.8	229.1	235.4	234.2	250.0	256.7	277.5	
Exposure No.	Animal ID	Sex	Day 1	Day 2	Day 10	Day 15				
3	0780	Male	245.6	247.2						
3	0781	Male	250.3	250.2						
3	0782	Male	243.7	243.6						
3	0783	Male	238.9	238.2	307.7	353.3				
3	0784	Male	250.2	253.8	317.0	368.7				
3	0785	Female	190.6	186.2						
3	0786	Female	208.8	210.8						
3	0787	Female	193.9	193.8						
3	0788	Female	195.0	191.9	231.3	242.4				
3	0789	Female	201.4	194.0	235.3	255.7				

Table E-3 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Acute Exposure Individual Clinical Observations

Exposure No.	Animal ID	Sex	Observation	First Day ^a	Last Day ^b
1	0525	Male	Red-colored face, nose, forelimbs & chin	1	1
			Salivation	1	1
	0500	Mala	Scab on right shoulder	8	15
1 1	0526 0527	Male	Red-colored face, nose, & forelimbs	1 1	1 1
I	0527	Male	Red-colored face, nose, & forelimbs Slight red staining of face	2	2
			Dried red material around nose	2	2
1	0528	Male	Red-colored face, nose, & forelimbs	1	1
•	0020	maio	Slight red staining of face	2	2
1	0529	Male	Red-colored face, nose, forelimbs & chin	1	1
			Salivation	1	1
1	0530	Female	Red-colored face, nose, forelimbs & chin	1	1
			Salivation	1	1
			Red staining of face, shoulders, & urogenital area	2	3
			Slight red urogenital staining	6	15
1	0531	Female	Red-colored face, nose, forelimbs & chin	1	1
			Salivation	1	1
1	0532	Female	Slight red staining of face & head	2 1	2 1
I	0552	remale	Red-colored face, nose, & forelimbs Slight red staining of urogenital area	2	2
			Dried red material around nose	2	2
			Barbering both front limbs	10	15
1	0533	Female	Red-colored face, nose, & forelimbs	1	1
1	0534	Female	Red-colored face, nose, forelimbs & chin	1	1
			Salivation	1	1
			Slight red staining of face & head	2	2
Exposure No.	Animal ID	Sex	Observation	First Dav ^a	Last Day ^b
2	0732	Male	Red-colored face, nose, & forelimbs	1	1
-	0.02	maio	Salivation	1	1
2	0733	Male	Red-colored face, nose, & forelimbs	1	1
			Salivation	1	1
2	0734	Male	Red-colored face, nose, & forelimbs	1	1
			Salivation	1	1
			Red-colored head and nose	2	2
2	0735	Male	Red-colored face, nose, & forelimbs	1	1
			Salivation	1	1
2	0736	Male	Red-colored face, nose, & forelimbs	1	1
0	0707	Essela	Salivation	1	1
2	0737	Female	Red-colored face, nose, & forelimbs Salivation	1 1	1 1
			Slight red-colored head	2	2
2	0738	Female	Red-colored face, nose, & forelimbs	1	1
2	0739	Female	Red-colored face, nose, & forelimbs	1	1
-	0.00	1 officialo	Salivation	1	1
2	0740	Female	Red-colored face, nose, & forelimbs	1	1
			Slight red-colored head	2	2
2	0741	Female	Red-colored face, nose, & forelimbs	1	1
			Slight red-colored head	2	2
Exposure No.	Animal ID	Sex	Observation	First Day ^a	Last Dav ^b
3	0780	Male	Red-colored face, nose, & forelimbs	1	Lasi Day
5	2.00		Salivation	1	1
3	0781	Male	Red-colored face, nose, & forelimbs	1	1
			Salivation	1	1
3	0782	Male	Red-colored face & nose	1	1
			Salivation	1	1
			Minor congested breathing	1	1
3	0783	Male	Red-colored face, nose, & forelimbs	1	1
_			Salivation	1	1
3	0784	Male	Red-colored face & nose	1	1
•	0705	Fam: -1-	Salivation	1	1
3	0785	Female	Red-colored face & nose	1	1
0	0786	Formela	Salivation	1 1	1 1
3	00100	Female	Red-colored face & nose Salivation	1	1
3	0787	Female	Red-colored face & nose	1	1
3	0788	Female	Red-colored face & nose	1	1
5	2.00		Salivation	1	1
3	0789	Female	Red-colored face & nose	1	1
			Salivation	1	1

^a Represents the first day the clinical sign was observed.
 Day 1 is the day of the exposure
 ^b Represents the last day the clinical sign was observed.

Table E-4 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Acute Exposure Gross Observation Summary

Exposure No.	Animal ID	Sex	Gross Observation
1	0525 ^ª	Male	Edges of right & left lobes of lung appear dark and collapsed
1	0526 ^a	Male	Left caudal lobe appears dark in color and collapsed.
1	0527 ^a	Male	Left and right lung appears dark in color with dark spots Kidneys and liver appear dark
1	0528 ^a	Male	Apparent necrotic & dark areas in left & right lobes of lung
1	0529 ^a	Male	Apparent necrotic & dark areas in left & right lobes of lung
1	0530 ^a	Female	Apparent necrotic & dark areas in left & right lobes of lung
1	0531 ^a	Female	Minimal white patches throughout lung
1	0532 ^a	Female	Apparent necrotic & dark areas in left & right lobes of lung
1	0533 ^a	Female	Possible necrotic areas on fringes of middle pulmonary lobe & accessory pulmonary lobe of lung
1	0534 ^a	Female	Apparent necrotic & dark areas in left & right lobes of lung
Exposure No.		Sex	
2	0732 ^b	Male	Cranial aspect of left and right lobes of lung pale pink
2	0733 ^b	Male	Cranial aspect of left and right lobes of lung pale pink
2	0734 ^b	Male	Diffuse multifocal to coalescing dark brown to red regions of left & right lobes of lung Cranial aspect of left and right lobes of lung pale pink Caudal left lung has reticular pattern
2	0735 ^a	Male	No gross lesions recognized
2	0736 ^a	Male	No gross lesions recognized
2	0737 ^b	Female	Focal dark brown region on cranial lobe of right lung Cranial aspect of left lung is pale pink
2	0738 ^b	Female	Fringes of all lobes of lung are white Left and right lobes of lung appear pale pink
2	0739 ^b	Female	No data
2	0740 ^a	Female	No gross lesions recognized
2	0741 ^a	Female	No gross lesions recognized
Exposure No.		Sex	
3	0780 ^b	Male	Anterior portion of right and left lung appear to have dark brown focal regions
3	0781 ^b	Male	Anterior portion of left lung is pale pink
3	0782 ^b	Male	No gross lesions recognized
3	0783 ^a	Male	Diffuse whitish, raised areas in distal region of right caudal and left pulmonary lobes of lung
3	0784 ^a	Male	Left pulmonary lobe is whitish pink around edges with dark red center
3	0785 ^b	Female	No gross lesions recognized
3	0786 ^b	Female	Right anterior portion of lung is pale pink
3	0787 ^b	Female	Liver is mildly dark
			Anterior portions of right & left lobes of lung have brown focal spots & outer edges are pale pink Left kidney has white focal area 1 mm in diameter
3	0788 ^a	Female	No gross lesions recognized
3	0789 ^a	Female	Hydronecrosis of right kidney

^a = 14-day recovery period prior to necropsy ^b = Necropsied the day after exposure

Appendix F

Summary of Subacute Exposure Chamber Concentrations

Table F-1 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Subacute Exposure Concentration Summary

		Cor	trol Exposures				Intern	nediate (0.5 m	g/L) Concentration	n Exposures	
Exposure	Date	Daily Mean	Daily Standard	Concentration	Ν	Exposure	Date	Daily Mean	Daily Standard	Concentration	Ν
Number		(mg/L)	Deviation (mg/L)	Range (mg/L)		Number		(mg/L)	Deviation (mg/L)	Range (mg/L)	
1	06/02/15	0	-	-	1	1	06/02/15	0.583	0.1193	0.475 - 0.711	3
2	06/03/15	0	-	-	1	2	06/03/15	0.511	0.1372	0.386 - 0.658	3
3	06/04/15	0	-	-	1	3	06/04/15	0.462	0.0936	0.370 - 0.557	3
4	06/05/15	0	-	-	1	4	06/05/15	0.470	0.0852	0.388 - 0.558	3
5	06/08/15	0	-	-	1	5	06/08/15	0.514	0.0722	0.439 - 0.583	3
6	06/09/15	0	-	-	1	6	06/09/15	0.534	0.1225	0.430 - 0.669	3
7	06/10/15	0	-	-	1	7	06/10/15	0.533	0.0932	0.447 - 0.632	3
8	06/11/15	0	-	-	1	8	06/11/15	0.511	0.0816	0.436 - 0.598	3
9	06/12/15	0	-	-	1	9	06/12/15	0.442	0.0774	0.374 - 0.526	3
10	06/15/15	0	-	-	1	10	06/15/15	0.473	0.0860	0.387 - 0.559	3
11	06/16/15	0	-	-	1	11	06/16/15	0.509	0.0882	0.425 - 0.601	3
Total Mean	n:	0.000	-	-	11	Total Mean):	0.504	0.0960	0.370 - 0.711	33
A Group M	lean:	0.000	-	-	10	A Group M	lean:	0.503	0.0968	0.370 - 0.711	30
B Group M	lean:	0.000	-	-	10	B Group M	lean:	0.496	0.0937	0.370 - 0.669	30

	L	ow (0.1 mg/L)	Concentration Exp	osures	
Exposure	Date	Daily Mean	Daily Standard	Concentration	Ν
Number		(mg/L)	Deviation (mg/L)	Range (mg/L)	
1	06/02/15	0.130	0.0145	0.116 - 0.145	3
2	06/03/15	0.132	0.0233	0.113 - 0.158	3
3	06/04/15	0.115	0.0115	0.103 - 0.126	3
4	06/05/15	0.104	0.0121	0.095 - 0.118	3
5	06/08/15	0.109	0.0124	0.096 - 0.121	3
6	06/09/15	0.100	0.0140	0.086 - 0.114	3
7	06/10/15	0.111	0.0132	0.101 - 0.126	3
8	06/11/15	0.099	0.0075	0.092 - 0.107	3
9	06/12/15	0.096	0.0075	0.088 - 0.103	3
10	06/15/15	0.101	0.0111	0.091 - 0.113	3
11	06/16/15	0.095	0.0113	0.085 - 0.107	3
Total Mean	Total Mean:		0.0126	0.085 - 0.158	33
A Group M	ean:	0.110	0.0127	0.086 - 0.158	30
B Group M	ean:	0.106	0.0124	0.085 - 0.158	30

	н	igh (1.5 mg/L)	Concentration Ex	posures	
Exposure	Date	Daily Mean	Daily Standard	Concentration	Ν
Number		(mg/L)	Deviation (mg/L)	Range (mg/L)	
1	06/02/15	1.425	0.2895	1.146 - 1.724	3
2	06/03/15	1.407	0.4207	1.016 - 1.852	3
3	06/04/15	1.207	0.5235	0.763 - 1.784	3
4	06/05/15	1.645	0.4863	1.168 - 2.140	3
5	06/08/15	1.149	0.6957	0.680 - 1.948	3
6	06/09/15	1.504	0.6051	0.984 - 2.168	3
7	06/10/15	1.657	0.7100	1.081 - 2.450	3
8	06/11/15	1.496	0.9167	0.887 - 2.550	3
9	06/12/15	1.965	0.7605	1.370 - 2.822	3
10	06/15/15	2.149	0.6377	1.535 - 2.808	3
11	06/16/15	1.157	0.4292	0.820 - 1.640	3
Total Mean	Total Mean:		0.5886	0.763 - 2.822	33
A Group M	lean:	1.560	0.6045	0.763 - 2.822	30
B Group M	lean:	1.533	0.6185	0.763 - 2.822	30

Appendix G

Exposure Environmental Conditions

Table G-1Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Exposure No.	Date	Chamber Oxygen Range (%)	Chamber Temperature Range (°F)	Chamber Relative Humidity Range (%)	(N)	Exposure Box Temperature Range (°F)	Exposure Box Relative Humidity Range (%)	(N)
1	06/02/15	20.9 - 21.2	68	49 - 54	3	-	-	0*
2	06/03/15	20.3 - 20.6	67	58 - 59	3	68	66 - 87	3
3	06/04/15	20.4	68	57 - 58	3	68 - 70	66 - 87	3
4	06/05/15	20.1 - 20.4	68	56	3	68	57 - 58 ¹	3
5	06/08/15	20.9	69 - 70	53 - 58	3	69 - 70	54 - 56	3
6	06/09/15	20.2 - 20.5	70 - 71	61 - 65	3	70	65 - 67	3
7	06/10/15	20.6 - 20.9	69	56 - 57	3	70	53 - 57	3
8	06/11/15	20.1 - 20.4	71	60 - 64	3	70	63 - 66	3
9	06/12/15	20.8 - 21.1	71 - 72	65 - 66	3	70	72	3
10	06/15/15	20.8 - 21.1	71	60 - 68	3	70	65 - 67	3
11	06/16/15	20.5 - 20.8	70 - 71	63 - 67	3	70	68 - 70	3

Daily Environmental Data Control Exposure Chamber

* = Temperature and humidity samples were not taken on this day.

¹ = Starting this day the back plate of the exposure box was not put on in an effort to keep the humidity down in the exposure boxes.

Legend: °F = degrees Fahrenheit

% = percent

Table G-2 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Daily Environmental Data Low (0.1 mg/L) Concentration Exposures

Exposure No.	Date	Chamber Oxygen Range (%)	Chamber Temperature Range (°F)	Chamber Relative Humidity Range (%)	(N)	Exposure Box Temperature Range (°F)	Exposure Box Relative Humidity Range (%)	(N)
1	06/02/15	21.2	72 - 73	53 - 55	3	68	64 - 78	3
2	06/03/15	20.4	72	65 - 67	3	68 - 70	66 - 90	3
3	06/04/15	20.7	71 - 72	61 - 62	3	68 - 70	60 - 88	3
4	06/05/15	20.7	70	64 - 66	3	70	77 - 89	3
5	06/08/15	20.6	72	64 - 65	3	72 - 73	70 - 88	3
6	06/09/15	20.6	71 - 72	69 - 71	3	72 - 74	67 - 80	3
7	06/10/15	21.0	72	67 - 68	3	72 - 73	64 - 83	3
8	06/11/15	20.8	72	73 - 74	3	72 - 75	71 - 89	3
9	06/12/15	20.5 - 20.8	74	76 - 77	3	73 - 75	74 - 86	3
10	06/15/15	20.8	73	76 - 77	3	73 - 75	73 - 85	3
11	06/16/15	20.6 - 20.9	73	72	3	73	79 - 88	3

Legend: °F = degrees Fahrenheit

% = percent

Table G-3 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Daily Environmental Data Intermediate (0.5 mg/L) Concentration Exposures

Exposure No.	Date	Chamber Oxygen Range (%)	Chamber Temperature Range (°F)	Chamber Relative Humidity Range (%)	(N)	Exposure Box Temperature Range (°F)	Exposure Box Relative Humidity Range (%)	(N)
1	06/02/15	21.2	70	61	3	68	67 - 79	3
2	06/03/15	20.4 - 20.7	70	69 - 71	2	70 - 72	77 - 88	2
3	06/04/15	20.7	70	66 - 67	3	70 - 72	67 - 82	3
4	06/05/15	20.7	70	66 - 69	3	70	72 - 86	3
5	06/08/15	20.6	72	71 - 73	3	73 - 75	70 - 87	3
6	06/09/15	20.5	72	75 - 78	3	72 - 73	63 - 88	3
7	06/10/15	20.7 - 21.0	73	72 - 74	3	72 - 73	69 - 89	3
8	06/11/15	20.5	72 - 73	75 - 77	3	73 - 75	80 - 92	3
9	06/12/15	20.5	74	78 - 79	3	73 - 75	75 - 92	3
10	06/15/15	20.8	72 - 73	77	3	73 - 75	71 - 89	3
11	06/16/15	20.9	72	72	3	73	76 - 89	3

Legend: °F = degrees Fahrenheit

% = percent

Table G-4 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Daily Environmental Data High (1.5 mg/L) Concentration Exposures

Exposure No.	Date	Chamber Oxygen Range (%)	Chamber Temperature Range (°F)	Chamber Relative Humidity Range (%)	(N)	Exposure Box Temperature Range (°F)	Exposure Box Relative Humidity Range (%)	(N)
1	06/02/15	21.2	70	59 - 60	3	68 - 70	68 - 83	3
2	06/03/15	20.4 - 20.7	70	56 - 61	3	68 - 70	75 - 82	3
3	06/04/15	20.7	68 - 69	58 - 61	3	68 - 72	77 - 90	3
4	06/05/15	20.7	69	55 - 61	3	68 - 72	76 - 90	3
5	06/08/15	20.3 - 20.9	71 - 72	62 - 73	2	71 - 72	58 - 84	2
6	06/09/15	20.8	72	63 - 72	3	72 - 73	77 - 86	3
7	06/10/15	21.0	72 - 73	61 - 71	3	72 - 75	79 - 92	3
8	06/11/15	20.8	72 - 73	65 - 71	3	72 - 74	82 - 92	3
9	06/12/15	20.8	73	70 - 78	3	73 - 75	86 - 96	3
10	06/15/15	21.1	71 - 72	70 - 74	3	72 - 75	85 - 94	3
11	06/16/15	20.9	71 - 73	69 - 70	2	72 - 73	79 - 91	3

Legend: °F = degrees Fahrenheit

% = percent

Appendix H

Individual and Summary of Body Mass Data

Table H-1

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Body Mass (grams) Main Study Male Animals

GROUP	ANIMAL ID	Day 1	Day 3	Day 5	Day 8	Day 10	Final*
Control	550	245.6	260.6	299.3	312.6	338.2	306.8
	552	253.5	264.8	298.4	297.8	329.4	303.9
	553	232.3	244.6	286.5	303.6	339.5	315.7
	560	250.0	262.1	292.6	303.7	329.1	310.0
	566	247.5	257.6	287.7	307.0	320.7	300.3
	579	245.0	256.5	289.7	314.0	338.1	316.6
	Mean	245.7	257.7	292.4	306.5	332.5	308.9
	S.D.	7.25	7.09	5.44	6.09	7.39	6.48
0.1 mg/L	551	249.5	259.7	305.8	322.3	361.2	335.9
	557	240.3	249.2	283.0	296.7	330.3	302.9
	571	233.8	245.3	278.8	297.8	328.2	297.0
	572	267.5	269.6	305.1	323.2	356.7	328.9
	573	245.7	250.9	280.8	297.8	324.0	305.0
	582	243.6	254.2	289.2	311.0	331.6	299.5
	Mean	246.7	254.8	290.5	308.1	338.7	311.5
	S.D.	11.48	8.72	12.13	12.49	15.98	16.54
0.5 mg/L	554	215.7	230.2	263.5	269.8	296.0	265.2
o.o	555	226.2	231.7	269.7	277.4	307.8	282.3
	561	244.6	253.4	286.7	293.6	326.0	297.6
	569	246.6	256.3	286.8	296.5	313.2	286.4
	575	267.7	277.5	311.7	330.2	357.6	336.4
	580	247.8	262.0	294.1	310.0	331.8	308.6
	Mean	241.4	251.9	285.4	296.3	322.1	296.1
	S.D.	18.23	18.21	17.30	21.93	21.61	24.58
4 E	550	000.0	0.40.0	004.0	0047	007.0	000 7
1.5 mg/L	556	238.9	248.9	284.6	294.7	327.3	296.7
	564	243.7	256.3	289.4	299.4	330.4	295.4
	565	263.7	277.7	314.0	329.2	359.6	327.9
	567	258.4	271.0	304.3	322.9	349.0	328.9
	574	244.8	250.2	284.4	298.2	318.4	297.8
	577	232.5	236.8	266.4	283.9	311.5	286.9
	Mean	247.0	256.8	290.5	304.7	332.7	305.6
	S.D.	11.84	15.13	16.71	17.52	18.32	18.08

Table H-2

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Body Mass (grams) Main Study Female Animals

GROUP	ANIMAL ID	Day 1	Day 3	Day 5	Day 8	Day 10	Final*
Control	586	179.0	179.4	193.6	193.4	200.6	184.8
	591	198.8	198.4	216.0	211.2	224.4	212.0
	601	209.2	209.0	226.2	219.6	236.3	218.6
	602	226.2	217.1	231.7	240.8	249.5	236.4
	605	197.7	199.7	204.9	205.6	214.0	205.6
	612	190.9	197.1	200.3	208.5	224.5	212.4
	Mean	200.3	200.1	212.1	213.2	224.9	211.6
	S.D.	16.13	12.72	15.04	15.99	17.00	16.85
0.1 mg/L	595	206.5	201.0	217.2	218.6	229.9	211.6
	596	223.5	210.6	226.8	232.3	250.0	227.1
	607	162.0	160.6	167.5	172.1	191.7	171.0
	616	194.5	196.8	209.7	210.8	219.9	207.0
	618	191.7	187.7	196.7	204.3	213.4	206.1
	619	214.2	206.8	215.3	222.6	225.4	212.4
	Mean	198.7	193.9	205.5	210.1	221.7	205.9
	S.D.	21.59	18.17	21.10	20.97	19.26	18.67
0.5 mg/L	588	191.4	189.3	191.4	202.3	216.8	197.3
-	590	192.9	193.7	216.2	209.9	230.3	208.5
	594	185.0	163.8	190.5	186.5	199.5	182.6
	600	171.2	173.5	179.0	185.6	201.8	186.1
	603	231.9	234.2	239.9	241.3	253.1	239.2
	610	202.5	203.3	212.1	216.3	225.7	212.8
	Mean	195.8	193.0	204.9	207.0	221.2	204.4
	S.D.	20.48	24.70	22.20	20.84	19.94	20.78
1.5 mg/L	584	205.0	207.8	216.0	213.7	229.3	213.7
	597	206.9	200.3	208.5	213.4	229.3	213.8
	606	182.7	179.4	194.2	193.4	201.2	189.3
	609	185.4	194.6	207.8	213.1	225.3	211.8
	614	214.1	218.7	228.3	242.0	249.3	233.1
	615	188.0	198.2	205.1	201.8	216.0	203.2
	Mean	197.0	199.8	210.0	212.9	225.1	210.8
	S.D.	13.22	13.17	11.42	16.44	15.97	14.39

Table H-3Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Body Mass (grams)

Recovery Male Animals

			Expo	days		Elapsed Re	covery Da	ys			
GROUP	ANIMAL ID	Day 1	Day 3	Day 5	Day 8	Day 10	Day 17	Day 24	Day 31	Day 37/38	Final*
Control	548	252.2	268.4	307.5	329.3	354.4	399.7	439.5	479.7	507.4	476.2
	558	228.6	239.9	277.8	294.6	334.7	383.4	416.9	462.8	491.1	453.7
	559	236.6	249.9	294.1	307.5	340.8	385.8	427.7	475.2	507.9	470.1
	562	246.9	252.5	279.0	295.3	314.5	361.4	399.5	430.5	447.0	424.4
	568	262.2	272.1	308.9	335.5	362.6	414.3	457.4	491.8	527.9	502.5
	570	247.1	261.5	292.6	313.8	338.6	388.3	428.3	464.1	498.9	462.9
	Mean	245.6	257.4	293.3	312.7	340.9	388.8	428.2	467.4	496.7	465.0
	S.D.	11.77	12.17	13.35	17.05	16.70	17.65	19.66	20.98	27.28	25.84
1.5 mg/L	549	250.2	255.2	295.7	307.2	338.6	383.1	432.9	475.8	512.6	487.0
	563	253.2	259.4	300.7	312.9	332.0	382.0	427.4	465.1	488.6	466.3
	576	247.2	254.7	300.5	317.2	355.4	412.8	458.7	502.8	542.3	521.3
	578	240.9	249.7	280.6	296.3	320.2	358.6	399.1	443.0	470.4	456.3
	581	238.6	244.9	270.2	282.3	303.2	345.5	386.3	435.5	471.6	447.3
	583	238.2	249.3	274.6	282.2	303.5	336.1	381.0	410.8	443.3	417.7
	Mean	244.7	252.2	287.1	299.7	325.5	369.7	414.2	455.5	488.1	466.0
	S.D.	6.37	5.20	13.58	15.21	20.58	28.38	30.37	32.54	35.02	35.43

Table H-4Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Body Mass (grams) Recovery Female Animals

		Exposure Weekdays									
GROUP	ANIMAL ID	Day 1	Day 3	Day 5	Day 8	Day 10	Day 17	Day 24	Day 31	Day 37/38	Final*
Control	585	164.2	164.0	185.9	191.7	211.4	217.1	222.4	236.0	239.4	225.0
	589	193.6	191.4	210.4	205.8	221.9	243.6	256.2	267.8	272.4	258.6
	592	187.0	186.5	200.7	205.1	215.1	227.9	239.5	250.0	251.8	237.4
	599	214.6	213.8	226.3	235.8	240.4	257.1	253.0	268.0	275.6	256.2
	604	215.9	210.4	219.2	228.7	243.4	261.5	270.4	273.6	291.2	273.8
	611	198.5	202.6	209.8	211.4	223.4	238.0	256.5	261.4	277.1	258.3
	Mean	195.6	194.8	208.7	213.1	225.9	240.9	249.7	259.5	267.9	251.6
	S.D.	19.21	18.41	14.20	16.35	13.16	16.96	16.60	14.04	18.86	17.42
1.5 mg/L	587	235.2	242.5	243.9	243.8	263.1	266.1	279.1	297.7	285.1	278.3
	593	181.8	180.9	191.3	194.6	208.5	220.0	228.9	240.4	242.7	227.3
	598	204.2	195.1	211.7	213.2	229.0	244.0	256.9	268.9	269.9	259.3
	608	180.2	173.8	186.1	189.1	195.6	214.1	211.8	230.9	241.8	218.9
	613	189.1	196.8	205.6	212.7	223.7	243.1	240.4	245.3	249.2	234.6
	617	203.7	204.4	212.1	212.0	223.4	240.9	263.2	274.4	291.0	269.3
	Mean	199.0	198.9	208.5	210.9	223.9	238.0	246.7	259.6	263.3	248.0
	S.D.	20.53	24.10	20.41	19.15	22.81	18.74	24.50	25.12	21.78	24.31

Table H-5Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Body Mass (grams) Main Study Male Animals

	I		Red	Smoke Expo	sed
Period		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L
Day 1	Mean	245.7	246.7	241.4	247.0
	S.D.	7.25	11.48	18.23	11.84
	N	6	6	6	6
Day 3	Mean	257.7	254.8	251.9	256.8
	S.D.	7.09	8.72	18.21	15.13
	N	6	6	6	6
Day 5	Mean	292.4	290.5	285.4	290.5
	S.D.	5.44	12.13	17.30	16.71
	N	6	6	6	6
Day 8	Mean	306.5	308.1	296.3	304.7
	S.D.	6.09	12.49	21.93	17.52
	N	6	6	6	6
Day 10	Mean	332.5	338.7	322.1	332.7
	S.D.	7.39	15.98	21.61	18.32
	N	6	6	6	6
Final ¹	Mean	308.9	311.5	296.1	305.6
	S.D.	6.48	16.54	24.58	18.08
	N	6	6	6	6

Table H-6Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Body Mass (grams) Main Study Female Animals

	I		Red S	Smoke Expo	sed
Period		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L
Day 1	Mean	200.3	198.7	195.8	197.0
	S.D.	16.13	21.59	20.48	13.22
	N	6	6	6	6
Day 3	Mean	200.1	193.9	193.0	199.8
	S.D.	12.72	18.17	24.70	13.17
	N	6	6	6	6
Day 5	Mean	212.1	205.5	204.9	210.0
	S.D.	15.04	21.10	22.20	11.42
	N	6	6	6	6
Day 8	Mean	213.2	210.1	207.0	212.9
	S.D.	15.99	20.97	20.84	16.44
	N	6	6	6	6
Day 10	Mean	224.9	221.7	221.2	225.1
	S.D.	17.00	19.26	19.94	15.97
	N	6	6	6	6
Final ¹	Mean	211.6	205.9	204.4	210.8
	S.D.	16.85	18.67	20.78	14.39
	N	6	6	6	6

Table H-7Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Period		Recovery Control	Recovery 1.5 mg/L
Exposure Weekdays Day 1	Mean S.D. N	245.6 11.77 6	244.7 6.37 6
Day 3	Mean	257.4	252.2
	S.D.	12.17	5.20
	N	6	6
Day 5	Mean	293.3	287.1
	S.D.	13.35	13.58
	N	6	6
Day 8	Mean	312.7	299.7
	S.D.	17.05	15.21
	N	6	6
Day 10	Mean	340.9	325.5
	S.D.	16.70	20.58
	N	6	6
Elapsed Recovery Days Day 17	Mean S.D. N	388.8 17.65 6	369.7 28.38 6
Day 24	Mean	428.2	414.2
	S.D.	19.66	30.37
	N	6	6
Day 31	Mean	467.4	455.5
	S.D.	20.98	32.54
	N	6	6
Day 37/38	Mean	496.7	488.1
	S.D.	27.28	35.02
	N	6	6
Final ¹	Mean	465.0	466.0
	S.D.	25.84	35.43
	N	6	6

Summary of Body Mass (grams) Recovery Male Animals

Table H-8Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Period		Recovery Control	Recovery 1.5 mg/L
Exposure Weekdays Day 1	Mean S.D. N	195.6 19.21 6	199.0 20.53 6
Day 3	Mean	194.8	198.9
	S.D.	18.41	24.10
	N	6	6
Day 5	Mean	208.7	208.5
	S.D.	14.20	20.41
	N	6	6
Day 8	Mean	213.1	210.9
	S.D.	16.35	19.15
	N	6	6
Day 10	Mean	225.9	223.9
	S.D.	13.16	22.81
	N	6	6
Elapsed Recovery Days Day 17	Mean S.D. N	240.9 16.96 6	238.0 18.74 6
Day 24	Mean	249.7	246.7
	S.D.	16.60	24.50
	N	6	6
Day 31	Mean	259.5	259.6
	S.D.	14.04	25.12
	N	6	6
Day 37/38	Mean	267.9	263.3
	S.D.	18.86	21.78
	N	6	6
Final ¹	Mean	251.6	248.0
	S.D.	17.42	24.31
	N	6	6

Summary of Body Mass (grams) Recovery Female Animals

Appendix I

Individual and Summary of Body Mass Change Data

Table I-1

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Body Mass Change (grams) Main Study Male Animals

GROUP	ANIMAL ID	Days 1-3	Days 3-5	Days 5-8	Days 8-10	Net
Control	550	15.0	38.7	13.3	25.6	92.6
	552	11.3	33.6	-0.6	31.6	75.9
	553	12.3	41.9	17.1	35.9	107.2
	560	12.1	30.5	11.1	25.4	79.1
	566	10.1	30.1	19.3	13.7	73.2
	579	11.5	33.2	24.3	24.1	93.1
	Mean	12.1	34.7	14.1	26.1	86.9
	S.D.	1.64	4.69	8.55	7.55	13.06
0.1 mg/L	551	10.2	46.1	16.5	38.9	111.7
0	557	8.9	33.8	13.7	33.6	90.0
	571	11.5	33.5	19.0	30.4	94.4
	572	2.1	35.5	18.1	33.5	89.2
	573	5.2	29.9	17.0	26.2	78.3
	582	10.6	35.0	21.8	20.6	88.0
	Mean	8.1	35.6	17.7	30.5	91.9
	S.D.	3.67	5.49	2.71	6.41	11.04
0.5 mg/L	554	14.5	33.3	6.3	26.2	80.3
	555	5.5	38.0	7.7	30.4	81.6
	561	8.8	33.3	6.9	32.4	81.4
	569	9.7	30.5	9.7	16.7	66.6
	575	9.8	34.2	18.5	27.4	89.9
	580	14.2	32.1	15.9	21.8	84.0
	Mean	10.4	33.6	10.8	25.8	80.6
	S.D.	3.43	2.52	5.13	5.77	7.69
1.5 mg/L	556	10.0	35.7	10.1	32.6	88.4
-	564	12.6	33.1	10.0	31.0	86.7
	565	14.0	36.3	15.2	30.4	95.9
	567	12.6	33.3	18.6	26.1	90.6
	574	5.4	34.2	13.8	20.2	73.6
	577	4.3	29.6	17.5	27.6	79.0
	Mean	9.8	33.7	14.2	28.0	85.7
	S.D.	4.07	2.38	3.63	4.48	8.09

Table I-2

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Body Mass Change (grams) Main Study Female Animals

GROUP	ANIMAL ID	Days 1-3	Days 3-5	Days 5-8	Days 8-10	Net
Control	586	0.4	14.2	-0.2	7.2	21.6
	591	-0.4	17.6	-4.8	13.2	25.6
	601	-0.2	17.2	-6.6	16.7	27.1
	602	-9.1	14.6	9.1	8.7	23.3
	605	2.0	5.2	0.7	8.4	16.3
	612	6.2	3.2	8.2	16.0	33.6
	Mean	-0.2	12.0	1.1	11.7	24.6
	S.D.	5.01	6.22	6.49	4.14	5.79
0.1 mg/L	595	-5.5	16.2	1.4	11.3	23.4
	596	-12.9	16.2	5.5	17.7	26.5
	607	-1.4	6.9	4.6	19.6	29.7
	616	2.3	12.9	1.1	9.1	25.4
	618	-4.0	9.0	7.6	9.1	21.7
	619	-7.4	8.5	7.3	2.8	11.2
	Mean	-4.8	11.6	4.6	11.6	23.0
	S.D.	5.21	4.06	2.81	6.18	6.39
0.5 mg/L	588	-2.1	2.1	10.9	14.5	25.4
	590	0.8	22.5	-6.3	20.4	37.4
	594	-21.2	26.7	-4.0	13.0	14.5
	600	2.3	5.5	6.6	16.2	30.6
	603	2.3	5.7	1.4	11.8	21.2
	610	0.8	8.8	4.2	9.4	23.2
	Mean	-2.9	11.9	2.1	14.2	25.4
	S.D.	9.13	10.16	6.49	3.81	7.90
1.5 mg/L	584	2.8	8.2	-2.3	15.6	24.3
	597	-6.6	8.2	4.9	15.9	22.4
	606	-3.3	14.8	-0.8	7.8	18.5
	609	9.2	13.2	5.3	12.2	39.9
						~ ~ ~
	614	4.6	9.6	13.7	7.3	35.2
	614 615	4.6 10.2	9.6 6.9	13.7 -3.3	7.3 14.2	35.2 28.0

Table I-3

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Body Mass Change (grams) Recovery Male Animals

			Exposure Weekdays Elapsed Recovery Days					'S		
GROUP	ANIMAL ID	Days 1-3	Days 3-5	Days 5-8	Days 8-10	Days 10-17	Days 17-24	Days 24-31	Days 31-37/38	Net
Control	548	16.2	39.1	21.8	25.1	45.3	39.8	40.2	27.7	255.2
	558	11.3	37.9	16.8	40.1	48.7	33.5	45.9	28.3	262.5
	559	13.3	44.2	13.4	33.3	45.0	41.9	47.5	32.7	271.3
	562	5.6	26.5	16.3	19.2	46.9	38.1	31.0	16.5	200.1
	568	9.9	36.8	26.6	27.1	51.7	43.1	34.4	36.1	265.7
	570	14.4	31.1	21.2	24.8	49.7	40.0	35.8	34.8	251.8
	Mean	11.8	35.9	19.4	28.3	47.9	39.4	39.1	29.4	251.1
	S.D.	3.76	6.25	4.76	7.36	2.63	3.38	6.58	7.15	25.96
1.5 mg/L	549	5.0	40.5	11.5	31.4	44.5	49.8	42.9	36.8	262.4
	563	6.2	41.3	12.2	19.1	50.0	45.4	37.7	23.5	235.4
	576	7.5	45.8	16.7	38.2	57.4	45.9	44.1	39.5	295.1
	578	8.8	30.9	15.7	23.9	38.4	40.5	43.9	27.4	229.5
	581	6.3	25.3	12.1	20.9	42.3	40.8	49.2	36.1	233.0
	583	11.1	25.3	7.6	21.3	32.6	44.9	29.8	32.5	205.1
	Mean	7.5	34.9	12.6	25.8	44.2	44.6	41.3	32.6	243.4
	S.D.	2.19	8.85	3.26	7.45	8.72	3.48	6.70	6.12	31.20

Table I-4

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Body Mass Change (grams) Recovery Female Animals

			Exposure Weekdays			Elapsed Recovery Days				
GROUP	ANIMAL ID	Days 1-3	Days 3-5	Days 5-8	Days 8-10	Days 10-17	Days 17-24	Days 24-31	Days 31-37/38	Net
Control	585	-0.2	21.9	5.8	19.7	5.7	5.3	13.6	3.4	75.2
	589	-2.2	19.0	-4.6	16.1	21.7	12.6	11.6	4.6	78.8
	592	-0.5	14.2	4.4	10.0	12.8	11.6	10.5	1.8	64.8
	599	-0.8	12.5	9.5	4.6	16.7	-4.1	15.0	7.6	61.0
	604	-5.5	8.8	9.5	14.7	18.1	8.9	3.2	17.6	75.3
	611	4.1	7.2	1.6	12.0	14.6	18.5	4.9	15.7	78.6
	Mean	-0.8	13.9	4.4	12.9	14.9	8.8	9.8	8.5	72.3
	S.D.	3.11	5.71	5.34	5.25	5.46	7.68	4.75	6.66	7.53
1.5 mg/L	587	7.3	1.4	-0.1	19.3	3.0	13.0	18.6	-12.6	49.9
	593	-0.9	10.4	3.3	13.9	11.5	8.9	11.5	2.3	60.9
	598	-9.1	16.6	1.5	15.8	15.0	12.9	12.0	1.0	65.7
	608	-6.4	12.3	3.0	6.5	18.5	-2.3	19.1	10.9	61.6
	613	7.7	8.8	7.1	11.0	19.4	-2.7	4.9	3.9	60.1
	617	0.7	7.7	-0.1	11.4	17.5	22.3	11.2	16.6	87.3
	Mean	-0.1	9.5	2.5	13.0	14.2	8.7	12.9	3.7	64.3
	S.D.	6.89	5.07	2.70	4.41	6.16	9.72	5.30	9.93	12.45

Table I-5Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

			Red	Smoke Expo	sed
Period		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L
Days 1-3	Mean	12.1	8.1	10.4	9.8
	S.D.	1.64	3.67	3.43	4.07
	N	6	6	6	6
Days 3-5	Mean	34.7	35.6	33.6	33.7
	S.D.	4.69	5.49	2.52	2.38
	N	6	6	6	6
Days 5-8	Mean	14.1	17.7	10.8	14.2
	S.D.	8.55	2.71	5.13	3.63
	N	6	6	6	6
Days 8-10	Mean	26.1	30.5	25.8	28.0
	S.D.	7.55	6.41	5.77	4.48
	N	6	6	6	6
Net	Mean	86.9	91.9	80.6	85.7
	S.D.	13.06	11.04	7.69	8.09
	N	6	6	6	6

Summary of Body Mass Change (grams) Main Study Male Animals

Table I-6Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

	I		Red Smoke Exposed				
Period		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L		
Days 1-3	Mean	-0.2	-4.8	-2.9	2.8		
	S.D.	5.01	5.21	9.13	6.70		
	N	6	6	6	6		
Days 3-5	Mean	12.0	11.6	11.9	10.2		
	S.D.	6.22	4.06	10.16	3.14		
	N	6	6	6	6		
Days 5-8	Mean	1.1	4.6	2.1	2.9		
	S.D.	6.49	2.81	6.49	6.41		
	N	6	6	6	6		
Days 8-10	Mean	11.7	11.6	14.2	12.2		
	S.D.	4.14	6.18	3.81	3.81		
	N	6	6	6	6		
Net	Mean	24.6	23.0	25.4	28.1		
	S.D.	5.79	6.39	7.90	8.11		
	N	6	6	6	6		

Summary of Body Mass Change (grams) Main Study Female Animals

Table I-7Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Recovery Recovery Period Control 1.5 mg/L Exposure Weekdays Days 1-3 Mean 11.8 7.5* S.D. 3.76 2.19 Ν 6 6 Days 3-5 Mean 35.9 34.9 S.D. 6.25 8.85 Ν 6 6 Mean Days 5-8 19.4 12.6 S.D. 4.76 3.26 Ν 6 6 Days 8-10 Mean 25.8 28.3 S.D. 7.36 7.45 Ν 6 6 **Elapsed Recovery Days** Days 10-17 Mean 47.9 44.2 S.D. 2.63 8.72 Ν 6 6 44.6* Days 17-24 Mean 39.4 S.D. 3.38 3.48 Ν 6 6 Mean 39.1 41.3 Days 24-31 S.D. 6.58 6.70 Ν 6 6 Days 31-37/38 Mean 29.4 32.6 S.D. 7.15 6.12 Ν 6 6 243.4 Net Mean 251.1 S.D. 25.96 31.20 Ν 6 6

Summary of Body Mass Change (grams) Recovery Male Animals

* p < 0.05

Table I-8Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Recovery Recovery Period Control 1.5 mg/L Exposure Weekdays Mean -0.1 Days 1-3 -0.8 S.D. 6.89 3.11 Ν 6 6 Days 3-5 Mean 13.9 9.5 S.D. 5.71 5.07 Ν 6 6 Days 5-8 Mean 4.4 2.5 S.D. 2.70 5.34 Ν 6 6 Days 8-10 12.9 Mean 13.0 S.D. 5.25 4.41 Ν 6 6 **Elapsed Recovery Days** Days 10-17 14.9 Mean 14.2 S.D. 5.46 6.16 Ν 6 6 Days 17-24 8.8 8.7 Mean S.D. 7.68 9.72 Ν 6 6 Days 24-31 Mean 9.8 12.9 S.D. 4.75 5.30 Ν 6 6 Days 31-37/38 Mean 8.5 3.7 S.D. 6.66 9.93 Ν 6 6 Net Mean 72.3 64.3 S.D. 12.45 7.53 Ν 6 6

Summary of Body Mass Change (grams) Recovery Female Animals

Toxicology Report No. S.0036333-15, April – September 2015

Appendix J

Individual and Summary of Food Consumption Data

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Food Consumption (grams) Main Study Male Animals

GROUP	ANIMAL ID	Days 1-3	Days 3-5	Days 5-8	Days 8-10	Net
Control	550	50.1	110.2	73.5	102.1	335.9
	552	53.1	111.7	53.6	125.8	344.2
	553	46.2	111.1	80.6	118.8	356.7
	560	47.8	105.1	73.8	104.8	331.5
	566	47.4	100.3	76.2	94.9	318.8
_	579	46.5	108.5	81.2	113.9	350.1
	Mean	48.5	107.8	73.2	110.1	339.5
	S.D.	2.63	4.38	10.12	11.49	13.68
0.1 mg/L	551	47.7	111.4	81.1	122.6	362.8
0.1 mg/L	557	44.2	102.7	70.7	107.4	325.0
	571	47.5	100.7	75.4	109.9	333.5
	572	45.7	113.6	82.5	120.3	362.1
	573	45.0	107.1	78.6	108.0	338.7
	582	50.2	109.9	81.5	103.8	345.4
	Mean	46.7	107.6	78.3	112.0	344.6
	S.D.	2.19	5.05	4.52	7.62	15.36
0.5 mg/L	554	44.0	95.3	61.9	95.3	296.5
o.o mg/L	555	30.1	97.4	64.5	99.7	291.7
	561	44.9	100.9	67.7	100.5	314.0
	569	48.1	102.2	67.7	94.6	312.6
	575	50.4	111.5	78.8	114.8	355.5
	580	55.7	117.4	81.4	115.3	369.8
	Mean	45.5	104.1	70.3	103.4	323.4
	S.D.	8.66	8.58	7.91	9.35	31.99
1.5 mg/L	556	47.6	102.5	72.7	101.5	324.3
1.5 mg/∟	564	44.0	96.5	65.8	101.3	310.5
	565	44.0 54.2	90.5 120.2	82.7	104.2	372.9
	567	54.2 51.0	120.2	85.4	117.2	372.9
	574	44.2	105.6	75.0	106.6	331.4
	577	38.3	93.4	73.0	100.0	306.8
	Mean	46.6	105.9	75.7	102.0	336.1
	S.D.	5.65	10.85	7.20	6.88	29.10
	0.21	0.00			0.00	20110

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Food Consumption (grams) Main Study Female Animals

GROUP	ANIMAL ID	Days 1-3	Days 3-5	Days 5-8	Days 8-10	Net
Control	586	27.7	67.1	47.0	66.3	208.1
	591	32.1	73.4	49.5	73.4	228.4
	601	33.0	77.4	54.1	79.0	243.5
	602	36.9	90.0	68.0	89.6	284.5
	605	34.4	76.8	54.1	77.8	243.1
	612	36.4	77.7	62.8	87.0	263.9
	Mean	33.4	77.1	55.9	78.9	245.3
	S.D.	3.36	7.49	8.01	8.61	26.68
0.1 mg/L	595	33.1	83.7	53.3	76.6	246.7
o.n mg/∟	596	29.3	79.7	51.4	76.8	237.2
	607	26.8	65.3	41.7	65.6	199.4
	616	33.0	76.4	53.2	76.9	239.5
	618	30.3	74.9	54.1	77.6	236.9
	619	31.3	71.9	53.6	74.1	230.9
	Mean	30.6	75.3	51.2	74.6	231.8
	S.D.	2.40	6.37	4.75	4.57	16.66
0.5 mg/l	588	29.7	72.8	50.2	74.1	226.8
0.5 mg/L	500 590	29.7 30.2	72.8 80.9	50.2 48.9	83.1	220.0 243.1
	590 594	50.2 6.4	60.9 60.7	40.9 51.5	70.6	243.1 189.2
	594 600	0.4 28.4	67.2	48.9	70.6 75.6	220.1
	600 603	26.4 36.0	81.1	40.9 58.8	75.6 87.1	263.0
	610	27.8	70.2	50.3	69.7	203.0 218.0
	Mean	26.4	70.2 72.1	51.4	76.7	210.0 226.7
	S.D.	10.23	7.96	3.74	6.98	24.95
1.5 mg/L	584	34.1	72.5	47.4	73.4	227.4
	597	31.9	68.5	49.7	74.5	224.6
	606	26.1	66.6	43.4	66.0	202.1
	609	34.6	73.8	53.8	78.2	240.4
		00.0	00.0	F7 0	80.2	257.3
	614	36.3	83.6	57.2		207.0
	615	36.3 36.4	83.6 72.8	49.8	78.1	237.3

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Food Consumption (grams) Recovery Male Animals

		Exposure Weekdays			Elapsed Recovery Days					
GROUP	ANIMAL ID	Days 1-3	Days 3-5	Days 5-8	Days 8-10	Days 10-17	Days 17-24	Days 24-31	Days 31-37/38	Net
Control	548	54.6	111.7	83.2	107.9	202.2	212.3	212.6	203.9	1188.4
	558	42.3	102.0	74.9	113.3	214.7	217.9	226.7	212.8	1204.6
	559	46.0	110.0	78.6	111.4	207.6	212.2	229.0	216.8	1211.6
	562	41.2	97.8	73.0	99.5	189.5	204.2	204.1	167.1	1076.4
	568	53.8	117.7	86.9	118.1	229.8	242.5	229.5	205.0	1283.3
	570	49.1	106.5	82.3	110.8	215.9	224.7	223.1	193.5	1205.9
	Mean	47.8	107.6	79.8	110.2	210.0	219.0	220.8	199.9	1195.0
	S.D.	5.67	7.12	5.29	6.22	13.68	13.39	10.29	17.95	66.92
1.5 mg/L	549	44.7	109.9	75.0	106.9	198.3	224.2	226.1	225.7	1210.8
	563	46.6	113.2	79.3	105.8	212.8	230.1	236.6	217.8	1242.2
	576	49.3	123.4	86.8	126.3	238.8	254.9	238.7	247.4	1365.6
	578	44.2	105.3	75.0	105.7	199.6	211.2	221.9	187.8	1150.7
	581	41.2	95.1	66.2	94.8	177.7	189.3	207.8	176.3	1048.4
	583	46.4	96.1	64.1	96.4	175.1	191.9	195.9	171.4	1037.3
	Mean	45.4	107.2	74.4	106.0	200.4	216.9	221.2	204.4	1175.8
	S.D.	2.73	10.76	8.39	11.23	23.62	24.86	16.66	30.45	124.66

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Food Consumption (grams) Recovery Female Animals

		Exposure Weekdays		Elapsed Recovery Days						
GROUP	ANIMAL ID	Days 1-3	Days 3-5	Days 5-8	Days 8-10	Days 10-17	Days 17-24	Days 24-31	Days 31-37/38	Net
Control	585	30.7	78.3	49.7	80.1	131.1	137.1	135.1	123.4	765.5
	589	27.5	82.1	52.5	80.2	145.3	145.3	142.2	142.7	817.8
	592	35.0	73.2	51.9	70.2	130.6	133.1	127.3	125.4	746.7
	599	38.2	82.7	59.1	76.6	146.7	138.9	145.0	113.2	800.4
	604	31.0	74.8	55.9	78.7	145.6	153.8	146.9	125.1	811.8
	611	35.3	74.7	53.1	76.8	140.5	149.1	137.2	125.7	792.4
	Mean	33.0	77.6	53.7	77.1	140.0	142.9	139.0	125.9	789.1
	S.D.	3.89	4.06	3.32	3.72	7.38	7.86	7.27	9.49	27.68
1.5 mg/L	587	47.1	77.0	53.9	80.4	137.9	148.2	145.4	135.8	825.7
	593	31.1	73.1	49.4	75.1	138.4	146.0	136.1	133.3	782.5
	598	29.1	77.2	47.4	71.8	144.0	140.1	142.1	134.8	786.5
	608	28.0	69.7	46.2	69.4	128.6	123.6	125.0	112.2	702.7
	613	32.0	73.2	51.4	75.9	143.6	135.7	130.2	107.7	749.7
	617	33.9	78.0	52.8	76.4	145.9	158.1	154.0	140.2	839.3
	Mean	33.5	74.7	50.2	74.8	139.7	142.0	138.8	127.3	781.1
	S.D.	6.97	3.23	3.05	3.83	6.33	11.79	10.56	13.73	50.08

Table J-5Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

			Red	Smoke Expo	sed
Period		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L
Days 1-3	Mean	48.5	46.7	45.5	46.6
	S.D.	2.63	2.19	8.66	5.65
	N	6	6	6	6
Days 3-5	Mean	107.8	107.6	104.1	105.9
	S.D.	4.38	5.05	8.58	10.85
	N	6	6	6	6
Days 5-8	Mean	73.2	78.3	70.3	75.7
	S.D.	10.12	4.52	7.91	7.20
	N	6	6	6	6
Days 8-10	Mean	110.1	112.0	103.4	107.9
	S.D.	11.49	7.62	9.35	6.88
	N	6	6	6	6
Net	Mean	339.5	344.6	323.4	336.1
	S.D.	13.68	15.36	31.99	29.10
	N	6	6	6	6

Summary of Food Consumption (grams) Main Study Male Animals

Table J-6Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

			Red Smoke Exposed				
Period		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L		
Days 1-3	Mean	33.4	30.6	26.4	33.2		
	S.D.	3.36	2.40	10.23	3.87		
	N	6	6	6	6		
Days 3-5	Mean	77.1	75.3	72.1	73.0		
	S.D.	7.49	6.37	7.96	5.91		
	N	6	6	6	6		
Days 5-8	Mean	55.9	51.2	51.4	50.2		
	S.D.	8.01	4.75	3.74	4.83		
	N	6	6	6	6		
Days 8-10	Mean	78.9	74.6	76.7	75.1		
	S.D.	8.61	4.57	6.98	5.11		
	N	6	6	6	6		
Net	Mean	245.3	231.8	226.7	231.5		
	S.D.	26.68	16.66	24.95	18.47		
	N	6	6	6	6		

Summary of Food Consumption (grams) Main Study Female Animals

Table J-7Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Food Consumption (grams) Recovery Male Animals

Period	I	Recovery Control	Recovery 1.5 mg/L
		Control	1.5 mg/L
Exposure Weekdays	Maan	47.0	
Days 1-3	Mean	47.8	45.4
	S.D. N	5.67 6	2.73 6
	IN	б	6
Days 3-5	Mean	107.6	107.2
Days 5-5	S.D.	7.12	107.2
	3.D. N	6	6
	IN	0	0
Days 5-8	Mean	79.8	74.4
Days 5-0	S.D.	5.29	8.39
	3.D. N	6	6
	IN	0	0
Days 8-10	Mean	110.2	106.0
Days 0-10	S.D.	6.22	11.23
	3.D. N	6	6
		0	0
Elapsed Recovery Days			
Days 10-17	Mean	210.0	200.4
Days 10-17	S.D.	13.68	23.62
	3.D. N	6	6
	IN	0	0
Days 17-24	Mean	219.0	216.9
Days 17-24	S.D.	13.39	24.86
	3.D. N	6	6
		0	0
Days 24-31	Mean	220.8	221.2
Duys 24 01	S.D.	10.29	16.66
	0.D. N	6	6
		0	0
Days 31-37/38	Mean	199.9	204.4
24,001 01,00	S.D.	17.95	30.45
	3.D. N	6	6
		U	0
Net	Mean	1195.0	1175.8
100	S.D.	66.92	124.66
	3.D. N	6	6
		0	0
	•		

Table J-8Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Food Consumption (grams) Recovery Female Animals

Period		Recovery Control	Recovery 1.5 mg/L
Exposure Weekdays Days 1-3	Mean S.D. N	33.0 3.89 6	33.5 6.97 6
Days 3-5	Mean	77.6	74.7
	S.D.	4.06	3.23
	N	6	6
Days 5-8	Mean	53.7	50.2
	S.D.	3.32	3.05
	N	6	6
Days 8-10	Mean	77.1	74.8
	S.D.	3.72	3.83
	N	6	6
Elapsed Recovery Days Days 10-17	Mean S.D. N	140.0 7.38 6	139.7 6.33 6
Days 17-24	Mean	142.9	142.0
	S.D.	7.86	11.79
	N	6	6
Days 24-31	Mean	139.0	138.8
	S.D.	7.27	10.56
	N	6	6
Days 31-37/38	Mean	125.9	127.3
	S.D.	9.49	13.73
	N	6	6
Net	Mean	789.1	781.1
	S.D.	27.68	50.08
	N	6	6

Toxicology Report No. S.0036333-15, April – September 2015

Appendix K

Clinical Observations

Table K-1 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Daily Clinical Observations

Main	Study	and	Recovery	Male	Animals

Group	Animal ID	Observation	First Weekday*	Last Weekday*
-			Observed	Observed
Control	550 552	None	1	10 10
	553	Dried red material on nose	7	10
	560	None	1	10
	566	Dried red material on nose	6	7
	579 548	None Black stain on back	1 3	10 4
	540	Dried red material on nose	3	8
	558	Dried red material on nose	1	9
	559	Dried red material on nose	4	8
	562 568	Dried red material on nose Dried red material on nose	3 2	3 10
	570	Dried red material on nose	3	7
		Hair loss-Right front limb Hair loss-Both front limbs	15 20	17 30
0.1 mg/L	551	Red-stained fur on head (slight) Wet/red-stained nose	1 1	4 1
	557	Wet/red-stained nose (slight) Red-stained fur on head (slight)	2	10 9
	557	Wet/red-stained nose	1	1
		Wet/red-stained nose (slight)	2	10
	571	Wet/red-stained nose	1	1
		Wet/red-stained nose (slight) Red-stained fur on head (slight)	2 3	10 7
		Wet/red-stained mouth and chin	8	8
	572	Wet/red-stained nose (slight)	1	9
		Red-stained fur on head (slight)	3 10	6 10
		Red-stained fur on head Wet/red-stained nose	10	10
	573	Red-stained fur on head (slight)	1	1
		Wet/red-stained nose (slight)	2	9
		Red-stained fur on head Wet/red-stained nose	10 10	10 10
	582	Red-stained fur on head (slight)	1	6
		Wet/red-stained nose (slight)	2	9
		Red-stained fur on head Wet/red-stained nose None	10 10 5	10 10 5
0.5 mg/L	554	Red-stained fur on head	1	10
0.0 mg/2	001	Wet/red-stained nose	1	8
		Wet/red-stained mouth and chin	1	5
	555	Red-stained fur on head (slight) Red-stained fur on head	3 1	9 10
	555	Wet/red-stained nose	5	10
		Wet/red-stained mouth and chin	5	9
	561	Red-stained fur on head (slight)	1	9
		Red-stained fur on head Wet/red-stained nose	2 3	10 10
		Wet/red-stained most	5	5
	569	Red-stained fur on head	1	10
	575	Wet/red-stained nose Red-stained fur on head	1	9 10
	575	Wet/red-stained nose	1	10
		Wet/red-stained mouth and chin	1	6
	500	Red-stained fur on head (slight)	8	8
	580	Red-stained fur on head Wet/red-stained nose	1	10 9
		Wet/red-stained mouth and chin Red-stained fur on head (slight)	1 7	5 7
1.5 mg/L	556	Red-stained fur on head	1	10
•		Wet/red-stained nose	1	10
	504	Wet/red-stained mouth and chin	3	10
	564	Red-stained fur on head Wet/red-stained nose	1	10 5
		Wet/red-stained mouth and chin	4	8
	565	Red-stained fur on head	1	10
		Wet/red-stained nose Wet/red-stained mouth and chin	1	10 3
	567	Red-stained fur on head	1	10
		Wet/red-stained nose	1	9
	574	Wet/red-stained mouth and chin Red-stained fur on head	4	6 10
	574	Wet/red-stained nose	3	9
		Wet/red-stained mouth and chin	5	8
	577	Red-stained fur on head	1	10 9
		Wet/red-stained nose Wet/red-stained mouth and chin	4	9
	549	Red-stained fur on head	1	10
	500	Wet/red-stained nose	1	10
	563	Red-stained fur on head Wet/red-stained nose	1	10 10
		Wet/red-stained mouth and chin	1	10
		Red-stained fur on head (slight)	3	3
	576	Red-stained fur on head Wet/red-stained nose	1	10 9
		Wet/red-stained moste Wet/red-stained mouth and chin	5	5
	578	Red-stained fur on head	1	10
		Wet/red-stained nose	2	10
	581	Wet/red-stained mouth and chin Red-stained fur on head	5 1	10 10
		Wet/red-stained nose	2	9
	500	Wet/red-stained mouth and chin	3	9
	583	Red-stained fur on head Wet/red-stained nose	1	10 9
		Wet/red-stained moste Wet/red-stained mouth and chin	2	6

* = Signs may be observed intermittently between first and last weekday.

Table K-2 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Daily Clinical Observations Main Study and Recovery Female Animals

		Main Study and Recovery Female Animals		
Group	Animal ID	Observation	First Weekday* Observed	Last Weekday* Observed
Control	586	None	1	10
	591	None	1	10
	601 602	None	1	10 10
	605	None	1	10
	612	None	1	8
	585	Dried red material around right eye None	9 1	11 10
	589	None	1	10
	592	None	1	9
	599	Hair loss both front limbs None	10 1	31 10
		Dried red material around nose	6	9
	604	Hair loss both front limbs None	20	30 10
	611	None	1	10
0.1 mg/L	595	Red-stained fur on head (slight)	1	6
		Wet/red-stained nose Wet/red-stained nose (slight)	1	1 10
	596	Wet/red-stained nose (slight)	1	10
		None Red-stained fur on head (slight)	3 4	9 7
	607	Wet/red-stained nose (slight)	4	10
		Red-stained fur on head (slight)	1	3
		None	2	9
	616	Red-stained fur on head (slight) None	1 2	1
		Wet/red-stained nose (slight)	3	9
		Red-stained fur on head	10	10
		Wet/red-stained nose Wet/red-stained mouth and chin	10 10	10 10
	618	Red-stained fur on head (slight)	1	5
		Wet/red-stained nose (slight) None	1	7
		Hair loss both front limbs	9	9
		Red-stained fur on head	10	10
	619	Wet/red-stained mouth and chin	10 1	10
	019	Red-stained fur on head (slight) Wet/red-stained nose (slight)	2	5 9
		None	2	8
		Red-stained fur on head Wet/red-stained nose	10 10	10 10
0.5 mg/L	588	Red-stained fur on head	1	10
		Wet/red-stained nose	1	10
		Red-stained fur on head (slight) Wet/red-stained mouth and chin	3	3
	590	Red-stained fur on head	4	4 10
		Wet/red-stained nose	1	10
		White/opaque right eye (Pre-existing condition)	1	11
		Wet/red-stained mouth and chin Red-stained fur on head (slight)	9	8 9
	594	Red-stained fur on head	1	10
		Red-stained fur on head (slight) Wet/red-stained nose	2 4	4 10
	600	Red-stained fur on head	1	10
		Wet/red-stained nose	1	9
		Wet/red-stained mouth and chin Red-stained fur on head (slight)	2	8
	603	Red-stained fur on head	1	10
		Wet/red-stained nose	2	9
	610	Wet/red-stained mouth and chin Red-stained fur on head	6 1	6 10
		Wet/red-stained nose	1	9
1.5 mg/L	584	Red-stained fur on head	1	10
		Wet/red-stained nose Wet/red-stained mouth and chin	1 3	10 10
	597	Red-stained fur on head	1	10
		Wet/red-stained nose	2	10
	606	Wet/red-stained mouth and chin Red-stained fur on head	4	10 10
		Wet/red-stained nose	•	9
	609	Red-stained fur on head	1	10
		Wet/red-stained mouth and chin Wet/red-stained nose	2	9 9
	614	Red-stained fur on head	1	10
	015	Wet/red-stained nose	3	9
	615	Red-stained fur on head Wet/red-stained nose	1 3	10 9
		Wet/red-stained most	3	8
	587	Red-stained fur on head	1	10
		Wet/red-stained nose Wet/red-stained mouth and chin	1	10 10
		Orange-colored urine	9	9
	500	Hair loss both front limbs Red-stained fur on head	19	31
	593	Wet/red-stained mouth and chin	1	10 6
		Red-stained fur on head (slight)	3	8
		Wet/red-stained nose	4	10
		Alopecia - left side of abdomen & left hind limb Alopecia - left side of abdomen, urogenital area & left hind limb	14 25	23 31
	598	Red-stained fur on head	1	10
		Wet/red-stained nose	6	10
	608	Wet/red-stained mouth and chin Red-stained fur on head	6 1	10 9
	300	Wet/red-stained nose	1	9
	<i></i>	Red-stained fur on head (slight)	10	10
	613	Red-stained fur on head Wet/red-stained nose	1	10 10
		Wet/red-stained moste Wet/red-stained mouth and chin	8	9
		werreu-staineu mouth and chim		
	617	Red-stained fur on head Wet/red-stained nose	1	10 9

* = Signs may be observed intermittently between first and last weekday.

Toxicology Report No. S.0036333-15, April – September 2015

Appendix L

Individual and Summary of Clinical Chemistry Data

Table L-1 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Clinical Chemistry Main Study Male Animals

	-	ALB	ALKP	ALT	AMYL	AST	BUN	Ca	CHOL	CREA	GLOB	GLU	LDH	PHOS	TBIL	TP	Na	к	CI
GROUP	ANIMAL ID	(g/dL)	(U/L)	(U/L)	(U/L)	(U/L)	(mg/dL)	(mg/dL)	(mg/dL)	(mg/dL)	(g/dL)	(mg/dL)	(U/L)	(mg/dL)	(mg/dL)	(g/dL)	(mmol/L)	(mmol/L)	(mmol/L)
Control	550	3.8	241	68	1768	98	16	13.2	70	0.3	3.0	236	356	14.3	0.2	6.7	152	9.4	103
	552	3.5	222	46	1400	103	14	12.5	80	0.3	2.7	109	339	13.9	0.2	6.2	150	8.9	104
	553	3.3	317	72	1432	118	14	12.1	85	0.4	2.8	103	310	15.9	0.1	6.2	151	9.2	106
	560	3.7	239	66	1498	109	19	12.2	78	0.3	3.0	357	339	14.7	0.3	6.7	146	10.0	100
	566	3.2	150	58	1339	91	18	12.2	69	0.2	2.9	195	314	13.4	0.1	6.1	146	9.4	104
	579	3.0	203	60	1060	116	15	12.5	81	0.4	2.8	119	237	14.6	0.1	5.8	146	8.5	104
	Mean	3.4	228.7	61.7	1416.2	105.8	16.0	12.5	77.2	0.3	2.9	186.5	315.8	14.5	0.2	6.3	148.5	9.2	103.5
	S.D.	0.31	54.69	9.24	229.70	10.50	2.10	0.40	6.37	0.08	0.12	99.12	42.28	0.85	0.08	0.35	2.81	0.51	1.97
0.1 mg/L	551	3.0	158	58	1030	119	16	12.2	56	0.4	2.8	120	267	13.1	0.1	5.8	146	9.8	105
	557	3.5	233	63	1123	108	15	12.4	97	0.4	2.7	73	342	16.1	0.1	6.2	149	12.3	106
	571	4.7	286	61	1720	101	15	13.1	85	0.2	1.2	233	189	13.1	0.1	5.9	149	7.2	105
	572	3.4	198	51	1460	14	20	12.5	74	0.4	3.2	208	392	16.1	0.3	6.6	147	11.4	104
	573	2.9	271	74	1287	80	17	13.0	73	0.3	3.7	315	253	15.9	0.2	6.6	144	10.4	102
	582	3.3	129	88	1059	99	19	12.4	82	0.6	2.9	202	257	14.4	0.1	6.2	147	11.4	102
	Mean	3.5	212.5	65.8	1279.8	86.8	17.0	12.6	77.8	0.4	2.8	191.8	283.3	14.8	0.2	6.2	147.0	10.4	104.0
	S.D.	0.65	62.29	13.20	269.09	37.90	2.10	0.36	13.79	0.13	0.84	85.45	72.15	1.45	0.08	0.34	1.90	1.80	1.67
0.5 mg/L	554	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	149	9.6	106
	555	3.3	223	54	1293	94	15	12.0	99	0.4	3.0	131	347	15.4	0.1	6.2	148	9.2	108
	561	4.7	276	77	1788	81	14	14.2	103	0.4	1.7	213	273	16.1	0.1	6.4	152	8.4	106
	569	3.3	163	48	1145	111	17	11.6	86	0.4	3.4	95	293	14.3	0.1	6.7	147	8.7	104
	575	2.8	287	52	1411	102	12	11.7	75	0.4	2.2	143	324	13.0	0.1	5.1	148	11.3	105
	580	3.5	210	71	1702	94	12	12.2	73	0.3	3.0	178	240	12.1	0.1	6.5	150	7.9	104
	Mean	3.5	231.8	60.4	1467.8	96.4	14.0	12.3	87.2	0.4	2.7	152.0	295.4	14.2	0.1	6.2	149.0	9.2	105.5
	S.D.	0.71	50.71	12.78	271.73	11.10	2.12	1.07	13.61	0.04	0.69	45.19	42.00	1.65	0.00	0.63	1.79	1.20	1.52
1.5 mg/L	556	2.9	149	46	1269	88	16	11.7	71	0.3	3.0	185	203	13.7	0.1	5.9	148	8.6	106
	564	3.4	133	51	895	69	17	12.1	70	0.4	2.9	152	264	13.0	0.1	6.3	149	9.5	105
	565	3.3	144	42	1267	99	17	12.3	55	0.5	2.8	93	401	15.7	0.1	6.1	152	12.3	108
	567	3.2	245	69	1265	64	21	13.2	66	0.5	3.1	248	226	14.3	0.2	6.3	153	10.7	102
	574	3.5	197	60	1120	80	21	12.7	94	0.4	3.0	277	258	16.1	0.1	6.5	148	9.5	103
	577	3.2	154	60	1416	81	19	12.2	74	0.3	2.9	288	276	12.7	0.1	6.0	147	9.5	104
	Mean	3.3	170.3	54.7	1205.3	80.2	18.5	12.4	71.7	0.4	3.0	207.2	271.3	14.3	0.1	6.2	149.5	10.0	104.7
	S.D.	0.21	42.65	10.11	178.54	12.67	2.17	0.52	12.79	0.09	0.10	77.00	68.98	1.40	0.04	0.22	2.43	1.30	2.16

ND = No data

Table L-2 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Clinical Chemistry Main Study Female Animals

	-	ALB	ALKP	ALT	AMYL	AST	BUN	Ca	CHOL	CREA	GLOB	GLU	LDH	PHOS	TBIL	TP	Na	к	CI
GROUP	ANIMAL ID	(g/dL)	(U/L)	(U/L)	(U/L)	(U/L)	(mg/dL)	(mg/dL)	(mg/dL)	(mg/dL)	(g/dL)	(mg/dL)	(U/L)	(mg/dL)	(mg/dL)	(g/dL)	(mmol/L)	(mmol/L)	(mmol/L)
Control	586	3.7	99	51	683	140	17	12.2	76	0.4	2.9	100	183	16.1	0.3	6.6	146	9.4	108
	591	4.8	127	83	727	128	17	14.5	83	0.6	1.8	74	395	16.1	0.4	6.6	149	12.6	108
	601	3.4	92	53	619	106	18	12.3	82	0.5	2.7	104	253	14.5	0.2	6.2	145	11.6	109
	602	1.7	88	52	996	115	16	12.1	78	0.5	5.6	151	313	14.1	0.4	7.3	148	10.0	105
	605	3.4	75	86	617	102	17	12.4	80	0.4	2.9	103	312	13.5	0.2	6.3	147	12.6	107
	612	3.8	107	43	844	84	20	12.7	88	0.5	2.9	108	243	14.3	0.2	6.6	149	9.8	104
	Mean	3.5	98.0	61.3	747.7	112.5	17.5	12.7	81.2	0.5	3.1	106.7	283.2	14.8	0.3	6.6	147.3	11.0	106.8
	S.D.	1.01	17.82	18.32	147.78	19.84	1.38	0.91	4.22	0.08	1.28	24.90	73.19	1.09	0.10	0.38	1.63	1.45	1.94
0.1 mg/L	595	4.9	125	66	1193	74	17	14.9	72	0.7	2.0	143	188	16.1	0.4	6.9	145	11.5	106
	596	3.4	79	42	623	90	14	12.1	67	0.4	3.0	130	250	13.0	0.2	6.4	144	11.0	106
	607	3.3	121	35	713	109	18	11.8	73	0.5	2.6	104	212	12.2	0.1	5.9	147	10.5	108
	616	3.5	88	45	646	95	22	11.9	75	0.5	2.6	292	232	14.5	0.1	6.0	146	11.3	106
	618	3.8	96	52	765	74	18	12.3	65	0.6	2.9	133	303	15.1	0.2	6.6	148	10.0	107
	619	3.4	83	37	670	69	17	12.6	76	0.6	3.3	146	236	16.1	0.2	6.6	145	12.0	105
	Mean	3.7	98.7	46.2	768.3	85.2	17.7	12.6	71.3	0.6	2.7	158.0	236.8	14.5	0.2	6.4	145.8	11.1	106.3
	S.D.	0.60	19.72	11.44	214.09	15.48	2.58	1.16	4.41	0.10	0.45	67.31	38.93	1.61	0.11	0.38	1.47	0.72	1.03
0.5 mg/L	588	3.6	102	49	822	88	17	12.0	57	0.5	2.9	165	232	16.1	0.2	6.5	144	14.9	107
	590	3.4	94	46	777	96	15	12.0	69	0.6	3.1	81	252	12.6	0.1	6.5	145	9.9	107
	594	4.5	100	57	866	105	14	13.3	86	0.5	2.9	131	313	16.1	0.4	7.4	149	14.0	107
	600	3.5	93	44	915	97	20	12.2	76	0.5	3.4	151	222	12.7	0.2	6.8	144	12.6	106
	603	3.3	99	60	845	211	20	12.8	66	0.5	3.0	137	1251	16.1	0.3	6.3	147	8.8	108
	610	3.8	141	45	882	115	23	11.8	83	0.6	3.5	122	329	13.8	0.4	7.3	148	12.1	107
	Mean	3.7	104.8	50.2	851.2	118.7	18.2	12.4	72.8	0.5	3.1	131.2	433.2	14.6	0.3	6.8	146.2	12.1	107.0
	S.D.	0.44	18.06	6.74	48.24	46.15	3.43	0.58	10.94	0.05	0.26	28.89	402.99	1.73	0.12	0.46	2.14	2.34	0.63
1.5 mg/L	584	3.6	96	50	706	108	16	11.5	79	0.6	3.1	92	348	10.9	0.3	6.7	145	8.4	107
	597	4.1	75	44	928	121	15	12.7	80	0.5	3.1	108	488	15.1	0.4	7.2	143	ND	107
	606	3.3	91	53	556	116	20	11.6	66	0.5	3.1	93	502	15.0	0.4	6.4	149	11.6	108
	609	3.4	130	53	737	110	22	11.9	66	0.5	3.4	119	240	12.8	0.2	6.7	149	10.8	106
	614	3.5	142	51	770	188	19	12.7	89	0.5	3.5	106	641	15.5	0.3	7.1	147	13.3	106
	615	3.5	96	37	843	89	17	12.2	75	0.4	3.0	130	221	13.6	0.2	6.5	147	14.2	105
	Mean	3.6	105.0	48.0	756.7	122.0	18.2	12.1	75.8	0.5	3.2	108.0	406.7	13.8	0.3	6.8	146.7	11.7	106.5
	S.D.	0.28	25.50	6.32	126.65	34.12	2.64	0.53	8.89	0.06	0.20	14.76	165.11	1.76	0.09	0.32	2.34	2.26	1.05

ND = No data

Table L-3 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Clinical Chemistry Recovery Male Animals

	-	ALB	ALKP	ALT	AMYL	AST	BUN	Ca	CHOL	CREA	GLOB	GLU	LDH	PHOS	TBIL	TP	Na	К	CI
GROUP	ANIMAL ID	(g/dL)	(U/L)	(U/L)	(U/L)	(U/L)	(mg/dL)	(mg/dL)	(mg/dL)	(mg/dL)	(g/dL)	(mg/dL)	(U/L)	(mg/dL)	(mg/dL)	(g/dL)	(mmol/L)	(mmol/L)	(mmol/L)
Control	548	3.3	128	118	1602	287	22	12.3	88	0.5	3.0	265	706	14.7	0.3	6.3	146	13.9	106
	558	3.3	206	62	1535	83	22	11.7	74	0.5	3.1	259	231	13.9	0.2	6.3	149	9.4	102
	559	3.3	204	56	1744	105	20	11.5	79	0.5	3.4	217	308	12.6	0.2	6.7	153	8.5	106
	562	3.0	113	78	1362	71	20	11.8	63	0.4	3.3	268	398	11.6	0.3	6.3	148	8.1	103
	568	3.7	133	55	1563	101	22	11.9	72	0.5	3.5	206	387	12.8	0.5	7.2	148	11.3	102
	570	3.3	141	53	1714	70	22	12.1	72	0.5	3.3	281	240	13.5	0.3	6.6	149	10.2	105
	Mean	3.3	154.2	70.3	1586.7	119.5	21.3	11.9	74.7	0.5	3.3	249.3	378.3	13.2	0.3	6.6	148.8	10.2	104.0
	S.D.	0.22	40.42	25.07	137.77	83.36	1.03	0.29	8.33	0.04	0.19	30.38	175.28	1.09	0.11	0.36	2.32	2.14	1.90
1.5 mg/L	549	3.3	176	69	1470	62	18	11.9	72	0.4	3.2	191	253	12.8	0.2	6.5	149	10.2	104
	563	3.0	115	59	1805	81	19	12.4	79	0.5	3.6	345	237	12.2	0.2	6.6	147	9.1	104
	576	3.0	136	50	1855	100	19	12.3	79	0.4	3.6	338	293	15.4	0.2	6.5	147	11.8	105
	578	3.0	173	78	1638	105	25	12.5	84	0.6	3.5	358	210	11.8	0.3	6.4	148	9.1	105
	581	3.1	199	52	1334	108	17	11.9	80	0.5	3.3	249	296	12.5	0.2	6.4	149	9.4	105
	583	3.0	113	99	1264	214	20	12.2	74	0.4	3.4	213	472	13.2	0.3	6.4	152	11.3	107
	Mean	3.1	152.0	67.8	1561.0	111.7	19.7	12.2	78.0	0.5	3.4	282.3	293.5	13.0	0.2	6.5	148.7	10.2	105.0
	S.D.	0.12	35.70	18.56	244.92	53.05	2.80	0.25	4.34	0.08	0.16	73.50	93.46	1.28	0.05	0.08	1.86	1.17	1.10

Table L-4 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Clinical Chemistry Recovery Female Animals

	-	ALB	ALKP	ALT	AMYL	AST	BUN	Ca	CHOL	CREA	GLOB	GLU	LDH	PHOS	TBIL	TP	Na	K	CI
GROUP	ANIMAL ID	(g/dL)	(U/L)	(U/L)	(U/L)	(U/L)	(mg/dL)	(mg/dL)	(mg/dL)	(mg/dL)	(g/dL)	(mg/dL)	(U/L)	(mg/dL)	(mg/dL)	(g/dL)	(mmol/L)	(mmol/L)	(mmol/L)
Control	585	4.1	108	60	972	152	22	12.0	94	0.7	2.9	66	537	16.1	0.4	7.1	150	13.9	107
	589	4.1	72	63	827	104	22	11.7	81	0.5	3.2	129	280	12.4	0.4	7.2	149	11.5	107
	592	4.2	72	92	954	206	23	12.3	66	0.5	2.7	154	1605	11.9	0.3	6.9	149	11.7	107
	599	3.5	82	43	815	100	18	11.5	64	0.4	2.8	145	319	10.7	0.2	6.4	142	8.1	106
	604	4.2	61	58	983	94	15	12.7	81	0.5	3.0	298	321	13.4	0.4	7.2	148	9.9	107
	611	4.3	63	67	934	193	22	12.2	102	0.6	3.1	145	1154	12.7	0.6	7.4	147	9.4	108
	Mean	4.1	76.3	63.8	914.2	141.5	20.3	12.1	81.3	0.5	3.0	156.2	702.7	12.9	0.4	7.0	147.5	10.8	107.0
	S.D.	0.29	17.24	16.04	74.16	49.61	3.14	0.43	14.99	0.10	0.19	76.47	550.79	1.82	0.13	0.35	2.88	2.05	0.63
1.5 mg/L	587	3.9	67	59	1200	119	18	11.7	91	0.6	3.1	125	500	15.0	0.4	7.0	148	9.7	107
	593	3.4	65	48	1018	91	17	12.3	72	0.4	2.8	296	239	11.8	0.3	6.2	146	11.8	107
	598	3.6	67	63	731	107	22	11.8	85	0.5	2.7	243	475	11.5	0.2	6.3	145	12.1	108
	608	3.7	112	40	970	95	17	11.3	66	0.5	2.7	177	319	9.3	0.3	6.4	146	7.8	108
	613	4.0	86	76	901	119	19	11.5	61	0.4	3.0	108	412	11.9	0.2	7.0	150	8.7	111
	617	3.9	66	53	1006	99	19	12.0	79	0.5	3.1	218	385	11.9	0.2	7.0	149	10.2	109
	Mean	3.8	77.2	56.5	971.0	105.0	18.7	11.8	75.7	0.5	2.9	194.5	388.3	11.9	0.3	6.7	147.3	10.1	108.3
	S.D.	0.23	18.82	12.53	153.87	12.07	1.86	0.36	11.45	0.08	0.19	71.87	97.63	1.82	0.08	0.39	1.97	1.69	1.51

Table L-5 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Clinical Chemistry Main Study Male Rats

ALB Mean 3.4 3.5 3.5 3.5 3.6 ALK P N 6 6 5 6 ALK P Mean 228.7 212.5 231.8 170.3 (UL) S.D. 54.69 62.29 50.71 42.65 ALT Mean 61.7 65.8 60.4 54.7 (UL) S.D. 9.24 13.20 12.78 10.11 N 6 6 5 6 AMYL Mean 1416.2 1279.8 1467.8 1205.3 (UL) S.D. 105.8 86.8 96.4 80.2 (UL) S.D. 105.0 37.90 11.10 1267 S.D. 2.10 2.10 2.12 2.17 N 6 G 5 6 6 5 6 6 5 (mg/dL) S.D. 0.40 0.36 1.07 0.52 6 CHOL			Control	Red 0.1 mg/L	Smoke Expo 0.5 mg/L	sed 1.5 mg/L
(g/dL) S.D. 0.31 0.65 0.71 0.21 ALK P Mean 228.7 212.5 231.8 170.3 Mean 61.7 65.8 60.4 54.69 6 5 ALT Mean 61.7 65.8 60.4 54.7 10.11 S.D. 9.24 13.20 12.78 10.11 10.51 AMYL Mean 1416.2 1279.8 1467.8 1205.3 (UL) S.D. 229.70 269.09 271.73 178.54 Moan 105.8 36.8 96.4 80.2 (UL) S.D. 2.10 2.10 2.12 2.17 N 6 6 5 6 6 5 BUN Mean 12.5 12.6 12.3 12.4 2.17 30 10.7 52 6 6 5 6 6 5 6 6 5 6 6 5 6 6 <td></td> <td>Moon</td> <td></td> <td></td> <td>-</td> <td>-</td>		Moon			-	-
N 6 6 5 6 ALK P (UL) Mean S.D. 228.7 5.0. 212.5 6.6 231.8 50.71 170.3 42.65 ALT (UL) Mean S.D. 61.7 9.24 13.20 12.78 10.11 12.78 42.65 AUT (UL) N 6 6 5 6 AWYL (UL) N 6 6 5 6 AWYL (UL) N 6 6.6 5 6 AMYL (UL) N 6 86.8 96.4 80.2 S.D. 105.8 36.8 96.4 80.2 S.D. 10.50 37.90 11.10 12.67 Mean 16.0 2.10 2.10 2.12 2.17 N 6 6 5 6 Ca (mg/dL) N 6 6 5 6 Cho Mean 0.3 0.4 0.4 0.4 Mean 0.3 0.4 0.4 0.4 Mean 2.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
(UL) S.D. 54.69 62.29 50.71 42.65 ALT Mean 61.7 65.8 60.4 54.7 MUL N 9.24 13.20 12.78 10.11 N 6 6 5 6 AMYL Mean 1416.2 1279.8 1467.8 1205.3 AMYL Mean 105.8 37.90 14.0 18.5 AST Mean 16.0 17.0 14.0 18.5 G(ng/dL) N 6 6 5 6 BUN Mean 16.0 17.0 14.0 18.5 Grag Mean 12.5 12.6 12.3 12.4 (mg/dL) N 6 6 5 6 CHOL Mean 77.2 77.8 87.2 71.7 (mg/dL) N 6 6 5 6 CHOL Mean 0.32 0.44 0.44 0.44	(9,)					
(UL) S.D. 54.69 62.29 50.71 42.65 ALT Mean 61.7 65.8 60.4 54.7 MUL N 9.24 13.20 12.78 10.11 N 6 6 5 6 AMYL Mean 1416.2 1279.8 1467.8 1205.3 AMYL Mean 105.8 37.90 14.0 18.5 AST Mean 16.0 17.0 14.0 18.5 G(ng/dL) N 6 6 5 6 BUN Mean 16.0 17.0 14.0 18.5 Grag Mean 12.5 12.6 12.3 12.4 (mg/dL) N 6 6 5 6 CHOL Mean 77.2 77.8 87.2 71.7 (mg/dL) N 6 6 5 6 CHOL Mean 0.32 0.44 0.44 0.44						
N 6 6 5 6 ALT (U/L) Mean N 61.7 S.D. 9.24 9.24 13.20 13.20 12.78 12.78 10.11 12.78 AMYL (U/L) Mean N 1416.2 6 229.70 269.09 271.73 178.54 167.8 AMYL (U/L) Mean N 1416.2 6 229.70 269.09 271.73 178.54 1.10 166.7 AST (U/L) Mean S.D. 105.8 1.05 86.8 37.90 96.4 80.2 5.0 BUN (mg/dL) Mean S.D. 12.5 2.10 12.6 12.3 12.4 S.D. 2.10 2.10 2.10 2.12 2.17 N 6 6 5 6 Chol (mg/dL) S.D. 0.40 0.36 1.07 0.52 N 6 6 5 6 6 5 6 CHOL (mg/dL) Mean S.D. 0.33 0.4 0.4 0.4 0.4 N 6 6 5 6 6 5 6 GILDH (mg/dL)	ALK P	Mean	228.7	212.5	231.8	170.3
ALT (UL) Mean S.D. N 61.7 9.24 65.8 13.20 6 60.4 5 54.7 10.11 AMYL (UL) Mean S.D. N 1416.2 229.70 1279.8 66 1467.8 5 1205.3 178.54 AST (UL) Mean S.D. N 105.8 6 86.8 6 96.4 5 80.2 6 AST (UL) Mean S.D. N 105.0 6 37.90 7.0 14.10 2.10 18.5 7.0 AST (mg/dL) Mean S.D. N 16.0 6 17.0 2.10 14.0 6.5 18.5 6 Ca (mg/dL) Mean S.D. N 12.5 6.37 12.6 6 12.3 1.2.4 12.4 7.17 Mean (mg/dL) S.D. N 0.40 6 0.36 1.07 0.52 6 CHOL (mg/dL) Mean S.D. N 0.37 0.4 0.36 0.4 0.09 0.4 0.36 0.4 0.09 0.4 0.36 GLOB (g/dL) Mean S.D. N 2.9 6 2.8 7.215 2.7 3.0 6 3.0 6 0.4 0.69 0.10 0.1 0.84 0.69 6 0.10 7.00 6 GLUM (mg/dL) Mean N 186.5 191.8 1.45 14.2 1.43 14.2 1.43 14.2 1.43 14.2 1.43 Mean N 0.2 0.0 8	(U/L)					
(UL) S.D. 9.24 13.20 12.78 10.11 N 6 6 5 6 AMYL Mean 1416.2 1279.8 1467.8 1205.3 AMYL N 6 6 5 6 AMYL Mean 105.8 86.8 96.4 80.2 (UL) N 6 6 5 6 AMYL S.D. 10.50 37.90 11.10 12.67 (UL) N 6 6 5 6 BUN Mean 12.5 12.6 12.3 12.4 (mg/dL) N 6 6 5 6 Ca Mean 77.2 77.8 87.2 71.7 (mg/dL) S.D. 0.08 0.13 0.04 0.40 N 6 6 5 6 6 GUQL S.D. 0.12 0.84 0.69 0.10 S.D.<		N	6	6	5	6
N 6 6 5 6 AMYL (U/L) Mean N 1416.2 6 1279.8 6 1467.8 6 1205.3 7.90 AST (U/L) S.D. N 229.70 6 269.09 6 271.73 5 178.54 6 AST (U/L) Mean N 105.8 6 86.8 6 96.4 5 80.2 6 BUN (mg/dL) Mean S.D. 16.0 2.10 17.0 2.10 14.0 2.12 18.5 6 Ca (mg/dL) Mean N 6 6 5 6 Choi (mg/dL) S.D. N 2.10 6 2.10 6 2.10 6 2.12 7.17 2.12 7.17 S.D. N 0.40 6 0.36 6 1.07 6 0.52 7 Mean N 0.3 6 0.4 0.4 0.4 (mg/dL) S.D. N 0.12 0.12 0.84 0.69 0.10 0.13 0.04 0.04 GLOB (g/dL) Mean S.D. 2.9 0.12 2.8 72.15 2.0 6 2.0 7.1 2.12.3 (U/L) Mean N 6 6 5 6 GLOB (gmdL) Mean N 6.37 <td>ALT</td> <td>Mean</td> <td>61.7</td> <td>65.8</td> <td>60.4</td> <td>54.7</td>	ALT	Mean	61.7	65.8	60.4	54.7
AMYL (U/L) Nean S.D. N 1416.2 229.70 6 1279.8 269.09 6 1467.8 271.73 6 126.54 6 AST (U/L) Mean S.D. N 105.8 6 86.8 6 96.4 5 80.2 6 AST (U/L) Mean N 105.0 6 37.90 6 11.10 2.10 12.67 6 BUN (mg/dL) S.D. N 2.10 2.10 2.12 2.17 6 14.0 18.5 7 Ca (mg/dL) S.D. N 0.40 0.36 1.07 0.52 7 Chokan 77.2 77.8 7.78 87.2 7.17 71.7 7 77.7 8 77.2 7 77.7 7 77.7 8 77.2 7 77.7 7 77.7 8 77.2 7 77.7 7 77.8 7 71.7 7 77.7 7 77.7 8 77.2 7 77.7 7 77.8 7 71.7 7 77.7 7 77.7 7 77.7 7 77.2 7 77.8 7 71.7 7 77.2 7 77.8 7 71.7 7 77.2 7 71.7 7 77.8 7 71.7 7 77.2 7 71.7 7 77.2 7 71.7 7 71.7 7 71.7 7 71.7 7 71.7 7 71.7 7 71.7 7 71.7 7	(U/L)		9.24	13.20	12.78	10.11
(U/L) S.D. 229.70 269.09 271.73 178.54 AST Mean 105.8 86.8 96.4 80.2 (U/L) S.D. 10.50 37.90 11.10 12.67 BUN Mean 16.0 17.0 14.0 18.5 Gmg/dL) S.D. 2.10 2.10 2.10 2.12 2.17 N 6 6 5 6 5 6 Ca Mean 12.5 12.6 12.3 12.4 (mg/dL) S.D. 0.40 0.36 1.07 0.52 CHOL Mean 77.2 77.8 87.2 71.7 (mg/dL) S.D. 0.6 6 5 6 CHEA Mean 0.3 0.4 0.4 0.4 (mg/dL) N 6 6 5 6 GUAB Mean 2.9 2.8 2.7 3.0 (g/dL) N 6 <td></td> <td>N</td> <td>6</td> <td>6</td> <td>5</td> <td>6</td>		N	6	6	5	6
(U/L) S.D. 229.70 269.09 271.73 178.54 AST Mean 105.8 86.8 96.4 80.2 (U/L) S.D. 10.50 37.90 11.10 12.67 BUN Mean 16.0 17.0 14.0 18.5 Gmg/dL) S.D. 2.10 2.10 2.10 2.12 2.17 N 6 6 5 6 5 6 Ca Mean 12.5 12.6 12.3 12.4 (mg/dL) S.D. 0.40 0.36 1.07 0.52 CHOL Mean 77.2 77.8 87.2 71.7 (mg/dL) S.D. 0.6 6 5 6 CHEA Mean 0.3 0.4 0.4 0.4 (mg/dL) N 6 6 5 6 GUAB Mean 2.9 2.8 2.7 3.0 (g/dL) N 6 <td>AMYL</td> <td>Mean</td> <td>1416.2</td> <td>1279.8</td> <td>1467.8</td> <td>1205.3</td>	AMYL	Mean	1416.2	1279.8	1467.8	1205.3
N 6 6 5 6 AST (U/L) Mean S.D. 105.8 (0.50 86.8 37.90 96.4 11.10 80.2 12.67 BUN (mg/dL) Mean S.D. 16.0 2.10 17.0 2.10 14.0 18.5 8.5 BUN (mg/dL) Mean S.D. 12.5 N 12.6 6 17.0 14.0 18.5 7 Ca (mg/dL) Mean N 6 6 5 6 ChOL (mg/dL) Mean S.D. 0.400 0.36 0.36 1.07 0.52 7 S.D. 0.440 0.36 0.36 6 10.7 0.52 7 Mean S.D. 0.3 0.04 0.4 0.4 0.4 0.4 0.4 0.4 Mean (g/dL) S.D. 0.12 0.12 0.84 0.69 0.10 0.10 0.6 GLOB (g/dL) Mean S.D. 186.5 0.12 191.8 0.84 152.0 0.68 98 207.2 7 PHOS N Mean 6 15.6 20.0 0.08 0.6 14.5 14.4 14.3 Mean (mg/dL) N 6 6 5 6 Mean (g/dL) N 6						178.54
(UL) S.D. 10.50 37.90 11.10 12.67 BUN (mg/dL) Mean 16.0 17.0 14.0 18.5 BUN Mean 12.5 12.6 12.3 12.4 (mg/dL) S.D. 0.40 0.36 1.07 0.52 Ca Mean 77.2 77.8 87.2 71.7 (mg/dL) S.D. 0.40 0.36 1.07 0.52 CHOL Mean 77.2 77.8 87.2 71.7 (mg/dL) S.D. 6.37 13.79 13.61 12.79 N 6 6 5 6 6 CREA Mean 0.3 0.4 0.4 0.4 (mg/dL) N 6 6 5 6 GLOB Mean 2.9 2.8 2.7 3.0 (g/dL) N 6 6 5 6 N 6 6 5 6	()					
(UL) S.D. 10.50 37.90 11.10 12.67 BUN (mg/dL) Mean 16.0 17.0 14.0 18.5 BUN Mean 12.5 12.6 12.3 12.4 (mg/dL) S.D. 0.40 0.36 1.07 0.52 Ca Mean 77.2 77.8 87.2 71.7 (mg/dL) S.D. 0.40 0.36 1.07 0.52 CHOL Mean 77.2 77.8 87.2 71.7 (mg/dL) S.D. 6.37 13.79 13.61 12.79 N 6 6 5 6 6 CREA Mean 0.3 0.4 0.4 0.4 (mg/dL) N 6 6 5 6 GLOB Mean 2.9 2.8 2.7 3.0 (g/dL) N 6 6 5 6 N 6 6 5 6	AST	Mean	105.8	86.8	96.4	80.2
N 6 6 5 6 BUN (mg/dL) Mean S.D. 16.0 2.10 17.0 2.10 14.0 18.5 2.12 2.17 2.17 Rundle Mean (mg/dL) 12.5 12.6 12.3 12.4 Mean (mg/dL) S.D. 0.40 0.36 1.07 0.52 Chol (mg/dL) Mean N 6 6 5 6 CHOL (mg/dL) Mean N 77.2 77.8 87.2 71.7 N 6 6 5 6 CREA (mg/dL) Mean N 0.3 0.4 0.4 0.40 N 6 6 5 6 6 GLOB (g/dL) Mean N 2.9 2.8 2.7 3.0 N 6 6 5 6 6 5 GLU (mg/dL) Mean N 315.8 283.3 295.4 271.3 N 6 6 5 6 6 5 PHOS N N 6						
(mg/dL) S.D. N 2.10 6 2.10 6 2.10 6 2.10 6 2.12 6 2.12 5 2.17 6 Ca (mg/dL) Mean S.D. N 12.5 6 12.6 6 12.3 6 12.4 0.36 1.07 1.07 0.52 6 CHOL (mg/dL) Mean S.D. N 77.2 6 77.8 6 87.2 6 71.7 6 CREA (mg/dL) Mean S.D. N 0.3 6 0.4 6 0.4 6 0.4 6 0.3 6 0.4 6 0.4 6 0.3 6 0.4 6 0.4 6 0.4 6 0.3 6 0.4 6	(0,_)					
(mg/dL) S.D. 2.10 2.10 2.10 2.12 2.17 N 6 6 5 6 Ca Mean 12.5 12.6 12.3 12.4 (mg/dL) N 6 6 5 6 CHOL Mean 77.2 77.8 87.2 71.7 (mg/dL) N 6 6 5 6 CHOL Mean 0.3 0.4 0.4 0.4 (mg/dL) N 6 6 5 6 CREA Mean 0.3 0.4 0.4 0.4 (mg/dL) N 6 6 5 6 GLOB Mean 2.9 2.8 2.7 3.0 (g/dL) N 6 6 5 6 GLU Mean 186.5 191.8 152.0 207.2 (mg/dL) N 6 6 5 6 PHOS<		Moon	16.0	17.0	14.0	10 E
N 6 6 5 6 Ca (mg/dL) Mean 12.5 12.6 12.3 12.4 (mg/dL) S.D. 0.40 0.36 1.07 0.52 CHOL Mean 77.2 77.8 87.2 71.7 (mg/dL) S.D. 6.37 13.79 13.61 12.79 N 6 6 5 6 CREA Mean 0.3 0.4 0.4 0.4 (mg/dL) N 6 6 5 6 GLOB Mean 2.9 2.8 2.7 3.0 (g/dL) N 6 6 5 6 GLOB Mean 2.9 2.8 2.7 3.0 (mg/dL) N 6 6 5 6 GLDH Mean 315.8 283.3 295.4 271.3 (mg/dL) N 6 6 5 6 N 6						
(mg/dL) S.D. 0.40 0.36 1.07 0.52 CHOL (mg/dL) Mean 77.2 77.8 87.2 71.7 S.D. 6.37 13.79 13.61 12.79 N 6 6 5 6 CREA (mg/dL) Mean 0.3 0.4 0.4 0.4 (mg/dL) N 6 6 5 6 S.D. 0.08 0.13 0.04 0.4 0.4 (mg/dL) N 6 6 5 6 GLOB Mean 2.9 2.8 2.7 3.0 (g/dL) N 6 6 5 6 GLU Mean 186.5 191.8 152.0 207.2 (mg/dL) N 6 6 5 6 Gumg/dL) N 6 6 5 6 Gumg/dL) N 6 6 5 6 N 6 <td>(ilig/uL)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	(ilig/uL)					
(mg/dL) S.D. 0.40 0.36 1.07 0.52 CHOL (mg/dL) Mean 77.2 77.8 87.2 71.7 S.D. 6.37 13.79 13.61 12.79 N 6 6 5 6 CREA (mg/dL) Mean 0.3 0.4 0.4 0.4 (mg/dL) N 6 6 5 6 S.D. 0.08 0.13 0.04 0.4 0.4 (mg/dL) N 6 6 5 6 GLOB Mean 2.9 2.8 2.7 3.0 (g/dL) N 6 6 5 6 GLU Mean 186.5 191.8 152.0 207.2 (mg/dL) N 6 6 5 6 Gumg/dL) N 6 6 5 6 Gumg/dL) N 6 6 5 6 N 6 <td>6-</td> <td>Maar</td> <td>10 5</td> <td>10.0</td> <td>10.0</td> <td>40.4</td>	6 -	Maar	10 5	10.0	10.0	40.4
N 6 6 5 6 CHOL (mg/dL) Mean S.D. 77.2 6.37 77.8 13.79 87.2 13.79 71.7 13.61 CREA (mg/dL) Mean S.D. 0.3 0.08 0.4 0.13 0.4 0.4 0.4 0.4 0.4 0.09 R 6 6 5 6 GLOB (g/dL) Mean S.D. 2.9 0.12 2.8 0.84 2.7 0.69 3.0 GLU (mg/dL) Mean S.D. 186.5 191.8 0.12 152.0 0.84 207.2 0.10 Mean (u/L) S.D. 99.12 99.12 85.45 0.45.45 45.19 45.19 77.00 77.00 N 6 6 5 6 CHH (mg/dL) Mean S.D. 15.8 0.85 283.3 1.45 295.4 271.3 0 N 6 6 5 6 PHOS N Mean S.D. 0.85 1.45 1.46 1.42 Mg/dL) S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 7 6						
CHOL (mg/dL) Mean S.D. N 77.2 6.37 77.8 13.79 87.2 13.61 71.7 12.79 CREA (mg/dL) Mean S.D. N 0.3 6 0.4 6 0.4	(mg/aL)					
(mg/dL) S.D. 6.37 13.79 13.61 12.79 N 6 6 5 6 CREA (mg/dL) Mean 0.3 0.4 0.4 0.4 S.D. 0.08 0.13 0.04 0.09 0.09 N 6 6 5 6 GLOB Mean 2.9 2.8 2.7 3.0 (g/dL) S.D. 0.12 0.84 0.69 0.10 N 6 6 5 6 6 GLU Mean 186.5 191.8 152.0 207.2 (mg/dL) S.D. 99.12 85.45 45.19 77.00 N 6 6 5 6 6 LDH Mean 315.8 283.3 295.4 271.3 (mg/dL) S.D. 42.28 72.15 42.00 68.98 N 6 6 5 6 6 5		IN	6	6	5	6
N 6 6 5 6 CREA (mg/dL) Mean 0.3 0.4 0.4 0.4 N 6 6 5 6 GLOB (g/dL) Mean 2.9 2.8 2.7 3.0 (g/dL) S.D. 0.12 0.84 0.69 0.10 N 6 6 5 6 GLU Mean 186.5 191.8 152.0 207.2 (mg/dL) S.D. 99.12 85.45 45.19 77.00 N 6 6 5 6 6 5 6 LDH (mg/dL) Mean 315.8 283.3 295.4 271.3 N 6 6 5 6 5 6 PHOS Mean 14.5 14.8 14.2 14.3 (mg/dL) S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 5 6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CREA (mg/dL) Mean N 0.3 0.08 6 0.4 0.13 6 0.4 0.04 0.09 6 0.4 0.09 6 0.09 6 0.13 0.04 0.09 0.09 0.09 6 0.13 6 0.04 6 0.09 6 0.13 6 0.04 6 0.09 6 0.13 6 0.04 6 0.09 6 0.13 6 0.04 6 0.09 6 0.12 6 0.84 6 0.69 6 0.10 77.00 6 GLU (mg/dL) Mean N 186.5 6 191.8 72.15 152.0 42.00 207.2 6 207.2 42.00 68.98 6 6 5 6 PHOS N Mean N 14.5 6 14.8 1.45 14.2 1.45 14.3 1.40 N 142.2 1.40 N 143.3 0.63 0.22 0.2 0.1 0.1 0.1 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.2 0.0 0.04 0.04 0.2 0.0 0.04 0.02 0.02 0.0 0.04 0.0 0.05 0.0 0.00 0.04 0.2 0.0 0.00 0.04 0.2 0.0 0.0 0.0	(mg/dL)					
(mg/dL) S.D. 0.08 0.13 0.04 0.09 GLOB Mean 2.9 2.8 2.7 3.0 (g/dL) S.D. 0.12 0.84 0.69 0.10 N 6 6 5 6 GLU Mean 186.5 191.8 152.0 207.2 (mg/dL) S.D. 99.12 85.45 45.19 77.00 N 6 6 5 6 6 5 LDH Mean 315.8 283.3 295.4 271.3 (U/L) S.D. 42.28 72.15 42.00 68.98 N 6 6 5 6 5 PHOS Mean 14.5 14.8 14.2 14.3 (mg/dL) S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 5 6 (mg/dL) S.D. 0.08 0.08		N	6	6	5	6
N 6 6 5 6 GLOB (g/dL) Mean 2.9 2.8 2.7 3.0 S.D. 0.12 0.84 0.69 0.10 N 6 6 5 6 GLU Mean 186.5 191.8 152.0 207.2 (mg/dL) N 6 6 5 6 LDH Mean 315.8 283.3 295.4 271.3 (V/L) S.D. 42.28 72.15 42.00 68.98 PHOS Mean 14.5 14.8 14.2 14.3 (mg/dL) S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 5 TBIL Mean 0.2 0.2 0.1 0.1 (mg/dL) S.D. 0.35 0.34 0.63 0.22 N 6 6 5 6 5 6 K <th< td=""><td>CREA</td><td>Mean</td><td>0.3</td><td>0.4</td><td>0.4</td><td>0.4</td></th<>	CREA	Mean	0.3	0.4	0.4	0.4
GLOB (g/dL) Mean N 2.9 0.12 2.8 0.84 2.7 0.69 3.0 0.10 GLU (mg/dL) Mean N 186.5 191.8 152.0 207.2 GLU (mg/dL) S.D. N 99.12 85.45 45.19 77.00 A 6 6 5 6 LDH (u/L) S.D. N 42.28 72.15 42.00 68.98 PHOS N Mean 14.5 14.8 14.2 14.3 (mg/dL) S.D. N 0.85 1.45 1.65 1.40 S.D. 0.85 1.45 1.65 1.40 S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 TBIL (mg/dL) Mean 0.2 0.2 0.1 0.1 S.D. 0.08 0.08 0.00 0.04 0.4 N 6 6 5 6 6 K Mean 148.5 147.0 149.0 149.5	(mg/dL)	S.D.	0.08	0.13	0.04	0.09
(g/dL) S.D. 0.12 0.84 0.69 0.10 N 6 6 5 6 GLU (mg/dL) Mean 186.5 191.8 152.0 207.2 S.D. 99.12 85.45 45.19 77.00 N 6 6 5 6 LDH Mean 315.8 283.3 295.4 271.3 (U/L) S.D. 42.28 72.15 42.00 68.98 N 6 6 5 6 6 PHOS Mean 14.5 14.8 14.2 14.3 (mg/dL) S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 5 (mg/dL) S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 5 6 TP Mean 6.3 6.2 6.2 6.2 6 2		N	6	6	5	6
N 6 6 5 6 GLU (mg/dL) Mean 186.5 191.8 152.0 207.2 N 6 6 5 6 5 6 GLU (mg/dL) S.D. 99.12 85.45 45.19 77.00 N 6 6 5 6 LDH Mean 315.8 283.3 295.4 271.3 (U/L) S.D. 42.28 72.15 42.00 68.98 PHOS Mean 14.5 14.8 14.2 14.3 (mg/dL) S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 TBIL (mg/dL) Mean 0.2 0.2 0.1 0.1 S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 K Mean 148.5 147.0 149.0 149.5 K Mean <th< td=""><td>GLOB</td><td>Mean</td><td>2.9</td><td>2.8</td><td>2.7</td><td>3.0</td></th<>	GLOB	Mean	2.9	2.8	2.7	3.0
N 6 6 5 6 GLU (mg/dL) Mean S.D. N 186.5 99.12 6 191.8 85.45 6 152.0 45.45 45.19 207.2 77.00 6 LDH (U/L) Mean S.D. N 315.8 42.28 6 283.3 72.15 295.4 42.00 271.3 68.98 6 PHOS (mg/dL) Mean S.D. N 14.5 6 14.8 6 14.2 14.3 1.65 1.40 6 Reg/dL) Mean N 0.2 0.2 0.1 0.1 S.D. N 0.85 6 1.45 1.65 1.40 6 0.00 0.04 6 0.00 Year Mean N 0.2 0.2 0.1 0.1 0.1 0.04 6 0.03 0.22 6 0.2 0.1 0.1 (mg/dL) S.D. N 0.35 6 0.34 6 0.63 6 0.22 6 0.2 0.2 0.2 0.2 Ma Mean 6 148.5 147.0 149.0 149.5 7 1.30 K Mean N 9.2 10.4 9.2 10.0 N 6 6 6 6	(g/dL)		0.12	0.84	0.69	0.10
(mg/dL) S.D. 99.12 85.45 45.19 77.00 N 6 6 5 6 LDH Mean 315.8 283.3 295.4 271.3 (U/L) S.D. 42.28 72.15 42.00 68.98 N 6 6 5 6 PHOS Mean 14.5 14.8 14.2 14.3 (mg/dL) S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 5 6 TBIL Mean 0.2 0.2 0.1 0.1 (mg/dL) S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 5 (g/dL) S.D. 0.35 0.34 0.63 0.22 N 6 6 6 6 6 6 K Mean 148.5 147.0 149.0 149.5		N	6	6	5	6
(mg/dL) S.D. 99.12 85.45 45.19 77.00 N 6 6 5 6 LDH Mean 315.8 283.3 295.4 271.3 (U/L) S.D. 42.28 72.15 42.00 68.98 PHOS Mean 14.5 14.8 14.2 14.3 (mg/dL) S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 5 TBIL Mean 0.2 0.2 0.1 0.1 (mg/dL) S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 5 6 TP Mean 6.3 6.2 6.2 6.2 6 (g/dL) N 6 6 5 6 6 6 N 6 6 6 6 6 6 6 (g/dL) N	GLU	Mean	186.5	191.8	152.0	207.2
N 6 6 5 6 LDH Mean 315.8 283.3 295.4 271.3 (U/L) S.D. 42.28 72.15 42.00 68.98 N 6 6 5 6 PHOS Mean 14.5 14.8 14.2 14.3 (mg/dL) S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 5 6 TBIL Mean 0.2 0.2 0.1 0.1 0.04 (mg/dL) S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 5 (g/dL) S.D. 0.35 0.34 0.63 0.22 N 6 6 5 6 5 6 K Mean 148.5 147.0 149.0 149.5 S.D. 2.81 1.90 1.79 2.43 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
(U/L) S.D. 42.28 72.15 42.00 68.98 6 5 6 PHOS (mg/dL) Mean 14.5 14.8 14.2 14.3 14.3 14.4 14.3 14.4 14.3 14.4 14.4 14.3 14.4 14.3 14.4 14.3 14.4 14.3 14.4 14.3 14.4 14.3 14.4 14.3 14.4 14.3 14.4 14.3 14.4 14.3 14.4 <t< td=""><td>(</td><td></td><td></td><td></td><td></td><td></td></t<>	(
(U/L) S.D. 42.28 72.15 42.00 68.98 PHOS (mg/dL) Mean 14.5 14.8 14.2 14.3 S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 TBIL (mg/dL) Mean 0.2 0.2 0.1 0.1 S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 TP (g/dL) S.D. 0.35 0.34 0.63 0.22 N 6 6 5 6 5 6 N 6 6 5 6 5 6 N 6 6 5 6 5 6 N 6 6 5 6 5 6 N 6 6 6 6 6 6 6 6 N 6 6 6 6 6 <td< td=""><td></td><td>Moon</td><td>215 9</td><td>202.2</td><td>205.4</td><td>271.2</td></td<>		Moon	215 9	202.2	205.4	271.2
N 6 6 5 6 PHOS (mg/dL) Mean 14.5 14.8 14.2 14.3 S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 TBIL (mg/dL) Mean 0.2 0.2 0.1 0.1 S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 TBIL (mg/dL) Mean 0.2 0.2 0.1 0.1 S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 S.D. 0.35 0.34 0.63 0.22 N 6 6 5 6 N 6 6 5 6 N 6 6 6 6 6 K Mean 9.2 10.4 9.2 10.0 N 6 6 6 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
(mg/dL) S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 TBIL (mg/dL) Mean 0.2 0.2 0.1 0.1 S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 TP Mean 6.3 6.2 6.2 6.2 (g/dL) S.D. 0.35 0.34 0.63 0.22 N 6 6 5 6 5 Na Mean 148.5 147.0 149.0 149.5 S.D. 2.81 1.90 1.79 2.43 N 6 6 6 6 K Mean 9.2 10.4 9.2 10.0 (mmol/L) S.D. 0.51 1.80 1.20 1.30 N 6 6 6 6 6 6 Cl Mean 103.5 104.0	(-,-)					
(mg/dL) S.D. 0.85 1.45 1.65 1.40 N 6 6 5 6 TBIL (mg/dL) Mean 0.2 0.2 0.1 0.1 S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 TP Mean 6.3 6.2 6.2 6.2 (g/dL) S.D. 0.35 0.34 0.63 0.22 N 6 6 5 6 5 Na Mean 148.5 147.0 149.0 149.5 S.D. 2.81 1.90 1.79 2.43 N 6 6 6 6 K Mean 9.2 10.4 9.2 10.0 (mmol/L) S.D. 0.51 1.80 1.20 1.30 N 6 6 6 6 6 6 Cl Mean 103.5 104.0	рное	Mean	14.5	14 9	14.2	1/1 3
N 6 6 5 6 TBIL (mg/dL) Mean 0.2 0.2 0.1 0.1 S.D. 0.08 0.08 0.00 0.04 N 6 6 5 6 TP Mean 6.3 6.2 0.2 0.2 0.0 1.9 1.9 1.48.5 147.0 149.0 149.5 14.30 1.20 1.30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
(mg/dL) S.D. 0.08 0.08 0.08 0.00 0.04 N 6 6 5 6 TP Mean 6.3 6.2 6.2 6.2 (g/dL) S.D. 0.35 0.34 0.63 0.22 N 6 6 5 6 Na Mean 148.5 147.0 149.0 149.5 S.D. 2.81 1.90 1.79 2.43 N 6 6 6 6 K Mean 9.2 10.4 9.2 10.0 (mmol/L) S.D. 0.51 1.80 1.20 1.30 N 6 6 6 6 6 Cl Mean 103.5 104.0 105.5 104.7 (mmol/L) S.D. 1.97 1.67 1.52 2.16	(g/uL)					
(mg/dL) S.D. 0.08 0.08 0.08 0.00 0.04 N 6 6 5 6 TP Mean 6.3 6.2 6.2 6.2 (g/dL) S.D. 0.35 0.34 0.63 0.22 N 6 6 5 6 Na Mean 148.5 147.0 149.0 149.5 S.D. 2.81 1.90 1.79 2.43 N 6 6 6 6 K Mean 9.2 10.4 9.2 10.0 (mmol/L) S.D. 0.51 1.80 1.20 1.30 N 6 6 6 6 6 Cl Mean 103.5 104.0 105.5 104.7 (mmol/L) S.D. 1.97 1.67 1.52 2.16	три	Moor	0.0	0.0		0.4
N 6 6 5 6 TP Mean 6.3 6.2 6.2 6.2 S.D. 0.35 0.34 0.63 0.22 N 6 6 5 6 Na Mean 148.5 147.0 149.0 149.5 S.D. 2.81 1.90 1.79 2.43 N 6 6 6 6 K Mean 9.2 10.4 9.2 10.0 (mmol/L) S.D. 0.51 1.80 1.20 1.30 N 6 6 6 6 6 CI Mean 103.5 104.0 105.5 104.7 (mmol/L) S.D. 1.97 1.67 1.52 2.16						
TP (g/dL)Mean 6.3 N. 6.2 0.35 6.2 0.34 6.2 0.63 6.2 0.22Na (mmol/L)Mean 148.5 S.D. 147.0 2.81 149.0 1.79 149.5 2.43Na (mmol/L)Mean 148.5 S.D. 147.0 2.81 149.0 1.79 149.5 2.43Na (mmol/L)Mean 9.2 S.D. 10.4 9.2 9.2 1.30 10.0 1.30K (mmol/L)Mean 9.2 S.D. 10.4 6 9.2 6 10.0 1.30Cl (mmol/L)Mean 103.5 S.D. 104.0 1.67 105.5 1.67 104.7 1.52	(ilig/uL)					
(g/dL) S.D. 0.35 0.34 0.63 0.22 N 6 6 5 6 Na Mean 148.5 147.0 149.0 149.5 S.D. 2.81 1.90 1.79 2.43 N 6 6 6 6 K Mean 9.2 10.4 9.2 10.0 (mmol/L) S.D. 0.51 1.80 1.20 1.30 N 6 6 6 6 6 6 Cl Mean 103.5 104.0 105.5 104.7 S.D. 1.97 1.67 1.52 2.16	то	Moor			6.0	6.0
N 6 6 5 6 Na (mmol/L) Mean 148.5 147.0 149.0 149.5 S.D. 2.81 1.90 1.79 2.43 N 6 6 6 6 K Mean 9.2 10.4 9.2 10.0 S.D. 0.51 1.80 1.20 1.30 N 6 6 6 6 Cl Mean 103.5 104.0 105.5 104.7 (mmol/L) S.D. 1.97 1.67 1.52 2.16						
(mmol/L) S.D. 2.81 1.90 1.79 2.43 N 6 6 6 6 6 K Mean 9.2 10.4 9.2 10.0 (mmol/L) S.D. 0.51 1.80 1.20 1.30 N 6 6 6 6 6 Cl Mean 103.5 104.0 105.5 104.7 S.D. 1.97 1.67 1.52 2.16	(g/uL)					
(mmol/L) S.D. 2.81 1.90 1.79 2.43 N 6 6 6 6 6 K Mean 9.2 10.4 9.2 10.0 1.30 (mmol/L) S.D. 0.51 1.80 1.20 1.30 1.30 N 6 6 6 6 6 6 6 Cl Mean 103.5 104.0 105.5 104.7 1.67 1.52 2.16	N-	Maar	140 5	4.47.0	140.0	140 5
N 6 6 6 6 K Mean 9.2 10.4 9.2 10.0 (mmol/L) S.D. 0.51 1.80 1.20 1.30 N 6 6 6 6 6 Cl Mean 103.5 104.0 105.5 104.7 (mmol/L) S.D. 1.97 1.67 1.52 2.16						
K Mean 9.2 10.4 9.2 10.0 (mmol/L) S.D. 0.51 1.80 1.20 1.30 N 6 6 6 6 6 Cl Mean 103.5 104.0 105.5 104.7 (mmol/L) S.D. 1.97 1.67 1.52 2.16	(INMOI/L)					
(mmol/L) S.D. 0.51 1.80 1.20 1.30 N 6 6 6 6 6 CI Mean 103.5 104.0 105.5 104.7 S.D. 1.97 1.67 1.52 2.16						
N 6 6 6 6 CI Mean 103.5 104.0 105.5 104.7 (mmol/L) S.D. 1.97 1.67 1.52 2.16						
CI Mean 103.5 104.0 105.5 104.7 (mmol/L) S.D. 1.97 1.67 1.52 2.16	(mmol/L)					
(mmol/L) S.D. 1.97 1.67 1.52 2.16						
	(11110//L)	S.D. N	6	1.67	1.52	2.16

Table L-6 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Clinical Chemistry Main Study Female Rats

		Control	Red 0.1 mg/L	Smoke Expo 0.5 mg/L	sed 1.5 mg/L
	Mean	3.5	3.7		3.6
ALB	S.D.	3.5 1.01	3.7 0.60	3.7 0.44	3.6 0.28
(g/dL)	3.D. N	6	6	6	6
	ľ	0	0	0	0
ALK P	Mean	98.0	98.7	104.8	105.0
U/L)	S.D.	17.82	19.72	18.06	25.50
	N	6	6	6	6
AI T	Mean	61.2	46.2	50.2	49.0
	S.D.	61.3 18.32	46.2 11.44	50.2 6.74	48.0 6.32
(U/L)	3.D. N	6	6	6	6
		0	0	0	0
AMYL	Mean	747.7	768.3	851.2	756.7
(U/L)	S.D.	147.78	214.09	48.24	126.65
	Ν	6	6	6	6
AST	Mean	112.5	85.2	118.7	122.0
(U/L)	S.D.	19.84	65.2 15.48	46.15	34.12
5/2)	3.D. N	6	6	40.15	6
	Γ	Ŭ	0	0	Ŭ
BUN	Mean	17.5	17.7	18.2	18.2
(mg/dL)	S.D.	1.38	2.58	3.43	2.64
	N	6	6	6	6
Ca	Mean	12.7	12.6	12.4	12.1
ca (mg/dL)	S.D.	0.91	12.6	0.58	0.53
iiigiaL)	3.D. N	6	6	6	6
	ľ	č	õ	÷	č
CHOL	Mean	81.2	71.3	72.8	75.8
(mg/dL)	S.D.	4.22	4.41	10.94	8.89
	Ν	6	6	6	6
CREA	Mean	0.5	0.6	0.5	0.5
(mg/dL)	S.D.	0.08	0.10	0.05	0.06
(9,)	N	6	6	6	6
GLOB	Mean	3.1	2.7	3.1	3.2
(g/dL)	S.D.	1.28	0.45	0.26	0.20
	N	6	6	6	6
GLU	Mean	106.7	158.0	131.2	108.0
(mg/dL)	S.D.	24.90	67.31	28.89	14.76
- •	Ν	6	6	6	6
		000 0	000 0	400.0	400 -
	Mean	283.2	236.8	433.2	406.7
(U/L)	S.D. N	73.19 6	38.93 6	402.99 6	165.11 6
		0	U	0	U
PHOS	Mean	14.8	14.5	14.6	13.8
(mg/dL)	S.D.	1.09	1.61	1.73	1.76
	N	6	6	6	6
TBIL	Mean	0.3	0.2	0.2	0.2
	S.D.	0.3	0.2 0.11	0.3 0.12	0.3 0.09
(mg/dL)	3.D. N	6	6	6	0.09
	ľ	č	÷	÷	č
ТР	Mean	6.6	6.4	6.8	6.8
(g/dL)	S.D.	0.38	0.38	0.46	0.32
	N	6	6	6	6
Na	Mean	147.3	145.8	146.2	146.7
(mmol/L)	S.D.	1.63	145.6	2.14	2.34
	N.	6	6	6	6
		-	-	-	-
к	Mean	11.0	11.1	12.1	11.7
(mmol/L)	S.D.	1.45	0.72	2.34	2.26
	Ν	6	6	6	5
CI	Mean	106.8	106.3	107.0	106.5
(mmol/L)	S.D.	1.94	1.03	0.63	1.05

Table L-7 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Clinical Chemistry Recovery Male Rats

	<u> </u>	Control	1.5 mg/L
ALB (g/dL)	Mean S.D. N	3.3 0.22 6	3.1* 0.12 6
ALK P (U/L)	Mean S.D. N	154.2 40.42 6	152.0 35.70 6
ALT (U/L)	Mean S.D. N	70.3 25.07 6	67.8 18.56 6
AMYL (U/L)	Mean S.D. N	1586.7 137.77 6	1561.0 244.92 6
AST (U/L)	Mean S.D. N	119.5 83.36 6	111.7 53.05 6
BUN (mg/dL)	Mean S.D. N	21.3 1.03 6	19.7 2.80 6
Ca (mg/dL)	Mean S.D. N	11.9 0.29 6	12.2 0.25 6
CHOL (mg/dL)	Mean S.D. N	74.7 8.33 6	78.0 4.34 6
CREA (mg/dL)	Mean S.D. N	0.5 0.04 6	0.5 0.08 6
GLOB (g/dL)	Mean S.D. N	3.3 0.19 6	3.4 0.16 6
GLU (mg/dL)	Mean S.D. N	249.3 30.38 6	282.3 73.50 6
LDH (U/L)	Mean S.D. N	378.3 175.28 6	293.5 93.46 6
PHOS (mg/dL)	Mean S.D. N	13.2 1.09 6	13.0 1.28 6
TBIL (mg/dL)	Mean S.D. N	0.3 0.11 6	0.2 0.05 6
TP (g/dL)	Mean S.D. N	6.6 0.36 6	6.5 0.08 6
Na (mmol/L)	Mean S.D. N	148.8 2.32 6	148.7 1.86 6
K (mmol/L)	Mean S.D. N	10.2 2.14 6	10.2 1.17 6
CI (mmol/L)	Mean S.D. N	104.0 1.90 6	105.0 1.10 6

* p < 0.05

Table L-8 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Clinical Chemistry Recovery Female Rats

	I	Control	1.5 mg/L
ALB (g/dL)	Mean S.D. N	4.1 0.29 6	3.8 0.23 6
ALK P (U/L)	Mean S.D. N	76.3 17.24 6	77.2 18.82 6
ALT (U/L)	Mean S.D. N	63.8 16.04 6	56.5 12.53 6
AMYL (U/L)	Mean S.D. N	914.2 74.16 6	971.0 153.87 6
AST (U/L)	Mean S.D. N	141.5 49.61 6	105.0 12.07 6
BUN (mg/dL)	Mean S.D. N	20.3 3.14 6	18.7 1.86 6
Ca (mg/dL)	Mean S.D. N	12.1 0.43 6	11.8 0.36 6
CHOL (mg/dL)	Mean S.D. N	81.3 14.99 6	75.7 11.45 6
CREA (mg/dL)	Mean S.D. N	0.5 0.10 6	0.5 0.08 6
GLOB (g/dL)	Mean S.D. N	3.0 0.19 6	2.9 0.19 6
GLU (mg/dL)	Mean S.D. N	156.2 76.47 6	194.5 71.87 6
LDH (U/L)	Mean S.D. N	702.7 550.79 6	388.3 97.63 6
PHOS (mg/dL)	Mean S.D. N	12.9 1.82 6	11.9 1.82 6
TBIL (mg/dL)	Mean S.D. N	0.4 0.13 6	0.3 0.08 6
TP (g/dL)	Mean S.D. N	7.0 0.35 6	6.7 0.39 6
Na (mmol/L)	Mean S.D. N	147.5 2.88 6	147.3 1.97 6
K (mmol/L)	Mean S.D. N	10.8 2.05 6	10.1 1.69 6
CI (mmol/L)	Mean S.D. N	107.0 0.63 6	108.3 1.51 6

Toxicology Report No. S.0036333-15, April – September 2015

Appendix M

Individual and Summary of Hematology Data

Table M-1 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Hematology Main Study Male Animals

	-	WBC	N	EU	LY	N	МС	NO	E	os	BA	SO	RBC	HGB	НСТ	MCV	MCH	MCHC	RDW	PLT	MPV
GROUP	ANIMAL ID	(K/uL)	(K/uL)	(%N)	(K/uL)	(%L)	(K/uL)	(%M)	(K/uL)	(%E)	(K/uL)	(%B)	(M/uL)	(g/dL)	(%)	(fL)	(pg)	(g/dL)	(%)	(K/uL)	(fL)
Control	550	6.630	0.674	10.200	4.640	70.000	0.413	6.230	0.039	0.589	0.865	13.000	8.48	17.20	48.6	57.3	20.2	35.3	15.6	1560.0	5.64
	552	5.530	0.536	9.700	4.290	77.600	0.293	5.300	0.040	0.726	0.367	6.630	7.72	16.50	47.3	61.3	21.4	35.0	17.4	1227.0	4.63
	553	8.980	0.992	11.000	6.410	71.400	0.717	7.980	0.019	0.212	0.840	9.360	8.43	16.60	49.2	58.4	19.7	33.8	17.1	1318.0	4.55
	560	10.100	0.991	9.830	7.560	75.000	0.799	7.930	0.045	0.444	0.683	6.780	8.54	17.20	50.1	58.7	20.1	34.3	15.9	1194.0	4.43
	566	14.400	0.592	4.120	11.000	76.500	1.200	8.390	0.049	0.343	1.530	10.700	7.56	16.30	45.2	59.8	21.6	36.1	15.5	1150.0	5.68
	579	9.750	0.626	6.410	7.480	76.700	0.732	7.510	0.045	0.461	0.874	8.960	7.55	16.20	46.6	61.7	21.5	34.8	16.0	1195.0	4.59
	Mean	9.232	0.735	8.543	6.897	74.533	0.692	7.223	0.040	0.463	0.860	9.238	8.047	16.667	47.833	59.533	20.750	34.883	16.250	1274.000	4.920
	S.D.	3.1070	0.2036	2.6792	2.4389	3.1162	0.3190	1.2001	0.0107	0.1804	0.3805	2.4177	0.4834	0.4367	1.8074	1.7236	0.8408	0.7985	0.8019	150.9689	0.5772
0.1 mg/L	551	15.200	0.707	4.670	12.500	82.300	1.020	6.710	0.049	0.321	0.906	5.970	8.07	16.80	48.6	60.2	20.8	34.6	16.8	1082.0	4.85
	557	14.000	1.480	10.600	11.200	79.700	0.723	5.150	0.081	0.575	0.567	4.040	9.31	19.00	55.9	60.0	20.5	34.1	16.8	745.0	5.08
	571	12.000	1.040	8.710	9.460	79.000	0.789	6.600	0.099	0.828	0.582	4.860	7.38	15.70	44.3	60.0	21.3	35.4	16.8	1187.0	5.04
	572	13.200	1.370	10.400	10.600	80.200	0.667	5.060	0.041	0.311	0.524	3.970	8.69	18.00	50.9	58.6	20.7	35.3	16.8	1286.0	4.86
	573	9.810	0.973	9.920	7.420	75.700	0.608	6.190	0.055	0.563	0.753	7.670	8.53	17.00	49.1	57.6	19.9	34.6	17.8	1319.0	4.60
	582	12.500	0.959	7.650	9.820	78.300	0.874	6.970	0.015	0.118	0.878	7.000	8.46	17.50	51.2	60.5	20.6	34.1	15.3	943.0	4.84
	Mean	12.785	1.088	8.658	10.167	79.200	0.780	6.113	0.057	0.453	0.702	5.585	8.407	17.333	50.000	59.483	20.633	34.683	16.717	1093.667	4.878
	S.D.	1.8455	0.2865	2.2504	1.7242	2.1891	0.1497	0.8210	0.0298	0.2520	0.1670	1.5504	0.6452	1.1237	3.8032	1.1321	0.4546	0.5636	0.8010	219.4918	0.1714
0.5 mg/L	554	13.800	0.677	4.900	11.700	84.900	0.605	4.380	0.062	0.446	0.738	5.350	8.51	18.00	51.4	60.4	21.2	35.0	17.2	1319.0	4.75
	555	11.500	0.864	7.500	9.020	78.300	0.499	4.340	0.063	0.546	1.070	9.300	7.85	17.20	49.3	62.9	21.9	34.8	16.8	1102.0	4.79
	561	19.700	1.100	5.600	15.700	79.600	1.280	6.510	0.137	0.699	1.490	7.570	8.74	17.60	50.5	57.8	20.1	34.8	19.3	1283.0	5.16
	569	9.980	0.606	6.070	8.420	84.300	0.463	4.630	0.055	0.548	0.440	4.410	8.49	17.80	51.4	60.6	20.9	34.6	16.1	964.0	4.21
	575	12.700	0.848	6.700	9.420	74.500	1.040	8.200	0.048	0.377	1.300	10.300	8.70	17.30	50.2	57.7	19.8	34.4	17.0	1437.0	4.84
	580	9.950	0.928	9.330	8.030	80.700	0.492	4.940	0.039	0.396	0.461	4.640	7.77	16.50	47.2	60.7	21.2	34.9	17.0	990.0	5.06
	Mean	12.938	0.837	6.683	10.382	80.383	0.730	5.500	0.067	0.502	0.917	6.928	8.343	17.400	50.000	60.017	20.850	34.750	17.233	1182.500	4.802
	S.D.	3.6406	0.1773	1.5749	2.9045	3.8835	0.3451	1.5479	0.0353	0.1207	0.4395	2.5090	0.4257	0.5329	1.5837	1.9773	0.7765	0.2168	1.0820	192.2402	0.3315
1.5 mg/L	556	14.400	0.760	5.260	11.200	77.700	1.320	9.110	0.073	0.505	1.080	7.440	7.67	15.90	47.2	61.6	20.8	33.7	16.0	1170.0	4.68
	564	15.300	1.530	9.960	11.400	74.400	1.120	7.290	0.017	0.113	1.270	8.260	8.11	16.90	48.1	59.3	20.9	35.2	16.8	1098.0	4.71
	565	9.510	0.754	7.930	7.580	79.800	0.684	7.200	0.050	0.522	0.436	4.590	8.50	18.30	52.7	62.0	21.6	34.8	16.2	1436.0	5.04
	567	13.400	0.581	4.350	10.600	79.200	1.040	7.770	0.088	0.658	1.070	7.980	8.49	18.00	51.0	60.0	21.2	35.3	16.3	1157.0	5.18
	574	9.550	1.190	12.400	7.260	76.000	0.576	6.030	0.063	0.656	0.463	4.850	8.24	16.40	47.3	57.3	19.9	34.7	18.1	1229.0	4.59
	577	7.950	0.961	12.100	6.270	78.900	0.323	4.060	0.017	0.210	0.375	4.720	7.89	16.60	48.6	61.5	21.0	34.1	16.6	1294.0	4.55
	Mean	11.685	0.963	8.667	9.052	77.667	0.844	6.910	0.051	0.444	0.782	6.307	8.150	17.017	49.150	60.283	20.900	34.633	16.667	1230.667	4.792
	S.D.	3.0535	0.3475	3.4112	2.2645	2.0916	0.3768	1.7149	0.0294	0.2302	0.3993	1.7599	0.3304	0.9411	2.2206	1.7949	0.5657	0.6250	0.7581	120.7339	0.2572

Table M-2 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Hematology Main Study Female Animals

	-	WBC	N	EU	Ľ	(M	MC	NO	E	os	BA	SO	RBC	HGB	НСТ	MCV	MCH	MCHC	RDW	PLT	MPV
GROUP	ANIMAL ID	(K/uL)	(K/uL)	(%N)	(K/uL)	(%L)	(K/uL)	(%M)	(K/uL)	(%E)	(K/uL)	(%B)	(M/uL)	(g/dL)	(%)	(fL)	(pg)	(g/dL)	(%)	(K/uL)	(fL)
Control	586	8.120	0.472	5.820	6.280	77.300	0.761	9.370	0.027	0.328	0.581	7.150	8.51	17.20	48.9	57.5	20.3	35.2	16.8	683.0	5.16
	591	11.300	0.933	8.280	8.680	77.000	0.691	6.130	0.156	1.380	0.819	7.260	7.59	15.20	41.9	55.2	20.1	36.3	16.6	1403.0	5.07
	601	9.610	0.246	2.560	8.110	84.500	0.523	5.440	0.053	0.553	0.671	6.980	7.97	16.30	46.3	58.1	20.4	35.1	16.5	1351.0	4.68
	602	12.600	0.607	4.810	10.300	81.200	0.596	4.730	0.135	1.070	1.030	8.150	7.98	16.20	46.1	57.8	20.3	35.2	16.2	1212.0	4.80
	605	17.100	0.453	2.650	14.700	85.900	0.814	4.760	0.118	0.688	1.030	6.020	8.10	17.00	47.6	58.8	21.1	35.8	16.4	1270.0	5.03
	612	6.860	0.530	7.730	5.260	76.700	0.757	11.000	0.060	0.881	0.250	3.670	8.13	16.50	46.4	57.1	20.2	35.4	16.6	1227.0	5.10
	Mean	10.932	0.540	5.308	8.888	80.433	0.690	6.905	0.092	0.817	0.730	6.538	8.047	16.400	46.200	57.417	20.400	35.500	16.517	1191.000	4.973
	S.D.	3.6660	0.2270	2.4424	3.3581	4.0633	0.1110	2.6429	0.0517	0.3770	0.2980	1.5610	0.2978	0.7071	2.3580	1.2287	0.3578	0.4648	0.2041	259.4556	0.1895
0.1 mg/L	595	9.560	0.469	4.900	7.510	78.500	0.970	10.100	0.038	0.403	0.574	6.000	7.91	16.10	46.3	58.6	20.4	34.8	14.6	968.0	4.97
-	596	8.200	0.473	5.770	6.600	80.400	0.700	8.540	0.079	0.964	0.353	4.300	7.47	15.40	42.9	57.4	20.6	35.9	16.1	1288.0	4.48
	607	7.380	0.312	4.230	6.110	82.800	0.546	7.410	0.030	0.408	0.379	5.140	8.66	17.20	49.3	56.9	19.9	35.0	15.8	913.0	4.65
	616	7.400	0.741	10.000	5.720	77.300	0.398	5.380	0.052	0.707	0.487	6.590	8.09	16.10	47.0	58.1	19.9	34.3	15.6	1215.0	4.56
	618	5.340	0.383	7.170	4.050	75.800	0.419	7.840	0.040	0.749	0.453	8.480	8.24	16.70	46.9	56.9	20.3	35.6	16.7	1448.0	4.89
	619	9.770	0.583	5.960	7.940	81.300	0.648	6.630	0.091	0.931	0.508	5.190	8.27	16.90	47.1	57.0	20.5	36.0	16.8	1401.0	5.37
	Mean	7.942	0.494	6.338	6.322	79.350	0.614	7.650	0.055	0.694	0.459	5.950	8.107	16.400	46.583	57.483	20.267	35.267	15.933	1205.500	4.820
	\$.D.	1.6374	0.1519	2.0533	1.3911	2.6205	0.2119	1.6175	0.0246	0.2444	0.0826	1.4676	0.3987	0.6573	2.0769	0.7139	0.3011	0.6743	0.8091	221.7591	0.3292
0.5 mg/L	588	9.060	0.426	4.700	6.760	74.600	0.876	9.660	0.072	0.791	0.928	10.200	8.51	16.80	48.0	56.4	19.7	35.0	16.3	1340.0	5.13
	590	12.800	0.592	4.630	10.000	78.600	0.836	6.540	0.090	0.702	1.220	9.560	8.26	17.80	48.4	58.6	21.5	36.7	14.9	1395.0	4.75
	594	7.150	0.648	9.060	5.090	71.200	0.835	11.700	0.097	1.350	0.480	6.720	7.97	16.50	46.6	58.5	20.7	35.4	16.3	1429.0	5.54
	600	12.000	0.813	6.790	9.810	82.000	0.738	6.170	0.055	0.462	0.545	4.560	8.15	16.40	47.4	58.1	20.1	34.6	15.9	1293.0	5.15
	603	13.500	1.010	7.460	11.200	83.000	0.440	3.250	0.082	0.610	0.765	5.660	7.73	16.10	45.2	58.4	20.9	35.7	16.7	112.0	5.05
	610	5.770	0.506	8.770	4.620	80.000	0.270	4.670	0.008	0.133	0.373	6.460	8.78	18.00	50.2	57.1	20.5	35.8	17.0	1294.0	4.87
	Mean	10.047	0.666	6.902	7.913	78.233	0.666	6.998	0.067	0.675	0.719	7.193	8.233	16.933	47.633	57.850	20.567	35.533	16.183	1143.833	5.082
	S.D.	3.1930	0.2140	1.9226	2.7893	4.5350	0.2509	3.1483	0.0326	0.4033	0.3175	2.2221	0.3757	0.7840	1.6943	0.8961	0.6282	0.7257	0.7333	508.4028	0.2731
1.5 mg/L	584	11.500	0.434	3.790	9.790	85.500	0.620	5.410	0.065	0.567	0.543	4.740	8.18	16.60	46.4	56.7	20.3	35.9	16.0	1305.0	4.97
	597	14.300	0.375	2.630	12.700	89.300	0.456	3.200	0.069	0.484	0.623	4.370	7.89	16.90	48.0	60.8	21.5	35.3	16.2	850.0	5.32
	606	12.300	0.729	5.940	10.500	85.500	0.384	3.120	0.046	0.378	0.617	5.020	8.18	16.80	47.9	58.5	20.6	35.1	15.6	1310.0	5.05
	609	9.350	0.281	3.000	8.230	88.100	0.356	3.810	0.054	0.577	0.422	4.520	8.27	16.80	48.4	58.5	20.3	34.6	15.7	1016.0	4.38
	614	10.900	0.352	3.230	9.580	87.900	0.371	3.410	0.038	0.351	0.552	5.070	8.84	18.10	52.2	59.1	20.5	34.8	15.4	773.0	5.17
	615	7.860	0.479	6.100	6.240	79.400	0.504	6.410	0.039	0.490	0.600	7.620	8.50	16.90	48.8	57.4	19.9	34.6	17.2	1007.0	4.88
	Mean	11.035	0.442	4.115	9.507	85.950	0.449	4.227	0.052	0.475	0.560	5.223	8.310	17.017	48.617	58.500	20.517	35.050	16.017	1043.500	4.962
	S.D.	2.2545	0.1564	1.5237	2.1712	3.5484	0.1013	1.3628	0.0131	0.0938	0.0751	1.2054	0.3252	0.5419	1.9354	1.4213	0.5382	0.5010	0.6463	224.5464	0.3239

Table M-3 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Hematology Recovery Male Animals

	-	WBC	NE	U	L	(M	MO	NO	EC	DS	BA	SO	RBC	HGB	HCT	MCV	MCH	MCHC	RDW	PLT	MPV
GROUP	ANIMAL ID	(K/uL)	(K/uL)	(%N)	(K/uL)	(%L)	(K/uL)	(%M)	(K/uL)	(%E)	(K/uL)	(%B)	(M/uL)	(g/dL)	(%)	(fL)	(pg)	(g/dL)	(%)	(K/uL)	(fL)
Control	548	24.300	1.660	6.850	17.000	70.000	3.240	13.300	0.210	0.865	2.170	8.960	8.17	17.20	45.8	56.1	21.0	37.5	16.3	1226.0	5.79
	558	17.300	1.300	7.530	13.600	78.400	1.200	6.960	0.119	0.685	1.120	6.470	9.09	16.90	50.4	55.5	18.6	33.6	16.1	953.0	4.88
	559	13.600	2.690	19.700	9.520	70.000	0.819	6.020	0.068	0.499	0.513	3.770	7.69	15.90	45.4	59.1	20.7	35.1	16.6	972.0	4.81
	562	13.400	1.200	8.910	10.200	76.200	0.932	6.940	0.133	0.990	0.936	6.970	7.88	15.80	45.1	57.2	20.1	35.1	16.0	1051.0	5.73
	568	24.700	1.890	7.650	20.700	83.700	1.080	4.360	0.171	0.693	0.882	3.570	7.62	16.90	46.1	60.6	22.1	36.5	16.5	1197.0	4.99
	570	12.700	1.140	8.990	10.400	81.500	0.687	5.400	0.092	0.720	0.428	3.360	8.44	16.50	48.3	57.2	19.6	34.2	17.1	1067.0	4.51
	Mean	17.667	1.647	9.938	13.570	76.633	1.326	7.163	0.132	0.742	1.008	5.517	8.148	16.533	46.850	57.617	20.350	35.333	16.433	1077.667	5.118
	S.D.	5.5320	0.5873	4.8543	4.4813	5.7434	0.9550	3.1631	0.0519	0.1684	0.6269	2.2965	0.5538	0.5750	2.0753	1.9094	1.2079	1.4459	0.3983	112.9383	0.5222
1.5 mg/L	549	14.600	1.940	13.300	11.300	77.500	0.661	4.520	0.074	0.509	0.622	4.250	7.97	16.10	46.5	58.4	20.2	34.6	17.1	1007.0	4.68
	563	11.800	0.935	7.910	9.210	77.900	0.887	7.510	0.122	1.030	0.665	5.630	7.57	15.40	42.8	56.5	20.3	35.9	16.8	996.0	4.21
	576	16.000	0.862	5.370	12.400	77.300	1.330	8.290	0.123	0.766	1.330	8.300	8.04	16.20	46.2	57.5	20.2	35.1	15.9	1067.0	5.10
	578	15.700	1.500	9.560	12.700	80.800	0.970	6.160	0.135	0.857	0.420	2.670	7.76	16.10	45.7	58.9	20.8	35.3	16.2	1251.0	5.08
	581	11.700	0.778	6.630	9.930	84.600	0.592	5.050	0.121	1.030	0.315	2.680	7.80	15.50	45.6	58.5	19.9	34.1	15.7	987.0	5.37
	583	21.500	1.480	6.910	16.700	77.800	1.570	7.320	0.140	0.652	1.570	7.290	7.71	15.60	44.0	57.0	20.2	35.4	16.9	1106.0	6.12
	Mean	15.217	1.249	8.280	12.040	79.317	1.002	6.475	0.119	0.807	0.820	5.137	7.808	15.817	45.133	57.800	20.267	35.067	16.433	1069.000	5.093
	S.D.	3.5986	0.4613	2.8300	2.6567	2.8910	0.3818	1.4854	0.0235	0.2081	0.5101	2.3577	0.1724	0.3545	1.4334	0.9466	0.2944	0.6346	0.5785	100.3932	0.6453

Table M-4 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Hematology Recovery Female Animals

	-	WBC	NE	U	L	/M	MO	NO	E	os	BA	SO	RBC	HGB	HCT	MCV	MCH	MCHC	RDW	PLT	MPV
GROUP	ANIMAL ID	(K/uL)	(K/uL)	(%N)	(K/uL)	(%L)	(K/uL)	(%M)	(K/uL)	(%E)	(K/uL)	(%B)	(M/uL)	(g/dL)	(%)	(fL)	(pg)	(g/dL)	(%)	(K/uL)	(fL)
Control	585	4.790	0.753	15.700	2.620	54.700	0.648	13.500	0.059	1.230	0.710	14.800	9.78	18.50	53.1	54.3	18.9	34.8	16.8	157.0	6.72
	589	12.400	0.711	5.720	9.830	78.900	0.802	6.440	0.085	0.684	1.020	8.220	8.19	16.30	46.4	56.7	19.8	35.0	14.7	1096.0	4.82
	592	9.220	0.915	9.930	6.550	71.100	1.040	11.300	0.083	0.904	0.628	6.820	8.14	15.70	44.4	54.6	19.2	35.2	16.4	857.0	4.85
	599	10.100	1.020	10.100	7.940	78.700	0.602	5.960	0.106	1.050	0.423	4.190	7.41	15.20	42.3	57.0	20.5	35.9	14.9	851.0	4.56
	604	5.380	1.010	18.800	3.050	56.700	0.783	14.600	0.081	1.500	0.455	8.450	7.63	14.80	41.9	54.9	19.4	35.4	15.5	1121.0	5.14
	611	11.100	0.551	4.970	9.300	83.900	0.375	3.380	0.065	0.584	0.796	7.170	6.99	14.70	40.9	58.6	21.1	36.0	14.5	634.0	4.90
	Mean	8.832	0.827	10.870	6.548	70.667	0.708	9.197	0.080	0.992	0.672	8.275	8.023	15.867	44.833	56.017	19.817	35.383	15.467	786.000	5.165
	S.D.	3.0947	0.1863	5.4594	3.0967	12.3096	0.2238	4.5617	0.0166	0.3427	0.2231	3.5393	0.9722	1.4208	4.5050	1.6916	0.8377	0.4834	0.9480	356.7453	0.7840
1.5 mg/L	587	6.010	0.849	14.100	3.270	54.400	0.887	14.800	0.128	2.140	0.877	14.600	7.59	14.00	44.1	58.1	18.5	31.8	16.0	1151.0	6.35
	593	8.280	0.603	7.280	6.500	78.500	0.680	8.220	0.091	1.100	0.403	4.860	7.69	15.40	43.5	56.6	20.1	35.5	14.9	1211.0	4.99
	598	18.700	0.643	3.430	15.200	81.000	1.640	8.750	0.119	0.636	1.160	6.200	7.89	15.50	43.7	55.3	19.7	35.5	16.9	1135.0	4.98
	608	20.000	1.560	7.780	16.000	80.000	1.290	6.430	0.201	1.010	0.958	4.790	6.86	14.60	40.7	59.3	21.2	35.8	15.0	1115.0	4.45
	613	2.880	0.251	8.720	2.170	75.200	0.222	7.710	0.022	0.761	0.220	7.650	7.33	15.10	41.5	56.5	20.6	36.4	15.0	1021.0	4.97
	617	19.000	0.408	2.150	16.700	87.700	0.970	5.110	0.117	0.614	0.843	4.440	6.80	14.50	40.8	60.0	21.4	35.6	15.0	477.0	4.87
	Mean	12.478	0.719	7.243	9.973	76.133	0.948	8.503	0.113	1.044	0.744	7.090	7.360	14.850	42.383	57.633	20.250	35.100	15.467	1018.333	5.102
	S.D.	7.6080	0.4603	4.2419	6.7346	11.4126	0.4897	3.3536	0.0579	0.5722	0.3570	3.8676	0.4488	0.5822	1.5523	1.8107	1.0710	1.6517	0.8140	272.2959	0.6452

Table M-5 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Hematology Main Study Male Rats

	I		Red Smoke Exposed						
	_	Control	0.1 mg/L	0.5 mg/L	1.5 mg/L				
WBC (K/uL)	Mean S.D. N	9.232 3.1070 6	12.785 1.8455 6	12.938 3.6406 6	11.685 3.0535 6				
NEU (%N)	Mean S.D. N	8.543 2.6792 6	8.658 2.2504 6	6.683 1.5749 6	8.667 3.4112 6				
LYM (%L)	Mean S.D. N	74.533 3.1162 6	79.200 2.1891 6	80.383* 3.8835 6	77.667 2.0916 6				
MONO (%M)	Mean S.D. N	7.223 1.2001 6	6.113 0.8210 6	5.500 1.5479 6	6.910 1.7149 6				
EOS (%E)	Mean S.D. N	0.463 0.1804 6	0.453 0.2520 6	0.502 0.1207 6	0.444 0.2302 6				
BASO (%B)	Mean S.D. N	9.238 2.4177 6	5.585* 1.5504 6	6.928 2.5090 6	6.307 1.7599 6				
RBC (M/uL)	Mean S.D. N	8.047 0.4834 6	8.407 0.6452 6	8.343 0.4257 6	8.150 0.3304 6				
HGB (g/dL)	Mean S.D. N	16.667 0.4367 6	17.333 1.1237 6	17.400 0.5329 6	17.017 0.9411 6				
НСТ (%)	Mean S.D. N	47.833 1.8074 6	50.000 3.8032 6	50.000 1.5837 6	49.150 2.2206 6				
MCV (fL)	Mean S.D. N	59.533 1.7236 6	59.483 1.1321 6	60.017 1.9773 6	60.283 1.7949 6				
MCH (pg)	Mean S.D. N	20.750 0.8408 6	20.633 0.4546 6	20.850 0.7765 6	20.900 0.5657 6				
MCHC (g/dL)	Mean S.D. N	34.883 0.7985 6	34.683 0.5636 6	34.750 0.2168 6	34.633 0.6250 6				
RDW (%)	Mean S.D. N	16.250 0.8019 6	16.717 0.8010 6	17.233 1.0820 6	16.667 0.7581 6				
PLT (K/uL)	Mean S.D. N	1274.000 150.9689 6	1093.667 219.4918 6	1182.500 192.2402 6	1230.667 120.7339 6				
MPV (fL)	Mean S.D. N	4.920 0.5772 6	4.878 0.1714 6	4.802 0.3315 6	4.792 0.2572 6				

* p < 0.05

Table M-6 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Hematology Main Study Female Rats

	1		Red Smoke Exposed					
		Control	0.1 mg/L	0.5 mg/Ĺ	1.5 mg/L			
WBC (K/uL)	Mean S.D.	10.932 3.6660	7.942 1.6374	10.047 3.1930	11.035 2.2545			
(rvuL)	N	6	6	6	6			
	Mean	5.308	6.338	6.902	4.115			
(%N)	S.D. N	2.4424 6	2.0533 6	1.9226 6	1.5237 6			
LYM	Mean	80.433	79.350	78.233	85.950			
(%L)	S.D. N	4.0633 6	2.6205 6	4.5350 6	3.5484 6			
MONO	Mean	6.905	7.650	6.998	4.227			
(%M)	S.D. N	2.6429 6	1.6175 6	3.1483 6	1.3628 6			
EOS	Mean	0.817	0.694	0.675	0.475			
(%E)	S.D. N	0.3770 6	0.2444 6	0.4033 6	0.0938 6			
BASO	Mean	6.538	5.950	7.193	5.223			
(%B)	S.D. N	1.5610 6	1.4676 6	2.2221 6	1.2054 6			
RBC	Mean	8.047	8.107	8.233	8.310			
(M/uL)	S.D. N	0.2978 6	0.3987 6	0.3757 6	0.3252 6			
HGB	Mean S.D.	16.400 0.7071	16.400 0.6573	16.933	17.017 0.5419			
(g/dL)	S.D. N	6	6	0.7840 6	0.5419 6			
HCT	Mean S.D.	46.200 2.3580	46.583 2.0769	47.633 1.6943	48.617 1.9354			
(%)	N	6	6	6	6			
MCV	Mean	57.417	57.483	57.850	58.500			
(fL)	S.D. N	1.2287 6	0.7139 6	0.8961 6	1.4213 6			
MCH	Mean	20.400	20.267	20.567	20.517			
(pg)	S.D. N	0.3578 6	0.3011 6	0.6282 6	0.5382 6			
	Mean	35.500	35.267	35.533	35.050			
(g/dL)	S.D. N	0.4648 6	0.6743 6	0.7257 6	0.5010 6			
RDW	Mean	16.517	15.933	16.183	16.017			
(%)	S.D. N	0.2041 6	0.8091 6	0.7333 6	0.6463 6			
	Mean	1191.000	1205.500	1143.833	1043.500			
(K/uL)	S.D. N	259.4556 6	221.7591 6	508.4028 6	224.5464 6			
MPV	Mean	4.973	4.820	5.082	4.962			
(fL)	S.D. N	0.1895 6	0.3292 6	0.2731 6	0.3239 6			

Table M-7 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Hematology Recovery Male Rats

	_l	Control	1.5 mg/L
WBC	Mean	17.667	15.217
(K/uL)	S.D.	5.5320	3.5986
(IVUL)	0.D. N	6	6
	IN	0	0
NEU	Mean	9.938	8.280
(%N)	S.D.	4.8543	2.8300
	N	6	6
LYM	Mean	76.633	79.317
(%L)	S.D.	5.7434	2.8910
(/0⊏)	3.D. N	6	6
MONO	Mean	7.163	6.475
(%M)	S.D.	3.1631	1.4854
	N	6	6
EOS	Mean	0.742	0.807
(%E)	S.D.	0.1684	0.2081
(/0⊏)	3.D. N	6	6
BASO	Mean	5.517	5.137
(%B)	S.D.	2.2965	2.3577
	N	6	6
RBC	Mean	8.148	7.808
(M/uL)	S.D.	0.5538	0.1724
(11702)	N	6	6
HGB	Mean	16.533	15.817*
(g/dL)	S.D.	0.5750	0.3545
	Ν	6	6
нст	Mean	46.850	45.133
(%)	S.D.	2.0753	1.4334
. ,	N	6	6
MCV	Mean	57.617	57.800
	S.D.	1.9094	0.9466
(fL)	3.D. N	6	6
		-	-
MCH	Mean	20.350	20.267
(pg)	S.D.	1.2079	0.2944
	N	6	6
мснс	Mean	35.333	35.067
(g/dL)	S.D.	1.4459	0.6346
(3,~=)	N	6	6
	Mart	40,400	40.400
RDW	Mean	16.433	16.433
(%)	S.D.	0.3983	0.5785
	Ν	6	6
PLT	Mean	1077.667	1069.000
(K/uL)	S.D.	112.9383	100.3932
. /	N	6	6
MPV	Moor	E 110	E 002
MPV (fL)	Mean S.D.	5.118 0.5222	5.093 0.6453
(12)	5.D. N		
	IN	6	6

* p < 0.05

Table M-8 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Hematology Recovery Female Rats

		Control	1.5 mg/L
WBC	Mean	8.832	12.478
(K/uL)	S.D.	3.0947	7.6080
	Ν	6	6
NEU	Mean	10.870	7.243
(%N)	S.D.	5.4594	4.2419
	N	6	6
LYM	Mean	70.667	76.133
(%L)	S.D.	12.3096	11.4126
(/=)	N	6	6
MONO	Mean	9.197	8.503
(%M)	S.D. N	4.5617	3.3536
	IN	6	6
EOS	Mean	0.992	1.044
(%E)	S.D.	0.3427	0.5722
	N	6	6
BASO	Mean	8.275	7.090
базо (%В)	S.D.	3.5393	3.8676
(700)	5.D. N	6	6
		Ū	U U
RBC	Mean	8.023	7.360
(M/uL)	S.D.	0.9722	0.4488
	N	6	6
HGB	Mean	15.867	14.850
(g/dL)	S.D.	1.4208	0.5822
,	N	6	6
нст	Mean	44.833	42.383
(%)	S.D.	4.5050	1.5523
(/0)	N	6	6
MCV	Mean	56.017	57.633
(fL)	S.D.	1.6916	1.8107
	Ν	6	6
МСН	Mean	19.817	20.250
(pg)	S.D.	0.8377	1.0710
	N	6	6
MOLIC	Maan	25 202	25 100
MCHC (g/dL)	Mean S.D.	35.383 0.4834	35.100 1.6517
(g/uL)	N.	6	6
RDW	Mean	15.467	15.467
(%)	S.D.	0.9480	0.8140
	Ν	6	6
PLT	Mean	786.000	1018.333
(K/uL)	S.D.	356.7453	272.2959
•	N	6	6
MDV	Maar	E 405	E 400
MPV (fL)	Mean S.D.	5.165 0.7840	5.102 0.6452
()	3.D. N	6	6
	I	2	5

Toxicology Report No. S.0036333-15, April – September 2015

Appendix N

Individual and Summary of Prothrombin Time Data

Table N-1Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

		-
		Average
GROUP	ANIMAL ID	Prothrombin Time
Control	550	9.6
	552	9.8
	553	9.4
	560	9.3
	566	9.4
	579	9.4
	Mean	9.48
	S.D.	0.167
0.1 mg/L	551	10.2
-	557	9.5
	571	9.6
	572	9.9
	573	9.3
	582	9.2
	Mean	9.60
	S.D.	0.338
0.5 mg/L	554	9.1
	555	9.2
	561	9.5
	569	9.7
	575	9.2
	580	9.7
	Mean	9.37
	S.D.	0.232
1.5 mg/L	556	9.3
-	564	8.9
	565	9.3
	567	9.2
	574	9.5
	577	9.1
	Mean	9.20
	S.D.	0.189

Individual Prothrombin Time Main Study Male Animals

Table N-2Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Prothrombin Time Main Study Female Animals

		Average	
GROUP	ANIMAL ID	Prothrombin Time	
Control	586	8.8	
	591	9.4	
	601	9.0	
	602	8.5	
	605	8.6	
	612	8.3	
	Mean	8.75	
	S.D.	0.400	
0.1 mg/L	595	8.8	
	596	9.0	
	607	9.3	
	616	8.7	
	618	8.9	
	619	9.0	
	Mean	8.93	
	S.D.	0.209	
0.5 mg/L	588	9.1	
	590	8.5	
	594	8.6	
	600	8.7	
	603	ND	
	610	8.6	
	Mean	8.67	
	S.D.	0.225	
1.5 mg/L	584	9.1	
	597	10.0	
	606	9.5	
		0.5	
	609	8.5	
	609 614	8.5 9.1	
	614	9.1	

Table N-3Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

		Average	
GROUP	ANIMAL ID	Prothrombin Time	
Control	548	9.1	
	558	9.1	
	559	8.8	
	562	8.9	
	568	8.4	
	570	8.9	
	Mean	8.84	
	S.D.	0.271	
1.5 mg/L	549	8.8	
	563	9.1	
	576	9.4	
	578	8.9	
	581	8.9	
	583	8.5	
	Mean	8.93	
	S.D.	0.301	

Individual Prothrombin Time Recovery Male Animals

Table N-4Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

		Average
GROUP	ANIMAL ID	Prothrombin Time
Control	585	9.3
	589	9.1
	592	8.7
	599	9.1
	604	8.7
	611	8.7
	Mean	8.92
	S.D.	0.284
1.5 mg/L	587	8.6
	593	9.2
	598	9.2
	608	9.4
	613	9.0
	617	ND
	Mean	9.06
	S.D.	0.295

Individual Prothrombin Time Recovery Female Animals

Table N-5Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Prothrombin Times

Main Study Male Rats

	I		Red S	moke Expose	ed
		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L
Average	Mean	9.48	9.60	9.37	9.20
PT	S.D.	0.167	0.338	0.232	0.189
	N	6	6	6	6

Main Study Female Rats

	I	Corn Oil	Red Smoke Exposed						
		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L				
Average PT	Mean	8.75	8.93	8.67	9.08				
PT	S.D.	0.400	0.209	0.225	0.625				
	N	6	6	5	6				

Recovery Male Rats

		Control	1.5 mg/L
Average	Mean	8.84	8.93
PT	S.D.	0.271	0.301
	Ν	6	6

Recovery Female Rats

		Control	1.5 mg/L
Average	Mean	8.92	9.06
PT	S.D.	0.284	0.295
	Ν	6	5

Toxicology Report No. S.0036333-15, April – September 2015

Appendix O

Gross Pathology Observations

Table O-1

Protocol No. 35-15-01-01

Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Gross Observations

Main Study and Recovery Male Animals

Control 550 NGLR

- 552 White focal areas in right caudal lobe of lung
- 553 NGLR
- 560 Right lung has dark spots
- 566 NGLR
- 579 Right pulmonary lobe has dark focal area
- 548 NGLR
- 558 NGLR
- 559 NGLR
- 562 NGLR
- 568 NGLR
- 570 Liver has reticular pattern
- 0.1 mg/L 551 Liver dark in color; Dark focal area of right caudal lobe of lung; Right lobe of liver has 1 cm mass
 - 557 NGLR
 - 571 Right-middle pulmonary lobe has dark focal area
 - 572 NGLR
 - 573 Yellow mass (1 cm) on caudal lobe of liver; Right-middle pulmonary lobe of lung has focal dark area
 - 582 NGLR
- 0.5 mg/L 554 Lungs appear dark in color
 - 555 Dark white material in bladder
 - 561 Lungs appear dark in color; Liver slightly pale
 - 569 Liver is mildly dark; Left pulmonary lobe cranial aspect appears darker
 - 575 Lungs show diffuse dark areas
 - 580 Liver is moderately pale
- 1.5 mg/L 556 Liver dark in color; Spleen is mildly dark; Right pulmonary lobe has dark focal area
 - 564 Right pulmonary lobe has dark focal area; Left lobe of lung is dark in color
 - 565 Liver slightly dark; Entire right lung has dark spots
 - 567 Liver is mildly dark; Multifocal to coalescing darkened areas of lungs
 - 574 Dark white material in bladder
 - 577 Liver appears moderately dark; Left lobe of liver has small hard mass (1 cm)
 - 549 NGLR
 - 563 Right lung is blotchy
 - 576 Dark spots on right side of lung
 - 578 Both testes about half normal size
 - 581 NGLR
 - 583 NGLR

NGLR = No gross lesions recognized

Table O-2

Protocol No. 35-15-01-01

Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Gross Observations

Main Study and Recovery Female Animals

Control	586	NGLR
	591	Right pulmonary lobe has dark focal area
	601	NGLR
	602	Liver mildly pale
	605	NGLR
	612	Dry red material around right eye; Liver is moderately pale; Lungs show multifocal to coalescing dark and light areas
	585	NGLR
	589	NGLR
	592	NGLR
	599	NGLR
	604	NGLR
	611	Liver slightly pale
0.1 mg/L	595	NGLR
	596	Red blanching areas throughout lungs
	607	NGLR
	616	Liver is mildly pale; Orange/red material in ileum portion of G.I. tract; Right cranial lobe has white focal areas
	618	Multifocal to coalescing moderately darkened areas of lungs
	619	Orange/red material in ileum; Right caudal lobe has dark focal area
0.5 mg/L	588	Lungs appear dark in color; Pale liver
	590	NGLR
	594	NGLR
	600	NGLR
	603	Liver mildly dark; Right middle pulmonary lobe has dark focal areas
	610	Liver is moderately pale; Right caudal lobe has small dark focal areas
1.5 mg/L	584	Liver moderately dark; Right lung has dark focal areas
	597	Lungs appear dark in color
	606	Spotting on right lung
	609	NGLR
	614	Spleen moderately dark; Urogenital system stained light pink; White regions on cranial aspects of both lobes; Multifocal to coalescing areas covering lungs
	615	NGLR
	587	NGLR
	593	NGLR
	598	NGLR
	608	NGLR
	613	Uterus appears to be in proestrus
	617	NGLR

NGLR = No gross lesions recognized

Toxicology Report No. S.0036333-15, April – September 2015

Appendix P

Individual and Summary of Organ Mass and Mass Ratio Data

Table P-1 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ Mass (grams) Main Study Male Animals

GROUP	ANIMAL ID	BODY MASS ¹	BODY MASS ²	ADRENALS	BRAIN	HEART	KIDNEYS	EPIDIDYMIDES	LIVER	LUNGS	SPLEEN	TESTES	THYMUS
Control	550	338.2	306.8	0.052	1.888	1.012	2.336	0.683	11.397	4.080	0.458	3.253	0.412
	552	329.4	303.9	0.060	1.916	1.333	2.302	0.593	12.384	3.749	0.518	2.292	0.368
	553	339.5	315.7	0.044	2.026	1.315	2.425	0.644	12.175	4.548	0.595	3.046	0.639
	560	329.1	310.0	0.069	2.027	1.164	2.224	0.684	11.404	4.475	0.493	3.113	0.483
	566	320.7	300.3	0.057	1.929	1.156	2.288	0.712	10.877	3.573	0.697	3.050	0.468
	579	338.1	316.6	0.075	2.095	1.429	2.628	0.665	11.173	4.695	0.970	3.462	0.668
	Mean	332.500	308.883	0.060	1.980	1.235	2.367	0.664	11.568	4.187	0.622	3.036	0.506
	S.D.	7.3927	6.4824	0.0113	0.0809	0.1514	0.1438	0.0412	0.5872	0.4586	0.1907	0.3971	0.1215
0.1 mg/L	551	361.2	335.9	0.077	1.868	1.295	2.662	0.697	12.900	4.640	0.779	2.949	0.534
	557	330.3	302.9	0.059	1.981	1.206	2.448	0.704	11.064	4.058	0.748	3.219	0.443
	571	328.2	297.0	0.047	2.107	1.205	2.235	0.685	10.901	3.863	0.591	2.951	0.367
	572	356.7	328.9	0.071	1.959	1.499	2.611	0.595	12.306	4.207	0.669	3.075	0.797
	573	324.0	305.0	0.066	1.899	1.088	2.414	0.645	10.412	4.445	0.597	3.373	0.549
	582	331.6	299.5	0.076	1.998	1.312	2.284	0.713	9.668	5.501	0.639	3.379	0.550
	Mean	338.667	311.533	0.066	1.969	1.268	2.442	0.673	11.209	4.452	0.671	3.158	0.540
	S.D.	15.9847	16.5443	0.0115	0.0839	0.1387	0.1706	0.0451	1.1991	0.5827	0.0781	0.1961	0.1453
0.5 mg/L	554	296.0	265.2	0.067	1.841	1.216	1.845	0.733	9.096	3.355	0.527	3.248	0.428
	555	307.8	282.3	0.045	1.917	1.125	2.069	0.637	10.836	3.970	0.671	3.037	0.396
	561	326.0	297.6	0.055	1.975	1.072	2.104	0.567	11.066	4.152	0.489	2.981	0.354
	569	313.2	286.4	0.074	1.966	1.335	2.535	0.659	11.577	3.614	0.540	3.207	0.458
	575	357.6	336.4	0.089	2.065	1.196	2.716	0.669	12.112	4.371	0.585	3.441	0.474
	580	331.8	308.6	0.069	2.009	1.355	2.403	0.478	10.907	3.806	0.493	2.881	0.333
	Mean	322.067	296.083	0.067	1.962	1.217	2.279	0.624	10.932	3.878	0.551	3.133	0.407
	S.D.	21.6077	24.5843	0.0153	0.0770	0.1122	0.3271	0.0893	1.0205	0.3674	0.0685	0.2046	0.0565
1.5 mg/L	556	327.3	296.7	0.069	1.939	1.350	2.328	0.600	12.370	3.616	0.967	3.020	0.409
	564	330.4	295.4	0.065	2.012	1.250	2.419	0.675	9.686	4.081	0.607	3.350	0.489
	565	359.6	327.9	0.066	2.047	1.206	2.805	0.794	13.277	5.482	0.813	3.196	0.409
	567	349.0	328.9	0.064	2.090	1.172	2.757	0.581	11.690	5.497	0.818	2.962	0.695
	574	318.4	297.8	0.059	2.043	1.249	2.404	0.635	11.337	3.423	0.526	2.959	0.459
	577	311.5	286.9	0.071	1.960	1.240	2.171	0.620	10.205	3.952	0.508	3.122	0.565
	Mean	332.700	305.600	0.066	2.015	1.245	2.481	0.651	11.428	4.342	0.707	3.102	0.504
	S.D.	18.3176	18.0774	0.0042	0.0570	0.0599	0.2492	0.0771	1.3352	0.9193	0.1863	0.1533	0.1100

¹ Non-fasted Body Mass

² Fasted Body Mass

* Outlier

Table P-2 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ Mass (grams) Main Study Female Animals

GROUP	ANIMAL ID	BODY MASS ¹	BODY MASS ²	ADRENALS	BRAIN	HEART	KIDNEYS	LIVER	LUNGS	OVARIES	SPLEEN	THYMUS	UTERUS
Control	586	200.6	184.8	0.052	1.936	0.729	1.366	6.115	3.326	0.122	0.434	0.237	0.384
	591	224.4	212.0	0.062	1.894	0.865	1.658	6.414	3.310	0.102	0.403	0.435	0.439
	601	236.3	218.6	0.064	1.943	0.832	1.716	7.896	3.364	0.133	0.472	0.401	0.441
	602	249.5	236.4	0.067	1.893	0.984	1.894	9.114	3.499	0.152	0.532	0.566	0.422
	605	214.0	205.6	0.067	1.819	0.804	1.689	7.326	3.022	0.120	0.452	0.458	0.325
	612	224.5	212.4	0.041	1.812	0.933	1.514	7.991	3.588	0.109	0.466	0.477	0.526
	Mean	224.883	211.633	0.059	1.883	0.858	1.640	7.476	3.352	0.123	0.460	0.429	0.423
	S.D.	16.9990	16.8468	0.0103	0.0562	0.0914	0.1811	1.1070	0.1943	0.0178	0.0433	0.1092	0.0668
0.1 mg/L	595	229.9	211.6	0.068	1.865	0.887	1.694	7.973	3.452	0.108	0.494	0.401	0.527
-	596	250.0	227.1	0.063	1.918	0.909	1.810	7.767	3.218	0.131	0.462	0.513	0.527
	607	191.7	171.0	0.051	1.781	0.792	1.444	5.768	2.642	0.078	0.424	0.476	0.802
	616	219.9	207.0	0.077	1.857	0.945	1.747	6.883	3.585	0.108	0.416	0.540	0.364
	618	213.4	206.1	0.072	1.887	0.778	1.683	7.972	3.276	0.107	0.431	0.470	0.459
	619	225.4	212.4	0.057	1.933	0.954	1.973	6.832	3.098	0.116	0.395	0.605	0.397
	Mean	221.717	205.867	0.065	1.874	0.878	1.725	7.199	3.212	0.108	0.437	0.501	0.513
	S.D.	19.2559	18.6732	0.0096	0.0540	0.0758	0.1737	0.8720	0.3283	0.0173	0.0355	0.0694	0.1565
0.5 mg/L	588	216.8	197.3	0.071	2.000	0.798	1.562	7.053	3.019	0.118	0.367	0.367	0.453
	590	230.3	208.5	0.059	2.007	0.912	1.635	8.323	3.034	0.120	0.449	0.391	0.557
	594	199.5	182.6	0.048	1.833	0.839	1.513	6.840	2.989	0.125	0.379	0.327	0.468
	600	201.8	186.1	0.054	1.742	0.825	1.369	6.725	3.231	0.083	0.362	0.494	0.498
	603	253.1	239.2	0.077	1.904	0.975	1.618	7.249	3.329	0.103	0.479	0.592	0.366
	610	225.7	212.8	0.061	1.979	0.938	1.564	7.525	3.723	0.118	0.379	0.414	0.442
	Mean	221.200	204.417	0.062	1.911	0.881	1.544	7.286	3.221	0.111	0.403	0.431	0.464
	S.D.	19.9363	20.7795	0.0107	0.1063	0.0705	0.0960	0.5834	0.2805	0.0156	0.0490	0.0966	0.0633
1.5 mg/L	584	229.3	213.7	0.069	1.946	0.925	1.579	7.165	3.426	0.111	0.380	0.593	0.364
	597	229.3	213.8	0.072	1.904	0.913	1.676	8.002	3.394	0.166	0.414	0.471	0.511
	606	201.2	189.3	0.056	1.912	0.752	1.523	6.872	3.216	0.138	0.514	0.291	0.353
	609	225.3	211.8	0.065	1.940	0.887	1.672	7.183	4.176	0.092	0.479	0.422	0.367
	614	249.3	233.1	ND	2.223	0.981	1.872	8.176	4.305	0.137	0.556	0.559	0.321
	615	216.0	203.2	0.079	1.910	0.877	1.552	7.182	3.453	0.115	0.462	0.325	0.401
	Mean	225.067	210.817	0.068	1.973	0.889	1.646	7.430	3.662	0.127	0.468	0.444	0.386
	S.D.	15.9686	14.3924	0.0085	0.1239	0.0765	0.1274	0.5268	0.4578	0.0259	0.0643	0.1218	0.0663

¹ Non-fasted Body Mass

² Fasted Body Mass

* Outlier

Table P-3

Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ Mass (grams) Recovery Male Animals

GROUP	ANIMAL ID	BODY MASS ¹	BODY MASS ²	ADRENALS	BRAIN	HEART	KIDNEYS	EPIDIDYMIDES	LIVER	LUNGS	SPLEEN	TESTES	THYMUS
Control	548	507.4	476.2	0.054	2.173	1.789	2.979	1.283	16.214	5.121	1.045	3.445	0.488
	558	491.1	453.7	0.065	2.272	1.399	3.028	1.154	15.632	5.816	0.681	3.336	0.432
	559	507.9	470.1	0.074	2.283	2.085	3.057	1.196	16.697	5.748	0.979	3.439	0.449
	562	447.0	424.4	0.066	2.247	1.453	2.491	1.112	15.058	6.275	0.718	3.000	0.234
	568	527.9	502.5	0.094	2.191	1.838	3.067	1.164	18.021	7.897	0.803	3.836	0.539
	570	498.9	462.9	0.075	2.204	1.601	3.028	1.094	14.547	5.973	0.703	3.341	0.626
	Mean	496.700	464.967	0.071	2.228	1.694	2.942	1.167	16.028	6.138	0.822	3.400	0.461
	S.D.	27.2751	25.8386	0.0134	0.0454	0.2594	0.2229	0.0676	1.2446	0.9413	0.1547	0.2688	0.1316
1.5 mg/L	549	512.6	487.0	0.066	2.177	1.591	3.422	1.118	18.044	5.896	0.758	3.287	0.635
	563	488.6	466.3	0.071	2.075	1.676	2.848	1.178	15.446	6.606	0.781	3.230	0.613
	576	542.3	521.3	0.071	2.310	1.996	3.820	1.173	20.228	7.530	0.958	3.346	0.455
	578	470.4	456.3	0.079	2.143	1.557	2.973	0.607	16.000	8.830	0.650	0.991	0.778
	581	471.6	447.3	0.071	2.141	1.816	2.886	1.326	15.530	5.937	0.777	3.394	0.458
	583	443.3	417.7	0.055	2.186	1.871	2.684	1.123	13.932	6.506	1.070	3.282	0.669
	Mean	488.133	465.983	0.069	2.172	1.751	3.106	1.088	16.530	6.884	0.832	2.922	0.601
	S.D.	35.0163	35.4284	0.0080	0.0781	0.1718	0.4290	0.2472	2.2438	1.1223	0.1528	0.9475	0.1257

¹ Non-fasted Body Mass

² Fasted Body Mass

* Outlier

Table P-4Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ Mass (grams) Recovery Female Animals

GROUP	ANIMAL ID	BODY MASS ¹	BODY MASS ²	ADRENALS	BRAIN	HEART	KIDNEYS	LIVER	LUNGS	OVARIES	SPLEEN	THYMUS	UTERUS
Control	585	239.4	225.0	0.065	1.914	0.915	1.632	7.457	3.658	0.123	0.445	0.479	0.663
	589	272.4	258.6	0.070	2.036	0.909	1.946	8.183	4.438	0.119	0.570	0.374	0.536
	592	251.8	237.4	0.062	2.014	0.914	1.736	8.112	ND	0.163	0.451	0.228	0.513
	599	275.6	256.2	0.070	2.012	1.127	2.061	7.847	3.994	0.123	0.625	0.381	0.547
	604	291.2	273.8	0.081	2.151	1.141	2.224	9.270	4.430	0.196	0.555	0.430	1.241
	611	277.1	258.3	0.061	2.016	0.958	1.651	7.303	3.628	0.082	0.546	0.367	0.421
	Mean	267.917	251.550	0.068	2.024	0.994	1.875	8.029	4.030	0.134	0.532	0.377	0.654
	S.D.	18.8602	17.4188	0.0074	0.0757	0.1100	0.2408	0.7012	0.3962	0.0396	0.0706	0.0843	0.2981
1.5 mg/L	587	285.1	278.3	0.070	2.134	1.144	1.928	9.040	4.443	0.181	0.525	0.319	0.541
	593	242.7	227.3	0.070	2.015	0.833	1.606	6.810	4.188	0.114	0.435	0.268	0.607
	598	269.9	259.3	0.064	2.072	0.989	1.823	7.931	3.679	0.122	0.555	0.370	0.534
	608	241.8	218.9	0.059	2.130	0.983	1.814	7.348	3.578	0.133	0.490	0.380	0.775
	613	249.2	234.6	0.071	2.147	0.848	1.556	7.582	3.856	0.123	0.484	0.246	1.192
	617	291.0	269.3	0.078	1.942	1.069	1.817	8.516	3.750	0.137	0.636	0.430	ND
	Mean	263.283	247.950	0.069	2.073	0.978	1.757	7.871	3.916	0.135	0.521	0.336	0.730
	S.D.	21.7785	24.3077	0.0065	0.0812	0.1216	0.1440	0.8086	0.3327	0.0240	0.0695	0.0706	0.2760

¹ Non-fasted Body Mass

² Fasted Body Mass

* Outlier

Table P-5 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ to Body Mass Main Study Male Animals

GROUP	ANIMAL ID	ADRENALS	BRAIN	HEART	KIDNEYS	EPIDIDYMIDES	LIVER	LUNGS	SPLEEN	TESTES	THYMUS
Control	550	0.0002	0.0062	0.0033	0.0076	0.0022	0.0371	0.0133	0.0015	0.0106	0.0013
	552	0.0002	0.0063	0.0044	0.0076	0.0020	0.0408	0.0123	0.0017	0.0075	0.0012
	553	0.0001	0.0064	0.0042	0.0077	0.0020	0.0386	0.0144	0.0019	0.0096	0.0020
	560	0.0002	0.0065	0.0038	0.0072	0.0022	0.0368	0.0144	0.0016	0.0100	0.0016
	566	0.0002	0.0064	0.0038	0.0076	0.0024	0.0362	0.0119	0.0023	0.0102	0.0016
	579	0.0002	0.0066	0.0045	0.0083	0.0021	0.0353	0.0148	0.0031	0.0109	0.0021
	Mean	0.0002	0.0064	0.0040	0.0077	0.0022	0.0375	0.0135	0.0020	0.0098	0.0016
	S.D.	0.00004	0.00014	0.00045	0.00036	0.00015	0.00196	0.00121	0.00060	0.00121	0.00036
0.1 mg/l	551	0.0002	0.0056	0.0039	0.0079	0.0021	0.0384	0.0138	0.0023	0.0088	0.0016
0.1 mg/L	557	0.0002	0.0056	0.0039	0.0079	0.0021	0.0365	0.0138	0.0023	0.0088	0.0015
	571	0.0002	0.0003	0.0040	0.0081	0.0023	0.0365	0.0134	0.0025	0.0099	0.0013
	572	0.0002	0.0071	0.0041	0.0075	0.0023	0.0307	0.0130	0.0020	0.0099	0.0012
	572	0.0002	0.008	0.0046	0.0079	0.0018	0.0374	0.0128	0.0020	0.0093	0.0024
	573 582	0.0002	0.0062	0.0036	0.0079	0.0021	0.0341	0.0146	0.0020	0.0111	0.0018
	Mean	0.0003	0.0067	0.0044	0.0078	0.0024	0.0323	0.0184	0.0021	0.0113	0.0018
	S.D.	0.0002	0.0004	0.00036	0.0078	0.00022	0.00339	0.00209	0.0022	0.00102	0.00040
	3.D.	0.00004	0.00055	0.00030	0.00022	0.00022	0.00227	0.00209	0.00021	0.00100	0.00040
0.5 mg/L	554	0.0003	0.0069	0.0046	0.0070	0.0028	0.0343	0.0127	0.0020	0.0122	0.0016
	555	0.0002	0.0068	0.0040	0.0073	0.0023	0.0384	0.0141	0.0024	0.0108	0.0014
	561	0.0002	0.0066	0.0036	0.0071	0.0019	0.0372	0.0140	0.0016	0.0100	0.0012
	569	0.0003	0.0069	0.0047	0.0089	0.0023	0.0404	0.0126	0.0019	0.0112	0.0016
	575	0.0003	0.0061	0.0036	0.0081	0.0020	0.0360	0.0130	0.0017	0.0102	0.0014
	580	0.0002	0.0065	0.0044	0.0078	0.0015	0.0353	0.0123	0.0016	0.0093	0.0011
	Mean	0.0003	0.0066	0.0042	0.0077	0.0021	0.0369	0.0131	0.0019	0.0106	0.0014
	S.D.	0.00005	0.00031	0.00049	0.00072	0.00044	0.00222	0.00076	0.00031	0.00102	0.00020
1.5 mg/L	556	0.0002	0.0065	0.0046	0.0078	0.0020	0.0417	0.0122	0.0033	0.0102	0.0014
	564	0.0002	0.0068	0.0042	0.0082	0.0023	0.0328	0.0138	0.0021	0.0113	0.0017
	565	0.0002	0.0062	0.0037	0.0086	0.0024	0.0405	0.0167	0.0025	0.0097	0.0012
	567	0.0002	0.0064	0.0036	0.0084	0.0018	0.0355	0.0167	0.0025	0.0090	0.0021
	574	0.0002	0.0069	0.0000	0.0081	0.0021	0.0381	0.0115	0.0018	0.0099	0.0015
								0.0138	0.0018		
	577	0.0002	0.0068	0.0043	0.0076	0.0022	0.0330	0.0130	0.0010	0.0109	0.0020
	577 Mean	0.0002	0.0068	0.0043	0.0076 0.0081	0.0022	0.0356 0.0374	0.0138	0.0018	0.0109 0.0102	0.0020

* Outlier

Table P-6 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ to Body Mass Main Study Female Animals

GROUP	ANIMAL ID	ADRENALS	BRAIN	HEART	KIDNEYS	LIVER	LUNGS	OVARIES	SPLEEN	THYMUS	UTERUS
Control	586	0.0003	0.0105	0.0039	0.0074	0.0331	0.0180	0.0007	0.0023	0.0013	0.0021
	591	0.0003	0.0089	0.0041	0.0078	0.0303	0.0156	0.0005	0.0019	0.0021	0.0021
	601	0.0003	0.0089	0.0038	0.0078	0.0361	0.0154	0.0006	0.0022	0.0018	0.0020
	602	0.0003	0.0080	0.0042	0.0080	0.0386	0.0148	0.0006	0.0023	0.0024	0.0018
	605	0.0003	0.0088	0.0039	0.0082	0.0356	0.0147	0.0006	0.0022	0.0022	0.0016
	612	0.0002	0.0085	0.0044	0.0071	0.0376	0.0169	0.0005	0.0022	0.0022	0.0025
	Mean	0.0003	0.0089	0.0041	0.0077	0.0352	0.0159	0.0006	0.0022	0.0020	0.0020
	S.D.	0.00004	0.00084	0.00023	0.00040	0.00306	0.00130	0.00008	0.00015	0.00039	0.00031
0.1 mg/L	595	0.0003	0.0088	0.0042	0.0080	0.0377	0.0163	0.0005	0.0023	0.0019	0.0025
	596	0.0003	0.0084	0.0040	0.0080	0.0342	0.0142	0.0006	0.0020	0.0023	0.0023
	607	0.0003	0.0104	0.0046	0.0084	0.0337	0.0155	0.0005	0.0025	0.0028	0.0047
	616	0.0004	0.0090	0.0046	0.0084	0.0333	0.0173	0.0005	0.0020	0.0026	0.0018
	618	0.0003	0.0092	0.0038	0.0082	0.0387	0.0159	0.0005	0.0021	0.0023	0.0022
	619	0.0003	0.0091	0.0045	0.0093	0.0322	0.0146	0.0005	0.0019	0.0028	0.0019
	Mean	0.0003	0.0092	0.0043	0.0084	0.0350	0.0156	0.0005	0.0021	0.0025	0.0026
	S.D.	0.00004	0.00067	0.00034	0.00048	0.00261	0.00113	0.00004	0.00023	0.00035	0.00108
0.5 mg/L	588	0.0004	0.0101	0.0040	0.0079	0.0357	0.0153	0.0006	0.0019	0.0019	0.0023
	590	0.0003	0.0096	0.0044	0.0078	0.0399	0.0146	0.0006	0.0022	0.0019	0.0027
	594	0.0003	0.0100	0.0046	0.0083	0.0375	0.0164	0.0007	0.0021	0.0018	0.0026
	600	0.0003	0.0094	0.0044	0.0074	0.0361	0.0174	0.0004	0.0019	0.0027	0.0027
	603	0.0003	0.0080	0.0041	0.0068	0.0303	0.0139	0.0004	0.0020	0.0025	0.0015
	610	0.0003	0.0093	0.0044	0.0073	0.0354	0.0175	0.0006	0.0018	0.0019	0.0021
	Mean	0.0003	0.0094	0.0043	0.0076	0.0358	0.0159	0.0006	0.0020	0.0021	0.0023
	S.D.	0.00004	0.00076	0.00022	0.00053	0.00317	0.00149	0.00012	0.00015	0.00038	0.00047
1.5 mg/L	584	0.0003	0.0091	0.0043	0.0074	0.0335	0.0160	0.0005	0.0018	0.0028	0.0017
1.5 mg/L	597	0.0003	0.0091	0.0043	0.0074	0.0333	0.0159	0.0003	0.0018	0.0028	0.0017
	606	0.0003	0.0089	0.0043	0.0078	0.0374	0.0139	0.0008	0.0019	0.0022	0.0024
	609	0.0003	0.0092	0.0040	0.0080	0.0303	0.0170	0.0007	0.0027	0.0015	0.0019
	614	0.0003 ND	0.0092	0.0042	0.0079	0.0359	0.0187	0.0004	0.0023	0.0020	0.0017
	615	0.0004	0.0095	0.0042	0.0080	0.0353	0.0185	0.0006	0.0024	0.0024	0.0014
	Mean	0.0004	0.0094	0.0043	0.0078	0.0353	0.0170	0.0006	0.0023	0.0018	0.0020
	S.D.	0.0003	0.0094	0.0042	0.0078	0.0353	0.00174	0.0008	0.0022	0.0021	0.00034
	J.D.	0.00004	0.00042	0.00012	0.00024	0.00140	0.00140	0.00014	0.00033	0.00049	0.00034

* Outlier

Table P-7Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ to Body Mass Recovery Male Animals

GROUP	ANIMAL ID	ADRENALS	BRAIN	HEART	KIDNEYS	EPIDIDYMIDES	LIVER	LUNGS	SPLEEN	TESTES	THYMUS
Control	548	0.0001	0.0046	0.0038	0.0063	0.0027	0.0340	0.0108	0.0022	0.0072	0.0010
	558	0.0001	0.0050	0.0031	0.0067	0.0025	0.0345	0.0128	0.0015	0.0074	0.0010
	559	0.0002	0.0049	0.0044	0.0065	0.0025	0.0355	0.0122	0.0021	0.0073	0.0010
	562	0.0002	0.0053	0.0034	0.0059	0.0026	0.0355	0.0148	0.0017	0.0071	0.0006
	568	0.0002	0.0044	0.0037	0.0061	0.0023	0.0359	0.0157	0.0016	0.0076	0.0011
	570	0.0002	0.0048	0.0035	0.0065	0.0024	0.0314	0.0129	0.0015	0.0072	0.0014
	Mean	0.0002	0.0048	0.0036	0.0063	0.0025	0.0345	0.0132	0.0018	0.0073	0.0010
	S.D.	0.00002	0.00033	0.00046	0.00030	0.00015	0.00164	0.00179	0.00030	0.00019	0.00026
1.5 mg/L	549	0.0001	0.0045	0.0033	0.0070	0.0023	0.0371	0.0121	0.0016	0.0067	0.0013
	563	0.0002	0.0044	0.0036	0.0061	0.0025	0.0331	0.0142	0.0017	0.0069	0.0013
	576	0.0001	0.0044	0.0038	0.0073	0.0023	0.0388	0.0144	0.0018	0.0064	0.0009
	578	0.0002	0.0047	0.0034	0.0065	0.0013	0.0351	0.0194	0.0014	0.0022	0.0017
	581	0.0002	0.0048	0.0041	0.0065	0.0030	0.0347	0.0133	0.0017	0.0076	0.0010
	583	0.0001	0.0052	0.0045	0.0064	0.0027	0.0334	0.0156	0.0026	0.0079	0.0016
	Mean	0.0002	0.0047	0.0038	0.0066	0.0024	0.0354	0.0148	0.0018	0.0063	0.0013
	S.D.	0.00005	0.00031	0.00045	0.00044	0.00058	0.00221	0.00252	0.00041	0.00208	0.00032

* Outlier

Table P-8Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ to Body Mass Recovery Female Animals

GROUP	ANIMAL ID	ADRENALS	BRAIN	HEART	KIDNEYS	LIVER	LUNGS	OVARIES	SPLEEN	THYMUS	UTERUS
Control	585	0.0003	0.0085	0.0041	0.0073	0.0331	0.0163	0.0005	0.0020	0.0021	0.0029
	589	0.0003	0.0079	0.0035	0.0075	0.0316	0.0172	0.0005	0.0022	0.0014	0.0021
	592	0.0003	0.0085	0.0039	0.0073	0.0342	ND	0.0007	0.0019	0.0010	0.0022
	599	0.0003	0.0079	0.0044	0.0080	0.0306	0.0156	0.0005	0.0024	0.0015	0.0021
	604	0.0003	0.0079	0.0042	0.0081	0.0339	0.0162	0.0007	0.0020	0.0016	0.0045
	611	0.0002	0.0078	0.0037	0.0064	0.0283	0.0140	0.0003	0.0021	0.0014	0.0016
	Mean	0.0003	0.0081	0.0040	0.0074	0.0320	0.0159	0.0005	0.0021	0.0015	0.0026
	S.D.	0.00004	0.00033	0.00033	0.00061	0.00226	0.00119	0.00015	0.00018	0.00036	0.00103
1.5 mg/L	587	0.0003	0.0077	0.0041	0.0069	0.0325	0.0160	0.0007	0.0019	0.0011	0.0019
	593	0.0003	0.0089	0.0037	0.0071	0.0300	0.0184	0.0005	0.0019	0.0012	0.0027
	598	0.0002	0.0080	0.0038	0.0070	0.0306	0.0142	0.0005	0.0021	0.0014	0.0021
	608	0.0003	0.0097	0.0045	0.0083	0.0336	0.0163	0.0006	0.0022	0.0017	0.0035
	613	0.0003	0.0092	0.0036	0.0066	0.0323	0.0164	0.0005	0.0021	0.0010	0.0051
	617	0.0003	0.0072	0.0040	0.0067	0.0316	0.0139	0.0005	0.0024	0.0016	ND
	Mean	0.0003	0.0085	0.0040	0.0071	0.0318	0.0159	0.0006	0.0021	0.0013	0.0031
	S.D.	0.00004	0.00096	0.00033	0.00062	0.00132	0.00165	0.00008	0.00019	0.00028	0.00130

* Outlier

Table P-9 Protocol No. 35-15-01-01 Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ to Brain Mass Main Study Male Animals

GROUP	ANIMAL ID	ADRENALS	HEART	KIDNEYS	EPIDIDYMIDES	LIVER	LUNGS	SPLEEN	TESTES	THYMUS
Control	550	0.0275	0.5360	1.2373	0.3618	6.0365	2.1610	0.2426	1.7230	0.2182
	552	0.0313	0.6957	1.2015	0.3095	6.4635	1.9567	0.2704	1.1962	0.1921
	553	0.0217	0.6491	1.1969	0.3179	6.0094	2.2448	0.2937	1.5035	0.3154
	560	0.034	0.5742	1.0972	0.3374	5.6260	2.2077	0.2432	1.5358	0.2383
	566	0.0295	0.5993	1.1861	0.3691	5.6387	1.8523	0.3613	1.5811	0.2426
	579	0.0358	0.6821	1.2544	0.3174	5.3332	2.2411	0.4630	1.6525	0.3189
	Mean	0.0300	0.6227	1.1956	0.3355	5.8512	2.1106	0.3124	1.5320	0.2543
	S.D.	0.00503	0.06320	0.05478	0.02505	0.39962	0.16578	0.08584	0.18276	0.05191
0.1 mg/L	551	0.0412	0.6933	1.4251	0.3731	6.9058	2.4839	0.4170	1.5787	0.2859
	557	0.0298	0.6088	1.2357	0.3554	5.5851	2.0485	0.3776	1.6249	0.2236
	571	0.0223	0.5719	1.0607	0.3251	5.1737	1.8334	0.2805	1.4006	0.1742
	572	0.0362	0.7652	1.3328	0.3037	6.2818	2.1475	0.3415	1.5697	0.4068
	573	0.0348	0.5729	1.2712	0.3397	5.4829	2.3407	0.3144	1.7762	0.2891
	582	0.038	0.6567	1.1431	0.3569	4.8388	2.7533	0.3198	1.6912	0.2753
	Mean	0.0337	0.6448	1.2448	0.3423	5.7114	2.2679	0.3418	1.6069	0.2758
	S.D.	0.00674	0.07586	0.13059	0.02500	0.75772	0.32833	0.04885	0.12715	0.07809
0.5 mg/L	554	0.0364	0.6605	1.0022	0.3982	4.9408	1.8224	0.2863	1.7643	0.2325
J.	555	0.0235	0.5869	1.0793	0.3323	5.6526	2.0709	0.3500	1.5842	0.2066
	561	0.0278	0.5428	1.0653	0.2871	5.6030	2.1023	0.2476	1.5094	0.1792
	569	0.0376	0.6790	1.2894	0.3352	5.8886	1.8383	0.2747	1.6312	0.2330
	575	0.0431	0.5792	1.3153	0.3240	5.8654	2.1167	0.2833	1.6663	0.2295
	580	0.0343	0.6745	1.1961	0.2379	5.4291	1.8945	0.2454	1.4340	0.1658
	Mean	0.0338	0.6205	1.1579	0.3191	5.5633	1.9742	0.2812	1.5982	0.2078
	S.D.	0.00707	0.05798	0.12847	0.05354	0.34990	0.13706	0.03799	0.11693	0.02932
		0.0050		4 0000	0.0004	0.0700	4 00 40	0 4007	4 5575	0.0400
1.5 mg/L	556	0.0356	0.6962	1.2006	0.3094	6.3796	1.8649	0.4987	1.5575	0.2109
	564	0.0323	0.6213	1.2023	0.3355	4.8141	2.0283	0.3017	1.6650	0.2430
	565	0.0322	0.5892	1.3703	0.3879	6.4861	2.6781	0.3972	1.5613	0.1998
	567	0.0306	0.5608	1.3191	0.2780	5.5933	2.6301	0.3914	1.4172	0.3325
	574	0.0289	0.6114	1.1767	0.3108	5.5492	1.6755	0.2575	1.4484	0.2247
	577	0.0362	0.6327	1.1077	0.3163	5.2066	2.0163	0.2592	1.5929	0.2883
	Mean	0.0326	0.6186	1.2295	0.3230	5.6715	2.1489	0.3510	1.5404	0.2499
	S.D.	0.00282	0.04579	0.09701	0.03680	0.65381	0.41195	0.09506	0.09236	0.05101

* Outlier

Table P-10Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ to Brain Mass Main Study Female Animals

GROUP	ANIMAL ID	ADRENALS	HEART	KIDNEYS	LIVER	LUNGS	OVARIES	SPLEEN	THYMUS	UTERUS
Control	586	0.0269	0.3765	0.7056	3.1586	1.7180	0.0630	0.2242	0.1224	0.1983
	591	0.0327	0.4567	0.8754	3.3865	1.7476	0.0539	0.2128	0.2297	0.2318
	601	0.0329	0.4282	0.8832	4.0638	1.7313	0.0685	0.2429	0.2064	0.2270
	602	0.0354	0.5198	1.0005	4.8146	1.8484	0.0803	0.2810	0.2990	0.2229
	605	0.0368	0.4420	0.9285	4.0275	1.6614	0.0660	0.2485	0.2518	0.1787
	612	0.0226	0.5149	0.8355	4.4100	1.9801	0.0602	0.2572	0.2632	0.2903
	Mean	0.0312	0.4564	0.8715	3.9768	1.7811	0.0653	0.2444	0.2288	0.2248
	S.D.	0.00541	0.05446	0.09885	0.61929	0.11493	0.00891	0.02420	0.06077	0.03788
0.1 mg/L	595	0.0365	0.4756	0.9083	4.2751	1.8509	0.0579	0.2649	0.2150	0.2826
	596	0.0328	0.4739	0.9437	4.0495	1.6778	0.0683	0.2409	0.2675	0.2748
	607	0.0286	0.4447	0.8108	3.2386	1.4834	0.0438	0.2381	0.2673	0.4503
	616	0.0415	0.5089	0.9408	3.7065	1.9305	0.0582	0.2240	0.2908	0.1960
	618	0.0382	0.4123	0.8919	4.2247	1.7361	0.0567	0.2284	0.2491	0.2432
	619	0.0295	0.4935	1.0207	3.5344	1.6027	0.0600	0.2043	0.3130	0.2054
	Mean	0.0345	0.4682	0.9194	3.8381	1.7136	0.0575	0.2334	0.2671	0.2754
	S .D.	0.00509	0.03482	0.06926	0.41330	0.16308	0.00790	0.02015	0.03378	0.09261
0.5 mg/L	588	0.0355	0.3990	0.7810	3.5265	1.5095	0.0590	0.1835	0.1835	0.2265
J.	590	0.0294	0.4544	0.8146	4.1470	1.5117	0.0598	0.2237	0.1948	0.2775
	594	0.0262	0.4577	0.8254	3.7316	1.6307	0.0682	0.2068	0.1784	0.2553
	600	0.031	0.4736	0.7859	3.8605	1.8548	0.0476	0.2078	0.2836	0.2859
	603	0.0404	0.5121	0.8498	3.8072	1.7484	0.0541	0.2516	0.3109	0.1922
	610	0.0308	0.4740	0.7903	3.8024	1.8813	0.0596	0.1915	0.2092	0.2233
	Mean	0.0322	0.4618	0.8078	3.8125	1.6894	0.0581	0.2108	0.2267	0.2435
	S .D.	0.00501	0.03697	0.02692	0.20133	0.16435	0.00684	0.02439	0.05630	0.03584
1.5 mg/L	584	0.0355	0.4753	0.8114	3.6819	1.7605	0.0570	0.1953	0.3047	0.1871
no mg/E	597	0.0378	0.4795	0.8803	4.2027	1.7826	0.0872	0.2174	0.2474	0.2684
	606	0.0293	0.3933	0.7965	3.5941	1.6820	0.0722	0.2688	0.1522	0.1846
	609	0.0235	0.3555	0.8619	3.7026	2.1526	0.0474	0.2469	0.2175	0.1892
	614	0.0333 ND	0.4413	0.8421	3.6779	1.9366	0.0474	0.2409	0.2515	0.1444
	615	0.0414	0.4592	0.8126	3.7602	1.8079	0.0602	0.2419	0.1702	0.2099
	Mean	0.0355	0.4510	0.8341	3.7699	1.8537	0.0643	0.2367	0.2239	0.1973
	S.D.	0.00454	0.03141	0.03275	0.21866	0.16825	0.01378	0.02618	0.05641	0.04085

* Outlier

Table P-11Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ to Brain Mass

Recovery Male Animals

GROUP	ANIMAL ID	ADRENALS	HEART	KIDNEYS	EPIDIDYMIDES	LIVER	LUNGS	SPLEEN	TESTES	THYMUS
Control	548	0.0249	0.8233	1.3709	0.5904	7.4616	2.3566	0.4809	1.5854	0.2246
	558	0.0286	0.6158	1.3327	0.5079	6.8803	2.5599	0.2997	1.4683	0.1901
	559	0.0324	0.9133	1.3390	0.5239	7.3136	2.5177	0.4288	1.5064	0.1967
	562	0.0294	0.6466	1.1086	0.4949	6.7014	2.7926	0.3195	1.3351	0.1041
	568	0.0429	0.8389	1.3998	0.5313	8.2250	3.6043	0.3665	1.7508	0.2460
	570	0.0340	0.7264	1.3739	0.4964	6.6003	2.7101	0.3190	1.5159	0.2840
	Mean	0.0320	0.7607	1.3208	0.5241	7.1970	2.7569	0.3691	1.5270	0.2076
	S.D.	0.00619	0.11706	0.10684	0.03558	0.60702	0.44223	0.07191	0.13734	0.06122
1.5 mg/L	549	0.0303	0.7308	1.5719	0.5136	8.2885	2.7083	0.3482	1.5099	0.2917
	563	0.0342	0.8077	1.3725	0.5677	7.4439	3.1836	0.3764	1.5566	0.2954
	576	0.0307	0.8641	1.6537	0.5078	8.7567	3.2597	0.4147	1.4485	0.1970
	578	0.0369	0.7266	1.3873	0.2832	7.4662	4.1204	0.3033	0.4624	0.3630
	581	0.0332	0.8482	1.3480	0.6193	7.2536	2.7730	0.3629	1.5852	0.2139
	583	0.0252	0.8559	1.2278	0.5137	6.3733	2.9762	0.4895	1.5014	0.3060
	Mean	0.0318	0.8056	1.4269	0.5009	7.5970	3.1702	0.3825	1.3440	0.2778
	S.D.	0.00402	0.06262	0.15675	0.11511	0.83415	0.51378	0.06381	0.43447	0.06192

* Outlier

Table P-12Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Individual Organ to Brain Mass Recovery Female Animals

GROUP	ANIMAL ID	ADRENALS	HEART	KIDNEYS	LIVER	LUNGS	OVARIES	SPLEEN	THYMUS	UTERUS
Control	585	0.034	0.4781	0.8527	3.8960	1.9112	0.0643	0.2325	0.2503	0.3464
	589	0.0344	0.4465	0.9558	4.0192	2.1798	0.0584	0.2800	0.1837	0.2633
	592	0.0308	0.4538	0.8620	4.0278	ND	0.0809	0.2239	0.1132	0.2547
	599	0.0348	0.5601	1.0244	3.9001	1.9851	0.0611	0.3106	0.1894	0.2719
	604	0.0377	0.5305	1.0339	4.3096	2.0595	0.0911	0.2580	0.1999	0.5769
	611	0.0303	0.4752	0.8189	3.6225	1.7996	0.0407	0.2708	0.1820	0.2088
	Mean	0.0337	0.4907	0.9246	3.9625	1.9870	0.0661	0.2626	0.1864	0.3203
	S.D.	0.00275	0.04498	0.09289	0.22444	0.14431	0.01776	0.03193	0.04395	0.13331
1.5 mg/L	587	0.0328	0.5361	0.9035	4.2362	2.0820	0.0848	0.2460	0.1495	0.2535
	593	0.0347	0.4134	0.7970	3.3797	2.0784	0.0566	0.2159	0.1330	0.3012
	598	0.0309	0.4773	0.8798	3.8277	1.7756	0.0589	0.2679	0.1786	0.2577
	608	0.0277	0.4615	0.8516	3.4498	1.6798	0.0624	0.2300	0.1784	0.3638
	613	0.0331	0.3950	0.7247	3.5314	1.7960	0.0573	0.2254	0.1146	0.5552
	617	0.0402	0.5505	0.9356	4.3852	1.9310	0.0705	0.3275	0.2214	ND
	Mean	0.0332	0.4723	0.8487	3.8017	1.8905	0.0651	0.2521	0.1626	0.3463
	S.D.	0.00417	0.06288	0.07691	0.42542	0.16742	0.01092	0.04119	0.03825	0.12494

* Outlier

Table P-13Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

	I		Red	Smoke Expo	sed
		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L
Body Mass ¹	Mean	332.500	338.667	322.067	332.700
	S.D.	7.3927	15.9847	21.6077	18.3176
	N	6	6	6	6
Body Mass ²	Mean	308.883	311.533	296.083	305.600
	S.D.	6.4824	16.5443	24.5843	18.0774
	N	6	6	6	6
Adrenals	Mean	0.060	0.066	0.067	0.066
	S.D.	0.0113	0.0115	0.0153	0.0042
	N	6	6	6	6
Brain	Mean	1.980	1.969	1.962	2.015
	S.D.	0.0809	0.0839	0.0770	0.0570
	N	6	6	6	6
Heart	Mean	1.235	1.268	1.217	1.245
	S.D.	0.1514	0.1387	0.1122	0.0599
	N	6	6	6	6
Kidneys	Mean	2.367	2.442	2.279	2.481
	S.D.	0.1438	0.1706	0.3271	0.2492
	N	6	6	6	6
Epididymides	Mean	0.664	0.673	0.624	0.651
	S.D.	0.0412	0.0451	0.0893	0.0771
	N	6	6	6	6
Liver	Mean	11.568	11.209	10.932	11.428
	S.D.	0.5872	1.1991	1.0205	1.3352
	N	6	6	6	6
Lungs	Mean	4.187	4.452	3.878	4.342
	S.D.	0.4586	0.5827	0.3674	0.9193
	N	6	6	6	6
Spleen	Mean	0.622	0.671	0.551	0.707
	S.D.	0.1907	0.0781	0.0685	0.1863
	N	6	6	6	6
Testes	Mean	3.036	3.158	3.133	3.102
	S.D.	0.3971	0.1961	0.2046	0.1533
	N	6	6	6	6
Thymus	Mean	0.506	0.540	0.407	0.504
	S.D.	0.1215	0.1453	0.0565	0.1100
	N	6	6	6	6

Summary of Absolute Organ Mass (grams) Main Study Male Rats

Table P-14Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

			Red	Smoke Expo	sed
		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L
Darks Maral		004.000	004 747	004 000	005 007
Body Mass ¹	Mean	224.883	221.717	221.200	225.067
	S.D. N	16.9990	19.2559 6	19.9363	15.9686
	IN	6	0	6	6
Body Mass ²	Mean	211.633	205.867	204.417	210.817
	S.D.	16.8468	18.6732	20.7795	14.3924
	Ν	6	6	6	6
Adrenals	Mean	0.059	0.065	0.062	0.068
	S.D.	0.0103	0.0096	0.0107	0.0085
	N	6	6	6	5
		Ũ	0	Ũ	Ũ
Brain	Mean	1.883	1.874	1.911	1.973
	S.D.	0.0562	0.0540	0.1063	0.1239
	Ν	6	6	6	6
Heart	Mean	0.858	0.878	0.881	0.889
	S.D.	0.0914	0.0758	0.0705	0.0765
	N	6	6	6	6
Kidneys	Mean	1.640	1.725	1.544	1.646
Mulleys	S.D.	0.1811	0.1737	0.0960	0.1274
	0.D. N	6	6	6	6
1.5.00	Mean	7.476	7.199	7.286	7.430
Liver	S.D.	1.1070	0.8720	0.5834	0.5268
	3.D. N				
	IN	6	6	6	6
Lungs	Mean	3.352	3.212	3.221	3.662
	S.D.	0.1943	0.3283	0.2805	0.4578
	Ν	6	6	6	6
Ovaries	Mean	0.123	0.108	0.111	0.127
ovanco	S.D.	0.0178	0.0173	0.0156	0.0259
	N.	6	6	6	6
		Ũ	0	Ũ	Ũ
Spleen	Mean	0.460	0.437	0.403	0.468
	S.D.	0.0433	0.0355	0.0490	0.0643
	N	6	6	6	6
Thymus	Mean	0.429	0.501	0.431	0.444
-	S.D.	0.1092	0.0694	0.0966	0.1218
	N	6	6	6	6
Uterus	Mean	0.423	0.513	0.464	0.386
	S.D.	0.0668	0.1565	0.0633	0.0663
	N.D.	6	6	6	6
	l'	0	Ū	0	0

Summary of Absolute Organ Mass (grams) Main Study Female Rats

Table P-15Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

		Control	1.5 mg/L
Body Mass ¹	Mean	496.700	488.133
	S.D.	27.2751	35.0163
	N	6	6
Body Mass ²	Mean	464.967	465.983
	S.D.	25.8386	35.4284
	N	6	6
Adrenals	Mean	0.071	0.069
	S.D.	0.0134	0.0080
	N	6	6
Brain	Mean	2.228	2.172
	S.D.	0.0454	0.0781
	N	6	6
Heart	Mean	1.694	1.751
	S.D.	0.2594	0.1718
	N	6	6
Kidneys	Mean	2.942	3.106
	S.D.	0.2229	0.4290
	N	6	6
Epididymides	Mean	1.167	1.088
	S.D.	0.0676	0.2472
	N	6	6
Liver	Mean	16.028	16.530
	S.D.	1.2446	2.2438
	N	6	6
Lungs	Mean	6.138	6.884
	S.D.	0.9413	1.1223
	N	6	6
Spleen	Mean	0.822	0.832
	S.D.	0.1547	0.1528
	N	6	6
Testes	Mean	3.400	2.922
	S.D.	0.2688	0.9475
	N	6	6
Thymus	Mean	0.461	0.601
	S.D.	0.1316	0.1257
	N	6	6

Summary of Absolute Organ Mass (grams) Recovery Male Rats

Table P-16Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

		Control	1.5 mg/L
Body Mass ¹	Mean	267.917	263.283
	S.D.	18.8602	21.7785
	N	6	6
Body Mass ²	Mean	251.550	247.950
	S.D.	17.4188	24.3077
	N	6	6
Adrenals	Mean	0.068	0.069
	S.D.	0.0074	0.0065
	N	6	6
Brain	Mean	2.024	2.073
	S.D.	0.0757	0.0812
	N	6	6
Heart	Mean	0.994	0.978
	S.D.	0.1100	0.1216
	N	6	6
Kidneys	Mean	1.875	1.757
	S.D.	0.2408	0.1440
	N	6	6
Liver	Mean	8.029	7.871
	S.D.	0.7012	0.8086
	N	6	6
Lungs	Mean	4.030	3.916
	S.D.	0.3962	0.3327
	N	5	6
Ovaries	Mean	0.134	0.135
	S.D.	0.0396	0.0240
	N	6	6
Spleen	Mean	0.532	0.521
	S.D.	0.0706	0.0695
	N	6	6
Thymus	Mean	0.377	0.336
	S.D.	0.0843	0.0706
	N	6	6
Uterus	Mean	0.654	0.730
	S.D.	0.2981	0.2760
	N	6	5

Summary of Absolute Organ Mass (grams) Recovery Female Rats

Table P-17Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

	I		Red Smoke Exposed		
		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L
Adrenals	Mean	0.0002	0.0002	0.0003	0.0002
	S.D.	0.00004	0.00004	0.00005	0.00000
	N	6	6	6	6
Brain	Mean	0.0064	0.0064	0.0066	0.0066
	S.D.	0.00014	0.00053	0.00031	0.00028
	N	6	6	6	6
Heart	Mean	0.0040	0.0041	0.0042	0.0041
	S.D.	0.00045	0.00036	0.00049	0.00038
	N	6	6	6	6
Kidneys	Mean	0.0077	0.0078	0.0077	0.0081
	S.D.	0.00036	0.00022	0.00072	0.00037
	N	6	6	6	6
Epididymides	Mean	0.0022	0.0022	0.0021	0.0021
	S.D.	0.00015	0.00022	0.00044	0.00022
	N	6	6	6	6
Liver	Mean	0.0375	0.0359	0.0369	0.0374
	S.D.	0.00196	0.00227	0.00222	0.00336
	N	6	6	6	6
Lungs	Mean	0.0135	0.0143	0.0131	0.0141
	S.D.	0.00121	0.00209	0.00076	0.00219
	N	6	6	6	6
Spleen	Mean	0.0020	0.0022	0.0019	0.0023
	S.D.	0.00060	0.00021	0.00031	0.00057
	N	6	6	6	6
Testes	Mean	0.0098	0.0102	0.0106	0.0102
	S.D.	0.00121	0.00100	0.00102	0.00083
	N	6	6	6	6
Thymus	Mean	0.0016	0.0017	0.0014	0.0017
	S.D.	0.00036	0.00040	0.00020	0.00035
	N	6	6	6	6

Summary of Organ to Body Mass Main Study Male Rats

Table P-18Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

	I		Red Smoke Exposed		
		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L
Adrenals	Mean	0.0003	0.0003	0.0003	0.0003
	S.D.	0.00004	0.00004	0.00004	0.00004
	N	6	6	6	5
Brain	Mean	0.0089	0.0092	0.0094	0.0094
	S.D.	0.00084	0.00067	0.00076	0.00042
	N	6	6	6	6
Heart	Mean	0.0041	0.0043	0.0043	0.0042
	S.D.	0.00023	0.00034	0.00022	0.00012
	N	6	6	6	6
Kidneys	Mean	0.0077	0.0084	0.0076	0.0078
	S.D.	0.00040	0.00048	0.00053	0.00024
	N	6	6	6	6
Liver	Mean	0.0352	0.0350	0.0358	0.0353
	S.D.	0.00306	0.00261	0.00317	0.00146
	N	6	6	6	6
Lungs	Mean	0.0159	0.0156	0.0159	0.0174
	S.D.	0.00130	0.00113	0.00149	0.00148
	N	6	6	6	6
Ovaries	Mean	0.0006	0.0005	0.0006	0.0006
	S.D.	0.00008	0.00004	0.00012	0.00014
	N	6	6	6	6
Spleen	Mean	0.0022	0.0021	0.0020	0.0022
	S.D.	0.00015	0.00023	0.00015	0.00033
	N	6	6	6	6
Thymus	Mean	0.0020	0.0025	0.0021	0.0021
	S.D.	0.00039	0.00035	0.00038	0.00049
	N	6	6	6	6
Uterus	Mean	0.0020	0.0026	0.0023	0.0019
	S.D.	0.00031	0.00108	0.00047	0.00034
	N	6	6	6	6

Summary of Organ to Body Mass Main Study Female Rats

Table P-19Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

	1		
		Control	1.5 mg/L
Adrenals	Mean	0.0002	0.0002
	S.D.	0.00002	0.00005
	N	6	6
Brain	Mean	0.0048	0.0047
	S.D.	0.00033	0.00031
	N	6	6
Heart	Mean	0.0036	0.0038
	S.D.	0.00046	0.00045
	N	6	6
Kidneys	Mean	0.0063	0.0066
	S.D.	0.00030	0.00044
	N	6	6
Epididymides	Mean	0.0025	0.0024
	S.D.	0.00015	0.00058
	N	6	6
Liver	Mean	0.0345	0.0354
	S.D.	0.00164	0.00221
	N	6	6
Lungs	Mean	0.0132	0.0148
	S.D.	0.00179	0.00252
	N	6	6
Spleen	Mean	0.0018	0.0018
	S.D.	0.00030	0.00041
	N	6	6
Testes	Mean	0.0073	0.0063
	S.D.	0.00019	0.00208
	N	6	6
Thymus	Mean	0.0010	0.0013
	S.D.	0.00026	0.00032
	N	6	6

Summary of Organ to Body Mass Recovery Male Rats

Table P-20Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

		Control	1.5 mg/L
Adrenals	Mean	0.0003	0.0003
	S.D.	0.00004	0.00004
	N	6	6
Brain	Mean	0.0081	0.0085
	S.D.	0.00033	0.00096
	N	6	6
Heart	Mean	0.0040	0.0040
	S.D.	0.00033	0.00033
	N	6	6
Kidneys	Mean	0.0074	0.0071
	S.D.	0.00061	0.00062
	N	6	6
Liver	Mean	0.0320	0.0318
	S.D.	0.00226	0.00132
	N	6	6
Lungs	Mean	0.0159	0.0159
	S.D.	0.00119	0.00165
	N	5	6
Ovaries	Mean	0.0005	0.0006
	S.D.	0.00015	0.00008
	N	6	6
Spleen	Mean	0.0021	0.0021
	S.D.	0.00018	0.00019
	N	6	6
Thymus	Mean	0.0015	0.0013
	S.D.	0.00036	0.00028
	N	6	6
Uterus	Mean	0.0026	0.0031
	S.D.	0.00103	0.00130
	N	6	5

Summary of Organ to Body Mass Recovery Female Rats

Table P-21Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Organ to Brain Mass Main Study Male Rats

			Red Smoke Exposed		
		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L
Adrenals	Mean	0.0300	0.0337	0.0338	0.0326
	S.D.	0.00503	0.00674	0.00707	0.00282
	N	6	6	6	6
Heart	Mean	0.6227	0.6448	0.6205	0.6186
	S.D.	0.06320	0.07586	0.05798	0.04579
	N	6	6	6	6
Kidneys	Mean	1.1956	1.2448	1.1579	1.2295
	S.D.	0.05478	0.13059	0.12847	0.09701
	N	6	6	6	6
Epididymides	Mean	0.3355	0.3423	0.3191	0.3230
	S.D.	0.02505	0.02500	0.05354	0.03680
	N	6	6	6	6
Liver	Mean	5.8512	5.7114	5.5633	5.6715
	S.D.	0.39962	0.75772	0.34990	0.65381
	N	6	6	6	6
Lungs	Mean	2.1106	2.2679	1.9742	2.1489
	S.D.	0.16578	0.32833	0.13706	0.41195
	N	6	6	6	6
Spleen	Mean	0.3124	0.3418	0.2812	0.3510
	S.D.	0.08584	0.04885	0.03799	0.09506
	N	6	6	6	6
Testes	Mean	1.5320	1.6069	1.5982	1.5404
	S.D.	0.18276	0.12715	0.11693	0.09236
	N	6	6	6	6
Thymus	Mean	0.2543	0.2758	0.2078	0.2499
	S.D.	0.05191	0.07809	0.02932	0.05101
	N	6	6	6	6

Table P-22Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Organ to Brain Mass Main Study Female Rats

	1		Red Smoke Exposed		
		Control	0.1 mg/L	0.5 mg/L	1.5 mg/L
Adrenals	Mean	0.0312	0.0345	0.0322	0.0355
	S.D.	0.00541	0.00509	0.00501	0.00454
	N	6	6	6	5
Heart	Mean	0.4564	0.4682	0.4618	0.4510
	S.D.	0.05446	0.03482	0.03697	0.03141
	N	6	6	6	6
Kidneys	Mean	0.8715	0.9194	0.8078	0.8341
	S.D.	0.09885	0.06926	0.02692	0.03275
	N	6	6	6	6
Liver	Mean	3.9768	3.8381	3.8125	3.7699
	S.D.	0.61929	0.41330	0.20133	0.21866
	N	6	6	6	6
Lungs	Mean	1.7811	1.7136	1.6894	1.8537
	S.D.	0.11493	0.16308	0.16435	0.16825
	N	6	6	6	6
Ovaries	Mean	0.0653	0.0575	0.0581	0.0643
	S.D.	0.00891	0.00790	0.00684	0.01378
	N	6	6	6	6
Spleen	Mean	0.2444	0.2334	0.2108	0.2367
	S.D.	0.02420	0.02015	0.02439	0.02618
	N	6	6	6	6
Thymus	Mean	0.2288	0.2671	0.2267	0.2239
	S.D.	0.06077	0.03378	0.05630	0.05641
	N	6	6	6	6
Uterus	Mean	0.2248	0.2754	0.2435	0.1973
	S.D.	0.03788	0.09261	0.03584	0.04085
	N	6	6	6	6

Table P-23Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Organ to Brain Mass Recovery Male Rats

		Control	1.5 mg/L
Adrenals	Mean	0.0320	0.0318
	S.D.	0.00619	0.00402
	Ν	6	6
Heart	Mean	0.7607	0.8056
	S.D.	0.11706	0.06262
	Ν	6	6
Kidneys	Mean	1.3208	1.4269
	S.D.	0.10684	0.15675
	N	6	6
Epididymides	Mean	0.5241	0.5009
	S.D.	0.03558	0.11511
	Ν	6	6
Liver	Mean	7.1970	7.5970
	S.D.	0.60702	0.83415
	Ν	6	6
Lungs	Mean	2.7569	3.1702
	S.D.	0.44223	0.51378
	Ν	6	6
Spleen	Mean	0.3691	0.3825
-	S.D.	0.07191	0.06381
	Ν	6	6
Testes	Mean	1.5270	1.3440
	S.D.	0.13734	0.43447
	Ν	6	6
Thymus	Mean	0.2076	0.2778
-	S.D.	0.06122	0.06192
	Ν	6	6

Table P-24Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Summary of Organ to Body Mass Recovery Female Rats

	_	Control	1.5 mg/L
Adrenals	Mean	0.0337	0.0332
	S.D.	0.00275	0.00417
	Ν	6	6
eart	Mean	0.4907	0.4723
	S.D.	0.04498	0.06288
	Ν	6	6
dneys	Mean	0.9246	0.8487
	S.D.	0.09289	0.07691
	Ν	6	6
ver	Mean	3.9625	3.8017
	S.D.	0.22444	0.42542
	Ν	6	6
ngs	Mean	1.9870	1.8905
	S.D.	0.14431	0.16742
	Ν	5	6
varies	Mean	0.0661	0.0651
	S.D.	0.01776	0.01092
	Ν	6	6
pleen	Mean	0.2626	0.2521
-	S.D.	0.03193	0.04119
	Ν	6	6
hymus	Mean	0.1864	0.1626
	S.D.	0.04395	0.03825
	Ν	6	6
terus	Mean	0.3203	0.3463
	S.D.	0.13331	0.12494
	Ν	6	5

Toxicology Report No. S.0036333-15, April – September 2015

Appendix Q

Pathology Report

Pathology Report for

35-15-01-01

Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

26 May, 2016

Prepared by;

Erica E. Carroll, DVM, PhD, Diplomate, ACVP

LTC, VC

TABLE OF CONTENTS

GOOD LABORATORY PRACTIC COMPLIANCE STATEMENT	3
QUALITY ASSURANCE STATEMENT	4
INTRODUCTION	5
METHODS	5
RESULTS – ACUTE STUDY	5
RESULTS – SUBACUTE STUDY	6
DISCUSSION	8
PHOTOMICROGRAPHS	12
REFERENCES	20
APPENDIX A –GROSS OBSERVATIONS OF ACUTE STUDY ANIMALS	4-1
APPENDIX B - INCIDENCE SUMMARIES OF ACUTE STUDY	B-1
APPENDIX C - INCIDENCE SUMMARIES OF SUBACUTE STUDY	2-1
APPENDIX D- INDIVIDUAL ANIMAL SCORES - ACUTE STUDY	D-1
APPENDIX E - INDIVIDUAL ANIMAL SCORES - SUBACUTE STUDY	E-1
APPENDIX F - STORAGE AND ARCHIVING	-1

GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

This pathology investigation was conducted in a manner consistent with the principles of the United States Environmental Protection Agency (USEPA) Good Laboratory Practice regulations of the Toxic Substances Control Act (TSCA), as detailed in 40 CFR Part 792, plus amendments.

ou=USA, cn=CARROLL.ERICA.E.1027432413 Date: 2016.05.19 20:17:50 -04'00'

20 May, 2016

Erica E. Carroll, DVM, PhD, Diplomate ACVP LTC, VC Study Pathologist **Toxicology Portfolio** U.S. Army Public Health Center

Date

QUALITY ASSURANCE STATEMENT

For the Pathology Report for Protocol No. 35-15-01-01 entitled "Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke", the following critical phases were audited by the APHC Quality Systems and Regulatory Compliance Office (QSARC), Laboratory and Toxicology Accreditation and Compliance Office (LTACO):

Critical Phase Inspected/Audited	Date Inspected/Audited	Date Reported to Management/SD
Pathology Contributing Scientist Inspection-QA audit of statistician's report and Excel Entered Data	04/25/2016	05/18/2016
Pathology Contributing Scientist Inspection - Summary Data and Summary Table Review	04/28/2016	05/18/2016
Pathology Contributing Scientist Inspection -Interim Pathology Report GLP Standard Regulation Review	05/17/2016	05/18/2016
Pathology Contributing Scientist Inspection- Final Pathology Report GLP Standard Regulation Review	06/14/2016	06/15/2016

Note 1 All findings were made known to the Study Director and the Program Manager at the time of the audit/inspection. If there were no findings during the inspection, the inspection was reported to Management and the Study Director on the date shown in the table.

Note 2 In addition to the study specific critical phase inspections listed here, general facility and process based inspections not specifically related to this study are done monthly or annually in accordance with QSARC, LTACO Standing Operating Procedures.

Note 3 This report has been audited by the Quality Assurance Unit (QSARC, LTACO) and is considered to be on accurate account of the data generated and of the procedures followed

15 - June -2016

Michael P. Kefauver Quality Assurance Specialist, QSARC Date

INTRODUCTION

The purpose of this study is to determine the inhalation toxicity of a pyrotechnically disseminated red smoke formulation used by the military. Head only inhalation exposures of the test atmosphere were conducted in rats with a single dose (acute study; one 30-minute exposure), repeat-dose with immediate necropsy (2-week (subacute) study; ten 30-minute exposures) and repeat-dose with four week recovery period prior to euthanasia. The acute study entailed three experiments, each using five male and five female rats with exposure at 2mg/L, 1.7mg/L and a third at 0.6mg/L, respectively. Acute study rats were humanely euthanized, necropsied to observe any gross lesions, and lungs were formalin-fixed for histopathologic examination. The subacute study was then conducted using groups of male and female rats exposed to Red Smoke at 1.5mg/L, 0.5 mg/L or 0.1 mg/L. The remainder of the study was conducted similar to the acute study.At the conclusion of the ten exposures of the subacute study, all rats and sham-exposed control animals were humanely euthanized, necropsied and a complete set of tissue specimens examined, weighed and fixed (in accordance with the protocol) for histologic analysis.

METHODS

Collected tissue specimens were preserved in neutral buffered formalin or modified Davidson's, in accordance with the protocol, trimmed into cassettes, processed through a series of dehydration and rehydration steps in xylene and ethanol using an automated processor, embedded in paraffin, sectioned on a microtome to 4um, stained with hematoxylin and eosin (or periodic acid-Schiff for the testes) and cover-slipped for microscopic examination. Histologic scoring criteria were: "0' = virtually no lesion (<1% of the tissue affected; '1' = minimal (affecting 1-5% of the tissue); '2' = mild (6-15% of tissue affected); '3' = moderate (16-30% of the tissue affected; '4' = marked (affects > 30% of the sampled tissue).

Statistical analysis was performed on the histologic scores of animals in the Subacute study using Fisher's Exact Test, comparing the number of animals of a given exposure group with a non-zero score (i.e., with a given lesion) to the number of control animals with a non-zero score. Given the small sample size, the initial statistical question asked was simply 'is the lesion present?' with a comparison of exposed versus control groups.

RESULTS

ACUTE STUDY

ACUTE STUDY GROSS OBSERVATIONS

Verbatim comments made by the prosector of this study (not the author) are in Appendix A. All animals in the 2mg/L group were euthanized two weeks after one exposure. Of five male rats exposed to 2mg/L of Red Smoke, numbered 0525-0529, all lungs had dark patches and some appeared atelectatic. One rat (0527) also had dark kidneys and liver. Five females (0530-0534) exposed to 2 mg/L Red Smoke exhibited dark patches on the lungs, occasional areas described as 'white.' Four rats in this group were described as having possible 'dead or dying' pulmonary tissue (0530, 0532, 0533, and 0534). The airways of the lungs of this group were inadvertently perfused with water. All others were formalin-filled at necropsy.

Five males (0732-0736) and five females (0737-0741) were exposed to 1.7 mg/L Red Smoke. 0732, 0733, 0734, 0737, 0738, and 0739 were euthanized one day after exposure. Although four of the five males had 'pale pink' lungs, male 0734 exhibited multifocal to coalescing dark brown to red regions on the ventral surface of both lungs. The caudal left lung was described as having a 'reticular' pattern. Females 737, 738 had pink lung (presumably grossly normal) but 737

had a focal brown area on right side and 0738 had 'outer edge' that was described as 'white.' (Rat 739 has no necropsy sheet.)

Males 0735 and 0736 and females 0740 and 0741 were administered 1.7 mg/L and euthanized fourteen days post-exposure. No gross lesions were reported.

Males (0780-0784) and females (0785-0789) were exposed to 0.6 mg/L Red Smoke. Rat 0780, euthanized one day postexposure, had multifocal dark brown areas on ventral pulmonary surface. Female rat 0787, euthanized one day postexposure, was described as having bilateral multifocal brown spots. Female rat 0787, euthanized one day post-exposure had 'mildly dark' liver and a 1 mm white focal lesion on the left kidney. Male rats 0783, 0784 and female rats 0788 and 0789 were euthanized 2 weeks following exposure. Male 0783 exhibited scattered, pale, slightly raised areas, in distal right caudal and left lobes. Male 0784 lung had 'whitish pink' parenchyma peripheral to central 'dark red' discoloration.

ACUTE STUDY HISTOLOGY RESULTS

Lungs from 30 rats exposed to a single dose (2mg/L, 1.7mg/L or 0.6mg/L) of Red Smoke were examined microscopically. Summaries of histologic changes are available in Appendix B. Individual animal scores are in Appendix D. Lungs from airexposed control rats of the Subacute study were used as age-matched controls for the acute study. It should be noted that control animals were sham-exposed (to air) ten times to match the Red Smoke-exposed Subacute Study animals whereas Acute Study animals were exposed once, then euthanized one day or 14 days later.

The only statistically significant findings in acute study lungs were increased alveolar septal congestion in female rats with all five rats affected compared to zero of six control females at the high exposure (p= 0.002) and at 1.7mg/L four of five female rats were affected compared to zero of six controls (p=0.015) (Figure 1). Of the males four of five high-exposure males compared to one of six control males (p=0.08) and four of five 1.7mg/L males compared to one of six controls (p=0.08) exhibited alveolar septal congestion. At 0.6mg/L five of five males compared to one of six controls had alveolar septal congestion (p=0.15). This makes a total of 13 of 15 exposed males are affected versus 1/6 unexposed males. Venous congestion was also present in four of five males in 1.7mg/L and 0.6 mg/L group and in four of five females in 1.7mg/L and 0.6mg/L exposure groups (Figure 2). Other lesions were either common background lesions or incidental findings but not linked to exposure to the test article.

SUBACUTE STUDY

SUBACUTE STUDY GROSS OBSERVATIONS

Gross observations were made by a prosector (not the author) are summarized in Table A. They consisted predominantly of discoloration of lungs and liver. All recovery animals had grossly normal lungs. Lungs from four of twelve control animals had a few dark or lighter-colored areas, suggesting that discoloration may have been partly due to perimortem hemorrhage commonly observed in rodents euthanized by carbon dioxide asphyxiation.

Table A. Red Smoke Subacute Inhalation Study Summary of Gross Findings

F		IOKE SU								ROSS FI	NDIN	GS
	Ea	ch columr	n repres	ents one	treatm	ent group	o and co	ntains n=	6 rats			
			1	1.5).5		0.1	1.5-Treated/		Recovery	
	Cor	ntrols	1.5		0.0			5.1	Recovered		Control	
LUNG	Males	Females	Males	Females	Males	Females	Males	Females	Males	Females	Males	Females
Dark patches	2	2	4	4	4	3	3	2	2			
Light Patches	1			1				1				
LIVER												
Dark			4	1		1	1				1R	
Pale		2			2	2		1				1
Mass			1				1					
URINARY BLADDER												
"Dark white"			1		1							
contents												
ILEUM: Orange Conte	ents							1				
TESTES - Small									1			
UTERUS - Distended										1		
No Gross Lesions	2	2	0	2	0	2	2	2	2	5*	5	
Reported	3	3	0	2	0	3	3	2	3	5"	5	5
R - indicates Reticula	ır patteri	n										
* - Prosector reporte	d one 1.	5-Treated	/Recove	ered Fem	ale "ap	beared to	be in p	roestrus.				

SUBACUTE STUDY HISTOLOGY RESULTS

Nasal Turbinates: The only histologic findings that are most likely associated with Red Smoke exposure are lesions in the nasal turbinates. Incidence summaries of histologic lesions observed in the subacute Red Smoke Study are available as Appendix C. Individual rat scores are in Appendix E. Six of six high-exposure male rats exhibited transitional epithelial hyperplasia in level 1 (T1, Figure 3, p=0.02) with varying amounts of neutrophilic or lymphocytic infiltrates and moderate mucosal degeneration (Figure 4) in two of six male rats. Lesions were also present in the 0.5 mg/L exposure males. Five of five 1.5 mg/L-exposed females had minimal to mild transitional epithelial hyperplasia at T1 (p=0.008), occasionally with mucosal degeneration. Transitional epithelial hyperplasia was observed in 0.5mg/L-exposure female rats (p=0.029) and in 0.1mg/L-exposed females (p=0.029).

At Level 2 (T2) goblet cell hyperplasia and respiratory epithelial hyperplasia were common in exposed and control male rats but granulocytic infiltrate (five of six, P=0.015) prevailed in exposed male turbinates. Mucosal degeneration was only present in exposed males (three of six, p=0.182) (Figure 5) and did not occur with every incidence of transitional epithelial hyperplasia (Figure 6). Four of five female rats exposed to 0.1mg/L Red Smoke exhibited granulocytic infiltrates at Level 2 (p=0.048) and lymphocytic infiltrates in four of five rats (p=0.206).

At level 3 male rats exposed to 0.1mg/kg Red Smoke exhibited more respiratory epithelial hyperplasia than controls (p=0.029) but this finding was common in both exposed and the older recovery control female rats (Figure 7).

Lung: Red Smoke-exposed male rats exposed ten times over two weeks exhibited no clearly important lung lesions. Three 1.5mg/L-exposed males had minimal to moderate alveolar septal congestion compared to one of six controls. In 0.5mg/L-exposed rats, five of six were affected (p=0.08). Five high-exposure rats had minimal or mild alveolar atelectasis compared to two of six controls. There were no biologically or statistically important lesions in Red Smokeexposed female lungs: Minimal pulmonary venous congestion (four of six 1.5 mg/L females versus one of six controls, p=0.242), more tracheal globular leukocytes (four of six) than controls (one of six, p=0.242).

In the fourteen week-old recovery groups, five of six rats in both treated and untreated recovering females had increased fluid in proximal tubules. This was not apparent in male rats. Three high-exposure females had minimal renal lymphocytic interstitial infiltrates and two had a few cystic tubules compared to zero control females. Three high-exposure males had minimal renal lymphocytic interstitial infiltrates and two had a few cystic tubules compared to zero control males. Other observed histologic changes were known background lesions (e.g., micro-foci of hepatic histiocytic infiltrates) or processing artifacts (e.g., pulmonary atelectasis).

DISCUSSION

ACUTE STUDY:

Control rat lung tissue from the Subacute study was compared to exposed animals in the Acute study because control tissues from the acute study were not preserved. The age of control and treated rats was comparable but Subacute Control rats were exposed to air (vehicle) ten times and euthanized 24 hours after the last exposure, compared to a single exposure of Acute Study rats followed by euthanasia one or fourteen days later. This is noted in the off-chance that the Subacute control rats endured more stress or other factors than acute rats, which could be reflected in blood values or histology.

For this study 'alveolar hemorrhage' had to be carefully defined. Rats euthanized by numerous means, especially carbon dioxide asphyxiation and cardiac venipuncture are commonly found to have intra-alveolar extravasated erythrocytes. Those euthanized with carbon dioxide often have subpleural edema as well. Due to the perimortem nature of this finding, it is considered an insignificant background lesion. It must be distinguished from antemortem hemorrhage, which usually has corroborative histologic evidence such as increased numbers of macrophages, macrophages with more cytoplasm, 'foamy' cytoplasm (interpreted as reactive), intracytoplasmic erythrocytes (erythrophagocytosis), intra-alveolar fibrin, alveolar septal wall injury, and, if enough time has elapsed, neutrophils or other leukocytes. In the absence of corroborative evidence, a few extravasated erythrocytes are not coded. They are interpreted as necropsy-related and not 'pathology.'

Alveolar septal and venous congestion, with scattered perimortem alveolar hemorrhage, may be test article-related. The finding is not statistically significant at every exposure level due, in part, to small sample size. Lungs of Acute Study highexposure males and females were inadvertently filled with water instead of formalin. This introduced artifacts which may have obscured findings. The presence of artifact is suggested by the presence of venous congestion in four of five animals in lower-exposure groups but not in controls or high-dose males and females. High-dose rat lungs had alveolar septal congestion but not venous congestion. However, it is difficult to imagine how instilling water in airways could produce this effect. In the acute study, all high-exposure males and females were described grossly as having dark patches on the lungs. Untreated control animals were not necropsied for comparison. This pathologist suspects the absence of control tissues at necropsy affected the descriptions of the Red Smoke-exposed lungs by the non-pathologist prosector who may be unfamiliar with the postmortem collapse and darkening of all rodent lungs within minutes of exposure to air. Histologic examination did not corroborate gross descriptions of the lungs in some aspects. Histologically observed perimortem hemorrhage consisted of a few erythrocytes in many alveoli, as opposed to patches of hemorrhage that would be observed grossly. Necrosis was not observed histologically. Venous and alveolar septal congestion, minimal to moderate in males and females, may explain the gross finding of 'dark patches.' The venous and alveolar septal congestion is probably passive congestion because veins were distended, not the arteries. Left side cardiac insufficiency (i.e., weakened contractions of the left atrium and/or ventricle) is a known cause of passive

pulmonary congestion. Terminal phlebotomy resulting in hypovolemia would most likely lead to quickening, weak cardiac contractions, but not usually passive congestion which usually occurs over time. Leaky vessels, or pulmonary hypertension would more likely produce diffuse, minimal alveolar hemorrhage, as seen in these rats (and in controls) but there was no histologic evidence of antemortem hypertension (e.g., vascular smooth muscle hypertrophy). Evidence of antemortem passive congestion usually includes hemosiderin-laden, or enlarged alveolar macrophages, but none were seen in these rats. The mechanism and cause of alveolar septal and venous congestion in Red Smoke-exposed rats are therefore unclear.

Artifacts are not generally recorded. Highest-exposure acute study rat lungs all had somewhat dilated alveolar septa that most likely is due to the perfusion with water instead of formalin at necropsy. This is mentioned because the artifact may have obscured pathology (Figure 8). Additionally, one does not normally record histologic atelectasis because it is often associated with insufficient post-mortem perfusion of the lung. In this study, however, its increased presence in Red Smoke-exposed lungs compared to control lungs raised the suspicion of a test article effect; therefore the incidence and severity of atelectasis were recorded.

SUBACUTE STUDY:

The primary lesion associated with ten thirty-minute head-only exposures to Red Smoke was nasal turbinate injury in the anterior areas, Levels 1 and 2 of rat nasal passages. Level 1 had transitional epithelial hyperplasia in males and females at all three exposure levels affecting the nasoturbinate, lateral wall of the lateral meatus and the maxilloturbinates (Figure 3). Mucosal degeneration (characterized by cytoplasmic vacuoles with low numbers of necrotic cells) was evident in Level 1 and 2 of males (Figure 4) and in Level 1 of females. At level 2, mucosal degeneration affected transitional or respiratory epithelium in males (Figures 5). Not every incidence of transitional epithelial hyperplasia was accompanied by degeneration, however (Figure 6). Respiratory epithelial hyperplasia was only clearly associated with Red Smoke exposure in low-exposure males at Level 3 although it was seen at other anatomic levels and other exposure levels (Figure 7). Subepithelial granulocytes (generally neutrophils) were present in high-exposure males and females at Levels 1 and 2 (Figure 6). Lymphocytes were not a key feature of the female nasal turbinate lesion at any exposure level but were occasionally present in high-exposure males. Small sample size may have obscured the significance of leukocyte types at a given level. Epithelial metaplasia was not appreciated in this study with the possible exception of a few rats (e.g., male 15-574 and female 15-597) that appeared to have transitional epithelial hyperplasia in an area normally occupied by respiratory epithelium. It is most often reported in studies of longer duration. Figure 9 illustrates in a diagram the location of the predominant nasal lesions.

In this study only transitional and respiratory, not olfactory, squamous or lymphoepithelial tissues exhibited appreciable lesions. Lesions observed in inhalation studies are often site-specific, depending on the regional dose of the inhaled chemical and the sensitivity of that tissue to the toxicant. (Harkema et al, 2006). State-of-the-art toxicological examination requires nasal mapping of lesions, since sensitivity to test articles may depend on airflow-driven deposition of the test article, local dose and regional tissue sensitivity. Mucus flow and blood flow in an area may also play a role in regional and systemic toxicity. Mapping enables more precise understanding of individual cell-type sensitivity which can improve extrapolation to humans, given their slightly different anatomy and tissue distribution. Unlike humans, laboratory rodents have no hairs in the nasal vestibule near the nares, which could block ingress of some particulates. However, laboratory rodents have complex maxilloturbinates (levels 1 (T1)and 2 (T2)) which provide better protection of the lower respiratory system than the simple middle and inferior turbinates found in humans. Level 3 in rodents is complex, presumably to increase surface area lined by olfactory epithelium for the critical survival skill of olfaction (Harkema et al, 2006).

There are five types of nasal epithelium. Transitional epithelium is found between the stratified squamous epithelium lining the nares and vestibule and the ciliated pseudostratified columnar epithelium lining the rest of the conducting portion of the respiratory tract. Transitional epithelium is characterized by one or two layers of non-ciliated cuboidal to columnar cells overlying basal cells, with few goblet (mucous) cells. Transitional epithelial cells have abundant smooth endoplasmic reticulum (SER), known to contain xenobiotic metabolizing-enzymes such as cytochromes P-450 (Harkema et al, 2006). Transitional epithelium covers the ventral tip of nasoturbinates and the dorsal tip of the maxilloturbinates at Level 1 and 2, which appear to be locations where inhaled substances would first make contact with the animal. Transitional epithelial hyperplasia of these areas was present in every exposure level of both genders of rats. Concomitant transitional mucosal degeneration was often but inconsistently observed. Additionally, mucosal degeneration at T1 in females was not observed but transitional epithelium in several rats appeared to extend into an area normally occupied by respiratory epithelium. Thus far, it is unclear whether Red Smoke presents a physical irritant (to which the tissue responds by hyperplasia) or a primary toxicant, or one that is metabolized to an active form by enzymes in the transitional epithelium. Ozone causes transitional epithelial hyperplasia with mucous cell metaplasia, hypothesized to be related to the influx of neutrophils. Mucous cell metaplasia was not present in this study although neutrophils were present in low numbers in exposed rats. This pathologist suspects this 14-day study concluded prior to the development of additional or metaplastic lesions as many of the described lesions occurred after much longer studies (Hardisty et al, 1999; Renne et al, 2007). Mucous (goblet) cells were plentiful and robust in Red Smoke-exposed rats in this study but some control rats also exhibited what appeared to be 'mild' increase in goblet cells over other control rats at T1 and T2 (Figure 10). A longer duration study may clarify a treatment effect on goblet cells and reactive mucus production.

Respiratory epithelium makes up 46% of the nasal cavity in a F344 rat (Harkema et al, 2006). It differs from respiratory epithelium lining the rest of the respiratory system in that it consists of six cell types; mucous, ciliated, nonciliated columnar, cuboidal, brush, and basal. Nasal respiratory epithelium is normally over-lain by a layer of mucus which is removed in tissue processing and therefore visualized with special processing and stains. The cilia propel inhaled particulates distally to the oropharynx where they are swallowed. Mucus, secreted by mucous cells lining the proximal septum and nasopharynx is known to be a strong anti-oxidant agent (Cross et al., 1984). Serous cells are the primary secretory cells in the remainder of the respiratory tract. These have abundant SER and may have metabolic activity for certain xenobiotic agents (Harkema et al, 2006). Locations of respiratory epithelial degeneration observed in this study were identical in Level 2 to those exhibiting transitional epithelial degeneration in Level 1, suggesting a correlation with airflow or points of first contact. Studies have demonstrated the presence of carboxylesterase, aldehyde dehydrogenase, cytochrome P-450, epoxide hydrolase, and glutathione S-transferases in respiratory epithelium. Degenerate respiratory epithelium at level 2 was present in three of six high-dose males (no females) suggesting irritation or biochemical injury similar to that observed at Level 1. Additionally, mucus was either insufficiently protective against Red Smoke injury or the injury did not involve oxidation.

Superficial injury to respiratory epithelium is often reversible (Harkema et al, 2006) Recovered high-exposure male rats continued to exhibit respiratory epithelial hyperplasia at insignificant numbers and no other lesions, suggesting reversibility of lesions caused by 1.5mg/L Red Smoke for ten exposures. Females had even fewer lesions.

Olfactory epithelium has higher levels of cytochromes p450 than transitional and respiratory epithelium. It also has carboxyl esterases and aldehyde dehydrogenases which hydrolyze esters (Renne et al, 2007). The lack of lesions in olfactory epithelium in this study suggests the injury was not induced by metabolism of xenobiotics.

A few rats (one Recovery control male (15-562) and one 0.1mg/L female) had a few large pale vacuoles that span two cells in width in transitional or respiratory epithelium of anterior nasal passages, that do not resemble the commonly reported eosinophilic droplets (Harkema et al, 2006). This may represent an aging change, degeneration or an incidental finding.

During necropsy, grossly observed dark patches on lungs were reported for many rats. No specific histologic finding correlated with dark patches. Alveolar septal congestion, venous congestion, perivascular or peribronchiolar hemorrhage or hemorrhage immediate prior to death (or erythrocyte extravasation postmortem) could all account for the grossly observed dark patches but none of the histologic lesions were severe. Most were minimal to mild. None of the lesions had evidence of having occurred earlier than immediately prior to euthanasia. The liver was reported to be 'dark' in a few rats. This is judged to be within normal limits as there were no histologic findings that would correlate with dark color. Female rat uterus was reported to 'appear to be in proestrus' which was corroborated histologically. Male rat 15-578 had grossly half-normal sized testes. This was corroborated by marked degeneration or atrophy of seminiferous tubules. Male rat 15-551 was reported to have a 1 cm hepatic mass which was unable to be confirmed histologically as the trimmed liver specimen did not contain the mass. Male 15-573 had a 1 cm hepatic mass which was identified histologically as a resolving torsed liver lobe. The entire lobe exhibited coagulative necrosis with surrounding granulomatous inflammation, fibrosis, biliary hyperplasia with mineral and pigment (bile or hemosiderin), which was observed extracellularly and within macrophage cytoplasm.

Additional background or incidental lesions consisted of one pulmonary osteoma and numerous eosinophilic globules in the respiratory epithelium of the trachea (globule leukocytes) of many rats. Many rats had minimal pulmonary alveolar hemorrhage that is commonly observed in rats euthanized with carbon dioxide (Renne et al, 2009). Fourteen-week-old recovery female rats may have a higher glomerular filtration rate or slightly more protein in their tubules, as five of six rats in both treated and untreated recovering female groups had increased fluid in proximal tubules relative to younger controls and to males of either age. This is unexpected because male rats and not female rats secrete the protein alpha 2_u -globulin.

Rodents exposed to water-soluble, gaseous irritants most often have lesions in the surface epithelium lining the lateral meatus, i.e., the lateral margins of the naso- and maxilloturbinate and on the lateral wall. (Harkema et al, 2006; Renne et al, 2007) The location of lesions in this study match this description. Relative locations of respiratory epithelial degeneration matched those of the transitional epithelium, suggesting an air-flow driven site specificity but could also reflect tissue sensitivity. The former is similar to the effects of cigarette smoke or formaldehyde, the latter similar to the effects of ozone (urban smog) (Harkema et al, 2006).

The average particle size of the high concentration exposures was 2.4 microns, 2.33 microns for the intermediate concentration exposures, and 2.3 microns for the low concentration exposures, in a mono-dispersed dust-like aerosol. One-to-10 micron particles are deposited in the upper nasopharyngeal region and in the first five generations of the conducting airways (Leikauf, 2013). The small size of Red Smoke particles enables passage into the lower respiratory track and deposition in alveoli. Red Smoke contains a number of ingredients, not the least of which are aldehydes, including acrolein (a component of smog and tobacco smoke) and formic acid. The toxicity of aldehydes is incompletely understood but involves the formation of DNA adducts. Aldehydes often cause eye and respiratory tract irritation, are highly reactive and may be carcinogenic. Acrolein, in particular, causes increased air flow resistance mediated by C-fibers and central cholinergic reflexes and thus is a sensory irritant. It also cross-links proteins, much like formaldehyde (Costa et al, 2013). Formic acid inhibits mitochondrial cytochrome oxidase leading to 'histotoxic hypoxia.' (Liesivuori et al, 1991). Formic acid is oxidized to carbon dioxide and water, partly excreted unchanged in the urine, and partly metabolized in tissues (Thompson M, 1992). After two weeks of inhalational exposure to formic acid (at concentrations between 62.5 – 500 parts per million) F344/N rats exhibited squamous metaplasia of the nasal respiratory epithelium, inflammation and necrosis. Red Smoke, however, is a mixture. Exposure of Sprague-Dawley rats to Red Smoke over a

comparable period of time had a reduced effect compared to that of pure formic acid, possibly due to lower concentrations of formic acid or mitigation of its effects by interference of the other ingredients.

In this study ten thirty-minute inhalational exposures to Red Smoke was associated only with injury to those initial tissues (nasal turbinates and epithelia) with which it came into contact, therefore Red Smoke may be an irritant. Histologic evidence lacks in this study for other forms of toxicity.

FINAL REPORT APPROVAL

15 June, 2016

Erica E. Carroll, DVM, PhD, Diplomate ACVP LTC, VC Study Pathologist Toxicology Portfolio U.S. Army Public Health Center Date

PHOTOMICROGRAPHS

Figure 1. Acute Study. Female rat 15-740 was exposed one time to 1.7mg/L of Red Smoke and euthanized two weeks later. There is moderate alveolar septal congestion (arrows) and venous congestion. 20X

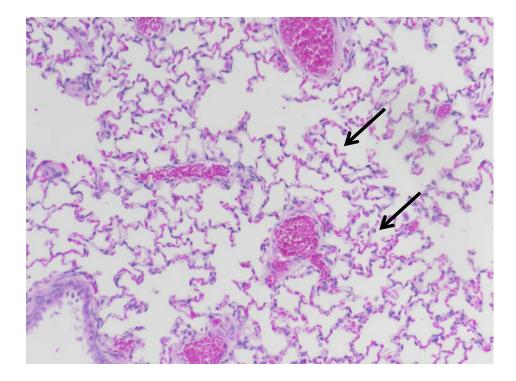
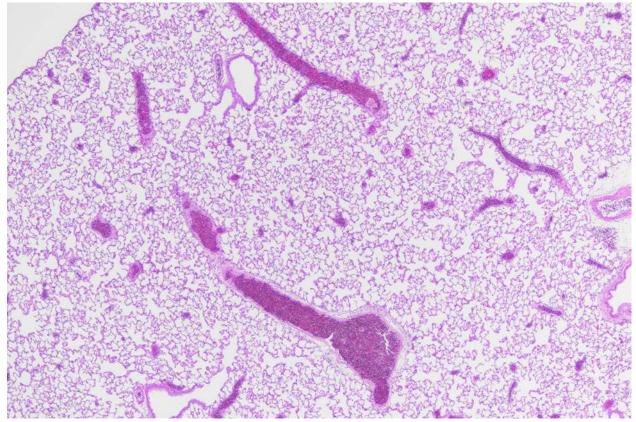



Figure 2. Acute study. Male rat (15-0734) exposed to 1.7mg/L Red Smoke. Lung. Moderate venous congestion 4X

SUBACUTE STUDY FIGURES

Figure 3. Subacute study. Male rat (15-565) exposed to 1.5mg/L Red Smoke. Nasal turbinates, level 1. Moderate transitional epithelial hyperplasia 5-6 cells thick (3A). Compare with (3B) normal control 15-552, both at 4X. At higher magnification the transitional epithelium of 552 is six-seven cells thick (3C) compared to normal (3D) in which it is cuboidal to columnar and 1-2 cells thick. 20X

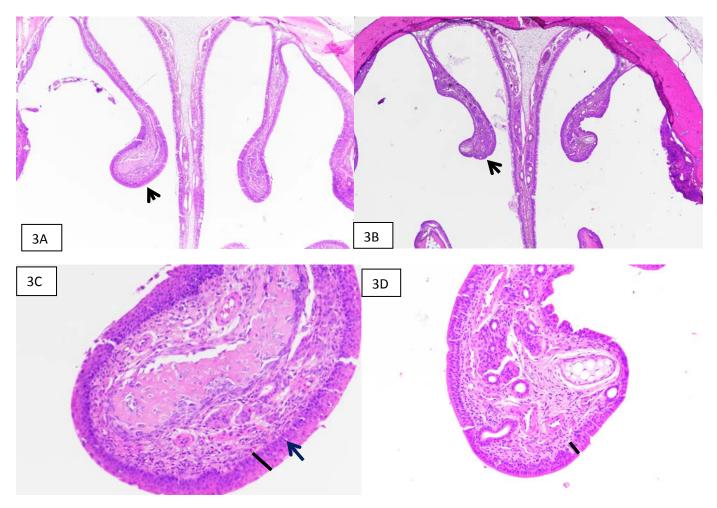


Figure 4. Subacute study.Turbinate level 1 (T1) mucosal degeneration in 1.5 mg/L Red Smoke-exposed male rat (15-556) nasoturbinate (4A) and lateral wall of the lateral meatus (4B). Transitional epithelial hypertrophy with several vacuolated, necrotic or sloughing epithelial cells and few subepithelial granulocytes. 40X

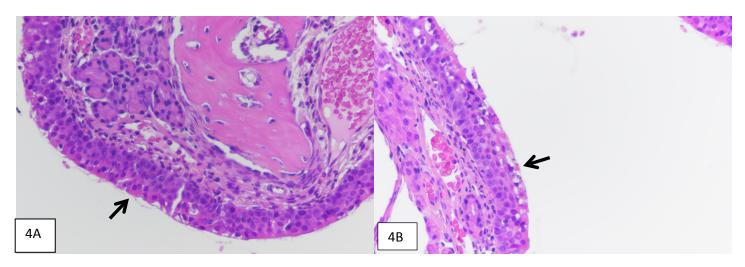
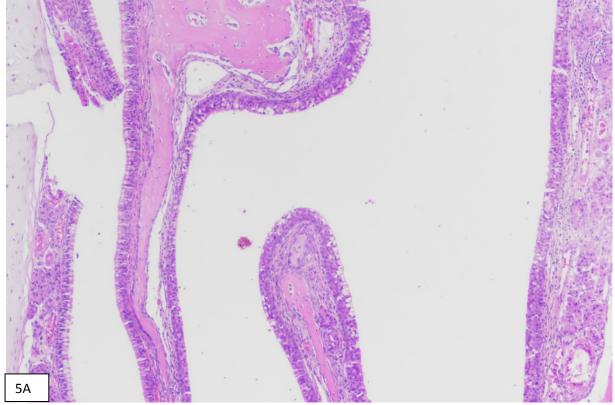



Figure 5. Subacute study. Red Smoke-associated mucosal degeneration occasionally affected respiratory epithelium of turbinate level 2, as in this male high-exposure rat (15-0565). 10X and at 20X.

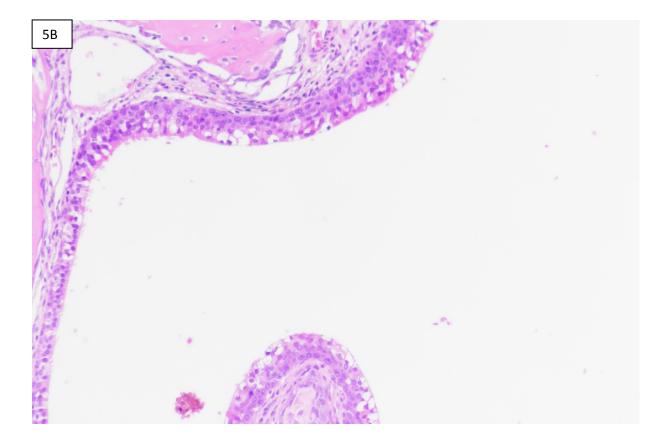


Figure 6. Subacute study. High-exposure male (15-574) level 2 variably displayed transitional epithelial hyperplasia (arrows) with subepithelial granulocytes (yellow arrowheads). 20X

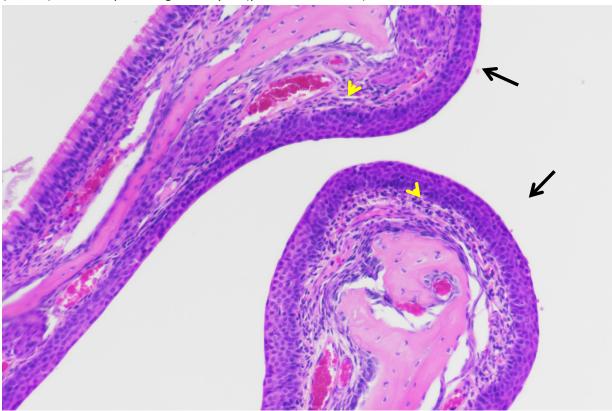
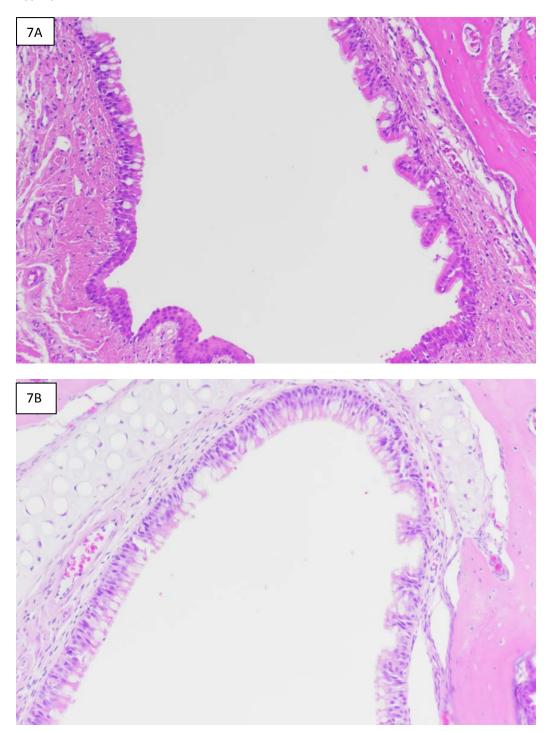



Figure 7. Subacute study. Epithelial hyperplasia was common in Red Smoke-exposed rats but also in older recovery controls. Female 15-615 exposed to 1.5mg/L Red Smoke had respiratory epithelial hyperplasia in the ventral meatus of nasal level 2(7A). 20X. Rat 15-594 (0.5mg/L exposure) had respiratory epithelial hyperplasia in the dorsal meatus. 20X (7B). Fourteen week-old Recovery control female (15-585) also had level 1 dorsal meatus respiratory epithelial hyperplasia. 20X (7C)

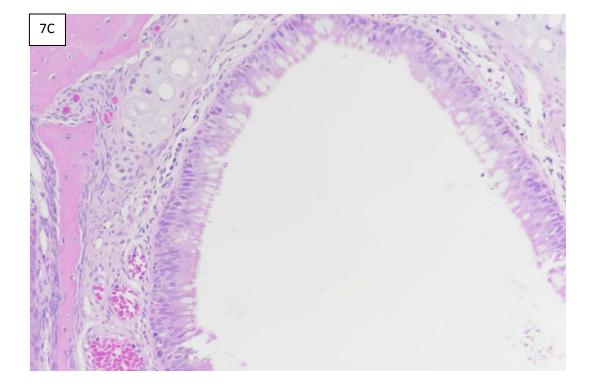


Figure 8. Acute study. Female rat (15-0531) exposed to 2mg/L Red Smoke. Lung. Dilated alveolar septa and poorly visible erythrocytes interpreted to be an artifact of water-perfused lung (8A). Compare to 15-586 female control lung (8B). HE 40X

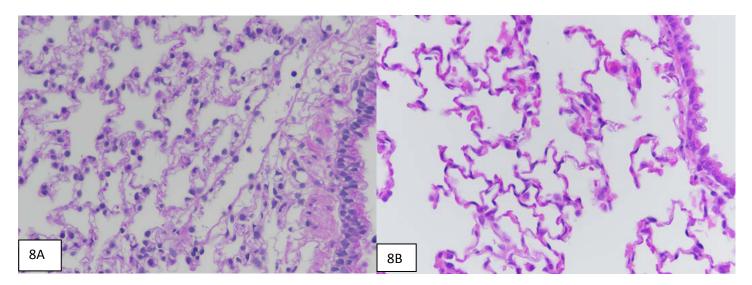


Figure 9. Subacute study. Diagram of most common nasal lesions associated with Red Smoke exposure. Level 1 (9A) most often exhibited transitional epithelial degeneration or hyperplasia affecting ventral and lateral surfaces of the nasoturbinates, dorsolateral surfaces of the maxilloturbinates and the adjacent lateral wall of the lateral meatus. Level 2 often exhibited degeneration or hyperplasia of the same prominences that are covered by respiratory epithelium (9B). Blue ink delineates most often affected areas.

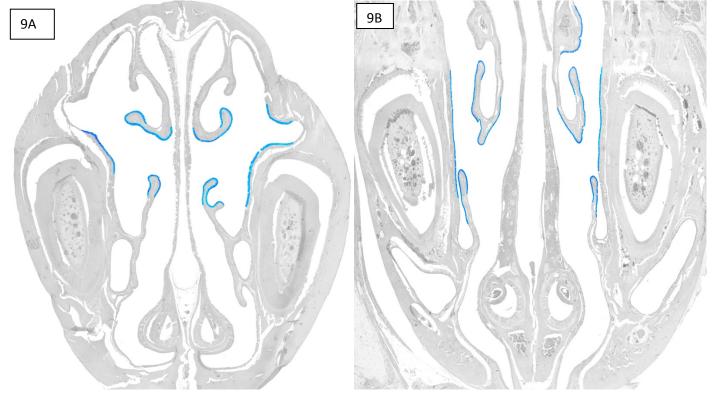
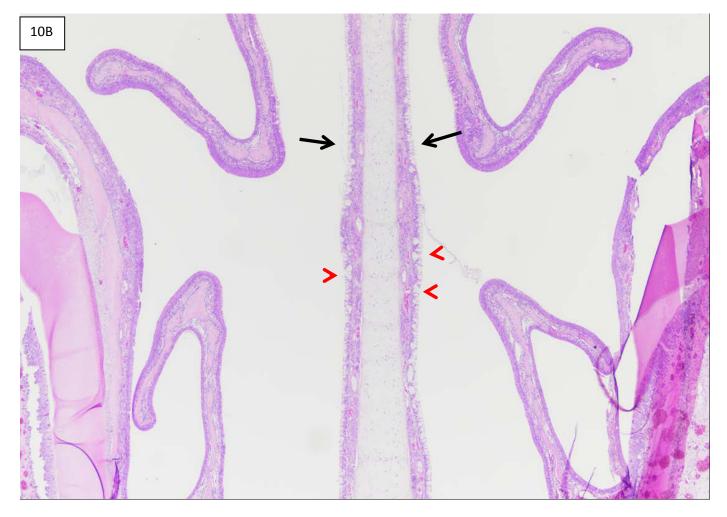
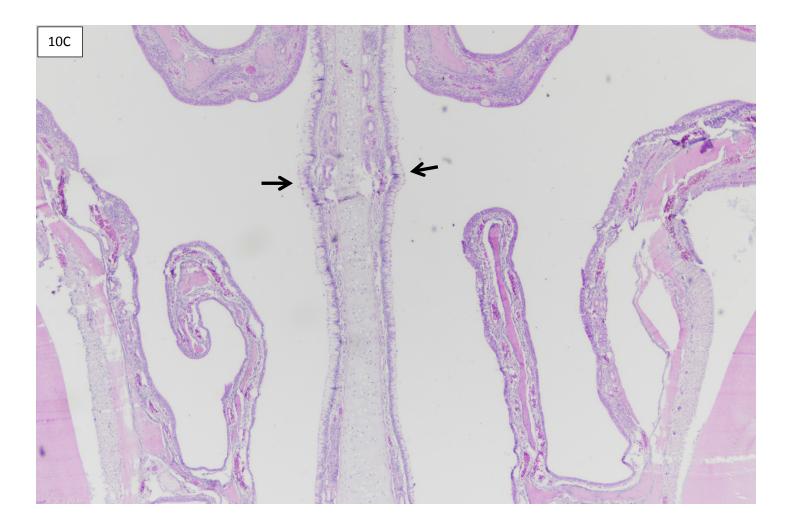




Figure 10. Ten week-old male control rat (15-550) Level 1 nasal septum is lined by normal respiratory epithelium (10A, arrows). High-exposure male ten week-old rat (15-577) Level 1 nasal septum is lined by increased numbers of mucus-secreting goblet cells (goblet cell hyperplasia, arrows) and folding respiratory epithelium (hyperplasia, red arrowheads).

Transitional epithelial hyperplasia is also evident (10B). 14-week-old Recovery Control male (15-562) Level 1 nasal septum is lined by myriad goblet cells (goblet cell hyperplasia) that focally replace respiratory epithelium (10C) 4X

REFERENCES

Corps KN, Islam Z, Pestka JJ, Harkema JR. Neurotoxic, inflammatory, and mucosecretory responses in the nasal airways of mice repeatedly exposed to the macrocyclic trichothecene mycotoxin roridin A: dose-response and persistence of injury. *Toxicol Pathol.* **38**: 429-451. 2010

Costa DL, Gordon T. Air Pollution. *In* Casarett and Doull's Toxicology: the Basic Science of Poisons, 8th Edition. McGraw Hill Education – Medical, New York, pp 1231-1271. 2013

Cross, CE, Halliwell G, Allen A. Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus. *Lancet*. **1:** 1328-30. 1984

Hardisty JF, Garman RH, Harkema JR, Lomax LG and Morgan KT. Histopathology of nasal olfactory mucosa from selected inhalation toxicity studies conducted with volatile chemicals. *Toxicol Pathol.* **27**: 618-627. 1999

Harkema JF, Carey SA, and Wagner JG. The nose revisited: A brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. *Toxicol Pathol* **34**: 252-269. 2006

Leikauf GD. Toxic responses of the respiratory system. *In* Casarett and Doull's Toxicology: the Basic Science of Poisons, 8th Edition. McGraw Hill Education – Medical, New York, pp. 692-731. 2013

Liesivuori J, Savolainen H. Methanol and formic acid toxicity: biochemical mechanisms. *Pharmacol Toxicol.* Sep:**69**(3):157-63. 1991

Mery S, Gross EA, Joyner DR, Godo M, Morgan KT. Nasal diagrams: a tool for recording the distribution of nasal lesions in rats and mice. *Toxicol Pathol.* **22**: 353-372. 1994

Paxinos G and Watson C. The rat brain in stereotaxic coordinates, 6th ed. Elsevier AP, Amsterdam. 2007

Renne RA, Gideon KM, Harbo SJ, Staska, LM, and Grumbein SL. Upper respiratory tract lesions in inhalation toxicology. *Toxicol Pathol.* **35**: 163-169. 2007

Sells DM, Brix AE, Nyska A, Jokinen MP, Orzech DP, and Walker NJ. Respiratory tract lesions in noninhalation studies. *Toxicol Pathol.* **35**: 170-177. 2007

APPENDIX A -GROSS OBSERVATIONS OF ACUTE STUDY ANIMALS

The lungs of the first group of acute study rats were inadvertently inflated with water. The second and third exposure groups were inflated with formalin. Below is more specific information, verbatim by the prosector:

Acute #1 - Males(0525-0529) Females (0530-0534) - all inflated with water- 2 mg/L exposure level

- All animals euthanized 2 weeks following exposure
- 0525-Edges of right and left lung lobes appear dark in color and collapsed.
- 0526-Left caudal lobe appears dark in color and collapsed.
- 0527-Left and right lung appears dark in color with dark spots, Kidneys dark in color, Liver dark in color.
- 0528-Parts of left and right lung have what appears to be dead or dying tissue and dark patches.

0529- Parts of left and right lung have what appears to be dead or dying tissue and dark patches.

- 0530- Parts of left and right lung have what appears to be dead or dying tissue and dark patches. 0531-Minimal white patches throughout the lungs.
- 0532- Parts of left and right lung have what appears to be dead or dying tissue and dark patches.
- 0533-Possible necrotic areas on fringes of middle pulmonary lobe and accessory pulmonary lobe.
- 0534- Parts of left and right lung have what appears to be dead or dying tissue and dark patches.

Acute #2 - Males (0732-0736) Females (0737-0741) - all inflated with formalin - 1.7 mg/L exposure level 0732, 0733, 0734, 0737, 0738, and 0739 were euthanized the day after exposure

- 0732-Cranial aspect of both lungs are pale pink.
- 0733- Cranial aspect of both lungs are pale pink.
- 0734-Diffuse multifocal to coalescing dark brown to red regions on front of both lungs, Cranial most aspect of both lungs are pale pink, Caudal left lung has reticular pattern.
- 0737-Focal dark brown region on cranial lobe of right lung, Cranial aspect of left lung pale pink. 0738-Outer edge of all lung lobes white and both lungs pale pink. 0739-No necropsy sheet.

0735, 0736, 0740, and 0741 were euthanized 2 weeks following exposure 0735-NGLR 0736-NGLR 0740-NGLR

0741-NGLR

Acute #3 - Males (0780-0784) Females (0785-0789) - all inflated with formalin - 0.6 mg/L exposure level 0780, 0781, 0782, 0785, 0786, and 0787 were euthanized the day after exposure 0780-Anterior portion of right and left lung appear to have dark brown focal regions.

0781-Anterior portion of the left lung is pale pink.

782-NGLR

0785-NGLR

0786-Right anterior portion of lung is pale pink.

0787-Liver is mildly dark, Anterior portions of right and left lung have focal brown spots, Outer

edges of anterior portion of lung are pale pink, Left kidney has white focal area 1 mm in diameter.

0783, 0784, 0788, and 0789 were euthanized 2 weeks following exposure

0783-Diffuse whitish, slightly raised areas, in distal region of right caudal and left pulmonary lobes.

0784-Left pulmonary lobe is whitish pink around edges with dark red center. 0788-NGLR

0789-Hydronecrosis [sic] of right kidney.

APPENDIX B - INCIDENCE SUMMARIES OF ACUTE RED SMOKE STUDY IN RATS

TISSUE	LESION or HISTOLOGIC CHANGE	Control*	2 mg/L*	Fisher's Exact Test P-value	Conclusion	
Lung	Congestion, alveolar septal	0/6	5/5	0.002	2mg/L > Control	
Lung	Congestion, venous	1/6	0/5	1.000	No significant differen	
Lung	Erythrocyte extravasation, alveolar	1/6	2/5	0.545	No significant differen	
Lung	Erythrophagocytosis	0/6	0/5	1.000	No significant differen	
Lung	Hemorrhage, perivascular or peribronchiolar	3/6	1/5	0.545	No significant differen	
Lung	Edema, perivascular	0/6	2/5	0.182	No significant differen	
Lung	Ateletasis, alveolar	2/6	3/5	0.567	No significant differen	
Lung	Histiocytosis, alveolar	0/6	1/5	0.454	No significant differen	
Lung	Infiltrate, granulocytic	2/6	1/5	1.000	No significant differen	
Lung	Edema, subpleural	0/6	3/5	0.061	No significant different	
Lung	Fibrosis, alveolar, focal	0/6	0/5	1.000	No significant differen	
Lung	Crystals, eosinophilic, alveolar	0/6	0/5	1.000	No significant differen	

Number of annuals with the finding out of the total number in the group.

TISSUE	LESION or HISTOLOGIC CHANGE	Control*	1.7 mg/L*	Fisher's Exact Test P-value	Conclusion	
Lung	Congestion, alveolar septal	0/6	4/5	0.015	1.7 mg/L > Control	
Lung	Congestion, venous	1/6	4/5	0.080	No significant difference	
Lung	Erythrocyte extravasation, alveolar	1/6	1/5	1.000	No significant difference	
Lung	Erythrophagocytosis	0/6	0/5	1.000	No significant difference	
Lung	Hemorrhage, perivascular or peribronchiolar	3/6	2/5	1.000	No significant difference	
Lung	Edema, perivascular	0/6	0/5	1.000	No significant difference	
Lung	Ateletasis, alveolar α	2/6	2/5	1.000	No significant difference	
Lung	Histiocytosis, alveolar	0/6	0/5	1.000	No significant difference	
Lung	Infiltrate, granulocytic	2/6	1/5	1.000	No significant difference	
Lung	Edema, subpleural	0/6	0/5	1.000	No significant difference	
Lung	Fibrosis, alveolar, focal	0/6	0/5	1.000	No significant difference	
Lung	Crystals, eosinophilic, alveolar	0/6	0/5	1.000	No significant difference	
er's Exact Test p-	value < .05 was considered statistically significant					

TISSUE	LESION or HISTOLOGIC CHANGE	Control*	0.6 mg/L*	Fisher's Exact Test P-value	Conclusion	
Lung	Congestion, alveolar septal	0/6	2/5	0.185	No significant difference	
Lung	Congestion, venous	1/6	4/5	0.080	No significant difference	
Lung	Erythrocyte extravasation, alveolar	1/6	3/5	0.242	No significant difference	
Lung	Erythrophagocytosis	0/6	1/5	0.454	No significant difference	
Lung	Hemorrhage, perivascular or peribronchiolar	3/6	4/5	0.545	No significant difference	
Lung	Edema, perivascular	0/6	1/5	0.454	No significant difference	
Lung	Ateletasis, alveolar α	2/6	0/5	0.455	No significant difference	
Lung	Histiocytosis, alveolar	0/6	0/5	1.000	No significant difference	
Lung	Infiltrate, granulocytic	2/6	4/5	0.242	No significant difference	
Lung	Edema, subpleural	0/6	0/5	1.000	No significant difference	
Lung	Fibrosis, alveolar, focal	0/6	0/5	1.000	No significant difference	
Lung	Crystals, eosinophilic, alveolar	0/6	0/5	1.000	No significant difference	
er's Exact Test p-\	alue < .05 was considered statistically significant					

Number of animals with the finding out of the total number in the group.

ACUTE STUDY - SEVERITY SCORES for FEMALE RATS EXPOSED to RED SMOKE at: 2 mg/L, 1.7 mg/L, 0.6 mg/L and AIR CONTROL

TISSUE		н	ISTOLOGI	C FINDING	and score	<u></u> *	
Lung			Congesti	on, alveol	ar septal		
		0	1	2	3	4	Total
	Control	6		•			6
	2	0	2	•			2
	1.7	1	2	1	1		5
	0.6	3		•	2		5
Lung			Cong	estion, ve	nous		
		0	1	2	3	4	Total
	Control	5		1			6
	2	5	•	•			5
	1.7	1	3	1			5
	0.6	1	2		2		5
Lung		E	rythrocyte	extravasat	ion, alveol	ar	
		0	1	2	3	4	Total
	Control	5	1	•			6
	2	3	2	•			5
	1.7	4	•	1			5
	0.6	2	1	1	1		5
Lung			Eryth	rophagocy	/tosis		
		0	1	2	3	4	Total
	Control	6		•			6
	2	5	•		•		5
	1.7	5	•	•	•		5
	0.6	4	1	•			5

Lung		Hemor	rhage, per	ivascular o	r peribron	chiolar	
		0	1	2	3	4	Total
	Control	3	3		•		6
	2	4	1		•		5
	1.7	3	2		•		5
	0.6	1	3	1	•		5
Lung			Eden	na, perivas	cular		·
		0	1	2	3	4	Total
	Control	6					6
	2	3	2				5
	1.7	5					5
	0.6	4	1		•		5
Lung			Atel	etasis, alve	olar	•	•
		0	1	2	3	4	Total
	Control	4	2				6
	2	2	2	1	•		5
	1.7	3	1		1		5
	0.6	5					5
Lung			Histio	cytosis, alv	veolar		•
		0	1	2	3	4	Total
	Control	6			•		6
	2	4	1				5
	1.7	5			•		5
	0.6	5					5
Lung			Infiltr	ate, granul	ocytic	:	:
		0	1	2	3	4	Total
	Control	4	1	1	•		6
	2	4	1				5
	1.7	4	1		•		5
	0.6	1	4				5
Lung			Ede	ma, subple	ural		•
		0	1	2	3	4	Total
	Control	6	•		•	•	6
	2	2	2	1	•		5
	1.7	5			•		5
	0.6	5			•		5
Lung			Fibros	is, alveolar	, focal		·
		0	1	2	3	4	Total
	Control	6	•		•		6
	2	5			•		5
	1.7	5			•		5
	0.6	5					5

Lung		Crystals, eosinophilic, alveolar								
		0	1	2	3	4	Total			
	Control	6				•	6			
	2	5					5			
	1.7	5					5			
	0.6	5					5			
* Scores: 1= minim	nal (<5% of	the tissue	is affected	l); 2 = mild	(6-15%); 3	=moderat	e (16-			

30%); 4 = marked (>30%).

TISSUE	LESION or HISTOLOGIC CHANGE	Control*	2 mg/L*	Fisher's Exact Test P-value	Conclusion	
Lung	Congestion, alveolar septal	1/6	4/5	0.080	No significant differen	
Lung	Congestion, venous	2/6	1/5	1.000	No significant differen	
Lung	Erythrocyte extravasation, alveolar	4/6	4/5	1.000	No significant differen	
Lung	Erythrophagocytosis	1/6	0/5	1.000	No significant differen	
Lung	Hemorrhage, perivascular or peribronchiolar	4/6	2/5	0.567	No significant differen	
Lung	Edema, perivascular	0/6	2/5	0.182	No significant differen	
Lung	Ateletasis, alveolar	2/6	4/5	0.242	No significant differen	
Lung	Histiocytosis, alveolar	1/6	4/5	0.080	No significant differen	
Lung	Infiltrate, granulocytic	0/6	2/5	0.185	No significant differen	
Lung	Edema, subpleural	0/6	3/5	0.061	No significant differen	
Lung	Fibrosis, alveolar, focal	0/6	1/5	0.454	No significant differen	
Lung	Crystals, eosinophilic, alveolar	0/6	0/5	1.000	No significant differen	

* Number of animals with the finding out of the total number in the group.

TISSUE	LESION or HISTOLOGIC CHANGE	Control*	1.7 mg/L*	Fisher's Exact Test P-value	Conclusion	
Lung	Congestion, alveolar septal	1/6	4/5	0.080	No significant differen	
Lung	Congestion, venous	2/6	4/5	0.242	No significant differen	
Lung	Erythrocyte extravasation, alveolar	4/6	5/5	0.455	No significant differen	
Lung	Erythrophagocytosis	1/6	2/5	0.545	No significant differen	
Lung	Hemorrhage, perivascular or peribronchiolar	4/6	3/5	1.000	No significant differen	
Lung	Edema, perivascular	0/6	0/5	1.000	No significant differen	
Lung	Ateletasis, alveolar α	2/6	5/5	0.061	No significant differen	
Lung	Histiocytosis, alveolar	1/6	2/5	0.545	No significant differen	
Lung	Infiltrate, granulocytic	0/6	1/5	0.454	No significant differen	
Lung	Edema, subpleural	0/6	1/5	0.454	No significant differen	
Lung	Fibrosis, alveolar, focal	0/6	0/5	1.000	No significant differen	
Lung	Crystals, eosinophilic, alveolar	0/6	1/5	0.454	No significant differer	

TISSUE	LESION or HISTOLOGIC CHANGE	Control*	0.6 mg/L*	Fisher's Exact Test P-value	Conclusion	
Lung	Congestion, alveolar septal	1/6	5/5	0.015	0.6mg/L > Control	
Lung	Congestion, venous	2/6	4/5	0.242	No significant differenc	
Lung	Erythrocyte extravasation, alveolar	4/6	5/5	0.455	No significant differenc	
Lung	Erythrophagocytosis	1/6	2/5	0.545	No significant differenc	
Lung	Hemorrhage, perivascular or peribronchiolar	4/6	5/5	0.454	No significant differenc	
Lung	Edema, perivascular	0/6	1/5	0.454	No significant differenc	
Lung	Ateletasis, alveolar α	2/6	4/5	0.242	No significant differenc	
Lung	Histiocytosis, alveolar	1/6	1/5	1.000	No significant differenc	
Lung	Infiltrate, granulocytic	0/6	4/5	0.015	0.6mg/L > Control	
Lung	Edema, subpleural	0/6	0/5	1.000	No significant differenc	
Lung	Fibrosis, alveolar, focal	0/6	0/5	1.000	No significant difference	
Lung	Crystals, eosinophilic, alveolar	0/6	0/5	1.000	No significant differenc	

* Number of animals with the finding out of the total number in the group.

	OY SEVERITY S mg/L, 1		or MALE F D.6 mg/L			ED SMOK	E at: 2	
Lung			Congesti	ion, alveol	ar septal			
		0	1	2	3	4	Total	
	Control	5	1				6	
	2	1	2	2			5	
	1.7	1		1	3		5	
	0.6	•	2	2	1		5	
Lung		Congestion, venous						
		0	1	2	3	4	Total	
	Control	4	2				6	
	2	4	1				5	
	1.7	1	2	1	1		5	
	0.6	1	2	1	1		5	
Lung		Er	ythrocyte	extravasat	ion, alveol	ar		
		0	1	2	3	4	Total	
	Control	2	4				6	
	2	1	4			•	5	
	1.7		1	4		•	5	
	0.6		1	3	1		5	

Lung			Ervtł	nrophagocy	vtosis		
		0	1	2	3	4	Total
	Control	5	1		•		6
	2	5					5
	1.7	3	2				5
	0.6	3	2				5
Lung				rivascular o			
		0	1	2	3	4	Total
	Control	2	4				6
	2	3	2				5
	1.7	2	1	2			5
	0.6	•	1	4			5
Lung			Eder	na, perivas	cular		
		0	1	2	3	4	Total
	Control	6					6
	2	3	2				5
	1.7	5					5
	0.6	4		1			5
Lung			Atel	etasis, alve	eolar		
		0	1	2	3	4	Total
	Control	4	1	1			6
	2	1	3	1			5
	1.7		3	1	1		5
	0.6	1	2	2			5
Lung			Histic	ocytosis, alv	veolar		·
		0	1	2	3	4	Total
	Control	5	1				6
	2	1	4				5
	1.7	3	2				5
	0.6	4	1				5
Lung			Infiltr	ate, granul	ocytic	-	•
		0	1	2	3	4	Total
	Control	6				•	6
	2	3	2			-	5
	1.7	4	1				5
	0.6	1	4				5
Lung			Ede	ma, subple	ural		
		0	1	2	3	4	Total
	Control	6					6
	2	2	2		1		5
	1.7	4	1				5
	0.6	5	•	•	•	•	5

Lung		Fibrosis, alveolar, focal							
		0	1	2	3	4	Total		
	Control	6				•	6		
	2	4	1				5		
	1.7	5			•	•	5		
	0.6	5					5		
Lung			Crystals, e	osinophili	c, alveolar				
		0	1	2	3	4	Total		
	Control	6				•	6		
	2	5				•	5		
	1.7	4	1				5		
	0.6	5				•	5		
* Scores: 1= minima	* Scores: 1= minimal (<5% of the tissue is affected); 2 = mild (6-15%); 3								
=moderate (16-30%); 4 = marked (>30%).									

APPENDIX C -- INCIDENCE SUMMARIES OF SUBACUTE RED SMOKE STUDY

SUBACUTE STUDY HISTOLOGIC FINDINGS IN (1.5 mg/L) RED SMOKE-EXPOSED FEMALE RATS COMPARED TO AIR									
(VEHIC	CLE) CONTI	ROLS							
RED SMOKE EXPOSURE LEVEL>	Control	1.5 mg/L	P-Value	Conclusion					
Stomach, glandular									
Dilation, gastric pits	0/6	0/6	1.000	No Significant Difference					
Infiltrate, lymphoplasmacytic, fat	0/6	1/6	1.000	No Significant Difference					
Salivary gland, submand, sublingual, parotid									
Lymph node, hyperplasia, plasmacytic, with germinal				Controls more often than					
centers.	3/5	0/5	0.017	RED SMOKE-exposed females					
Infiltrate, lymphoplasmacytic, submandibular saliv gl, periductal	0/6	0/5	1.000	No Significant Difference					
Mammary tissue									
Mammary epith cell prolif, with atypia	2/2	1/2	1.000	No Significant Difference					
Eye with Harderian gland									
Secretion, pigmented, inspissated	1/6	0/6	1.000	No Significant Difference					
Infiltrate, lymphoplasmacytic, focal	1/6	1/6	1.000	No Significant Difference					
Palpebral abscess (stye)	0/6	0/6	1.000	No Significant Difference					

Thymus				
Hemorrhage	0/6	0/6	1.000	No Significant Difference
Hyperplasia, epithelial, focal	0/6	0/6	1.000	No Significant Difference
Ectopic parathyroid tissue	1/6	0/6	1.000	No Significant Difference
LUNG				
Congestion, alveolar septal	0/6	1/6	1.000	No Significant Difference
Congestion, venous	1/6	4/6	0.242	No Significant Difference
Erythrocyte extravasation, alveolar	1/6	2/6	1.000	No Significant Difference
Erythrophagocytosis	0/6	0/6	1.000	No Significant Difference
Hemorrhage, perivascular or peribronchiolar	3/6	0/6	0.182	No Significant Difference
Edema, perivascular	0/6	0/6	1.000	No Significant Difference
Ateletasis, alveolar α	2/6	4/6	0.567	No Significant Difference
Histiocytosis, alveolar	0/6	2/6	0.455	No Significant Difference
Infiltrate, granulocytic	1/6	1/6	1.000	No Significant Difference
Edema, subpleural	0/6	0/6	1.000	No Significant Difference
Fibrosis, alveolar, focal	0/6	0/6	1.000	No Significant Difference
Crystals, eosinophilic, alveolar	0/6	0/6	1.000	No Significant Difference
Trachea				
Infiltrate, lymphocytic, subepithelial	0/6	0/6	1.000	No Significant Difference
Increased mucosal eosinophilic droplets:Y/N	1/6	4/6	0.242	No Significant Difference
Thyroid gland				
Hyperplasia, C cell	0/4	0/4	1.000	No Significant Difference
Cyst, thyroid, squamous	2/4	0/4	0.429	No Significant Difference
Ectopic thymus	1/4	1/6	1.000	No Significant Difference
Skeletal muscle				
Infiltrate, lymphohistiocytic, focal, skeletal muscle	0/6	1/6	1.000	No Significant Difference
Lymph node, tracheal				
Draining hemorrhage	1/5	1/5	1.000	No Significant Difference
Pigment, cytoplasmic, macrophages	1/5	0/5	1.000	No Significant Difference
Infiltrate, eosinophilic	1/5	0/5	1.000	No Significant Difference
Heart with great vessels				
Lymphatics, ectatic, heart base	0/6	0/6	1.000	No Significant Difference
Infiltrate, mastocytic and lymphocytic, epicardial fat	0/6	0/6	1.000	No Significant Difference

Adrenal gland				
Ectopic medullary cells	0/6	0/6	1.000	No Significant Difference
Vacuoles, cortical	0/6	1/6	1.000	No Significant Difference
Kidney	,			5
Increased proteinaceous fluid, proximal tubules	1/6	1/6	1.000	No Significant Difference
Basophilic tubules	0/6	1/6	1.000	No Significant Difference
Renal tubule-Hyperplasia, oncocytic	0/6	0/6	1.000	No Significant Difference
infiltrate, lymphoplasmacytic	0/6	3/6	0.182	No Significant Difference
Cystic tubules, focal	0/6	2/6	0.455	No Significant Difference
Liver				
Hepatocellular loss, focal, with leukocytes	0/5	0/6	1.000	No Significant Difference
Infiltrate, histiocytic, focal	3/5	1/6	0.242	No Significant Difference
Infiltrate, lymphocytic, portal	1/5	0/6	1.000	No Significant Difference
Fibrosis, portal, focal	0/5	1/6	1.000	No Significant Difference
Uterus				
Hyperplasia, endometrial	2/6	0/6	0.455	No Significant Difference
NASAL TURBINATE, LEVEL 1				
Level 1- Hyperplasia, transitional epithelium	0/4	5/5	0.008	1.5 > controls
Level 1 - Hyperplasia, respiratory epithelium	2/4	3/5	1.000	No Significant Difference
Level 1- Infiltrate, granulocytic	0/4	1/5	1.000	No Significant Difference
Level 1- Infiltrate, lymphocytic	0/4	0/5	1.000	No Significant Difference
Level 1-Nasoturbinate, mucosal degeneration	0/4	3/5	0.167	No Significant Difference
loval 1 Cablet call by manufactor in and a seture				
Level 1 Goblet cell hyperplasia, nasal septum	4/4	4/5	1.000	No Significant Difference
NASAL TURBINATE, LEVEL 2	4/4	4/5	1.000	No Significant Difference
	4/4	4/5 0/6	1.000 0.400	No Significant Difference No Significant Difference
NASAL TURBINATE, LEVEL 2				-
NASAL TURBINATE, LEVEL 2 Level 2- Goblet cell hyperplasia, nasal septum	1/4	0/6	0.400	No Significant Difference
NASAL TURBINATE, LEVEL 2 Level 2- Goblet cell hyperplasia, nasal septum Level 2 - Hyperplasia, respiratory epithelium	1/4 0/4	0/6 1/6	0.400	No Significant Difference No Significant Difference
NASAL TURBINATE, LEVEL 2 Level 2- Goblet cell hyperplasia, nasal septum Level 2 - Hyperplasia, respiratory epithelium Level 2- Infiltrate, granulocytic	1/4 0/4 0/4	0/6 1/6 2/6	0.400 1.000 0.467	No Significant Difference No Significant Difference No Significant Difference
NASAL TURBINATE, LEVEL 2 Level 2- Goblet cell hyperplasia, nasal septum Level 2 - Hyperplasia, respiratory epithelium Level 2- Infiltrate, granulocytic Level 2-Infiltrate, lymphocytic	1/4 0/4 0/4	0/6 1/6 2/6	0.400 1.000 0.467	No Significant Difference No Significant Difference No Significant Difference
NASAL TURBINATE, LEVEL 2 Level 2- Goblet cell hyperplasia, nasal septum Level 2 - Hyperplasia, respiratory epithelium Level 2- Infiltrate, granulocytic Level 2-Infiltrate, lymphocytic NASAL TURBINATE, LEVEL 3	1/4 0/4 0/4 1/4	0/6 1/6 2/6 0/6	0.400 1.000 0.467 0.400	No Significant Difference No Significant Difference No Significant Difference No Significant Difference

(VEHICLE) CONTROLS								
NASAL TURBINATE, LEVEL 1								
Level 1- Hyperplasia, transitional epithelium	0/4	3/3	0.029	0.5 mg/kg > Control				
Level 1 - Hyperplasia, respiratory epithelium	2/4	1/3	1.000	No Significant Difference				
Level 1- Infiltrate, granulocytic	0/4	1/3	0.429	No Significant Difference				
Level 1- Infiltrate, lymphocytic	0/4	1/3	0.429	No Significant Difference				
Level 1 - Nasoturbinate, mucosal degeneration	0/4	1/3	0.429	No Significant Difference				
Level 1 Goblet cell hyperplasia, nasal septum	4/4	3/3	1.000	No Significant Difference				
NASAL TURBINATE, LEVEL 2								
Level 2- Goblet cell hyperplasia, nasal septum	1/4	0/6	0.400	No Significant Difference				
Level 2 - Hyperplasia, respiratory epithelium	0/4	4/6	0.076	No Significant Difference				
Level 2- Infiltrate, granulocytic	0/4	0/6	1.000	No Significant Difference				
Level 2-Infiltrate, lymphocytic	1/4	0/6	0.400	No Significant Difference				
NASAL TURBINATE, LEVEL 3								
Level 3 - Hyperplasia, respiratory epithelium	2/6	1/5	1.000	No Significant Difference				

SUBACUTE STUDY HISTOLOGIC FINDINGS IN (0.5 mg/L) RED SMOKE-EXPOSED FEMALE RATS COMPARED TO AIR (VEHICLE) CONTROLS

SUBACUTE STUDY HISTOLOGIC FINDINGS IN (0.1 mg/L) RED SMOKE-EXPOSED FEMALE RATS COMPARED TO AIR (VEHICLE) CONTROLS

(VEHICLE) CONTROLS								
NASAL TURBINATE, LEVEL 1								
Level 1- Hyperplasia, transitional epithelium	0/4	4/4	0.029	0.1 mg/kg > Control				
Level 1 - Hyperplasia, respiratory epithelium	2/4	2/4	1.000	No Significant Difference				
Level 1- Infiltrate, granulocytic	0/4	4/4	0.029	0.1 mg/kg > Control				
Level 1- Infiltrate, lymphocytic	0/4	4/4	0.029	0.1 mg/kg > Control				
Level 1-Nasoturbinate, mucosal degeneration	0/4	1/4	1.000	No Significant Difference				
Level 1 Goblet cell hyperplasia, nasal septum	4/4	4/4	1.000	No Significant Difference				
NASAL TURBINATE, LEVEL 2								
Level 2- Goblet cell hyperplasia, nasal septum	1/4	2/5	1.000	No Significant Difference				
Level 2 - Hyperplasia, respiratory epithelium	0/4	1/5	1.000	No Significant Difference				
Level 2- Infiltrate, granulocytic	0/4	4/5	0.048	0.1 mg/kg > Control				
Level 2-Infiltrate, lymphocytic	1/4	4/5	0.206	No Significant Difference				
NASAL TURBINATE, LEVEL 3								
Level 3 - Hyperplasia, respiratory epithelium	2/6	2/6	1.000	No Significant Difference				

SUBACUTE STUDY HISTOLOGIC FINDINGS IN (1.5 mg/L		EXPOSED, THEN F	RECOVERED	FEMALE RATS COMPARED TO
AGL-WATC		Treated with		
	Recovered	1.5mg/L, then		
RED SMOKE EXPOSURE LEVEL>	Controls	Recovered	P-Value	Conclusion
Stomach, glandular				
Dilation, gastric pits	3/6	2/5	1.000	No Significant Difference
Infiltrate, lymphoplasmacytic, fat	0/6	0/5	1.000	No Significant Difference
Salivary gland, submand, sublingual, parotid				
Lymph node, hyperplasia, plasmacytic, with germinal				
centers.	2/4	1/5	0.524	No Significant Difference
Infiltrate, lymphoplasmacytic, submandibular saliv gl, periductal	0/5	0/6	1.000	No Significant Difference
	0/5	0/0	1.000	
Mammary tissue				
Mammary epith cell prolif, with atypia	0/3	1/3	1.000	No Significant Difference
Eye with Harderian gland				
Secretion, pigmented, inspissated	1/5	1/5	1.000	No Significant Difference
Infiltrate, lymphoplasmacytic, focal	1/5	1/5	1.000	No Significant Difference
Palpebral abscess (stye)	0/5	0/5	1.000	No Significant Difference
Thymus				
Hemorrhage	2/5	3/6	1.000	No Significant Difference
Hyperplasia, epithelial, focal	1/5	0/6	1.000	No Significant Difference
Ectopic parathyroid tissue	0/5	0/6	1.000	No Significant Difference
LUNG				
Congestion, alveolar septal	3/5	2/6	0.567	No Significant Difference
Congestion, venous	1/5	2/6	1.000	No Significant Difference
Erythrocyte extravasation, alveolar	2/5	4/6	0.567	No Significant Difference
Erythrophagocytosis	0/5	1/6	1.000	No Significant Difference
Hemorrhage, perivascular or peribronchiolar	1/5	2/6	1.000	No Significant Difference
Edema, perivascular	0/5	0/6	1.000	No Significant Difference
Ateletasis, alveolar	3/5	4/6	1.000	No Significant Difference
Histiocytosis, alveolar	0/5	1/6	1.000	No Significant Difference
Infiltrate, granulocytic	0/5	2/6	0.455	No Significant Difference
Edema, subpleural	0/5	0/6	1.000	No Significant Difference
Fibrosis, alveolar, focal	0/5	0/6	1.000	No Significant Difference
Crystals, eosinophilic, alveolar	0/5	0/6	1.000	No Significant Difference

Trachea				
Infiltrate, lymphocytic, subepithelial	1/5	0/6	1.000	No Significant Difference
Increased mucosal eosinophilic droplets:Y/N	3/5	2/6	0.567	No Significant Difference
Thyroid gland		·		
Hyperplasia, C cell	2/5	0/4	0.444	No Significant Difference
Cyst, thyroid, squamous	0/5	0/4	1.000	No Significant Difference
Ectopic thymus	0/5	0/6	1.000	No Significant Difference
Skeletal muscle				-
Infiltrate, lymphohistiocytic, focal, skeletal muscle	0/5	0/6	1.000	No Significant Difference
Lymph node, tracheal				
Draining hemorrhage	1/4	1/4	1.000	No Significant Difference
Pigment, cytoplasmic, macrophages	2/4	2/4	1.000	No Significant Difference
Infiltrate, eosinophilic	0/4	0/4	1.000	No Significant Difference
Heart with great vessels				
Lymphatics, ectatic, heart base	1/5	0/6	1.000	No Significant Difference
Infiltrate, mastocytic and lymphocytic, epicardial fat	0/5	1/6	1.000	No Significant Difference
Adrenal gland				
Ectopic medullary cells	0/6	1/6	1.000	No Significant Difference
Vacuoles, cortical	1/6	1/6	1.000	No Significant Difference
Kidney				
Increased proteinaceous fluid, proximal tubules	5/6	5/6	1.000	No Significant Difference
Basophilic tubules	0/6	1/6	1.000	No Significant Difference
Renal tubule-Hyperplasia, oncocytic	0/6	1/6	1.000	No Significant Difference
infiltrate, lymphoplasmacytic	0/6	0/6	1.000	No Significant Difference
Cystic tubules, focal	0/6	0/6	1.000	No Significant Difference
Liver				
Hepatocellular loss, focal, with leukocytes	1/6	0/6	1.000	No Significant Difference
Infiltrate, histiocytic, focal	3/6	4/6	1.000	No Significant Difference
Infiltrate, lymphocytic, portal	1/6	0/6	1.000	No Significant Difference
Fibrosis, portal, focal	0/6	0/6	1.000	No Significant Difference
Uterus				
Hyperplasia, endometrial	0/6	0/6	1.000	No Significant Difference
NASAL TURBINATE, LEVEL 1				
Level 1- Hyperplasia, transitional epithelium	1/6	1/5	1.000	No Significant Difference
Level 1 - Hyperplasia, respiratory epithelium	2/6	3/5	0.567	No Significant Difference
Level 1- Infiltrate, granulocytic	3/6	3/5	1.000	No Significant Difference
Level 1- Infiltrate, lymphocytic	0/6	1/5	1.000	No Significant Difference
Level 1 -Nasoturbinate, mucosal degeneration	1/6	0/5	1.000	No Significant Difference
Level 1 - Goblet cell hyperplasia, nasal septum	5/6	4/5	1.000	No Significant Difference

NASAL TURBINATE, LEVEL 2				
Level 2- Goblet cell hyperplasia, nasal septum	1/6	2/5	0.545	No Significant Difference
Level 2 - Hyperplasia, respiratory epithelium	3/6	1/5	0.545	No Significant Difference
Level 2- Infiltrate, granulocytic	1/6	1/5	1.000	No Significant Difference
Level 2-Infiltrate, lymphocytic	2/6	2/5	1.000	No Significant Difference
NASAL TURBINATE, LEVEL 3				
Level 3 - Hyperplasia, respiratory epithelium	1/5	2/3	0.464	No Significant Difference

SUBACUTE STUDY SEVERITY SCORES FOR FEMALE RATS EXPOSED TO RED SMOKE AT: 1.5mg/L, 0.5mg/L, 0.1mg/L or 1.5mg/L WITH 30 DAY RECOVERY PERIOD									
Stomach, glandular		0	1	2	3	4	Total		
Dilation, gastric pits	CTRL	6	0	0	0	0	6		
	1.5	6	0	0	0	0	6		
	0.5						0		
	0.1						0		
	R-CTRL	3	3	0	0	0	6		
	R-1.5	3	2	0	0	0	5		

Stomach, glandular		0	1	2	3	4	Total
Infiltrate, lymphoplasmacytic,	CTRL	6	0	0	0	0	6
fat	1.5	5	1	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	6	0	0	0	0	6
	R-1.5	5	0	0	0	0	5
Salivary gland, submand,							
sublingual, parotid		0	1	2	3	4	Total
Lymph node, hyperplasia,	CTRL	2	1	2	0	0	5
plasmacytic, with germinal	1.5	5	0	0	0	0	5
centers.	0.5						0
	0.1						0
	R-CTRL	2	1	1	0	0	4
	R-1.5	4	0	0	1	0	5

Salivary gland, submand,							
sublingual, parotid		0	1	2	3	4	Total
Infiltrate, lymphoplasmacytic, submandibular saliv gland,	CTRL	6	0	0	0	0	6
	1.5	5	0	0	0	0	5
periductal	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	6	0	0	0	0	6
Mammary tissue		0	1	2	3	4	Total
Epithelial cell proliferation	CTRL	0	1	1	0	0	2
	1.5	1	1	0	0	0	2
	0.5						0
	0.1						0
	R-CTRL	3	0	0	0	0	3
	R-1.5	2	1	0	0	0	3
Eye with Harderian gland		0	1	2	3	4	Total
Secretion, pigmented, inspissated	CTRL	5	1	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	4	1	0	0	0	5
	R-1.5	4	1	0	0	0	5
Eye with Harderian gland		0	1	2	3	4	Total
Infiltrate, lymphoplasmacytic, focal	CTRL	5	1	0	0	0	6
	1.5	5	1	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	4	0	1	0	0	5
	R-1.5	4	1	0	0	0	5

Eye with Harderian gland		0	1	2	3	4	Total
Palpebral abscess	CTRL	6	0	0	0	0	6
(hordeoleum)	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	5	0	0	0	0	5
Thymus		0	1	2	3	4	Total
Hemorrhage	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	3	2	0	0	0	5
	R-1.5	3	3	0	0	0	6
Thymus		0	1	2	3	4	Total
Hyperplasia, epithelial, focal	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	4	1	0	0	0	5
	R-1.5	6	0	0	0	0	6
Thymus		0	1	2	3	4	Total
Ectopic parathyroid tissue	CTRL	5	1	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	6	0	0	0	0	6
LUNG	-	0	1	2	3	4	Total
Congestion, alveolar septal	CTRL	6	0	0	0	0	6
	1.5	5	0	1	0	0	6
	0.5						0
	0.1						0
	R-CTRL	2	2	1	0	0	5
	R-1.5	4	1	1	0	0	6

LUNG		0	1	2	3	4	Total
Congestion, venous	CTRL	5	0	1	0	0	6
	1.5	2	4	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	4	1	0	0	0	5
	R-1.5	4	1	1	0	0	6
LUNG		0	1	2	3	4	Total
Erythrocyte extravasation,	CTRL	5	1	0	0	0	6
alveolar	1.5	4	2	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	3	2	0	0	0	5
	R-1.5	2	3	1	0	0	6
LUNG		0	1	2	3	4	Total
Erythrophagocytosis	CTRL	6	0	0	0	0	6
,	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	5	1	0	0	0	6
LUNG		0	1	2	3	4	Total
Hemorrhage, perivascular or	CTRL	3	3	0	0	0	6
peribronchiolar	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	4	1	0	0	0	5
	R-1.5	4	2	0	0	0	6
LUNG		0	1	2	3	4	Total
Edema, perivascular	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	6	0	0	0	0	6
LUNG		0	1	2	3	4	Total
Ateletasis, alveolar α	CTRL	4	2	0	0	0	6
	1.5	2	3	1	0	0	6
	0.5						0
				1		1	0
	0.1						•
	0.1 R-CTRL	2	3	0	0	0	5

LUNG		0	1	2	3	4	Total
Histiocytosis, alveolar	CTRL	6	0	0	0	0	6
•	1.5	4	2	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	5	1	0	0	0	6
LUNG		0	1	2	3	4	Total
Infiltrate, granulocytic	CTRL	5	0	1	0	0	6
	1.5	5	0	1	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	4	2	0	0	0	6
LUNG		0	1	2	3	4	Total
Edema, subpleural	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	6	0	0	0	0	6
LUNG		0	1	2	3	4	Total
Fibrosis, alveolar, focal	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	6	0	0	0	0	6
LUNG		0	1	2	3	4	Total
Crystals, eosinophilic,	CTRL	6	0	0	0	0	6
alveolar	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	6	0	0	0	0	6
Trachea		0	1	2	3	4	Total
Infiltrate, lymphocytic,	CTRL	6	0	0	0	0	6
subepithelial	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	4	1	0	0	0	5
	R-1.5	•	-	-			6

Trachea		0	1	2	3	4	Total
Increased mucosal	CTRL	5	1	0	0	0	6
eosinophilic droplets:Y/N	1.5	2	4	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	2	3	0	0	0	5
	R-1.5	4	2	0	0	0	6
Thyroid gland		0	1	2	3	4	Total
Hyperplasia, C cell	CTRL	4	0	0	0	0	4
	1.5	4	0	0	0	0	4
	0.5						0
	0.1						0
	R-CTRL	3	2	0	0	0	5
	R-1.5	4	0	0	0	0	4
Thyroid gland		0	1	2	3	4	Total
Cyst, thyroid, squamous	CTRL	2	2	0	0	0	4
	1.5	4	0	0	0	0	4
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	4	0	0	0	0	4
Thyroid gland		0	1	2	3	4	Total
Ectopic thymus	CTRL	3	1	0	0	0	4
	1.5	5	1	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	6	0	0	0	0	6
Skeletal muscle		0	1	2	3	4	Total
Infiltrate, lymphohistiocytic,	CTRL	6	0	0	0	0	6
focal, skeletal muscle	1.5	5	1	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	6	0	0	0	0	6
Lymph node, tracheal		0	1	2	3	4	Total
Draining hemorrhage	CTRL	4	1	0	0	0	5
	1.5	4	1	0	0	0	5
	0.5						0
1	0.1						0
	R-CTRL	3	1	0	0	0	4

Lymph node, tracheal		0	1	2	3	4	Total
Pigment, cytoplasmic,	CTRL	4	1	0	0	0	5
macrophages	1.5	5	0	0	0	0	5
	0.5						0
	0.1						0
	R-CTRL	2	2	0	0	0	4
	R-1.5	2	2	0	0	0	4
Lymph node, tracheal		0	1	2	3	4	Total
Infiltrate, eosinophilic	CTRL	4	1	0	0	0	5
	1.5	5	0	0	0	0	5
	0.5						0
	0.1						0
	R-CTRL	4	0	0	0	0	4
	R-1.5	4	0	0	0	0	4
Heart with great vessels		0	1	2	3	4	Total
Lymphatics, ectatic, heart	CTRL	6	0	0	0	0	6
base	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	4	0	1	0	0	5
	R-1.5	6	0	0	0	0	6
Heart with great vessels		0	1	2	3	4	Total
Infiltrate, mastocytic and	CTRL	6	0	0	0	0	6
lymphocytic, epicardial fat	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	5	0	0	0	0	5
	R-1.5	5	1	0	0	0	6
Adrenal gland		0	1	2	3	4	Total
Ectopic medullary cells	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	6	0	0	0	0	6
	R-1.5	5	1	0	0	0	6
		0	1	2	3	4	Total
Adrenal gland					0	0	C
Adrenal gland Vacuoles, cortical	CTRL	6	0	0	0	0	6
	CTRL 1.5	6 5	0	0	0	0	6
	1.5						6
	1.5 0.5						6 0

Kidney		0	1	2	3	4	Total
Increased proteinaceous	CTRL	5	1	0	0	0	6
fluid, proximal tubules	1.5	5	1	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	1	4	1	0	0	6
	R-1.5	1	3	2	0	0	6
Kidney		0	1	2	3	4	Total
Basophilic tubules	CTRL	6	0	0	0	0	6
	1.5	5	1	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	6	0	0	0	0	6
	R-1.5	5	1	0	0	0	6
Kidney		0	1	2	3	4	Total
Renal tubule-Hyperplasia,	CTRL	6	0	0	0	0	6
oncocytic	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	6	0	0	0	0	6
	R-1.5	5	1	0	0	0	6
Kidney		0	1	2	3	4	Total
infiltrate,	CTRL	6	0	0	0	0	6
lymphoplasmacytic	1.5	3	3	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	6	0	0	0	0	6
	R-1.5	6	0	0	0	0	6
Kidney		0	1	2	3	4	Total
Cystic tubules, focal	CTRL	6	0	0	0	0	6
	1.5	4	2	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	6	0	0	0	0	6
	R-1.5	6	0	0	0	0	6
Liver		0	1	2	3	4	Total
Hepatocellular loss, focal,	CTRL	5	0	0	0	0	5
with leukocytes	1.5	6	0	0	0	0	6
	0.5						0
	0.5						•
	0.1						0
		5	1	0	0	0	0 6

Liver		0	1	2	3	4	Total
Infiltrate, histiocytic, focal	CTRL	2	3	0	0	0	5
	1.5	5	1	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	3	3	0	0	0	6
	R-1.5	2	4	0	0	0	6
Liver		0	1	2	3	4	Total
Fibrosis, portal, focal	CTRL	5	0	0	0	0	5
	1.5	5	1	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	6	0	0	0	0	6
	R-1.5	6	0	0	0	0	6
Uterus		0	1	2	3	4	Total
Hyperplasia, endometrial	CTRL	4	1	1	0	0	6
	1.5	6	0	0	0	0	6
	0.5						0
	0.1						0
	R-CTRL	6	0	0	0	0	6
	R-1.5	6	0	0	0	0	6
NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1- Hyperplasia,	CTRL	4	0	0	0	0	4
transitional epithelium	1.5	0	0	4	1	0	5
	0.5	0	1	0	2	0	3
	0.1	0	1	2	1	0	4
	R-CTRL	5	0	0	1	0	6
	R-1.5	4	1	0	0	0	5
NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1 - Hyperplasia,	CTRL	2	2	0	0	0	4
respiratory epithelium	1.5	2	2	1	0	0	5
	0.5	2	0	1	0	0	3
	0.1	2	0	1	1	0	4
	R-CTRL	4	2	0	0	0	6
	R-1.5	2	2	1	0	0	5
NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1- Infiltrate,	CTRL	4	0	0	0	0	4
granulocytic	1.5	4	1	0	0	0	5
	0.5	2	1	0	0	0	3
	0.1	0	3	1	0	0	4
	R-CTRL	3	3	0	0	0	6
	R-1.5	2	3	0	0	0	5

NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1- Infiltrate,	CTRL	4	0	0	0	0	4
lymphocytic	1.5	5	0	0	0	0	5
	0.5	2	1	0	0	0	3
	0.1	0	4	0	0	0	4
	R-CTRL	6	0	0	0	0	6
	R-1.5	4	1	0	0	0	5
NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1 - Nasoturbinate,	CTRL	4	0	0	0	0	4
mucosal degeneration	1.5	2	2	1	0	0	5
	0.5	2	1	0	0	0	3
	0.1	3	0	0	1	0	4
	R-CTRL	5	1	0	0	0	6
	R-1.5	5	0	0	0	0	5
NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1 Goblet cell	CTRL	0	1	2	1	0	4
hyperplasia, nasal septum	1.5	1	1	3	0	0	5
	0.5	0	0	2	1	0	3
	0.1	0	0	1	3	0	4
	R-CTRL	1	1	3	1	0	6
	R-1.5	1	2	2	0	0	5
NASAL TURBINATE, LEVEL 2		0	1	2	3	4	Total
Level 2- Goblet cell	CTRL	3	1	0	0	0	4
hyperplasia, nasal septum	1.5	6	0	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	3	1	1	0	0	5
	R-CTRL	5	0	1	0	0	6
	R-1.5	3	1	1	0	0	5
NASAL TURBINATE, LEVEL 2		0	1	2	3	4	Total
Level 2 - Hyperplasia,	CTRL	4	0	0	0	0	4
respiratory epithelium	1.5	5	1	0	0	0	6
	0.5	2	3	1	0	0	6
	0.1	4	0	1	0	0	5
	R-CTRL	3	3	0	0	0	6
	R-1.5	4	1	0	0	0	5
NASAL TURBINATE, LEVEL 2		0	1	2	3	4	Total
Level 2- Infiltrate,	CTRL	4	0	0	0	0	4
granulocytic	1.5	4	2	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	1	4	0	0	0	5
	R-CTRL	5	1	0	0	0	6
	R-1.5	4	1	0	0	0	5

NASAL TURBINATE, LEVEL 2		0	1	2	3	4	Total
Level 2-Infiltrate, lymphocytic	CTRL	3	1	0	0	0	4
	1.5	6	0	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	1	4	0	0	0	5
	R-CTRL	4	2	0	0	0	6
	R-1.5	3	2	0	0	0	5
NASAL TURBINATE, LEVEL 3		0	1	2	3	4	Total
Level 3 - Hyperplasia,	CTRL	4	2	0	0	0	6
Level 3 - Hyperplasia, respiratory epithelium	CTRL 1.5	4	2 2	0 0	0 0	0 0	6 5
	-	-		•	-	<u> </u>	-
	1.5	3	2	0	0	0	5
	1.5 0.5	3	2 1	0	0	0	5

SUBACUTE STUDY HISTOLOGIC FINDINGS IN (1.5 mg/L) RED SMOKE-EXPOSED MALE RATS COMPARED TO AIR (VEHICLE) CONTROLS

Males				
RED SMOKE EXPOSURE LEVEL>	Control	1.5 mg/L	P-Value	Conclusion
STOMACH, GLANDULAR				
Dilation, gastric pits	3/6	0/6	0.182	No Significant Difference
SALIVARY GLANDS (submandibular, sublingual, parotid)				
Infiltrate, lymphoplasmacytic, submnd saliv gl	0/5	1/6	1.000	No Significant Difference
EYE W/HARDERIAN GLAND				
Infiltrate, lymphocytic, subepithelial, palpebra	0/6	0/6	1.000	No Significant Difference
Secretion, pigmented, inspissated	1/6	0/6	1.000	No Significant Difference
Palpebral abscess (sty)	0/6	0/6	1.000	No Significant Difference
THYMUS				
Hemorrhage	0/6	0/6	1.000	No Significant Difference

LUNG				
Congestion, alveolar septal	1/6	3/6	0.545	No Significant Difference
Congestion, venous	2/6	1/6	1.000	No Significant Difference
Erythrocyte extravasation, alveolar	4/6	1/6	0.242	No Significant Difference
Erythrophagocytosis	1/6	2/6	1.000	No Significant Difference
Hemorrhage, perivascular or peribronchiolar	4/6	2/6	0.567	No Significant Difference
Edema, perivascular	0/6	2/6	0.455	No Significant Difference
Ateletasis, alveolar α	2/6	5/6	0.242	No Significant Difference
Histiocytosis, alveolar	1/6	2/6	1.000	No Significant Difference
Infiltrate, granulocytic	0/6	1/6	1.000	No Significant Difference
Edema, subpleural	0/6	0/6	1.000	No Significant Difference
Fibrosis, alveolar, focal	0/6	1/6	1.000	No Significant Difference
Hypertrophy, smooth muscle, vascular	0/6	1/6	1.000	No Significant Difference
Crystals, eosinophilic, alveolar	0/6	0/6	1.000	No Significant Difference

TRACHEA				
Increased mucosal eosinophilic droplets:Y/N	3/5	6/6	0.182	No Significant Difference
THYROID GLAND				
Ectopic thymus	0/6	0/6	1.000	No Significant Difference
Ultimobranchial cysts	0/6	0/6	1.000	No Significant Difference
LYMPH NODE, Tracheal				
Draining hemorrhage	2/3	0/5	0.107	No Significant Difference
ADRENAL GLAND				
Vacuoles, cortical	2/6	3/6	1.000	No Significant Difference
KIDNEY				
Basophilic tubules	4/6	2/6	0.567	No Significant Difference
infiltrate, lymphoplasmacytic	1/6	3/6	0.545	No Significant Difference
Cystic tubules, focal	0/6	1/6	1.000	No Significant Difference
Congestion	0/6	0/6	1.000	No Significant Difference
Infarct	0/6	0/6	1.000	No Significant Difference

LIVER				
Hepatocellular loss, multifocal, w/hemorrhage and				
leukocytes	0/6	0/6	1.000	No Significant Difference
Angiectasis, cavernous	0/6	0/6	1.000	No Significant Difference
Congestion	0/6	0/6	1.000	No Significant Difference
Infiltrate, histiocytic, focal	1/6	3/6	0.545	No Significant Difference
Infiltrate, granulocytic, focal	1/6	0/6	1.000	No Significant Difference
Infiltrate, lymphocytic, portal	1/6	2/6	1.000	No Significant Difference
Fibrosis, portal, focal	0/6	1/6	1.000	No Significant Difference
TESTIS				
Diameter reduced by > 30%	0/6	0/6	1.000	No Significant Difference
Seminiferous tubules degenerate (or Atrophic)	0/6	0/6	1.000	No Significant Difference
SEMINAL VESICLE				
Hyperplasia, epithelial (Unilateral or Bilateral)	0/6	2/6	0.455	No Significant Difference
PROSTATE, dorsal lobe				
infiltrate, lymphoplasmacytic	1/6	0/6	1.000	No Significant Difference

NASAL TURBINATES, Level 1				
Level 1- Hyperplasia, transitional epithelium	0/6	6/6	0.020	1.5 mg/kg > Control
Level 1 - Hyperplasia, respiratory epithelium	2/6	5/6	0.242	No Significant Difference
Level 1- Infiltrate, granulocytic	1/6	4/6	0.242	No Significant Difference
Level 1- Infiltrate, lymphocytic	1/6	3/6	0.545	No Significant Difference
Level 1- Nasal turbinate, mucosa, degeneration	0/6	2/6	0.455	No Significant Difference
Level 1-Nasal turbinate, bone loss -level of resp epith in dorsal meatus	0/1	0/0	-	No Significant Difference
Level 1 - Goblet cell hyperplasia, nasal septum	4/6	6/6	0.455	No Significant Difference
NASAL TURBINATE, Level 2				
Level 2 - Goblet cell hyperplasia, nasal septum	1/6	3/6	0.545	No Significant Difference
Level 2-Hyperplasia, respiratory epithelium	4/6	4/6	1.000	No Significant Difference
Level 2- Infiltrate, granulocytic	0/6	5/6	0.015	1.5 mg/kg > Control
Level 2- Nasal turbinate, mucosa, degeneration	0/6	3/6	0.182	No Significant Difference
Level 2 - Infiltrate, lymphocytic	2/6	0/6	0.455	No Significant Difference
NASAL TURBINATE, Level 3				
Level 3-Hyperplasia, respiratory epithelium	0/3	2/2	0.100	No Significant Difference
T3 non-NALT Infiltrate, lymphocytic, subepithelial	0/3	0/2	1.000	No Significant Difference

SUBACUTE STUDY HISTOLOGIC FINDINGS IN (0.5 mg/L) RED SMOKE-EXPOSED MALE RATS COMPARED TO AIR (VEHICLE) CONTROLS

Males	-			
RED SMOKE EXPOSURE LEVEL>	Control	0.5 mg/L	P-Value	Conclusion
LUNG				
Congestion, alveolar septal	1/6	5/6	0.080	No Significant Difference
Congestion, venous	2/6	2/6	1.000	No Significant Difference
Erythrocyte extravasation, alveolar	4/6	5/6	1.000	No Significant Difference
Erythrophagocytosis	1/6	0/6	1.000	No Significant Difference
Hemorrhage, perivascular or peribronchiolar	4/6	5/6	1.000	No Significant Difference
Edema, perivascular	0/6	0/6	1.000	No Significant Difference
Ateletasis, alveolar α	2/6	3/6	1.000	No Significant Difference
Histiocytosis, alveolar	1/6	2/6	1.000	No Significant Difference
Infiltrate, granulocytic	0/6	0/6	1.000	No Significant Difference
Edema, subpleural	0/6	0/6	1.000	No Significant Difference
Fibrosis, alveolar, focal	0/6	0/6	1.000	No Significant Difference
Hypertrophy, smooth muscle, vascular	0/6	1/6	1.000	No Significant Difference
Crystals, eosinophilic, alveolar	0/6	0/6	1.000	No Significant Difference
TRACHEA				
Increased mucosal eosinophilic droplets:Y/N	3/5	1/6	0.242	No Significant Difference
THYROID GLAND				
Ectopic thymus	0/6	1/6	1.000	No Significant Difference
Ultimobranchial cysts	0/6	1/6	1.000	No Significant Difference
LYMPH NODE, Tracheal				
Draining hemorrhage	2/3	2/4	1.000	No Significant Difference
ADRENAL GLAND				
Vacuoles, cortical	2/6	1/6	1.000	No Significant Difference
KIDNEY				
Basophilic tubules	4/6	0/6	0.061	No Significant Difference
infiltrate, lymphoplasmacytic	1/6	0/6	1.000	No Significant Difference
Cystic tubules, focal	0/6	0/6	1.000	No Significant Difference
Congestion	0/6	0/6	1.000	No Significant Difference
Infarct	0/6	0/6	1.000	No Significant Difference

LIVER				
Hepatocellular loss, multifocal, w/hemorrhage and				
leukocytes	0/6	0/6	1.000	No Significant Difference
Angiectasis, cavernous	0/6	0/6	1.000	No Significant Difference
Congestion	0/6	2/6	0.455	No Significant Difference
Infiltrate, histiocytic, focal	1/6	0/6	1.000	No Significant Difference
Infiltrate, granulocytic, focal	1/6	0/6	1.000	No Significant Difference
Infiltrate, lymphocytic, portal	1/6	1/6	1.000	No Significant Difference
Fibrosis, portal, focal	0/6	0/6	1.000	No Significant Difference
NASAL TURBINATES, Level 1				
Level 1- Hyperplasia, transitional epithelium	0/6	4/6	0.061	No Significant Difference
Level 1 - Hyperplasia, respiratory epithelium	2/6	2/6	1.000	No Significant Difference
Level 1- Infiltrate, granulocytic	1/6	3/6	0.545	No Significant Difference
Level 1- Infiltrate, lymphocytic	1/6	0/6	1.000	No Significant Difference
Level 1- Nasal turbinate, mucosa, degeneration	0/6	0/6	1.000	No Significant Difference
Level 1-Nasal turbinate, bone loss -level of resp				
epith in dorsal meatus	0/1	0/0	-	No Significant Difference
Level 1 - Goblet cell hyperplasia, nasal septum	4/6	6/6	0.455	No Significant Difference
NASAL TURBINATE, Level 2				
Level 2 - Goblet cell hyperplasia, nasal septum	1/6	4/5	0.080	No Significant Difference
Level 2-Hyperplasia, respiratory epithelium	4/6	2/5	0.567	No Significant Difference
Level 2- Infiltrate, granulocytic	0/6	0/5	1.000	No Significant Difference
Level 2- Nasal turbinate, mucosa, degeneration	0/6	1/5	0.455	No Significant Difference
Level 2 - Infiltrate, lymphocytic	2/6	0/5	0.455	No Significant Difference
NASAL TURBINATE, Level 3				
Level 3-Hyperplasia, respiratory epithelium	0/3	3/6	0.464	No Significant Difference
T3 non-NALT Infiltrate, lymphocytic, subepithelial	0/3	2/6	0.500	No Significant Difference

SUBACUTE STUDY HISTOLOGIC FINDINGS IN (0.1 mg/L) RED SMOKE-EXPOSED MALE RATS COMPARED TO AIR (VEHICLE) CONTROLS

· · · · · · · · · · · · · · · · · · ·	,			
Males				
RED SMOKE EXPOSURE LEVEL>	Control	0.1 mg/L	P-Value	Conclusion
NASAL TURBINATES, Level 1				
Level 1- Hyperplasia, transitional epithelium	0/6	1/1	0.143	No Significant Difference
Level 1 - Hyperplasia, respiratory epithelium	2/6	1/1	0.429	No Significant Difference
Level 1- Infiltrate, granulocytic	1/6	1/1	0.286	No Significant Difference
Level 1- Infiltrate, lymphocytic	1/6	1/1	0.286	No Significant Difference
Level 1- Nasal turbinate, mucosa, degeneration	0/6	1/1	0.143	No Significant Difference
Level 1-Nasal turbinate, bone loss -level of resp epith in dorsal meatus	0/1	0/1	1.000	No Significant Difference
Level 1 - Goblet cell hyperplasia, nasal septum	4/6	1/1	1.000	No Significant Difference
NASAL TURBINATE, Level 2				
Level 2 - Goblet cell hyperplasia, nasal septum	1/6	3/6	0.545	No Significant Difference
Level 2-Hyperplasia, respiratory epithelium	4/6	3/6	1.000	No Significant Difference
Level 2- Infiltrate, granulocytic	0/6	3/6	0.182	No Significant Difference
Level 2- Nasal turbinate, mucosa, degeneration	0/6	0/6	1.000	No Significant Difference
Level 2 - Infiltrate, lymphocytic	2/6	1/6	1.000	No Significant Difference
NASAL TURBINATE, Level 3				
Level 3-Hyperplasia, respiratory epithelium	0/3	4/4	0.029	0.1mg/kg > Control
T3 non-NALT Infiltrate, lymphocytic, subepithelial	0/3	0/4	1.000	No Significant Difference

SUBACUTE STUDY HISTOLOGIC FINDINGS IN (1.5 mg/L) RED SMOKE-EXPOSED, THEN RECOVERED MALE RATS COMPARED TO AGE-MATCHED AIR-EXPOSED CONTROLS

Males				
	Recovered	Treated with 1.5mg/L,		
RED SMOKE EXPOSURE LEVEL>	Controls	then Recovered	P-Value	Conclusion
STOMACH, GLANDULAR				
Dilation, gastric pits	3/6	3/6	1.000	No Significant Difference
SALIVARY GLANDS (submandibular, sublingual, parotid)				
Infiltrate, lymphoplasmacytic, submnd saliv gl	0/6	0/5	1.000	No Significant Difference
EYE W/HARDERIAN GLAND				
Infiltrate, lymphocytic, subepithelial, palpebra	1/6	0/6	1.000	No Significant Difference
Secretion, pigmented, inspissated	4/6	0/6	0.061	No Significant Difference
Palpebral abscess (sty)	0/6	1/6	1.000	No Significant Difference
THYMUS				
Hemorrhage	3/6	0/6	0.182	No Significant Difference

LUNG				
Congestion, alveolar septal	6/6	5/6	1.000	No Significant Difference
Congestion, venous	4/6	5/6	1.000	No Significant Difference
Erythrocyte extravasation, alveolar	3/6	4/6	1.000	No Significant Difference
Erythrophagocytosis	0/6	0/6	1.000	No Significant Difference
Hemorrhage, perivascular or peribronchiolar	4/6	0/6	0.061	No Significant Difference
Edema, perivascular	0/6	1/6	1.000	No Significant Difference
Ateletasis, alveolar α	2/6	4/6	0.567	No Significant Difference
Histiocytosis, alveolar	0/6	1/6	1.000	No Significant Difference
Infiltrate, granulocytic	0/6	0/6	1.000	No Significant Difference
Edema, subpleural	0/6	0/6	1.000	No Significant Difference
Fibrosis, alveolar, focal	0/6	0/6	1.000	No Significant Difference
Hypertrophy, smooth muscle, vascular	0/6	0/6	1.000	No Significant Difference
Crystals, eosinophilic, alveolar	0/4	0/0	-	No Significant Difference
TRACHEA				
Increased mucosal eosinophilic droplets:Y/N	0/5	4/6	0.061	No Significant Difference
THYROID GLAND				
Ectopic thymus	1/5	0/5	1.000	No Significant Difference
Ultimobranchial cysts	1/5	0/5	1.000	No Significant Difference
LYMPH NODE, Tracheal				
Draining hemorrhage	0/5	2/4	0.167	No Significant Difference
ADRENAL GLAND				
Vacuoles, cortical	2/6	3/6	1.000	No Significant Difference
KIDNEY				
Basophilic tubules	2/6	0/6	0.455	No Significant Difference
infiltrate, lymphoplasmacytic	2/6	2/6	1.000	No Significant Difference
Cystic tubules, focal	1/6	1/6	1.000	No Significant Difference
Congestion	1/6	0/6	1.000	No Significant Difference
Infarct	0/6	0/6	1.000	No Significant Difference
LIVER				
Hepatocellular loss, multifocal, w/hemorrhage and				
leukocytes	1/6	1/6	1.000	No Significant Difference
Angiectasis, cavernous	0/6	1/6	1.000	No Significant Difference
Congestion	1/6	0/6	1.000	No Significant Difference
Infiltrate, histiocytic, focal	1/6	3/6	0.545	No Significant Difference
Infiltrate, granulocytic, focal	0/6	1/6	1.000	No Significant Difference
Infiltrate, lymphocytic, portal	3/6	2/6	1.000	No Significant Difference
Fibrosis, portal, focal	0/6	0/6	1.000	No Significant Difference

			- I	
TESTIS				
Diameter reduced by > 30%	0/6	1/6	1.000	No Significant Difference
Seminiferous tubules degenerate (or Atrophic)	0/6	1/6	1.000	No Significant Difference
SEMINAL VESICLE				
Hyperplasia, epithelial (Unilateral or Bilateral)	0/6	3/6	0.182	No Significant Difference
PROSTATE, dorsal lobe				
infiltrate, lymphoplasmacytic	0/5	0/2	1.000	No Significant Difference
NASAL TURBINATES, Level 1				
Level 1- Hyperplasia, transitional epithelium	0/5	0/5	1.000	No Significant Difference
Level 1 - Hyperplasia, respiratory epithelium	2/5	1/5	1.000	No Significant Difference
Level 1- Infiltrate, granulocytic	1/5	0/5	1.000	No Significant Difference
Level 1- Infiltrate, lymphocytic	0/5	2/5	0.444	No Significant Difference
Level 1- Nasal turbinate, mucosa, degeneration	0/5	0/5	1.000	No Significant Difference
Level 1-Nasal turbinate, bone loss -level of resp				
epith in dorsal meatus	0/0	0/0	-	No Significant Difference
Level 1 - Goblet cell hyperplasia, nasal septum	5/5	5/5	1.000	No Significant Difference
NASAL TURBINATE, Level 2				
Level 2 - Goblet cell hyperplasia, nasal septum	2/5	3/6	1.000	No Significant Difference
Level 2-Hyperplasia, respiratory epithelium	0/5	4/6	0.061	No Significant Difference
Level 2- Infiltrate, granulocytic	0/5	0/6	1.000	No Significant Difference
Level 2- Nasal turbinate, mucosa, degeneration	0/5	0/6	1.000	No Significant Difference
Level 2 - Infiltrate, lymphocytic	1/5	2/6	1.000	No Significant Difference
NASAL TURBINATE, Level 3				-
Level 3-Hyperplasia, respiratory epithelium	2/5	0/0	-	No Significant Difference
T3 non-NALT Infiltrate, lymphocytic, subepithelial	0/6	0/0	-	No Significant Difference

SUBACUTE STUDY SEVERITY SCORES FOR MALE RATS EXPOSED TO RED SMOKE AT: 1.5mg/L, 0.5mg/L, 0.1mg/L or 1.5mg/L WITH 30 DAY RECOVERY PERIOD									
Stomach, glandular	Stomach, glandular01234Total								
Dilation, gastric pits	CTRL	3	3	0	0	0	6		
	1.5	6	0	0	0	0	6		
	0.5	0	0	0	0	0	0		
	0.1	0	0	0	0	0	0		
	R-CTRL	3	3	0	0	0	6		
	R-1.5	3	3	0	0	0	6		
Salivary gland, submand,		0	1	2	3	4	Total		
Infiltrate, lymphoplasmacytic,	CTRL	5	0	0	0	0	5		
submandibular saliv gl,	1.5	5	1	0	0	0	6		
periductal	0.5	0	0	0	0	0	0		
	0.1	0	0	0	0	0	0		
	R-CTRL	6	0	0	0	0	6		
	R-1.5	5	0	0	0	0	5		

Eye with Harderian gland		0	1	2	3	4	Total
Infiltrate, lymphocytic,	CTRL	6	0	0	0	0	6
subepithelial, palpebra	1.5	6	0	0	0	0	6
	0.5	0	0	0	0	0	0
	0.1	0	0	0	0	0	0
	R-CTRL	5	1	0	0	0	6
	R-1.5	6	0	0	0	0	6
Eye with Harderian gland		0	1	2	3	4	Total
Secretion, pigmented,	CTRL	5	1	0	0	0	6
inspissated	1.5	6	0	0	0	0	6
	0.5	0	0	0	0	0	0
	0.1	0	0	0	0	0	0
	R-CTRL	2	4	0	0	0	6
	R-1.5	6	0	0	0	0	6
Eye with Harderian gland		0	1	2	3	4	Total
Palpebral abscess (sty)	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	0	0	0	0	0	0
	0.1	0	0	0	0	0	0
	R-CTRL	6	0	0	0	0	6
	R-1.5	5	0	0	1	0	6
Thymus		0	1	2	3	4	Total
Hemorrhage	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	0	0	0	0	0	0
	0.1	0	0	0	0	0	0
	R-CTRL	3	2	1	0	0	6
	R-1.5	6	0	0	0	0	6
						1	
LUNG		0	1	2	3	4	Total
Congestion, alveolar septal	CTRL	5	1	0	0	0	6
	1.5	3	1	1	1	0	6
	0.5	1	2	3	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	0	1	4	1	0	6
	R-1.5	1	1	4	0	0	6
LUNG		0	1	2	3	4	Total
Congestion, venous	CTRL	4	2	0	0	0	6
	1.5	5	1	0	0	0	6
	0.5	4	2	0	0	0	6
						1 0	r o

0.1

R-CTRL

R-1.5

LUNG		0	1	2	3	4	Total
Erythrocyte extravasation,	CTRL	2	4	0	0	0	6
alveolar	1.5	5	1	0	0	0	6
	0.5	1	3	2	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	3	2	0	1	0	6
	R-1.5	2	3	1	0	0	6
LUNG		0	1	2	3	4	Total
Erythrophagocytosis	CTRL	5	1	0	0	0	6
	1.5	4	2	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	6	0	0	0	0	6
	R-1.5	6	0	0	0	0	6
LUNG		0	1	2	3	4	Total
Hemorrhage, perivascular or	CTRL	2	4	0	0	0	6
peribronchiolar	1.5	4	2	0	0	0	6
	0.5	1	4	1	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	2	4	0	0	0	6
	R-1.5	6	0	0	0	0	6
LUNG		0	1	2	3	4	Total
Edema, perivascular	CTRL	6	0	0	0	0	6
	1.5	4	2	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	6	0	0	0	0	6
	R-1.5	5	1	0	0	0	6
	•		•			•	
LUNG		0	1	2	3	4	Total
Ateletasis, alveolar	CTRL	4	1	1	0	0	6
	1.5	1	2	3	0	0	6
	0.5	3	3	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	4	1	0	0	1	6
	R-1.5	2	2	2	0	0	6
LUNG		0	1	2	3	4	Total
Histiocytosis, alveolar	CTRL	5	1	0	0	0	6
	1.5	4	2	0	0	0	6
		1	1	i		1	

0.5

0.1

R-CTRL

R-1.5

LUNG		0	1	2	3	4	Total
Infiltrate, granulocytic	CTRL	6	0	0	0	0	6
	1.5	5	1	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	6	0	0	0	0	6
	R-1.5	6	0	0	0	0	6
LUNG		0	1	2	3	4	Total
Edema, subpleural	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	6	0	0	0	0	6
	R-1.5	6	0	0	0	0	6
LUNG		0	1	2	3	4	Total
Fibrosis, alveolar, focal	CTRL	6	0	0	0	0	6
	1.5	5	1	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	6	0	0	0	0	6
	R-1.5	6	0	0	0	0	6
LUNG		0	1	2	3	4	Total
Hypertrophy, smooth muscle,	CTRL	6	0	0	0	0	6
vascular	1.5	5	1	0	0	0	6
	0.5	5	1	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	6	0	0	0	0	6
	R-1.5	6	0	0	0	0	6
LUNG	OTDI	0	1	2	3	4	Total
Crystals, eosinophilic,	CTRL	h			()	0	6
		6	0	0	0		
alveolar	1.5	6	0	0	0	0	6
	1.5 0.5	6 6	0 0	0 0	0 0	0 0	6 6
	1.5 0.5 0.1	6 6 0	0 0 0	0 0 0	0 0 0	0 0 0	6 6 0
	1.5 0.5 0.1 R-CTRL	6 6 0 4	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	6 6 0 4
alveolar	1.5 0.5 0.1	6 6 0 4 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	6 6 0 4 0
alveolar Trachea	1.5 0.5 0.1 R-CTRL R-1.5	6 6 0 4 0 0	0 0 0 0 0 1	0 0 0 0 0 2	0 0 0 0 0 3	0 0 0 0 0 4	6 6 0 4 0 Total
alveolar Trachea Increased mucosal	1.5 0.5 0.1 R-CTRL R-1.5 CTRL	6 6 0 4 0 0 2	0 0 0 0 0 1 3	0 0 0 0 0 2 0	0 0 0 0 0 3 0	0 0 0 0 0 4 0	6 6 0 4 0 Total 5
alveolar Trachea	1.5 0.5 0.1 R-CTRL R-1.5 CTRL 1.5	6 6 0 4 0 0 2 0	0 0 0 0 0 1 3 6	0 0 0 0 0 2 0 0	0 0 0 0 0 3 0 0	0 0 0 0 0 4 0 0	6 6 0 4 0 Total 5 6
alveolar Trachea Increased mucosal	1.5 0.5 0.1 R-CTRL R-1.5 CTRL 1.5 0.5	6 6 0 4 0 0 2 0 5	0 0 0 0 1 3 6 1	0 0 0 0 0 2 0 0 0 0	0 0 0 0 0 3 0 0 0 0	0 0 0 0 0 4 0 0 0 0	6 6 0 4 0 Total 5 6 6
alveolar Trachea Increased mucosal	1.5 0.5 0.1 R-CTRL R-1.5 CTRL 1.5	6 6 0 4 0 0 2 0	0 0 0 0 0 1 3 6	0 0 0 0 0 2 0 0	0 0 0 0 0 3 0 0	0 0 0 0 0 4 0 0	6 6 0 4 0 Total 5 6

Thyroid gland		0	1	2	3	4	Total
Ectopic thymus	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	5	1	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	4	1	0	0	0	5
	R-1.5	5	0	0	0	0	5
Thyroid gland		0	1	2	3	4	Total
Ultimobranchial cysts	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	5	0	1	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	4	1	0	0	0	5
	R-1.5	5	0	0	0	0	5
Lymph node, tracheal		0	1	2	3	4	Total
Draining hemorrhage	CTRL	1	2	0	0	0	3
	1.5	5	0	0	0	0	5
	0.5	2	2	0	0	0	4
	0.1	0	0	0	0	0	0
	R-CTRL	5	0	0	0	0	5
	R-1.5	2	1	1	0	0	4
Adrenal gland		0	1	2	3	4	Total
Vacuoles, cortical	CTRL	4	2	0	0	0	6
	1.5	3	3	0	0	0	6
	0.5	5	1	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	4	2	0	0	0	6
	R-1.5	3	3	0	0	0	6
		_		-		-	-
Kidney		0	1	2	3	4	Total
Basophilic tubules	CTRL	2	4	0	0	0	6
	1.5	4	2	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	4	2	0	0	0	6
	R-1.5	6	0	0	0	0	6
Kidney		0	1	2	3	4	Total
infiltrate, lymphoplasmacytic	CTRL	5	1	0	0	0	6
					_	-	

1.5

0.5

0.1

R-CTRL

R-1.5

Kidney		0	1	2	3	4	Total
Cystic tubules, focal	CTRL	6	0	0	0	0	6
	1.5	5	1	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	5	1	0	0	0	6
	R-1.5	5	1	0	0	0	6
Kidney		0	1	2	3	4	Total
Congestion	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	5	1	0	0	0	6
	R-1.5	6	0	0	0	0	6
Kidney		0	1	2	3	4	Total
Infarct	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	0	0	0	0	0	0
	R-CTRL	6	0	0	0	0	6
	R-1.5	6	0	0	0	0	6
Liver		0	1	2	3	4	Total
Hepatocellular loss,	CTRL	6	0	0	0	0	6
multifocal, w/hemorrhage	1.5	6	0	0	0	0	6
and leukocytes	0.5	6	0	0	0	0	6
	0.1	1	0	0	0	0	1
	R-CTRL	5	1	0	0	0	6
	R-1.5	5	0	0	1	0	6
-	1		1			1	
Liver		0	1	2	3	4	Total
Angiectasis, cavernous	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	1	0	0	0	0	
	R-CTRL	6	0	0	0	0	6
	R-1.5	5	0	1	0	0	6
Liver		0	1	2	3	4	Total
Congestion	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	4	2	0	0	0	6
	0.1	1	0	0	0	0	1
	R-CTRL	5	1	0	0	0	6
	R-1.5	6	0	0	0	0	6

Liver		0	1	2	3	4	Total
Infiltrate, histiocytic, focal	CTRL	5	1	0	0	0	6
	1.5	3	3	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	1	0	0	0	0	1
	R-CTRL	5	1	0	0	0	6
	R-1.5	3	3	0	0	0	6
Liver		0	1	2	3	4	Total
Infiltrate, granulocytic, focal	CTRL	5	1	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	1	0	0	0	0	1
	R-CTRL	6	0	0	0	0	6
	R-1.5	5	1	0	0	0	6
Liver		0	1	2	3	4	Total
Infiltrate, lymphocytic, portal	CTRL	5	1	0	0	0	6
	1.5	4	2	0	0	0	6
	0.5	5	1	0	0	0	6
	0.1	1	1	0	0	0	2
	R-CTRL	3	3	0	0	0	6
	R-1.5	4	2	0	0	0	6
Liver		0	1	2	3	4	Total
Fibrosis, portal, focal	CTRL	6	0	0	0	0	6
	1.5	5	1	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	1	0	0	0	1	2
	R-CTRL	6	0	0	0	0	6
	R-1.5	6	0	0	0	0	6
			1	1			
Testis		0	1	2	3	4	Total
Diameter reduced by > 30%	CTRL	6	0	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	0	0	0	0	0	0
	0.1	0	0	0	0	0	0
	R-CTRL	6	0	0	0	0	6
	R-1.5	5	0	0	0	1	6
Testis		0	1	2	3	4	Tota
Seminiferous tubules	CTRL	6	0	0	0	0	6
degenerate (or Atrophic)	1.5	6	0	0	0	0	6
	0.5	0	0	0	0	0	0
	0.1	0	0	0	0	0	0
		C					

R-CTRL

R-1.5

Seminal Vesicle		0	1	2	3	4	Total
Hyperplasia, epithelial	CTRL	6	0	0	0	0	6
(Unilateral or Bilateral)	1.5	4	2	0	0	0	6
	0.5	0	0	0	0	0	0
	0.1	0	0	0	0	0	0
	R-CTRL	6	0	0	0	0	6
	R-1.5	3	2	1	0	0	6
Prostate, dorsal lobe		0	1	2	3	4	Total
infiltrate, lymphoplasmacytic	CTRL	5	0	1	0	0	6
	1.5	6	0	0	0	0	6
	0.5	0	0	0	0	0	0
	0.1	0	0	0	0	0	0
	R-CTRL	5	0	0	0	0	5
	R-1.5	2	0	0	0	0	2
NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1- Hyperplasia,	CTRL	6	0	0	0	0	6
transitional epithelium	1.5	0	0	1	4	1	6
	0.5	2	0	1	2	1	6
	0.1	0	1	0	0	0	1
	R-CTRL	5	0	0	0	0	5
	R-1.5	5	0	0	0	0	5
NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1 - Hyperplasia,	CTRL	4	2	0	0	0	6
respiratory epithelium	1.5	1	3	2	0	0	6
	0.5	4	1	1	0	0	6
	0.1	0	1	0	0	0	1
	R-CTRL	3	2	0	0	0	5
	R-1.5	4	1	0	0	0	5
NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1- Infiltrate,	CTRL	5	1	0	0	0	6
granulocytic	1.5	2	4	0	0	0	6
	0.5	3	3	0	0	0	6
	0.1	0	1	0	0	0	1
	R-CTRL	4	1	0	0	0	5
	R-1.5	5	0	0	0	0	5
NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1- Infiltrate,	CTRL	5	1	0	0	0	6
lymphocytic	1.5	3	3	0	0	0	6
	0.5	6	0	0	0	0	6
	0.1	0	1	0	0	0	1
	R-CTRL	5	0	0	0	0	5
	R-1.5	3	2	0	0	0	5

NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1-Nasoturbinate,	CTRL	6	0	0	0	0	6
mucosal degeneration	1.5	4	0	0	2	0	6
	0.5	6	0	0	0	0	6
	0.1	0	1	0	0	0	1
	R-CTRL	5	0	0	0	0	5
	R-1.5	5	0	0	0	0	5
NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1-Nasal turbinate, bone	CTRL	1	0	0	0	0	1
loss -level of resp epith in	1.5	0	0	0	0	0	0
dorsal meatus	0.5	0	0	0	0	0	0
	0.1	1	0	0	0	0	1
	R-CTRL	0	0	0	0	0	0
	R-1.5	0	0	0	0	0	0
NASAL TURBINATE, LEVEL 1		0	1	2	3	4	Total
Level 1 Goblet cell	CTRL	2	1	3	0	0	6
hyperplasia, nasal septum	1.5	0	0	5	1	0	6
	0.5	0	0	4	2	0	6
	0.1	0	1	0	0	0	1
	R-CTRL	0	0	3	1	1	5
	R-1.5	0	2	2	1	0	5
NASAL TURBINATE, LEVEL 2		0	1	2	3	4	Total
Level 2- Goblet cell	CTRL	5	0	1	0	0	6
hyperplasia, nasal septum	1.5	3	2	1	0	0	6
	0.5	1	0	2	2	0	5
	0.1	3	0	3	0	0	6
	R-CTRL	3	2	0	0	0	5
	R-1.5	3	0	3	0	0	6
· · · · · · · · · · · · · · · · · · ·							
NASAL TURBINATE, LEVEL 2		0	1	2	3	4	Total
Level 2 - Hyperplasia,	CTRL	2	4	0	0	0	6
respiratory epithelium	1.5	2	0	4	0	0	6
	0.5	3	2	0	0	0	5
	0.1	3	2	1	0	0	6
	R-CTRL	5	0	0	0	0	5
	R-1.5	2	2	2	0	0	6
NASAL TURBINATE, LEVEL 2		0	1	2	3	4	Total
Level 2- Infiltrate,	CTRL	6	0	0	0	0	6
granulocytic	1.5	1	5	0	0	0	6
	0.5	5	0	0	0	0	5
	0.1	3	3	0	0	0	6
	R-CTRL	5	0	0	0	0	5
	R-1.5	6	0	0	0	0	6

NASAL TURBINATE, LEVEL 2		0	1	2	3	4	Total
Level 2- Nasal turbinate,	CTRL	6	0	0	0	0	6
mucosa, degeneration	1.5	3	1	1	1	0	6
	0.5	4	1	0	0	0	5
	0.1	6	0	0	0	0	6
	R-CTRL	5	0	0	0	0	5
	R-1.5	6	0	0	0	0	6
NASAL TURBINATE, LEVEL 2		0	1	2	3	4	Total
Level 2-Infiltrate, lymphocytic	CTRL	4	2	0	0	0	6
	1.5	6	0	0	0	0	6
	0.5	5	0	0	0	0	5
	0.1	5	1	0	0	0	6
	R-CTRL	4	1	0	0	0	5
	R-1.5	4	1	1	0	0	6
NASAL TURBINATE, LEVEL 3		0	1	2	3	4	Total
Level 3 - Hyperplasia,	CTRL	3	0	0	0	0	3
respiratory epithelium	1.5	0	2	0	0	0	2
	0.5	3	3	0	0	0	6
	0.1	0	4	0	0	0	4
	R-CTRL	3	2	0	0	0	5
	R-1.5	0	0	0	0	0	0
NASAL TURBINATE, LEVEL 3		0	1	2	3	4	Total
T3 non-NALT Infiltrate,	CTRL	3	0	0	0	0	3
lymphocytic, subepithelial	1.5	2	0	0	0	0	2
	0.5	4	2	0	0	0	6
	0.1	4	0	0	0	0	4
	R-CTRL	6	0	0	0	0	6
	R-1.5	0	0	0	0	0	0

APPENDIX D – INDIVIDUAL ANIMAL SCORES – ACUTE STUDY

RED SMOKE ACUTE EXPOSURE	550	552	553	560	566	579	525	526	527	528	529	732	733	734	735	736	780	781	782	783	784
Euthanasia (# days post-exposure)			10	day					2 wks				1 day		2 v	vks		1 day		2 ۷	wks
Units of exposure mg/L>	CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	2.0*	2.0*	2.0*	2.0*	2.0*	1.7	1.7	1.7	1.7	1.7	0.6	0.6	0.6	0.6	0.6
LUNG	Male	Male	Male	Male	Male	Male	Male	Male	Male	Male	Male	Male	Male								
Alveolar septal dilation(artifact)*	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Congestion, alveolar septal	0	0	0	1	0	0	2	1	2	1	0	0	2	3	3	3	1	1	2	2	3
Congestion, venous	1	0	0	1	0	0	0	0	1	0	0	0	2	3	1	1	0	1	1	2	3
Erythrocyte extravasation, alveolar	0	1	1	0	1	1	1	1	1	0	1	1	2	2	2	2	2	2	1	3	2
Erythrophagocytosis	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1
Hemorrhage, perivascular or peribronchiolar	0	1	1	1	0	1	1	1	0	0	0	0	2	2	0	1	2	1	2	2	2
Edema, perivascular	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2
Ateletasis, alveolar α	0	0	0	1	0	2	2	1	1	1	0	2	1	1	3	1	1	2	0	1	2
Histiocytosis, alveolar	0	0	1	0	0	0	1	1	1	1	0	1	0	1	0	0	1	0	0	0	0
Infiltrate, granulocytic	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1	1	0	1	1
Edema, subpleural	0	0	0	0	0	0	0	1	3	1	0	0	1	0	0	0	0	0	0	0	0
Fibrosis, alveolar, focal	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Crystals, eosinophilic, alveolar	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
* Water-inflated lungs																					
 α Atelectasis is often observed but is suggests processing artifact. 1= minimal (<5%); 2 = mild (6-15%); 3). "Diff	use lac	k of in	flation	, no ev	idence	e of inf	lamma	atory p	rocess	, " '/

RED SMOKE ACUTE EXPOSURE	586	591	601	602	605	612	530	531	532	533	534	737	738	739	740	741	785	786	787	788	789
Euthanasia (# days post-exposure)			10	lay					2 wks				1 day		2 ۷	vks		1 day		2 v	v ks
Units of exposure mg/L>	CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	2.0*	2.0*	2.0*	2.0*	2.0*	1.7	1.7	1.7	1.7	1.7	0.6	0.6	0.6	0.6	0.6
Fe = FEMALE	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe	Fe
Alveolar septal dilation(artifact)*	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Congestion, alveolar septal	0	0	0	0	0	0	1	0	0	0	1	1	1	0	3	2	0	0	0	3	3
Congestion, venous	0	0	0	0	2	0	0	0	0	0	0	1	0	1	2	1	0	1	1	3	3
Erythrocyte extravasation, alveolar	0	0	1	0	0	0	0	0	1	0	1	0	0	0	2	0	2	0	1	3	0
Erythrophagocytosis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Hemorrhage, perivascular or peribronchiolar	0	1	0	0	1	1	0	0	0	0	1	0	0	1	1	0	1	1	1	2	0
Edema, perivascular	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0
Ateletasis, alveolar α	0	0	1	0	1	0	1	0	1	0	2	3	1	0	0	0	0	0	0	0	0
Histiocytosis, alveolar	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Infiltrate, granulocytic	0	0	0	0	2	1	0	1	0	0	0	0	1	0	0	0	1	1	1	1	0
Edema, subpleural	0	0	0	0	0	0	1	0	2	0	1	0	0	0	0	0	0	0	0	0	0
Fibrosis, alveolar, focal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crystals, eosinophilic, alveolar	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
* Water-inflated lungs																					
α Atelectasis is often observed but is	genera	lly an a	rtifact	of nec	ropsy	(insuff	ucien	t forma	alin pe	rfusio	n). "Dif	fuse la	ick of i	nflatio	n, no e	vidend	e of in	flamm	atory p	process	,"
suggests processing artifact.																					
1= minimal (<5%); 2 = mild (6-15%); 3 =	-moder	ate (16	5-30%)	; 4 = ma	arked (>30%	of the	tissue	is affe	cted).											

APPENDIX E – INDIVIDUAL ANIMAL SCORES SUBACUTE STUDY

All main study animals are 10 wks old. * R-ctrl = recovery control animals, 14 wks old. NE = Not evaluable.

Y = Yes, there is loss of bone in a section that sometimes contains bone. N= NO, there is no loss of bone; that is, it is present.

Scoring criteria: "0' = virtually no lesion = <1% of the tissue affected; '1' = minimal (generally, affecting 1-5% of the tissue) e.g., kidney-basophilic tubules '1' = 3-5 tubules observed. '2' = mild (6-15% of tissue affected), '3' = moderate (16-30% of the tissue affected. '4' = marked (affects > 30% of the sampled tissue).

35-	15-01-01 RED	SMO	KE SU	BACL	JTE ST	rudy						
Animal ID numbers all are prefixed with '1	5- 550	552	553	560	566	579	556	564	565	567	574	577
MALES Dosage (mg	g/kg)> CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	1.5	1.5	1.5	1.5	1.5	1.5
Brain, olfactory lobe	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Brain, level 2	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Brain, levels 3, 4 or 5	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Brain, level 6 or 7	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
PITUITARY	Р	Р	Р	NP	NP	NP	NP	NP	Р	NP	NP	NP
STOMACH, SQUAMOUS	Р	Р	Р	Р	NP	NP	Р	Р	Р	Р	Р	Р
STOMACH, GLANDULAR	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Dilation, gastric pits	1	1	0	1	0	0	0	0	0	0	0	0
SALIVARY GLANDS (submandibular, sublin parotid)	gual, NP	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Infiltrate, lymphoplasmacytic, submnd sal	iv gl .	0	0	0	0	0	0	0	1	0	0	0
LARGE INTESTINE							•	•		Р	Р	Р
EYE W/HARDERIAN GLAND	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Infiltrate, lymphocytic, subepithelial, palp	oebra 0	0	0	0	0	0	0	0	0	0	0	0
Secretion, pigmented, inspissated	0	0	0	0	1	0	0	0	0	0	0	0
Palpebral abscess (Sty or Hordeolum)	0	0	0	0	0	0	0	0	0	0	0	0
THYMUS	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Hemorrhage	0	0	0	0	0	0	0	0	0	0	0	0
LUNG	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Congestion, alveolar septal	0	0	0	1	0	0	0	0	0	3	1	2
Congestion, venous	1	0	0	1	0	0	0	0	0	1	0	0
Erythrocyte extravasation, alveolar	0	1	1	0	1	1	0	0	0	0	1	0
Erythrophagocytosis	0	0	1	0	0	0	0	0	0	1	1	0
Hemorrhage, perivascular or peribronchic	olar 0	1	1	1	0	1	0	0	0	1	1	0
Edema, perivascular	0	0	0	0	0	0	1	0	0	0	0	1
Ateletasis, alveolar α	0	0	0	1	0	2	2	2	1	0	1	2
Histiocytosis, alveolar	0	0	1	0	0	0	0	0	0	1	1	0
Infiltrate, granulocytic	0	0	0	0	0	0	0	0	0	0	1	0
Edema, subpleural	0	0	0	0	0	0	0	0	0	0	0	0
Fibrosis, alveolar, focal	0	0	0	0	0	0	0	0	0	0	1	0
Hypertrophy, smooth muscle, vascular	0	0	0	0	0	0	1	0	0	0	0	0
Crystals, eosinophilic, alveolar	0	0	0	0	0	0	0	0	0	0	0	0

35-15-01-01 RED SMOKE SUBACUTE STUDY

Animal ID numbers all are prefixed with '15-	550	552	553	560	566	579	556	564	565	567	574	577
MALES Dosage (mg/kg)>	CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	1.5	1.5	1.5	1.5	1.5	1.5
TRACHEA	Р	Р	NP	Р	Р	Р	Р	Р	Р	Р	Р	Р
Increased mucosal eosinophilic droplets:Y/N	1	0		0	1	1	1	1	1	1	1	1
THYROID GLAND	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Ectopic thymus	0	0	0	0	0	0	0	0	0	0	0	0
Ultimobranchial cysts	0	0	0	0	0	0	0	0	0	0	0	0
ESOPHAGUS	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
SKELETAL MUSCLE	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
LYMPH NODE, Tracheal	NP	Р	NP	NP	Р	Р	Р	Р	NP	Р	Р	Р
Draining hemorrhage		1			0	1	0	0		0	0	0
HEART with great vessels	Р	Р	Р	Р	Р	NP	Р	Р	Р	Р	Р	Р
ADRENAL GLAND	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Vacuoles, cortical	0	1	0	0	1	0	1	0	1	1	0	0
KIDNEY	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Basophilic tubules	1	0	0	1	1	1	0	0	1	1	0	0
infiltrate, lymphoplasmacytic	0	0	0	1	0	0	0	0	1	1	1	0
Cystic tubules, focal	0	0	0	0	0	0	0	0	0	1	0	0
Congestion	0	0	0	0	0	0	0	0	0	0	0	0
Infarct	0	0	0	0	0	0	0	0	0	0	0	0
SPLEEN	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
LIVER	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Hepatocellular loss, multifocal, w/hemorrhage and leukocytes	0	0	0	0	0	0	0	0	0	0	0	0
Angiectasis, cavernous	0	0	0	0	0	0	0	0	0	0	0	0
Congestion	0	0	0	0	0	0	0	0	0	0	0	0
Infiltrate, histiocytic, focal	0	0	0	1	0	0	1	1	0	0	1	0
Infiltrate, granulocytic, focal	0	0	0	1	0	0	0	0	0	0	0	0
Infiltrate, lymphocytic, portal	0	0	0	0	1	0	1	1	0	0	0	0
Fibrosis, portal, focal	0	0	0	0	0	0	0	1	0	0	0	0
TESTIS	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Diameter reduced by > 30%	0	0	0	0	0	0	0	0	0	0	0	0
Seminiferous tubules degenerate (or Atrophic)	0	0	0	0	0	0	0	0	0	0	0	0
SEMINAL VESICLE	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Hyperplasia, epithelial (Unilateral or Bilateral)	0	0	0	0	0	0	0	1	0	1	0	0
COAGULATING GLAND	NP	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
PROSTATE, dorsal lobe	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
infiltrate, lymphoplasmacytic	2	0	0	0	0	0	0	0	0	0	0	0

Animal ID numbers all are p	refixed with '15-	550	552	553	560	566	579	556	564	565	567	574	577
MALES	Dosage (mg/kg)>	CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	1.5	1.5	1.5	1.5	1.5	1.5

NASAL TURBINATES, Level 1	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Level 1- Hyperplasia, transitional epithelium	0	0	0	0	0	0	3	2	3	3	3	4
Level 1 - Hyperplasia, respiratory epithelium	0	1	0	0	0	1	1	1	0	2	2	1
Level 1- Infiltrate, granulocytic	0	1	0	0	0	0	1	1	1	0	0	1
Level 1- Infiltrate, lymphocytic	0	0	0	0	1	0	1	1	1	0	0	0
Level 1- Nasal turbinate, mucosa, degeneration	0	0	0	0	0	0	3	0	3	0	0	0
Level 1-Nasal turbinate, bone loss -level of resp epith in dorsal meatus		0		·								
Level 1 - Goblet cell hyperplasia, nasal septum	0	2	2	0	1	2	2	2	2	2	2	3
NASAL TURBINATE, Level 2	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Level 2 - Goblet cell hyperplasia, nasal septum	0	0	0	0	0	2	0	0	0	2	1	1
Level 2-Hyperplasia, respiratory epithelium	0	1	1	0	1	1	0	0	2	2	2	2
Level 2- Infiltrate, granulocytic	0	0	0	0	0	0	1	1	1	1	1	0
Level 2- Nasal turbinate, mucosa, degeneration	0	0	0	0	0	0	2	0	3	0	0	1
Level 2 - Infiltrate, lymphocytic	0	0	0	1	1	0	0	0	0	0	0	0
NASAL TURBINATE, Level 3	NP	Р	NP	Р	Р	NP	NP	Р	NP	NP	NP	Р
Level 3-Hyperplasia, respiratory epithelium		0		0	0			1				1
T3 non-NALT Infiltrate, lymphocytic, subepithelial		0		0	0			0				0

Animal ID numbers all are pre	efixed with '15-	550	552	553	560	566	579	554	555	561	569	575	580
MALES	Dosage (mg/kg)>	CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	0.5	0.5	0.5	0.5	0.5	0.5
LUNG		Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Congestion, alveolar septal		0	0	0	1	0	0	2	1	1	2	2	0
Congestion, venous		1	0	0	1	0	0	1	0	0	1	0	0
Erythrocyte extravasation, al	veolar	0	1	1	0	1	1	2	1	1	0	2	1
Erythrophagocytosis		0	0	1	0	0	0	0	0	0	0	0	0
Hemorrhage, perivascular or	peribronchiolar	0	1	1	1	0	1	1	0	2	1	1	1
Edema, perivascular		0	0	0	0	0	0	0	0	0	0	0	0
Ateletasis, alveolar α		0	0	0	1	0	2	0	1	1	0	1	0
Histiocytosis, alveolar		0	0	1	0	0	0	1	1	0	0	0	0
Infiltrate, granulocytic		0	0	0	0	0	0	0	0	0	0	0	0
Edema, subpleural		0	0	0	0	0	0	0	0	0	0	0	0
Fibrosis, alveolar, focal		0	0	0	0	0	0	0	0	0	0	0	0
Hypertrophy, smooth muscle	e, vascular	0	0	0	0	0	0	1	0	0	0	0	0
Crystals, eosinophilic, alveol	ar	0	0	0	0	0	0	0	0	0	0	0	0

Animal ID numbers all are prefixed with '15-	550	552	553	560	566	579	554	555	561	569	575	580
MALES Dosage (mg/kg)>	CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	0.5	0.5	0.5	0.5	0.5	0.5
TRACHEA	Р	Р	NP	Р	Р	Р	Р	Р	Р	Р	Р	Р
Increased mucosal eosinophilic droplets:Y/N	1	0		0	1	1	0	0	1	0	0	0
THYROID GLAND	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Ectopic thymus	0	0	0	0	0	0	0	0	0	0	0	1
Ultimobranchial cysts	0	0	0	0	0	0	0	0	0	0	0	2
ESOPHAGUS	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
SKELETAL MUSCLE	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
LYMPH NODE, Tracheal	NP	Р	NP	NP	Р	Р	NP	Р	Р	Р	Р	NP
Draining hemorrhage		1			0	1		0	0	1	1	
HEART with great vessels	Р	Р	Р	Р	Р	NP						
ADRENAL GLAND	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Vacuoles, cortical	0	1	0	0	1	0	0	0	0	0	1	0
KIDNEY	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Basophilic tubules	1	0	0	1	1	1	0	0	0	0	0	0
infiltrate, lymphoplasmacytic	0	0	0	1	0	0	0	0	0	0	0	0
Cystic tubules, focal	0	0	0	0	0	0	0	0	0	0	0	0
Congestion	0	0	0	0	0	0	0	0	0	0	0	0
Infarct	0	0	0	0	0	0	0	0	0	0	0	0
SPLEEN	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
LIVER	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Hepatocellular loss, multifocal, w/hemorrhage and	•	•	•	•		•	•	•	•	•	•	•
leukocytes	0	0	0	0	0	0	0	0	0	0	0	0
Angiectasis, cavernous	0	0	0	0	0	0	0	0	0	0	0	0
Congestion	0	0	0	0	0	0	0	1	0	1	0	0
Infiltrate, histiocytic, focal	0	0	0	1	0	0	0	0	0	0	0	0
Infiltrate, granulocytic, focal	0	0	0	1	0	0	0	0	0	0	0	0
Infiltrate, lymphocytic, portal	0	0	0	0	1	0	0	0	0	0	0	1
Fibrosis, portal, focal	0	0	0	0	0	0	0	0	0	0	0	0

NASAL TURBINATES, Level 1	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Level 1- Hyperplasia, transitional epithelium	0	0	0	0	0	0	0	2	0	4	3	3
Level 1 - Hyperplasia, respiratory epithelium	0	1	0	0	0	1	0	0	0	2	0	1
Level 1- Infiltrate, granulocytic	0	1	0	0	0	0	0	0	0	1	1	1
Level 1- Infiltrate, lymphocytic	0	0	0	0	1	0	0	0	0	0	0	0
Level 1- Nasal turbinate, mucosa, degeneration	0	0	0	0	0	0	0	0	0	0	0	0
Level 1-Nasal turbinate, bone loss -level of resp epith in dorsal meatus	•	0	•	•	•	•	•	•	•	•	•	
Level 1 - Goblet cell hyperplasia, nasal septum	0	2	2	0	1	2	3	3	2	2	2	2
NASAL TURBINATE, Level 2	Р	Р	Р	Р	Р	Р	NP	Р	Р	Р	Р	Р
Level 2 - Goblet cell hyperplasia, nasal septum	0	0	0	0	0	2		0	3	3	2	2
Level 2-Hyperplasia, respiratory epithelium	0	1	1	0	1	1		0	1	0	0	1
Level 2- Infiltrate, granulocytic	0	0	0	0	0	0		0	0	0	0	0
Level 2- Nasal turbinate, mucosa, degeneration	0	0	0	0	0	0		0	0	0	0	1
Level 2 - Infiltrate, lymphocytic	0	0	0	1	1	0		0	0	0	0	0
NASAL TURBINATE, Level 3	NP	Р	NP	Р	Р	NP	Р	Р	Р	Р	Р	Р
Level 3-Hyperplasia, respiratory epithelium		0		0	0		1	0	0	0	1	1
T3 non-NALT Infiltrate, lymphocytic, subepithelial		0		0	0		1	0	0	0	0	1

Animal ID numbers all are prefixed with '15-	550	552	553	560	566	579	551	557	571	572	573	582
MALES Dosage (mg/kg)>	CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	0.1	0.1	0.1	0.1	0.1	0.1
LIVER	Р	Р	Р	Р	Р	Р	Р				Р	
Hepatocellular loss, multifocal, w/hemorrhage and leukocytes	0	0	0	0	0	0	0					
Angiectasis, cavernous	0	0	0	0	0	0	0					
Congestion	0	0	0	0	0	0	0					
Infiltrate, histiocytic, focal	0	0	0	1	0	0	0					
Infiltrate, granulocytic, focal	0	0	0	1	0	0	0					
Infiltrate, lymphocytic, portal	0	0	0	0	1	0	0				1	
Fibrosis, portal, focal	0	0	0	0	0	0	0				4	
NASAL TURBINATES, Level 1	Р	Р	Р	Р	Р	Р	NP	NP	NP	NP	Р	NP
Level 1- Hyperplasia, transitional epithelium	0	0	0	0	0	0					1	
Level 1 - Hyperplasia, respiratory epithelium	0	1	0	0	0	1					1	
Level 1- Infiltrate, granulocytic	0	1	0	0	0	0					1	
Level 1- Infiltrate, lymphocytic	0	0	0	0	1	0					1	
Level 1- Nasal turbinate, mucosa, degeneration	0	0	0	0	0	0					1	
Level 1-Nasal turbinate, bone loss -level of resp epith in dorsal meatus	•	0							•		0	
Level 1 - Goblet cell hyperplasia, nasal septum	0	2	2	0	1	2					1	
NASAL TURBINATE, Level 2	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Level 2 - Goblet cell hyperplasia, nasal septum	0	0	0	0	0	2	2	0	2	0	2	0
Level 2-Hyperplasia, respiratory epithelium	0	1	1	0	1	1	1	1	2	0	0	0
Level 2- Infiltrate, granulocytic	0	0	0	0	0	0	0	1	1	0	1	0
Level 2- Nasal turbinate, mucosa, degeneration	0	0	0	0	0	0	0	0	0	0	0	0
Level 2 - Infiltrate, lymphocytic	0	0	0	1	1	0	0	0	0	0	1	0

NASAL TURBINATE, Level 3	NP	Р	NP	Р	Р	NP	Р	NP	Р	Р	Р	NP
Level 3-Hyperplasia, respiratory epithelium		0		0	0		1		1	1	1	
T3 non-NALT Infiltrate, lymphocytic, subepithelial		0		0	0		0		0	0	0	
Animal ID numbers all are prefixed with '15-	548	558	559	562	568	570	549	563	576	578	581	583
MALES Dosage (mg/kg)>	R- Ctrl	R- Ctrl	R- Ctrl	R- Ctrl	R- Ctrl	R- Ctrl	1.5 Rcv	1.5 Rcv	1.5 Rcv	1.5 Rcv	1.5 Rcv	1.5 Rcv
Brain, olfactory lobe	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Brain, level 2	Р	Р	Р	Р	Р	NP	Р	Р	Р	Р	Р	Р
Brain, levels 3, 4 or 5	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Brain, level 6 or 7	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
PITUITARY	Р	Р	Р	Р	Р	NP	Р	Р	Р	Р	Р	Р
STOMACH, SQUAMOUS	Р	Р	Р	Р	NP	Р	Р	Р	Р	Р	Р	Р
STOMACH, GLANDULAR	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Dilation, gastric pits	0	1	0	0	1	1	1	0	1	0	1	0
SALIVARY GLANDS (submandibular, sublingual, parotid)	Р	Р	Р	Р	Р	Р	Р	NP	Р	Р	Р	Р
Infiltrate, lymphoplasmacytic, submnd saliv gl	0	0	0	0	0	0	0	•	0	0	0	0
LARGE INTESTINE						Р	Р	Р		Р		
EYE W/HARDERIAN GLAND	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Infiltrate, lymphocytic, subepithelial, palpebra	0	1	0	0	0	0	0	0	0	0	0	0
Secretion, pigmented, inspissated	1	1	1	1	0	0	0	0	0	0	0	0
Palpebral abscess (Sty or Hordeolum)	0	0	0	0	0	0	0	0	0	0	3	0
THYMUS	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Hemorrhage	1	0	2	1	0	0	0	0	0	0	0	0
LUNG	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Congestion, alveolar septal	2	2	3	1	2	2	0	1	2	2	2	2
Congestion, venous	2	0	3	1	2	0	0	3	2	1	2	3
Erythrocyte extravasation, alveolar	0	1	0	1	3	0	1	1	0	0	1	2
Erythrophagocytosis	0	0	0	0	0	0	0	0	0	0	0	0
Hemorrhage, perivascular or peribronchiolar	0	1	1	1	1	0	0	0	0	0	0	0
Edema, perivascular	0	0	0	0	0	0	0	0	0	0	1	0
Ateletasis, alveolar α	0	4	0	0	0	1	1	0	2	0	2	1
Histiocytosis, alveolar	0	0	0	0	0	0	0	0	1	0	0	0
Infiltrate, granulocytic	0	0	0	0	0	0	0	0	0	0	0	0
Edema, subpleural	0	0	0	0	0	0	0	0	0	0	0	0
Fibrosis, alveolar, focal	0	0	0	0	0	0	0	0	0	0	0	0
Hypertrophy, smooth muscle, vascular	0	0	0	0	0	0	0	0	0	0	0	0
Crystals, eosinophilic, alveolar	0	0	0	0	0	0	0	0	0	0	0	0

TRACHEA	NP	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Increased mucosal eosinophilic droplets:Y/N		0	0	0	0	0	1	1	0	1	1	0
THYROID GLAND	Р	Р	Р	Р	Р	NP	Р	Р	Р	Р	Р	NP
Ectopic thymus	0	0	0	1	0		0	0	0	0	0	
Ultimobranchial cysts	0	0	0	0	1		0	0	0	0	0	
ESOPHAGUS	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
SKELETAL MUSCLE	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
LYMPH NODE, Tracheal	Р	NP	Р	NP	Р	Р	NP	Р	Р	NP	Р	Р
Draining hemorrhage	0		0	0	0	0		0	1		0	2
HEART with great vessels	NP	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
ADRENAL GLAND	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Vacuoles, cortical	1	1	0	0	0	0	0	0	1	0	1	1
KIDNEY	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Basophilic tubules	0	1	0	1	0	0	0	0	0	0	0	0
infiltrate, lymphoplasmacytic	0	0	0	1	1	0	1	0	0	0	1	0
Cystic tubules, focal	0	0	0	1	0	0	0	1	0	0	0	0
Congestion	0	0	0	1	0	0	0	0	0	0	0	0
Infarct	0	0	0	0	0	0	0	0	0	0	0	0
SPLEEN	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
LIVER	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Hepatocellular loss, multifocal, w/hemorrhage and	1	0	0	0	0	0	0	0	0	0	0	3
leukocytes	1	U	0	U	U	U	U	U	U	U	0	3
Angiectasis, cavernous	0	0	0	0	0	0	0	0	0	0	2	0
Congestion	0	0	0	0	1	0	0	0	0	0	0	0
Infiltrate, histiocytic, focal	0	0	0	0	1	0	0	0	1	0	1	1
Infiltrate, granulocytic, focal	0	0	0	0	0	0	0	0	0	0	0	1
Infiltrate, lymphocytic, portal	1	0	0	1	1	0	0	0	0	0	1	1
Fibrosis, portal, focal	0	0	0	0	0	0	0	0	0	0	0	0
TESTIS	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Diameter reduced by > 30%	0	0	0	0	0	0	0	0	0	4	0	0
Seminiferous tubules degenerate (or Atrophic)	0	0	0	0	0	0	0	0	0	4	0	0
SEMINAL VESICLE	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Hyperplasia, epithelial (Unilateral or Bilateral)	0	0	0	0	0	0	0	1	2	0	0	1
COAGULATING GLAND	Р	Р	Р	Р	Р	Р	Р	Р	Р	0	Р	NP
PROSTATE, dorsal lobe	NP	Р	Р	Р	Р	Р	Р	NP	NP	NP	NP	Р
infiltrate, lymphoplasmacytic		0	0	0	0	0	0					0

NASAL TURBINATES, Level 1	Р	Р	Р	Р	NE	Р	Р	Р	Р	Р	Р	NE
Level 1- Hyperplasia, transitional epithelium	0	0	0	0		0	0	0	0	0	0	
Level 1 - Hyperplasia, respiratory epithelium	0	0	1	1		0	0	0	0	0	1	
Level 1- Infiltrate, granulocytic	0	0	0	0		1	0	0	0	0	0	
Level 1- Infiltrate, lymphocytic	0	0	0	0		0	0	0	1	1	0	
Level 1- Nasal turbinate, mucosa, degeneration	0	0	0	0		0	0	0	0	0	0	
Level 1-Nasal turbinate, bone loss -level of resp epith in dorsal meatus	•	•	•			•	·		•	•	•	
Level 1 - Goblet cell hyperplasia, nasal septum	2	2	3	4		2	2	1	2	1	3	
NASAL TURBINATE, Level 2	Р	Р	Р	Р	.NP	Р	Р	Р	Р	Р	Р	Р
Level 2 - Goblet cell hyperplasia, nasal septum	0	0	0	1		1	0	2	0	0	2	2
Level 2-Hyperplasia, respiratory epithelium	0	0	0	0		0	2	0	0	1	2	1
Level 2- Infiltrate, granulocytic	0	0	0	0		0	0	0	0	0	0	0
Level 2- Nasal turbinate, mucosa, degeneration	0	0	0	0		0	0	0	0	0	0	0
Level 2 - Infiltrate, lymphocytic	0	0	0	0		1	0	0	2	1	0	0
NASAL TURBINATE, Level 3	Р	Р	Р	Р	Р	Р	NP	NP	NP	NP	NP	NE
Level 3-Hyperplasia, respiratory epithelium	1	0	0	NE	0	1						
T3 non-NALT Infiltrate, lymphocytic, subepithelial	0	0	0	0	0	0						

35-15-01-01 R	ED SI	МОК	E SUI	BACU	TE ST	TUDY						
Animal ID numbers all are prefixed with '15-	586	591	601	602	605	612	584	597	606	609	614	615
FEMALES Dosage (mg/kg)>	CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	1.5	1.5	1.5	1.5	1.5	1.5
Brain, olfactory lobe	NP	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Brain, level 2	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Brain, levels 3, 4 or 5	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Brain, level 6 or 7	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Pituitary	NP	Р	NP	Р	Р	NP	NP	Р	Р	Р	NP	Р
STOMACH, Squamous	NP	Р	Р	NP	Р	Р	NP	Р	Р	Р	Р	Р
STOMACH, glandular	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Dilation, gastric pits	0	0	0	0	0	0	0	0	0	0	0	0
Infiltrate, lymphoplasmacytic, fat	0	0	0	0	0	0	1	0	0	0	0	0
SALIVARY GLAND, submand, sublingual, parotid	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ	NP	Р	Р
Lymph node, hyperplasia, plasmacytic, with germinal centers.	0	2	1	2	NP	0	0	0	0		0	0
Infiltrate, lymphoplasmacytic, submandibular saliv gl, periductal	0	0	0	0	0	0	0	0	0		0	0
Mammary tissue	NP	Р	NP	Р	NP	NP	NP	Р	NP	NP	NP	Ρ
Mammary epith cell prolif, with atypia	•	1		2		•	-	0			•	1

Large intestine	NP	NP	NP	NP	NP	NP	Р	NP	Р	NP	Р	Р
EYE WITH HARDERIAN GLAND	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Secretion, pigmented, inspissated	0	0	0	0	1	0	0	0	0	0	0	0
Infiltrate, lymphoplasmacytic, focal	0	0	0	1	0	0	0	0	0	1	0	0
Palpebral abscess (sty or Hordeolum)	0	0	0	0	0	0	0	0	0	0	0	0
THYMUS	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Lymph node with draining hemorrhage												
Hemorrhage	0	0	0	0	0	0	0	0	0	0	0	0
Hyperplasia, epithelial, focal	0	0	0	0	0	0	0	0	0	0	0	0
Ectopic parathyroid tissue	0	1	0	0	0	0	0	0	0	0	0	0
LUNG	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Congestion, alveolar septal	0	0	0	0	0	0	0	0	0	0	2	0
Congestion, venous	0	0	0	0	2	0	1	1	0	1	1	0
Erythrocyte extravasation, alveolar	0	0	1	0	0	0	0	0	1	0	1	0
Erythrophagocytosis	0	0	0	0	0	0	0	0	0	0	0	0
Hemorrhage, perivascular or peribronchiolar	0	1	0	0	1	1	0	0	0	0	0	0
Edema, perivascular	0	0	0	0	0	0	0	0	0	0	0	0
Ateletasis, alveolar α	0	0	1	0	1	0	1	1	2	1	0	0
Histiocytosis, alveolar	0	0	0	0	0	0	0	0	0	1	1	0
Infiltrate, granulocytic	0	0	0	0	2	0	0	0	2	0	0	0
Edema, subpleural	0	0	0	0	0	0	0	0	0	0	0	0
Fibrosis, alveolar, focal	0	0	0	0	0	0	0	0	0	0	0	0
Crystals, eosinophilic, alveolar	0	0	0	0	0	0	0	0	0	0	0	0
TRACHEA	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Infiltrate, lymphocytic, subepithelial	0	0	0	0	0	0	0	0	0	0	0	0
Increased mucosal eosinophilic droplets	0	0	0	1	0	0	1	1	1	0	0	1
THYROID GLAND	NP	NP	Р	Р	Р	Р	Р	Р	Р	Р	NP	NP
Hyperplasia, C cell			0	0	0	0	0	0	0	0		
Cyst, thyroid, squamous			1	1	0	0	0	0	0	0		
Ectopic thymus			0	0	1	0	0	1	0	0	0	0
ESOPHAGUS	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
SKELETAL MUSCLE	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Infiltrate, lymphohistiocytic, focal, skeletal muscle	0	0	0	0	0	0	0	0	0	1	0	0
Lymph node, tracheal	NP	Р	Р	Р	Р	Р	Р	NP	Р	Р	Р	Р
Draining hemorrhage		0	0	0	0	1	0		0	0	1	0
Pigment, cytoplasmic, macrophages		0	0	0	0	1	0		0	0	0	0
Infiltrate, eosinophilic		0	0	0	0	1	0		0	0	0	0
HEART WITH GREAT VESSELS	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Lymphatics, ectatic, heart base	0	0	0	0	0	0	0	0	0	0	0	0
Infiltrate, mastocytic and lymphocytic, epicardial fat	0	0	0	0	0	0	0	0	0	0	0	0
ADRENAL GLAND	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Ectopic medullary cells	0	0	0	0	0	0	0	0	0	0	0	0
Vacuoles, cortical	0	0	0	0	0	0	1	0	0	0	0	0

35-15-01-01 R	ED SI	МОК	E SUE	BACU	TE ST	TUDY						
Animal ID numbers all are prefixed with '15-	586	591	601	602	605	612	584	597	606	609	614	615
FEMALES Dosage (mg/kg)>	CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	1.5	1.5	1.5	1.5	1.5	1.5
KIDNEY	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Increased proteinaceous fluid, proximal tubules	0	0	1	0	0	0	0	0	1	0	0	0
Basophilic tubules	0	0	0	0	0	0	0	0	0	1	0	0
Renal tubule-Hyperplasia, oncocytic	0	0	0	0	0	0	0	0	0	0	0	0
infiltrate, lymphoplasmacytic	0	0	0	0	0	0	1	1	1	0	0	0
Cystic tubules, focal	0	0	0	0	0	0	0	1	1	0	0	0
SPLEEN	Р	Р	Р	NP	Р	Р	Р	Р	Р	Р	Р	Ρ
LIVER	Р	Р	Р	NP	Р	Р	Р	Р	Р	Р	Р	Р
Hepatocellular loss, focal, with leukocytes	0	0	0		0	0	0	0	0	0	0	0
Infiltrate, histiocytic, focal	1	1	0		1	0	1	0	0	0	0	0
Infiltrate, lymphocytic, portal	0	1	0		0	0	0	0	0	0	0	0
Fibrosis, portal, focal	0	0	0		0	0	0	0	0	0	0	1
UTERUS	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Hyperplasia, endometrial	0	0	0	2	0	1	0	0	0	0	0	0
OVARY	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Reproductive cycle: Proestrus				Х			Х			Х		
Estrus						Х		Х				
Metestrus	Х	Х	Х		Х				Х			Х
Diestrus								Х			Х	
NASAL TURBINATE, LEVEL 1	NP	Р	Р	Р	Р	NP	NP	Р	Р	Р	Р	Ρ
Level 1- Hyperplasia, transitional epithelium		0	0	0	0			2	2	2	3	2
Level 1 - Hyperplasia, respiratory epithelium		1	1	0	0			0	2	1	0	1
Level 1- Infiltrate, granulocytic		0	0	0	0			0	1	0	0	0
Level 1- Infiltrate, lymphocytic		0	0	0	0			0	0	0	0	0
Level 1 - Nasoturbinate, mucosal degeneration		0	0	0	0			0	2	0	1	1
Level 1 - Nasoturbinate bone loss at lvl of resp epith, dorsal meatus		N	Y									
Level 1 Goblet cell hyperplasia, nasal septum		2	1	2	3			2	2	2	0	1
NASAL TURBINATE, LEVEL 2	NP	Р	Р	Р	Р	NP	Р	Р	Р	Р	Р	Р
Level 2- Goblet cell hyperplasia, nasal septum		0	0	0	1		0	0	0	0	0	0
Level 2 - Hyperplasia, respiratory epithelium		0	0	0	0		0	0	0	0	0	1
Level 2- Infiltrate, granulocytic		0	0	0	0		0	1	1	0	0	0
Level 2-Infiltrate, lymphocytic		0	0	1	0		0	0	0	0	0	0
NASAL TURBINATE, LEVEL 3	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	NP
Level 3 - Hyperplasia, respiratory epithelium	0	0	1	1	0	0	0	1	1	0	0	

	35-15-01-01 R	ED SI	МОК	E SUI	BACU	TE ST	TUDY						
Animal ID numbers	all are prefixed with '15-	586	591	601	602	605	612	588	590	594	600	603	610
FEMALES	Dosage (mg/kg)>	CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	0.5	0.5	0.5	0.5	0.5	0.5
NASAL TURBINATE,	LEVEL 1	NP	Р	Р	Р	Р	NP	Р	NP	Р	NP	Р	NP
Level 1- Hyperplasia	a, transitional epithelium		0	0	0	0		3		1		3	
Level 1 - Hyperplasi	ia, respiratory epithelium		1	1	0	0		0		2		0	
Level 1- Infiltrate, g	granulocytic		0	0	0	0		0		0		1	
Level 1- Infiltrate, l	ymphocytic		0	0	0	0		1		0		0	
Level 1 -Nasoturbin	ate, mucosal degeneration		0	0	0	0		1		0		0	
Level 1 - Nasoturbir dorsal meatus	nate bone loss at lvl of resp epith,	•	N	Y			•			•			
Level 1 Goblet cell l	hyperplasia, nasal septum		2	1	2	3		2		3		2	
NASAL TURBINATE,	LEVEL 2	NP	Р	Р	Р	Р	NP	Р	Р	Р	Р	Р	Р
Level 2- Goblet cell	hyperplasia, nasal septum		0	0	0	1		0	0	0	0	0	0
Level 2 - Hyperplasi	ia, respiratory epithelium		0	0	0	0		0	1	1	0	2	1
Level 2- Infiltrate, g	granulocytic		0	0	0	0		0	0	0	0	0	0
Level 2-Infiltrate, ly	ymphocytic		0	0	1	0		0	0	0	0	0	0
NASAL TURBINATE,	LEVEL 3	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	NP	Р
Level 3 - Hyperplasi	ia, respiratory epithelium	0	0	1	1	0	0	0	0	0	1		0

Animal ID numbers all are prefixed with '15-	586	591	601	602	605	612	595	596	607	616	618	619
FEMALES Dosage (mg/kg)>	CTRL	CTRL	CTRL	CTRL	CTRL	CTRL	0.1	0.1	0.1	0.1	0.1	0.1
NASAL TURBINATE, LEVEL 1	NP	Р	Р	Р	Р	NP	Р	NP	Р	Р	Р	NP
Level 1- Hyperplasia, transitional epithelium		0	0	0	0		2		2	1	3	•
Level 1 - Hyperplasia, respiratory epithelium		1	1	0	0		0	•	3	2	0	•
Level 1- Infiltrate, granulocytic		0	0	0	0		1		1	1	2	•
Level 1- Infiltrate, lymphocytic		0	0	0	0		1		1	1	1	
Level 1-Nasoturbinate, mucosal degeneration		0	0	0	0		0		0	0	3	•
Level 1 - Nasoturbinate bone loss at IvI of resp epith, dorsal meatus		N	Y	•	•		·	·	•	·	Y	·
Level 1 Goblet cell hyperplasia, nasal septum		2	1	2	3		3		3	3	2	•
NASAL TURBINATE, LEVEL 2	NP	Р	Р	Р	Р	NP	Р	Р	NP	Р	Р	Р
Level 2- Goblet cell hyperplasia, nasal septum		0	0	0	1		0	0		0	1	2
Level 2 - Hyperplasia, respiratory epithelium		0	0	0	0		0	0		0	0	2
Level 2- Infiltrate, granulocytic		0	0	0	0		1	1		0	1	1
Level 2-Infiltrate, lymphocytic		0	0	1	0		1	1		0	1	1
NASAL TURBINATE, LEVEL 3	Р	Р	Р	Р	Р	Р	Р	Р	Р	Ρ	Р	Ρ
Level 3 - Hyperplasia, respiratory epithelium	0	0	1	1	0	0	1	0	0	0	1	0

35-15-01-01 R	ED S	МОК	E SUI	BACU	TE S	TUDY	,					
Animal ID numbers all are prefixed with '15-	585	589/ 592	592	599	604	611	587	593	598	608	613	617
FEMALES Dosage (mg/kg)>	R- Ctrl	R- Ctrl	R- Ctrl	R- Ctrl	R- Ctrl	R- Ctrl	1.5 Rcv	1.5 Rcv	1.5 Rcv	1.5 Rcv	1.5 Rcv	1.5 Rcv
		P			Р	Р	Р	1	Р	P	P	
Brain, olfactory lobe Brain, level 2	P P	P		P P	P	P	P P	P P	P	P	P NP	P P
Brain, levels 3, 4 or 5	P	P	•	P	P	P	P P	P	P	P	P	P
Brain, level 6 or 7	P	P	•	P	P	г Р	P	P	P	P	P	Р
Pituitary	P	г NP	P	P	г Р	г Р	P	P	г Р	г Р	P	P
STOMACH, Squamous	P	Р	P	NP	P	P	P	NP	P	P	P	P
STOMACH, Squamous STOMACH, glandular	P	P	г Р	P	P	P	P	NP	P	P	P	P
Dilation, gastric pits	P 1	Р 0	Р 0	Р 0	Р 1	P 1	Р 0		Р 0	P 1	P 1	Р 0
Infiltrate, lymphoplasmacytic, fat	0	0	0	0	0	0	0	•	0	0	0	0
inititate, lymphopiasinacytic, lat	U	0	U	0	0	0	0	•	0	0	0	0
SALIVARY GLAND, submand, sublingual, parotid	Р	Ρ	•	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
Lymph node, hyperplasia, plasmacytic, with germinal centers.	NP	0		1	0	2	0	0	3	NP	0	0
Infiltrate, lymphoplasmacytic, submandibular saliv gl, periductal	0	0	•	0	0	0	0	0	0	0	0	0
Mammary tissue	Р	NP	•	Р	NP	Р	NP	Р	NP	Р	Р	NP
Mammary epith cell prolif, with atypia	0	•	•	0		0	•	0		1	0	
Large intestine	Р	Р	•	NP	NP	NP	•	•	Р	NP	•	NP
EYE WITH HARDERIAN GLAND	Р	Р		Р	Р	Р	Р	Р	Р	Р	Р	NP
Secretion, pigmented, inspissated	0	0	•	0	1	0	0	0	0	0	1	
Infiltrate, lymphoplasmacytic, focal	0	0		0	2	0	1	0	0	0	0	
Palpebral abscess (sty or Hordeolum)	0	0		0	0	0	0	0	0	0	0	
THYMUS	Р	Р		Р	Р	Р	Р	Р	Р	Р	Р	Р
Lymph node with draining hemorrhage				1								
Hemorrhage	0	1		0	1	0	0	1	1	0	1	0
Hyperplasia, epithelial, focal	1	0		0	0	0	0	0	0	0	0	0
Ectopic parathyroid tissue	0	0		0	0	0	0	0	0	0	0	0
LUNG	Р	Р		Р	Р	Р	Р	Р	Р	Р	Р	Р
Congestion, alveolar septal	0	0		2	1	1	2	1	0	0	0	0
Congestion, venous	1	0		0	0	0	2	0	1	0	0	0
Erythrocyte extravasation, alveolar	1	0		0	0	1	0	1	0	1	2	1
Erythrophagocytosis	0	0		0	0	0	1	0	0	0	0	0
Hemorrhage, perivascular or peribronchiolar	0	0		1	0	0	1	0	0	1	0	0
Edema, perivascular	0	0		0	0	0	0	0	0	0	0	0
Ateletasis, alveolar α	1	0		0	1	1	1	0	0	4	2	1
		-		-				-				
Histiocytosis, alveolar	0	0	•	0	0	0	1	0	0	0	0	0
Infiltrate, granulocytic	0	0	•	0	0	0	1	1	0	0	0	0
Edema, subpleural	0	0		0	0	0	0	0	0	0	0	0

Animal ID numbers all are prefixed with '15-	585	589/ 592	592	599	604	611	587	593	598	608	613	617
	R-	R-	R-	R-	R-	R-	1.5	1.5	1.5	1.5	1.5	1.5
FEMALES Dosage (mg/kg)>	Ctrl	Ctrl	Ctrl	Ctrl	Ctrl	Ctrl	Rcv	Rcv	Rcv	Rcv	Rcv	Rcv
Fibrosis, alveolar, focal	0	0		0	0	0	0	0	0	0	0	0
Crystals, eosinophilic, alveolar	0	0		0	0	0	0	0	0	0	0	0
TRACHEA	Р	Р		Р	Р	Р	Р	Р	Р	Р	Р	Р
Infiltrate, lymphocytic, subepithelial	0	1		0	0	0	0	0	0	0	0	0
Increased mucosal eosinophilic droplets	1	0		1	1	0	0	1	0	0	0	1
THYROID GLAND	Р	Р		Р	Р	Р	Р	Р	Р	NP	NP	Р
Hyperplasia, C cell	0	0		1	1	0	0	0	0			0
Cyst, thyroid, squamous	0	0		0	0	0	0	0	0			0
Ectopic thymus	0	0		0	0	0	0	0	0			0
ESOPHAGUS	Р	Р		Р	Р	Р	Р	Р	Р	Р	Р	Р
SKELETAL MUSCLE	Р	Р		Р	Р	Р	Р	Р	Р	Р	Р	Р
Infiltrate, lymphohistiocytic, focal, skeletal muscle	0	0		0	0	0	0	0	0	0	0	0
Lymph node, tracheal	NP	Р		Р	Р	Р	Р	Р	Р	NP	NP	Р
Draining hemorrhage		0		0	1	0	0	0	0			1
Pigment, cytoplasmic, macrophages		0		1	1	0	1	0	0			1
Infiltrate, eosinophilic		0		0	0	0	0	0	0			0
HEART WITH GREAT VESSELS	Р	Р		Р	Р	Р	Р	Р	Р	Р	Р	Р
Lymphatics, ectatic, heart base	0	0		2	0	0	0	0	0	0	0	0
Infiltrate, mastocytic and lymphocytic, epicardial fat	0	0		0	0	0	0	1	0	0	0	0
ADRENAL GLAND	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Ectopic medullary cells	0	0	0	0	0	0	1	0	0	0	0	0
Vacuoles, cortical	0	1	0	0	0	0	0	0	1	0	0	0
KIDNEY	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Increased proteinaceous fluid, proximal tubules	1	1	1	1	2	0	0	1	1	2	1	2
Basophilic tubules	0	0	0	0	0	0	1	0	0	0	0	0
Renal tubule-Hyperplasia, oncocytic	0	0	0	0	0	0	1	0	0	0	0	0
infiltrate, lymphoplasmacytic	0	0	0	0	0	0	0	0	0	0	0	0
Cystic tubules, focal	0	0	0	0	0	0	0	0	0	0	0	0
SPLEEN	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
LIVER	Р	Р	Р	р	Р	Р	Р	Р	Р	Р	Р	Р
Hepatocellular loss, focal, with leukocytes	0	0	1	0	0	0	0	0	0	0	0	0
Infiltrate, histiocytic, focal	0	1	0	1	1	0	1	1	1	0	1	0
Infiltrate, lymphocytic, portal	0	1	0	0	0	0	0	0	0	0	0	0
Fibrosis, portal, focal	0	0	0	0	0	0	0	0	0	0	0	0
UTERUS	Р	Р	Р	р	Р	Р	Р	Р	Р	Р	Р	Р
Hyperplasia, endometrial	0	0	0	0	0	0	0	0	0	0	0	0
OVARY	P	P	P	P	P	P	P	P	P	P	P	P
Reproductive cycle: Proestrus					X			X		X	X	
Estrus						х						Х
Metestrus		Х		х								
Diestrus	Х		Х				х		х			

Animal ID numbers all are prefixed w	vith '15-	585	589/ 592	592	599	604	611	587	593	598	608	613	617
		R-	R-	R-	R-	R-	R-	1.5	1.5	1.5	1.5	1.5	1.5
FEMALES Dosage	(mg/kg)>	Ctrl	Ctrl	Ctrl	Ctrl	Ctrl	Ctrl	Rcv	Rcv	Rcv	Rcv	Rcv	Rcv
NASAL TURBINATE, LEVEL 1		Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	NP
Level 1- Hyperplasia, transitional epi	thelium	3	0	0	0	0	0	0	1	0	0	0	
Level 1 - Hyperplasia, respiratory epi	thelium	1	1	0	0	0	0	1	0	2	1	0	
Level 1- Infiltrate, granulocytic		1	1	1	0	0	0	1	1	0	1	0	
Level 1- Infiltrate, lymphocytic		0	0	0	0	0	0	0	0	0	1	0	
Level 1-Nasoturbinate, mucosal deg	eneration	1	0	0	0	0	0	0	0	0	0	0	
Level 1 - Nasoturbinate bone loss at dorsal meatus	vl of resp epith,							Y	Y				
Level 1 Goblet cell hyperplasia, nasa	septum	3	2	2	0	1	2	1	1	2	2	0	
NASAL TURBINATE, LEVEL 2		Ρ	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	
Level 2- Goblet cell hyperplasia, nasa	al septum	0	0	2	0	0	0	1	2	0	0	0	
Level 2 - Hyperplasia, respiratory epi	thelium	0	1	1	0	1	0	1	0	0	0	0	
Level 2- Infiltrate, granulocytic		1	0	0	0	0	0	0	1	0	0	0	
Level 2-Infiltrate, lymphocytic		1	1	0	0	0	0	1	0	0	1	0	
NASAL TURBINATE, LEVEL 3		NP	Р	Р	Р	Р	Р	NP	NP	Р	Р	Р	NP
Level 3 - Hyperplasia, respiratory epi	thelium		0	0	0	0	1			1	1	0	

All main study animals are 10 wks old. * R-ctrl are recovery control animals, 14 wks old. NE = Not evaluable. Y = Yes, there is loss of bone in a section that sometimes contains bone. N= NO, the section is present without loss of bone.

APPENDIX F STORAGE OF STUDY MATERIALS AND RECORDS RETENTION

The study records and pathology final report will be archived and maintained at or under the direction of U.S. Army Public Health Center's (APHC) Toxicology Portfolio (TOX), according to TOX SOPs and EPA requirements. The Pathology specimens will also be archived and maintained at or under the direction of APHC Toxicology Portfolio, according to TOX SOP and EPA requirements.

ADDENDUM TO

PATHOLOGY REPORT

For

Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

Protocol No.: 35-15-01-01

Study Director: Lee Crouse

Prepared by:

MAJ Keith Koistinen, DVM, Diplomate, ACVP

KOISTINEN.KEITH.A Digitally signed by KOISTINEN.KEITH.AARON.1246838085 ARON.1246838085 ou=USA, cn=KOISTINEN.KEITH.AARON.1246838085 Date: 2017.04.12.09:23:17 -04'00'

Keith Koistinen, DVM, Diplomate ACVP Major, Veterinary Corps Toxicology Directorate U.S. Army Public Health Center

DN: c=US, o=U.S. Government, ou=DoD, ou=PKI, Date: 2017.04.12 09:23:17 -04'00'

Date

.

GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

This pathology investigation was conducted in a manner consistent with the principles of the United States Environmental Protection Agency (USEPA) Good Laboratory Practice regulations of the Toxic Substances Control Act (TSCA), as detailed in 40 CFR Part 792, plus amendments.

Keith Koistinen, DVM, Diplomate ACVP Major, Veterinary Corps Toxicology Directorate U.S. Army Public Health Center

Date

QUALITY ASSURANCE STATEMENT

For The Addendum to the Pathology Report for Protocol No. 35-15-01-01 entitled "Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke", the following critical phases were audited by the APHC Quality Systems and Regulatory Compliance Office (QSARC), Laboratory and Toxicology Accreditation and Compliance Office (LTACO):

Critical Phase Inspected / Audited	Date Inspected /Audited	Date Reported to Management/SD
Pathology Contributing Scientist Inspection - Summary Data and Summary Table Review	01/13/2017	04/11/2017
Pathology Contributing Scientist Inspection- Final Pathology Report GLP Standard Regulation Review	01/13/2017	04/11/2017

Note 1 Alifindings were made known to the Study Director and the Program Manager at the time of the audit/inspection. If there were nofindings during the inspection, the inspection was reported to Management and the Study Director on the date shown in the table.

Note 2 in addition to the study specific critical phase inspections listed here, general facility and process based inspections not specifically related to this study are done monthly or annually in accordance with QSARC, LTACO Standing Operating Procedures.

Note 3 This report has been audited by the Quality Assurance Unit (QSARC, LTACO) and is considered to be an accurate account of the data generated and of the procedures followed

Michael P. Kefauver

04/11/2017

Michael P. Kefauver Quality Assurance Specialist, QSARC Date

BACKGROUND:

In the original pathology report, sections of Level 1 nasal turbinate from 13 animals were reported to be "NP (not-present)" on microscopic examination. Among the 13 rats reported as NP, several (5 of 6) animals were assigned to the low-dose group, 0.1 mg/L. Therefore, the study director, requested reevaluation of the Level 1 section of nasal turbinates from the subacute rats. Only the main study subacute animals were evaluated and the "recovery" animals were not evaluated.

METHODS

The slides that were reported to be NP were screened for adequacy of the section present. Duplicate microscope slides were prepared for slides that were determined to be poor quality due to the presence of non-intact turbinates or inadequate tissue sections present.

In a similar method as the original pathology report, statistical analysis was performed on the histologic scores of the sections examined using a Fisher's Exact Test, comparing the number of animals of a given exposure group with a non-zero score for a given lesion to the number of control animals with a non-zero score. Given the small sample size, the initial statistical question asked was simply 'is the lesion present?' with a comparison of exposed versus control groups.

RESULTS

In the original pathology report, Level 1 nasal turbinates in 13 rats were reported to be not present (NP). The author of this addendum report interpreted level 1 tissue sections to be adequate quality from 45 of 48 rats after processing additional tissue section. Inadequate sample quality from a limited number (three) of rats was due to either loss of tissue during processing or inappropriate level sectioned.

The distribution of observed lesions within nasal cavity at level 1 included the ventral and lateral surfaces of the nasoturbinates, dorsolateral surfaces of the maxilloturbinates and the adjacent lateral wall of the lateral meatus, as depicted in the Figure 9 diagram in the original pathology report.

Incidences of histologic lesions observed in each individual group are available as Table 1 and 2 below. Individual rat scores are in Appendix B. Within the high dose group, six of six high-exposure male rats exhibited epithelial hyperplasia in level 1 with varying amounts of neutrophilic infiltrates and mucosal degeneration in four of six male rats. Lesions were also present in the 0.1 and 0.5 mg/L exposure males but were at decreased frequencies and did not reach statistical significance. Five of six 1.5 mg/Lexposed females had minimal to mild transitional epithelial hyperplasia at level 1 (p=0.0152), which was consistently associated with mucosal degeneration (p=0.0152). Transitional epithelial hyperplasia was also observed in 0.1 mg/L-exposure female rats (p=0.0152). Squamous epithelial metaplasia and goblet cell hyperplasia was observed in a few animals in this report, but was inconsistently observed and was not statistically significant when compared to the incidence in the controls.

Sex		F			м							
mg/L Red Smoke	Control	0.1	0.5	1.5	Control	0.1	0.5	1.5				
NASAL TURBINATES, Level 1 (Present)	5/6	6/6	6/6	6/6	6/6	4/6	6/6	6/6				
Tissue Absent or not adequate for evaluation	1/6					2/6						
Essentially normal tissue	4/5	1/6	4/6	1/6	3/6	2/4	2/6	0/6				
Hyperplasia, epithelium, respiratory or transitional		5/6*	2/6	5/6*	1/6	1/4	4/6	6/6*				
Infiltrate, granulocytic		2/6	1/6	2/6	3/6	1/4	4/6	6/6				
Infiltrate, lymphocytic												
Nasal turbinate, mucosa, degeneration		1/6	2/6	5/6*				4/6				
Nasal turbinate, mucosa, metaplasia, squamous				1/6			1/6	1/6				
Nasal turbinate, bone loss												
Goblet cell hyperplasia, nasal septum	1/5	4/6	1/6	3/6	2/6		3/6	5/6				

Table 1 Incidence of Level 1 nasal turbinate lesions by group and sex

* Statistically significant (p<0.05) compared to the control group.

Blank cell indicates that the lesion/finding was absent from all animals that were examined.

and females				
	Male	s and Fer	males Co	mbined
mg/L Red Smoke	Control	0.1	0.5	1.5
NASAL TURBINATES, Level 1 (Present)	11/12	10/12	12/12	12/12
Tissue Absent or not adequate for evaluation	1/12	2/12		
Essentially normal tissue	7/11	3/10	6/12	1/12*
Hyperplasia, epithelium, respiratory or transitional	1/11	6/10*	6/12	11/12*
Infiltrate, granulocytic	3/11	3/10	5/12	8/12
Infiltrate, lymphocytic				
Nasal turbinate, mucosa, degeneration		1/10	2/12	9/12*
Nasal turbinate, mucosa, metaplasia, squamous			1/12	2/12
Nasal turbinate, bone loss				
Goblet cell hyperplasia, nasal septum	3/11	4/10	4/12	8/12

Table 2. Incidence of Level 1 nasal turbinate lesions by group, with combined males and females

Bold and asterisk indicates lesion incidence that is statistically significant when compared to the control group. Blank cell indicates that the lesion/finding was absent from all animals that were examined.

DISCUSSION

As similarly concluded in the original pathology report, nasal turbinate injury in the anterior aspects of the rat nasal passages is attributed to pyrotechnically disseminated M18 red smoke exposure.

Transitional epithelium covers the ventral tip of nasoturbinates and the dorsal tip of the maxilloturbinates at Level 1 and 2, and is the location where inhaled substances would first make contact with the animal. Transitional epithelial hyperplasia of these areas was present in at least some animals every exposure level of both genders of rats. Concomitant transitional mucosal degeneration

was also observed. Based on the nature and distribution of the nasal turbinate lesions pyrotechnically disseminated M18 red smoke most likely represents a physical irritant, but the possibility that it represents a primary toxicant, or one that is metabolized to an active form by enzymes cannot be ruled out.

Lymphocytes within nasal turbinate lesion that were occasionally noted in high-exposure males in the original report were not observed in the histopathologic analysis performed for this addendum report, and the lymphocytes observed were interpreted to be normal resident lymphocytes, which may explain the lymphocytic infiltrates observed in the original report.

The distribution of the lesions as illustrated in Figure 9 of the original report was on the ventral and lateral surfaces of the nasoturbinates, dorsolateral surfaces of the maxilloturbinates and the adjacent lateral wall of the lateral meatus. These locations are where inhaled substances would first make contact with the animal. Injury to these initial tissues with which it came into contact, supports the irritant nature of pyrotechnically disseminated M18 red smoke. Epithelial hyperplasia of these areas was present in every exposure level of both genders of rats.

As the original pathology report also commented, the observed lesions are likely reversible as the lesions are primarily at the superficial aspects of the epithelium; superficial injury to respiratory epithelium is reported to be frequently reversible (Harkema et al 2006). The reversible nature of the lesions is supported by the presence of only infrequent respiratory epithelial hyperplasia without other nasal turbinate lesions in the high-dose recovery animals.

In this study inhalational exposure to pyrotechnically disseminated M18 red smoke was associated only with injury to those initial tissues (nasal turbinates and epithelia) with which it came into contact, which supports the irritant nature of pyrotechnically disseminated M18 red smoke.

DEFINITIONS

Nasal Turbinate, Level 1: As defined by OECD TG #125, the most rostral section of the nasal turbinates sampled, this is a section through the nasal turbinates that is at the level of the posterior part of the upper incisors.

REFERENCE

Harkema, J.R., S.A. Carey, and J.G. Wagner, *The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium*. Toxicol Pathol, 2006. 34(3): p. 252-69.

Renne, R., et al., Guidance Document on Histopathology for Inhalation Toxicity Studies, Supporting TG 412 (Subacute Inhalation Toxicity: 28-Day Study) and TG 413 (Subchronic inhalation Toxicity: 90-Day Study), in Series on Testing and Assessment, Secretariat, Editor. 2010, Organisation for Economic Co-operation and Development: Paris, France

APPENDIX A - PHOTOMICROGRAPHS

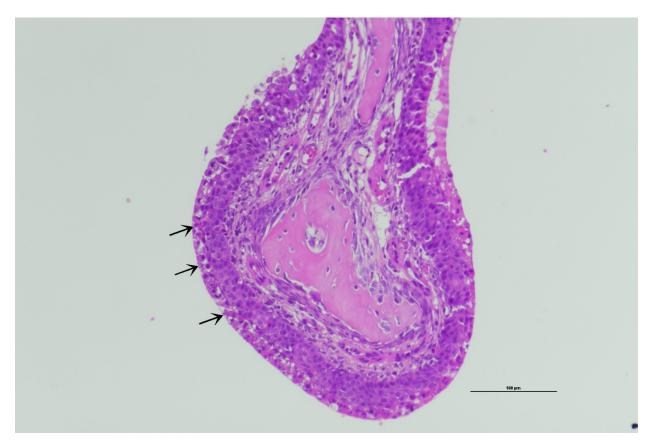


Figure 1. Rat 15-556 Male 1.5 mg/L, portion of nasal turbinate at level 1. There is degeneration of the mucosal epithelium with separation of the epithelial cells with occasional sloughing of epithelial cells. 20X H&E

APPENDIX B HISTOPATHOLOGY FINDINGS, by ANIMAL

Animal ID numbers all are prefixed with '15-	550	552	553	560	566	579	551	557	571	572	573	582	554	555	561	569	575	580	556	564	565	567	574	577
Dosage (mg/L)>	control	control	control	control	control	control	0.1 mg/L	0.5 mg/L	0.5 mg/L	0.5 mg/L	0.5 mg/L		0.5 mg/L	1.5 mg/L										
Sex	М	М	М	Μ	М	М	М	М	М	М	М	Μ	М	Μ	М	Μ	М	М	М	М	М	Μ	М	М
NASAL TURBINATES, Level 1 (Present)	1	1	1	1	1	1	1		1		1	1	1	1	1	1	1	1	1	1	1	1	1	1
Tissue Absent or not adequate for evaluation								1*		1*														
Essentially normal tissue	1		1	1			1					1	1					1						
Level 1- Hyperplasia, epithelium, respiratory or transitional						1					1			1	1	1	1		3	1	1	1	1	1
Level 1- Infiltrate, granulocytic		1			1	1			1					1	1	1	1		1	1	1	1	1	1
Level 1- Infiltrate, lymphocytic																								
Level 1- Nasal turbinate, mucosa, degeneration																			3	1	2			1
Level 1- Nasal turbinate, mucosa, metaplasia, squamous																1			1					
Level 1 - Nasal turbinate, bone loss -level of resp epith in dorsal meatu	ıs																							
Level 1 - Goblet cell hyperplasia, nasal septum		1				1								1	2	1			3	1	1		1	2

Animal ID numbers all are prefixed with '15-	586	591	601	602	605	612	595	596	607	616	618	619	588	590	594	600	603	610	584	597	606	609	614	615
Dosage (mg/L)>	contr	control			control	CO	0.1	0.1		0.1 mg/L	0.1	0.1	0.5	0.5	0.5	0.5	0.5	0.5 mg/L	1.5 mg/L					
Sex	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
NASAL TURBINATES, Level 1 (Present)	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Tissue Absent or not adequate for evaluation						1^																		
Essentially normal tissue	1	1	1	1				1						1	1	1		1	1					
Level 1- Hyperplasia, epithelium, respiratory or transitional							1		1	1	1	1	1				1			1	1	2	1	1
Level 1- Infiltrate, granulocytic										1	1						1				1	1		
Level 1- Infiltrate, lymphocytic																								
Level 1- Nasal turbinate, mucosa, degeneration										2			2				1			1	1	1	2	1
Level 1- Nasal turbinate, mucosa, metaplasia, squamous																								1
Level 1 - Nasal turbinate, bone loss -level of resp epith in dorsal meatus																								
Level 1 - Goblet cell hyperplasia, nasal septum					1		2		1	1	1		1							1	1	1		

All main study animals 10 wks old

Blank cell indicates absence of finding, '1' = present, or minimal (generally, affecting 1-5% of the tissue) e.g., kidney-basophilic tubules '1' = 3-5 tubules observed. '2' = mild (6-15% of tissue affected), '3' = moderate (16-30% of the tissue affected. '4' = marked (affects > 30% of the sampled tissue). * Inappropriate location and not able to be evaluated, section taken more caudal than location specified for Level 1.

^ - Tissue absent, tissue degraded beyond usefullness during processing .

APPENDIX B STATISTICAL ANALYSES

NASAL TURBINATES, Level 1, Lesion Statistical Results, Treatment groups compared to Controls Females

		a.a. //				
Dosage (mg/L)>		0.1 mg/L	P-Value	Conclusion		
Essentially normal tissue	4/5	1/6	0.0801	No significant difference		
Hyperplasia, epithelium, respiratory or transitional	0/5	5/6	0.0152	0.1 > Control		
Infiltrate, granulocytic	0/5	2/6	0.454	No significant difference		
Infiltrate, lymphocytic	0/5	0/6	All showed n	o damage		
Nasal turbinate, mucosa, degeneration	0/5	1/6	1	No significant difference		
Nasal turbinate, mucosa, metaplasia, squamous	0/5	0/6	All showed n	o damage		
Nasal turbinate, bone loss	0/5	0/6	All showed n	o damage		
Goblet cell hyperplasia, nasal septum	1/5	4/6	0.2424	No significant difference		
Dosage (mg/L)>	control	0.5 mg/L	P-Value	Conclusion		
Essentially normal tissue	4/5	4/6	1	No significant difference		
Hyperplasia, epithelium, respiratory or transitional	0/5	2/6	0.4545	No significant difference		
Infiltrate, granulocytic	0/5	1/6	1	No significant difference		
Infiltrate, lymphocytic	0/5	0/6	All showed n	o damage		
Nasal turbinate, mucosa, degeneration	0/5	2/6	0.4545	No significant difference		
Nasal turbinate, mucosa, metaplasia, squamous	0/5	0/6	All showed n	o damage		
Nasal turbinate, bone loss	0/5	0/6	All showed n	o damage		
Goblet cell hyperplasia, nasal septum	1/5	1/6	1	No significant difference		
Dosage (mg/L)>	control	1.5 mg/L	P-Value	Conclusion		
Essentially normal tissue	4/5	1/6	0.0801	No significant difference		
Hyperplasia, epithelium, respiratory or transitional	0/5	5/6	0.0152	1.5 > Control		
Infiltrate, granulocytic	0/5	2/6	0.4545	No significant difference		
Infiltrate, lymphocytic	0/5	0/6	All showed n	-		
Nasal turbinate, mucosa, degeneration	0/5	5/6	0.0152	1.5 > Control		
Nasal turbinate, mucosa, metaplasia, squamous	0/5	1/6	1	No significant difference		
Nasal turbinate, bone loss	0/5	0/6	All showed no damage			
Goblet cell hyperplasia, nasal septum	1/5	3/6	0.5454	No significant difference		

NASAL TURBINATES, Level 1, Lesion Statistical Results, Treatment groups compared to Controls

Males

Dosage (mg/L)>	control	0.1 mg/L	P-Value	Conclusion
Essentially normal tissue	3/6	2/4	1	No significant difference
Hyperplasia, epithelium, respiratory or transitional	1/6	1/4	1	No significant difference
Infiltrate, granulocytic	3/6	1/4	0.5714	No significant difference
Infiltrate, lymphocytic	0/6	0/4	All showed n	o damage
Nasal turbinate, mucosa, degeneration	0/6	0/4	All showed n	o damage
Nasal turbinate, mucosa, metaplasia, squamous	0/6	0/4	All showed n	o damage
Nasal turbinate, bone loss	0/6	0/4	All showed n	o damage
Goblet cell hyperplasia, nasal septum	2/6	0/4	0.4667	No significant difference
Dosage (mg/L)>	control	0.5 mg/L	P-Value	Conclusion
Essentially normal tissue	3/6	2/6	1	No significant difference
Hyperplasia, epithelium, respiratory or transitional	1/6	4/6	0.2424	No significant difference
Infiltrate, granulocytic	3/6	4/6	0	No significant difference
Infiltrate, lymphocytic	0/6	0/6	All showed n	o damage
Nasal turbinate, mucosa, degeneration	0/6	0/6	All showed n	o damage
Nasal turbinate, mucosa, metaplasia, squamous	0/6	1/6	1	No significant difference
Nasal turbinate, bone loss	0/6	0/6	All showed n	o damage
Goblet cell hyperplasia, nasal septum	2/6	3/6	1	No significant difference
Dosage (mg/L)>	control	1.5 mg/L	P-Value	Conclusion
Essentially normal tissue	3/6	0/6	0.1818	No significant difference
Hyperplasia, epithelium, respiratory or transitional	1/6	6/6	0.0152	1.5 > Control
Infiltrate, granulocytic	3/6	6/6	0.1818	No significant difference
Infiltrate, lymphocytic	0/6	0/6	All showed n	o damage
Nasal turbinate, mucosa, degeneration	0/6	4/6	0.0606	No significant difference
Nasal turbinate, mucosa, metaplasia, squamous	0/6	1/6	1	No significant difference
Nasal turbinate, bone loss	0/6	0/6	All showed n	o damage
Goblet cell hyperplasia, nasal septum	2/6	5/6	0.2424	No significant difference

NASAL TURBINATES, Level 1, Lesion Statistical Results, Treatment groups compared to Controls Males and Females Combined

Dosage (mg/L)>	control	0.1 mg/L	P-Value	Conclusion
Essentially normal tissue	7/11	3/10	0.1984	No significant difference
Hyperplasia, epithelium, respiratory or transitional	1/11	6/10	0.0237	0.1 > Control
Infiltrate, granulocytic	3/11	3/10	1	No significant difference
Infiltrate, lymphocytic	0/11	0/10	All showed no	o damage
Nasal turbinate, mucosa, degeneration	0/11	1/10	0.4762	No significant difference
Nasal turbinate, mucosa, metaplasia, squamous	0/11	0/10	All showed no	o damage
Nasal turbinate, bone loss	0/11	0/10	All showed no	o damage
Goblet cell hyperplasia, nasal septum	3/11	4/10	0.6594	No significant difference

Dosage (mg/L)>	control	0.5 mg/L	P-Value	Conclusion
Essentially normal tissue	7/11	6/12	0.6802	No significant difference
Hyperplasia, epithelium, respiratory or transitional	1/11	6/12	0.0686	No significant difference
Infiltrate, granulocytic	3/11	5/12	0.6668	No significant difference
Infiltrate, lymphocytic	0/11	0/12	All showed no	o damage
Nasal turbinate, mucosa, degeneration	0/11	2/12	0.4783	No significant difference
Nasal turbinate, mucosa, metaplasia, squamous	0/11	1/12	1	No significant difference
Nasal turbinate, bone loss	0/11	0/12	All showed no	o damage
Goblet cell hyperplasia, nasal septum	3/11	4/12	1	No significant difference

Dosage (mg/L)>	control	1.5 mg/L	P-Value	Conclusion
Essentially normal tissue	7/11	1/12	0.0094	Control > 1.5
Hyperplasia, epithelium, respiratory or transitional	1/11	11/12	0.0001	1.5 > Control
Infiltrate, granulocytic	3/11	8/12	0.0995	No significant difference
Infiltrate, lymphocytic	0/11	0/12	All showed no	o damage
Nasal turbinate, mucosa, degeneration	0/11	9/12	0.0003	1.5 > Control
Nasal turbinate, mucosa, metaplasia, squamous	0/11	2/12	0.4783	No significant difference
Nasal turbinate, bone loss	0/11	0/12	All showed no	o damage
Goblet cell hyperplasia, nasal septum	3/11	8/12	0.0995	No significant difference

APPENDIX C

STORAGE OF STUDY MATERIALS AND RECORDS RETENTION

The study records and pathology final report will be archived and maintained at or under the direction of U.S. Army Public Health Center's (APHC) Toxicology Portfolio (TOX), according to TOX SOPs and EPA requirements. The Pathology specimens will also be archived and maintained at or under the direction of APHC Toxicology Portfolio, according to TOX SOP and EPA requirements.

Toxicology Report No. S.0036333-15, April – September 2015

Appendix R

Acute and Subacute Analytical Results

US Army Aberdeen Test Center Warfighter Directorate **Applied Science Test Division** Field Sampling and Analysis Branch

400 Colleran Road, Building 363, Aberdeen Proving Ground, MD 21005-5059

Conducted For:

Mr. Lee Crouse

Toxicity Evaluation Division (TEV) Toxicology Directorate Army Public Health Center (APHC), MCHB-PH-TEV 5158 Blackhawk Road Aberdeen Proving Ground, MD 21010-5403

FSAB Test Report #: 2017-FSAB-001

Report Title : Red Smoke Inhalation Toxicity Study Air Sampling Results

Any reproductions or excerpts from this report must reference the entire report or the report number. The results relate only to the specific samples/test item/test scenario identified within this report.

Report Prepared By:

CHAPMAN.MICHA EL.A.1245175252 DN: c=Us, o=U.S. Government, ou=DoD, on=CHAPMAN.MICHAELA.1245175252 on=CHAPMAN.MICHAELA.1245175252 Date: 2016.11.18 15:53:28 -0500'

MICHAEL A. CHAPMAN 410-278-0538 michael.a.chapman.civ@mail.mil ALLEN.WENDY Digitally signed by ALLEN.WENDYL. 1249706520 DN: c=US, o=US. Government, ou=DoD, ou=PKI, ou=USA, on=ALLEN.WENDYL.1249706520 Date: 2016.11.21 09:17:20 -05'00'

Report Reviewer Wendy Allen 410-278-8749

Approved:

rand G. Myers

23 November 2016 Date:

EDWARD A. MYERS Chief, Field Sampling and Analysis Branch 410-278-2286 edward.a.myers.civ@mail.mil

U.S. ARMY ABERDEEN TEST CENTER ABERDEEN PROVING GROUND, MARYLAND 21005-5059 WARFIGHTER DIRECTORATE APPLIED SCIENCE TEST DIVISION FIELD SAMPLING AND ANALYSIS BRANCH REPORT NUMBER 2017-FSAB-001

TEDT-AT-WFA

Title of Report: <u>Red Smoke Inhalation Toxicity Study Air Sampling Results</u>

Project Number: D0802 (FSAB Customer Test)

Conducted for: <u>Mr. Lee Crouse, Biologist, U.S. Army Public Health Center, Directorate of Toxicology.</u>

1.1 INTRODUCTION

The U.S. Army uses colored smokes in a variety of ways, including identification of potential targets and friendly troops, simulation of battlefield events, and as a means of communication. Previously used smoke formulations were developed strictly based on their ability to produce the desired color for a specified period of time. Recent changes made to the smoke formulations and dissemination systems have focused on soldier and environmental safety.

The U.S. Army Public Health Center Toxicology Directorate performed an acute and a 2-week repeated-dose inhalation toxicity test with a new pyrotechnic red smoke formulation. The U.S. Army Aberdeen Test Center (ATC) Field Sampling and Analysis Branch (FSAB) provided analytical chemistry support for this effort by sampling the atmosphere inside an exposure chamber for selected trials during the study. The scope of the analytical support was to sample the air in order to characterize and quantify the gaseous by-products emitted by the pyrotechnic when it is burned. Multiple methods were used to sample the air inside the exposure chamber. Continuous real-time gas measurements were made by Fourier Transform Infrared (FTIR) spectroscopy. Sorbent tube media were used to collect aldehyde (carbonyl) analytes in the air, these sampled were extracted and analyzed by High Performance Liquid Chromatography (HPLC) following EPA Method TO-11. Finally, whole air (canister) samples were collected and submitted for laboratory analysis for volatile organic compounds (VOCs) by Gas Chromatography / Mass Spectrometry (GC/MS) following EPA Method TO-15.

A total of twenty four (24) compounds were identified as combustion by-products of the new pyrotechnic red smoke formulation. The primary/major constituents emitted by the red smoke grenades included: carbon dioxide (CO2), carbon monoxide (CO), acetaldehyde, acrolein, formaldehyde, and several simple hydrocarbons.

2.1 OBJECTIVE

The purpose of this test was to identify and quantify the gaseous chemical species produced from the combustion of the pyrotechnic mixture in the reformulated red smoke grenade.

2.2 CRITERIA

There is no specific exposure criteria established for this test. The data obtained will be for informational purposes and used by USAPHC Directorate of Toxicology (DTOX) personnel in their toxicological assessment of the red smoke grenades.

2.3 TEST PROCEDURE

a. Testing was conducted in Lab 10, Building 2101, located in the Edgewood Area of Aberdeen Proving Ground. The test fixture used for these exposure experiments consisted of two stainless steel chambers, the exposure chamber and an ignition chamber, connected via a 2" PVC transfer pipe. Elevated air temperatures produced from the burning grenade prevented the inhalation exposures from being performed in a single chamber.

b. A single grenade was used for each day that exposure trials were conducted. In order to facilitate the generation of test atmospheres, the grenade was placed upside down and secured to a ring stand attached to the floor of the ignition chamber. Each grenade was ignited with its own fuse by pulling the fuse pin that was attached to string run through a port in the initiation chamber. The positive pressure created by the burning smoke grenade in the ignition chamber forced the test material through the transfer pipe and into the exposure chamber as illustrated in the schematic in Figure 2.3.1.

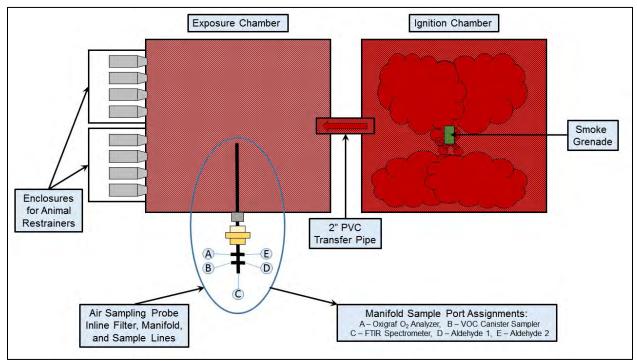


Figure 2.3.1 – Schematic of Test Setup

c. The burn time for each grenade was approximately one minute and was determined by pressure fluctuations in the Magnehelic gauges attached to the chambers. When the grenade completed its burn, preliminary gravimetric samples were taken to determine the particulate concentration in the exposure chamber. Once the particulate concentration in the exposure chamber. Once the particulate concentration in the exposure chamber ange for each animal exposure level, the rats (each contained within an animal restrainer) were placed in the faceplate (within the Plexiglas enclosures) for the 30-minute exposure period. To minimize loss of the test atmosphere from the exposure chamber, the animals were inserted one at a time over the span of approximately 1-2 minutes. Once all of the rats were positioned within the enclosure, a cover was placed over the rear to prevent leakage of the test atmosphere into the laboratory. Immediately thereafter, sampling of the air within the exposure chamber commenced. Detailed photos of the ignition and exposure chambers are provided in Figure 2.3.2.

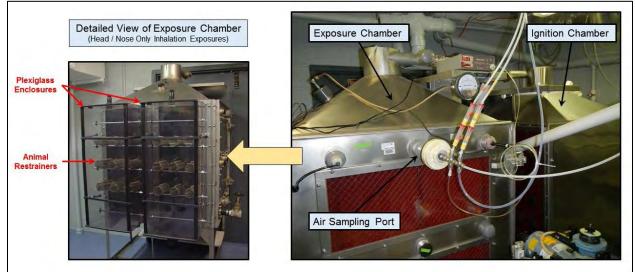


Figure 2.3.2 – Photos of Ignition and Exposure Chambers

d. The air sampling system devised for these experiments is also detailed in Figures 2.3.2 and 2.3.3. It consisted of a single 3/8" O.D. stainless steel sample probe equipped with a 90mm PTFE inline filter (to prevent particulate contamination), followed by a multi-port sample manifold. The probe was inserted through a sample port near the top center of the exposure chamber and extended approximately 18" inside. The sample manifold was constructed of stainless steel Swagelok fittings. The individual sample lines were connected to the manifold so that a common representative air sample was drawn by all of the equipment. A summary detailing the specifics of each of the sampling/analysis methods is provided in Section 2.3.1.

e. At the conclusion of each of the 30-minute exposures, all sampling equipment was stopped and the animals were removed from the enclosures on the exposure chamber. When the area was clear of PHC personnel and test animals, all sample media were recovered by FSAB personnel.

f. At the conclusion of the single acute exposure trial, the chambers were evacuated and testing was completed for the day. The sample probe and 90-mm filter were removed and cleaned before being returned and reinstalled for the subsequent repeated dose exposure trials.

TEDT-AT-WFA	Project Title: Red Smoke Inhalation Toxicology Study
Field Sampling and Analysis Branch	Project Number: D0802 (FSAB Customer Test)
Building 363	Customer: Mr. Lee Crouse
APG, MD 21005-5059	Test Report Number: 2017-FSAB-001

g. For the repeated (sub-acute) dose exposures, a single grenade also produced adequate test atmosphere concentration levels for all 3 test groups each day (design concentration levels of 0.1, 0.5, and 1.5 mg/L). Sampling was conducted for each of the three decreasing concentration levels investigated. At the start of sampling each of these days, background air samples from inside of the exposure chamber were collected to account for any elevated analyte concentrations that may potentially bias the test results. The procedures outlined above in steps b, and c. were followed to initiate the exposure trials each day. Following each trial, all data was saved and samples recovered. Before the next exposure began, data acquisition systems were reset and new media installed. Test atmospheres for the high and intermediate concentration levels were allowed to naturally settle in the exposure chamber until the appropriate concentration was obtained. For the low concentration exposures, an exhaust pump fitted with a HEPA filter was connected to the initiation chamber and the exhaust line valve was opened. The red smoke particulate was drawn out of the exposure chamber into the initiation chamber until the exposure chamber reached the appropriate concentration for the low level exposure.

2.3.1 METHODS OF SAMPLING / ANALYSIS

a. Continuous Real-time Gas Measurements (FTIR and Oxigraf O₂ analyzer)

(1) Continuous real-time gas/vapor concentration measurements were made using a Midac Model I4001 Fourier Transform Infrared (FTIR) spectrometer equipped with a gas sampling cell. The FTIR multi-component gas analyzer is an instrument capable of measuring virtually any compound that absorbs energy in the mid-infrared region of the electromagnetic spectrum. Testing with the FTIR was conducted in general accordance with FSAB-IOP-008 (Reference A). Figure 2.3.3 shows the setup of the spectrometer near the exposure chamber. Table 2.3.1 contains specific information regarding the spectrometer used for this test. The instrument case and light tubes were purged with ultra-high purity (UHP) nitrogen to remove any potentially interfering species (i.e. CO_2 and water vapor) not attributed to the sample gas.

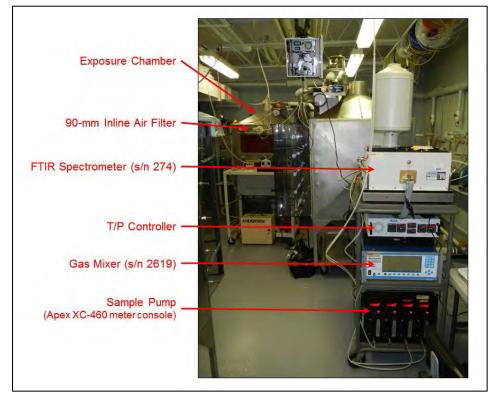


Figure 2.3.3 - FTIR Spectrometer System

Table 2.3.1: FTIF	Configuration -	- Instrument	(serial number)) 274
-------------------	-----------------	--------------	-----------------	-------

Instrument Optics	ZnSe	Detector Type	MCT
Instrument Resolution	0.5 cm ⁻¹	Apodization Function	Triangular
Spectra Range	650-4500 cm ⁻¹	Zero Filling Factor	1x
Absorption Pathlength	7.13 meters	Scan Speed	117 kHz
Cell Temperature	121 °C	Detector Gain – Hardware	Jumper F
Cell Pressure	~ 1 atm	Detector Gain - Software	1x

TEDT-AT-WFA	Project Title: Red Smoke Inhalation Toxicology Study
Field Sampling and Analysis Branch	Project Number: D0802 (FSAB Customer Test)
Building 363	Customer: Mr. Lee Crouse
APG, MD 21005-5059	Test Report Number: 2017-FSAB-001

(2) The spectrometer was controlled by a laptop computer with *AutoQuant*[™] software. Spectral data from the FTIR was collected at the rate of 1 scan approximately every 0.6 seconds; however, 16 scans were co-averaged for each sample in order to increase the signal to noise ratio resulting in lower analyte detection limits. A background spectrum, collected while UHP nitrogen was flowing through the instrument gas cell, was collected prior to each test. In addition to the absorbance spectra, interferograms of all test and background spectra were saved to the computer hard-drive and back-up storage media.

(3) A series of calibration spectra were collected on the FTIR spectrometer for use in the quantitative analysis of CO₂, CO, CH₄, C₂H₂, C₂H₄, NO, NO₂, and SO₂. Commercially prepared certified gas standards were used to generate the calibration spectra. The gas standards were diluted with UHP nitrogen using an Environics computerized gas mixing/dilution system to obtain reference spectra over a range of concentrations. All calibration spectra and background spectra were collected with longer integration times than used during testing in order to increase the signal-to-noise ratio and improve quantitative results. A standard analytical method was then developed with these spectra using *AutoQuant*TM software to be used for data collection during these tests. *AutoQuant*TM uses a classic least squares algorithm to compute analyte concentrations. The recorded concentrations were then exported to a spreadsheet program for preliminary analysis.

(4) Instrument calibration checks were performed each day of testing. The performance/stability of the FTIR spectrometer was checked by performing a series of calibration checks for selected analytes prior to testing. The calibration checks were performed by introducing the certified gas standard directly into the FTIR sample cell. The calibration gas was diluted to the appropriate concentration with UHP nitrogen using an Environics, Model 2040, computerized gas mixer. The instrument conditions, integration time, and analysis of the calibration checks were identical to those used during the actual test events. The results of the checks and other quality control information can be found in Appendix A.

(5) Spectral analysis was performed to identify the analytes present in the sample stream as this was non-typical experiment that was fairly complex. The FTIR does not physically separate the analytes for analysis (such as gas chromatography), the absorbance bands produced by each compound are additive and can quickly convolute the spectrum. Spectral analysis starts with the identification of absorbance features for known or obvious materials (such as CO_2 and water vapor) and subtracting them from the sample spectra. The process continues with the identification of the remaining spectral features, by either analyst experience or by searching commercially available reference libraries, and subtraction from the sample. This recursive process is repeated until all major absorbance features have been accounted for in the spectra.

(6) Post-processing of the test data with a modified AutoQuant Pro^{TM} analytical method, containing reference spectra of analytes and possible interferences, was used to produce the final quantitative analysis results for this project. The method included the following reported analytes: carbon dioxide (CO₂), carbon monoxide (CO), methane (CH₄), acetylene (C₂H₂), ethylene (C₂H₄), nitric oxide (NO), nitrogen dioxide (NO₂), and sulfur dioxide (SO₂). The reference spectra for these compounds were generated on the instrument used to collect the test data. The results for analytes are presented in Section 3.1. The results are reported as the average of the observed concentrations inside the chamber during the 30-minute exposure

TEDT-AT-WFA	Project Title: Red Smoke Inhalation Toxicology Study
Field Sampling and Analysis Branch	Project Number: D0802 (FSAB Customer Test)
Building 363	Customer: Mr. Lee Crouse
APG, MD 21005-5059	Test Report Number: 2017-FSAB-001

period. Additional reference spectra obtained from the QASoft[™] library (Infrared Analysis, Inc.) were also included. These compounds included: acetaldehyde, acrolein, butanone, formaldehyde, formic acid, isopropanol, propene, and m/p-xylenes. These additional spectra were added to reduce any potential interferences that might affect the concentration values of the reported analytes. The results for these compounds are not reported from the FTIR as they are considered qualitative estimates and are accounted for by other methodologies used for these experiments.

(7) Model O2 Fast Oxygen Analyzer, manufactured by Oxigraf, Inc. was used to continuously measure the oxygen (O_2) concentration within the exposure chamber. This analyzer uses laser absorption spectroscopy to measure the concentration of oxygen in the air sample. No data was recorded from the analyzer but the concentration reading on the analyzer display was used as a confirmatory check that the equipment used by PHC was operating properly. The Oxigraf analyzer was operated according to the manufacturer's instructions and FSAB-IOP-023 (Reference B).

b. Aldehyde (Carbonyls) Sorbent Tube Sampling

H30 high capacity sorbent tube cartridges (Supelco/Sigma Aldrich, part # 535323) designed for sampling carbonyls (e.g. aldehydes such formaldehyde, etc.) in air were used for this investigation. The aldehyde analytes in the air sample are trapped on a high-purity silica gel adsorbent coated with 2,4-dinitrophenylhydrazine, where they are converted to the hydrazone derivatives. Samples were drawn from the sample manifold on the exposure chamber at a rate of ~0.30 to 1.0 L/min via an air sampling pump (Apex Instruments XC-460 Meter Console operated according to FSAB-IOP-006, Reference C). For selected exposure trials, samples were collected using two sorbent tubes connected in a "piggy-back" configuration to verify that no analyte breakthrough occurred. Additionally, duplicate samples were collected periodically so that the precision of the sampling method could be assessed. Figure 2.3.4 contains photos detailing the aldehyde sampling trains. The labelled H30 tubes were capped immediately after sampling, placed in foil envelopes and stored in a cooler with ice until returned to ATC. All samples were then properly handled and stored (Reference D) until submitted to the ATC Chemical Sampling and Analysis Brach (CSAB) for extraction with acetonitrile and analysis by High Performance Liquid Chromatography (HPLC) in general accordance with EPA Method TO-11. Tabulated results for the 15 measured analytes are summarized in section 3.1. Copies of the laboratory reports (References E through H) for this analysis are provided in Appendix B.

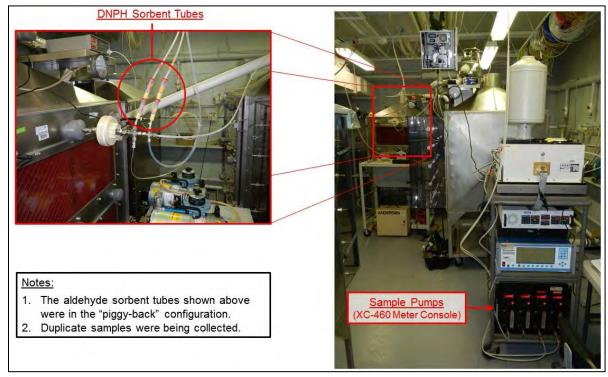


Figure 2.3.4 - Aldehyde Sampler(s) Details

c. Volatile Organic Compounds (VOCs) Sampling

VOCs were sampled using a XonTech®, Inc. Model 911 ambient air canister sampler. The 90mm PTFE inline filter on the sample probe was used to prevent particulate contamination of the sampler and canisters. The air was sampled from the manifold at a rate of approximately 1 L/minute. The XonTech® sampler delivered a portion of the sample to a certified VOC free silicon-lined (SilcoCan[®]) canister at a rate 400 mL/min. Sampling was started at the beginning of each of the selected 30-minute exposure trials. The VOC sampler flow rate was checked using a calibrated primary flow meter (BIOS, DC-Lite) before and after each sampling run in general accordance with Reference D. Figure 2.3.5 contains a photo detailing the VOC sampling train. After each individual sample was collected, the VOC canister valve was closed and the canister was capped. The VOC canisters were submitted to U.S. Army Public Health Command (USAPHC) (Provisional) Directorate of Laboratory Sciences for analysis. Eurofins Lancaster Laboratories, under contract with USAPHC, performed a Gas Chromatography/Mass Spectrometry analysis of the samples in accordance with EPA Method TO-15. The Lancaster Labs TO-15 method analyzes each sample for a total of 81 different VOC analytes. The tabulated results summarized in Section 3.1 contain only the abbreviated composite list of the 32 compounds that were detected in the canister samples. Copies of the full laboratory reports (References I through K), containing the results for all 81 compounds, are included in Appendix C.

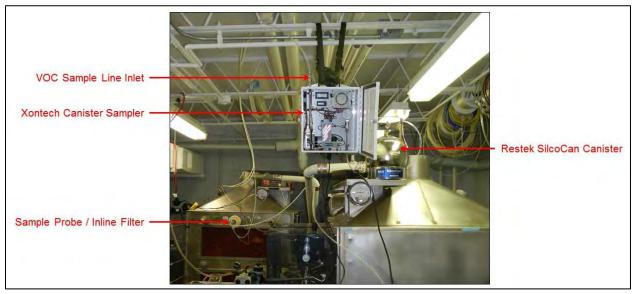


Figure 2.3.5 - VOC Canister Sampler

2.4 TEST ITEM DESCRIPTION

The test item being investigated for this inhalation toxicity test is a reformulated M18 red smoke grenade (Figure 2.4.1). This type of pyrotechnic functions by forming a dye cloud; the dye is first vaporized by the burning energetic, followed by rapid condensation into fine aerosol particles in the air. To avoid combustion of the organic dye, a relatively cool burning fuel / oxidizer combination is used. In addition, a flame retardant is added as a coolant. The formulation of the smoke grenade filler is provided in Table 2.4.1. The grenade contains four pressed pellets of the smoke mixture (weighing a total of 11.5 ounces) and was ignited with a standard delay fuse (Reference L).

Figure 2.4.1 – Photo Illustration of a M18 Smoke Grenade

Component	Approximate Composition (Parts By Weight)	Function
Dye, Solvent Red 169	36.5	Color Production
Sugar	25.5	Fuel
Potassium Chlorate	20.5	Oxidizer
Magnesium Carbonate	16.5	Coolant

3.1 TEST FINDINGS

All values in bold type represent the actual measured concentrations. Results preceded by a less-than sign indicate that the analyte was not detected above the value provided, which represents the instrument/method reporting limit.

The reported FTIR results are the average of the measured concentrations for the entire sampling period during each exposure.

a. Tables 3.1.1 through 3.1.3 contain the tabulated analytical results for acute dose exposure trial conducted on 29 April 2015.

	Average Measured Concentration		
Analyte	Chamber Background (ppm)	Acute Exposure (ppm)	
Carbon Dioxide	615	1986	
Carbon Monoxide	< 5	149	
Methane	2.1	12	
Acetylene	< 1	1.1	
Ethylene	< 1	2.6	
Nitric Oxide	< 3	5.6	
Nitrogen Dioxide	< 1	< 1	
Sulfur Dioxide	< 3	< 3	

Table 3.1.1 - Acute Dose Exposure FTIR Results

Table 3.1.2 - Acute Dose Exposure TO-11 Analysis Results

	Measured Concentration		
Analyte	Chamber	Acute Exposure	
	Background (ppm)	Acute Exp_1 (ppm)	Acute Exp_2 (ppm)
Formaldehyde	NA	26.08	26.15
Acetaldehyde	NA	14.64	12.04
Acetone	NA	0.28	0.77
Acrolein	NA	0.58	< 0.58
Propionaldehyde	NA	0.73	0.15
Crotonaldehyde	NA	0.65	0.57
Butyraldehyde	NA	< 0.48	< 0.45
Benzaldehyde	NA	< 0.32	< 0.31
Isovaleraldehyde	NA	< 0.40	< 0.38
Valeraldehyde	NA	< 0.40	< 0.38
o,m,p-Tolualdehyde	NA	< 0.29	< 0.27
Hexaldehyde	NA	< 0.34	< 0.32
2,5-DMB	NA	< 0.26	< 0.24

NOTES:

NA = Not Applicable, a Chamber Background TO-11 sample was not collected.

	Measured Concentration		
Detected Analytes	Chamber Background (µg/m³)	Acute Exposure (µg/m³)	
1,2,4-Trimethylbenzene	NA	< 25	
1,2-Dichloroethane	NA	< 20	
1,3,5-Trimethylbenzene	NA	< 25	
2-Butanone {MEK}	NA	2100	
4-Ethyltoluene	NA	< 25	
Acetone	NA	9400	
Acetonitrile	NA	1400	
Acrolein	NA	6700	
Acrylonitrile	NA	49	
Benzene	NA	590	
Butadiene	NA	510	
Carbon disulfide	NA	< 31	
Chlorodifluoromethane	NA	< 18	
Chloroethane	NA	6.3	
Chloroform	NA	56	
Chloromethane	NA	330	
Dichlorodifluoromethane	NA	< 18	
Ethyl acetate	NA	< 22	
Ethylbenzene	NA	250	
Hexane	NA	24	
Isopropyl alcohol	NA	42	
m,p-Xylene	NA	900	
Methyl methacrylate	NA	< 41	
Methylene chloride	NA	45	
n-Heptane	NA	< 20	
Octane	NA	11	
o-Xylene	NA	180	
Propylene	NA	7600	
Styrene	NA	40	
Toluene	NA	270	
Trichlorofluoromethane	NA	< 28	
Vinyl chloride	NA	19	

Table 3.1.3- Acute Exposure VOC Results

NOTES:

NA = Not Applicable, a Chamber Background VOC canister sample was not collected.

b. Tables 3.1.4 through 3.1.6 contain the tabulated analytical results for repeated dose exposure #2 trials conducted on 3 June 2015.

	Average Measured Concentration				
Analyte	Chamber Background (ppm)	High Level Exposure (ppm)	Mid-Level Exposure (ppm)	Low-Level Exposure (ppm)	
Carbon Dioxide	519	1940	3312	3514	
Carbon Monoxide	< 5	133	108	74.5	
Methane	1.8	9.1	7.6	5.8	
Acetylene	< 1	< 1	< 1	< 1	
Ethylene	< 1	2.1	2.0	1.6	
Nitric Oxide	< 3	4.1	3.5	3.2	
Nitrogen Dioxide	< 1	< 1	< 1	< 1	
Sulfur Dioxide	< 3	< 3	< 3	< 3	

Table 3.1.4 - Repeated Dose Exposure #2 FTIR Results

	Measured Concentration					
Analyta	Chember	High Level Exposure		Midloval		
Analyte	Chamber			Mid-Level	Low-Level	
	Background	High_1	High_2	Exposure	Exposure	
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
Formaldehyde	< 0.44	23.8	21.2	17.6	12.7	
Acetaldehyde	< 0.30	14.3	12.2	11.7	10.7	
Acetone	< 0.23	0.13	< 0.38	0.18	1.37	
Acrolein	< 0.24	1.79	1.76	1.57	1.14	
Propionaldehyde	< 0.23	0.54	0.45	0.54	0.56	
Crotonaldehyde	< 0.19	0.59	0.52	0.66	0.76	
Butyraldehyde	< 0.18	< 0.34	< 0.30	< 0.30	0.16	
Benzaldehyde	< 0.13	< 0.23	< 0.21	< 0.20	0.05	
Isovaleraldehyde	< 0.15	< 0.28	< 0.25	< 0.25	< 0.25	
Valeraldehyde	< 0.15	< 0.28	< 0.25	< 0.25	< 0.25	
o,m,p-Tolualdehyde	< 0.11	< 0.20	< 0.18	< 0.18	< 0.18	
Hexaldehyde	< 0.13	< 0.24	< 0.22	< 0.22	< 0.22	
2,5-DMB	< 0.10	< 0.18	< 0.16	< 0.16	< 0.16	

	Measured Concentration					
Detected Analytes	Chamber Background (µg/m³)	High Level Exposure (µg/m ³)	Mid-Level Exposure (µg/m³)	Low-Level Exposure (µg/m³)		
1,2,4-Trimethylbenzene	1.7	680	610	510		
1,2-Dichloroethane	< 2.0	120	98	< 200		
1,3,5-Trimethylbenzene	< 2.5	< 250	< 250	1200		
2-Butanone {MEK}	2.7	1600	1200	920		
4-Ethyltoluene	< 2.5	190	170	130		
Acetone	31	9100	9000	7500		
Acetonitrile	10	1300	1100	790		
Acrolein	6.4	4400	4800	4200		
Acrylonitrile	< 2.2	< 220	< 220	< 220		
Benzene	1	610	460	350		
Butadiene	< 1.1	150	240	220		
Carbon disulfide	< 3.1	< 310	< 310	170		
Chlorodifluoromethane	1.1	< 180	< 180	< 180		
Chloroethane	< 1.3	< 130	< 130	< 130		
Chloroform	< 2.4	100	< 240	< 240		
Chloromethane	0.97	260	220	170		
Dichlorodifluoromethane	2.3	< 250	< 250	< 250		
Ethyl acetate	< 1.8	240	230	< 180		
Ethylbenzene	2	530	420	370		
Hexane	2.2	< 180	74	< 180		
Isopropyl alcohol	< 2.5	1200	ND	550		
m,p-Xylene	7.1	2000	1600	1400		
Methyl methacrylate	< 4.1	< 410	< 410	84		
Methylene chloride	7.7	330	300	110		
n-Heptane	< 2.0	110	110	< 200		
Octane	< 4.7	110	120	110		
o-Xylene	2.7	780	600	530		
Propylene	2.9	3100	4200	3600		
Styrene	< 2.1	290	240	190		
Toluene	1.5	2600	2200	1300		
Trichlorofluoromethane	1.2	< 280	< 280	< 280		
Vinyl chloride	< 1.3	< 130	< 130	< 130		

Table 3.1.6 - Repeated Dose Exposure #2 VOC Results

c. Tables 3.1.7 through 3.1.9 contain the tabulated analytical results for repeated dose exposure #6 trials conducted on 9 June 2015.

	Average Measured Concentration						
Analyte	Chamber Background (ppm)	High Level Exposure (ppm)	Mid-Level Exposure (ppm)	Low-Level Exposure (ppm)			
Carbon Dioxide	454	2242	3279	2280			
Carbon Monoxide	< 5	141	121	46.4			
Methane	1.8	9.8	8.6	4.3			
Acetylene	< 1	1.0	1.3	< 1			
Ethylene	< 1	2.5	2.3	1.0			
Nitric Oxide	< 3	5.3	4.9	< 4			
Nitrogen Dioxide	< 1	< 1	< 1	< 1			
Sulfur Dioxide	< 3	< 3	< 3	< 3			

Table 3.1.7 - Repeated Dose Exposure #6 FTIR Results

	Measured Concentration					
			Mid-Level		Low-Level	
Analyte	Chamber	High Level	Ехро	sure	Exposure	
	Background	Exposure	Med_1	Med_2	Low_1	Low_2
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Formaldehyde	0.17	11.3	11.8	14.0	7.97	8.02
Acetaldehyde	< 0.30	2.53	4.31	6.23	6.06	6.11
Acetone	< 0.23	0.10	0.09	0.11	1.10	1.27
Acrolein	< 0.23	1.30	1.35	1.42	0.41	0.38
Propionaldehyde	< 0.23	< 0.24	0.17	0.26	0.32	0.33
Crotonaldehyde	< 0.19	0.45	0.53	0.63	0.38	0.38
Butyraldehyde	< 0.18	< 0.19	< 0.20	< 0.23	0.35	0.40
Benzaldehyde	< 0.12	0.05	0.05	0.05	< 0.14	< 0.15
Isovaleraldehyde	< 0.15	< 0.16	< 0.17	< 0.19	< 0.17	< 0.19
Valeraldehyde	< 0.15	< 0.16	< 0.17	< 0.19	< 0.17	< 0.19
o,m,p-Tolualdehyde	< 0.11	< 0.12	< 0.12	< 0.14	< 0.12	< 0.14
Hexaldehyde	< 0.13	< 0.14	< 0.15	< 0.17	< 0.15	< 0.16
2,5-DMB	< 0.10	< 0.10	< 0.11	< 0.12	< 0.11	< 0.12

	Measured Concentration					
Detected Analytes	Chamber Background (µg/m³)	High Level Exposure (µg/m³)	Mid-Level Exposure (µg/m³)	Low-Level Exposure (µg/m³)		
1,2,4-Trimethylbenzene	< 12	< 25	< 25	< 25		
1,2-Dichloroethane	< 10	< 20	< 20	< 20		
1,3,5-Trimethylbenzene	< 12	< 25	< 25	< 25		
2-Butanone {MEK}	< 29	1300	1200	290		
4-Ethyltoluene	< 12	< 25	< 25	< 25		
Acetone	73	9900	9500	4700		
Acetonitrile	120	950	970	200		
Acrolein	12	5800	5400	2800		
Acrylonitrile	< 11	33	40	< 22		
Benzene	< 8.0	380	450	130		
Butadiene	< 5.5	47	93	110		
Carbon disulfide	< 16	< 31	< 31	< 31		
Chlorodifluoromethane	< 8.8	< 18	< 18	< 18		
Chloroethane	< 6.6	< 13	< 13	< 13		
Chloroform	< 12	55	65	20		
Chloromethane	< 10	210	180	70		
Dichlorodifluoromethane	< 12	< 25	< 25	< 25		
Ethyl acetate	< 9.0	< 18	< 18	< 18		
Ethylbenzene	< 11	170	200	54		
Hexane	< 8.8	13	14	< 18		
Isopropyl alcohol	< 12	19	21	< 25		
m,p-Xylene	5.5	550	650	180		
Methyl methacrylate	< 20	< 41	< 41	< 41		
Methylene chloride	8.8	41	49	22		
n-Heptane	< 10	< 20	9.1	ND		
Octane	< 23	11	< 47	<47		
o-Xylene	< 11	98	110	36		
Propylene	2.2	3900	3900	1300		
Styrene	< 11	9.8	17	< 21		
Toluene	< 9.4	160	190	55		
Trichlorofluoromethane	< 14	< 28	< 28	< 28		
Vinyl chloride	< 6.4	10	9.1	< 13		

Table 3.1.9 - Repeated Dose Exposure #6 VOC Results

d. Tables 3.1.10 through 3.1.12 contain the tabulated analytical results for repeated dose exposure #10 trials conducted on 15 June 2015.

	Average Measured Concentration						
Analyte	Chamber Background (ppm)	High Level Exposure (ppm)	Mid-Level Exposure (ppm)	Low-Level Exposure (ppm)			
Carbon Dioxide	437	2372	3933	2683			
Carbon Monoxide	< 5	190	163	62.4			
Methane	1.6	13.7	12.1	5.5			
Acetylene	< 1	1.2	1.1	< 1			
Ethylene	< 1	4.1	3.7	1.6			
Nitric Oxide	< 3	8.5	6.9	3.7			
Nitrogen Dioxide	< 1	< 1	< 1	< 1			
Sulfur Dioxide	< 3	< 3	< 3	< 3			

Table 3.1.10 - Repeated Dose Exposure #10 FTIR Results

			Measured	Concentration			
		High Level Mid-Level		Low-Level			
Analyte	Chamber	Ехро	sure	Expo	osure	sure Exposur	
	Background	High_1	High_2	Med_1	Med_2	Low_1	Low_2
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Formaldehyde	< 0.43	15.57	15.67	12.73	12.81	8.25	8.04
Acetaldehyde	< 0.29	6.17	6.85	8.44	8.47	8.08	7.84
Acetone	< 0.22	< 0.27	< 0.28	< 0.26	< 0.26	1.24	1.46
Acrolein	< 0.23	2.05	2.12	2.01	1.98	0.79	0.76
Propionaldehyde	< 0.22	0.39	0.40	0.45	0.45	0.42	0.40
Crotonaldehyde	< 0.18	0.60	0.60	0.60	0.60	0.52	0.51
Butyraldehyde	< 0.18	< 0.22	< 0.22	< 0.21	< 0.21	0.27	0.30
Benzaldehyde	< 0.12	0.05	0.05	0.05	0.05	0.04	0.04
Isovaleraldehyde	< 0.15	< 0.18	< 0.19	< 0.18	< 0.18	< 0.17	< 0.18
Valeraldehyde	< 0.11	< 0.18	< 0.19	< 0.18	< 0.18	< 0.17	< 0.18
o,m,p-Tolualdehyde	< 0.11	< 0.13	< 0.13	< 0.13	< 0.13	< 0.12	< 0.13
Hexaldehyde	< 0.13	< 0.16	< 0.16	< 0.15	< 0.15	< 0.15	< 0.16
2,5-DMB	< 0.10	< 0.12	< 0.12	< 0.11	< 0.11	< 0.11	< 0.12

	Measured Concentration					
Detected Analytes	Chamber	High Level	Mid-Level	Low-Level		
Detected Analytes	Background	Exposure	Exposure	Exposure		
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)		
1,2,4-Trimethylbenzene	< 25	220	230	< 25		
1,2-Dichloroethane	< 20	< 200	< 200	< 20		
1,3,5-Trimethylbenzene	< 25	< 250	< 250	< 25		
2-Butanone {MEK}	< 59	1700	1300	370		
4-Ethyltoluene	< 25	< 250	< 250	< 25		
Acetone	51	13000	13000	6000		
Acetonitrile	880	3200	1000	320		
Acrolein	< 11	7900	7000	3500		
Acrylonitrile	< 22	< 220	< 220	14		
Benzene	< 16	930	760	200		
Butadiene	< 11	100	< 110	80		
Carbon disulfide	< 31	< 310	< 310	< 31		
Chlorodifluoromethane	< 18	< 180	< 180	< 18		
Chloroethane	< 13	< 130	< 130	< 13		
Chloroform	< 24	< 240	< 240	17		
Chloromethane	< 21	230	200	62		
Dichlorodifluoromethane	< 25	< 250	< 250	< 25		
Ethyl acetate	< 18	< 180	< 180	< 18		
Ethylbenzene	< 22	300	250	56		
Hexane	< 18	< 180	< 180	< 180		
Isopropyl alcohol	< 25	850	970	< 25		
m,p-Xylene	< 43	1000	800	190		
Methyl methacrylate	< 41	< 410	< 410	< 41		
Methylene chloride	15	550	570	27		
n-Heptane	< 20	< 200	< 200	< 20		
Octane	< 47	110	< 470	< 47		
o-Xylene	< 22	270	240	40		
Propylene	< 17	6900	1200	2500		
Styrene	< 21	110	120	9.5		
Toluene	< 19	710	670	90		
Trichlorofluoromethane	< 28	< 280	< 280	< 28		
Vinyl chloride	< 13	< 130	< 130	< 13		

4.1 TECHNICAL ASSESSMENT

Table 4.1.1 contains the 24 compounds measured in the exposure chamber during these experiments to be characterized as the combustion by-products of the pyrotechnic formulation in the red smoke grenades. Although nearly 100 analytes were measured for all three of the analytical methods used, only these analytes were detected in most of the samples collected and are not believed to be laboratory carry-over and/or contaminants. The table also provides the analytical method which provides the most reliable results.

Detected Analyte	Analytical Method	Detected Analyte	Analytical Method
Carbon Dioxide		Acetonitrile	
Carbon Monoxide		Acrolein	
Methane	Gas Phase FTIR	Benzene	
Acetylene	Spectrometry	Butadiene	
Ethylene		Chloromethane	
Nitric Oxide		Ethylbenzene	TO-15 GC/MS
Formaldehyde		m,p-Xylene	10-15 GC/MS
Acetaldehyde	TO-11 HPLC	Methylene Chloride	
Propionaldehyde	TO-TT HPLC	o-Xylene	
Crotonaldehyde		Propylene	
2-Butanone	TO-15 GC/MS	Styrene	
Acetone	10-15 GC/MS	Toluene	

Table 4.1.1 – Characterization of Red Smoke Analytes and Reporting Methodology

Table 4.1.2 contains the concentration results obtained for the single acute level exposure trial.

Tables 4.1.3 through 4.1.5 provide the analyte concentrations obtained for the multiple trials conducted for the repeated dose exposures (high, intermediate, and low levels respectively). These tables also provide a basic statistical analysis of the data which includes the average concentration (AVG), standard deviation (STDEV), and the relative standard deviation (STDEV/AVG, expressed as a percentage) to gauge experimental precision.

	Measured
ANALYTE	Concentration
	(ppm)
Carbon Dioxide	1986
Carbon Monoxide	149
Methane	12
Acetylene	1.1
Ethylene	2.6
Nitric Oxide	5.6
Formaldehyde	26
Acetaldehyde	13
Propionaldehyde	0.44
Crotonaldehyde	0.61
2-Butanone	0.71
Acetone	3.96
Acetonitrile	0.83
Acrolein	2.92
Benzene	0.18
Butadiene	0.23
Chloromethane	0.16
Ethylbenzene	0.058
m,p-Xylene	0.21
Methylene Chloride	0.013
o-Xylene	0.041
Propylene	4.42
Styrene	0.0094
Toluene	0.072

Table 4.1.2 – Acute Exposure Analyte Concentrations

Table 4.1.3 – High Level Repeated Dose Exposure Analyte Concentrations									
	Meas	ured Concent	ration	Sta	tistical Analy	vsis			
ANALYTE	RD #2	RD #6	RD #10	AVG	STDEV	RSD			
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)			
Carbon Dioxide	1940	2242	2372	2185	222	10%			
Carbon Monoxide	133	141	190	155	31	20%			
Methane	9.1	10	14	11	2.5	23%			
Acetylene	ND	1.0	1.2	1.1	0.12	11%			
Ethylene	2.1	2.5	4.1	2.9	1.0	35%			
Nitric Oxide	4.1	5.3	8.5	6.0	2.3	38%			
Formaldehyde	23	11	16	17	5.7	34%			
Acetaldehyde	13	2.5	6.5	7.5	5.5	73%			
Propionaldehyde	onaldehyde 0.44 N		0.40	0.42	0.032	8%			
Crotonaldehyde	0.61	0.45	0.60	0.55	0.090	16%			
2-Butanone	0.54	0.44	0.58	0.52	0.071	14%			
Acetone	3.83	4.17	5.47	4.49	0.87	19%			
Acetonitrile	0.77	0.57	1.91	1.08	0.72	67%			
Acrolein	1.92	2.53	3.45	2.63	0.77	29%			
Benzene	0.19	0.12	0.29	0.20	0.086	43%			
Butadiene	0.068	0.021	0.045	0.045	0.023	52%			
Chloromethane	0.13	0.10	0.11	0.11	0.012	11%			
Ethylbenzene	0.12	0.039	0.069	0.077	0.042	55%			
m,p-Xylene	0.46	0.13	0.23	0.27	0.17	63%			
Methylene Chloride	0.095	0.012	0.16	0.088	0.073	83%			
o-Xylene	0.18	0.023	0.062	0.088	0.082	93%			
Propylene	1.80	2.27	4.01	2.69	1.2	43%			
Styrene	0.068	0.0023	0.026	0.032	0.033	104%			
Toluene	0.69	0.042	0.19	0.31	0.34	111%			

Table 4.1.3 – High Level Repeated Dose Exposure Analyte Concentrations

Table 4.1.4 – Intermediate	(Mid-)	Level Re	peated Dose	Exposure An	alvte Concentrations
	ma j	LOVCINC	pealed Dose	Exposure An	

		ured Concent		-	tistical Analy	
ANALYTE	RD #2	RD #6	RD #10	AVG	STDEV	RSD
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)
Carbon Dioxide	3312	3279	3933	3508	369	11%
Carbon Monoxide	108	121	163	131	29	22%
Methane	7.6	8.6	12.1	9.5	2.4	25%
Acetylene	ND	1.3	1.1	1.2	0.12	11%
Ethylene	2.0	2.3	3.7	2.7	0.92	35%
Nitric Oxide	3.5 4.9 6.9 5.1		5.1	1.7	34%	
Formaldehyde	18	18 13 13 14		14	2.7	19%
Acetaldehyde	12	5.3	8.5	8.5	3.2	38%
Propionaldehyde	0.54	0.22	0.45	0.40	0.17	42%
Crotonaldehyde	onaldehyde 0.66		0.60	0.61	0.042	7%
2-Butanone	utanone 0.41		0.44	0.42	0.020	5%
Acetone	3.79	4.00	5.47	4.42	0.92	21%
Acetonitrile	0.66	0.58	0.60	0.61	0.041	7%
Acrolein	2.09	2.36	3.05	2.5	0.50	20%
Benzene	0.14	0.14	0.24	0.17	0.055	32%
Butadiene	0.11	0.042	ND	0.075	0.047	62%
Chloromethane	0.11	0.087	0.097	0.097	0.010	10%
Ethylbenzene	0.097	0.046	0.058	0.067	0.027	40%
m,p-Xylene	0.37	0.15	0.18	0.23	0.12	50%
Methylene Chloride	0.086	0.014	0.16	0.088	0.075	85%
o-Xylene	0.14	0.025	0.055	0.073	0.058	80%
Propylene	2.44	2.27	0.70	1.8	0.96	53%
Styrene	0.056	0.0040	0.028	0.030	0.026	89%
Toluene	0.58	0.05	0.18	0.27	0.28	103%

Table 4.1.5 – Low Level Repeated Dose Exposure Analyte Concentrations										
	Measu	ured Concent	ration	Sta	tistical Analy	sis				
ANALYTE	RD #2	RD #6	RD #10	AVG	STDEV	RSD				
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)				
Carbon Dioxide	3514	2280	2683	2826	629	22%				
Carbon Monoxide	75	46	62	61	14	23%				
Methane	5.8	4.3	5.5	5.2	0.78	15%				
Acetylene	ND	ND	ND	NA	NA	NA				
Ethylene	1.6	1.0	1.6	1.4	0.31	22%				
Nitric Oxide	3.2	ND	3.7	3.4	0.37	11%				
Formaldehyde	13	8.0	8.1	9.6	2.7	28%				
Acetaldehyde	11	6.1	8.0	8.2	2.3	28%				
Propionaldehyde	0.56	0.33 0.41 0.43		0.43	0.12	28%				
Crotonaldehyde	de 0.76 0.38		0.52	0.55	0.19	35%				
2-Butanone	0.31	0.098	0.13	0.18 0.12		65%				
Acetone	3.2	2.0	2.5	2.6	0.59	23%				
Acetonitrile	0.47	0.12	0.19	0.26	0.19	71%				
Acrolein	1.8	1.2	1.5	1.5	0.31	20%				
Benzene	0.11	0.041	0.063	0.071	0.035	50%				
Butadiene	0.099	0.050	0.036	0.062	0.033	54%				
Chloromethane	0.082	0.034	0.030	0.049	0.029	60%				
Ethylbenzene	0.085	0.012	0.013	0.037	0.042	114%				
m,p-Xylene	0.32	0.041	0.044	0.14	0.16	119%				
Methylene Chloride	0.032	0.006	0.008	0.015	0.014	93%				
o-Xylene	0.12	0.008	0.009	0.047	0.065	141%				
Propylene	2.1	0.76	1.5	1.4	0.67	47%				
Styrene	0.045	ND	0.0022	0.023	0.030	128%				
Toluene	0.34	0.015	0.024	0.13	0.19	147%				

Table 4.1.5 – Low Level Repeated Dose Exposure Analyte Concentrations

5.1 REFERENCES

- A. FSAB-IOP-008, Operation and Use Midac Model I-Series FTIR, May 2012.
- B. <u>FSAB-IOP-023</u>, Operation and Use of the Oxigraf Model O2 Oxygen Analyzer, May 2012.
- C. FSAB-IOP-006, Operation of APEX Model 623 Air Sampling Meter Box, May 2012.
- D. FSAB-IOP-019, Sample Media Collection and Handling Procedures, May 2012
- E. <u>2015-CC-292</u> (Laboratory Report, Red Smoke Inhalation Toxicity Study [Acute] Carbonyls Analysis), U.S. Army Aberdeen Test Center, Applied Science Test Division – Chemical Sampling and Analysis Team, 21 May 2015.
- F. <u>2015-CC-331</u> (Laboratory Report, Red Smoke Inhalation Toxicity Study RD#2 Carbonyls Analysis), U.S. Army Aberdeen Test Center, Applied Science Test Division – Chemical Sampling and Analysis Team, 23 June 2015.
- G. <u>2015-CC-336</u> (Laboratory Report, Red Smoke Inhalation Toxicity Study RD#6 Carbonyls Analysis), U.S. Army Aberdeen Test Center, Applied Science Test Division – Chemical Sampling and Analysis Team, 29 June 2015.
- H. <u>2015-CC-337</u> (Laboratory Report, Red Smoke Inhalation Toxicity Study RD#10 Carbonyls Analysis), U.S. Army Aberdeen Test Center, Applied Science Test Division – Chemical Sampling and Analysis Team, 30 June 2015.
- I. <u>Report Serial # 74192 (Laboratory Report, Red Smoke Inhalation Toxicity Study [Acute]</u> - VOCs Analysis), U.S. Army Institute of Public Health, 26 May 2015.
- J. <u>Report Serial # 76035 (Laboratory Report, Red Smoke Inhalation Toxicity Study [RD#2]</u> – VOCs Analysis), U.S. Army Institute of Public Health, 08 July 2015.
- K. <u>Report Serial # 76326 (Laboratory Report, Red Smoke Inhalation Toxicity Study [RD#6</u> <u>and RD#10] – VOCs Analysis), U.S. Army Institute of Public Health, 14 July 2015.</u>
- L. <u>Email correspondence from Lee Crouse, AIPH Red Smoke Study Requested</u> Information Regarding the Test Item, 19 June 2014.

APPENDIX A - FTIR Daily Check Sheets and other Quality Control Information

FTIR Testing Check Sheet

Analyst: M. CHAPMAN

 General Test Information:
 Red Smoke Inhalation Study

 Test Name:
 <u>RED SMOKE</u>

 Test Date:
 <u>WED.</u>

 Yet
 2015

 Customer:
 <u>Mr. Lee Crouse</u>

FTIR Information:

	Daily Start-up Checklist								
Instrument Purge ON	1	Cell Heater ON (set to 121°C)	Y						
Check interferometer	Y	Cell Pressure (while sampling)	14.69 PS12						
Check LN ₂ Dewar extender	~	Clocks Synchronized	V W/IG'S INTH						

FTIR Serial #	Sampling Position	Pathlength	Pathlength ZPD Peak Min			
1274	Exposure Chamber	7.13 meters	1031	-19000 (-1.45V)	(1.000V)	
4000 = 9880		12000 = 33900		SBR = 14000 / 12000 = 0,29		

Daily FTIR System Checks:

			Dail	y Calibratio	n Check R	esults			
Gas		Level 1			Level 2			Level 3	
Туре	Target (ppm)	Result (ppm)	% Diff	Target (ppm)	Result (ppm)	% Diff	Target (ppm)	Result (ppm)	% Diff
CO ₂	2040	1965	-3.7	1020	990	-3.0	510	500	-0.8
CO	1000	1000	0.0	500	498	-0.4	250	249	- 0.47
NO	49.6	49.8	0.4	24.8	24.9	0.4	12.4	11.9	- 4.0
SO ₂	9.70	9.33	-3.9	4.85	4.45	-8.2	2.43	2.22	-8.7

NOTE: The acceptable tolerance for the % difference results is ±20%.

Data Acquisition - Test:

AutoQuant Pro Collection File Path --

C:\Documents and Settings\All Users\Shared Documents\AutoQuant\Collect\

Test Start Time	and the second second	7	
root otalt thing	Stop Time	# Scans	
9:49	9:55	30	
PUMPS/VOC 10:13:30	10:42:30	157	
AQ start NID: 13:55			
	Pumps/voc 10:13:30	PUMPS/VOC 10:3:30 10:42:30	

ANALYST NOTES:

ENVIRONICS MODEL 2040 GAS MIXER: 5/A 2919 CAL EXP Dute 2/5/2016.

```
FTIZ QC GAS MIKTURE : Cyl CC107061 Co2 1.0270 CO 4998 ppm NO 248 Zypm SOZ 48.53 pm
```

SMOKE GRENADE POPPED @ 10:06 am Animals londed in chamber @ 10:12 am (start)

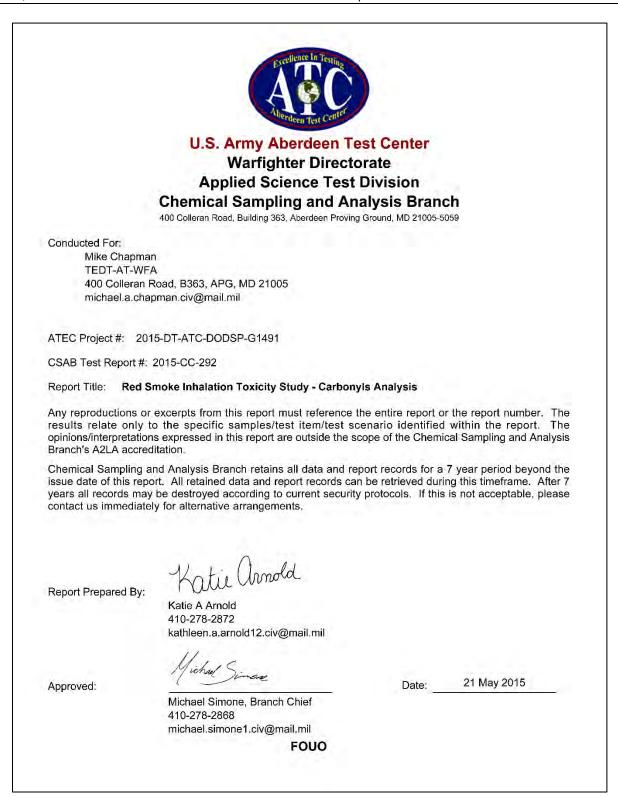
	t: <u> </u>		<u> </u>		ing Check					
Test Na	ame: Ros	MUDE	Test D	Date: 03	Tune 2015	Cu:	stomer: Mr. L	ee Crous	se	
FIRIN	formation	1:		Daily Start	up Checkli	ist	-			
	ent Purge C		V	ounj otur	Cell Heat	ter ON (s	set to 121°C)	V		
	nterferomet N ₂ Dewar e		V				ile sampling)		5 psic	
OHECK L	IN2 Dewal e	xtender	V		Clocks S	ynchroni	zed	V W	liee's white	
FTIR S	erial #	Position		Peak Min						
127	4	Exposure Chamber		.13 meters 1025		- 19200 (-1.490V)				
I ₄₀₀₀ =	1884		I ₂₀₀₀ =	338	18		SBR = 14000 / 12			
Daily F	1.1.1	m Checks	· 121%							
Sully	in oyste	in onecks		2	on Check R	esults				
		Louis 1	- 40				-	10.48		
Gas	Torrat	Level 1		Track	Level 2	-	-	Level 3	1	
Туре	Target (ppm)	Result (ppm)	% Diff	Target (ppm)	Result (ppm)	% Dif	f Target (ppm)	Result (ppm)	% Diff	
CO ₂	1020	983	-3.6	510	492	-3.6		207	1.6	
CO NO	500	474	-5,3	250	238	-4.7	100	98	-1.6	
	24.8	24.7	-0.2	12.4	11.9	-4.4	5.0	4.82	-3.7	
			- 10.2 ce for the %	2.43 difference	z.17 results is ±	- 10.8		0.85	-12.9	
NOTE: T Data Ac AutoQua	he accepta cquisition ant Pro Co	- Test: ollection Fil	e for the %	difference	Z-17 e results is ± ents\AutoQ	- (0.8 20%.	0.97	0.85		
NOTE: T Data Ac AutoQua	he accepta cquisition ant Pro Co nents and S	ble tolerand - Test: ollection Fil Settings\All	e for the % e Path Users\Shar	difference red Docum Testing	Z-17 e results is ± ents\AutoQ Timeline	- 10.8 -20%. uant\Col	0.97	0.85 DEC S/A	-12.9 58140	
NOTE: T Data Ac AutoQua C:\Docur	he accepta equisition ant Pro Co nents and s Te	ble tolerand - Test: bllection Fil Settings\All st Scenario	e for the % e Path Users\Shar	difference red Docum Testing	2.17 e results is ± ents\AutoQ Timeline Test Start	- 10.8 -20%. uant\Col	0.97	0.85 DEC S/A	-12.9	
NOTE: T Data Ac AutoQua C:\Docur	he accepta equisition ant Pro Co nents and s Te soure Cum	ble tolerand - Test: bllection Fil Settings\All st Scenario uber Bace	e for the % le Path Users\Shar o	difference red Docum Testing	2.17 e results is ± ents\AutoQ Timeline Test Start 0929	- 10.8 -20%. uant\Col	0.97	0.85 eec. 5/A EXP DATE e	-12.9 58140 03 Dec 2 # Scans 185	
NOTE: T Data Ac AutoQua C:\Docur 1 Rottz Exp 2 RD#	he accepta equisition ant Pro Co ments and s Te source Cum z HIGH (ble tolerand - Test: Illection Fil Settings\All st Scenario ubo- Bace EVEL EXP	e Path Users\Shar o ground bare	difference red Docum Testing	2.17 e results is ± ents\AutoQ Timeline Test Start 0929 1(15	- IO.E 20%. uant\Col	0.97	0.85 eec. 5/A EXP DATE e	-12.9) 68140 03 Dec 2 # Scans	
NOTE: T Data Ac AutoQua C:\Docur 1 Cor Crp 2 RD# 3 RD#	he accepta equisition ant Pro Co ments and s Te esure Син z. Алан С 2. Мто L	ble tolerand - Test: bllection Fil Settings Vall st Scenario uber Bacc EVEC Exp EVEC Exp	e Path Users\Shar ground bare	difference red Docum Testing	2.17 e results is ± ents\AutoQ Timeline Test Start 0929	- IO.E 20%. uant\Col	0.97	0.85 eec 5/h exp onte e	-12.9 58140 03 Dec 2 # Scans 185	
NOTE: T Data Ac AutoQu: C:\Docur 1 CH C:\Docur 2 RD# 3 RD# 4 RD#	he accepta equisition ant Pro Co ments and s Te esure Син z. Алан С 2. Мто L	ble tolerand - Test: Illection Fil Settings\All st Scenario ubo- Bace EVEL EXP	e Path Users\Shar ground bare	difference red Docum Testing	2.17 e results is ± ents\AutoQ Timeline Test Start 0929 1(15	- (0. & 20%. uant\Col	0.97	0.85 eec 5/h exp onte e	-12.9 58140 03 Dec 2 # Scans 185 174	
NOTE: T Data Ac AutoQua C:\Docur 1 CD#Z C:\Docur 2 RD# 3 RD# 4 RD# 5	he accepta equisition ant Pro Co ments and s Te esure Син z. Алан С 2. Мто L	ble tolerand - Test: bllection Fil Settings Vall st Scenario uber Bacc EVEC Exp EVEC Exp	e Path Users\Shar ground bare	difference red Docum Testing	2.17 e results is ± ents\AutoQ Timeline Test Start 0929 1145 1145	- (0. & 20%. uant\Col	0.97	0.85 eec 5/h exp onte e	-12.9 58140 03 Dec 2 # Scans 185 174 191	
NOTE: T Data Ac AutoQua C:\Docur 1 $C + C$ 2 $C + C$ 3 $R D + C$ 4 $C + C$ 5 6	he accepta equisition ant Pro Co ments and S Te source Com z HIGH L z HIGH L z LOW I	ble tolerand - Test: bllection Fil Settings\All st Scenario uber Bacc EVEL Exp EVEL Exp EVEL Exp	e Path Users\Shar ground bare	difference red Docum Testing	2.17 e results is ± ents\AutoQ Timeline Test Start 0929 1145 1145	- (0. & 20%. uant\Col	0.97	0.85 eec 5/h exp onte e	-12.9 58140 03 Dec 2 # Scans 185 174 191	
NOTE: T Data Ac AutoQua C:\Docur 1 $C + C$ 2 $C + C$ 3 $R D + C$ 4 $C + C$ 5 6	he accepta equisition ant Pro Co ments and s Te esure Син z. Алан С 2. Мто L	ble tolerand - Test: bllection Fil Settings\All st Scenario uber Bacc EVEL Exp EVEL Exp EVEL Exp	e Path Users\Shar ground bare	difference red Docum Testing	2.17 e results is ± ents\AutoQ Timeline Test Start 0929 1145 1145	- (0. & 20%. uant\Col	0.97	0.85 eec 5/h exp onte e	-12.9 58140 03 Dec 2 # Scans 185 174 191	
NOTE: T Data Ac AutoQui C:\Docur 1 C:\Docur 2 RD# 3 RD# 4 RD# 5 6 ANALYS	Te equisition ant Pro Co ments and S Te source Common z High L 2 Mits L 2 Low to ST NOTES	ble tolerand - Test: bllection Fil Settings\All st Scenario uber Bacc EVEL Exp EVEL Exp EVEL Exp	e Path Users\Shar ground bare ource ource	difference red Docum Testing	2.17 e results is \pm ents/AutoQ Timeline Test Start 0929 1145 1145 1145 1145	- 10.6 20%. uant\Col Time	0.97	0.85	-12.9 -12.9 -12.9 -12.9 -12.9 -140 -12.9 -12	
NOTE: T Data Ac AutoQui C:\Docur 1 C:\Docur 2 RD# 3 RD# 4 RD# 5 6 ANALYS	Te equisition ant Pro Co ments and S Te source Common z High L 2 Mits L 2 Low to ST NOTES	ble tolerand - Test: bllection Fil SettingsVAII st Scenario utor Bace evec Exp Evec Exp Evec Exp Evec Exp Evec Exp Evec Exp Evec Exp Evec Exp Evec Exp	e Path Users\Shar ground bare ource ource	te 11:15	2.17 e results is ± ents\AutoQ Timeline Test Start 0929 11:15 11:54:4 11:13	- 10.6 20%. uant\Col Time 15 * Samp	0.97	0.85	-12.9 -12.9 -12.9 -12.9 -12.9 -140 -12.9 -12	
NOTE: T Data Ac AutoQui C:\Docur 2 RD# 3 RD# 4 RD# 5 6 ANALYS SMOKE HigL	Te equisition ant Pro Co ments and s Te esure Com z HIGH L z HIGH L z LOW II ST NOTES Greenate > Animals	ble tolerand - Test: bllection Fil SettingsVAII st Scenario utor Bace evec Exp Evec Exp Evec Exp Evec Exp Set off C loaded G	e Path Users\Shar ground bare ooure ooure 0 ~ (1:13	te 11:15	2.17 e results is \pm ents/AutoQ Timeline Test Start 0929 1145 1145 1145 1145	- 10.6 20%. uant\Col Time 15 * Samp	0.97	0.85	-12.9 -12.9 -12.9 -12.9 -12.9 -140 -12.9 -12	
NOTE: T Data Ac AutoQui C:\Docur 2 RD# 3 RD# 4 RD# 5 6 ANALYS SMOKE HigL	Te equisition ant Pro Co ments and s Te esure Com z HIGH L z HIGH L z LOW II ST NOTES Greenate > Animals	ble tolerand - Test: bllection Fil SettingsVAII st Scenario ubor Bace EVEL EXP EVEL EXP EVEL EXP Set off (loaded ((Started) Sompling * Frib	e Path Users\Shar ground bare ooure ooure 0 ~ (1:13	te Iliis	2.17 e results is ± ents\AutoQ Timeline Test Start 0929 11:15 11:54:4 11:13	- 10.6 20%. uant\Col Time 15 * Samp	0.97 lect Kest Stop Tim 0959 11:43 12:24 1:43 12:24 1:43	0.85	-12.9 -12.9 -12.9 -12.9 -12.9 -140 -12.9 -12	

Genera	t: <u>M.C.</u> Il Test Infr ame: <u>Repe</u>	ormation: whed Dose Exp	Red Smo ≇_ Test Da	ke Inh ate:(alation	Stud		ustor	ner: <u>Mr. L</u>	ee Cro	ouse	2
FTIR In	formation	1:			. 1							
Instrum	ant Durge C			Daily St	art-up C				10100)			
	ent Purge C nterferomet		V						o 121°C) sampling)	11	14	par
Check L	N ₂ Dewar e	extender	V				ynchror		samping)	1	1.10	par
FTIR S	FTIR Serial # Sampling Position		Path	Pathlength		ZPD			Peak Min		Peak Max	
127	I274 Exposure Chamber		7.13	meters	51 77 0	1026			- 19300 1 (-).450V) 1		14000 (1.065V)	
14000 =	9600		12000 =	= 33400			SBR = 14000 / 12000 =		0.287			
								-				-1
Daily F	TIR Syste	m Checks:			_							_
1.00	1		Daily	Calibra	ation Ch	eck R	esults					
Gas		Level 1			Lev	vel 2				Leve	13	
Туре	Target (ppm)	Result (ppm)	% Diff	Targe (ppm		esult pm)	% D	iff	Target (ppm)	Resu (ppn		% Diff
CO ₂	1020	975	- 4.4	510	40	76	- 2	7	204	20		6-60
CO	500	v 481	-3.8	250		12	-3,0	0	100	V 100	>	0
NO SO ₂	24.8 4.85	24.7	-0.4	12.4		0	-3.5		5.0	4.7		- 4.1
		4.2 able tolerance	- 13.4	2.43 differer		29 Its is t	-14.1	0	0.97	0.8		-16.3
AutoQu		- Test: ollection File Settings\All U			umentsV		luant\Co	ollect	Λ			
	Te	est Scenario	6		Test	Start	Time		Stop Tim	ne	#	Scans
1 2D #	to Cum	BER BACK	round		10.	11:30	0	10:	42:56 F	TIR		192
2 RD#		LEVEL EXP	inevery		~ 11:			12	11:30 (AV	renyaces)	-	75
		LEVEL EXP	> Ao sta		1	1.00		~1	2:08 (SANG	ey.		
F *				21:30		26-			55:35	_	-	76
· VD	6_ LOW	LEVEL EX	Ρ		1.2	8:0	10	1:	57:40	-	()	76
					-	_		-			_	
5											-	
5 6 ANALYS	ST NOTES			1.1	00	10:1-	1:00	lable	ekyde tube	starte	6370	/FTIR)

FTIR In	formesti-				5-2015		ston			-
	ionnatio	n:								
Inctrumo	ent Purge (D	aily Start	-up Checkli Cell Heat	st ON /	ant to	12100)		
	iterferome		~	_	Cell Pres				1 1	1.52 pm
	N ₂ Dewar	and the second se	~		Clocks S			anipinig/	V /	1.sep
FTIR S	erial #	Sampling	Path	length	ZPE		F	Peak Min	Pe	ak Max
127	4	Position Exposure Chamber	7.13 1	7.13 meters		1076		500 .490V)	14200 (10090V)	
14000 = 10010			I ₂₀₀₀ =	34;	4270 SBR = 14000 / 1					
Daily F	TIR Syste	em Checks								
, 1		eneeko		Colibratio	D Chook D	oculto	-			
			Daily	Calibratio	on Check R	esuits				
Gas		Level 1				Level 2		Level 3		
Туре	Target (ppm)	Result (ppm)	% Diff	Target (ppm)	Result (ppm)	% Di	ff	Target (ppm)	Result (ppm)	% Diff
CO ₂	1020	972	-4.7	510	494	-3.2	-	204	206	0.9
CO	500	489	-2.2	250	244	-2.5		100	100	
NO	24.8					63			100	0.
NO	24.0	24.8	0	12.4	12.0	-3.6		5.0	4.77	- 4.7
SO2 NOTE: T	4.85	4.41 able toleranc	- 9.1	2.43	12.0	-3.6		5.0 0.97		
SO ₂ NOTE: T Data Ac	4.85 The accepta cquisition ant Pro C	4.41 able toleranc	- 9-1 e for the % c	2.43 difference d Docum	12.0 2.23 results is ±	-3.6 -8.1 20%.		0.97	4.77	- 4.7
SO ₂ NOTE: T Data Ac	4.85 The accepta ant Pro C ments and	4.41 able toleranc n - Test: ollection File	- 9- i e for the % c e Path Users∖Share	2.43 difference d Docum	12.0 2.23 results is ±	-3.6 -8.1 £20%.		0.97	4.77 6.80	- 4.7
SO2 NOTE: T Data Ac AutoQua C:\Docur	4.85 The accepta cquisition ant Pro C ments and Tr 10_ C++	4.41 able toleranc n - Test: ollection File SettingsVall I est Scenaric	- 9. (e for the % c e Path Users\Share	2.43 difference d Docum Testing	12.0 2.23 results is s ents\AutoQ Timeline	-3.6 -3.1 220%. uant\Co Time	llect\	0.97	4.77 0.99	- 4.7 - 9.5
SO2 NOTE: T Data Ac AutoQua C:\Docur	4.85 The accepta cquisition ant Pro C ments and Tr 10_ C++	4.41 able toleranc n - Test: ollection File SettingsVall I est Scenaric	- 9. (e for the % c e Path Users\Share	2.43 difference d Docum Testing	12.0 2.23 results is ± ents\AutoQ Timeline Test Start 094Z	-3.6 -3.1 220%. uant\Co Time	llect\	0.97 Stop Tim	4.77 0.99 e	- 4.7 - 9.5 # Scans
SO ₂ NOTE: T Data Ac AutoQua C:\Docur	4.85 The accepta ant Pro C ments and Tri t 10_ Cut	4.41 able toleranc n - Test: ollection File Settings/All I est Scenaric	- 9.1 e for the % o e Path Users\Share	2.43 difference d Docum Testing	12.0 2.23 results is d ents\AutoQ Timeline Test Start 0942 1039	-3.6 -3.1 220%. uant\Co Time	llect\	0.97 Stop Tim 107	4.77 0.86 e	- 4.7 - 9.5 # Scans 8 /6 7
SO2 NOTE: T Data Ac AutoQu: C:\Docur 1 2 2014 3	4.85 the accepta ant Pro C ments and Tri t 10_ Chy t 10_ Hat	4.41 able toleranc n - Test: ollection Fill SettingsVall est Scenaric Mutter Back Level Exp b Levez Ex	- 9.1 e for the % c e Path Users\Share kground	2.43 difference d Docum Testing	12.0 2.23 results is 3 ents\AutoQ Timeline Test Start 0942 1039 1158	-3.6 -3.1 220%. uant\Co Time	illect\	0.97 Stop Tim 1972 1107 12:27	4.77 0.86 e	- 4.7 - 9.5 # Scans
SO2 NOTE: T Data Ac AutoQu: C:\Docur 1 2 2014 3 24 25	4.85 the accepta ant Pro C ments and Tri t 10_ Chy t 10_ Hat	4.41 able toleranc n - Test: ollection File Settings/All I est Scenaric	- 9.1 e for the % c e Path Users\Share kground	2.43 difference d Docum Testing	12.0 2.23 results is d ents\AutoQ Timeline Test Start 0942 1039	-3.6 -3.1 220%. uant\Co Time	illect\	0.97 Stop Tim 107	4.77 0.86 e	- 4.7 - 9.5 # Scans 8 /6 7
SO2 NOTE: T Data Ac AutoQu: C:\Docur 1 2 2014 3	4.85 the accepta ant Pro C ments and Tri t 10_ Chy t 10_ Hat	4.41 able toleranc n - Test: ollection Fill SettingsVall est Scenaric Mutter Back Level Exp b Levez Ex	- 9.1 e for the % c e Path Users\Share kground	2.43 difference d Docum Testing	12.0 2.23 results is 3 ents\AutoQ Timeline Test Start 0942 1039 1158	-3.6 -3.1 220%. uant\Co Time	illect\	0.97 Stop Tim 1972 1107 12:27	4.77 0.86 e	- 4.7 - 9.5 # Scans 8 /6 7

b. " " MED " @ 11-57:10 c. " Low " @ 12:57:20

Equipment	Serial Number	Calibration Expiration
Environics Model 2040 Gas Mixer	2619	03 Feb 2016
DryCal Flowmeter	4318	13 Sept 2016


Table A.1 – Miscellaneous Equipment Calibration Information

Project Title: Red Smoke Inhalation Toxicology Study Project Number: D0802 (FSAB Customer Test) Customer: Mr. Lee Crouse Test Report Number: 2017-FSAB-001

			600 Un Cinnar (856) 83	as Specialty Gases ion Landing Road hinson, NJ 08077 29-7878 Fax: (856) 829-6576 rgas.com
E05NI98E15A0000 CC107061 ASG - Riverton - NJ B52013 CO,CO2,NO,SO2,BAL	Refe Cylir Cylir Valv N Cert	erence Number: nder Volume: nder Pressure: e Outlet: ification Date:	82-124390646-1 144.9 CF 2015 PSIG 660 Sep 05, 2013	
the assay procedures listed. Analy slow with a confidence level of 95%	tical Methodology does not r There are no significant imp volume/volume basis unle	equire correction for an purities which affect the ess otherwise noted.	nalytical interference. This a use of this calibration mix	cylinder has a total analytical
Requested Concentration	ANALYTICAL Actual Concentration	RESULTS Protocol Method	Total Relative Uncertainty	Assay Dates
250.0 PPM	248.3 PPM	G1	+/- 0.6% NIST	08/29/2013, 09/05/2013
50.00 PPM	48.53 PPM	G1	+/- 1.1% NIST	08/29/2013, 09/05/201
250.0 PPM	248.2 PPM	G1	+/- 0.6% NIST	08/29/2013, 09/05/2013
5000 PPM	4998 PPM	G1	+/- 1.0% NIST	09/05/2013
1.000 %	1.020 %	G1	+/- 0.5% NIST	09/03/2013
Balance			110000010	
	CALIBRATION S	STANDARDS		a transfer
				Expiration Date
				Apr 24, 2018
				Feb 14, 2012 May 04, 2018
				Apr 08, 2016
CC401984				Feb 15, 2019
XC018380B			+/- 0.4%	Mar 21, 2018
pove is only in reference to the GMI	S used in the assay and not	part of the analysis.		And a second
odel	Analytical Principle	e de la construcción de la constru	point Calibration	
02-N1-N0-0820	NDIR	Aug 03, 201		
Siemens Ultramat 6 N1C8180 COHIGH Nicolet 6700 APW1100391 NO		NDIR Aug 09, 2013		
	FTIR Aug 23, 2013 FTIR Aug 23, 2013			
	FTIR	Aug 22 204		
	Ade of Produce E05NI98E15A0000 CC107061 ASG - Riverton - NJ B52013 CO,CO2,NO,SO2,BAL Expira Red in accordance with "EPA Trace the assay produces listed. Analy show with a confidence level of 95% Do Not Requested Concentration 250.0 PPM 5000 PPM 250.0 PPM 5000 PPM 1.000 % Balance Cylinder No CC352180 680179 CC352737 105 CC322664 CC401984 XC018380B pove is only in reference to the GMU	ACC	CC107061 Cylinder Volume: ASG - Riverton - NJ Cylinder Pressure: B52013 Valve Outlet: CO,CO2,NO,SO2,BALN Certification Date: Expiration Date: Sep 05, 2017 Inde in accordance with "EPA Traceability Protocol for Assay and Certification of Gase on require correction for an significant impunities which affect the assay procedures listed. Analytical Methodology does not require correction for an solution with a confidence level of 95%. There are no significant impunities which affect the volume basis unless otherwise neted. Do Not Use This Cylinder below 100 psig. Let 0.7 megaps Requested Actual Concentration Protocol Method 250.0 PPM 248.3 PPM G1 50.00 PPM 48.53 PPM G1 50.00 PPM 48.53 PPM G1 100 % 1.020 % G1 Balance Concentration G1 Cylinder No Concentration G1 C322664 50.10 PPM NUTROGEN DIOXIDE/NITROGEN G80179 10.01 PPM NITROGEN DIOXIDE/NITROGEN G630179 106 C322664 4.879 PPM NITROGEN DIOXIDE/NITROGEN G20.800000000000000000000000000000000000	Character of Product: EPA Protocol Ginara (1989) Control of Product: EPA Protocol Ginara (1989) Control of Control of Collider Volume: 144.9 CF Science Number: 221243006661 Control of Control of Collider Volume: 144.9 CF Science Number: 2015 PSIG B52013 Valve Outlet: 660 Co, Co, Co, N, SO, Z, BALN Certification Date: Sep 05, 2013 Expiration Date: Sep 05, 2017 Expiration Date: Sep 05, 2013 India accordance with 'EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards, the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This show with a confidence level of 95%. There are no significant impurites withe affect the uses of the calibration muture volume/volume basis unless otherwise neter. Do Not Use This Cylinder below 100 psig. Le. 0.7 megapacats. Concentration Method Uncertainty 250.0 PPM 248.3 PPM G1 +/- 0.6% NIST S000 PPM 48.53 PPM G1 +/- 0.6% NIST S000 PPM 4998 PPM G1 +/- 0.6% NIST S000 PPM 4998 PPM G1 +/- 0.6% NIST Traceable Data Collocation Uncertainty Balance Collopen NTROGEN DIOXIDE/NITROGEN +/- 0.6% <tr< td=""></tr<>

Figure A1 - Calibration Check Gas Certificate of Analysis

APPENDIX B - Aldehyde Analytical Reports

Mike Chapman	ATEC Project # 2015-DT-ATC-DODSP-G1491	Report #: 2015-CC-292
400 Colleran Road, B363	ATEC Project Title: FY15 DOD General Laboratory	Report Date: 21-May-2015
APG, MD 21005	Support	CARACTER TO CORP. SE
michael.a.chapman.civ@mail.mil		

Five samples from the Red Smoke Inhalation Toxicity Study were submitted, in acceptable condition, to determine the concentration of carbonyls generated during the test.

2.0 Summary

Results are posted in the tables below. No concentrations of carbonyls above the reporting limit were detected in the back tubes or the field blank. It should be noted that acrolein has shown historically low recoveries in the collection media used for this test. All quality control checks performed with this analysis were within the tolerance limits of the laboratory.

3.0 Results/Analysis

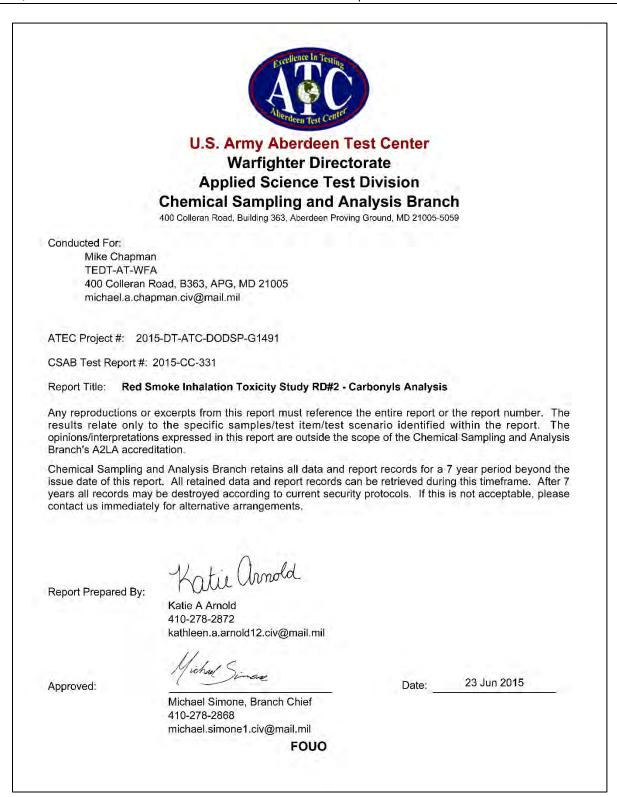
		Air Volur	ceived: 04- ne: 10.68 L f Sampling:	Air	
Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
26.08 ppm Air	D		05/06/15	Mod TO-11A	
14.64 ppm Air	D		05/06/15	Mod TO-11A	
0.28 ppm Air			05/06/15	Mod TO-11A	
0.58 ppm Air	ML		05/06/15	Mod TO-11A	
0.73 ppm Air			05/06/15	Mod TO-11A	
0.65 ppm Air			05/06/15	Mod TO-11A	
<0.48 ppm Air			05/06/15	Mod TO-11A	
<0.32 ppm Air			05/06/15	Mod TO-11A	
<0.40 ppm Air			05/06/15	Mod TO-11A	
<0.40 ppm Air			05/06/15	Mod TO-11A	
and the second			05/06/15	Mod TO-11A	
<0.34 ppm Air			05/06/15	Mod TO-11A	
<0.26 ppm Air			05/06/15	Mod TO-11A	
corrected for dilutions.	s.				
	26.08 ppm Air 14.64 ppm Air 0.28 ppm Air 0.58 ppm Air 0.73 ppm Air 0.65 ppm Air <0.48 ppm Air <0.48 ppm Air <0.40 ppm Air <0.40 ppm Air <0.40 ppm Air <0.40 ppm Air <0.40 ppm Air <0.40 ppm Air <0.32 ppm Air <0.40 ppm Air	26.08 ppm Air D 14.64 ppm Air D 0.28 ppm Air D 0.58 ppm Air ML 0.73 ppm Air 0.65 ppm Air 0.65 ppm Air	Result Qualifier Uncertainty 26.08 ppm Air D 14.64 ppm Air D 0.28 ppm Air D 0.28 ppm Air D 0.73 ppm Air ML 0.73 ppm Air O 0.65 ppm Air - <0.48	Result Qualifier Uncertainty Date of Analysis 26.08 ppm Air D 05/06/15 14.64 ppm Air D 05/06/15 0.28 ppm Air D 05/06/15 0.28 ppm Air ML 05/06/15 0.58 ppm Air ML 05/06/15 0.73 ppm Air ML 05/06/15 0.65 ppm Air 05/06/15 05/06/15 <0.48 ppm Air	Length of Sampling: 30 min Result Qualifier Uncertainty Date of Analysis Test Method 26.08 ppm Air D 05/06/15 Mod TO-11A 14.64 ppm Air D 05/06/15 Mod TO-11A 0.28 ppm Air D 05/06/15 Mod TO-11A 0.28 ppm Air ML 05/06/15 Mod TO-11A 0.58 ppm Air ML 05/06/15 Mod TO-11A 0.73 ppm Air ML 05/06/15 Mod TO-11A 0.65 ppm Air 05/06/15 Mod TO-11A 05/06/15 Mod TO-11A 0.65 ppm Air 05/06/15 Mod TO-11A 05/06/15 Mod TO-11A 0.48 ppm Air 05/06/15 Mod TO-11A 05/06/15 Mod TO-11A <0.32 ppm Air

Scenario & Trial #: 1 Date Received: 04-May-15 Air Volume: 10.68 L Air Length of Sampling: 30 min Date of Result Qualifier Uncertainty Test Method Test Specification Analysis Formaldehyde <1.14 ppm Air Mod TO-11A 05/06/15 Acetaldehyde <0.78 ppm Air 05/06/15 Mod TO-11A <0.59 ppm Air Acetone 05/06/15 Mod TO-11A Acrolein <0.61 ppm Air ML 05/06/15 Mod TO-11A Propionaldehyde <0.59 ppm Air 05/06/15 Mod TO-11A Crotonaldehyde <0.49 ppm Air 05/06/15 Mod TO-11A Butyraldehyde <0.48 ppm Air 05/06/15 Mod TO-11A Page 2 of 4 FOUO

Mike Chapman 400 Colleran Road, B363 APG, MD 21005 michael.a.chapman.civ@ma	ATE		2015-DT-ATC-I FY15 DOD 0 Support			015-CC-292 21-May-2015
Description: Acute I	Exp_1 (Back) (con	tinued)	Sample ID:	S-150519	-00052	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Benzaldehyde	<0.32 ppm Air			05/06/15	Mod TO-11A	
Isovaleraldehyde	<0.40 ppm Air			05/06/15	Mod TO-11A	
Valeraldehyde	<0.40 ppm Air			05/06/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.29 ppm Air			05/06/15	Mod TO-11A	
Hexaldehyde	<0.34 ppm Air			05/06/15	Mod TO-11A	
2,5-DMB	<0.26 ppm Air			05/06/15	Mod TO-11A	
ML = Result may be biase	ed low due to matrix effect	5.				
Description: Acute E	Exp_2 (Front)		Sample	ID: S-150	519-00053	
Position: Acute Exp_2	(Front)		Date Sar	mpled: 29-/	Apr-15	
Scenario & Trial #: 2			Date Red	ceived: 04-	May-15	
Contraction of the second second				ne: 11.3 L/		
			and the second second	f Sampling:		
Test	Result	Qualifier	Uncertainty	Date of	Test Method	Specification
		30.8 0.8 0.8	ondertainty	Analysis		opedition
Formaldehyde	26.15 ppm Air	D		05/06/15	Mod TO-11A	
Acetaldehyde	12.04 ppm Air	D		and the local sector of th	Mod TO-11A	
Acetone Acrolein	0.77 ppm Air	641		05/06/15	Mod TO-11A	
Propionaldehyde	<0.58 ppm Air 0.15 ppm Air	ML.		05/06/15	Mod TO-11A Mod TO-11A	
Crotonaldehyde	0.57 ppm Air			05/06/15	Mod TO-11A	
Butyraldehyde	<0.45 ppm Air			05/06/15	Mod TO-11A	
Benzaldehyde	<0.31 ppm Air			05/06/15	Mod TO-11A Mod TO-11A	
Isovaleraldehyde	<0.38 ppm Air			05/06/15	Mod TO-11A	
Valeraldehyde	<0.38 ppm Air			05/06/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.27 ppm Air			05/06/15	Mod TO-11A	
Hexaldehyde	<0.32 ppm Air			05/06/15	Mod TO-11A	
2.5-DMB	<0.24 ppm Air			05/06/15	Mod TO-11A	
D = Sample diluted; result	and the second se			50,00,70		
ML = Result may be biase		5,				
Description: Acute E	Exp 2 (Back)		Sample	ID: S-150	519-00054	
Position: Acute Exp_2				mpled: 29-/		
Scenario & Trial #: 2	(Davis)			ceived: 04-		
Scenario & Inar#. 2						
				ne: 11.3 L / f Sampling:		
Test	Result	Qualifier	Uncertainty	Date of	Test Method	Specification
Formaldehyde	<1.08 ppm Air	10000		Analysis 05/06/15	Mod TO-11A	
Acetaldehyde	<0.74 ppm Air			05/06/15	Mod TO-11A	
Acetone	<0.56 ppm Air			05/06/15	Mod TO-11A	
Acrolein	<0.58 ppm Air	ML		05/06/15	Mod TO-11A	
Propionaldehyde	<0.56 ppm Air	NOL.		05/06/15	Mod TO-11A	
Crotonaldehyde	<0.46 ppm Air			05/06/15	Mod TO-11A	
Service and the service of the servi	<0.45 ppm Air			05/06/15	Mod TO-11A	
Butyraldehyde	10 10 ppm An			05/06/15	Mod TO-11A	
Butyraldehyde Benzaldehyde	<0.31 ppm Air					
Benzaldehyde	<0.31 ppm Air <0.38 ppm Air			and the second second	A CARE OF CONTRACT	
	<0.31 ppm Air <0.38 ppm Air	Page 3	-64	05/06/15	Mod TO-11A	

Mike Chapman	ATEC Project #: 2015-DT-ATC-DODSP-G1491	Report #: 2015-CC-292
400 Colleran Road, B363 APG, MD 21005 michael.a.chapman.civ@mail.mil	ATEC Project Title: FY15 DOD General Laboratory Support	Report Date: 21-May-2015

Description: Acute Exp_2 (Back) (continued)	Sample ID: S-150519-00054	
	Data d	_


Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Valeraldehyde	<0.38 ppm Air			05/06/15	Mod TO-11A	
o,m.p-Tolualdehyde	<0.27 ppm Air			05/06/15	Mod TO-11A	
Hexaldehyde	<0.32 ppm Air			05/06/15	Mod TO-11A	
2,5-DMB	<0.24 ppm Air			05/06/15	Mod TO-11A	

ML = Result may be biased low due to matrix effects.

Description: Field E Position: Field Blank	Blank		Date Sar	ID: S-150 mpled: 29-/ ceived: 04-	Apr-15	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	<15.00 ug/sample			05/06/15	Mod TO-11A	
Acetaldehyde	<15.00 ug/sample			05/06/15	Mod TO-11A	
Acetone	<15.00 ug/sample			05/06/15	Mod TO-11A	
Acrolein	<15.00 ug/sample	ML		05/06/15	Mod TO-11A	
Propionaldehyde	<15.00 ug/sample			05/06/15	Mod TO-11A	
Crotonaldehyde	<15.00 ug/sample			05/06/15	Mod TO-11A	
Butyraldehyde	<15.00 ug/sample			05/06/15	Mod TO-11A	
Benzaldehyde	<15.00 ug/sample			05/06/15	Mod TO-11A	
Isovaleraldehyde	<15.00 ug/sample			05/06/15	Mod TO-11A	
Valeraldehyde	<15.00 ug/sample			05/06/15	Mod TO-11A	
o,m,p-Tolualdehyde	<45.00 ug/sample			05/06/15	Mod TO-11A	
Hexaldehyde	<15.00 ug/sample			05/06/15	Mod TO-11A	
2,5-DMB	<15.00 ug/sample			05/06/15	Mod TO-11A	

ML = Result may be biased low due to matrix effects.

Page 4 of 4 FOUO

Mike Chapman	ATEC Project # 2015-DT-ATC-DODSP-G1491	Report #: 2015-CC-331
400 Colleran Road, B363	ATEC Project Title: FY15 DOD General Laboratory	Report Date: 23-Jun-2015
APG, MD 21005	Support	Case of the other than the
michael.a.chapman.civ@mail.mil		

Ten samples from the Red Smoke Inhalation Toxicity Study were submitted, in acceptable condition, to determine the concentration of carbonyls generated during the test.

2.0 Summary

Results are posted in the tables below. It should be noted that acrolein has shown historically low recoveries in the collection media used for this test. All quality control checks performed with this analysis were within the tolerance limits of the laboratory which the exception of the media spike for butyraldehyde.

3.0 Results/Analysis

Position: Chamber Bac Event #: RD #2	Chamber Backgro	und	Date Sar Date Rec Air Volun	npled: 03- ceived: 04- ne: 27.54 L f Sampling:	Jun-15 Air	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	<0.44 ppm Air			06/04/15	Mod TO-11A	
Acetaldehyde	<0.30 ppm Air			06/04/15	Mod TO-11A	
Acetone	<0.23 ppm Air			06/04/15	Mod TO-11A	
Acrolein	<0.24 ppm Air	ML		06/04/15	Mod TO-11A	
Propionaldehyde	<0.23 ppm Air			06/04/15	Mod TO-11A	
Crotonaldehyde	<0.19 ppm Air			06/04/15	Mod TO-11A	
Butyraldehyde	<0.18 ppm Air	MH		06/04/15	Mod TO-11A	
Benzaldehyde	<0.13 ppm Air			06/04/15	Mod TO-11A	
Isovaleraldehyde	<0.15 ppm Air			06/04/15	Mod TO-11A	
Valeraldehyde	<0.15 ppm Air			06/04/15	Mod TO-11A	
o.m.p-Tolualdehyde	<0.11 ppm Air			06/04/15	Mod TO-11A	
Hexaldehyde	<0.13 ppm Air			06/04/15	Mod TO-11A	
2,5-DMB	<0.10 ppm Air			06/04/15	Mod TO-11A	

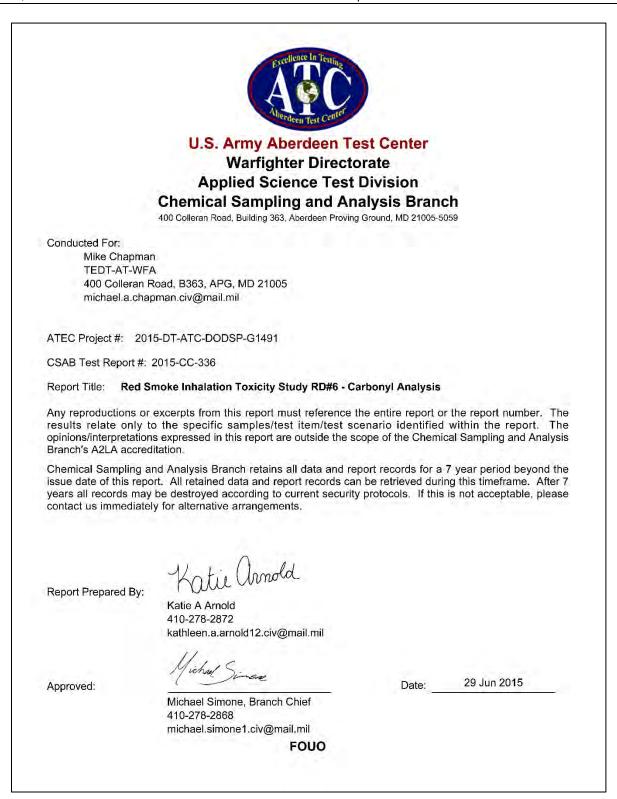
Description: RD#2 Position: High (Front) Scenario & Trial #: 1 Event #: RD #2			Date Sar Date Rec Air Volun	ID: S-1506 npled: 03 ceived: 04- ne: 14.97 L f Sampling:	Jun-15 Air	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	23.77 ppm Air	D	100 C	06/04/15	Mod TO-11A	10 Contract 10 Contract
Acetaldehyde	14.32 ppm Air	D		06/04/15	Mod TO-11A	
Acetone	0.13 ppm Air			06/04/15	Mod TO-11A	
Acrolein	1.79 ppm Air	ML.		06/04/15	Mod TO-11A	
Propionaldehyde	0.54 ppm Air			06/04/15	Mod TO-11A	
Crotonaldehyde	0.59 ppm Air			06/04/15	Mod TO-11A	
Butyraldehyde	<0.34 ppm Air	MH		06/04/15	Mod TO-11A	
		Page 2 FOI				

michael.a.chapman.civ@mail.	0.01					
Description: RD#2_Hi	gh_1 (Front) (cont	inued)	Sample ID		4-00002	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Benzaldehyde	<0.23 ppm Air			06/04/15	Mod TO-11A	and the second se
Isovaleraldehyde	<0.28 ppm Air			06/04/15	Mod TO-11A	
Valeraldehyde	<0.28 ppm Air			06/04/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.20 ppm Air			06/04/15	Mod TO-11A	
Hexaldehyde	<0.24 ppm Air			06/04/15	Mod TO-11A	
2,5-DMB	<0.18 ppm Air			06/04/15	Mod TO-11A	
D = Sample diluted; results of MH = Result may be biased ML = Result may be biased I	high due to matrix effects					
Description: RD#2_Hig	h 1 (Back)		Sample	ID: S-150	604-00003	
Position: High (Back)	and the second			mpled: 03-		
Scenario & Trial #: 1				ceived: 04-		
Event #: RD #2				ne: 14.97 L		
			A CONTRACTOR OF CONTRACTOR	f Sampling:		
Test	Result	Qualifier	Uncertainty	Date of	Test Method	Specification
Formaldehyde	<0.82 ppm Air			Analysis 06/04/15	Mod TO-11A	
Acetaldehyde	<0.56 ppm Air			06/04/15	Mod TO-11A	
Acetone	<0.42 ppm Air			06/04/15	Mod TO-11A	
Acrolein	<0.44 ppm Air	ML		06/04/15	Mod TO-11A	
Propionaldehyde	<0.42 ppm Air			06/04/15	Mod TO-11A	
Crotonaldehyde	<0.35 ppm Air			06/04/15	Mod TO-11A	
Butyraldehyde	<0.34 ppm Air	MH		06/04/15	Mod TO-11A	
Benzaldehyde	<0.23 ppm Air			06/04/15	Mod TO-11A	
Isovaleraldehyde	<0.28 ppm Air			06/04/15	Mod TO-11A	
Valeraldehyde	<0.28 ppm Air			06/04/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.20 ppm Air			06/04/15	Mod TO-11A	
Hexaldehyde	<0.24 ppm Air			06/04/15	Mod TO-11A	
2,5-DMB	<0.18 ppm Air			06/04/15	Mod TO-11A	
MH = Result may be biased ML = Result may be biased I	and the second second second second second					
Description: RD#2 High	gh 2 (Front)		Sample	ID: S-150	604-00004	
Position: High (Front)			Date Sar	mpled: 03	Jun-15	
Scenario & Trial #: 2			Date Red	ceived: 04-	Jun-15	
Event #: RD #2			Air Volun	ne: 16.83 L	Air	
			Length o	f Sampling:	30 min	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	21.22 ppm Air	D		06/04/15	Mod TO-11A	2.1
Acetaldehyde	12.17 ppm Air	D		06/04/15	Mod TO-11A	
Acetone	<0.38 ppm Air			06/04/15	Mod TO-11A	
Acrolein	1.76 ppm Air	ML.		06/04/15	Mod TO-11A	
Propionaldehyde	0.45 ppm Air			06/04/15	Mod TO-11A	
Crotonaldehyde	0.52 ppm Air			06/04/15	Mod TO-11A	
Butyraldehyde	<0.30 ppm Air	MH		06/04/15	Mod TO-11A	

Mike Chapman 400 Colleran Road, B363 APG, MD 21005 michael.a.chapman.civ@mai	ATEC		EY15 DOD (Support	DODSP-G149 Seneral Labora		715-CC-331 23-Jun-2015
Description: RD#2_H	igh 2 (Front) (cont	inued)	Sample ID): S-15060	4-00004	
Test	Result	S 175 7	Uncertainty	Date of Analysis	Test Method	Specification
Benzaldehyde	<0.21 ppm Air			06/04/15	Mod TO-11A	
isovaleraldehyde	<0.25 ppm Air			06/04/15	Mod TO-11A	
Valeraldehyde	<0.25 ppm Air			06/04/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.18 ppm Air			06/04/15	Mod TO-11A	
Hexaldehyde	< 0.22 ppm Air			06/04/15	Mod TO-11A	
2,5-DMB	<0.16 ppm Air			06/04/15	Mod TO-11A	
D = Sample diluted; results MH = Result may be biased ML = Result may be biased	d high due to matrix effects					
Description: RD#2_H	igh 2 (Back)		Sample	ID: S-1506	604-00005	
Position: High (Back)			Date Sar	npled: 03-	Jun-15	
Scenario & Trial #: 2				eived: 04-		
Event #: RD #2				ne: 16.83 L	and the second se	
				f Sampling:		
2.1.				Date of	THE REPORT OF THE REPORT OF	-
Test	Result	Qualifier	Uncertainty	Analysis	Test Method	Specification
Formaldehyde	<0.73 ppm Air			06/04/15	Mod TO-11A	
Acetaldehyde	<0.49 ppm Air			06/04/15	Mod TO-11A	
Acetone	<0.38 ppm Air			06/04/15	Mod TO-11A	
Acrolein	<0.39 ppm Air	ML		06/04/15	Mod TO-11A	
Propionaldehyde	<0.38 ppm Air			06/04/15	Mod TO-11A	
Crotonaldehyde	<0.31 ppm Air	1.1.1		06/04/15	Mod TO-11A	
Butyraldehyde	<0.30 ppm Air	MH		06/04/15	Mod TO-11A	
Benzaldehyde	<0.21 ppm Air			06/04/15	Mod TO-11A	
Isovaleraldehyde	<0.25 ppm Air			06/04/15	Mod TO-11A	
Valeraldehyde	<0.25 ppm Air			06/04/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.18 ppm Air			06/04/15	Mod TO-11A	_
Hexaldehyde	<0.22 ppm Air			06/04/15	Mod TO-11A	
2,5-DMB	<0.16 ppm Air			06/04/15	Mod TO-11A	
MH = Result may be biased ML = Result may be biased	and the second with the second s					
Description: RD#2_M	led 1 (Front)		Sample	ID: S-1506	604-00006	
Position: Med (Front)			Date Sar	mpled: 03	Jun-15	
Scenario & Trial #: 1			Date Red	ceived: 04-	Jun-15	
Event #: RD #2				ne: 17.01 L	a ann ann	
LYGILW. NO WE				f Sampling:		
				Date of		
Test	Result	2.91.9.9.3	Uncertainty	Analysis	Test Method	Specification
Formaldehyde	17.57 ppm Air	D		06/04/15	Mod TO-11A	
Acetaldehyde	11.72 ppm Air	D		06/04/15	Mod TO-11A	
Acetone	0.18 ppm Air	141		06/04/15	Mod TO-11A	
Acrolein	1.57 ppm Air	ML.		06/04/15	Mod TO-11A	
Propionaldehyde	0.54 ppm Air			06/04/15	Mod TO-11A	
Crotonaldehyde	0.66 ppm Air			06/04/15	Mod TO-11A	
Butyraldehyde	<0.30 ppm Air	МН	1.16	06/04/15	Mod TO-11A	
		Page 4 FOI				

400 Colleran Road, B363 APG, MD 21005 michael.a.chapman.civ@n		a service as	E FY15 DOD (Support	and a second second second		23-Jun-2015
Description: RD#2	Med 1 (Front) (con	tinued)	Sample ID	: S-150604	4-00006	
Test	Result		Uncertainty	Date of Analysis	Test Method	Specification
Benzaldehyde	<0.20 ppm Air			06/04/15	Mod TO-11A	
Isovaleraldehyde	<0.25 ppm Air			06/04/15	Mod TO-11A	
Valeraldehyde	<0.25 ppm Air			06/04/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.18 ppm Air			06/04/15	Mod TO-11A	
Hexaldehyde	<0.22 ppm Air			06/04/15	Mod TO-11A	
2,5-DMB	<0.16 ppm Air			06/04/15	Mod TO-11A	
and the second	Its corrected for dilutions. sed high due to matrix effected low due to matrix effects					
Description: RD#2_	Med 1 (Back)		Sample	ID: S-150	604-00007	
Position: Med (Back)	and a second			mpled: 03-		
Scenario & Trial #: 1				eived: 04-		
Event #: RD #2			Air Volun	ne: 17.01 L	Air	
				f Sampling:		
Test	Popult	Ouglifier	Uncertainty	Date of	Test Method	Specification
	Result	Qualmer	Uncertainty	Analysis		Specification
Formaldehyde	<0.72 ppm Air			06/04/15	Mod TO-11A	_
Acetaldehyde	<0.49 ppm Air			06/04/15	Mod TO-11A	
Acetone	<0.37 ppm Air			06/04/15	Mod TO-11A	_
Acrolein	<0.38 ppm Air	ML		06/04/15	Mod TO-11A	
Propionaldehyde	<0.37 ppm Air			06/04/15	Mod TO-11A	
Crotonaldehyde	<0.31 ppm Air	MH		06/04/15	Mod TO-11A	
Butyraldehyde	<0.30 ppm Air	IVIT		06/04/15	Mod TO-11A Mod TO-11A	
Benzaldehyde	<0.20 ppm Air <0.25 ppm Air			06/04/15	Mod TO-11A	
Isovaleraldehyde Valeraldehyde	<0.25 ppm Air			06/04/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.18 ppm Air			06/04/15	Mod TO-11A	
Hexaldehyde	<0.22 ppm Air			06/04/15	Mod TO-11A	
2.5-DMB	<0.16 ppm Air			06/04/15	Mod TO-11A	
MH = Result may be bias	sed high due to matrix effects ed low due to matrix effects			200.010	Mag 1 a min	
Description: RD#2_	Low 1 (Front)		Sample	ID: S-150	604-00008	
Position: Low (Front)			And the second s	npled: 03-		
Scenario & Trial #: 1				eived: 04-		
Event #: RD #2				ne: 17.7 L/		
Event#. KU#2						
			Length o	f Sampling:	30 min	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	12.69 ppm Air	D		06/04/15	Mod TO-11A	1. Sec
Acetaldehyde	10.67 ppm Air	D		06/04/15	Mod TO-11A	
Acetone	1.37 ppm Air			06/04/15	Mod TO-11A	
Acrolein	1.14 ppm Air	ML.		06/04/15	Mod TO-11A	
Propionaldehyde	0.56 ppm Air			06/04/15	Mod TO-11A	
Crotonaldehyde	0,76 ppm Air			06/04/15	Mod TO-11A	
Butyraldehyde	0.16 ppm Air	MH		06/04/15	Mod TO-11A	
		Page 5				

Description: RD#2_	Low_1 (Front) (con	tinued)	Sample ID	: S-150604	4-00008	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Benzaldehyde	0.05 ppm Air			06/04/15	Mod TO-11A	
Isovaleraldehyde	<0.24 ppm Air			06/04/15	Mod TO-11A	
Valeraldehyde	<0.24 ppm Air			06/04/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.17 ppm Air			06/04/15	Mod TO-11A	
Hexaldehyde	<0.21 ppm Air			06/04/15	Mod TO-11A	
2,5-DMB	<0.15 ppm Air			06/04/15	Mod TO-11A	
	ts corrected for dilutions. ed high due to matrix effec ed low due to matrix effects					
Description: RD#2_I	Low 1 (Back)		Sample	ID: S-1506	504-00009	
Position: Low (Back)				mpled: 03-		
Scenario & Trial #: 1				ceived: 04-		
Event #: RD #2				ne: 17.7 L/		
				f Sampling:		
Test	Result	Qualifier	Uncertainty	Date of	Test Method	Specification
Formaldehyde	<0.69 ppm Air			Analysis 06/04/15	Mod TO-11A	
Acetaldehyde	<0.47 ppm Air			06/04/15	Mod TO-11A	
Acetone	<0.36 ppm Air			06/04/15	Mod TO-11A	
Acrolein	<0.37 ppm Air	ML		06/04/15	Mod TO-11A	
Propionaldehyde	<0.36 ppm Air	with the second s		06/04/15	Mod TO-11A	
Crotonaldehyde	<0.30 ppm Air			06/04/15	Mod TO-11A	
Butyraldehyde	<0.29 ppm Air	MH		06/04/15	Mod TO-11A	
Benzaldehyde	<0.20 ppm Air			06/04/15	Mod TO-11A	
Isovaleraldehyde	<0.24 ppm Air			06/04/15	Mod TO-11A	
Valeraldehyde	<0.24 ppm Air			06/04/15	Mod TO-11A	
o.m.p-Tolualdehyde	<0.17 ppm Air			06/04/15	Mod TO-11A	
Hexaldehyde	<0.21 ppm Air			06/04/15	Mod TO-11A	
2,5-DMB	<0.15 ppm Air			06/04/15	Mod TO-11A	
and a state of the state of the state of	ed high due to matrix effec ed low due to matrix effects Field Blank		Date Sar	ID: S-1506 mpled: 03 ceived: 04-	Jun-15	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	<15.00 ug/sample		_	06/04/15	Mod TO-11A	
Acetaldehyde	<15.00 ug/sample			06/04/15	Mod TO-11A	
Acetone	<15.00 ug/sample	8.41		06/04/15	Mod TO-11A	
	<15.00 ug/sample <15.00 ug/sample	ML		06/04/15	Mod TO-11A	
Acrolein	< 15.00 ud/sample			06/04/15	Mod TO-11A	
Acrolein Propionaldehyde				00/04/15	Mod TO-11A	
Acrolein Propionaldehyde Crotonaldehyde	<15.00 ug/sample	ML		06/04/45	Mod TO 11A	
Acrolein Propionaldehyde Crotonaldehyde Butyraldehyde	<15.00 ug/sample <15.00 ug/sample	мн		06/04/15	Mod TO-11A	
Acrolein Propionaldehyde Grotonaldehyde	<15.00 ug/sample	МН		06/04/15 06/04/15 06/04/15	Mod TO-11A Mod TO-11A Mod TO-11A	_


Mike Chapman	ATEC Project # 2015-DT-ATC-DODSP-G1491	Report #: 2015-CC-331
400 Colleran Road, B363	ATEC Project Title: FY15 DOD General Laboratory	Report Date: 23-Jun-2015
APG, MD 21005	Support	Control of the Day of the Large of the State
michael.a.chapman.civ@mail.mil		

Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Valeraldehyde	<15.00 ug/sample			06/04/15	Mod TO-11A	
o.m.p-Tolualdehyde	<45.00 ug/sample			06/04/15	Mod TO-11A	
Hexaldehyde	<15.00 ug/sample			06/04/15	Mod TO-11A	
2,5-DMB	<15.00 ug/sample			06/04/15	Mod TO-11A	

MH = Result may be biased high due to matrix effects

ML = Result may be biased low due to matrix effects

Page 7 of 7 FOUO

Mike Chapman	ATEC Project # 2015-DT-ATC-DODSP-G1491	Report #: 2015-CC-336
400 Colleran Road, B363	ATEC Project Title: FY15 DOD General Laboratory	Report Date: 29-Jun-2015
APG, MD 21005	Support	Conversion of the conversion
michael.a.chapman.civ@mail.mil		

Seven samples from the Red Smoke Inhalation Toxicity Study were submitted, in acceptable condition, to determine the concentration of carbonyls generated during the test.

2.0 Summary

Results are posted in the tables below. It should be noted that acrolein has shown historically low recoveries in the collection media used for this test. All quality control checks performed with this analysis were within the tolerance limits of the laboratory with the exception of the media spikes for acrolein and crotonaldehyde.

3.0 Results/Analysis

Event #: RD #6			Date Rec Air Volur Length o	Air		
Fest	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	0.17 ppm Air			06/16/15	Mod TO-11A	
Acetaldehyde	<0.30 ppm Air			06/16/15	Mod TO-11A	
Acetone	<0.23 ppm Air			06/16/15	Mod TO-11A	
Acrolein	<0.23 ppm Air	ML		06/16/15	Mod TO-11A	
Propionaldehyde	<0.23 ppm Air			06/16/15	Mod TO-11A	
Crotonaldehyde	<0.19 ppm Air	ML		06/16/15	Mod TO-11A	
Butyraldehyde	<0.18 ppm Air			06/16/15	Mod TO-11A	
Benzaldehyde	<0.12 ppm Air			06/16/15	Mod TO-11A	
Isovaleraldehyde	<0.15 ppm Air			06/16/15	Mod TO-11A	
Valeraldehyde	<0.15 ppm Air			06/16/15	Mod TO-11A	
o.m.p-Tolualdehyde	<0.11 ppm Air			06/16/15	Mod TO-11A	
Hexaldehyde	<0.13 ppm Air			06/16/15	Mod TO-11A	
2,5-DMB	<0.10 ppm Air			06/16/15	Mod TO-11A	
ML = Result may be biase	d low due to matrix effect	5.				

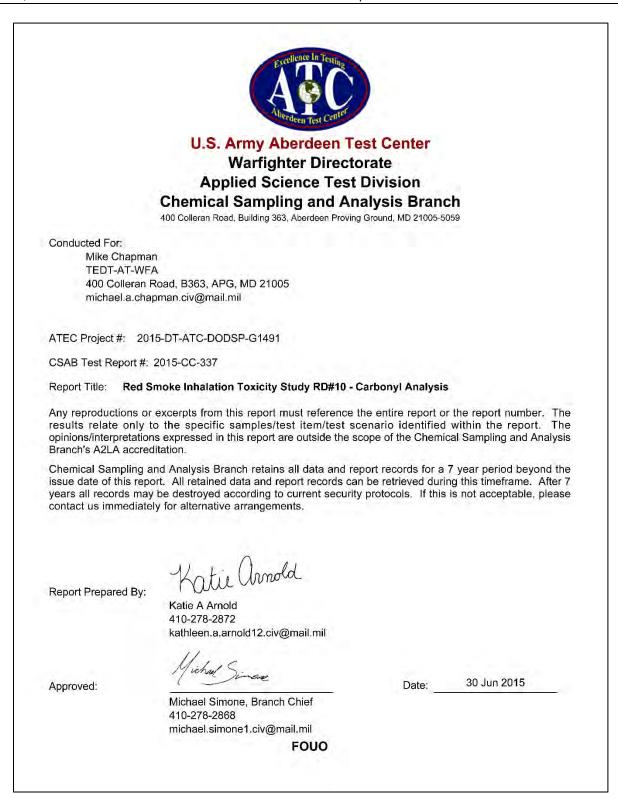
Event #: RD #6	Air Volume: 26.41 L Air Length of Sampling: 30 min						
Test	Resu	ılt	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	11.27 pp	om Air	D		06/16/15	Mod TO-11A	
Acetaldehyde	2.53 ppr	m Air			06/16/15	Mod TO-11A	
Acetone	0.10 ppr	m Air			06/16/15	Mod TO-11A	
Acrolein	1.30 ppr	m Air	ML		06/16/15	Mod TO-11A	
Propionaldehyde	<0.24 pp	om Air			06/16/15	Mod TO-11A	
Crotonaldehyde	0.45 ppr	m Air	ML		06/16/15	Mod TO-11A	
Butyraldehyde	<0.19 pp	m Air			06/16/15	Mod TO-11A	
Benzaldehyde	0.05 ppr	m Air		1	06/16/15	Mod TO-11A	
			Page 2 FOI				

Mike Chapman 400 Colleran Road, B363 APG, MD 21005 michael.a.chapman.civ@ma	ATEC		2015-DT-ATC- FY15 DOD (Support			015-CC-336 29-Jun-2015
Description: RD#6_H	ligh Level Exp (co	ntinued)	Sample I	D: S-1506	15-00009	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Isovaleraldehyde	<0.16 ppm Air			06/16/15	Mod TO-11A	
Valeraldehyde	<0.16 ppm Air			06/16/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.12 ppm Air			06/16/15	Mod TO-11A	
Hexaldehyde	<0.14 ppm Air			06/16/15	Mod TO-11A	
2,5-DMB	<0.10 ppm Air			06/16/15	Mod TO-11A	
D = Sample diluted; results ML = Result may be biased						
Description: RD#6_M	Aid Level Exp #1		Sample	ID: S-150	615-00010	
Position: Mid Level			Date Sar	mpled: 09-	Jun-15	
Scenario & Trial #: 1			Date Red	ceived: 11-	Jun-15	
Event #: RD #6				ne: 25.09 L		
			10 May	f Sampling:		
Test	Result	Qualifier	Uncertainty	Date of	Test Method	Specification
		3030103106	Shoortanity	Analysis		opeonioanon
Formaldehyde	11.83 ppm Air	D		06/16/15	Mod TO-11A	
Acetaldehyde	4.31 ppm Air	D	_	06/16/15	Mod TO-11A	
Acetone	0.09 ppm Air	6.41		06/16/15	Mod TO-11A	
Acrolein	1.35 ppm Air	ML.		06/16/15	Mod TO-11A Mod TO-11A	
Propionaldehyde Crotonaldehyde	0.17 ppm Air	ML		06/16/15	Mod TO-11A Mod TO-11A	
	0.53 ppm Air	WIL		and the second	and the second se	
Butyraldehyde	<0.20 ppm Air			06/16/15	Mod TO-11A	
Benzaldehyde Isovaleraldehyde	0.05 ppm Air <0.17 ppm Air			06/16/15	Mod TO-11A Mod TO-11A	
Valeraldehyde	<0.17 ppm Air			06/16/15	Mod TO-11A Mod TO-11A	
o,m,p-Tolualdehyde	<0.12 ppm Air			06/16/15	Mod TO-11A	
Hexaldehyde	<0.15 ppm Air			06/16/15	Mod TO-11A	
2.5-DMB	<0.11 ppm Air			06/16/15	Mod TO-11A	
And the second second second second	and the second se			301 101 10	Modificenta	
D = Sample diluted; results ML = Result may be biased						
ME - Readin may be blased	a low due to matrix effects					
Description: RD#6_N Position: Mid Level	/id Level Exp #2			ID: S-150		
Scenario & Trial #: 2				ceived: 11-		
Event #: RD #6				ne: 22.16 L	and the second se	
				f Sampling:		
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	13.99 ppm Air	D		06/16/15	Mod TO-11A	
Acetaldehyde	6.23 ppm Air	D		06/16/15	Mod TO-11A	
Acetone	0.11 ppm Air			06/16/15	Mod TO-11A	
Annalain	1.42 ppm Air	ML		06/16/15	Mod TO-11A	
Acrolein	0.26 ppm Air			06/16/15	Mod TO-11A	
Propionaldehyde		ML.		06/16/15	Mod TO-11A	
	0.63 ppm Air	IVIL.				
Propionaldehyde	0.63 ppm Air <0.23 ppm Air	IVIL.		06/16/15	Mod TO-11A	
Propionaldehyde Crotonaldehyde		WIL.		06/16/15 06/16/15	Mod TO-11A Mod TO-11A	
Propionaldehyde Crotonaldehyde Butyraldehyde	<0.23 ppm Air	WIL.		the second s	the Property of the Property of the Property of the	
Propionaldehyde Crotonaldehyde Butyraldehyde Benzaldehyde	<0.23 ppm Air 0.05 ppm Air	™∟ Page 3	of 5	06/16/15	Mod TO-11A	

ATEC		EV15-DT-ATC-E FY15 DOD G Support			29-Jun-2015
and the second second	ontinued) Sample	D: S-150	615-00011	
Result			Date of Analysis	Test Method	Specification
<0.19 ppm Air			06/16/15	Mod TO-11A	
<0.14 ppm Air			06/16/15	Mod TO-11A	
<0.17 ppm Air			06/16/15	Mod TO-11A	
<0.12 ppm Air			06/16/15	Mod TO-11A	
s corrected for dilutions. d low due to matrix effects.					
ow Level Exp #1		Sample	ID: S-1506	515-00012	
and a second second		a second of the second s			
Result	Qualifier	Charles a rect	Date of	· The second by	Specification
01369	- Farmers	onsonanny	The second se	2/41.18(3.262)	opeonoacion
			and the second se		
	U		and the second s	compared and an experiment of some lines.	
	MI		and the second se		
the second as the second se	WIL.		and the second second second		
	MI		and the second second		
and the second se	WIL			and a set of the set of the	
and the second state of th				and the second s	
			and the second second second second		
			and the same of the left sector	A DECEMBER OF A	
			and the second second	and the second se	
				and the second second second second second	
			and the second se	and the second	
s corrected for dilutions.			Jonano	MIGGING-LIM.	
d low due to matrix effects.					
ow Level Exp #2		Sample	ID: S-1500	515-00013	
and the second second					
		Date Rec		Jun-15	
			ceived: 11-	5 m 4 m 5	
		Air Volun	ceived: 11- ne: 22.51 L	Air	
Result	Qualifier	Air Volun Length o	ceived: 11- ne: 22.51 L f Sampling: Date of	Air 30 min	Specification
Result	The second s	Air Volun	ceīved: 11- ne: 22.51 L f Sampling: Date of Analysis	Air 30 min Test Method	Specification
8.02 ppm Air	D	Air Volun Length o	ceīved: 11- ne: 22.51 L f Sampling: Date of Analysis 06/16/15	Air 30 min Test Method Mod TO-11A	Specification
8.02 ppm Air 6.11 ppm Air	The second s	Air Volun Length o	ceīved: 11- ne: 22.51 L f Sampling: Date of Analysis 06/16/15 06/16/15	Air 30 min Test Method Mod TO-11A Mod TO-11A	Specification
8.02 ppm Air 6.11 ppm Air 1.27 ppm Air	D D	Air Volun Length o	ceīved: 11- ne: 22.51 L f Sampling: Date of Analysis 06/16/15 06/16/15 06/16/15	Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A	Specification
8.02 ppm Air 6.11 ppm Air 1.27 ppm Air 0.38 ppm Air	D	Air Volun Length o	ceived: 11- ne: 22.51 L f Sampling: Date of Analysis 06/16/15 06/16/15 06/16/15	Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A	Specification
8.02 ppm Air 6.11 ppm Air 1.27 ppm Air 0.38 ppm Air 0.33 ppm Air	D D ML	Air Volun Length o	ceived: 11- ne: 22.51 L f Sampling: Date of Analysis 06/16/15 06/16/15 06/16/15 06/16/15	Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
8.02 ppm Air 6.11 ppm Air 1.27 ppm Air 0.38 ppm Air 0.33 ppm Air 0.38 ppm Air	D D	Air Volun Length o	ceived: 11- ne: 22.51 L Date of Analysis 06/16/15 06/16/15 06/16/15 06/16/15 06/16/15	Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
8.02 ppm Air 6.11 ppm Air 1.27 ppm Air 0.38 ppm Air 0.33 ppm Air 0.38 ppm Air 0.38 ppm Air 0.40 ppm Air	D D ML	Air Volun Length o	ceived: 11- ne: 22.51 L Date of Analysis 06/16/15 06/16/15 06/16/15 06/16/15 06/16/15 06/16/15	Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
8.02 ppm Air 6.11 ppm Air 1.27 ppm Air 0.38 ppm Air 0.33 ppm Air 0.38 ppm Air 0.38 ppm Air 0.40 ppm Air <0.15 ppm Air	D D ML	Air Volun Length o	ceived: 11- ne: 22.51 L f Sampling: Date of Analysis 06/16/15 06/16/15 06/16/15 06/16/15 06/16/15 06/16/15	Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
8.02 ppm Air 6.11 ppm Air 1.27 ppm Air 0.38 ppm Air 0.38 ppm Air 0.38 ppm Air 0.38 ppm Air 0.40 ppm Air <0.15 ppm Air <0.19 ppm Air	D D ML	Air Volun Length o	ceived: 11- ne: 22.51 L f Sampling: Date of Analysis 06/16/15 06/16/15 06/16/15 06/16/15 06/16/15 06/16/15 06/16/15	Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
8.02 ppm Air 6.11 ppm Air 1.27 ppm Air 0.38 ppm Air 0.33 ppm Air 0.38 ppm Air 0.38 ppm Air 0.40 ppm Air <0.15 ppm Air	D D ML	Air Volun Length o	ceived: 11- ne: 22.51 L f Sampling: Date of Analysis 06/16/15 06/16/15 06/16/15 06/16/15 06/16/15 06/16/15	Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
	ATEC iI.mil Aid Level Exp #2 (co Result 0.19 ppm Air 0.14 ppm Air 0.17 ppm Air 0.12 ppm Air 0.12 ppm Air corrected for dilutions. as corrected for dilutions. d low due to matrix effects. cow Level Exp #1 Result 7.97 ppm Air 6.06 ppm Air 1.10 ppm Air 0.32 ppm Air 0.38 ppm Air 0.38 ppm Air 0.35 ppm Air 0.35 ppm Air 0.35 ppm Air 0.35 ppm Air 0.14 ppm Air 0.17 ppm Air 	ATEC Project Title Aid Level Exp #2 (continued Result Qualifier <0.19 ppm Air	ATEC Project Title: FY15 DOD C Support iI.mil Add Level Exp #2 (continued) Sample Result Qualifier Uncertainty <0.19 ppm Air <0.14 ppm Air <0.17 ppm Air <0.12 ppm Air <0.14 ppm Air <0.14 ppm Air <0.15 ppm Air <0.15 ppm Air <0.15 ppm Air <0.15 ppm Air <0.15 ppm Air <0.15 ppm Air <0.11 ppm Air <0.15 ppm Air <0.15 ppm Air <0.15 ppm Air <0.15 ppm Air <0.11 ppm Air <0.15 ppm Air <0.15 ppm Air <0.15 ppm Air <0.16 ppm Air <0.17 ppm A	ATEC Project Title: FY15 DOD General Labora Support Add Level Exp #2 (continued) Sample ID: S-150 Result Qualifier Uncertainty Date of Analysis <0.19 ppm Air 06/16/15 <0.14 ppm Air 06/16/15 <0.12 ppm Air 06/16/15 s corrected for dilutions. d low due to matrix effects. Mesult Qualifier Uncertainty Date of Analysis 7.97 ppm Air D 06/16/15 0.06/16/15 0.06 ppm Air D 06/16/15 0.07 ppm Air D 06/16/15 0.06/16/15 0.06 ppm Air D 06/16/15 0.06/16/15 0.07 ppm Air D 06/16/15 0.08 ppm Air ML 06/16/15 0.38 ppm Air ML 06/16/15 0.38 ppm Air ML 06/16/15 0.35 ppm Air ML 06/16/15 0.35 ppm Air 06/16/15 <0.14 ppm Air ML 06/16/15 0.35 ppm Air 06/16/15 <0.17 ppm	ATEC Project Title: FY15 DOD General Laboratory Report Date: Support And Level Exp #2 (continued) Sample ID: S-150615-00011 Result Qualifier Uncertainty Date of Analysis Test Method <0.19 ppm Air 06/16/15 Mod TO-11A <0.14 ppm Air 06/16/15 Mod TO-11A <0.12 ppm Air 06/16/15 Mod TO-11A <0.12 ppm Air 06/16/15 Mod TO-11A scorrected for dilutions, d low due to matrix effects. Test Method TO-11A Sample ID: S-150615-00012 Date Sampled: 09-Jun-15 Date Received: 11-Jun-15 Air Volume: 24.43 L Air Length of Sampling: 30 min Result Qualifier Uncertainty Date of Analysis Test Method 7.97 ppm Air D 06/16/15 Mod TO-11A 6.06 ppm Air D 06/16/15 Mod TO-11A 1.10 ppm Air D 06/16/15 Mod TO-11A 0.32 ppm Air D 06/16/15 Mod TO-11A 0.35 ppm Air ML 06/16/15 Mod TO-11A 0.35 ppm Air ML 06/16/15 Mod TO-11A 0.35 ppm Air 06/16/15 Mod TO-11A 0.36 ppm Air 06/16/15 Mod TO-11A 0.37 ppm Air 06/16/15 Mod TO-11A 0.38 ppm Air 06/16/15 Mod TO-11A 0.39 ppm Air 06/16/15 Mod TO-11A 0.36 ppm Air 06/16/15 Mod TO-11A 0.37 ppm Air 06/16/15 Mod TO-11A 0.38 ppm Air 06/16/15 Mod TO-11A 0.39 ppm Air 06/16/15 Mod TO-11A 0.31 ppm Air 06/16/15 Mod TO-11A <0.11 pp

Mike Chapman	ATEC Project # 2015-DT-ATC-DODSP-G1491	Report #: 2015-CC-336
400 Colleran Road, B363 APG, MD 21005 michael.a.chapman.civ@mail.mil	ATEC Project Title: FY15 DOD General Laboratory Support	Report Date: 29-Jun-2015

Description: RD#6_	Low Level Exp #2	(continued	d) Sampl	e ID: S-15	0615-00013	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
o m.p-Tolualdehyde	<0.14 ppm Air			06/16/15	Mod TO-11A	
Hexaldehyde	<0.16 ppm Air			06/16/15	Mod TO-11A	
2,5-DMB	<0.12 ppm Air			06/16/15	Mod TO-11A	


D = Sample diluted; results corrected for dilutions.

ML = Result may be biased low due to matrix effects.

Description: RD#6_Field Blank Position: Field Blank Event #: RD #6						
fest	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	<15.00 ug/sample			06/16/15	Mod TO-11A	
Acetaldehyde	<15.00 ug/sample			06/16/15	Mod TO-11A	
Acetone	<15.00 ug/sample			06/16/15	Mod TO-11A	
Acrolein	<15.00 ug/sample	ML		06/16/15	Mod TO-11A	
Propionaldehyde	<15.00 ug/sample			06/16/15	Mod TO-11A	
Crotonaldehyde	<15.00 ug/sample	ML		06/16/15	Mod TO-11A	
Butyraldehyde	<15.00 ug/sample			06/16/15	Mod TO-11A	
Benzaldehyde	<15.00 ug/sample			06/16/15	Mod TO-11A	
Isovaleraldehyde	<15.00 ug/sample			06/16/15	Mod TO-11A	
Valeraldehyde	<15.00 ug/sample			06/16/15	Mod TO-11A	
o,m,p-Tolualdehyde	<45.00 ug/sample			06/16/15	Mod TO-11A	
Hexaldehyde	<15.00 ug/sample			06/16/15	Mod TO-11A	
2,5-DMB	<15.00 ug/sample			06/16/15	Mod TO-11A	

ML = Result may be biased low due to matrix effects.

Page 5 of 5 FOUO

Mike Chapman	ATEC Project # 2015-DT-ATC-DODSP-G1491	Report #: 2015-CC-337
400 Colleran Road, B363	ATEC Project Title: FY15 DOD General Laboratory	Report Date: 30-Jun-2015
APG, MD 21005	Support	1.00 × (1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
michael.a.chapman.civ@mail.mil		

Eight samples from the Red Smoke Inhalation Toxicity Study were submitted, in acceptable condition, to determine the concentration of carbonyls generated during the test.

2.0 Summary

Results are posted in the tables below. It should be noted that acrolein has shown historically low recoveries in the collection media used for this test. All quality control checks performed with this analysis were within the tolerance limits of the laboratory with the exception of the media spikes for acrolein and crotonaldehyde.

3.0 Results/Analysis

Specification

Scenario & Trial #: 1 Event #: RD #10	Date Sampled: 15-Jun-15 Date Received: 16-Jun-15 Air Volume: 23.37 L Air Length of Sampling: 30 min					
ſest	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	15.57 ppm Air	D		06/17/15	Mod TO-11A	
Acetaldehyde	6.17 ppm Air	D		06/17/15	Mod TO-11A	
Acetone	<0.27 ppm Air			06/17/15	Mod TO-11A	
Acrolein	2.05 ppm Air	ML		06/17/15	Mod TO-11A	
Propionaldehyde	0.39 ppm Air			06/17/15	Mod TO-11A	
Crotonaldehyde	0.60 ppm Air	ML		06/17/15	Mod TO-11A	
Butyraldehyde	<0.22 ppm Air			06/17/15	Mod TO-11A	
Benzaldehyde	0.05 ppm Air			06/17/15	Mod TO-11A	
		Page 2 FOI				

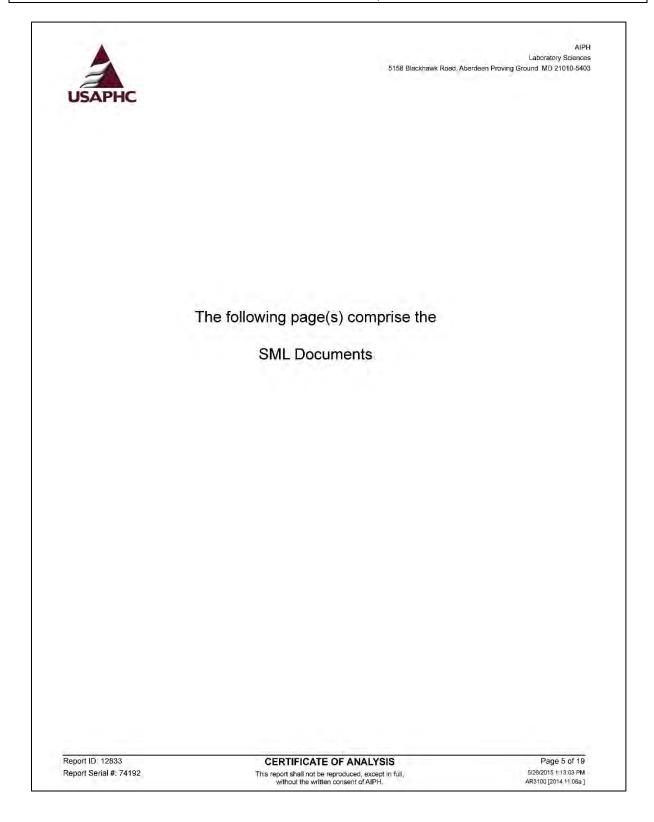
Mike Chapman 400 Colleran Road, B363 APG, MD 21005 michael.a.chapman.civ@mai	ATEC		2015-DT-ATC-I FY15 DOD (Support			015-CC-337 30-Jun-2015
Description: RD#10_	High Level Exp #1	(continu	ed) Sam	ple ID: S-1	50616-00002	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Isovaleraldehyde	<0.18 ppm Air			06/17/15	Mod TO-11A	
Valeraldehyde	<0.18 ppm Air			06/17/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.13 ppm Air			06/17/15	Mod TO-11A	
Hexaldehyde	<0.16 ppm Air			06/17/15	Mod TO-11A	
2,5-DMB	<0.12 ppm Air			06/17/15	Mod TO-11A	
D = Sample diluted; results ML = Result may be biased	and the second of the second					
Description: RD#10	High Level Exp #2		Sample	ID: S-1500	516-00003	
Position: High Level	and accessed and		and the second se	mpled: 15-		
Scenario & Trial #: 2				ceived: 16-		
Event #: RD #10				ne: 22.75 L		
Event#: KD#10			and the second	f Sampling:		
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
Formaldehyde	15.67 ppm Air	D		06/17/15	Mod TO-11A	
Acetaldehyde	6.85 ppm Air	D		06/17/15	Mod TO-11A	_
Acetone	<0.28 ppm Air	~		06/17/15	Mod TO-11A	
Acrolein	2.12 ppm Air	ML.		06/17/15	Mod TO-11A	
Propionaldehyde	0.40 ppm Air			06/17/15	Mod TO-11A	
Crotonaldehyde	0.60 ppm Air	ML		06/17/15	Mod TO-11A	
Butyraldehyde	<0.22 ppm Air			06/17/15	Mod TO-11A	
Benzaldehyde	0.05 ppm Air			06/17/15	Mod TO-11A	
Isovaleraldehyde	<0.19 ppm Air			06/17/15	Mod TO-11A	
Valeraldehyde	<0.19 ppm Air			06/17/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.13 ppm Air			06/17/15	Mod TO-11A	
Hexaldehyde	<0.16 ppm Air			06/17/15	Mod TO-11A	
2,5-DMB	<0.12 ppm Air			06/17/15	Mod TO-11A	
D = Sample diluted; results	corrected for dilutions.					
ML = Result may be biased	low due to matrix effects.					
Description: RD#10_	Mid Level Exp #1			ID: S-150		
Position: Mid Level			Date Sar	npled: 15-	Jun-15	
Scenario & Trial #: 1			Date Red	ceived: 16-	Jun-15	
			Air Volume: 23.85 L Air		Air	
Event #: RD #10						
Event #: RD #10			Length o	f Sampling:	30 min	
	Result	Tradition In	Length o Uncertainty	Date of Analysis	Test Method	Specification
	12.73 ppm Air	D		Date of Analysis 06/17/15		Specification
Test Formaldehyde Acetaldehyde	12.73 ppm Air 8.44 ppm Air	Tradition In		Date of Analysis 06/17/15 06/17/15	Test Method Mod TO-11A Mod TO-11A	Specification
Test Formaldehyde Acetaldehyde Acetone	12.73 ppm Air 8.44 ppm Air <0.26 ppm Air	D D		Date of Analysis 06/17/15 06/17/15 06/17/15	Test Method Mod TO-11A Mod TO-11A Mod TO-11A	Specification
Test Formaldehyde Acetaldehyde Acetone Acrolein	12.73 ppm Air 8.44 ppm Air <0.26 ppm Air 2.01 ppm Air	D		Date of Analysis 06/17/15 06/17/15 06/17/15 06/17/15	Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde	12.73 ppm Air 8.44 ppm Air <0.26 ppm Air 2.01 ppm Air 0.45 ppm Air	D D ML		Date of Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde	12.73 ppm Air 8.44 ppm Air <0.26 ppm Air 2.01 ppm Air 0.45 ppm Air 0.60 ppm Air	D D		Date of Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde Butyraldehyde	12.73 ppm Air 8.44 ppm Air <0.26 ppm Air 2.01 ppm Air 0.45 ppm Air 0.60 ppm Air <0.21 ppm Air	D D ML		Date of Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde Butyraldehyde Benzaldehyde	12.73 ppm Air 8.44 ppm Air <0.26 ppm Air 2.01 ppm Air 0.45 ppm Air 0.60 ppm Air <0.21 ppm Air 0.05 ppm Air	D D ML		Date of Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde Butyraldehyde	12.73 ppm Air 8.44 ppm Air <0.26 ppm Air 2.01 ppm Air 0.45 ppm Air 0.60 ppm Air <0.21 ppm Air	D D ML		Date of Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification

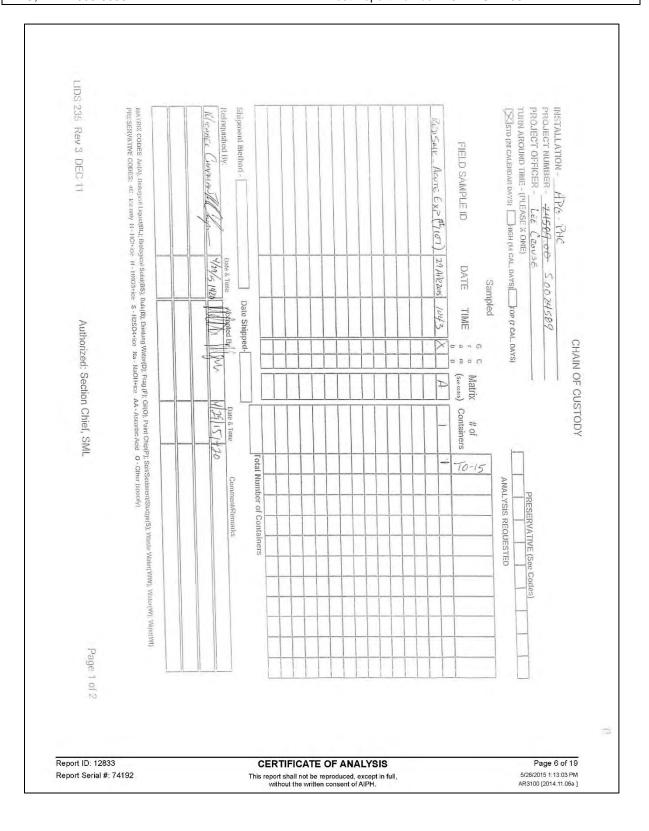
Deceription: DD#40	Mid Loval Exp.#4.4	aantinua	d) Camp	In 10: C 45	0040 00004	
Description: RD#10_ Test	Result		Uncertainty	Date of	Test Method	Specification
	Double at	Guunner	encentainty	Analysis	27.44. 18.3.5 FBS	opeoniounori
Valeraldehyde	<0.18 ppm Air		_	06/17/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.13 ppm Air			06/17/15	Mod TO-11A	
Hexaldehyde	<0.15 ppm Air <0.11 ppm Air			06/17/15	Mod TO-11A	
2,5-DMB D = Sample diluted; result ML = Result may be biase				06/17/15	Mod TO-11A	
Description: RD#10_	Mid Level Exp #2		Sample	ID: S-150	616-00005	
Position: Mid Level			Date Sar	npled: 15	Jun-15	
Scenario & Trial #: 2			Date Red	eived: 16-	Jun-15	
Event #: RD #10			Air Volun	ne: 23.99 L	Air	
				f Sampling:		
Test	Result	Qualifier	Uncertainty	Date of	Test Method	Specification
Formaldehyde	12.81 ppm Air	D	A COMPANY OF	Analysis 06/17/15	Mod TO-11A	THE SEATONES
Acetaldehyde	8.47 ppm Air	D		06/17/15	Mod TO-11A	
Acetone	<0.26 ppm Air	2		06/17/15	Mod TO-11A	
Acrolein	1.98 ppm Air	ML.		06/17/15	Mod TO-11A	
Propionaldehyde	0.45 ppm Air	TVT Les.		06/17/15	Mod TO-11A	
Crotonaldehyde	0.60 ppm Air	ML		06/17/15	Mod TO-11A	
Butyraldehyde	<0.21 ppm Air	IVIL		06/17/15	Mod TO-11A	
Benzaldehyde	0.05 ppm Air			06/17/15	Mod TO-11A	
Isovaleraldehyde	<0.18 ppm Air			06/17/15	Mod TO-11A	
Valeraldehyde	<0.18 ppm Air			06/17/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.13 ppm Air			06/17/15	Mod TO-11A	
Hexaldehyde	<0.15 ppm Air			06/17/15	Mod TO-11A	
2,5-DMB	<0.11 ppm Air			06/17/15	Mod TO-11A	
D = Sample diluted; result:		_			All and the second	
ML = Result may be biase	d low due to matrix effects.					
			Sample	ID: S-150	516-00006	
ALLER ALLER ALLER	Low Level Exp #1					
Description: RD#10_	Low Level Exp #1		Date Sar	npled: 15-	Jun-15	
Description: RD#10_ Position: Low Level	Low Level Exp #1			npled: 15-		
Description: RD#10_ Position: Low Level Scenario & Trial #: 1	Low Level Exp #1		Date Red	ceived: 16-	Jun-15	
Description: RD#10_ Position: Low Level	Low Level Exp #1		Date Red Air Volun	ceived: 16- ne: 24.53 L	Jun-15 Air	
Description: RD#10_ Position: Low Level Scenario & Trial #: 1	Low Level Exp #1		Date Red Air Volun	ceived: 16- ne: 24.53 L f Sampling:	Jun-15 Air	
Description: RD#10_ Position: Low Level Scenario & Trial #: 1	Low Level Exp #1	Qualifier	Date Red Air Volun	ceived: 16- ne: 24.53 L f Sampling: Date of	Jun-15 Air	Specification
Description: RD#10_ Position: Low Level Scenario & Trial #: 1 Event #: RD #10		Qualifier	Date Rec Air Volun Length o	ceived: 16- ne: 24.53 L f Sampling:	Jun-15 Air 30 min	Specification
Description: RD#10_ Position: Low Level Scenario & Trial #: 1 Event #: RD #10	Result 8.25 ppm Air	The second second	Date Rec Air Volun Length o	ceived: 16- ne: 24.53 L f Sampling: Date of Analysis 06/17/15	Jun-15 Air 30 min Test Method	Specification
Description: RD#10_ Position: Low Level Scenario & Trial #: 1 Event #: RD #10 Test Formaldehyde	Result	D	Date Rec Air Volun Length o	ceived: 16- ne: 24.53 L f Sampling: Date of Analysis	Jun-15 Air 30 min Test Method Mod TO-11A	Specification
Description: RD#10_ Position: Low Level Scenario & Trial #: 1 Event #: RD #10 Test Formaldehyde Acetaldehyde	Result 8.25 ppm Air 8.08 ppm Air	D	Date Rec Air Volun Length o	ceived: 16- ne: 24.53 L f Sampling: Date of Analysis 06/17/15 06/17/15	Jun-15 Air 30 min Test Method Mod TO-11A Mod TO-11A	Specification
Description: RD#10_ Position: Low Level Scenario & Trial #: 1 Event #: RD #10 Test Formaldehyde Acetaldehyde Acetone	Result 8.25 ppm Air 8.08 ppm Air 1.24 ppm Air	D	Date Rec Air Volun Length o	ceived: 16- ne: 24.53 L f Sampling: Date of Analysis 06/17/15 06/17/15 06/17/15	Jun-15 Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A	Specification
Description: RD#10_ Position: Low Level Scenario & Trial #: 1 Event #: RD #10 Test Formaldehyde Acetaldehyde Acetone Acrolein	Result 8.25 ppm Air 8.08 ppm Air 1.24 ppm Air 0.79 ppm Air	D	Date Rec Air Volun Length o	ceived: 16- ne: 24.53 L f Sampling: Date of Analysis 06/17/15 06/17/15 06/17/15	Jun-15 Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
Description: RD#10_ Position: Low Level Scenario & Trial #: 1 Event #: RD #10 Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde	Result 8.25 ppm Air 8.08 ppm Air 1.24 ppm Air 0.79 ppm Air 0.42 ppm Air	D D ML	Date Rec Air Volun Length o	erived: 16- ne: 24.53 L 5 Sampling: Date of Analysis 06/17/15 06/17/15 06/17/15 06/17/15	Jun-15 Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
Description: RD#10_ Position: Low Level Scenario & Trial #: 1 Event #: RD #10 Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde	Result 8.25 ppm Air 8.08 ppm Air 1.24 ppm Air 0.79 ppm Air 0.42 ppm Air 0.52 ppm Air	D D ML	Date Rec Air Volun Length o	ceived: 16- ne: 24.53 L f Sampling: Date of Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Jun-15 Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification
Description: RD#10_ Position: Low Level Scenario & Trial #: 1 Event #: RD #10 Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Grotonaldehyde Butyraldehyde	Result 8.25 ppm Air 8.08 ppm Air 1.24 ppm Air 0.79 ppm Air 0.42 ppm Air 0.52 ppm Air 0.27 ppm Air	D D ML	Date Rec Air Volun Length o	ceived: 16- ne: 24.53 L 5 Sampling: Date of Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Jun-15 Air 30 min Test Method Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	Specification

Mike Chapman 400 Colleran Road, B363 APG, MD 21005 michael.a.chapman.civ@m	ATEC		EV15-DT-ATC- FY15 DOD C Support			30-Jun-2015
Description: RD#10		(continue	ed) Sami	ole ID: S-1	50616-00006	
Test	Result	1. 1. 1. 1. 1.	Uncertainty	Date of Analysis	Test Method	Specification
o.m.p-Tolualdehyde	<0.12 ppm Air			06/17/15	Mod TO-11A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hexaldehyde	<0.15 ppm Air			06/17/15	Mod TO-11A	
2,5-DMB	<0.11 ppm Air			06/17/15	Mod TO-11A	
D = Sample diluted; resul ML = Result may be biase	ts corrected for dilutions. ed low due to matrix effects.					
Description: RD#10	Low Level Exp #2		Sample	ID: S-150	616-00007	
Position: Low Level	and the second sec		Date Sar	mpled: 15-	Jun-15	
Scenario & Trial #: 2				ceived: 16-		
Event #: RD #10				ne: 23.3 L/		
				f Sampling:		
		190.044		Date of		-
Test	Result		Uncertainty	Analysis	Test Method	Specification
Formaldehyde	8.04 ppm Air	D		06/17/15	Mod TO-11A	
Acetaldehyde	7.84 ppm Air	D		06/17/15	Mod TO-11A	
Acetone	1.46 ppm Air			06/17/15	Mod TO-11A	
Acrolein	0.76 ppm Air	ML		06/17/15	Mod TO-11A	
Propionaldehyde	0.40 ppm Air			06/17/15	Mod TO-11A	
Crotonaldehyde	0.51 ppm Air	ML.		06/17/15	Mod TO-11A	
Butyraldehyde	0.30 ppm Air			06/17/15	Mod TO-11A	
Benzaldehyde	0.04 ppm Air			06/17/15	Mod TO-11A	
Isovaleraldehyde	<0,18 ppm Air			06/17/15	Mod TO-11A	
Valeraldehyde	<0.18 ppm Air			06/17/15	Mod TO-11A	
o,m,p-Tolualdehyde	<0.13 ppm Air			06/17/15	Mod TO-11A	
Hexaldehyde	<0.16 ppm Air			06/17/15	Mod TO-11A	
2,5-DMB	<0.12 ppm Air			06/17/15	Mod TO-11A	
D = Sample diluted; resul ML = Result may be biase Description: RD#10 Position: Field Blank Event #: RD #10	ed low due to matrix effects.		Date Sar	ID: S-150 mpled: 15- ceived: 16-	Jun-15	
LVCIIL#: ILD #IU		and the second		Date of	Test Method	Specification
Test	Result	Qualifier	Uncertainty	Analysis		
Test Formaldehyde	<15.00 ug/sample	Qualifier	Uncertainty	Analysis 06/17/15	Mod TO-11A	
Test Formaldehyde Acetaldehyde	<15.00 ug/sample <15.00 ug/sample	Qualifier	Uncertainty	Analysis 06/17/15 06/17/15	Mod TO-11A Mod TO-11A	_
Test Formaldehyde Acetaldehyde Acetone	<15.00 ug/sample <15.00 ug/sample <15.00 ug/sample		Uncertainty	Analysis 06/17/15 06/17/15 06/17/15	Mod TO-11A Mod TO-11A Mod TO-11A	
Test Formaldehyde Acetaldehyde Acetone Acrolein	<15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample	Qualifier ML	Uncertainty	Analysis 06/17/15 06/17/15 06/17/15 06/17/15	Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde	<15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample	ML	Uncertainty	Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde	<15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample		Uncertainty	Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde Butyraldehyde	<15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample	ML	Uncertainty	Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde Butyraldehyde Benzaldehyde	<15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample	ML	Uncertainty	Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde Butyraldehyde Benzaldehyde Isovaleraldehyde	<15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample <15.00 ug/sample	ML	Uncertainty	Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde Butyraldehyde Benzaldehyde Isovaleraldehyde Valeraldehyde	<15.00 ug/sample <15.00 ug/sample	ML	Uncertainty	Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde Butyraldehyde Benzaldehyde Isovaleraldehyde Valeraldehyde o,m,p-Tolualdehyde	<15.00 ug/sample <15.00 ug/sample	ML	Uncertainty	Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Mod TO-11A Mod TO-11A	
Test Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde Butyraldehyde Benzaldehyde Isovaleraldehyde Valeraldehyde	<15.00 ug/sample <15.00 ug/sample	ML	Uncertainty	Analysis 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A Mod TO-11A	

FOUO

Mike Chapman 400 Colleran Road, B363 APG, MD 21005 michael.a.chapman.civ@ma	ATE	C Project #: C Project Title	2015-DT-ATC-I FY15 DOD 0 Support	Seneral Labora	Report #: 20 atory Report Date:	30-Jun-2015
Description: RD#10	Field Blank (cont	inued)	Sample ID:		80000	
Test	Result	Qualifier	Uncertainty	Date of Analysis	Test Method	Specification
ML = Result may be biase	d low due to matrix effect	S				
		Page 6 FO	of 6			


APPENDIX C – VOC Analytical Reports


Report ID: 12833 Report Serial #: 74192		CERTIFICATE OF ANALYSIS This report shall not be reproduced, except in full, without the written consent of AIPH			
disclosure or use by anyone else is and advise the sender immediately	ocument and any attachments is FOUO and is inte unauthorized. If you are not the intended recipier by calling 410-436-2208/DSN 584-2208.	nt, please destroy this document and a			
	CRAIG MISER Chief, Laboratory Analy	tical Division - Inorganic			
	MISER. CRAIG.S. 12293863 91	Digitally signed by, MISER CRAIG. \$,1229386391 DN: CN = MISER CRAIG.S. 1229386391 C = US 0 = U S. Gavernment OU = DoD Date: 2015.05.26 13:32.29 -04'00'			
DSN 584-2208 or comme					
	itional information is MAJ Jose Piza	arro-iviatos,			
expectations.	s report or any of our services did n				
Report Serial #:	74192				
LS Work Order #:	12833				
Funding:	S.0024589	and a second			
1. This is LS Final Analyti Project Site:	cal Report for: RED SMOKE INHALATION 1	FOX STUDY			
SUBJECT: Laboratory Sc	iences (LS) Final Analytical Report				
	SAPHC, TOX Portfolio (5158 Blackr ng E2100, Gunpowder, MD 21010	nawk Rd, MCHB-IP-			
MCHB-IP-L		26 May 2015			
ALL A LOS					
	US ARMY INSTITUTE OF PUBLIC 5158 BLACKHAWK ROA ABERDEEN PROVING GROUND MARYL	D			
STATION STATION	DEPARTMENT OF THE				

USAPH	C					
		SAMPLE SU	MMARY			
Workorder: 12	833 RED SMOKE INHALATION TOX ST	UDY				
All samples we	re inspected and observed to conform to	our receipt policies, ex	cept as noted.		1.10.10	
Lab ID	Sample ID	Matrix	Date Collected	Date Received	Cancel Code	
128330001	RED SMK_ACUTE EXP (#7107)	Air	4/29/2015	4/29/2015	1.00	

ISAPHC	5158 Blackhawk Road, Aberdeen I	Laboratory Scienc Proving Ground MD 21010-54
	TERMINOLOGY & ABBREVIATIONS (ENV)	
Terms:		
AIPH = US Army Institute of P	ublic Health	
DF = Dilution Factor		
DUP = Duplicate Analysis		
HSN = Horizon Sample Numb	er (Lab Number).	
J = The reported result is an e the limit of quantitation (LOQ).	stimated value; the result is between the method detection limit (N	MDL) and
LCS = Laboratory Control San	nple	
LCSD = Laboratory Control Sa	ample Duplicate	
LOQ = Limit of Quantitation		
LS = Laboratory Sciences		
MDL = Method Detection Limit	t	
MS = Matrix Spike		
MSD = Matrix Spike Duplicate		
ND = Not Detected		
Qual = Data Qualifier		
RPD = Relative Percent Differ	ence	
SML = Sample Management L	_aboratory (AIPH)	
(S) = Surrogate Standard (Fou	und in Analytical Results and QC Listings)	
U = The analyte/element was	not detected at or above the limit of quantitation (LOQ).	
Uncert = Measurement Uncert	tainty (Reported in Radiochemical Analyses Only)	
** Indicates QC failure. For ex	ample, recoveries or relative percent difference (RPD) out of rang	e.
Units:		
% = percent		
cc = cubic centimeter		
cm = centimeter		
cm2 = square centimeter		
cpm = counts per minute		
dpm = disintegrations per mini	ute	
ft2 = square foot		
g = gram		
ort ID: 12833	CERTIFICATE OF ANALYSIS	Page 3 of 19
ort Serial #: 74192	This report shall not be reproduced, except in full, without the written consent of AIPH.	5/26/2015 1:13:03 PM AR3100 [2014.11.06a

-	5	158 Blackhawk Road, Aberdeen Proving Ground MD 21010-5
USAPHC		
in2 = square inch		
kg = kilogram		
L = Liter		
m3 = cubic meter		
MFL = million fibers per liter		
mg = milligram		
min = minute		
mL = milliliter		
mm2 = square millimeter		
mm3 = cubic millimeter		
MPN = most probable number		
ng = nanogram	. Talia	
NTU = Nephelometric Turbidit	y Units	
pCi = picocurie		
pg = picogram		
ppb = parts per billion		
ppm = parts per million		
S = siemens		
struct = structures		
TON = Threshold Odor Number	er	
uCi = microcurie		
ug = microgram		
uL = microliter		
umhos = micromhos (conduct	ivity unit)	
umole = micromole		
Report ID: 12833	CERTIFICATE OF ANALYSIS	Page 4 of 1
Report Serial #: 74192	This report shall not be reproduced, except in	

	Lancaster Laboratories Environmental	Analysis Report
2425 New Holland Pike, Lar	ncaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • v	
	ANALYTICA	
Eurofins Lanca	Prepared by: aster Laboratories Environmental	Prepared for: USAPHC/AIPH
242	25 New Holland Pike ancaster, PA 17601	DFAS-IN VP GFEBS - HQ0490 8899 E 56TH ST Indianapolis IN 46249-3800
	May 08	3, 2015
	Project:	P181D1
	Submittal Date Group Numb SDG: PO Number: W9 Release Numl State of Sampl	er: 1557751 IP181 IZLK-14-P-0590 ber: P181D1
Client Sample Des	scription SMK ACUTE EXP Air	Lancaster Labs (LL) # 7869822
and the second of the second of	le Analysis Record.	
Regulatory agenci accreditation can b	ies do not accredit laboratories for all be viewed at http://www.eurofinsus.c	l methods, analytes, and matrices. Our scopes of com/environment-testing/laboratories/eurofins-
Regulatory agenci accreditation can b	ies do not accredit laboratories for al	com/environment-testing/laboratories/eurofins-
Regulatory agenci accreditation can b	ies do not accredit laboratories for all be viewed at http://www.eurofinsus.c	com/environment-testing/laboratories/eurofins-
Regulatory agenci accreditation can l lancaster-laborator	ies do not accredit laboratories for al be viewed at <u>http://www.eurofinsus.c</u> ries-environmental/resources/certific	com/environment-testing/laboratories/eurofins- ations/ .
Regulatory agenci accreditation can l lancaster-laborator	ies do not accredit laboratories for all be viewed at <u>http://www.eurofinsus.c</u> <u>ries-environmental/resources/certific</u> USAPHC/AIPH	com/environment-testing/laboratories/eurofins- ations/ . Attn: Chuck Stoner
Regulatory agenci accreditation can l lancaster-laborator	ies do not accredit laboratories for all be viewed at <u>http://www.eurofinsus.c</u> <u>ries-environmental/resources/certific</u> USAPHC/AIPH	com/environment-testing/laboratories/eurofins- ations/ . Attn: Chuck Stoner
Regulatory agenci accreditation can l lancaster-laborator	ies do not accredit laboratories for all be viewed at <u>http://www.eurofinsus.c</u> <u>ries-environmental/resources/certific</u> USAPHC/AIPH	com/environment-testing/laboratories/eurofins- ations/ . Attn: Chuck Stoner
Regulatory agenci accreditation can l lancaster-laborator	ies do not accredit laboratories for all be viewed at <u>http://www.eurofinsus.c</u> <u>ries-environmental/resources/certific</u> USAPHC/AIPH	com/environment-testing/laboratories/eurofins- ations/ . Attn: Chuck Stoner
Regulatory agenci accreditation can l lancaster-laborator	ies do not accredit laboratories for all be viewed at <u>http://www.eurofinsus.c</u> <u>ries-environmental/resources/certific</u> USAPHC/AIPH	com/environment-testing/laboratories/eurofins- ations/ . Attn: Chuck Stoner
Regulatory agenci accreditation can l lancaster-laborator	ies do not accredit laboratories for all be viewed at <u>http://www.eurofinsus.c</u> <u>ries-environmental/resources/certific</u> USAPHC/AIPH	com/environment-testing/laboratories/eurofins- ations/ . Attn: Chuck Stoner
Regulatory agenci accreditation can l lancaster-laborator	ies do not accredit laboratories for all be viewed at <u>http://www.eurofinsus.c</u> <u>ries-environmental/resources/certific</u> USAPHC/AIPH	com/environment-testing/laboratories/eurofins- ations/ . Attn: Chuck Stoner
Regulatory agenci accreditation can l lancaster-laborator	ies do not accredit laboratories for all be viewed at <u>http://www.eurofinsus.c</u> <u>ries-environmental/resources/certific</u> USAPHC/AIPH	com/environment-testing/laboratories/eurofins- ations/ . Attn: Chuck Stoner
Regulatory agenci accreditation can l lancaster-laborator ELECTRONIC COPY TO ELECTRONIC	ies do not accredit laboratories for all be viewed at <u>http://www.eurofinsus.c</u> <u>ries-environmental/resources/certific</u> USAPHC/AIPH	com/environment-testing/laboratories/eurofins- ations/ Attn: Chuck Stoner Attn: Heidi Taylor
Regulatory agenci accreditation can l lancaster-laborator ELECTRONIC COPY TO ELECTRONIC	ies do not accredit laboratories for al be viewed at <u>http://www.eurofinsus.c</u> <u>ries-environmental/resources/certific</u> USAPHC/AIPH USAPHC/AIPH	com/environment-testing/laboratories/eurofins- ations/ Attn: Chuck Stoner Attn: Heidi Taylor

🔅 eurofii	Lancaster Laboratories	Analysis Report	
2425 New Holland Pike	Environmental e, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • w		
	Respe	ctfully Submitted,	
	K	atherine a Klinefelter	
	Kat	herine A. Klinefeller ncipal Specialist	
	(717)	556-7256	
	IP181 Pag Page 2	e 7 of 345 of 13	
port ID: 12833	CERTIFICATE	OF ANALYSIS Page 9	of 19 :03 PM

: eurofins	Lancaster Laboratories Environmental	Case Narrative
Project Name: LL Group #: 1	P181D1 557751	
General Comme	ents:	
See the Labor method refere		d section of the Analysis Report for the
		ed in an Analysis Specific Comment below. ues and acceptance criteria.
Project speci	fic QC samples are not incl	uded in this data set
these situati	not be reported if site-sp ons, to demonstrate precision , unless otherwise specified	ecific QC samples were not submitted. In on and accuracy at a batch level, a LCS/LCSD d in the method.
Surrogate rec unless attrib below.	coveries (if applicable) which nuted to a dilution or other	ch are outside of the QC window are confirmed wise noted in an Analysis Specific Comment
The samples w chain of cust	vere received at the appropr cody unless otherwise noted.	iate temperature and in accordance with the
1. C. C. C. S. C.	ific Comments: Datiles in Air	
Spike(covery for a target analyte(s) is outside the OC accepta	s) in the Laboratory Control nnce limits as noted on the QC gh and the target analyte(s) e data is reported.
	D1512530BB (Sample number(s)	
	3-Dichloropropene	positive bias: Acrolein, Vinyl Acetate,
	3-bitchioropropene	
	5/8/20:	15 12:00:52PM
cis-1,	5/8/20: IP181 F	15 12:00:52РМ Раде 8 of 345 ge 3 of 13
cis-1,	5/8/20: IP181 F Par CERTIFICA	Page 8 of 345

-	eurofins	Lancaster	Laboratori ental	es		A	nalys	is Repo	ort
242	25 New Holland Pike, Lanc	ester, PA 17601 +	717-656-2300 · F	ax: 717-656-	2681 • V	ww.LancasterLabs.com	n		
		128330001 12833 / RE P181D1 Sum	D SMOKE I	NHALATI			LI	Sample # AQ 78 Group # 15577 count # 04694	51
Projec	t Name: P181D1								
	ted: 04/29/201 ted: 04/30/201 ted: 05/08/201	5 20:05				8899 E 56T	GFEBS - HQ04		
181-1	SDG#: 1P181-								
	556#. IFI01-	01				Detection	Limit of	Limit of	
CAT No.	Analysis Name		CAS Number	Result		Limit*	Detection	Quantitation	DF
	les in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3	
	Acetone	SFA 10-15	67-64-1	9,400		590	2,400	2,400	500
05298	Acetonitrile		75-05-8	1,400		42	84	84	50
05298	Acrolein Acrylonitrile		107-02-8	6,700		570	570	570 22	500 10
05298	Benzene		71-43-2	590		6.4	16	16	10
05298	Benzyl Chloride		100-44-7	26	U	26	26	26	10
05298	Bromobenzene Bromodichlorometha	ine	108-86-1 75-27-4	32 34	U	13 13	32	32 34	10
05298	Bromoform		75-25-2	52	IJ	21	52	52	10
05298	Bromomethane 1,3-Butadiene		74-83-9	19 510	υ	7.8	19	19	10
05298 05298	1,3-Butadiene 2-Butanone		106-99-0 78-93-3	2,100		74	55 290	55 290	50
05298	tert-Butyl Alcoho		75-65-0	30	U	15	3.0	30	1.0
05298	Carbon Disulfide Carbon Tetrachlor:	do	75-15-0 56-23-5	31	UU	16 13	31	31	10
05298	Chlorobenzene	.de	108-90-7	23	U	9.2	23	23	10
05298	Chlorodifluorometh	nane	75-45-6	18	υ	7.1	18	18	10
05298	Chloroethane Chloroform		75-00-3 67-66-3	6.3 56	J	5.3	13	13 24	10
05298	Chloromethane		74-87-3	330		4.1	21	21	10
05298	3-Chloropropene		107-05-1	16	U	6.3	16	16	10
05298	Cumene Cyclohexane		98-82-8 110-82-7	49	UU	9.8	49 17	49 17	10
05298	Dibromochlorometha	ine	124-48-1	43	U	17	43	43	10
05298	1,2-Dibromoethane Dibromomethane		106-93-4 74-95-3	38	UU	15 14	38 36	38 36	10
05298	1,2-Dichlorobenzen	ie .	95-50-1	30	U	12	30	30	10
05298	1,3-Dichlorobenze:		541-73-1	3.0	U	12	3.0	30	10
05298	1,4-Dichlorobenzer Dichlorodifluorom		106-46-7 75-71-8	30 25	UU	12 9,9	30 25	30 25	10
05298	1,1-Dichloroethan	1	75-34-3	20	U	8.1	20	20	10
05298	1,2-Dichloroethane 1,1-Dichloroethane		107-06-2 75-35-4	20	U U	8.1	20	20 20	10
05298	cis-1,2-Dichloroet		156-59-2	20	U	7.9	20	20	10
05298	trans-1,2-Dichlord	bethene	156-60-5	20	U	7.9	2.0	20	10
05298	Dichlorofluorometh 1,2-Dichloropropar		75-43-4 78-87-5	21 23	UU	8.4	21 23	21 23	10
05298	cis-1,3-Dichlorop:	opene	10061-01-5	23	U	9.1	23	23	10
05298	trans-1,3-Dichloro 1,4-Dioxane	propene	10061-02-6	23 36	U U	9.1 18	23 36	23 36	10
05298	Ethyl Acetate		141-78-6	18	UU	18	36	36	10
05298	Ethyl Acrylate		140-88-5	41	U	8.2	41	41	10
05298	Ethyl Methacrylate Ethylbenzene		97-63-2 100-41-4	47 250	U	9.3 8.7	47 22	47	10
05298	4-Ethyltoluene		622-96-8	25	υ	9.8	25	25	10
05298	Freon 113 Freon 114		76-13-1 76-14-2	38 35	U U	38 14	38 35	38 35	10
05298	Heptane		142-82-5	20	U	8.2	20	20	10
05298	Hexachlorobutadie	1e	87-68-3	210	U	43	210	210	10
05298	Hexachloroethane		67-72-1 *-This li	97 mit was use	U d in the	19 evaluation of the fin	97 al result	97	10
						e 9 of 345 of 13			
Repo	rt ID: 12833			COTICI	OATE	OF ANALYSIS			11 of 19

2425 New Holland Pik ample Descripti roject Name: Pl ollected: 04/29 ubmitted: 04/30 eported: 05/08 81-1 SDG#: IP AT book continues in Air 5298 Hexane 5298 Isopropanol 5298 Isopropanol 5298 Isopropanol	12833 / Ri P181D1 Sur 81D1 /2015 10:43 /2015 20:05 /2015 12:00 181-01	RED SMK_A ED SMOKE II mma Can # ' CAS Number	CUTE EX. NHALATI 7107	P Air	USAPHC/A DFAS-IN 8899 E 50	IPH VP GFEBS - HQC		7751
roject Name: P1 ollected: 04/29 ubmitted: 04/30 eported: 05/08 81-1 SDG#: IP AT o. Analysis Nam olatiles in Air 5298 Hexano 5298 Hexanone 5298 Isooctane 5298 Isooctane	12833 / Ri P181D1 Sur 81D1 /2015 10:43 /2015 20:05 /2015 12:00 181-01	ED SMOKE II mma Can # ' CAS Number 5	NHALATI 7107 Result		DFAS-IN 8899 E 50 Indianapo	IPH VP GFEBS - HQC 6TH ST	LL Group # 155 Account # 046 0490	7751
ollected: 04/29 ubmitted: 04/30 eported: 05/08 81-1 SDG#: IP AT o. Analysis Nam olatiles in Air 5298 Hexanone 5298 Isooctane 5298 Isooctane	/2015 10:43 /2015 20:05 /2015 12:00 181-01	5			DFAS-IN 8899 E 50 Indianapo	VP GFEBS - HQC 6TH ST		
ubmitted: 04/30 sported: 05/08 31-1 SDG#: IP AT AT Analysis Name S1atiles in Air S298 Hexano S298 Jesoctane S298 Isocotane S298 Isocotane	/2015 20:05 /2015 12:00 181-01	5			DFAS-IN 8899 E 50 Indianapo	VP GFEBS - HQC 6TH ST		
Ar Analysis Name blatiles in Air 5298 Hexane 5298 2-Hexanone 5298 Isooctane 5298 Isoopropanol		5			Detection			
o. Analysis Name olatiles in Air 5298 Hexane 5298 2-Hexanone 5298 Isooctane 5298 Isopropanol		5		- 2	Detection	1 1 1 4 1 A 1 A		
olatiles in Air 5298 Hexane 5298 2-Hexanone 5298 Isooctane 5298 Isopropanol	EPA TO-1				Limit*	Limit of Detection	Limit of Quantitation	DF
5298 Hexane 5298 2-Hexanone 5298 Isooctane 5298 Isopropanol	EPA TO-1					ug/m3		
5298 2-Hexanone 5298 Isooctane 5298 Isopropanol			ug/m3 24		ug/m3 7.0	18	ug/m3 18	10
5298 Isopropanol		591-78-6	82	U.	20	82	82	10
		540-84-1 67-63-0	47	U	9.3	47	47	10
		96-33-3	35	U	7.0	35	35	10
5298 Methyl Iodid 5298 Methyl Metha		74-88-4	29 41	UU	12	29	29	10
5298 Methyl Methyl 5298 Alpha Methyl		80-62-6 98-83-9	48	υ	8.2 9.7	41 48	41 48	10
5298 Methyl t-Buty	yl Ether	1634-04-4	18	IJ	7.2	18	18	10
5298 4-Methyl-2-p 5298 Methylene Ch		108-10-1 75-09-2	82	U	20	82	82	10
5298 Mechylene Ch. 5298 Octane	toride	111-65-9	11	ā	6.9 9.3	35	47	10
5298 Propene		115-07-1	7,600		170	860	860	500
5298 Styrene 5298 1.1.1.2-Tetra	achloroethane	100-42-5 630-20-6	40 34	U	8.5 14	21	21	10
	achloroethane	79-34-5	34	U	14	34	34	10
5298 Tetrachloroe		127-18-4	34	U	14	3 4	34	10
5298 Tetrahydrofu: 5298 Toluene	ran	109-99-9 108-88-3	15	U	5.9	15	15	10
5298 1,2,4-Trichle		120-82-1	150	U	37	150	150	10
5298 1,1,1-Trichl 5298 1,1,2-Trichl		71-55-6 79-00-5	27	U U	11	27	27	10
5298 Trichloroeth		79-01-6	27	U	11	27	27	10
5298 Trichloroflu		75-69-4	28	U	11	28	28	10
5298 1,2,3-Trichle 5298 1,2,4-Trimetl		96-18-4 95-63-6	30 25	UU	12 9,8	30 25	30 25	10
5298 1,3,5-Trimet	nylbenzene	108-67-8	25	U	9.8	25	25	10
5298 Vinyl Acetate 5298 Vinyl Chlorid		108-05-4	35	U	18 5.1	35	35	10
5298 m/p-Xylene	40	179601-23-1	900		8.7	43	43	10
5298 o-Xylene The recovery for a Spike(s) is outsic Summary. Since th	le the QC acceptan le recovery is hig	ice limits as th and the ta	noted on rget anal	the QC	8.7	22	22	10
was not detected i	n the sample, the			Sampl	e Comments	-		
ll QC is compliant ontrol Summary for		noted. Plea	se refer	to the	Quality			
	2.5	Labora	atory S	ample	Analysis H	Record	1.27	
T Analysis Name	Meth	bod	Trial#	Batch		Analysis te and Time	Analyst	Dilution Factor
298 TO 15 VOA Ext.		TO-15	I	D15125	30BB 05	/07/2015 03:50	Jacob E Bailey	10
298 TO 15 VOA Ext. 298 TO 15 VOA Ext.		TO-15 TO-15	1	D15125 D15125		/07/2015 11:57	Jacob E Bailey Jacob E Bailey	50 500
230 TO 13 VUA EXT.	DISC LPA	1.1.1.5		Leave a	valuation of the	/07/2015 12:40	SACOD & Balley	000
			IP181		10 of 345			
Report ID: 12833					F ANALYSI			ge 12 of 19

🔅 eurofins	Lancaster Environme		tories			Ana	aly	sis	Re	po	rt
2425 New Holland Pike, Lanc	aster, PA 17601 • 7	17-656-230	0 • Fax: 717-65	6-2681 • www.	LancasterLal	os.com	~				
	Quali	ty C	ontro	l Summ	ary						
Client Name: USA Reported: 05/08/				Gr	oup Num	ber: 15	57751				
Matrix QC may not be situations, to demon specified in the met	strate precis										
All Inorganic Initia otherwise noted on t			ntinuing C	alibration	Blanks n	net accept	able me	thod cr	citeria unl	ess	
	1.2.1.2		ry Com	liance	Quali	ty Con	trol				
		Blank	Blank	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RP
Analysis Name		Result	DL**	LOD	FOG	Units	SREC	SREC	Limits	RPD	Ma
Batch number: D15125 Acetone		Sample 2.4	number(s): 1.2	7869822 2.4	2.4	ug/m3	108	106	58-128	2	25
Acetonitrile		U 1.7	0.84	1.7	1.7	ug/m3					
Acrolein		U 1.1	1.1	1.1	1.1	ug/m3	129*	131*	62-126	2	25
Acrylonitrile		U 2.2	1.1	2.2	2.2	ug/m3					
Benzene		U 1.6	0.64	1.6	1.6	ug/m3	98	98	69-119	1	25
Benzyl Chloride		U 2.6	2.6	2.6	2.6	ug/m3	112	107	50-147	5	25
Bromobenzene		U 3.2	1.3	3.2	3.2	ug/m3					
Bromodichloromethane		U 3.4	1.3	3.4	3.4	ug/m3	96	94	72-128	1	25
Bromoform		U 5.2	2.1	5.2	5.2	ug/m3	91	89	66-139	2	25
Bromomethane		U 1.9	0,78	1.9	1.9	ug/m3	105	104	63-134	2	25
1,3-Butadiene		U 1.1	0.44	1.1	1.1	ug/m3	119	116	66-134	2	25
2-Butanone		U 2.9	1.5	2.9	2.9	ug/m3	108	104	67-130	4	25
tert-Butyl Alcohol		U 3.0	1.5	3.0	3.0	ug/m3					
Carbon Disulfide		U 3.1	1.6	3.1	3.1	ug/m3	112	110	57-134	2	25
Carbon Tetrachloride		U 3.1	1.3	3.1	3.1	ug/m3	99	95	68-132	4	25
Chlorobenzene		U 2.3	0.92	2.3	2.3	ug/m3	92	90	70-119	2	25
Chlorodifluoromethan	e	U 1.8	0,71	1.8	1.8	ug/m3					
Chloroethane		U 1.3	0.53	1.3	1.3	ug/m3	97	94	63-127	4	25
Chloroform		U 2.4	0.98	2.4	2.4	ug/m3	102	99	68-123	3	25
Chloromethane		U 2.1 U	0.41	2.1	2.1	ug/m3	89	88	59-132	2	25
3-Chloropropene		1.6 U	0.63	1.6	1,6	ug/m3					
*- Outside of specificat **-This limit was used i (1) The result for one or (2) The unspiked result (3) The surrogate spike	n the evaluation both determina was more than f	tions wa our time	s less than f s the spike a	ive times the	e LOQ.						
			IP181	Page 1	1 of 345						
				Page 6 of	13						
					1.					age 13 c	_

🔅 eurofins	Lancaster Lab Environmenta	a traction of a large			Ana	aly	sis	Re	po	rt
2425 New Holland Pike, Lancas	ster, PA 17601 • 717-65	6-2300 • Fax: 717-	656-2681 • ww	w.LancasterLa	abs.com	~		100		
	Quality	Contro	ol Sum	mary						
Client Name: USAP Reported: 05/08/2			G	roup Nut	mber: 15	57751				
Analysis Name Cumene	Blar <u>Resu</u> 4.9 U		Blank LOD 4.9	Blank <u>LOQ</u> 4.9	Report <u>Units</u> ug/m3	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RI Ma
Cyclohexane	1.7 U	0.69	1.7	1.7	ug/m3	109	106	70-117	3	25
Dibromochloromethane	4.3 U	1.7	4.3	4.3	ug/m3	97	95	70-130	2	25
1,2-Dibromoethane	3.8 U	1.5	3.8	3.8	ug/m3	100	98	74-122	1	25
Dibromomethane	3.6 U	1.4	3.6	3.6	ug/m3					
1,2-Dichlorobenzene	3.0 U	1.2	3.0	3.0	ug/m3	84	81	63-129	4	25
1,3-Dichlorobenzene	3.0 U	1.2	3.0	3.0	ug/m3	82	79	65-130	4	25
1,4-Dichlorobenzene	3.0 U	1.2	3.0	3.0	ug/m3	85	81	60-131	4	25
Dichlorodifluorometha		0,99	2.5	2.5	ug/m3	108	105	59-128	2	25
1,1-Dichloroethane	2.0 U	0.81	2.0	2.0	ug/m3	97	93	68-126	4	25
1,2-Dichloroethane	2.0 U	0.81	2.0	2.0	ug/m3	101	98	65-128	2	25
1,1-Dichloroethene	2.0 U	0.79	2.0	2.0	ug/m3	105	105	61-133	0	25
cis-1,2-Dichloroethen		0.79	2.0	2.0	ug/m3	95	92	70-121	4	25
trans-1,2-Dichloroeth	ene 2.0 U	0,79	2.0	2,0	ug/m3	100	97	67-124	3	25
Dichlorofluoromethane	2.1 U	0.84	2.1	2.1	ug/m3					
1,2-Dichloropropane	2.3 U	0.92	2.3	2.3	ug/m3	92	93	69-123	1	25
cis-1,3-Dichloroprope	U	0.91	2.3	2.3	ug/m3	130*	130*	70-128	0	25
trans-1,3-Dichloroprop	pene 2.3 U	0,91	2.3	2.3	ug/m3	109	109	75-133	1	25
1,4-Dioxane	3,6 U	1.8	3.6	3.6	ug/m3	89	87	71-122	3	25
Ethyl Acetate	1,8 U	0.72	1.8	1,8	ug/m3	89	86	65-128	3	25
Ethyl Acrylate	4.1 U	2.0	4.1	4.1	ug/m3					
Ethyl Methacrylate	4.7 U	2.3	4.7	4.7	ug/m3					
Ethylbenzene	2.2 U	0.87	2.2	2.2	ug/m3	108	105	70-124	2	25
4-Ethyltoluene	2.5 U	0.98	2.5	2.5	ug/m3	99	95	67-129	3	25
Freon 113	3,8 U	1.5	3.8	3,8	ug/m3	93	92	66-126	1	25
Freon 114	3.5 U	1.4	3,.5	3.5	ug/m3	102	100	63-121	2	25
Heptane	2.0 U	0.82	2.0	2.0	ug/m3	107	105	69-123	2	25
Hexachlorobutadiene	11	5.3	11	11	ug/m3	77	73	56-138	6	25
*- Outside of specificatio **-This limit was used in (1) The result for one or b (2) The unspiked result w (3) The surrogate spike an	the evaluation of to ooth determination as more than four	s was less than times the spike	n five times t							
		IP18	31 Page Page 7 o	12 of 34 f 13	5					
				A Constant State						

	Lancaster Labora Environmental	atories			Ana	aly	sis	Re	po	rt
2425 New Holland Pike, Lanca	ster, PA 17601 • 717-656-23	00 • Fax: 717-6	56-2681 • ww	w.LancasterLa	bs.com	~	-		-	-
	Quality	Contro	1 Cum							
	Quartey	concre	JI Sund	mary						
Client Name: USA Reported: 05/08/2	2015 12:00			지 않는 것을 가 없다.	mber: 15			in the second		
Analysis Name	Blank Result	Blank DL**	Blank LOD	Blank LOQ	Report Units	LCS %REC	%REC	LCS/LCSD Limits	RPD	Ma
Hexachloroethane	U 9.7	4.8	9.7	9.7	ug/m3					
Hexane	U 1.8	0.70	1.8	1.8	ug/m3	104	101	63-120	3	25
2-Hexanone	U 4.1	2.0	4.1	4.1	ug/m3	83	78	62-128	5	25
Isooctane	U 4.7	2.3	4.7	4.7	ug/m3					
Isopropanol	U 2.5	1.2	2.5	2.5	ug/m3	96	93	52-125	2	25
Methyl Acrylate	U 3.5	1.8	3.5	3.5	ug/m3					
Methyl Iodide	U 2.9	1.2	2.9	2.9	ug/m3					
Methyl Methacrylate	U 4.1	2.0	4.1	4.1	ug/m3	113	111	70-128	2	25
Alpha Methyl Styrene	U 4.8	0.97	4.8	4.8	ug/m3					
Methyl t-Butyl Ether	U 1.8	0.72	1.8	1.8	ug/m3	108	107	66-126	1	25
4-Methyl-2-pentanone	U 4.1	2.0	4.1	4.1	ug/m3	90	87	67-130	3	25
Methylene Chloride	U 3.5	1.7	3.5	3.5	ug/m3	110	107	62-115	3	25
Octane	U 4.7	2.3	4.7	4.7	ug/m3					
Propene	U 1.7	0.86	1.7	1.7	ug/m3	106	104	57-136	2	25
Styrene	U 2.1	0.85	2.1	2.1	ug/m3	108	107	73-127	1	25
1,1,1,2-Tetrachloroet		1,4	3.4	3.4	ug/m3					
1,1,2,2-Tetrachloroet	hane 3.4	1.4	3.4	3.4	ug/m3	87	84	65-127	4	25
Tetrachloroethene	U 3.4	1.4	3.4	3.4	ug/m3	88	87	66-124	1	25
Tetrahydrofuran	U 1.5	0.59	1.5	1.5	ug/m3	112	111	64-123	2	25
Toluene	U 1.9	0.75	1.9	1.9	ug/m3	104	103	66-119	1	25
1,2,4-Trichlorobenzer		3.7	7.4	7.4	ug/m3	73	67	55-142	9	25
1,1,1-Trichloroethane		1,1	2.7	2.7	ug/m3	98	94	68-125	4	25
1,1,2-Trichloroethane		1,1	2.7	2.7	ug/m3	92	91	73-119	1	25
Trichloroethene	U 2.7	1.1	2.7	2.7	ug/m3	95	92	71-123	2	25
Trichlorofluoromethan		1,1	2.8	2.8	ug/m3	105	103	62-126	2	25
1,2,3-Trichloropropar		1.2	3.0	з.о	ug/m3					
1,2,4-Trimethylbenzer	ie 2.5	0.98	2.5	2.5	ug/m3	94	90	66-132	4	25
 1, 2, 3-Trichloropropar 1, 2, 4-Trimethylbenzer *- Outside of specificati **-This limit was used in (1) The result for one or 	$\begin{array}{c} U \\ U $	0.98 final result :	2.5 for the blan	2.5 k		94	90	66-132	4	25
(2) The unspiked result v(3) The surrogate spike a			added.							

Page 8 of 13

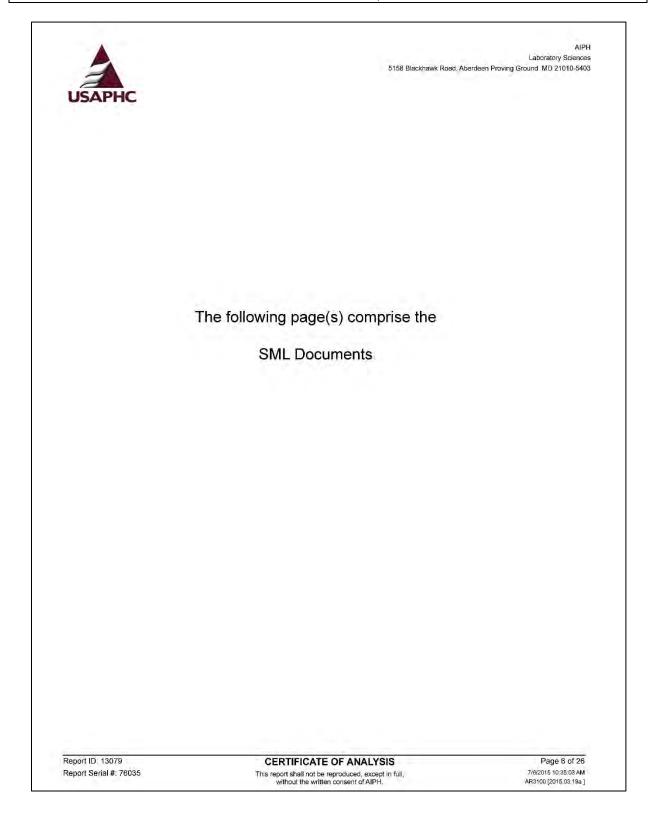
Report ID: 12833	CERTIFICATE OF ANALYSIS	Page 15 of 19
Report Serial #: 74192	This report shall not be reproduced, except in full.	5/26/2015 1:13:03 PM
Contraction of the second second	without the written consent of AIPH.	AR3100 [2014.11.06a]

	Lancaster Environm		tories			Ana	aly	sis	Re	po	rt
2425 New Holland Pike, Lanc			0 • Fax: 717-6	56-2681 • ww	w.LancasterLa	-	-			-	
	Qual	ity C	ontro	l Sum	mary						
Client Name: USA Reported: 05/08/		- -		G	roup Nur	mber: 15	57751				
Analysis Name 1,3,5-Trimethylbenze		Blank <u>Result</u> 2.5 U	Blank <u>DL**</u> 0.98	Blank LOD 2.5	Blank <u>LOQ</u> 2.5	Report <u>Units</u> ug/m3	LCS <u>%REC</u> 100	LCSD <u>%REC</u> 97	LCS/LCSD Limits 67-130	RPD 3	RP <u>Ma</u> 25
Vinyl Acetate		3.5 U	1.8	3 - 5	3.5	ug/m3	156*	159*	56-139 2	2	25
Vinyl Chloride		1.3 U	0.51	1.3	1.3	ug/m3	114	111	64-127	2	25
m/p-Xylene		2.2 U	0,87	2.2	2,2	ug/m3	111	109	61-134	2	25
o-Xylene		2.2 U	0.87	2.2	2.2	ug/m3	116	114	67-125	1	25
* Outrido - 6ifo											
*- Outside of specificat											
**-This limit was used i	in the evaluation										
**-This limit was used i (1) The result for one or	in the evaluation both determined	nations wa	s less than	five times t							
**-This limit was used i (1) The result for one or (2) The unspiked result	in the evaluation both determine was more than	nations wa n four time	s less than s the spike	five times t							
**-This limit was used i (1) The result for one or	in the evaluation both determine was more than	nations wa n four time	s less than s the spike	five times t							
**-This limit was used i (1) The result for one or (2) The unspiked result	in the evaluation both determine was more than	nations wa n four time	s less than s the spike	five times t							
**-This limit was used i (1) The result for one or (2) The unspiked result	in the evaluation both determine was more than	nations wa n four time	s less than s the spike	five times t							
**-This limit was used i (1) The result for one or (2) The unspiked result	in the evaluation both determine was more than	nations wa n four time	s less than s the spike e LOD.	five times t added.	he LOQ.						
**-This limit was used i (1) The result for one or (2) The unspiked result	in the evaluation both determine was more than	nations wa n four time	s less than s the spike e LOD.	five times t added.		5					
 **-This limit was used i (1) The result for one or (2) The unspiked result (3) The surrogate spike 	in the evaluation both determine was more than	nations wa n four time	s less than s the spike e LOD. IP18	five times t added. 1 Page Page 9 o	he LOQ. 14 of 345 f 13					tane 16 d	of 19
**-This limit was used i (1) The result for one or (2) The unspiked result	in the evaluation both determine was more than	nations wa n four time ess than the	s less than s the spike 2 LOD. IP18 CERTII	five times t added. 1 Page Page 9 o	he LOQ.	BIS				age 16 c	

	NS Lancaster Labor Environmental	atories	
	Case Na	rrative/Conformance	Summary
		CLIENT: USAPHC/AIPH SDG: IP181	
Volatiles in Fraction: Volati	Air le Organics in Air by GC/	MS	
Sample #	Client ID	DF	Comments
7869822	128330001	10; 50; 500	
See QC Refere	nce List for Associated Ba	itch QC Samples	
SAMPLE RE	CEIPT:		
Samples were	received in good (condition and within tempera	ature requirements.
HOLDING T	IME:		
	times were met.		
	ON/STANDARDIZAT	TION.	
standard is	outside the QC acce the target analyte	tinuing calibration verifica eptance limits. Since the (s) is not detected in the a	result
QUALITY CO	ONTROL AND NON	CONFORMANCE SUMMARY:	ti
LCS/LCSD			
	outside the QC acco	yte(s) in the Laboratory Cor	Lne QC
Spike(s) is Summary, Si		s high and the target analyt , the data is reported.	tė(s)
Spike(s) is Summary. Si Was not dete Batch#: D15 The recovery Window indic	ected in the sample, 253CBA ((ies) for the follo ating a positive b	s high and the target analyt , the data is reported.	and LCSD exceeds the acceptance
Spike(s) is Summary. Si Was not dete Batch#: D151 The recovery Window indic Refer to the	ected in the sample, 253CBA (ies) for the follo ating a positive bi- a QC Summary forms :	s high and the target analyt , the data is reported. owing analyte(s) in the LCS ias: Acrolein, cis-1,3-Dick	and LCSD exceeds the acceptance
Spike(s) is Summary. Si Was not dete Batch#: D151 The recovery window indic Refer to the SAMPLE AN	ected in the sample, 253CBA (ies) for the follo ating a positive bi a QC Summary forms : ALYSIS:	s high and the target analyt , the data is reported. owing analyte(s) in the LCS ias: Acrolein, cis-1,3-Dick	and LCSD exceeds the acceptance bloropropene, Viny_ Acelate
Spike(s) is Summary. Si Was not dete Batch#: D151 The recovery window indic Refer to the SAMPLE AN	ected in the sample, 253CBA ((ies) for the follo (ating a positive b) e QC Summary forms : ALYSIS: were encountered wi	s high and the target analyt , the data is reported. owing analyte(s) in the LCS ias: Acrolein, cis-1,3-Dick for more information.	and LCSD exceeds the acceptance bloropropene, Viny_ Acelate

	ancaster Laboratories nvironmental	
	Case Narrative/Conformance Summar	У
	CLIENT: USAPHC/AIPH SDG: IP181	
Volatiles in Air Fraction: Volatile Organics	cs in Air by GC/MS	
Abbreviation Key LOQ = Limit of Quantitation	n LCS = Lab Control Sample	
MDL = Method Detection Li	imit LCSD = Lab Control Sample Duplicate	
ND – Not Detected J = Estimated Value	RE – Repreparation/Reanalysis * = Out of Specification	
E= out of calibration range		
5/15/2015 8;21:59 AM	IP181 Page 22 of 345	Page 2 of

🏶 eurofins	Lancaster Laboratories Environmental	Explanation of Sy	mbols and Abb	previations
The following do		the supplier taxes in the web at		
RL N.D.	Reporting Limit none detected	l abbreviations used in reporting tec BMQL MPN	nnical data: Below Minimum Quantitatic Most Probable Number	n Level
TNTC IU umhos/cm	Too Numerous To Count International Units micromhos/cm	CP Units NTU ng	cobalt-chloroplatinate units nephelometric turbidity unit nanogram(s)	
C meq g	degrees Celsius milliequivalents gram(s)	F Ib. kg	degrees Fahrenheit pound(s) kilogram(s)	
μg mL m3	microgram(s) milliliter(s) cubic meter(s)	mg L μL	milligram(s) líter(s) microliter(s)	
	ouble mater(o)	pg/L	picogram/liter	
<	less than			
>	greater than			
ppm	aqueous liquids, ppm is u	m is equivalent to one milligram per sually taken to be equivalent to milli For gases or vapors, one ppm is eq	grams per liter (mg/l), becaus	e one liter of water has a weigh
ppb	parts per billion			
Dry weight basis		heading have been adjusted for mo nate the value present in a similar sa		
Laboratory Data	<i>Qualifiers:</i> lyte detected in the blank			
E - Con J (or G, P - Con U - Ana V - Con	centration difference betwee lyte was not detected at the	bration range e Method Detection Limit (MDL or E en the primary and confirmation col	umn >40%. The lower result	is reported.
		CLP qualifiers may be used with For and PCB Congeners are detailed o		
	esults meet all requireme d under the individual and	ents of the associated regulatory lysis.	program (i.e., NELAC (TNI),	DoD, ISO17025) unless
Measurement un	certainty values, as applica	able, are available upon request.		
collection of the meaningless. If responsible for s	sample. Unless the sample you have questions regardi ample integrity, however, u	d. Clients should be aware that a c e analyzed is truly representative of ng the proper techniques of collection nless sampling has been performed	the bulk of material involved, ng samples, please contact us I by a member of our staff.	the test results will be
		n full, without the written approval o meters listed in the 40 CFR Part 13		ately" are not performed within
THE FOREGOIN IMPLIED. WE D PARTICULAR P ENVIRONMENT LIMITED TO, DA CONCURRENT) LABORATORIES responsibility for Eurofins Lancast	IG EXPRESS WARRANTY ISCLAIM ANY OTHER WA URPOSE AND WARRANT AL, LLC BE LIABLE FOR I MAGES FOR LOSS OF PI OF EUROFINS LANCAST S ENVIRONMENTAL HAS the purposes for which the er Laboratories Environme	In accepting analytical work, we wa IS EXCLUSIVE AND IS GIVEN IN RRANTIES, EXPRESSED OR IMP Y OF MERCHANTABILITY. IN NO NDIRECT, SPECIAL, CONSEQUEI COFIT OR GOODWILL REGARDLI TER LABORATORIES ENVIRONME BEEN INFORMED OF THE POSSI client uses the test results. No pur ntal which includes any conditions t ntal hereby objects to any conflicting	LIEU OF ALL OTHER WARR LIED, INCLUDING A WARRA EVENT SHALL EUROFINS I NTIAL, OR INCIDENTAL DAM ESS OF (A) THE NEGLIGENG INTAL AND (B) WHETHER E BILITY OF SUCH DAMAGES chase order or other order for hat vary from the Standard Te	ANTIES, EXPRESSED OR INTY OF FITNESS FOR ANCASTER LABORATORIES IAGES INCLUDING, BUT NO CE (EITHER SOLE OR UROFINS LANCASTER . We accept no legal work shall be accepted by rms and Conditions, and
		IP181 Page 18 of Page 13 of 13	345	
Report ID: 12833		CERTIFICATE OF ANA	ALYSIS	Page 19 of 19
Report Serial #: 7	4192	This report shall not be reproduced, without the written consent of		5/26/2015 1:13:03 PM AR3100 (2014, 11:06a)


	DEPARTMENT OF THE ARMY US ARMY INSTITUTE OF PUBLIC HEALTH 5158 BLACKHAWK ROAD BERDEEN PROVING GROUND MARYLAND 21010-5403	
MCHB-IP-L	08 July 20	15
	APHC, TOX Portfolio (5158 Blackhawk Rd, MCHB-I g E2100, Gunpowder, MD 21010	P-
SUBJECT: Laboratory Scie	nces (LS) Final Analytical Report	
1. This is LS Final Analytica	al Report for:	
Project Site: Funding: LS Work Order #:	RED SMOKE INHALATION TOX STUDY S.0024589 13079	
Report Serial #:	76035	
2. Please contact us if this expectations.	report or any of our services did not meet your need	is or
3. Point of contact for addit	ional information is MAJ Jose Pizarro-Matos,	
DSN 584-2208 or commerc	sial 410-436-2208.	
	MISER. CRAIG.S. 12293863 91 CRAIG MISER Digitally signed by MISE CRAIG.S. 1229386391 C = US 0 = Golverment OU = DoD Date: 2015.07.08 11:23 //	5.S. IL S. 47 -04'00'
	Chief, Laboratory Analytical Division - Inc	organic
	ument and any attachments is FOUO and is intended for the addressee	
	nauthorized. If you are not the intended recipient, please destroy this do calling 410-436-2208/DSN 584-2208.	cument and any attachments

USAPH	ic								
John	-	SAMPLE SU	MMARY						
Workorder: 13	079 RED SMOKE INHALATION TOX STUE	Y							
All samples were inspected and observed to conform to our receipt policies, except as noted.									
Lab ID	Sample ID	Matrix	Date Collected	Date Received	Cancel Code				
130790001	RED SMK_RD#2_CHAMBER BKG_7102	Air	6/3/2015 09:59	6/3/2015 14:30	-				
130790002	RED SMK_RD#2_HIGH EXP_7110	Air	6/3/2015 11:43	6/3/2015 14:30					
130790003	RED SMK_RD#2_MED EXP_7093	Air	6/3/2015 12:24	6/3/2015 14:30					
130790004	RED SMK_RD#2_LOW EXP_7099	Air	6/3/2015 13:43	6/3/2015 14:30					

2	515	8 Blackhawk Road, Aberdeen Proving Ground MD 21010-54
USAPHC	PROJECT SUMMARY	
Workorder: 13079 RED SMOKE INHAL	ATION TOX STUDY	
Batch Comments		
Batch: ELLE/1208 - Subcontract Dat In the contractor's case narrative sample with the positive hit for ca	a for ELLE /conformance summary calibration/standardization sectio arbon disulfide is 7915824 instead of 791824.	on, the correct sample number for the
Report ID: 13079 Report Serial #: 76035	CERTIFICATE OF ANALYSIS This report shall not be reproduced, except in ful without the written consent of AIPH.	Page 3 of 20 7/8/2015 10:35:03 Al

ISAPHC	5158 Blackhawk Road, Aberdeen Pro	Laboratory Scien				
TERMINOLOGY & ABBREVIATIONS (ENV)						
Terms:						
AIPH = US Army Institute of Publi	ic Health					
DF = Dilution Factor						
DUP = Duplicate Analysis						
HSN = Horizon Sample Number ((Lab Number).					
J = The reported result is an estin the limit of quantitation (LOQ).	nated value; the result is between the method detection limit (MI	DL) and				
LCS = Laboratory Control Sample	e					
LCSD = Laboratory Control Samp	ple Duplicate					
LOQ = Limit of Quantitation						
LS = Laboratory Sciences						
MDL = Method Detection Limit						
MS = Matrix Spike						
MSD = Matrix Spike Duplicate						
ND = Not Detected						
Qual = Data Qualifier						
RPD = Relative Percent Difference						
SML = Sample Management Lab						
	in Analytical Results and QC Listings)					
	detected at or above the limit of quantitation (LOQ).					
Uncert = Measurement Uncertain	ty (Reported in Radiochemical Analyses Only)					
** Indicates QC failure. For exam	ple, recoveries or relative percent difference (RPD) out of range					
Units:						
% = percent						
cc = cubic centimeter						
cm = centimeter						
cm2 = square centimeter						
cpm = counts per minute						
dpm = disintegrations per minute						
ft2 = square foot						
g = gram						
ort ID: 13079	CERTIFICATE OF ANALYSIS	Page 4 of 2				
ort Serial #: 76035	This report shall not be reproduced, except in full, without the written consent of AIPH.	7/8/2015 10:35:03 A AR3100 [2015.03.19/				

Report ID: 13079 Report Serial #: 76035	CERTIFICATE OF ANALYSIS This report shall not be reproduced, except in without the written consent of AIPH.	
umole = micromole	in the second	
umhos = micromhos (conductivi	ty unit)	
uL = microliter		
ug = microgram		
uCi = microcurie		
TON = Threshold Odor Number		
struct = structures		
S = siemens		
ppm = parts per million		
ppb = parts per billion		
pg = picogram		
pCi = picocurie		
NTU = Nephelometric Turbidity	Units	
ng = nanogram		
MPN = most probable number		
mm3 = cubic millimeter		
mm2 = square millimeter		
mL = milliliter		
min = minute		
mg = milligram		
MFL = million fibers per liter		
m3 = cubic meter		
L = Liter		
kg = kilogram		
in2 = square inch		
USAPHC		
	5	5158 Blackhawk Road, Aberdeen Proving Ground MD 21010-

MATRIX CODES. An(A); Biological Liquid(BL); Biological Solid(BS); Bak(B); Drinking Water(D); Frag.(F); Oil(O); Paint Chip(P); Sol/Sediment/Sludge(S); Waste Water(WW); Water(W); Wipe(W) preservATIVE CODES; 4C - Lee only H - HCH-ice N - HNO3Hice S - H2SO++ice NA - NaOH+ice AA - Ascorbic Acid O - Other (specify) preservATIVE CODES; 4C - Lee only H - HCH-ice N - HNO3Hice S - H2SO++ice NA - NaOH+ice AA - Ascorbic Acid O - Other (specify) Authorized: Section Chief, SML Authorized: Section Chief, SML	Micine Compune III Chyr	Relinquished By:	Shinment Method -	1 1 1 1	Ph#2	RED SHIK_ED#Z CHAMBER BRC 103 JON 265	FIELD SAMPLE ID	STD (28 CALENDAR DAYS)	
ce N - HNO	51/5	Date & Time				2) 03 Jun	DATE	HIGH (14 CAL. DAYS)	356
35); Bulk(B); Dr 3+ice S - H2S		=	Date Shipped-		54E1	1143		/ 40 I	
unking Water 04+ice Na-	1	Accepted By:	lipped-		××	××	1	JIOP (7 CAL. DATS)	
(D): Frag.(F): NaOH+ice	R.	-			AA	A	162		
Dinking Water(D); Frag.(F); O3(O); Paun Chip(P) 2807-100 Na-NaOHHice AA-Ascobic Acid 2807-100 Na-NaOHHice AA-Ascobic Acid	- CP	Date & Time	4				< # of) Containers		
hip(P); Sall/Se ucid o - Othe ML			Total N				To-15		
dment/Sludge r (specify)		Comment/Remarks	Total Number of Containers					ANALYSIS REQUESTED	PRESER
(S), Waste Wi		narks	ontainers					REQUESTE	PRESERVATIVE (See Codes)
ater(WW); Wi								8	See Codes
ater(W); Wip									
e(WI) Page 1									
e 1 of 2							1	1	

1	Lancaster Laboratories Environmental	Analysis Report
2425 New Holland Pike, Lar	acaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 •	www.LancasterLabs.com REVISED
	ANALYTIC/	AL RESULTS
	Prepared by:	Prepared for:
243	ister Laboratories Environmental 25 New Holland Pike ancaster, PA 17601	USAPHC/AIPH DFAS-IN VP GFEBS - HQ0490 8899 E 56TH ST Indianapolis IN 46249-3800
	July 0.	2, 2015
	Project:	P212D1
	Group Numb SDG: PO Number: W9 Release Num	e: 06/04/2015 ber: 1566579 IP212 PIZLK-14-P-0590 iber: P212D1 ile Origin: NA
130790002 RED 9 130790003 RED 9	scription SMK_RD#2_CHAMBER Air SMK_RD#2_HIGH Air SMK_RD#2_MED Air SMK_RD#2_LOW Air	Lancaster Labs (LL) # 7915821 7915822 7915823 7915823 7915824
Laboratory Sampl Regulatory agenci accreditation can l	e Analysis Record. es do not accredit laboratories for al	losed analytical results are indicated on the Il methods, analytes, and matrices. Our scopes of .com/environment-testing/laboratories/curofins- cations/.
	USAPHC/AIPH	Attn: Chuck Stoner
ELECTRONIC		
ELECTRONIC COPY TO ELECTRONIC COPY TO	USAPHC/AIPH	Attn: Heidi Taylor
COPY TO ELECTRONIC	USAPHC/AIPH	Attn: Heidi Taylor
COPY TO ELECTRONIC	USAPHC/AIPH	Attn: Heidi Taylor
COPY TO ELECTRONIC	USAPHC/AIPH	Attn: Heidi Taylor
COPY TO ELECTRONIC	USAPHC/AIPH IP212 Page Page	

🌼 eurofins	Lancaster Laboratories Environmental	Analysis	Report
2425 New Holland Pike, L	ancaster, PA 17601 + 717-656-2300 + Fax: 717-656-2681 + w		REVISED
	Respe	ctfully Submitted,	
	k	atherine a Kline	felter
	Kal	herine A. Klinefelter ncipal Specialist	U.
	(717)) 556-7256	
	IP212 Pag Page 2	e 7 of 381 of 19	
eport ID: 13079	OFDIEIOATE	OF ANALYSIS	Page 10 of 26

🔅 eurofins	Lancaster Laboratories Environmental	Case	e Narrative
Project Name: LL Group #: 1	P212D1 566579		
General Comme All analyses otherwise not	have been performed in accordance	e with DOD QSM Version !	5.0 unless
See the Labor method refere	atory Sample Analysis Record sect nces.	tion of the Analysis Rep	port for the
	iteria unless otherwise noted in QC Summary for specific values a		omment below.
Project speci	fic QC samples are not included	in this data set	
these situati	not be reported if site-specific ons, to demonstrate precision and , unless otherwise specified in 1	d accuracy at a batch l	ubmitted. In evel, a LCS/LCSD
Surrogate rec unless attrib below.	overies (if applicable) which are uted to a dilution or otherwise r	e outside of the QC wind noted in an Analysis Sp	dow are confirmed ecific Comment
	ere received at the appropriate f ody unless otherwise noted.	temperature and in acco	rdance with the
Analysis Spec	ific Comments:		
Line has here			
<u>Batch #: E</u> The re	<u>latiles in Air</u> p <u>1516830BA (sample number(s): 791</u> covery(ies) for the following ana ceptance window indicating a posi	alyte(s) in the LCS and/	or LCSD exceeded e
<u>Batch #: E</u> The re	D1516830BA (sample number(s): 791 covery(ies) for the following ana	alyte(s) in the LCS and/	or LCSD exceeded
<u>Batch #: E</u> The re	D1516830BA (sample number(s): 791 covery(ies) for the following ana	alyte(s) in the LCS and/ itive bias: Vinyl Acetat	or LCSD exceeded
<u>Batch #: I</u> The ret the act	<u>D1516830BA (sample number(s): 791</u> covery(ies) for the following ana ceptance window indicating a posi	alyte(s) in the LCS and/ itive bias: Vinyl Acetat 23:33PM 8 of 381	for LCSD exceeded
<u>Batch #: I</u> The ret the act	01516830BA (sample number(s): 791 covery(ies) for the following ana ceptance window indicating a posi ndicating a posi 7/2/2015 1: IP212 Page	alyte(s) in the LCS and/ tive bias: Vinyl Acetat 23:33PM 8 of 381 f19 FANALYSIS	for LCSD exceeded e Page 11 of 7/8/2015 10.3503

ample rojec	5 New Holland Pike, Lanc Description:	ester, PA 17601 •	717-656-2300 · F			-		is Repo	
rojec				ax: 717-656	•2681 • V	www.LancasterLabs.co	m		
rojec								R	EVISED
		13079 / RE P212D1 Sum	D SMOKE I	NHALAT	Air	LI	Sample # AQ 79 Group # 15665 count # 04694	579	
	t Name: P212D1								
ubmit	ted: 06/03/201 ted: 06/04/201 ed: 07/02/201	5 18:45				8899 E 561	GFEBS - HQ04		
12D1	SDG#: IP212-	01				_			
AT o.	Analysis Name		CAS Number	Result		Detection Limit*	Limit of Detection	Limit of Quantitation	DF
olati	les in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3	
5298	Acetone		67-64-1	31		1.2	4.8	4.8	1
	Acetonitrile Acrolein		75-05-8 107-02-8	10 6.4		0.84	1.7 1.1	1.7	1
	Acrylonitrile		107-13-1	2.2	U	1.1	2.2	2.2	1
	Benzene		71-43-2	1.0	J	0.64	1.6	1.6	1
	Benzyl Chloride Bromobenzene		100-44-7 108-86-1	2.6	U U	2.6	2.6	2.6	1
	Bromodichlorometha	ane	75-27-4	3.4	U	1.3	3.4	3.4	1
	Bromoform Bromomethane		75-25-2 74-83-9	5.2	U U	2.1 0.78	5.2 1.9	5.2	1
	1,3-Butadiene		106-99-0	1.1	U	0.88	1,1	1.1	1
	2-Butanone tert-Butyl Alcoho	1	78-93-3 75-65-0	2.7	JU	1.5	5.9 3.0	5.9 3.0	1 1
5298	Carbon Disulfide		75-15-0	3.1	Ŭ	1.6	3.1	3.1	1
	Carbon Tetrachlor: Chlorobenzene	ide	56-23-5 108-90-7	3.1	U U	1.3	3.1	3.1	1
	Chlorodifluorometl	hane	75-45-6	2.3	J	0.92 0.71	2.3	2.3	1
5298	Chloroethane		75-00-3	1.3	U	0.53	1.3	1.3	1
	Chloroform Chloromethane		67-66-3 74-87-3	2.4	U J	0.98 0.41	2.4	2.4 2.1	1
	3-Chloropropene		107-05-1	1.6	υ	0.63	1.6	1.6	1
	Cumene		98-82-8	4.9	U U	0.98	4.9	4.9	1
	Cyclohexane Dibromochlorometha	ane	110-82-7 124-48-1	1.7	U	0,69	1.7	1.7	1
5298	1,2-Dibromoethane		106-93-4	З.В	U	1.5	3.8	3.8	1
	Dibromomethane 1,2-Dichlorobenzer	ne	74-95-3 95-50-1	3.6	U U	1.4	3.6	3.6	1
	1,3-Dichlorobenzer		541-73-1	3.0	Ü	1.2	3.0	3.0	1
	1,4-Dichlorobenzer Dichlorodifluorom		106-46-7 75-71-8	3.0	U J	1.2	3.0	3.0	1
	1,1-Dichloroethane		75-34-3	2.0	U	0.81	2.0	2.0	1
	1,2-Dichloroethan		107-06-2	2.0	U	0.81	2.0	2.0	1
	1,1-Dichloroethene cis-1,2-Dichloroet		75-35-4 156-59-2	2.0	UU	0.79	2.0	2.0	1
5298	trans-1,2-Dichlord	oethene	156-60-5	2.0	U	0.79	2.0	2.0	1
	Dichlorofluoromet 1,2-Dichloropropa		75-43-4 78-87-5	2.1	U U	0.84 0.92	2.1 2.3	2.1 2.3	1
5298	cis-1,3-Dichlorop:	ropene	10061-01-5	2.3	U	0.91	2.3	2.3	1
	trans-1,3-Dichloro 1,4-Dioxane	opropene	10061-02-6 123-91-1	2.3	U U	0.91 1.8	2.3	2.3 3.6	1
5298	Ethyl Acetate		141-78-6	1.8	U	1.8	1.8	1.8	1
	Ethyl Acrylate Ethyl Methacrylate	0	140-88-5 97-63-2	4.1	U	0.82	4.1 4.7	4.1 4.7	1
5298	Ethylbenzene		100-41-4	2.0	J	0.87	2.2	2.2	1
	4-Ethyltoluene		622-96-8	2.5	U U	0.98	2.5	2.5	1
5298	Freon 113 Freon 114		76-13-1 76-14-2	3.8	U	3.8 1.4	3.8 3.5	3.8	1
5298	Heptane		142-82-5	2.0	U	0.82	2.0	2.0	1
	Hexachlorobutadie Hexachloroethane	ite.	87-68-3 67-72-1	21 9.7	U	4.3 1.9	21 9.7	21 9.7	1 1
			*–This li			e evaluation of the fin	al result		
				IP212		ge 9 of 381 4 of 19			

-	eurofins	Lancaster Environme	Laboratorio antal	es			Analys	sis Rep	ort
242	5 New Holland Pike, Lanc	aster, PA 17601 +	717-656-2300 · Fa	x: 717-656-	2681 • WA	vw.LancasterLabs	.com		REVISED
ample	Description:	130790001	RED SMK RI	#2 CHA	MBER	Air		LL Sample # AQ	
		13079 / RE P212D1 Sum	D SMOKE IN	HALATI			3	LL Group # 156 Account # 046	6579
rojec	t Name: P212D1								
ollec	ted: 06/03/201	5 09:59				USAPHC/A	IPH VP GFEBS - HQC	14.90	
	ted: 06/04/201 ed: 07/02/201					8899 E 5			
12D1	SDG#: IP212-	01							
AT	Analysis Name		CAS Number	Result		Detection Limit*	Limit of Detection	Limit of Quantitation	DF
olati	les in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3	
	Hexane 2-Hexanone		110-54-3 591-78-6	2.2	U	0.70	1.8 8.2	1.8 8.2	1
5298	Isooctane		540-84-1	4.7	U	0.93	4.7	4.7	1
	Isopropanol Methyl Acrylate		67-63-0 96-33-3	2.5	U	1.2	2.5	2.5	1
	Methyl Iodide		74-88-4	2.9	Ŭ	1.2	2.9	2.9	ĩ
	Methyl Methacryla		80-62-6 98-83-9	4.1	U	0.82	4.1	4.1	1
	Alpha Methyl Styr Methyl t-Butyl Et		1634-04+4	4.8	U	0.97	4.8 1.8	4.8	1
5298	4-Methyl-2-pentan	one	108-10-1	8.2	U	2.0	8.2	8.2	1
	Methylene Chlorid Octane	e	75-09-2 111-65-9	7.7	ü	0.69	3,5	3.5	1
5298	Propene		115-07-1	2.9		0.34	1,7	1.7	1
	Styrene 1,1,1,2-Tetrachlo	roethane	100-42-5	2.1	UU	0.85	2.1	2.1 3.4	1
	1,1,2,2-Tetrachlo		79-34-5	3.4	U	1.4	3.4	3.4	1
5298	Tetrachloroethene		127-18-4	3.4	U	1.4	3.4	3.4	1
	Tetrahydrofuran Toluene		109-99-9 108-88-3	1.5	U J	0.59	1.5	1.5	1 1
	1,2,4-Trichlorobe		120-82-1	15	U	3.7	15	15	1
	1,1,1-Trichloroet 1,1,2-Trichloroet		71-55-6 79-00-5	2.7	U	1.1	2.7	2.7	1
5298	Trichloroethene		79-01-6	2.7	υ	1.1	2,7	2.7	1
	Trichlorofluorome 1,2,3-Trichloropr		75-69-4	1.2	JU	1.1	2.8	2.8	1
5298	1,2,4-Trimethylbe	nzene	95-63-6	1.7	J	0.98	2.5	2.5	1
	1,3,5-Trimethylbe Vinyl Acetate	nzene	108-67-8	2.5	UU	0.98	2.5	2.5	1
5298	Vinyl Chloride		75-01-4	1.3	U	0.51	1.3	1.3	ı
	m/p-Xylene o-Xylene		179601-23-1 95-47-6	7.1 2.7		0.87	4.3 2.2	4.3 2.2	1. 1.
	is compliant unles Summary for over		noted. Pleas	e refer	to the		s		
_			Labora	tory S	Sample	Analysis :	Record		
	nalysis Name	Metho			# Batch	#	Analysis	Analyst	Dilution
298 T	0 15 VOA Ext. List	EPA I	0-15	1	D1516		ate and Time 5/18/2015 14:15	Jacob E Bailey	Factor
		-	*-This lin	nit was use	ed in the	evaluation of the	final result		
				IP212	Page Page 5	10 of 381 of 19			
-	rt ID: 13079		- 12			OF ANALYSI			ge 13 of 26

×.	eurofins	Lancaste	er Laboratori nental	Analysis Report						
24	25 New Holland Pike, Lanc	aster, PA 17601	• 717-656-2300 • F	ax: 717-656-26	581 • WA	ww.LancasterLabs.com	m			
								R	EVISED	
		13079 / R	RED SMK R ED SMOKE I Imma Can # 1	NHALATIC			LI	Sample # AQ 79 Group # 15665 count # 04694	79	
	ct Name: P212D1									
Submit	cted: 06/03/201 tted: 06/04/201 ted: 07/02/201	5 18:45				8899 E 56T	GFEBS - HQ04			
12D2	SDG#: IP212-	02								
CAT No.	Analysis Name		CAS Number	Result		Detection Limit*	Limit of Detection	Limit of Quantitation	DF	
olat	iles in Air	EPA TO-1	5	ug/m3		ug/m3	ug/m3	ug/m3		
05298	Acetone		67-64-1	9,100		1,200	4,800	4,800	1000	
05298	Acetonitrile Acrolein		75-05-8	1,300 4,400		84 1,100	170 1,100	170	100	
15298	Acrylonitrile		107-13-1	220	σ	110	220	220	100	
15298	Benzene		71-43-2	610		64	160	160	100	
15298 15298	Benzyl Chloride Bromobenzene		100-44-7 108-86-1	260 320	UU	260	260 320	260 320	100	
05298	Bromodichlorometha	ine	75-27-4	340	U	130	340	340	100	
15298	Bromoform		75-25-2	520	υ	210	520	520	100	
15298 15298	Bromomethane 1,3-Butadiene		74-83-9 106-99-0	190 150	U	78	190 110	190	100	
15298	2-Butanone		78-93-3	1,600		150	590	590	100	
15298	tert-Butyl Alcoho.	9	75-65-0	300	U	150	300	300	100	
15298	Carbon Disulfide Carbon Tetrachlor:	lde	75-15-0 56-23-5	310 310	UU	160	310 310	310 310	100	
15298	Chlorobenzene		108-90-7	230	υ	92	230	230	100	
15298 15298	Chlorodifluorometh Chloroethane	nane	75-45-6	180 130	U U	71	180	180	100	
15298	Chloroform		67-66-3	100	5	98	240	240	100	
15298	Chloromethane		74-87-3	260		41	210	210	100	
05298 05298	3-Chloropropene Cumene		107-05-1 98-82-8	160 490	U U	63 98	160	160 490	100	
15298	Cyclohexane		110-82-7	170	U	69	170	170	100	
05298	Dibromochlorometha	ane	124-48-1	430	υ	170	430	430	100	
05298 05298	1,2-Dibromoethane Dibromomethane		106-93-4 74-95-3	380 360	UU	150 140	380 360	380 360	100	
05298	1,2-Dichlorobenzer	1e	95-50-1	300	U	120	300	300	100	
15298	1,3-Dichlorobenzer		541-73-1	300	U	120	300	300	100	
05298 05298	1,4-Dichlorobenzer Dichlorodifluorom		106-46-7 75-71-8	250	υ	99	250	250	100	
05298	1,1-Dichloroethan	a la	75-34-3	200	U	81	200	200	100	
05298 05298	1,2-Dichloroethane 1,1-Dichloroethene		107-06-2 75-35-4	120 200	L U	81	200	200	100	
15298	cis-1,2-Dichloroet	hene	156-59-2	200	U	79	200	200	100	
15298 15298	trans-1,2-Dichlore Dichlorofluoromet		156-60-5 75-43-4	200	U U	79 84	200 210	200 210	100	
15298	1,2-Dichloropropa		78-87-5	230	Ű	92	230	230	100	
15298	cis-1,3-Dichlorop:	copene	10061-01-5	230	U	91	230	230	100	
15298 15298	trans-1,3-Dichloro 1,4-Dioxane	propene	10061-02-6 123-91-1	230 360	U U	91 180	230	230 360	100	
15298	Ethyl Acetate		141-78-6	240		180	180	180	100	
05298 05298	Ethyl Acrylate Ethyl Methacrylate	3	140-88-5 97-63-2	410 470	UU	82 93	410 470	410 470	100	
15298	Ethylbenzene		100-41-4	530	ý.	87	220	220	100	
05298	4-Ethyltoluene		622-96-8	190	J	98	250	250	100	
05298 05298	Freon 113 Freon 114		76-13-1 76-14-2	380 350	U	380 140	380 350	380	100	
05298	Heptane		142-82-5	110	J	82	200	200	100	
)5298)5298	Hexachlorobutadien Hexachloroethane	1e	87-68-3 67-72-1	2,100 970	υ υ	430 190	2,100 970	2,100 970	100 100	
			*–This li	mit was used	l in the o	evaluation of the fin	al result			
					Page age 6	11 of 381 of 19				
Repo	ort ID: 13079			CERTIFIC		OF ANALYSIS		Page	14 of 26	

Г

🍀 eurofins	Lancaste Envíronm	r Laboratori iental	es		-	Analys	sis Rep	ort
2425 New Holland Pike, Lan	caster, PA 17601 •	717-656-2300 • Fa	ax: 717-656-2	2681 • WW	w.LancasterL	bs.com		REVISED
ample Description:	130790003	PPD CMP DI	42 HTC				LL Sample # AQ	
ample Description.	13079 / R	ED SMOKE II mma Can # 1	HALATI				LL Group # 156 Account # 046	6579
roject Name: P212D								
ollected: 06/03/20 ubmitted: 06/04/20 eported: 07/02/20	15 18;45				8899 E	/AIPH N VP GFEBS - HQ 56TH ST apolis IN 46249		
12D2 SDG#: IP212	-02						3	
AT o. Analysis Name		CAS Number	Result		Detectio Limit*	n Limit of Detection	Limit of Quantitation	DF
olatiles in Air	EPA TO-1	5	ug/m3		ug/m3	ug/m3	ug/m3	
5298 Hexane 5298 2-Hexanone		110-54-3 591-78-6	180 820	U	70 200	180 820	180 820	100
5298 2-nexanone 5298 Isooctane		540-84-1	470	u	93	470	470	100
5298 Isopropanol		67-63-0	1,200	П	120	250	250	100
5298 Methyl Acrylate 5298 Methyl Iodide		96-33-3 74-88-4	350	U	70 120	350 290	350 290	100
5298 Methyl Methacryl		80-62-6	410	U	82	410	410	100
5298 Alpha Methyl Sty 5298 Methyl t-Butyl E		98-83-9 1634-04-4	480 180	U U	97 72	480	480	100
5298 Methyl t-Butyl E 5298 4-Methyl-2-penta		108-10-1	820	U	200	180	180	100
5298 Methylene Chlori		75-09-2	330	J	69	350	350	100
5298 Octane 5298 Propene		111-65-9 115-07-1	110 3,100	л	93 340	470	470 1,700	100
5298 Styrene		100-42-5	290		85	210	210	100
5298 1,1,1,2-Tetrachl		630-20-6	340	υ	140	340	340	100
5298 1,1,2,2-Tetrachl 5298 Tetrachloroethen		79-34-5 127-18-4	340	σ	140 140	340 340	340 340	100
5298 Tetrahydrofuran	e	109-99-9	150	U	59	150	150	100
5298 Toluene		108-88-3	2,600	- 27	75	190	190	100
5298 1,2,4-Trichlorob 5298 1,1,1-Trichloroe		120-82-1	1,500	UU	370	1,500	1,500 270	100
5298 1,1,2-Trichloroe		79-00-5	270	υ	110	270	270	100
5298 Trichloroethene 5298 Trichlorofluorom	othana	79-01-6 75-69-4	270 280	UU	110	270	270	100
5298 1,2,3-Trichlorop		96-18-4	300	U	120	300	300	100
5298 1,2,4-Trimethylb		95-63-6	680	1.5	98	250	250	100
5298 1,3,5-Trimethylb 5298 Vinyl Acetate	enzene	108-67-8 108-05-4	250	U U	98 180	250	250 350	100
5298 Vinyl Chloride		75-01-4	130	U	51	130	130	100
5298 m/p-Xylene 5298 o-Xylene		179601-23-1 95-47-6	2,000		87	430 220	430 220	100
		11.1.1			70			
ll QC is compliant unl Control Summary for over		noted. Plea: mance data an	se refer nd associ	to the ated sa	mples.			
AT Analysis Name	Meth			Batch	Analysi:	Analysis	Analyst	Dilution
298 TO 15 VOA Ext. Lis		TO-15	ì	D1516	30BA	Date and Time 06/18/2015 08:27	Jacob E Bailey	Factor 1000
5298 TO 15 VOA Ext. Li:	st EPA	TO-15	ĩ	D1516	330BA	06/18/2015 15:03	Jacob E Bailey	180
		*-This lin	nit was use	d in the e	valuation of 1	he final result		
			IP212	Page Page 7	12 of 38 of 19	1		

N.	eurofins	Lancaster	Laboratori	es		4	nalys	is Repo	ort
24	25 New Holland Pike, Lanc			ax: 717-656-26	581 • WW	w.LancasterLabs.co	m		
								R	EVISED
ampl	e Description:						LI	Sample # AQ 79	
		13079 / RE P212D1 Sum			N			Group # 15665 count # 04694	
roje	ct Name: P212D1								
ubmi	cted: 06/03/201 tted: 06/04/201 ted: 07/02/201	5 18:45				8899 E 561	GFEBS - HQ04		
12D3	SDG#: IP212-	03						2	
CAT	an a		CAS Number			Detection Limit*	Limit of Detection	Limit of Quantitation	2
No.	Analysis Name			Result					DF
	iles in Air Acetone	EPA TO-15	67-64-1	ug/m3 9,000		ug/m3 1,200	ug/m3 4,800	ug/m3 4,800	1000
05298	Acetonitrile		75-05-8	1,100		84	170	170	100
15298	Acrolein		107-02-8	4,800		1,100	1,100	1,100	1000
15298	Acrylonitrile Benzene		107-13-1 71-43-2	220 460	υ	110	220	220 160	100
15298	Benzyl Chloride		100-44-7	260	U	260	260	260	100
15298	Bromobenzene		108-86-1	320	U	130	320	320	100
15298	Bromodichlorometha	ane	75-27-4	340	U	130	340	340	100
15298 15298	Bromoform Bromomethane		74-83-9	520 190	U U	210 78	520 190	520 190	100
15298	1,3-Butadiene		106-99-0	240	0	88	110	110	100
15298	2-Butanone		78-93-3	1,200		150	590	590	100
15298	tert-Butyl Alcoho.	L.	75-65-0	300	U	150	300	300	100
15298	Carbon Disulfide Carbon Tetrachlor:	de	75-15-0	310	U	160	310 310	310 310	100
15298	Chlorobenzene	luc	108-90-7	230	U	92	230	230	100
15298	Chlorodifluorometh	nane	75-45-6	180	υ	71	180	180	100
15298	Chloroethane		75-00-3	130	U	53	130	130	100
15298 15298	Chloroform Chloromethane		67-66-3	240 220	U	98 41	240 210	240 210	100
15298	3-Chloropropene		107-05-1	160	υ	63	160	160	100
15298	Cumene		98-82-8	490	U	98	490	490	100
15298 15298	Cyclohexane Dibromochlorometha		110-82-7 124-48-1	170 430	U	69 170	170 430	170 430	100
15298	1,2-Dibromoethane	ille	106-93-4	380	U	150	380	380	100
15298	Dibromomethane		74-95-3	360	U	140	360	360	100
15298	1,2-Dichlorobenzen		95-50-1	300	U	120	300	300	100
15298 15298	1,3-Dichlorobenzer 1,4-Dichlorobenzer		541-73-1 106-46-7	300	u U	120	300	300	100
15298	Dichlorodifluorom	ethane	75-71-8	250	ΰ	99	250	250	100
15298	1,1-Dichloroethan		75-34-3	200	U	81	200	200	100
15298	1,2-Dichloroethane 1,1-Dichloroethene		107-06-2	96 200	L U	81	200	200	100
15298	cis-1,2-Dichloroet	hene	156-59-2	200	U	79	200	200	100
15298	trans-1,2-Dichlor		156-60-5	200	U	79	200	200	100
15298	Dichlorofluoromet		75-43-4 78-87-5	210 230	U U	84 92	210 230	210 230	100
15298	cis-1,3-Dichlorop:	opene	10061-01-5	230	U	91	230	230	100
15298	trans-1,3-Dichlord	opropene	10061-02-6	230	U	91	230	230	100
15298	1,4-Dioxane		123-91-1 141-78-6	360	U	180	360	360	100
15298 15298	Ethyl Acetate Ethyl Acrylate		141-78-6	230 410	υ	180	180 410	180 410	100
5298	Ethyl Methacrylate	2	97-63-2	470	Ŭ	93	470	470	100
15298	Ethylbenzene		100-41-4	420	1.2.1	87	220	220	100
)5298)5298	4-Ethyltoluene Freon 113		622-96-8 76-13-1	170 380	JU	98 380	250 380	250 380	100
05298	Freon 114		76-14-2	350	U	140	350	350	100
05298	Heptane		142-82-5	110	J	82	200	200	100
)5298)5298	Hexachlorobutadie Hexachloroethane	1e	87-68-3 67-72-1	2,100 970	σ	430 190	2,100 970	2,100 970	100 100
			*-This li	mit was used	l in the e	valuation of the fin	al result		
					Page age 8	13 of 381 of 19			

Г

-		Lancaster Environm	Laboratori ental	es		_	Analys	sis Rep	ort
24	25 New Holland Pike, Lanc	aster, PA 17601 +	717-656-2300 • Fa	x: 717-656-3	2681 • ww	w.LancasterL	abs.com		REVISED
ampl	e Description:	130790003	RED SMK RI	#2 MED	Air			LL Sample # AQ	
ampı		13079 / RE P212D1 Sum	D SMOKE IN	HALATI				LL Group # 150 Account # 040	56579
1.21	ct Name: P212D1								
ubmi	cted: 06/03/201 tted: 06/04/201 ted: 07/02/201	5 18:45				8899 E	/AIPH N VP GFEBS - HQ 56TH ST apolis IN 46249		
12D3	SDG#: 1P212-								
AT	Analysis Name		CAS Number	Result	5	Detectic Limit*	n Limit of Detection	Limit of Quantitation	1 DF
		ED3 E0 15		ug/m3		ug/m3	ug/m3	ug/m3	2
5298	iles in Air Hexane	EPA TO-15	110-54-3	74	J	70	180	180	100
5298 5298	2-Hexanone Isooctane		591-78-5 540-84-1	820 470	U	200 93	820	820 470	100
5298	Isopropanol		67-63-0	250	U	120	470	250	100
5298	Methyl Acrylate		96-33-3	350	U	70	350	350	100
5298 5298	Methyl Iodide Methyl Methacryla	te	74-88-4 80-62-6	290	U U	120 82	290 410	290 410	100
5298	Alpha Methyl Styr		98-83-9	480	U	97	480	480	100
5298	Methyl t-Butyl Et		1634-04-4	180	U	72	180	180	100
5298 5298	4-Methyl-2-pentan Methylene Chlorid		108-10-1 75-09-2	820 300	U J	200	820	820 350	100
5298	Octane		111-65-9	120	.1	93	470	470	100
5298	Propene		115-07-1	4,200		34	170	170	100
5298 5298	Styrene 1,1,1,2-Tetrachlo	roethane	100-42-5 630-20-6	240 340	U	85 140	210	210	100
5298	1,1,2,2-Tetrachlo	roethane	79-34-5	340	U	140	340	340	100
5298 5298	Tetrachloroethene		127-18-4 109-99-9	340	U U	140	340	340	100
5298	Tetrahydrofuran Toluene		108-88-3	2,200	U.	59 75	150	150	100
5298	1,2,4-Trichlorobe		120-82-1	1,500	U	370	1,500	1,500	100
5298 5298	1,1,1-Trichloroet 1,1,2-Trichloroet		71-55-6	270	U U	110	270 270	270 270	100
5298	Trichloroethene		79-01-6	270	U	110	270	270	100
5298	Trichlorofluorome		75-69-4	280	U	110	280	280	100
5298 5298	1,2,3-Trichloropr 1,2,4-Trimethylbe		96-18-4 95-63-6	610	U	120 98	300 250	300 250	100
5298	1,3,5-Trimethylbe		108-67-8	250	U	98	250	250	100
5298 5298	Vinyl Acetate Vinyl Chloride		108-05-4 75-01-4	350 130	υ υ	180 51	350 130	350 130	100 100
5298	m/p-Xylene		179601-23-1	1,600	U.	87	430	430	100
5298	o-Xylene		95-47-6	600		87	220	220	100
	is compliant unle: 1 Summary for over:		noted. Pleas mance data an	se refer 1d associ	to the ated sa	imples.	nts s Record		
	Analysis Name	Metho	bđ	Trial#	Batch		Analysis	Analyst	Dilution
	TO 15 VOA Ext. List			1	D1516		Date and Time 06/18/2015 09:10	Jacob E Bailey	Factor 1000
\$298	TO 15 VOA Ext. Lis	E BPA 1	·O-15	ĩ	D1516	830BA	06/18/2015 15:51	Jacob E Bailey	100
-			*–This lin	nit was use	d in the e	valuation of	the final result		
				IP212	Page Page 9	14 of 38 of 19	31		

~	eurofins	Lancaster	Laboratori	es		A	nalys	is Repo	ort
24	25 New Holland Pike, Lanca			ax: 717-656-26	i81 • ww	w.LancasterLabs.com	m		
								R	EVISED
ampl	e Description:	130790004	RED SMK R	1#2 T.OW	Air		1.1	Sample # AQ 79	15824
		13079 / RE P212D1 Sum	D SMOKE I	NHALATIO			LI	Group # 15665 count # 04694	79
60.24	ct Name: P212D1								
olle	cted: 06/03/201	5 13:43				USAPHC/AIP	PH GFEBS - HQ04:	80	
	tted: 06/04/201 ted: 07/02/201					8899 E 56T	1		
12D4	SDG#: IP212-	04						3	
TAT						Detection	Limit of	Limit of	
ło.	Analysis Name		CAS Number	Result		Limit*	Detection	Quantitation	DF
	iles in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3	
	Acetone Acetonitrile		67-64-1 75-05-8	7,500		590 84	2,400 170	2,400	500 100
15298	Acrolein		107-02-8	4,200		570	570	570	500
	Acrylonitrile Benzene		107-13-1 71-43-2	220 350	υ	110 64	220 160	220 160	100
	Benzyl Chloride		100-44-7	260	U	260	260	260	100
	Bromobenzene		108 - 86 - 1	320	U	130	320	320	100
15298		ine	75-27-4	340 520	UU	130 210	340 520	340 520	100
5298			74-83-9	190	U	78	190	190	100
5298	1,3-Butadiene		106-99-0	220		88	110	110	100
15298 15298	2-Butanone tert-Butyl Alcohol		78-93-3 75-65-0	920 300	U	150	590 300	590 300	100
5298	Carbon Disulfide		75-15-0	170	J	160	310	310	100
5298	Carbon Tetrachlori	de	56-23-5	310	U	130	310	310	100
15298	Chlorobenzene Chlorodifluorometh	ane	108-90-7 75-45-6	230 180	U U	92 71	230 180	230 180	100
5298	Chloroethane	idirie.	75-00-3	130	U	53	130	130	100
15298	Chloroform		67-66-3	240	U	98	240	240	100
15298 15298	Chloromethane 3-Chloropropene		74-87-3	170	J U	41	210 160	210 160	100
15298	Cumene		98-82-8	490	υ	98	490	490	100
15298 15298	Cyclohexane Dibromochlorometha	2.0	110-82-7 124-48-1	170 430	U U	69 170	170	170	100
15298	1,2-Dibromoethane	me	106-93-4	380	Ū	150	430 380	430 380	100
15298	Dibromomethane		74-95-3	360	σ	140	360	360	100
)5298)5298	1,2-Dichlorobenzen 1,3-Dichlorobenzen		95-50-1 541-73-1	300	U U	120	300	300	100
15298	1,4-Dichlorobenzen		106-46-7	300	U	120	300	300	100
15298	Dichlorodifluorome		75-71-8	250	σ	99	250	250	100
15298 15298	1,1-Dichloroethane 1,2-Dichloroethane		75-34-3	200	U U	81	200	200	100
15298	1,1-Dichloroethene	1	75-35-4	200	Ũ	79	200	200	100
15298 15298	cis-1,2-Dichloroet trans-1,2-Dichloro		156-59-2	200	U U	79 79	200	200	100
15298	Dichlorofluorometh		75-43-4	210	U	84	210	210	100
15298	1,2-Dichloropropan	1e	78-87-5	230	Ū	92	230	230	100
15298 15298	cis-1,3-Dichloropr trans-1,3-Dichloro		10061-01-5	230	U	91 91	230 230	230	100
15298	1,4-Dioxane	The second s	123-91-1	360	U	180	360	360	100
15298	Ethyl Acetate		141-78-6	180	Ū	180	180	180	100
15298 15298	Ethyl Acrylate Ethyl Methacrylate		140-88-5 97-63-2	410 470	UU	82 93	410 470	410 470	100
15298	Ethylbenzene		100-41-4	370		87	220	220	100
)5298)5298	4-Ethyltoluene Freon 113		622-96-8 76-13-1	130 380	JU	98 380	250 380	250 380	100
5298	Freon 113 Freon 114		76-14-2	350	U	140	350	350	100
05298	Heptane		142-82-5	200	υ	82	200	200	100
5298 5298	Hexachlorobutadien Hexachloroethane	le	87-68-3 67-72-1	2,100 970	U U	430 190	2,100 970	2,100 970	100 100
			*-This li	mit was used	l in the e	valuation of the fin	al result		
					Page age 10	15 of 381 of 19			

Г

_	eurofins	Lancaster Environme	Laboratori ental	es			Analys	sis Rep	ort
2425	New Holland Pike, Land	caster, PA 17601 + 1	717-656-2300 • Fa	x: 717-656-2	2681 • www	w.LancasterLa	bs.com		REVISED
ample	Description:	130790004	RED SMK PI	0#2 T.OW	Air			LL Sample # AQ	
ang 10		13079 / RE P212D1 Sum	D SMOKE IN	HALATI					66579
	: Name: P212D1								
ollect	ted: 06/03/201	15 13:43				USAPHC/ DFAS-IN	AIPH I VP GFEBS - HQ	0490	
	ed: 06/04/201 ed: 07/02/201						56TH ST polis IN 46249	-3800	
12D4	SDG#: IP212-	-04							
AT 0.	Analysis Name		CAS Number	Result		Detection Limit*	Limit of Detection	Limit of Quantitation	n DF
olati:	les in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3	
5298	Hexane 2-Nexanone		110-54-3	180	U	70	180	180	100
	2-Hexanone Isooctane		591-78-6 540-84-1	820	U	200	820 470	820 470	100
	Isopropanol		67-63-0	550		120	250	250	100
	Methyl Acrylate Methyl Iodide		96-33-3 74-88-4	350	U	70 120	350 290	350 290	100
	Methyl Methacryla	te	80-62-6	84	J	82	410	410	100
	Alpha Methyl Styr		98-83-9	480	U	97	480	480	100
	Methyl t-Butyl Et 4-Methyl-2-pentan		1634-04-4 108-10-1	180 820	U U	72	180 820	180	100 100
	Methylene Chlorid		75-09-2	110	J	69	350	350	100
	Octane		111-65-9	110	л	93	470	470	100
	Propene Styrene		115-07-1	3,600	J	34	170	170 210	100
	1,1,1,2-Tetrachlo	roethane	630-20-6	340	Ŭ	140	340	340	100
	1,1,2,2-Tetrachlo		79-34-5	340	U	140	340	340	100
	Tetrachloroethene Tetrahydrofuran		127-18-4 109-99-9	340 150	UU	140 59	340 150	340 150	100
5298	Toluene		108-88-3	1,300		75	190	190	100
	1,2,4-Trichlorobe 1,1,1-Trichloroet		120-82-1 71-55-6	1,500	UU	370 110	1,500 270	1,500 270	100
	1,1,2-Trichloroet		79-00-5	270	U	110	270	270	100
	Trichloroethene		79-01-6	270	U	110	270	270	100
	Trichlorofluorome 1,2,3-Trichloropr		75-69-4 96-18-4	280	U	110 120	280	280 300	100
5298	1,2,4-Trimethylbe	nzene	95-63-6	510	10	98	250	250	100
	1,3,5-Trimethylbe Vinyl Acetate	nzene	108-67-8	1,200	σ	98 180	250	250	100
	Vinyl Chloride		75-01-4	130	U	51	130	130	100
5298	m/p-Xylene		179601-23-1	1,400		87	430	430	100
5298	o-Xylene		95-47-6	530		87	220	220	100
11 gC : Ontrol	is compliant unle Summary for over	ss otherwise : all QC perform	noted. Pleas mance data an	se refer 1d associ	to the ated sa	mples.			
AT AI	alysis Name	Metho			ample Batchi	Analysis	Record Analysis	Analyst	Dilution
			357				Date and Time		Factor
) 15 VOA Ext. Lis) 15 VOA Ext. Lis			1	D15168		06/18/2015 16:39 06/18/2015 18:05	Jacob E Bailey Jacob E Bailey	100 500
_			*–11his lin	nit was use	d in the e	valuation of t	ne final result		
				IP212 P	Page age 11	16 of 38 of 19	1		
1.00	a farmer of the				100		1 m - 1		

🔅 eurofins	Lancaster I Environme		tories			Ana	aly	sis	Re	po	rt
2425 New Holland Pike, Lanc	aster, PA 17601 • 71	17-656-230	0 • Fax: 717-65	6-2681 • www	LancasterLa	bs.com	~				
										REV	ISEI
	Quali	ty C	ontro	l Summ	ary						
Client Name: USA Reported: 07/02/				Gi	oup Num	ber: 15	66579				
Matrix QC may not be situations, to demon specified in the met	strate precis:										
All Inorganic Initia otherwise noted on th			ntinuing C	alibration	n Blanks 1	net accept	able me	thod cr	riteria unl	ess	
Scherwise house on c			ry Com	oliance	Qual	ty Con	trol				
		Blank	Blank	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RP
Analysis Name		Result	DL**	LOD	LOQ	Units	SREC	SREC	Limits	RPD	Ma
Batch number: D15168 Acetone		Sample 2.4	number(s): 1.2	7915821- 2.4	7915824	ug/m3	94	95	58-128	1	25
Acetonitrile	1	U 1.7	0.84	1.7	1.7	ug/m3				-	23
Acrolein	Ţ	U 1.1	1.1	1.1	1,1	ug/m3	121	126	62-126	4	25
Acrylonitrile	14	U 2.2	1.1	2.2	2.2	ug/m3		0.04	20.000		
Benzene	1	U 1.6	0.64	1.6	1.6	ug/m3	84	90	69-119	7	25
Benzyl Chloride	1	U 2.6	2.6	2.6	2.6	ug/m3	109	108	50-147	1	25
Bromobenzene	1	U 3.2	1.3	3.2	3.2	ug/m3		222	000 000		1.25
Bromodichloromethane	3	U 3.4	1.3	3.4	3.4	ug/m3	86	88	72-128	3	25
Bromoform	1	U 5.2	2.1	5.2	5.2	ug/m3	89	92	66-139	з	25
Bromomethane	1	U 1.9	0.78	1.9	1.9	ug/m3	75	80	63-134	7	25
1,3-Butadiene	1.1	U 1.1	0.44	1.1	1.1	ug/m3	76	85	66-134	10	25
2-Butanone		U 2.9	1.5	2.9	2.9	ug/m3	93	94	67-130	0	25
tert-Butyl Alcohol		U 3.0	1.5	3.0	3.0	ug/m3					
Carbon Disulfide		U 3.1	1.6	3.1	3.1	ug/m3	78	83	57-134	7	25
Carbon Tetrachloride		U 3.1	1.3	3.1	3.1	ug/m3	88	89	68-132	2	25
Chlorobenzene		U 2.3	0.92	2.3	2.3	ug/m3	81	85	70-119	5	25
Chlorodifluoromethan	e d	U 1.8	0.71	1.8	1.8	ug/m3					
Chloroethane		U 1.3	0.53	1.3	1.3	ug/m3	76	80	63-127	5	25
Chloroform	3	U 2.4	0.98	2.4	2.4	ug/m3	88	93	68-123	5	25
Chloromethane	1.3	U 2.1	0.41	2.1	2.1	ug/m3	60	62	59-132	4	25
3-Chloropropene		U 1.6 U	0,63	1.6	1,6	ug/m3					
*- Outside of specificat **-This limit was used i (1) The result for one or (2) The unspiked result (3) The surrogate spike a	n the evaluation both determina was more than f	tions wa our time	s less than f s the spike a e LOD.	ïve times th added.	e LOQ.						
<u></u>			1212	Page 1 Page 12 o	19						
Report ID: 13079 Report Serial #: 76035			CERTIF This report sha	ICATE OF						age 20 c	

and the second s	Lancaste Environn	1	torïes			Ana	aly	sis	Re	po	rt
2425 New Holland Pike, Lanca	ster, PA 17601	717-656-230	0 • Fax: 717-65	6-2681 • ww	w.LancasterLa	bs.com					
										REV	ISET
	Qual	ity C	ontro	l Sum	mary					KL V.	ISEL
Client Name: USAI Reported: 07/02/2		3		G	roup Nur	nber: 15	66579				
Analysis Name Cumene		Blank <u>Result</u> 4.9	Blank DL** 0.98	Blank LOD 4.9	Blank <u>LOQ</u> 4.9	Report Units ug/m3	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD Limits	RPD	RP Ma
Cyclohexane		U 1.7	0.69	1.7	1.7	ug/m3	85	88	70-117	4	25
Dibromochloromethane		U 4.3	1.7	4.3	4.3	ug/m3	87	91	70-130	4	25
1,2-Dibromoethane		U 3.8	1.5	3.8	3.8	ug/m3	92	93	74-122	1	25
Dibromomethane		U 3.6	1.4	3.6	3.6	ug/m3					
1,2-Dichlorobenzene		U 3.0	1.2	3.0	3.0	ug/m3	87	85	63-129	2	25
1,3-Dichlorobenzene		U 3.0	1.2	3.0	3.0	ug/m3	81	80	65-130	1	25
1,4-Dichlorobenzene		U 3.0	1.2	3.0	3.0	ug/m3	83	82	60-131	2	25
Dichlorodifluorometha	ine	U 2.5 U	0.99	2.5	2.5	ug/m3	87	85	59-128	3	25
1,1-Dichloroethane		2.0 U	0.81	2.0	2.0	ug/m3	83	88	68-126	5	25
1,2-Dichloroethane		2.0 U	0.81	2.0	2.0	ug/m3	90	94	65-128	4	25
1,1-Dichloroethene		2.0 U	0.79	2.0	2.0	ug/m3	80	86	61-133	7	25
cis-1,2-Dichloroether	le	2.0	0.79	2.0	2.0	ug/m3	82	88	70-121	8	25
trans-1,2-Dichloroeth	nene	2.0 U	0,79	2.0	2.0	ug/m3	81	88	67-124	8	25
Dichlorofluoromethane	•	2.1 U	0.84	2.1	2,1	ug/m3					
1,2-Dichloropropane		2.3 U	0.92	2.3	2.3	ug/m3	81	86	69-123	7	25
cis-1,3-Dichloroprope	ene	2.3 U	0.91	2.3	2.3	ug/m3	120	120	70-128	O	25
trans-1,3-Dichloropro	opene	2.3 U	0.91	2.3	2.3	ug/m3	102	102	75-133	1	25
1,4-Dioxane		3.6 U	1.8	3.6	3.6	ug/m3	86	88	71-122	2	25
Ethyl Acetate		1.8 U	0.72	1.8	1.8	ug/m3	80	80	65-128	D	25
Ethyl Acrylate		4.1 U	2.0	4,1	4,1	ug/m3					
Ethyl Methacrylate		4.7 U	2.3	4.7	4.7	ug/m3					
Ethylbenzene		2.2 U	0.87	2.2	2.2	ug/m3	94	97	70-124	2	25
4-Ethyltoluene		2.5 U	0,98	2.5	2.5	ug/m3	95	95	67-129	1	25
Freon 113		3.8 U	1.5	3.8	3.8	ug/m3	77	79	66-126	3	25
Freon 114		3.5 U	1.4	3.5	3.5	ug/m3	73	79	63-121	8	25
Heptane		2.0 U	0_82	2.0	2.0	ug/m3	85	93	69-123	9	25
Hexachlorobutadiene		11	5.3	11	11	ug/m3	81	66	56-138	20	25
*- Outside of specificati **-This limit was used in (1) The result for one or (2) The unspiked result v (3) The surrogate spike a	n the evaluati both determi vas more tha	nations was n four time	s less than f s the spike a	ive times t							
			IP212	Page 13 c	18 of 381 of 19						

	Lancaster Labo Environmental	ratories			Ana	aly	sis	Re	po	rt
2425 New Holland Pike, Lanca		2300 + Fax: 717-	656-2681 + ww	w.LancasterLa	abs.com	-	-			
									REV	ISED
	Quality	Contro	ol Sum	mary						
Client Name: USA	DUC /AT DU			roup Nur	mber: 15	66570				
Reported: 07/02/2	2015 13:23									
Analysis Name	Blank <u>Resul</u> U		Blank LOD	Blank LOQ	Report Units	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	Maj
Hexachloroethane	9.7 U	4.8	9.7	9.7	ug/m3					
Hexane	1.8	0.70	1.8	1.8	ug/m3	84	88	63-120	4	25
2-Hexanone	U 4.1 U	2.0	4.1	4.1	ug/m3	71	74	62-128	5	25
Isooctane	4.7 U	2.3	4.7	4.7	ug/m3					
Isopropanol	2.5 U	1.2	2.5	2.5	ug/m3	77	79	52-125	2	25
Methyl Acrylate	3.5 U	1.8	3.5	3.5	ug/m3					
Methyl Iodide	2.9 U	1.2	2.9	2.9	ug/m3					
Methyl Methacrylate	4.1 U	2.0	4.1	4.1	ug/m3	98	98	70-128	0	25
Alpha Methyl Styrene	4.8 U	0.97	4.8	4.8	ug/m3					
Methyl t-Butyl Ether	1.8 U	0.72	1.8	1.8	ug/m3	91	93	66-126	3	25
4-Methyl-2-pentanone	4.1 U	2.0	4.1	4.1	ug/m3	73	75	67-130	3	25
Methylene Chloride	3.5	1.7	3,5	3.5	ug/m3	84	89	62-115	6	25
Octane	4.7 U	2.3	4.7	4.7	ug/m3					
Propene	1.7 U	0.86	1.7	1.7	ug/m3	74	76	57-136	з	25
Styrene	2.1 U	0.85	2.1	2.1	ug/m3	101	104	73-127	2	25
1,1,1,2-Tetrachloroet	chane 3.4	1.4	3,4	3,4	ug/m3					
1,1,2,2-Tetrachloroe		1.4	3.4	3.4	ug/m3	82	82	65-127	0	25
Tetrachloroethene	3.4 U	1-4	3.4	3.4	ug/m3	71	76	66-124	7	25
Tetrahydrofuran	1.5 U	0.59	1.5	1.5	ug/m3	108	109	64-123	I	25
Toluene	1.9	0.75	1.9	1,9	ug/m3	88	93	66-119	5	25
1,2,4-Trichlorobenzer	ne 7.4 U	3.7	7.4	7.4	ug/m3	73	60	55-142	20	25
1,1,1-Trichloroethan		1.1	2.7	2.7	ug/m3	84	88	68-125	4	25
1,1,2-Trichloroethane		1,1	2.7	2.7	ug/m3	80	84	73-119	4	25
Trichloroethene	2.7 U	1.1	2.7	2.7	ug/m3	82	84	71-123	3	25
Trichlorofluorometham		1.1	2.8	2.8	ug/m3	79	82	62-126	4	25
1,2,3-Trichloropropa	ne 3.0 U	1.2	3.0	3.0	ug/m3					
1,2,4-Trimethylbenzer	ne 2.5 U	0.98	2,5	2.5	ug/m3	90	91	66-132	0	25
*- Outside of specificati **-This limit was used it (1) The result for one or (2) The unspiked result v (3) The surrogate spike a	n the evaluation of th both determinations was more than four ti	was less than mes the spike	n five times							

IP212 Page 19 of 381 Page 14 of 19

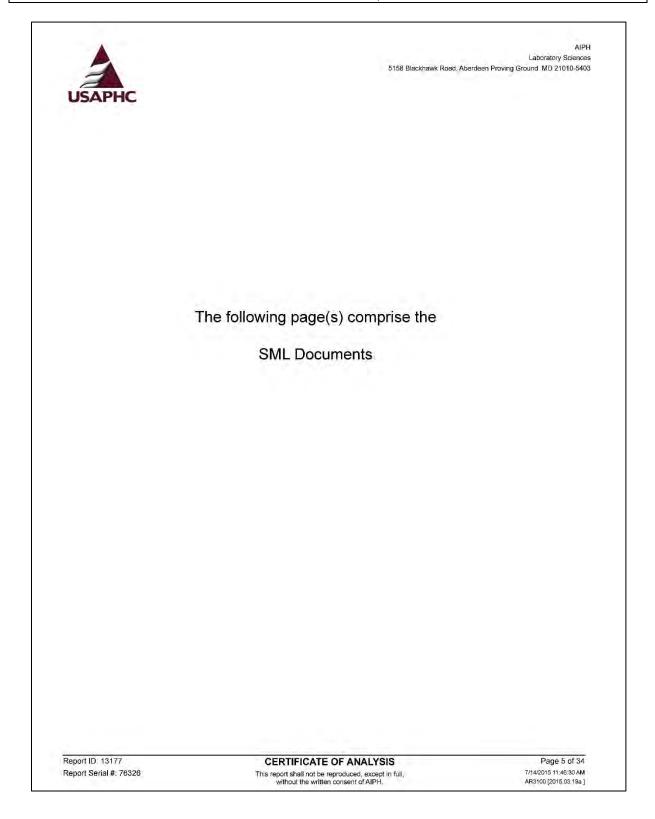
Report ID: 13079	CERTIFICATE OF ANALYSIS	Page 22 of 26
Report Serial #: 76035	This report shall not be reproduced, except in full.	7/8/2015 10:35:03 AM
	without the written consent of AIPH.	AR3100 [2015.03.19a]

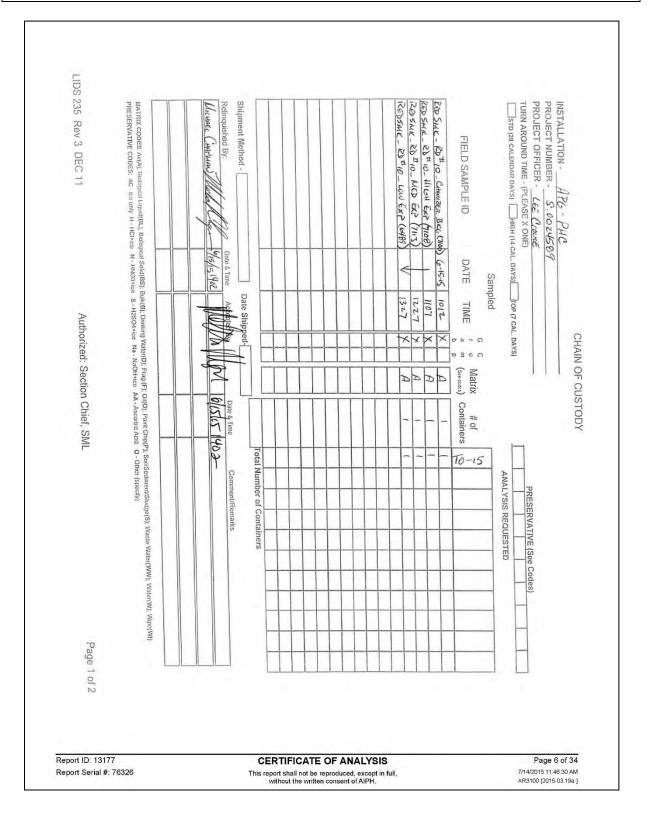
	Lancaster		tories			Ana	aly	sis	Re	po	rt
2425 New Holland Pike, Land	aster, PA 17601 •	717-656-2300) • Fax: 717-6	56-2681 • ww	w.LancasterLa	bs.com	~				
		1973 - Jac								REV	ISEI
		ity C	ontro	1 Sum	mary						
Client Name: USA Reported: 07/02/						nber: 15					
Analysis Name 1,3,5-Trimethylbenze	ne	Blank <u>Result</u> 2.5 U	Blank <u>DL**</u> 0.98	Blank LOD 2.5	Blank <u>LOQ</u> 2.5	Report Units ug/m3	LCS <u>%REC</u> 97	LCSD <u>%REC</u> 98	LCS/LCSD Limits 67-130	RPD 1	RP <u>Ma</u> 25
Vinyl Acetate	3	3.5	1.8	3.5	3.5	ug/m3	140*	148*	56-139	6	25
Vinyl Chloride		1.3 U	0.51	1.3	1.3	ug/m3	79	84	64-127	6	25
m/p-Xylene		2.2 U	0.87	2.2	2.2	ug/m3	99	101	61-134	2	25
o-Xylene		2.2 U	0.87	2.2	2.2	ug/m3	107	109	67-125	2	25
*- Outside of specificat **-This limit was used (1) The result for one or (2) The unspiked result (3) The surrogate spike	in the evaluation both determine was more than	ations was	s less than s the spike	five times t							

		IP212 Page 27 of 381	
7/2/2015 1:57:40 PM			Page 1 of 2
The recovery(ie: window indication	s) for the following a positive bi	er(s): 7915821-7915824) wing analyte(s) in the LCS as: Vinyl Acetate or more information.	and LCSD exceeds the acceptance
The recovery for Spike(s) is put: Summary. Since	r a target analy side the QC accept the recovery is	824: Analysis: 05298) te(s) in the Laboratory Co ptance limits as noted on high and the target analy the data is reported.	the QC
LCS/LCSD			
QUALITY CONT	ROL AND NONC	ONFORMANCE SUMMARY	3
A non-conformant performed on 6/3 disulfide at 379 7915821,7915822, sample 791824 re should be consid	17/2015. The ca. , acetonitrile , , 7915823, and 7 sported a postiv- dered estimated	d for the initial calibrat libration contained three at 44%, and hexachlorobuta 915824 all reported positi a result for carbon disulf	compounds above 30%RSD, carbon diene at 36%. Samples ve results for acetonitrile and ide; therefore these results me was not detected in any of
	STANDARDIZAT		
All holding time	es were met.		
HOLDING TIME	:		
Samples were rea	ceived in good c	ondition and within temper	ature requirements.
SAMPLE RECEI	PT:		
See QC Reference L	ist for Associated Bat	ch QC Samples	
7915823	130790003	100; 500	
7915822 7915823	130790002 130790003	100; 1000 100; 1000	
Sample # 7915821	Client ID 130790001	DF 1	Comments
Sample #		1S DF	Comments
		CLIENT: USAPHC/AIPH SDG: IP212	
	Case Mar	rative/Comormance	e Summary
	Case Nar	rative/Conformance	Summary
	Lancaster Labora Environmental	tories	

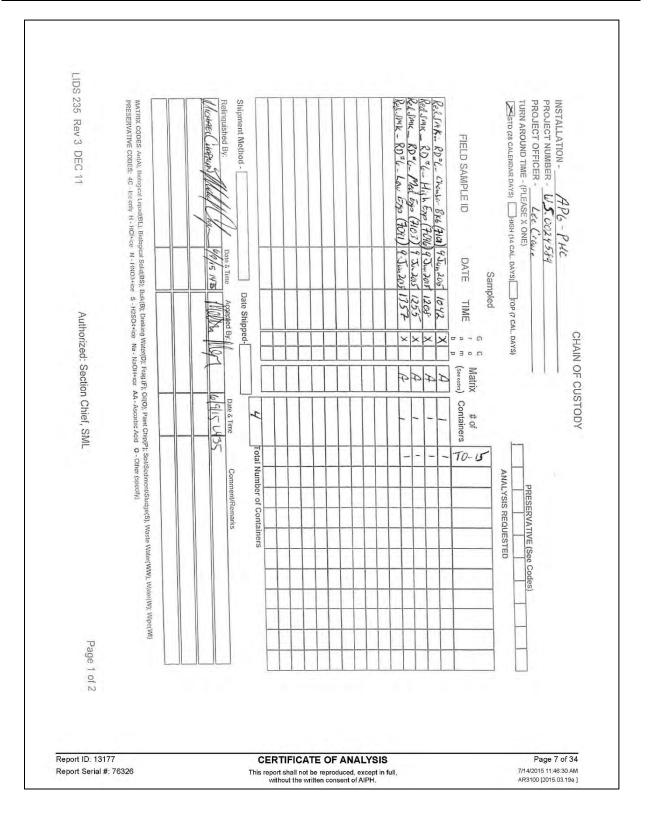
7/2/2015 1:57:40 PM		IP212 Page 28 of 381	Page 2 of
E= out of calibration ra	nge		
J = Estimated Value	00.00	* = Out of Specification	
MDL = Method Detect ND = Not Detected	ion Limit	LCSD = Lab Control Sample Duplicate RE = Repreparation/Reanalysis	
LOQ = Limit of Quant	itation	LCS = Lab Control Sample	
Abbreviation Key	v		
No problems were	e encountered w	ith the analysis of the samples,	
SAMPLE ANALY			
Volatiles in Air Fraction: Volatile Or		MS	
		CLIENT: USAPHC/AIPH SDG: IP212	
	Case Na	rrative/Conformance Summa	ry
🔅 eurofins	Lancaster Labo Environmental	ratories	

🍪 eurofins	5 Lancaster Laboratories	Evaluation of C	mbala and Ab	hunvistiana
	Environmental	Explanation of Sy	mpois and AD	previations
The following c	defines common symbols and	d abbreviations used in reporting tec	hnical data:	
RL N.D. TNTC IU umhos/cm	Reporting Limit none detected Too Numerous To Count International Units micromhos/cm	BMQL MPN CP Units NTU ng	Below Minimum Quantitat Most Probable Number cobalt-chloroplatinate unit nephelometric turbidity un nanogram(s)	s
C meq g µg mL m3	degrees Celsius milliequivalents gram(s) microgram(s) milliliter(s) cubic meter(s)	F Ib. kg mg L μL pg/L	degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s) microliter(s) picogram/liter	
<	less than	P3	pro- ar anno 19	
>	greater than			
ppm	parts per million - One pp aqueous liquids, ppm is u	om is equivalent to one milligram per isually taken to be equivalent to mill For gases or vapors, one ppm is ec	grams per liter (mg/l), becau	ise one liter of water has a weight
ppb	parts per billion			
Dry weight basis		s heading have been adjusted for mo nate the value present in a similar sa		
Laboratory Dat	ta Qualifiers:			
J (or C P - Cc U - Ar V - Cc and e Additi	oncentration difference betwee nalyte was not detected at the oncentration difference betwee vident interference onal Organic and Inorganic 0	e Method Detection Limit (MDL or Detection Limit (MDL or Detection co	umn >40%. The lower resu lumn >100%. The reporting m 1 reports as defined by th	It is reported. limit is raised due to this disparity e CLP methods.
Analytical test		ents of the associated regulatory		
		alysis. able, are available upon request.		
Tests results re collection of the meaningless. I responsible for This report sha	elate only to the sample teste e sample. Unless the sample If you have questions regard sample integrity, however, u ill not be reproduced except	ed. Clients should be aware that a c e analyzed is truly representative of ing the proper techniques of collecti inless sampling has been performed in full, without the written approval o ameters listed in the 40 CFR Part 13	the bulk of material involved ng samples, please contact I by a member of our staff. f the laboratory.	, the test results will be us. We cannot be held
15 minutes.			analyze allines	
THE FOREGO IMPLIED. WE PARTICULAR ENVIRONMEN LIMITED TO, D CONCURREN LABORATORII responsibility fo Eurofins Lanca	NING EXPRESS WARRANTY DISCLAIM ANY OTHER WA PURPOSE AND WARRANT ITAL, LLC BE LIABLE FOR I DAMAGES FOR LOSS OF P T) OF EUROFINS LANCAS" ES ENVIRONMENTAL HAS or the purposes for which the ster Laboratories Environme	In accepting analytical work, we we I SEXCLUSIVE AND IS GIVEN IN ARRANTIES, EXPRESSED OR IMP Y OF MERCHANTABILITY. IN NO INDIRECT, SPECIAL, CONSEQUEI ROFIT OR GOODWILL REGARDLI ROFIT OR GOODWILL REGARDLI BEEN INFORMED OF THE POSSI client uses the test results. No pur intal which includes any conditions t intal hereby objects to any conflictin	LIEU OF ALL OTHER WAR LIED, INCLUDING A WARF EVENT SHALL EUROFINS VTIAL, OR INCIDENTAL DA ESS OF (A) THE NEGLIGEN ENTAL AND (B) WHETHER BILITY OF SUCH DAMAGE chase order or other order for hat vary from the Standard T g terms contained in any acc	RANTIES, EXPRESSED OR ANTY OF FITNESS FOR LANCASTER LABORATORIES MAGES INCLUDING, BUT NOT ICE (EITHER SOLE OR EUROFINS LANCASTER S. We accept no legal or work shall be accepted by Terms and Conditions, and
		IP212 Page 24 of Page 19 of 19	381	
		Fage 19 01 19		
Report ID: 1307 Report Serial #		CERTIFICATE OF ANA This report shall not be reproduced, without the written consent o	except in full,	Page 26 of 26 7/8/2015 10:35:03 AM AR3100 [2015.03.19a]


onal information is M. al 410-436-2208. MILLER. WALTER.E. 127586993 3 WALTER E Chief, Labo	pratory Analytical Division - Organic FOUO and is intended for the addressee only. Readir intended recipient, please destroy this document and	
onal information is M. al 410-436-2208. MILLER. WALTER.E. 127586993 3 WALTER E	AJ Jose Pizarro-Matos, Digitally signed by: MILLER.WALTER.E. 1275869933 DN: CN = MILLER.WALTER.E.1275869933 C = US O = U.S. Government OU = DOD Date: 2015.07.14 12:45:19 -04'00'	
onal information is M. al 410-436-2208. MILLER. WALTER.E. 127586993	AJ Jose Pizarro-Matos, Digitally signed by: MILLER.WALTER.E. 1275869933 DN: CN = MILLER.WALTER.E.1275869933 C = U S O = U.S. Government OU = DoD	
onal information is M.		
eport or any of our se	ervices did not meet your needs or	
76326		
13177		
S.0024589		
	HALATION TOX STUDY	
Report for:		
ces (LS) Final Analy	tical Report	
	14 July 2015	
	그는 것 같은 것 같은 것 같은 것 같아요	
DEDARTMEN		
US ARMY INSTITU 5158 BLAC	TE OF PUBLIC HEALTH CKHAWK ROAD	
F	US ARMY INSTITU 5158 BLAC ERDEEN PROVING GR PHC, TOX Portfolio E2100, Gunpowder, ces (LS) Final Analy Report for: RED SMOKE IN S.0024589 13177	PHC, TOX Portfolio (5158 Blackhawk Rd, MCHB-IP- E2100, Gunpowder, MD 21010 ces (LS) Final Analytical Report Report for: RED SMOKE INHALATION TOX STUDY S.0024589 13177


	IC				
		SAMPLE SU	MMARY		
Workorder: 13	3177 RED SMOKE INHALATION TOX STUDY	2			
All samples w	ere inspected and observed to conform to our	receipt policies, ex	cept as noted.		
Lab ID	Sample ID	Matrix	Date Collected	Date Received	Cancel Code
131770001	RedSMK_RD#6_Chamber BKG_(7101)	Air	6/9/2015 10:42	6/9/2015 14:35	
131770002	RedSMK_RD#6_High Exp_(7096)	Air	6/9/2015 12:08	6/9/2015 14:35	
131770003	RedSMK_RD#6_Med Exp_(7103)	Air	6/9/2015 12:55	6/9/2015 14:35	
131770004	RedSMK_RD#6_Low Exp_(7091)	Air	6/9/2015 13:57	6/9/2015 14:35	
131770005	RedSMK_RD#10_ChamberBKG_(7100	Air	6/15/2015	6/15/2015	
131770006	, RedSMK_RD#10_High Exp_(7108)	Air	6/15/2015 11:07	6/15/2015	
131770007	RedSMK_RD#10_Med Exp_(7113)	Air	6/15/2015	6/15/2015	
131770008	RedSMK_RD#10_Low Exp_(6489)	Air	6/15/2015	6/15/2015	

ISAPHC	5158 Blackhawk Road, Aberdeen Pi	Laboratory Science oving Ground MD 21010-54
	TERMINOLOGY & ABBREVIATIONS (ENV)	
Terms:		
AIPH = US Army Institute of F	Public Health	
DF = Dilution Factor		
DUP = Duplicate Analysis		
HSN = Horizon Sample Numl	ber (Lab Number).	
J = The reported result is an the limit of quantitation (LOQ)	estimated value; the result is between the method detection limit (M).	DL) and
LCS = Laboratory Control Sa	Imple	
LCSD = Laboratory Control S	Sample Duplicate	
LOQ = Limit of Quantitation		
LS = Laboratory Sciences		
MDL = Method Detection Lim	hit	
MS = Matrix Spike		
MSD = Matrix Spike Duplicate	e	
ND = Not Detected		
Qual = Data Qualifier		
RPD = Relative Percent Diffe	erence	
SML = Sample Management	Laboratory (AIPH)	
(S) = Surrogate Standard (Fo	ound in Analytical Results and QC Listings)	
U = The analyte/element was	s not detected at or above the limit of quantitation (LOQ).	
Uncert = Measurement Unce	rtainty (Reported in Radiochemical Analyses Only)	
** Indicates QC failure. For ex	xample, recoveries or relative percent difference (RPD) out of range	
Units		
% = percent		
cc = cubic centimeter		
cm = centimeter		
cm2 = square centimeter		
cpm = counts per minute		
dpm = disintegrations per mir	nute	
ft2 = square foot		
g = gram		
ort ID: 13177	CERTIFICATE OF ANALYSIS	Page 3 of 3
ort Serial #: 76326	This report shall not be reproduced, except in full, without the written consent of AIPH.	7/14/2015 11:46:30 A AR3100 [2015.03.19;


a	5	158 Blackhawk Road, Aberdeen Proving Ground MD 21010-5
USAPHC		
in2 = square inch		
kg = kilogram		
L = Liter		
m3 = cubic meter		
MFL = million fibers per liter		
mg = milligram		
min = minute		
mL = milliliter		
mm2 = square millimeter		
mm3 = cubic millimeter		
MPN = most probable number		
ng = nanogram		
NTU = Nephelometric Turbidity U	nite	
pCi = picocurie		
pg = picogram		
ppb = parts per billion		
ppm = parts per million		
S = siemens		
struct = structures		
TON = Threshold Odor Number		
uCi = microcurie		
ug = microgram		
uL = microliter		
umhos = micromhos (conductivity	y unit)	
umole = micromole		
Report ID: 13177	CERTIFICATE OF ANALYSIS	
Report Serial #: 76326	This report shall not be reproduced, except in without the written consent of AIPH.	full, 7/14/2013 11:40:30 AR3100 (2015.03.1)

Project Title: Red Smoke Inhalation Toxicology Study Project Number: D0802 (FSAB Customer Test) Customer: Mr. Lee Crouse Test Report Number: 2017-FSAB-001

Project Title: Red Smoke Inhalation Toxicology Study Project Number: D0802 (FSAB Customer Test) Customer: Mr. Lee Crouse Test Report Number: 2017-FSAB-001

Project Title: Red Smoke Inhalation Toxicology Study Project Number: D0802 (FSAB Customer Test) Customer: Mr. Lee Crouse Test Report Number: 2017-FSAB-001

🔅 eurofins	Lancaster Laboratories Environmental	Analysis Report
2425 New Holland Pike, Lar	icaster, PA 17601 + 717-656-2300 - Fax: 717-656-2681 - ww	
	ANALYTICAL	RESULTS
	Prepared by:	Prepared for:
243	ister Laboratories Environmental 25 New Holland Pike ancaster, PA 17601	USAPHC/AIPH DFAS-IN VP GFEBS - HQ0490 8899 E 56TH ST Indianapolis IN 46249-3800
	July 10,	2015
	Project: F	232D1
	Submittal Date: Group Number SDG: II PO Number: W912 Release Numbe State of Sample	:: 1569487 2232 ZLK-14-P-0590 er: P232D1
131770002 RedSM 131770003 RedSM 131770004 RedSM	scription MK_RD#6_Chamber Air MK_RD#6_High Air MK_RD#6_Med Air MK_RD#6_Low Air MK_RD#10_ChamberBK Air	Lancaster Labs (LL) # 7930850 7930851 7930852 7930853 7930854
131770006 RedSM 131770007 RedSM 131770008 RedSM	//K_RD#10_High Air //K_RD#10_Med Air //K_RD#10_Low Air	7930855 7930856 7930857 red analytical results are indicated on the
	e Analysis Record.	the analytical results are indicated on the
accreditation can l		methods, analytes, and matrices. Our scopes of m/environment-testing/laboratories/eurofins- tions/.
ELECTRONIC	USAPHC/AIPH	Attn: Chuck Stoner
COPY TO ELECTRONIC COPY TO	USAPHC/AIPH	Attn: Heidi Taylor
	IP232 Page Page 1	e 6 of 642 of 31
13177	CERTIFICATE C	F ANALYSIS Page 9 of

🎲 eurofins	Lancaster Laboratories Environmental	Analysis Report	
2425 New Holland Pike, Land	aster, PA 17601 + 717-656-2300 + Fax: 717-656-2681 + w		
	Respec	ctfully Submitted,	
	K	atherine a Klinefelter	
	Kati Prir	nerine A. Klinefelter cipal Specialist	
	(717)	556-7256	
	IP232 Page Page 2	€ 7 of 642 of 31	
port ID: 13177	CERTIFICATE		of 34
oort Serial #: 76326	This report shall not be rep without the written	produced, except in full, 7/14/2015 11:46:	30 AM

eurofins 🔅	Lancaster Laboratories Environmental	Cas	e Narrative
Project Name: LL Group #: 1	P232D1 569487		
General Comme All analyses otherwise not	have been performed in acco	rdance with DOD QSM Version	5.0 unless
See the Labor method refere		d section of the Analysis Re	port for the
All QC met cr Refer to the	iteria unless otherwise not QC Summary for specific val	ed in an Analysis specific o ues and acceptance criteria.	comment below.
Project speci	fic QC samples are not incl	uded in this data set	
these situati	not be reported if site-sp ons, to demonstrate precisi , unless otherwise specifie	ecific QC samples were not s on and accuracy at a batch d in the method.	ubmitted. In evel, a LCS/LCSD
		ch are outside of the QC win wise noted in an Analysis Sp	
The samples w chain of cust	ere received at the appropr ody unless otherwise noted.	iate temperature and in acco	ordance with the
, 가슴, 가슴, 그는 다음, 자신 등을 수 있다.	ific Comments: latiles in Air		
		. 7930853, 7930854, 7930855, to interference from the sam	
Batch #: D	01518930BA (Sample number(s)	: 7930850-7930857)	
the acc	ceptance window indicating	ng analyte(s) in the LCS and a positive bias: Vinyl Aceta	te
v 1.9.3	IP232	D15 4:32:31РМ Раде 8 of 642 Ige 3 of 31	

	eurofins	Lancaster	Laboratori	es		A	nalys	is Repo	ort
242	25 New Holland Pike, Lanc	ester, PA 17601 +	717-656-2300 · Fi	ax: 717-656-3	2681 • V	ww.LancasterLabs.com	n		
		13177 / RE P232D1 Sum	D SMOKE IN	NHALATI		lir	LI	5 Sample # AQ 79 5 Group # 15694 5 count # 04694	187
	ct Name: P232D1								
Submit	ted: 06/09/201 ted: 06/16/201 ted: 07/10/201	5 17:00				8899 E 56T	GFEBS - HQ04		
232D1	SDG#: IP232-	01							
CAT No.	Analysis Name		CAS Number	Result		Detection Limit*	Limit of Detection	Limit of Quantitation	DF
	iles in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3	
05298	Acetone		67-64-1	73		5.9	2.4	24	5
	Acetonitrile Acrolein		75-05-8	120 12		4.2	8.4	8.4 5.7	5
	Acrylonitrile		107-02-8	11	U	5.7	5.7	5.7	5
05298	Benzeńe		71-43-2	8.0	U	3.2	8.0	8.0	5
	Benzyl Chloride Bromobenzene		100-44-7 108-86-1	13	UU	13	13	13 16	5
05298	Bromodichlorometha	ane	75-27-4	17	υ	6.7	17	17	5
	Bromoform		75-25-2	26	U	10	26	26	5
	Bromomethane 1,3-Butadiene		74-83-9	9.7	U U	3.9	9.7	9.7	5
05298	2-Butanone		78-93-3	29	U	7.4	29	29	5
	tert-Butyl Alcoho	1	75-65-0	15	U	7.6	15	15	5
05298	Carbon Disulfide Carbon Tetrachlor:	ide	75-15-0 56-23-5	16 16	UU	7.8	16 16	16 16	5
05298	Chlorobenzene		108-90-7	12	U	4.6	12	12	5
05298	Chlorodifluorometh	nane	75-45-6	8.8	U	3.5	8.8	8.8	5
05298	Chloroethane Chloroform		75-00-3	6.6 12	UU	2.6	6.6 12	5.6 12	5
05298	Chloromethane		74-87-3	10	U	2.1	10	10	5
05298 05298	3-Chloropropene Cumene		107-05-1	7.8 25	น บ	3.1	7.8	7.8	5
05298	Cyclohexane		98-82-8 110-82-7	8.6	U	4.9 3.4	25	25	5
05298	Dibromochlorometha		124-48-1	21	U	8.5	21	21	5
05298	1,2-Dibromoethane Dibromomethane		106-93-4 74-95-3	19	U	7.7	19 18	19 18	5
05298	1,2-Dichlorobenzer	ne	95-50-1	15	U	6.0	18	18	5
05298	1,3-Dichlorobenze:	ne	541-73-1	15	U	6.0	15	15	5
05298	1,4-Dichlorobenzer Dichlorodifluorom		106-46-7 75-71-8	15 12	UU	6.0	15	15	5
05298	1,1-Dichloroethan	e	75-34-3	10	U	4.0	10	10	5
05298	1,2-Dichloroethane 1,1-Dichloroethane		107-06-2 75-35-4	10 9.9	U U	4.0	10	10	5
05298	cis-1,2-Dichloroet		156-59-2	9.9	U	4.0	9.9 9.9	9.9	5
05298	trans-1,2-Dichlor	pethene	156-60-5	9.9	U	4.0	9.9	9.9	5
	Dichlorofluorometl 1,2-Dichloropropar		75-43-4 78-87-5	11 12	U U	4.2 4.6	11 12	11 12	5
05298	cis-1,3-Dichlorop:		10061-01-5	11	U	4.5	11	12	5
05298	trans-1,3-Dichlord		10061-02-6	11	U	4.5	11	11	5
05298	1,4-Dioxane Ethyl Acetate		123-91-1 141-78-6	18	U U	9.0	18 9.0	18 9.0	5
05298	Ethyl Acrylate		140-88-5	2.0	U	4.1	20	20	5
05298	Ethyl Methacrylate	8	97-63-2	23	U	4.7	23	23	5
05298 05298	Ethylbenzene 4-Ethyltoluene		100-41-4 622-96-8	11 12	U U	4.3	11	11 12	5
05298	Freon 113		76-13-1	19	U	19	19	19	5
05298	Freon 114		76-14-2	17	U	7.0	17	17	5
05298 05298	Heptane Hexachlorobutadie	ne	142-82-5 87-68-3	10 110	UU	4.1 21	10 110	10	5
05298	Hexachloroethane	4	67-72-1	48	U	9.7	4.8	48	5
			*-This li			evaluation of the fin	al result		
						e 9 of 642 of 31			
Dene	ort ID: 13177			CERTIFI					12 of 34

🔅 eurofins	Lancaste	r Laboratori nental	es		_	Analys	sis Rep	ort
2425 New Holland Pike, Lar	ncaster, PA 17601	• 717-656-2300 • Fe	x: 717-656-2	681 • WW	w.LancasterLabs	.com		
ample Description:	13177 / R	RedSMK_RD ED SMOKE IN mma Can # 7	HALATIC		r		LL Sample # AQ LL Group # 156 Account # 046	9487
roject Name: P232D								
ollected: 06/09/20	15 10;42				USAPHC/A	IPH VP GFEBS - HQO	14.90	
ubmitted: 06/16/20 Reported: 07/10/20					8899 E 5	Sector Se		
32D1 SDG#: IP232	-01							
CAT No. Analysis Name		CAS Number	Result		Detection Limit*	Limit of Detection	Limit of Quantitation	DF
olatiles in Air	EPA TO-1	5	ug/m3		ug/m3	ug/m3	ug/m3	
05298 Hexane 05298 2-Hexanone		110-54-3 591-78-6	8.8	UU	3.5 10	8.8 41	8.8 41	5
15298 Isooctane		591-78-5 540-84-1	23	U	10 4.7	41 23	41 23	5
15298 Isopropanol 15298 Methyl Acrylate		67-63-0 96-33-3	12	U U	6.1	12	12 18	5
5298 Methyl Iodide		74-88-4	15	U	3.5	18	18	5
5298 Methyl Methacryl		80-62-6	20	U	4.1	20	20	5
05298 Alpha Methyl Sty 05298 Methyl t-Butyl E		98-83-9 1634-04+4	24 9.0	U U	4.8	24 9.0	24	5
05298 4-Methyl-2-penta	none	108-10-1	41	U	10	41	41	5
15298 Methylene Chlori 15298 Octane	de	75-09-2 111-65-9	8.8 23	J	3.5	17 23	17 23	5
15298 Propene		115-07-1	2.2	J	1.7	8.6	8.6	5
05298 Styrene 05298 1,1,1,2-Tetrachl	oroethano	100-42-5	11 17	U	4.3	11	11	5 5
05298 1,1,2,2-Tetrach1 05298 1,1,2,2-Tetrach1		79-34-5	17	U	6.9	17 17	17	5
5298 Tetrachloroethen		127-18-4	17	U	6.8	17	17	5
05298 Tetrahydrofuran 05298 Toluene		109-99-9 108-88-3	7.4	UU	2.9	7.4	7.4	5
05298 1,2,4-Trichlorob		120-82-1	74	U	19	74	74	5
05298 1,1,1-Trichloroe 05298 1,1,2-Trichloroe		71-55-6 79-00-5	14 14	U U	5.5	14	14	5
5298 Trichloroethene		79-01-6	13	U	5.4	13	13	5
05298 Trichlorofluorom 05298 1,2,3-Trichlorop		75-69-4 96-18-4	14 15	UU	5.6	14	14	5
1,2,3-Trichlorop 1,2,4-Trimethylb		95-63-6	12	U	4.9	12	15	5
05298 1,3,5-Trimethylb		108-67-8	12	U U	4.9	12	12	5
15298 Vinyl Acetate 15298 Vinyl Chloride		75-01-4	6.4	U	8.8	6.4	18 6.4	5
15298 m/p-Xylene		179601-23-1	5.5	JU	4.3	22	22	5
Reporting limits were	raised due to					11	1.1	2
All OC is compliant unl	ess otherwise				Le Comment Ouality	s		
Control Summary for ove:								
	Metl				Analysis			
AT Analysis Name o.			Trial#		Di	Analysis ate and Time	Analyst	Dilution Factor
5298 TO 15 VOA Ext. Li	st EPA	TO-15	1	D1518		7/09/2015 02:26	Jacob E Bailey	5
		*-This lir	nit was used	l in the e	valuation of the	final result		
			IP232	Page	10 of 642 of 31			
			F	age o	or or			
Report ID: 13177					OF ANALYS		Pa	ge 13 of 34

Sample			717-656-2300 • F	ax: 717-656-			Inalys		
Proje	1	31770002			2681 • V	ww.LancasterLabs.com	n		
Proje	1	31770002							
1.1			RedSMK_RD D SMOKE I ma Can #	NHALATI			LI	Sample # AQ 79 Group # 15694 count # 04694	87
oller	t Name: P232D1								
Submit	ted: 06/09/2015 ted: 06/16/2015 ted: 07/10/2015	17:00				8899 E 561	GFEBS - HQ04		
232D2	SDG#: 1P232-0	2							
CAT No.	Analysis Name		CAS Number	Result		Detection Limit*	Limit of Detection	Limit of Quantitation	DF
								ug/m3	125
	les in Air Acetone	EPA TO-15	67-64-1	ug/m3 9,900		ug/m3 590	ug/m3 2,400	ug/m3 2,400	500
05298	Acetonitrile		75-05-8	950		84	170	170	100
	Acrolein		107-02-8	5,800		570	570	570	500
05298	Acrylonitrile Benzene		107-13-1 71-43-2	33 380		11 6.4	22 16	22 16	10
05298	Benzyl Chloride		100-44-7	26	υ	26	26	26	10
05298	Bromobenzene Bromodichlorometha		108-86-1	32	U	13	32	32	10
05298	Bromodichlorometha	ue -	75-27-4	34 52	UU	13 21	34 52	34 52	10
05298	Bromomethane		74-83-9	19	U	7.8	19	19	10
05298	1,3-Butadiene		106-99-0	47		8.8	11	11	10
05298	2-Butanone tert-Butyl Alcohol		78-93-3 75-65-0	1,300	U	150 15	590 30	590 30	100
05298	Carbon Disulfide		75-15-0	31	U	15	31	30	10
05298	Carbon Tetrachlori	de	56-23-5	31	U	13	31	31	10
05298	Chlorobenzene		108-90-7	23	U	9.2	23	23	10
05298	Chlorodifluorometh Chloroethane	ane	75-45-6 75-00-3	18	U	7.1	18 13	18 13	10
05298	Chloroform		67-66-3	55	U.	9.8	24	24	10
05298	Chloromethane		74-87-3	210		4.1	21	21	10
05298	3-Chloropropene		107-05-1	16	U	6.3	16	16	10
05298	Cumene Cyclohexane		98-82-8 110-82-7	49 17	UU	9.8	49 17	49 17	10
05298	Dibromochlorometha	ne	124-48-1	43	U	17	43	43	10
05298	1,2-Dibromoethane		106-93-4	38	U	15	38	38	10
05298	Dibromomethane		74-95-3	36	UU	14	36	36	10
05298	1,2-Dichlorobenzen 1,3-Dichlorobenzen		95-50-1 541-73-1	30 30	U	12 12	30 30	30 30	10
05298	1,4-Dichlorobenzen	9	106-46-7	30	U	12	30	30	10
05298	Dichlorodifluorome	thane	75-71-8	25	U	9.9	25	25	10
05298	1,1-Dichloroethane 1,2-Dichloroethane		75-34-3	20	u u	8.1	20	20	10
05298	1,1-Dichloroethene		75-35-4	20	Ū	7.9	20	20	10
05298	cis-1,2-Dichloroet		156-59-2	20	U	7.9	20	20	10
05298	trans-1,2-Dichloro Dichlorofluorometha		156-60-5	20 21	u u	7.9	20 21	20 21	10
05298	1,2-Dichloropropan		75-43-4 78-87-5	21 23	U	8.4 9.2	21 23	21 23	10
05298	cis-1,3-Dichloropre	opene	10061-01-5	23	U	9.1	23	23	10
05298	trans-1, 3-Dichloro	propene	10061-02-6	23	U	9.1	23	23	10
05298	1,4-Dioxane Ethyl Acetate		123-91-1 141-78-6	36 18	UU	18 18	36 18	36 18	10
05298	Ethyl Acrylate		140-88-5	41	U	8.2	41	41	10
05298	Ethyl Methacrylate		97-63-2	47	U	9.3	47	47	10
05298	Ethylbenzene 4-Ethyltoluene		100-41-4	170 25	U	8.7 9.8	22	22	10 10
05298	Freon 113		76-13-1	38	U	38	38	38	10
05298	Freon 114		76-14-2	35	U	14	35	35	10
05298	Heptane		142-82-5	20	U	8.2	20	20	10
05298 05298	Hexachlorobutadien Hexachloroethane		87-68-3 67-72-1	210 97	UU	43 19	210 97	210 97	10 10
			*–This li			evaluation of the fin			
						e 11 of 642 S of 31			
Repo	rt ID: 13177		13	CERTIFI	CATE	OF ANALYSIS	-	Page	14 of 34

🄅 eurofins	Lancaster	Laboratori	es			Analys	sis Rep	ort
2425 New Holland Pike, Land	ester, PA 17601 + 3	17-656-2300 · Fe	x: 717-656-2	681 • www	w.LancasterL	abs.com		
ample Description:	131770002 13177 / RE P232D1 Sum	D SMOKE IN	HALATIC				LL Sample # AQ LL Group # 156 Account # 046	9487
Project Name: P232D1								
Collected: 06/09/201	5 12:08				USAPHC			
Submitted: 06/16/201 Reported: 07/10/201					8899 E	N VP GFEBS - HQ 56TH ST apolis IN 46249		
232D2 SDG#: IP232-	02							
CAT No. Analysis Name		CAS Number	Result		Detectic Limit*	n Limit of Detection	Limit of Quantitation	DF
Volatiles in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3	
05298 Hexane	JIA 10-13	110-54-3	13	J.	7.0	18	18	10
05298 2-Hexanone 05298 Isooctane		591-78-6 540-84-1	82 47	U U	20	82.	82 47	10
05298 Isopropanol		67-63-0	19	J	12	25	25	10
05298 Methyl Acrylate		96-33-3	35	U	7.0	35	35	10
05298 Methyl Iodide 05298 Methyl Methacryla	F.o.	74-88-4 80-62-6	29	UU	12 8.2	29 41	29	10
05298 Alpha Methyl Styr		98-83-9	48	U	9.7	48	48	10
05298 Methyl t-Butyl Et	her	1634-04+4	1.8	U	7.2	18	18	10
05298 4-Methyl-2-pentan 05298 Methylene Chlorid		108-10-1 75-09-2	82 41	U	20	82	82	10
05298 Methylene Chlorid 05298 Octane	B	111-65-9	41	ā	6.9	35	35	10
05298 Propene		115-07-1	3,900		34	170	170	100
05298 Styrene	and the second second	100-42-5	9.8	J	8.5	21	21	10
05298 1,1,1,2-Tetrachlo		630-20-6 79-34-5	34	U	14	34	34	10
05298 1,1,2,2-Tetrachlo 05298 Tetrachloroethene		79-34-5	34	U	14 14	34 34	34 34	10
05298 Tetrahydrofuran		109-99-9	15	U	5.9	15	15	10
05298 Toluene		108-88-3	160	2	7.5	19	19	10
05298 1,2,4-Trichlorobe 05298 1,1,1-Trichloroet		120-82-1 71-55-6	150	U U	37	150	150 27	10 10
05298 1,1,1-Trichloroet 05298 1,1,2-Trichloroet		79-00-5	27	U	11	27	27	10
05298 Trichloroethene		79-01-6	27	U	11	27	27	10
05298 Trichlorofluorome 05298 1,2,3-Trichloropr		75-69-4 96-18-4	28	UU	11 12	28 30	28 30	10
05298 1,2,3-Trichloropr 05298 1,2,4-Trimethylbe		95-63-6	25	U	9.8	25	25	10
05298 1,3,5-Trimethylbe		108-67-8	25	U	9.8	25	25	10
05298 Vinyl Acetate		108-05-4	35	U	18	35	35	10
05298 Vinyl Chloride 05298 m/p-Xylene		75-01-4 179601-23-1	10 550	J	5.1 8.7	13	13 43	10
05298 o-Xylene		95-47-6	98		8.7	22	22	10
Reporting limits were :	aised due to	interference	e from th	e sampl	e matrix.			
All QC is compliant unle Control Summary for over	ss otherwise n all QC perform	oted. Pleas	e refer	to the	e Comme Quality mples.	nts		
	100	Labora	atory Sa	ample	Analysi	s Record		
CAT Analysis Name No.	Metho	d	Trial#	Batch#	0.11	Analysis Date and Time	Analyst	Dilution Factor
0.)5298 TO 15 VOA Ext. Lis	EPA I		1	D15189	30BA	07/08/2015 19:37	Jacob E Bailey	10
5298 TO 15 VOA Ext. Lis	EPA I	0-15	1	D15189 D15189	30BA	07/08/2015 20:25	Jacob E Bailey	100
5298 TO 15 VOA Ext. Lis	DEA 1	0.10		013193	5 0 0 0	07/09/2015 18:09	Jacob E Bailey	200
		*-This lin	nit was used	d in the e	valuation of	the final result		
		i ino ili			12 of 64			
			F	Page 7 d	of 31	2		
Report ID: 13177		(ERTIFIC	CATE C	FANALY	SIS	Pa	ge 15 of 34

	eurofins	Lancaster Environme	Laboratori ental	es		A	nalys	is Repo	ort
242	25 New Holland Pike, Lanc	aster, PA 17601 + 1	717-656-2300 • F	ax: 717-656-3	2681 • v	ww.LancasterLabs.com	m	1000	
		13177 / RE P232D1 Sum	D SMOKE II	NHALATI			LI	Sample # AQ 79 Group # 15694 count # 04694	87
10.2	ct Name: P232D1								
Submit	ted: 06/09/201 ted: 06/16/201 ted: 07/10/201	5 17:00				8899 E 56T	GFEBS - HQ04		
232D3	SDG#: IP232-	03						3	
CAT	Analysis Name				-	Detection Limit*	Limit of Detection	Limit of Quantitation	-2
No.			CAS Number	Result					DF
	lles in Air	EPA TO-15	67-64-1	ug/m3 9,500		ug/m3 590	ug/m3 2,400	ug/m3 2,400	500
05298	Acetonitrile		75-05-8	970		84	170	170	100
	Acrolein		107-02-8	5,400		570	570	570	500
	Acrylonitrile Benzene		107-13-1 71-43-2	40 450		11 6.4	22 16	22 16	10 10
05298	Benzyl Chloride		100-44-7	26	υ	26	26	26	10
05298	Bromobenzene Bromodichlorometha	277.8	108-86-1	32 34	UU	13	32	32	10
	Bromodicniorometha		75-27-4	34 52	U	13 21	34 52	34 52	10
05298	Bromomethane		74-83-9	19	U	7.8	19	19	10
05298	1,3-Butadiene 2-Butanone		106-99-0 78-93-3	93 1,200		8.8 150	11 590	11 590	10
05298	tert-Butyl Alcoho.	1	75-65-0	30	υ	150	30	30	10
05298	Carbon Disulfide		75-15-0	31	U	16	31	31	10
05298	Carbon Tetrachlor: Chlorobenzene	ide	56-23-5 108-90-7	31 23	U	13 9.2	31 23	31 23	10
05298	Chlorodifluorometh	hane	75-45-6	18	U	7.1	18	18	10
05298	Chloroethane		75-00-3	13	υ	5.3	13	13	10
05298 05298	Chloroform Chloromethane		67-66-3 74-87-3	65 180		9.8	24	24 21	10
05298	3-Chloropropene		107-05-1	16	υ	6.3	15	16	10
05298	Cumene		98-82-8	49	U	9.8	4 9	49	10
05298	Cyclohexane Dibromochlorometha	ane	110-82-7 124-48-1	17	UU	6.9 17	17 43	17	10
05298	1,2-Dibromoethane		106-93-4	38	ū	15	38	38	10
05298	Dibromomethane 1,2-Dichlorobenzer		74-95-3 95-50-1	36 30	UU	14 12	36 30	36	10
05298	1,3-Dichlorobenzer		541-73-1	30	U	12	30	30	10
05298	1,4-Dichlorobenzer	ne	106-46-7	30	υ	12	3.0	30	10
05298	Dichlorodifluoroms 1,1-Dichloroethans		75-71-8	25	UU	9,9 8,1	25	25	10
05298	1,2-Dichloroethan		107-06-2	20	U	8.1	20	20	10
05298	1,1-Dichloroethene	e	75-35-4	20	U	7.9	20	20	10
05298	cis-1,2-Dichloroet trans-1,2-Dichloro		156-59-2 156-60-5	20	U U	7.9	20	20	10
05298	Dichlorofluoromet	hane	75-43-4	21	U	8,4	21	21	10
05298	1,2-Dichloropropar cis-1,3-Dichlorop		78-87-5 10061-01-5	23	UU	9.2	23	23	10
05298	trans-1,3-Dichlord		10061-02-6	23	U	9.1	23	23	10
05298	1,4-Dioxane		123-91-1	36	υ	18	36	36	10
05298 05298	Ethyl Acetate Ethyl Acrylate		141-78-6 140-88-5	18 41	U U	18 8.2	18 41	18	10
05298	Ethyl Methacrylate	8	97-63-2	47	U	9.3	47	47	10
05298 05298	Ethylbenzene 4-Ethyltoluene		100-41-4 622-96-8	200	υ	8.7 9.8	22 25	22 25	10 10
05298	Freon 113		76-13-1	38	U	38	38	38	10
05298	Freon 114		76-14-2	35	U	14	35	35	10
05298 05298	Heptane Hexachlorobutadies	ne	142-82-5 87-68-3	9.1 210	J U	8.2 43	20 210	20 210	10
05298	Hexachloroethane		67-72-1	97	U	19	97	97	10
			*– This li			evaluation of the fin e 13 of 642	al result		
						3 of 31			
	A 100 100 100 100 100 100 100 100 100 10								
Repo	ort ID: 13177		1.9	CERTIFIC	CATE	OF ANALYSIS		Page	16 of 34

🍪 eurofins	Lancaster Environme	Laboratorio	25			Analy	sis Rep	ort
2425 New Holland Pike, Lanc	aster, PA 17601 • 3	717-656-2300 • Fa	x: 717-656-2	2681 • WW	ww.LancasterL	abs.com		
	13177 / RE P232D1 Sum	D SMOKE IN	HALATI				LL Sample # AQ LL Group # 156 Account # 046	59487
Project Name: P232D1								
Collected: 06/09/201 Submitted: 06/16/201 Reported: 07/10/201	5 17:00				8899 E	/AIPH N VP GFEBS - HQ 56TH ST apolis IN 46249		
232D3 SDG#: IP232-	03							
CAT No. Analysis Name		CAS Number	Result		Detectio Limit*	n Limit of Detection	Limit of Quantitation	DF
Volatiles in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3	
05298 Hexane		110-54-3	14	J.	7.0	18	1.8	10
05298 2-Hexanone 05298 Isooctane		591-78-6 540-84-1	82 47	U U	20	82	82	10
05298 Isopropanol		67-63-0	21	J	9.3 12	47	47 25	10
05298 Methyl Acrylate		96-33-3	35	U	7.0	35	35	10
05298 Methyl Iodide 05298 Methyl Methacryla	te	74-88-4	29 41	U U	12	29 41	29 41	10
05298 Alpha Methyl Styr		98-83-9	48	υ	9.7	41	48	10
05298 Methyl t-Butyl Et	her	1634-04-4	18	U	7.2	18	18	10
05298 4-Methyl-2-pentan 05298 Methylene Chlorid		108-10-1 75-09-2	82 49	U	20	82 35	82 35	10
05298 Mechylene Chiofid 05298 Octane	¥	111-65-9	49	U	9.3	47	47	10
05298 Propene		115 - 07 - 1	3,900		34	170	170	100
05298 Styrene	waarbar -	100-42-5	17	J	8.5	21	21	10
05298 1,1,1,2-Tetrachlo 05298 1,1,2,2-Tetrachlo		630-20-6	34	UU	14	34	34	10
05298 T,1,2,2-Tetrachio 05298 Tetrachloroethene		127-18-4	34	U	14	34	34	10
05298 Tetrahydrofuran		109-99-9	15	U	5.9	15	15	10
05298 Toluene 05298 1,2,4-Trichlorobe	n7ene	108-88-3 120-82-1	190 150	U	7.5	19 150	19 150	10
05298 1,1,1-Trichloroet		71-55-6	27	U	11	27	27	10
05298 1,1,2-Trichloroet		79-00-5	27	υ	11	2.7	27	10
05298 Trichloroethene 05298 Trichlorofluorome	thano	79-01-6	27 28	U U	11	27	27	10
05298 Trichlorofluorome 05298 1,2,3-Trichloropr		75-69-4 96-18-4	30	U	11 12	28 30	28 30	10
05298 1,2,4-Trimethylbe	nzene	95-63-6	25	U	9.8	25	25	10
05298 1,3,5-Trimethylbe	nzene	108-67-8	25	U	9.8	25	25	10
05298 Vinyl Acetate 05298 Vinyl Chloride		108-05-4 75-01-4	9.1	ų J	18	35 13	35 13	10
05298 m/p-Xylene		179601-23-1	650	- 22.1	8.7	43	43	10
05298 o-Xylene Reporting limits were :	aised due to	95-47-6 interference	110 from th	e sampl	8.7 le matrix.	22	22	10
		G	eneral	Sampl	le Commen	nts		
All QC is compliant unles Control Summary for overs		noted. Pleas	e refer	to the	Quality	n5-7		
	100	Labora	tory S	ample	Analysi	s Record		
CAT Analysis Name Io.	Metho	đ	Trial#	Batch		Analysis	Analyst	Dilution Factor
lo. 15298 TO 15 VOA Ext. List	EPA I	0-15	1	D1518	930BA	Date and Time 07/08/2015 21:09	Jacob E Bailey	10 Factor
5298 TO 15 VOA Ext. List	EPA T	0-15	1	D1518	930BA	07/08/2015 21:57	Jacob E Bailey	100
5298 TO 15 VOA Ext. List	EPA I	0-15	I	D1518	930BA	07/09/2015 09:12	Jacob E Bailey	500
		* 112.11		d in dec -	andrastan e	he final result		Ym
					1.0 × 2.0			
			IP232 F	Page Page 9	of 31	2		
Report ID: 13177		0	ERTIFIC	CATE	OF ANALY	SIS	P	age 17 of 34
and prove some shift is a			A DECK MARKEN		- ARALI	- I-	1.4	T

45	eurofins	Lancaster	Laboratori	es		A	nalys	is Repo	ort
2425	New Holland Pike, Lanca	ster, PA 17601 +	17-656-2300 • Fi	ax: 717-656-2	2681 • W	ww.LancasterLabs.com	n		-
	1	131770004 13177 / RE 232D1 Sum	D SMOKE II	NHALATI			LI	L Sample # AQ 79 L Group # 15694 scount # 04694	87
	Name: P232D1								
Submitt	ed: 06/09/2019 ed: 06/16/2019 ed: 07/10/2019	5 17:00				8899 E 56T	GFEBS - HQ04		
232D4	SDG#: 1P232-0)4							
22.5						Debastiture		Timle	-
CAT No.	Analysis Name		CAS Number	Result		Detection Limit*	Limit of Detection	Limit of Quantitation	DF
	es in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3	
	Acetone	BPA 10-15	67-64-1	4,700		120	480	480	100
05298	Acetonitrile		75-05-8	200		8.4	17	17	10
	Acrolein Acrylonitrile		107-02-8	2,800	U	110	110	110 22	100
05298 1	Benzene		71-43-2	130	5	6.4	16	16	10
	Benzyl Chloride		100-44-7	26	υ	26	2.6	26	10
	Bromobenzene Bromodichlorometha	ne	108-86-1 75-27-4	32	U	13 13	32	32	10
05298 1	Bromoform		75-25-2	52	U	21	52	52	10
	Bromomethane		74-83-9	19	U	7.8	19	19	10
	L,3-Butadiene 2-Butanone		106-99-0 78-93-3	110 290		8.8 15	11 59	11 59	10
05298	ert-Butyl Alcohol		75-65-0	30	IJ	15	30	30	10
	Carbon Disulfide Carbon Tetrachlori	2-	75-15-0 56-23-5	31	U	16	31	31	10
	Carbon Tetrachiori Chlorobenzene	ae	108-90-7	23	U	13 9.2	31 23	31 23	10
05298	Chlorodifluorometh	ane	75-45-6	18	U	7.1	18	18	10
	Chloroethane		75-00-3	13	U	5.3	13	13	10
	Chloroform Chloromethane		67-66-3 74-87-3	20	J	9.8 4.1	24	24	10
05298	B-Chloropropene		107-05-1	16	U	6.3	16	16	10
	Cumene Cyclohexane		98-82-8 110-82-7	49 17	UU	9.8	49 17	49 17	10
	Dibromochlorometha	ne	124-48-1	43	U	17	43	43	10
05298	L,2-Dibromoethane		106-93-4	38	U	15	3.8	38	10
	Dibromomethane 1,2-Dichlorobenzen	-	74-95-3 95-50-1	36	UU	14	36 30	36	10
	L,3-Dichlorobenzen		541-73-1	30	U	12	30	30	10
05298	L,4-Dichlorobenzen	e	106-46-7	30	U	12	30	30	10
	Dichlorodifluorome		75-71-8	25	UU	9.9 8.1	25	25 20	10
05298	1,2-Dichloroethane		107-06-2	20	U	8.1	20	20	10
	1,1-Dichloroethene		75-35-4	20	U	7.9	20	20	10
	cis-1,2-Dichloroet trans-1,2-Dichloro		156-59-2 156-60-5	20	U U	7.9	20	20	10
05298 1	Dichlorofluorometh	ane	75-43-4	21	U	8,4	21	21	10
	1,2-Dichloropropan		78-87-5 10061-01-5	23	U U	9.2	23	23	10
05298	cis-1,3-Dichloropr trans-1,3-Dichloro	opene propene	10061-01-5	23	U	9.1 9.1	23 23	23	10
05298	L,4-Dioxane		123-91-1	36	U	18	36	3.6	10
	Sthyl Acetate Sthyl Acrylate		141-78-6 140-88-5	18	U U	18 8.2	18 41	18 41	10
05298	Sthyl Methacrylate		97-63-2	47	U	9.3	47	47	10
05298	Sthylbenzene		100-41-4	54		8.7	22	22	10
	4-Ethyltoluene Freon 113		622-96-8 76-13-1	25 38	UU	9.8 38	25 38	25 38	10
05298	Freon 114		76-14-2	35	U	14	35	35	10
	leptane		142-82-5	20	U	8.2	20	20	10
	Hexachlorobutadien Hexachloroethane	e	87-68-3 67-72-1	210 97	UU	43 19	210 97	210 97	10
1			*-This lin	mit was use	d in the	evaluation of the fin	al result		
						e 15 of 642 0 of 31			
	ID: 13177			OFDTIE	ATE	OF ANALYSIS		Deer	18 of 34
Report	ID. 13177			SER HEI	JAIF	UF ANALTSIS		Pade	10 01 34

Г

🍪 eurofins	Lancaster Environm	Laboratorio	25		_	Analy	sis Rep	ort
2425 New Holland Pike, Lanc	ester, PA 17601 +	717-656-2300 · Fa	x: 717-656-	2681 • 1	www.LancasterLa	bs.com		
	13177 / RE	RedSMK_RD# D SMOKE IN ma Can # 7	HALATI				LL Sample # AQ LL Group # 156 Account # 046	9487
roject Name: P232D1								
ollected: 06/09/201	5 13:57				USAPHC,			
ubmitted: 06/16/201 eported: 07/10/201					8899 E	N VP GFEBS - HQ 56TH ST apolis IN 46249		
32D4 SDG#: IP232-	04							
CAT No. Analysis Name		CAS Number	Result		Detectio Limit*	n Limit of Detection	Limit of Quantitation	DF
olatiles in Air	EPA TO-15	10 J	ug/m3		ug/m3	ug/m3	ug/m3	
15298 Hexane		110-54-3	18	U	7.0	18	18	10
15298 2-Hexanone 15298 Isooctane		591-78-6 540-84-1	82 47	U U	20	82 47	82 47	10
15298 Isopropanol		67-63-0	25	U	12	25	25	10
15298 Methyl Acrylate		96-33-3	35	U	7.0	35	35	10
15298 Methyl Iodide 15298 Methyl Methacryla	ie	74-88-4 80-62-6	29 41	UU	12 8.2	29	29 41	10
15298 Alpha Methyl Styr	ene	98-83-9	48	υ	9.7	48	48	10
15298 Methyl t-Butyl Et		1634-04-4	18	U	7.2	18	18	10
15298 4-Methyl-2-pentan 15298 Methylene Chlorid		108-10-1 75-09-2	82	U J	20	82 35	82 35	10
05298 Octane		111-65-9	47	U	9.3	47	47	10
15298 Propene		115 - 07 - 1	1,300		34	170	170	100
15298 Styrene	anthar-	100-42-5	21	U	8.5	21	21	10
15298 1,1,1,2-Tetrachlo 15298 1,1,2,2-Tetrachlo		630-20-6 79-34-5	34	U	14	34	34	10
15298 Tetrachloroethene		127-18-4	34	U	14	34	34	10
15298 Tetrahydrofuran		109-99-9	15	U	5.9	15	15	10
15298 Toluene		108-88-3	55	17	7.5	19	19	10
15298 1,2,4-Trichlorobe 15298 1,1,1-Trichloroet		120-82-1 71-55-6	150 27	U U	37 11	150	150	10
1,1,1-Trichloroet		79-00-5	27	υ	11	27	27	10
15298 Trichloroethene		79-01-6	27	U	11	27	27	10
15298 Trichlorofluorome 15298 1,2,3-Trichloropr		75-69-4	28	UU	11 12	28	28 30	10
15298 1,2,3-Trichloropro 15298 1,2,4-Trimethylber		95-63-6	25	U	9.8	25	25	10
15298 1,3,5-Trimethylber		108-67-8	25	U	9.8	25	25	10
15298 Vinyl Acetate		108-05-4	35	UU	18	35	35	10
15298 Vinyl Chloride 15298 m/p-Xylene		179601-23-1		U	5.1	13	13	10
15298 o-Xylene	ainad dus to	95-47-6	36		8.7	22	22	10
Reporting limits were a	aised due to	incerierence	e from th	ne sam	ple matrix.			
All QC is compliant unles		noted. Pleas	e refer	to th		nts		
Control Summary for overa	11 QC perfor	mancé data ar	id assoc:	iated	samples.			
al uniquita	Metho				e Analysia			
AT Analysis Name o.	Mecho	in the second se	Trial	# Batc	:h#	Analysis Date and Time	Analyst	Dilution Factor
5298 TO 15 VOA Ext. List		ro-15	1	D151	8930BA	07/08/2015 22:40	Jacob E Bailey	10
5298 TO 15 VOA Ext. List	EPA 1	r0-15	1	D151		07/09/2015 09:53	Jacob E Bailey	100
		*-This lin	nit was use	ed in the	e evaluation of t	he final result		
					e 16 of 64 1 of 31	2		
Report ID: 13177			ERTIFI	CATE	OF ANALY	SIS	Pa	ge 19 of 34
and a statement of any of a Wallington To-			E OF ANALYSIS Page 19 of 34 e reproduced, except in full 7/14/2015 11:46:30 AM					

-	eurofins	Lancaster	Laboratori	es		A	nalys	is Rep	ort
2425	New Holland Pike, Lanca	ster, PA 17601 •	717-656-2300 · F	ax: 717-656-	2681 • W	ww.LancasterLabs.com	m		-
	1	.31770005 .3177 / RE 232D1 Sum	D SMOKE II	NHALATI		K Air	LI	Sample # AQ 7 Group # 1569 count # 0469	487
100.2	Name: P232D1								
Submitt	ed: 06/15/2015 ed: 06/16/2015 ed: 07/10/2015	5 17:00				8899 E 56T	GFEBS - HQ04		
232D5	SDG#: 1P232-0)5							
CAT	Analysis Name		CAS Number	Result		Detection Limit*	Limit of Detection	Limit of Quantitation	DF
		PDA TO 15		ug/m3		ug/m3	ug/m3	ug/m3	
	es in Air Acetone	EPA TO-15	67-64-1	51		12	48	48	10
05298	Acetonitrile		75-05-8	880		42	84	84	50
	Acrolein Acrylonitrile		107-02-8	11 22	U U	11	11 22	11 22	10
05298 1	Benzene		71-43-2	1,6	U	6,4	16	16	10
	Benzyl Chloride		100-44-7	26 32	U	26	26	26	10
	Bromobenzene Bromodichlorometha	ne	108-86-1 75-27-4	32	UU	13 13	32 34	32 34	10
05298 1	Bromoform		75-25-2	52	U	21	52	52	10
	Bromomethane		74-83-9	19	U	7.8	19	19	10
	1,3-Butadiene 2-Butanone		106-99-0 78-93-3	11	UU	8.8 15	11 59	11 59	10
05298	ert-Butyl Alcohol		75-65-0	30	U	15	30	3.0	10
	Carbon Disulfide Carbon Tetrachlori	do	75-15-0	31 31	UU	16 13	31 31	31	10
	Chlorobenzene	ue	108-90-7	23	U	9.2	23	23	10
	Chlorodifluorometh	ane	75-45-6	18	υ	7.1	18	18	10
	Chloroethane Chloroform		75-00-3 67-66-3	13 24	UU	5.3 9.8	13	13 24	10
C	hloromethane		74-87-3	21	U	4.1	21	21	10
	-Chloropropene		107-05-1	16	U	6.3	16	16	10
	lumene Lyclohexane		98-82-8 110-82-7	49 17	UU	9.8	49 17	49 17	10
	bromochlorometha	ne	124-48-1	43	Ū	17	43	43	10
	2-Dibromoethane		106-93-4	38	U	15	38	38	10
	Dibromomethane 1,2-Dichlorobenzen	e	74-95-3 95-50-1	36 30	UU	14 12	36 30	36 30	10
05298	.,3-Dichlorobenzen	e	541-73-1	3.0	U	12	30	30	10
	1,4-Dichlorobenzen Dichlorodifluorome		106-46-7 75-71-8	30 25	UU	12 9.9	30	30 25	10
05298	,1-Dichloroethane		75-34-3	20	u	8.1	20	20	10
	,2-Dichloroethane		107-06-2	20	U	8.1	20	20	10
	1,1-Dichloroethene cis-1,2-Dichloroet		75-35-4 156-59-2	20	UU	7.9	20 20	20 20	10
05298	rans-1,2-Dichloro	ethene	156-60-5	20	U	7.9	2.0	20	10
	Dichlorofluorometh 1,2-Dichloropropan		75-43-4 78-87-5	21 23	U	8.4 9.2	21 23	21 23	10
05298	is-1,3-Dichloropr	opene	10061-01-5	23	U	9.1	23	23	10
	rans-1,3-Dichloro	propene	10061-02-6	23 36	U U	9.1	23	23	10
	1,4-Dioxane Sthyl Acetate		123-91-1 141-78-6	36	UU	18	36 18	36 18	10
05298	Ethyl Acrylate		140-88-5	41	U	8.2	41	41	10
	Sthyl Methacrylate Sthylbenzene		97-63-2 100-41-4	47 22	UU	9.3 8.7	47 22	47 22	10
	-Ethyltoluene		622-96-8	25	υ	9.8	22	22	10
05298	Freon 113		76-13-1	38	U	3.8	38	38	10
	Preon 114 Reptane		76-14-2 142-82-5	35 20	UU	14 8.2	35 20	35 20	10
05298 1	Hexachlorobutadien	e	87-68-3	210	U	43	210	210	10
05298 1	lexachloroethane		67-72-1 * 1712-1	97	U	19	97	97	10
			~—1 ms li	IP232	Pag	evaluation of the fin e 17 of 642 2 of 31	ai result		
	ID: 13177 Serial #: 76326					OF ANALYSIS			e 20 of 34

🍀 eurofins	Lancaster Environm	Laboratorio	es		Analysis Report						
2425 New Holland Pike, Lanc	aster, PA 17601 •	717-656-2300 · Fa	x: 717-656-20	581 • WV	ww.LancasterLa	bs.com					
	13177 / RE P232D1 Sum	D SMOKE IN	HALATIC		K Air		LL Sample # AQ LL Group # 156 Account # 046	9487			
roject Name: P232D1											
ollected: 06/15/201	5 10:12				USAPHC,		0400				
ubmitted: 06/16/201 eported: 07/10/201					8899 E	V VP GFEBS - HQ 56TH ST apolis IN 46249					
32D5 SDG#: IP232-	05										
CAT No. Analysis Name		CAS Number	Result		Detection Limit*	n Limit of Detection	Limit of Quantitation	DF			
olatiles in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3				
01atiles in Air 15298 Hexane	SFA 10-15	110-54-3	18	U	7.0	18	18	10			
15298 2-Hexanone		591-78-6	82	U	20	82	82	10			
15298 Isooctane 15298 Isopropanol		540-84-1 67-63-0	47 25	UU	9.3 12	47 25	47 25	10			
15298 Methyl Acrylate		96-33-3	35	U	7.0	35	35	10			
15298 Methyl Iodide		74-88-4	29	U	12	29	29	10			
15298 Methyl Methacryla 15298 Alpha Methyl Styr		80-62-6 98-83-9	41	UU	8.2	41	41 48	10			
15298 Alpha Methyl Styr 15298 Methyl t-Butyl Et		1634-04+4	18	U	7.2	48	48	10			
15298 4-Methyl-2-pentan	one	108-10-1	82	U	20	82	82	10			
15298 Methylene Chlorid 15298 Octane	e	75-09-2 111-65-9	15	JU	6.9	35	35	10			
15298 Octane 15298 Propene		111-65-9 115-07-1	47	U	9.3	47	47	10			
15298 Styrene		100-42-5	21	U	8.5	21	21	10			
5298 1,1,1,2-Tetrachlo		630-20-6	34	υ	14	34	34	10			
05298 1,1,2,2-Tetrachlo		79-34-5	34	U	14	3.4	34	10			
15298 Tetrachloroethene 15298 Tetrahydrofuran		127-18-4 109-99-9	34 15	U U	14	34	34	10			
15298 Toluene		108-88-3	19	U	7.5	19	19	10			
1,2,4-Trichlorobe		120-82-1	150	U	37	150	150	10			
1,1,1-Trichloroet 1,298 1,1,2-Trichloroet		71-55-6 79-00-5	27 27	UU	11	27	27	10			
15298 1,1,2-Trichloroet. 15298 Trichloroethene	nane	79-00-5	27	U	11	27	27 27	10			
15298 Trichlorofluorome		75-69-4	28	U	11	2.8	28	10			
15298 1,2,3-Trichloropr		96-18-4	30	U	12	30	30	10			
15298 1,2,4-Trimethylbe 15298 1,3,5-Trimethylbe		95-63-6 108-67-8	25	UU	9.8	25	25	10			
15298 1,3,5-Trimethylde 15298 Vinyl Acetate	us che	108-07-8	35	U	9.8	35	35	10			
15298 Vinyl Chloride		75-01-4	13	U	5.L	13	13	10			
15298 m/p-Xylene 15298 o-Xylene		179601-23-1 95-47-6	43	U U	8.7	43	43 22	10			
Reporting limits were a	aised due to					~~	24	10			
All QC is compliant unles		noted. Pleas	e refer i	to the		its					
Control Summary for overa	all QC perform	mance data ar	a associa	ated sa	ampies.						
	Metho				Analysia		1	Dilutio			
AT Analysis Name o.	Mecht	2	Trial#	Batch	Ŧ	Analysis Date and Time	Analyst	Dilution Factor			
5298 TO 15 VOA Ext. List			1	D1518		07/08/2015 23:24	Jacob E Bailey	10			
5298 TO 15 VOA Ext. List	EPA 1	0-15	1	D1518	930BB	07/09/2015 19:05	Jacob E Bailey	50			
		*–This lin	nit was used	l in the c	evaluation of t	he final result					
					e 18 of 64 8 of 31	2					
Report ID: 13177		0	ERTIFIC		OF ANALY	SIS	Pa	ge 21 of 34			

13177 / RED SMOKE INHALATION P232DI Summa Can # 7108 LL Group Account Project Name: P232D1 Image: P232D1 Collected: 06/15/2015 11:07 USAPHC/AIPH DFAS-IN VP GFEBS - HQ0490 Submitted: 06/16/2015 17:00 8899 E 56TH ST Indianapolis IN 46249-3800 Reported: 07/10/2015 16:31 Indianapolis IN 46249-3800 R32D6 SDG#: IP232-06	# 04694
Li Group P232D1 Summa Can # 7108 Li Group Account roject Name: P232D1 Li Group Account ollected: 06/15/2015 11:07 USAPHC/AIPH DFAS-IN VP GFEBS - HQ0490 apported: 07/10/2015 16:31 DFAS-IN VP GFEBS - HQ0490 3220 SDG#: IP232-06 Detection Data of the second s	it of ntitation D m3 00 5 1 1 1 1 1 1 1 1 1 1 1
L13177 / RED SMORE INHALATION P232D1 Summa Can # 7108 LL Group Account roject Name: P232D1 Dilected: 06/15/2015 11:07 USAPHC/ATPH DFAS-IN VP GFEBS - HQ0490 8899 E 56TH ST Indianapolis IN 46249-3800 aported: 07/10/2015 16:31 Indianapolis IN 46249-3800 32D6 SDG#: IP232-06 Ar c. Analysis Name CAS Number Result District of Usage Control of Usage Contr	it of ntitation D m3 00 5 1 1 1 1 1 1 1 1 1 1 1
Delected: 06/15/2015 11:07 ubmitted: 06/16/2015 17:00 sported: 07/10/2015 16:31 32D6 SDG#: TP232-06 Are on Analysis Name CAS Number Result Detection Limit of Limit of Detection Li	ntitation p m3 00 5 1 5 1 1 1 1 1 1 1 1 1 1
DPAS-IN VP GPEBS - HQ0490 hdmitted: 06/16/2015 17:00 B899 E 56TH ST aported: 07/10/2015 16:31 Indianapolis IN 46249-3800 32D6 SDG#: 1P232-06 Analysis Name CAS Number Result Distiles in Air FPA TO-15 ug/m3 ug/m3 ug/m3 Distiles in Air FPA TO-15 ug/m3 ug/m3 ug/m3 ug/m3 Distiles in Air FPA TO-15 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 Distiles in Air FPA TO-15 ug/m3	ntitation p m3 00 5 1 5 1 1 1 1 1 1 1 1 1 1
aported: 07/10/2015 16:31 8699 E 56TH ST 32D6 SDG#: 1P232-06 Analysis Name CAS Number Limit of Limit of S298 Acetone 67-64-1 37,000 590 2,400 2,4 S298 Acetone 67-64-1 37,000 590 2,400 2,4 S298 Acetone 107-02-8 3,200 84 170 170 S298 Acetone 107-13-1 220 U 110 220 220 S298 Acetone 107-13-1 220 U 110 220 220 S298 Benzone 106-44-7 260 U 100 200 200 320 S298 Benzone 108-86-1 320 U 130 340 320 S298 Benzonform 73-52-2 520 U 130 340 320 S298 Benzonform 73-55-3 100 U 130 340 320 S298 Bromoform 73-55-3 100 U 130	ntitation p m3 00 5 1 5 1 1 1 1 1 1 1 1 1 1
eported: 07/10/2015 16:31 Indianapolis IN 46249-3800 32D6 SDG#: IP232-06 Marticle SDG#: Detection Limit of Detection Colspan="2">Limit of Detection Colspan="2">Limit of Detection Colspan="2">Limit of Detection Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" SDG#: Limit * Detection Limit * Colspan="2" Colspan="2" Colspan="2" Detection Colspan="2" SDG#: Colspan="2" Colspan="2"	ntitation p m3 00 5 1 5 1 1 1 1 1 1 1 1 1 1
32D6 SDG#: IP232-06 Aralysis Name CAS Number Regult Detection Limit of Detection Quasion 01atiles in Air EPA TO-15 ug/m3 ug/m3 <td>ntitation p m3 00 5 1 5 1 1 1 1 1 1 1 1 1 1</td>	ntitation p m3 00 5 1 5 1 1 1 1 1 1 1 1 1 1
AT Detection Limit of Limit of Data 0. Analysis Name CAS Number Result Limit * Detection Gua 01atiles in Air EPA TO-15 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 2398 Acetonic 67-64-1 13,000 590 2,400 2,4 2398 Acetonicrile 107-02-8 7,900 570 570 570 5298 Benzele 114-32 230 64 160 160 5298 Benzyl Chloride 100-44-7 260 U 210 520 520 5298 Bromodichleromethane 75-25-2 250 U 210 520 520 5298 Bromodethane 106-99-0 100 J 88 110 110 5298 Bromodethane 75-65-0 300 150 500 520 5298 Erntone 74-83-9 150 130 310 310	ntitation p m3 00 5 1 5 1 1 1 1 1 1 1 1 1 1
Aralysis Name CAS Number Result Limit* Petection Quasity 5298 Acetome 67-64-1 13,000 590 2,400 2,4 5298 Acetome 67-64-1 13,000 84 170 170 5298 Acetomitrile 75-05-8 3,200 84 170 170 5298 Acetomitrile 107-02-8 7,900 570	ntitation p m3 00 5 1 5 1 1 1 1 1 1 1 1 1 1
One of the first result result result result result colatiles in Air EPA TO-15 ug/m3	m3 00 5 1 5 1 1 1 1 1 1 1
5298 Acetone 67-64-1 13,000 590 2,400 2,4 5298 Acetonitrile 75-05-8 3,200 84 170 170 5298 Acrylonitrile 107-02-8 7,900 570 570 570 5298 Benzele 107-13-1 220 U 110 220 220 5298 Benzele 74-43-2 930 64 160 160 5298 Bromobenzene 108-86-1 320 320 320 320 5298 Bromodichloromethane 75-27-4 340 U 130 340 340 5298 Bromodichloromethane 75-27-4 340 U 130 340 340 5298 Eromomethane 76-87-0 100 J 88 110 110 5298 tromomethane 76-87-0 300 U 150 300 300 5298 tromomethane 75-67-3 310 U	00 5 1 5 1 1 1 1 1 1
S298 Acetonitrile 75-05-8 3,200 84 170 170 5298 Acrylonitrile 107-12-1 220 U 110 220 220 5298 Acrylonitrile 107-13-1 220 U 110 220 220 5298 Benzene 71-43-2 930 64 160 160 5298 Bromobenzene 108-86-1 320 U 130 320 320 5298 Bromodichloromethane 75-27-4 340 U 130 340 340 5298 Bromoderm 75-52-2 520 U 210 520 520 5298 Bromomethane 76-83-3 1,700 150 300 300 5298 Carbon Disulfide 75-15-0 310 U 160 310 310 5298 Chlorobenzene 108-90-7 230 U 92 230 230 5298 Chlorodenhane 75-45-6	1 5 1 1 1 1 1 1 1
Says Acrolein 107-02-8 7,900 570 570 570 570 Says Acrylonitrile 107-13-1 220 U 110 220 220 Says Benzene 71-43-2 930 64 160 160 Says Bromobenzene 100-44-7 260 U 260 260 Says Bromobenzene 100-44-7 260 U 210 320 320 Says Bromodichloromethane 75-27-4 340 U 130 340 340 Says Bromoform 75-25-2 Say U 210 520	5 1 1 1 1 1 1
5298 Benzene 71-43-2 930 64 160 160 5298 Benzyl Chloride 100-44-7 260 U 260 260 260 5298 Bromodichloromethane 75-27-4 340 U 130 340 340 5298 Bromoform 75-27-4 340 U 130 340 340 5298 Bromomethane 74-83-9 190 U 78 190 130 5298 Bromomethane 74-83-9 190 U 78 190 190 5298 Landene 76-57-0 100 U 86 110 110 5298 Larbon Disulfide 75-15-0 310 U 130 310 310 5298 Chlorodinfluoromethane 75-45-6 180 U 71 180 180 5298 Chlorodina 67-66-3 240 U 98 240 240 5298 Chlorodina <	1 1 1 1 1
5298 Benzyl Chloride 100-44-7 260	1 1 1 1
5298 Bromobenzene 108-86-1 320 120 320 120 5298 Bromodichloromethane 75-27-4 340 U 130 340 340 5298 Bromoform 75-25-2 520 U 210 520<	1 1 1
Stomodichloromethane 75-27-4 340 U 130 340 340 S298 Bromométhane 75-27-2 520 U 210 520 <td< td=""><td>1</td></td<>	1
5298 Bromomethane 74-83-9 190 U 78 190 190 5298 1.3-Butadiene 166-99-0 100 J 88 110 110 5298 2-Butanone 78-93-3 1,700 150 590 590 5298 tert-Butyl Alcohol 75-65-0 300 U 150 300 300 5298 Carbon Disulfide 75-15-0 310 U 130 310 310 5298 Carbon Tetrachloride 56-23-5 310 U 130 310 310 5298 Chlorobenzene 168-90-7 230 U 92 230 230 5298 Chlorobenzene 75-45-6 180 U 71 180 180 5298 Chlorothane 76-6-3 240 U 98 240 240 5298 Chloropropene 10-62-7 100 98 490 490 5298 Cyclohexane 10-8	
5298 1,3-Butadiene 106-99-0 100 J 88 110 110 5298 2-Butanone 78-93-3 1,700 150 590 590 5298 Carbon Disulfide 75-65-0 300 0 150 300 300 5298 Carbon Disulfide 75-75-0 310 U 160 310 310 5298 Chlorobenzene 108-90-7 230 U 92 230 230 5298 Chlorobenzene 75-05-3 130 U 53 130 130 5298 Chlorobethane 75-06-3 130 U 53 130 130 5298 Chlorobethane 74-65-3 240 U 98 240 240 5298 Chlorobethane 74-87-3 230 41 210 210 5298 Chlorobethane 107-05-1 160 U 63 160 160 5298 Cyclohexane 100-82-7 170 U 69 170 170 170 170 170 <td></td>	
5298 5298 5298 52982-Eutanone $78-33-3$ 545-0 $1,700$ 150 590 590 5298 5298 5298 5298 5298Carbon Disulfide $75-55-0$ 300 U 160 310 300 5298 5298 5298Carbon Disulfide $75-15-0$ 310 U 160 310 310 5298 5298 5298Chlorobenzene $108-90-7$ 230 U 92 230 230 5298 5298 5298Chlorobenzene $75-45-6$ 180 U 71 180 180 5298 5298 5298Chlorocthane $75-65-3$ 240 U 98 240 240 5298 5298 5298Chlorocthane $76-65-3$ 240 U 98 240 240 5298 5298 5298Chloroptopene $107-05-1$ 160 63 160 160 5298 5298 5298 5298 5298 5298 5298 5298 5298 5298 $107-05-1$ 160 063 160 430 5298 700 700 700 360 5298 5298 5298 5298 5298 5298 5298 $50-71-8$ 300 01 120 300 300 5298 5298 5298 $1, -10ichlorobenzene$ $1, 2-0ichlorobenzene$ $75-71-8$ 250 250	
5298Carbon Disulfide $75-15-0$ 310 U 160 310 310 5298Carbon Tetrachloride $56-23-5$ 310 U 130 310 310 5298Chlorobenzene $108+30-7$ 230 U 92 230 230 5298Chlorobenzene $75-45-6$ 180 U 71 180 180 5298Chlorobthane $75-65-6$ 180 U 71 180 180 5298Chlorobthane $75-66-3$ 240 U 98 240 240 5298Chlorobthane $74-67-65-3$ 240 U 98 240 240 5298Chloromethane $74-67-65-3$ 240 U 98 490 240 5298Chlorobrame $96-82-8$ 490 U 98 490 490 5298Dibromochloromethane $124-48-1$ 430 U 150 380 380 5298Dibromochlaromethane $74-95-3$ 360 U 150 380 360 5298Dibromochlare $96-50-1$ 300 U 120 300 300 5298Dibromochlare $541-73-1$ 300 U 120 300 300 5298Dibromochlare $57-71-8$ 200 U 99 250 250 5298Dibromochhane $75-34-3$ 200 U 99 250 250 5298Dibromochhane $75-34-3$ 200 U 99	
5298Carbon Tetrachloride $56-23-5$ 310 U 130 310 310 310 5298Chlorobenzene $168\cdot90-7$ 230 230 230 230 5298Chlorodifluoromethane $75-45-6$ 180 U 71 180 180 5298Chlorotform $67-66-3$ 130 U 53 130 130 5298Chlorotform $67-66-3$ 240 U 98 240 240 5298Chloroptena $17-65-1$ 240 U 98 490 420 5298Chloroptene $17-65-1$ 160 U 63 160 160 5298Cumene $98-82-8$ 490 U 98 490 490 5298Cyclohexane $106-27-7$ 170 U 69 170 170 5298Dibromochhane $124\cdot48-1$ 430 U 150 380 380 5298Dibromochhane $16-39-4$ 380 U 150 380 380 5298Dibromochane $95-50-1$ 300 U 120 300 300 5298 $1,2-0$ ichlorobenzene $51-71-8$ 250 250 250 250 5298 $1,1-0$ ichlorobenzene $75-34-3$ 200 U 79 200 200 5298 $1,2-0$ ichlorochane $75-34-4$ 200 U 79 200 200 5298 $1,2-0$ ichlorochane $75-34-4$ 210 U 79 200 <	
5298 Chlorobenzene 108-90-7 230 U 92 230 230 230 5298 Chlorodifluoromethane 75-45-6 180 U 71 180 180 5298 Chloroethane 75-00-3 130 U 53 130 130 5298 Chloroethane 76-66-3 240 U 98 240 240 5298 Chloromethane 74-87-3 230 41 210 210 5298 Chloromethane 107-05-1 160 U 63 160 160 5298 Cyclohexane 110-82-7 170 U 69 170 170 5298 Dibromoethane 124-48-1 430 U 150 380 380 5298 Dibromoethane 14-95-3 360 U 140 360 360 5298 1,2-Dichlorobenzene 56-51-1 300 U 120 300 300 5298	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
5298Chloroform67-66-3240U982402405298Chloromethane74-87-32304121021052983-Chloromethane107-05-1160U631601605298Cumene98-82-8490U984904905298Cyclohexane10.82-7170U631701705298Dibromochlaromethane124-48-1430U1503803805298Lyclohexane16-93-4360U1503803805298Dibromochhane74-95-3360U14036036052981,3-Dichlorobenzene95-50-1300U12030030052981,4-Dichlorobenzene106-46-7300U12030030052981,1-Dichlorobenzene75-34-3200U9925025052981,1-Dichlorobethane75-34-3200U9925025052981,1-Dichlorobethane75-34-3200U7920020052981,2-Dichlorobethane156-59-2200U7920020052981,2-Dichlorobethane156-60-5200U792002005298trans-1,2-Dichlorobethane75-34-4210U842102005298trans-1,2-Dichlorobethane76-94-2200U79200	
2298Chloromethane $74-87-3$ 230 41 210 210 5298 $3-$ Chloropropene $107-05-1$ 160 U 63 160 160 5298Cumene $98-82-8$ 490 U 98 490 490 5298Cyclohexane $110-82-7$ 170 U 63 170 170 5298Dibromochloromethane $124+48-1$ 430 U 150 380 380 5298Dibromochloromethane $106-93-4$ 380 U 150 380 360 5298I,2-Dichlorobenzene $95-50-1$ 300 1140 360 300 52981,3-Dichlorobenzene $541-73-1$ 300 U 120 300 300 52981,3-Dichlorobenzene $56-50-1$ 300 U 120 300 300 52981,3-Dichlorobenzene $56-40-3$ 00 U 120 300 300 52981,1-Dichlorobenzene $15-71-8$ 250 U 96 250 250 52981,1-Dichloroethane $75-71-8$ 250 U 96 200 200 52981,2-Dichloroethane $17-62-2$ 200 U 81 200 200 52981,2-Dichloroethane $156-60-5$ 200 U 79 200 200 5298trast,1,2-Dichloroethane $156-60-5$ 200 U 79 200 200 5298trast,2,2-Dichloroethane <td></td>	
52983-Chloropropene $107-05-1$ 160 U 63 160 160 5298Cumene $98-82-8$ 490 U 98 490 490 5298Cyclohexane $110-82-7$ 170 U 63 170 410 5298Dibromochloromethane $124+48-1$ 430 U 150 380 380 5298Dibromochhane $16-93-4$ 380 U 150 380 380 5298Dibromomethane $74-95-3$ 360 U 140 360 360 52981,2-Dichlorobenzene $95-50-1$ 300 U 120 300 300 52981,3-Dichlorobenzene $541-73-1$ 300 U 120 300 300 52981,4-Dichlorobenzene $75-71-8$ 250 250 250 259 52981,1-Dichlorobethane $75-71-8$ 200 U 91 200 200 52981,1-Dichlorobethane $75-34-3$ 200 U 95 200 200 52981,1-Dichlorobethane $156-59-2$ 200 U 79 200 200 5298t,1,2-Dichlorobethane $156-60-5$ 200 U 79 200 200 5298t,1,2-Dichloropethane $156-60-5$ 200 U 79 200 200 5298t,1,2-Dichloropethane $76-43-4$ 210 U 84 210 200 5298t,1,2-Dichloropetha	1
5298Cumene $96-82-8$ 490 98 490 490 490 5298Cyclohexane $110-82-7$ 170 U 69 170 170 5298Dibromochloromethane $124\cdot48-1$ 430 U 170 430 430 5298 $1,2-\text{Dibromochloromethane}$ $124\cdot48-1$ 430 U 170 430 430 5298 $1,2-\text{Dibromochlane}$ $106\cdot93-4$ 380 U 150 380 380 5298 $1,2-\text{Dibromomethane}$ $96-50-1$ 300 U 140 360 300 5298 $1,4-\text{Dichlorobenzene}$ $56-50-1$ 300 U 120 300 300 5298 $1,4-\text{Dichlorobenzene}$ $166\cdot46-7$ 300 U 120 300 300 5298 $1,4-\text{Dichlorobenzene}$ $75-71-8$ 250 U 95 250 250 5298 $1,4-\text{Dichlorobethane}$ $75-34-3$ 200 U 81 200 200 5298 $1,4-\text{Dichlorobethane}$ $75-34-4$ 200 U 79 200 200 5298 $1,2-\text{Dichlorobethene}$ $156\cdot59-2$ 200 U <td></td>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
52981,2-Dibromoethane $106-93-4$ 360 U 150 380 360 5298Dibromomethane $74-95-3$ 360 U 140 360 360 52981,2-Dichlorobenzene $95-50-1$ 300 U 140 360 360 52981,3-Dichlorobenzene $541-73-1$ 300 U 120 300 300 52981,4-Dichlorobenzene $106-46-7$ 300 U 120 300 300 52981,4-Dichlorobenzene $106-46-7$ 300 U 120 300 300 52981,4-Dichlorobenzene $75-71-8$ 250 U 99 250 250 52981,2-Dichloroethane $75-73-34-3$ 200 U 81 200 200 52981,2-Dichloroethane $75-35-4$ 200 U 79 200 200 52981,2-Dichloroethane $156-59-2$ 200 U 79 200 200 5298t,1,2-Dichloroethene $156-59-2$ 200 U 79 200 200 5298trans-1,2-Dichloroethene $156-60-5$ 200 U 79 200 200 5298Dichlorofluoromethane $75-83-4$ 210 U 84 210 210 5298Dichlorofluoromethane $75-83-4$ 210 U 84 210 210 5298Dichlorofluoromethane $75-83-4$ 210 U 84 210 210 5298Dic	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
5298 1,4-Dichlorobenzene 106-46-7 300 U 120 300 300 5298 Dichlorodifluoromethane 75-71-8 250 U 99 250 250 5298 1,1-Dichloroethane 75-34-3 200 U 81 200 200 5298 1,1-Dichloroethane 107-06-2 200 U 81 200 200 5298 1,1-Dichloroethene 156-59-2 200 U 79 200 200 5298 trans-1,2-Dichloroethene 156-59-2 200 U 79 200 200 5298 trans-1,2-Dichloroethene 156-60-5 200 U 79 200 200 5298 trans-1,2-Dichloroethene 156-60-5 200 U 79 200 200 5298 Dichlorofluoromethane 75-43-4 210 U 84 210 210 5298 Dichlorofluoromethane 75-31-4 210 U 84 210 <td></td>	
5298 Dichlorodifluoromethane 75-71-8 250 U 99 250 250 5298 1,1-Dichloroethane 75-34-3 200 U 81 200 200 5298 1,2-Dichloroethane 107-06-2 200 U 81 200 200 5298 1,2-Dichloroethane 75-35-4 200 U 79 200 200 5298 1,1-Dichloroethene 156-59-2 200 U 79 200 200 5298 cis.1,2-Dichloroethene 156-60-5 200 U 79 200 200 5298 trans-1,2-Dichloroethene 156-60-5 200 U 79 200 200 5298 Dichlorofluoromethane 75-43-4 210 U 84 210 200 5298 Dichlorofluoromethane 75-33-4 210 U 84 210 200 5298 Lichlorogropane 78-87-5 230 U 92 230 2	
5298 1,1-Dichloroethane 75-34-3 200 0 81 200 200 5298 1,2-Dichloroethane 107-06-2 200 U 81 200 200 5298 1,1-Dichloroethane 107-06-2 200 U 81 200 200 5298 1,1-Dichloroethene 75-35-4 200 U 79 200 200 5298 cis-1,2-Dichloroethene 156-59-2 200 U 79 200 200 5298 trans-1,2-Dichloroethene 156-60-5 200 U 79 200 200 5298 Dichlorofluoromethane 75-43-4 210 U 84 210 210 5298 Dichloroproprame 78-87-5 230 U 92 230 230	
5298 1,1-Dichloroetheme 75-35-4 200 U 79 200	
5298 cis-1,2-Dichloroethene 156-59-2 200 U 79 200 200 5298 trans-1,2-Dichloroethene 156-60-5 200 U 79 200 200 5298 Dichlorofluoromethane 75-43-4 210 U 84 210 210 5298 1,2-Dichloropropane 78-87-5 230 U 92 230 230	
5298 trans-1,2-Dichlorochene 156-60-5 200 U 79 200 200 5298 Dichlorofluoromethane 75-43-4 210 U 84 210 210 5298 Dichlorofluoromethane 75-43-4 210 U 84 210 210 5298 J.2-Dichloropropane 78-87-5 230 U 92 230 230	1
5298 1,2-Dichloropropane 78-87-5 230 U 92 230 230	1
5298 trans-1,3-Dichloropropene 10061-02-6 230 U 91 230 230	1
5298 1,4-Dioxane 123-91-1 360 U 180 360 360 5298 Ethyl Acetate 141-78-6 180 U 180 180 180	1
5298 Ethyl Acetate 141-78-6 180 U 180 180 180 5298 Ethyl Acrylate 140-88-5 410 U 82 410 410	
5298 Ethyl Methacrylate 97-63-2 470 U 93 470 470	1
5298 Ethylbenzene 100-41-4 300 87 220 220 220 5298 4-Ethylbenzene 622-96-8 250 U 98 250	1
5298 4-Ethyltoluene 622-96-8 250 U 98 250 250 5298 Freon 113 76-13-1 380 U 380 </td <td></td>	
5298 Freon 114 76-14-2 350 U 140 350 350	1
5298 Heptane 142-82-5 200 U 82 200 200	
5298 Hexachlorobutadiene 87-68-3 2,100 U 430 2,100 2,1 5298 Hexachloroethane 67-72-1 970 U 190 970 970	
*-This limit was used in the evaluation of the final result	
IP232 Page 19 of 642 Page 14 of 31	

13177 / RED SNORE INHALATION LL Group # 156948 Project Name: P232D1 Summe Can # 7108 Account # 04694 Project Name: P232D1 Summe Can # 7108 USAFUC/ATPS Submitted: 06/15/2015 11:07 USAFUC/ATPS DPAS-IN VD GPEBS - HQ0490 Hubmitted: 06/16/2015 17:00 B999 E 56T.07 Indianapolis IN 46249-3800 H32D SD6#: IP232-06 Detetion Limit of Limit of Constrained 100-45-3 100 7.0 100 Constrained 100-45-4 100 9.0 420 920 Constrained 100-45-4 100 9.0 420 920 920 Constrained 100-45-4 100 0 920 420 920 920 Constrained 40-44-1 470 920 420 920 <t< th=""><th>40.6</th><th>eurofins</th><th>Lancaster Environm</th><th>Laboratori</th><th>es</th><th></th><th colspan="6">Analysis Report</th></t<>	40.6	eurofins	Lancaster Environm	Laboratori	es		Analysis Report					
Li Group # 156948 Li Group # 156948 Colspan="2">Li Group # 156948 Colspan="2">Li Group # 156948 Colspan="2">Li Group # 156948 Colspan="2">Li Group # 156948 Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2" <th <="" colspan="2" t<="" th=""><th>2425 Ne</th><th>ew Holland Pike, Lanca</th><th>ster, PA 17601 +</th><th>717-656-2300 • Fa</th><th>x: 717-656-2</th><th>681 • ww</th><th>w.LancasterL</th><th>abs.com</th><th></th><th></th></th>	<th>2425 Ne</th> <th>ew Holland Pike, Lanca</th> <th>ster, PA 17601 +</th> <th>717-656-2300 • Fa</th> <th>x: 717-656-2</th> <th>681 • ww</th> <th>w.LancasterL</th> <th>abs.com</th> <th></th> <th></th>		2425 Ne	ew Holland Pike, Lanca	ster, PA 17601 +	717-656-2300 • Fa	x: 717-656-2	681 • ww	w.LancasterL	abs.com		
Li Group # 156948 Li Group # 156948 Account # 04694 POJECT Nume: P232D1 USARE TATALATION USARE TATALATION <td cols<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td>											
Belletter, Belle	mple D		13177 / RE	D SMOKE IN	HALATI		LL Group # 1569487					
DEAS-IN UV DEFESS A D0481 Biologic M (2015 16:3)DEAS-IN UV DEFESS A D0481 Biologic M (2019 16:3)3202SUG4: FD23-06Amount of Malyais MameCal Mumber MaultAmount of Malyais MameCal Mumber MaultMalyais Mathyl AcrylateGal 33-31Amount of Malyais MalyaisGal 33-31Amount of MalyaisGal 30-32-61Malyais Mathyl AcrylateGal 32-64Malyais Mathyl AcrylateGal 32-64Ma	oject	Name: P232D1										
Bubulter Bendrick	llecte	d: 06/15/201	5 11:07									
CAT (no.) Descrition Limit* Detection Limit of Quantitation Column 5228 Howard UP/M3 UP/M3 UP/M3 UP/M3 UP/M3 Column 5228 Howard 31-78-6 820 U 200 820 320 5228 Howard 51-78-6 820 U 200 820 320 5228 Howard 67-63-0 850 U 220 230 220 5239 Howard 67-63-0 850 U 220 230 230 5239 Mathyl Leducylate 67-63-0 850 U 220 230 230 5239 Mathyl Leducylate 80-62-6 410 U 420 430 430 5239 Mathyl L-Bucyl Ether 163+04-4 180 U 72 180 300 5239 Mathyl L-Bucyl Ether 163+0-7 100 J 93 470 470 5239 Propers 110-63+0-7 <	Submitted: 06/16/2015 17:00 Reported: 07/10/2015 16:31						8899 E	56TH ST				
And (m) Analysis Name CAS Number (asy) Linit Detection Quantitation Volatiles in Air (2239) H2A TO-15 ug/a3 ug/a3 ug/a3 ug/a3 ug/a3 05299 H2A TO-15 Ug/a3	2D6	SDG#: IP232-	06									
Notatiles in Air FPA T0-15 ve/mai ve/mai ve/mai ve/mai ve/mai ve/mai 05239 1.4000 100114-3 100 0 0 0.00 100 <td></td> <td>alysis Name</td> <td></td> <td>CAS Number</td> <td>Result</td> <td></td> <td></td> <td></td> <td></td> <td>n DF</td>		alysis Name		CAS Number	Result					n DF		
02999 1 server biology 1 biol biol biol biol biol biol biol biol		s in Air	EPA TO-15				ug/m3	ug/m3	ug/m3			
02238 isocrtane 340-43-1 470 0 93. 770 470 02238 isopropand 67-63-0 850 120 250 350 02398 Methyl Acylate 96-33-3 350 0 700 350 350 02398 Methyl Iodide 74-88-4 290 U 120 290 290 02398 Methyl L-Butyl Ether 1634-04-4 180 U 72 180 180 02398 Methyl L-Spentanome 100-42-5 110 J 93 370 370 02398 Fyrene 100-42-5 110 J 85 210 210 02398 Fyrene 100-42-5 140 140 340 340 02398 Fyrene 100-42-5 140 140 340 340 02398 Fyrene 100-42-5 100 100 200 270 02398 Fulnehyl-Denee 120-62-1 150 140	298 He	xane		110-54-3	180		70	180	180	100		
02299 Inoprepanol 07-04-0 850 120 250 250 02299 Methyl Acrylate 74-88-4 250 V 120 290 290 02298 Methyl Eskryl Bther 1634-044 160 0 92 460 460 02298 Methyl Eskryl Bther 1634-044 160 0 272 460 460 02298 Methyl Eskryl Bther 1634-044 160 0 272 460 460 02298 Octare 11-65-2 10 J 30 470 470 02298 Octare 11-65-2 10 J 30 470 470 02298 Propene 15-07-1 6,900 140 340 340 02298 Tetrachloroethame 632-20-6 340 U 140 340 340 02298 Tetrachloroethame 120-27-0 10 170 170 150 02298 1.1-2-Trichloroethame 1										100		
05299 Methyl Iodide 74-88-4 290 U 120 290 290 05299 Methyl Methacrylate 98-83-3 480 U 97 480 410 05298 Methyl I-Butyl Ether 1634-04-4 180 U 270 480 480 05298 Methyl-2-pentanone 108-10-1 290 U 200 820 820 05298 Methyl-2-pentanone 108-10-1 290 U 200 820 820 05298 Methyl-2-pentanone 108-07-6 100 J 93 470 470 470 05298 Li,1,2-Tetrachloroethane 630-20-6 140 U 140 340 340 05298 Tetrachloroethane 173-18-4 340 U 140 340 340 05298 Tetrachloroethane 77-5 170 U 110 270 270 05298 Tickioroethane 71-55-6 270 U 110 270	298 Is	opropanol		67-63-0		ų				100		
Disps Methyl Methacrylate B0-62-6 110 U B2 110 110 Disps Methyl t-Butyl Ether 1634-04-4 180 U 72 180 180 Disps Methyl t-Sutyl Ether 1634-04-4 180 U 72 180 180 Disps Methyl L-Sutyl Ether 1634-04-4 180 U 72 180 180 Disps Methyl L-Sutyl Ether 1634-04-4 180 U 72 180 180 Disps Methyl L-Sentanone 110-61-2 20 639 0 140 340 340 Disps 1,1,2-Tetrachloroethane 600-20-6 340 U 140 340 340 340 Disps 1,2,2-Tetrachloroethane 100-42-1 1,500 110 270 270 Disps 1,2,4-Tetrachloroethane 79-0-5 270 U 110 270 270 Disps 1,2,4-Tetrachloroethane 79-0-5 270 U						-				100		
02298 Alpha Methyl Styrene 99-83-9 480 0 97 480 480 02298 4-Methyl S-Buryl Ether 103-10-1 820 0 970 820 820 02298 4-Methyl S-Pentanone 108-10-1 820 0 920 820 820 02298 Octame 111-65-9 100 33 470 470 02298 Methyl-ac Chloride 78-05-2 550 69 330 340 02298 Methyl-ac Chloride 78-05-2 510 J 85 210 210 02298 Fetrahloroethane 73-34-5 340 U 140 340 340 05298 Fetrahloroethane 73-34-5 240 U 140 340 340 05298 Fitchloroethane 79-9 150 U 59 150 270 05298 1.2,4-Trichloroethane 79-0.5 270 U 110 270 270 02298			~						CCC	100		
65298 Methyl t-Butyl Ether 1634-04-4 180 U 72 180 180 65298 Methyl-2-pentanone 108-10-1 820 U 200 820 820 820 65298 Methylene Chloride 75-09-2 550 69 350 350 65298 Octame 111-66-9 110 J 35 210 200 65298 Forpene 115-07-1 6,900 170 860 860 65298 J., 2-Tetrachloroethane 630-20-6 340 U 140 340 340 05298 Tetrachloroethane 130-39 150 550 150 340 340 05298 Tetrachloroethane 130-89-1 150 750 150 350 05298 J., 1-Trichloroethane 79-00-5 270 U 110 270 270 05298 J., 2-Trichloroethane 75-63-4 280 U 110 280 250 0529										100		
02298 Methylene Chloride 75-09-2 550 69 350 350 350 02298 Octame 111-65-9 10 J 93 470 470 05298 Propene 115-07-1 6,900 170 860 860 05298 Styrene 100-42-5 110 J 85 210 340 05298 Tetrachloroethame 127-18-4 340 U 140 340 340 05298 Tetrachloroethame 127-18-4 340 U 140 340 340 05298 Tetrachloroethame 127-18-4 340 U 140 340 340 05298 Tetrachloroethame 710 75 190 190 050 05298 Tetrachlorobenzene 79-01-6 270 U 110 270 270 05298 Tetrholorobometham 79-01-6 270 U 110 280 220 05298 1,3.5-77	298 Me	thyl t-Butyl Eth	er					180		100		
02298 Octame 111-65-9 110 J 93 470 470 02298 Expense 100-42-5 110 J 850 210 210 02298 Styreme 100-42-5 110 J 850 210 210 02298 1,1,2,2-Tetrachloroethame 79-34-5 340 U 140 340 340 02298 Tetrahydrofuran 109-92-9 150 U 59 150 150 02298 Tetrahydrofuran 108-92-9 150 U 59 190 190 02298 1,1-Trithloroethame 120-82-1 1,500 U 370 270 02298 1,1,2-Trithloroethame 19-00-5 270 U 110 270 270 02298 1,1,2-Trithloroethame 19-00-5 270 U 110 270 270 02298 1,2,4-Trimethylenzene 16-6-2 200 U 100 300 320 320 3						U				100		
01228 Propene 115-07-1 6,900 170 s60 s60 00289 Styreme 100-42-5 110 J 355 210 340 00298 Styreme 100-42-5 140 J 40 340 340 05298 1,1,2-7etrachloroethame 127-18-4 340 U 140 340 340 05298 Tetrachloroethame 127-18-4 340 U 140 340 340 05298 Tetrachloroethame 127-18-4 340 U 140 340 340 05298 Tetrachlorobenzene 108-88-3 710 75 190 190 050 05298 1,1.1-Trichlorobenzene 79-01-6 270 U 110 270 270 05298 1,2.4-Trinethylbenzene 96-61-6 220 J 98 250 250 05298 1,3.5-Trinethylbenzene 108-67-8 050 U 98 250 250						J				100		
05298 1,1,2-7etrachloroethane 630-20-6 340 U 140 340 340 05298 1,1,2-7etrachloroethane 17.18-4 340 U 140 340 340 05298 Tetrachloroethane 127.18-4 340 U 140 340 340 05298 Tetrachloroethane 108-88-3 710 55 180 190 05298 1,1-7tichloroethane 71-55-6 270 U 110 270 270 05298 1,1.1-7tichloroethane 79-00-5 270 U 110 270 270 05298 1,2.3-Trichloroethane 75-63-4 280 U 110 280 280 05298 1,2.4-Trimethylenzene 95-63-6 220 J 98 280 280 280 05288 1,3.5-Trimethylenzene 108-0-5-8 250 U 98 280 280 05288 Vinyl Acetate 108-0-5-8 250 U 130 13										500		
05298 1,1,2,2-Tetrachloroethane 79-34-5 340 U 140 340 340 05298 Tetrachloroethane 103-99-9 150 150 150 150 05298 Tetrachloroethane 103-99-9 150 59 150 150 05298 1,1-Trichloroethane 110-57.6 270 U 110 270 270 05298 1,1-Trichloroethane 79-0.5 270 U 110 270 270 05298 1,2-Trichloroethane 79-0.5 270 U 110 270 270 05298 1,2-4-Trichloroethane 79-0.5 270 U 110 280 280 05298 1,3-1-Trichloroethane 75-0.4 200 U 300 300 05298 1,3-1-Trichloroethane 96-18-4 300 U 120 300 300 05298 1,3-5-Trimethylbenzene 108-67-8 250 U 98 250 250 550 5										100		
05298 Tetrachlorosthene 127-18-4 340 U 140 340 340 340 340 05298 Tetrachlorosthene 108-88-3 710 59 190 150 150 05298 Tetrachlorosthene 110-56 270 U 110 270 270 05298 1,1,2-Trichlorosthane 71-56 270 U 110 270 270 05298 1,1,2-Trichlorosthane 79-00-5 270 U 110 270 270 05298 Trichlorosthane 79-60-5 270 U 110 280 280 05298 Tichlorosthane 79-69-4 260 U 110 280 280 05298 1,2,4-Trimethylbenzene 98-63-6 200 J 98 250 250 05298 Vinyl Chloride 75-61-4 130 U 130 130 05298 Myl Chloride 75-76 270 S1 130 130 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100</td>										100		
05298 Tetrahydrofuran 108-99-9 150 U 55 150 150 05298 Toluane 108-88-3 710 75 190 190 05298 1,1.4 Trichlorobethane 71-95-6 270 U 110 270 270 05298 1,1.2 Trichlorobethane 79-00-5 270 U 110 270 270 05298 Trichlorobethane 79-01-6 270 U 110 280 280 05298 1.4.3 Trichlorofultoromethane 75-63-4 280						-				100		
03298 1,2,4-Trichlorobezene 120-82-1 1,500 U 370 1,500 1,500 05298 1,1,2-Trichlorobethane 73-55-6 270 U 110 270 270 05298 1,1,2-Trichlorobethane 79-00-5 270 U 110 270 270 05298 Trichlorobethane 79-00-5 270 U 110 270 270 05298 Trichlorobethane 79-00-5 270 U 110 270 270 05298 1,2,3-Trichloropropane 96-18-4 300 U 120 300 300 05298 1,3,5-Trimethylbenzene 108-67-8 250 U 98 250 250 05298 Vinyl Acetate 108-65-4 350 0 130 130 130 05298 Vinyl Acetate 106-65-4 350 U 87 430 430 05298 Vinyl Acetate 95-61-6 270 87 220 220 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100</td>										100		
05288 1,1,1-Trichloroethane 71-55-6 270 U 110 270 270 05288 Trichloroethane 79-01-6 270 U 110 270 270 05288 Trichloroethane 79-01-6 270 U 110 270 270 05288 Trichloroethane 79-01-6 270 U 110 280 280 05288 Trichloroethane 75-63-4 280 U 110 280 280 05288 1,3-5-Trimethylbenzene 95-63-6 220 J 98 250 250 05288 Vinyl Actate 108-05-4 350 U 98 250 250 05288 Myl Chloride 75-01-4 130 U 51 130 130 05298 myl Chloride 75-01-4 130 U 51 130 130 05298 myl Chloride 75-01-4 130 U 51 130 130	298 To	luene							190	100		
05298 1,1,2-Trichloroethane 79-00-5 270 U 110 270 270 05298 Trichloroethane 79-01-5 270 U 110 270 270 05298 Trichloroefluoromethane 75-63-4 280 U 110 280 280 05298 1,2,3-Trichloropropane 96-18-4 300 U 120 300 300 05298 1,3,5-Trimethylbenzene 95-63-6 220 J 98 250 250 05298 Vinyl Acetate 108-67-6 250 U 98 250 350 05298 Myl Acetate 108-67-6 250 U 98 220 250 05298 Myl Acetate 108-67-6 270 87 230 330 05298 Myl Acetate 75-61-4 130 U 51 330 330 05298 Myl-Stene 160- Secontal Sample Comments Analysis Analysis Analysis Analysis <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100</td>										100		
05298 Trichlorothene 79-01-6 270 U 110 270 270 05298 Trichlorofluoromethane 75-63-4 280 U 110 280 280 05298 1,2,3-Trichloropropane 95-63-6 220 J 98 250 250 05298 1,2,4-Trimethylbenzene 108-67-6 250 U 98 250 250 05298 1,3,5-Trimethylbenzene 108-67-6 250 U 98 250 250 05298 Vinyl Acetate 108-67-6 250 U 98 250 350 05298 m/p-Kylene 179601-23-1 1,000 87 430 430 300 05298 o-kylene 35-47-6 270 87 220 220 220 Reporting limits were raised due to interference from the sample matrix. E E E E E E E E E E E E E E E E <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100</td>										100		
05288 1,2,3-Trimethylbenzene 96-18-4 300 U 120 300 300 05288 1,3,5-Trimethylbenzene 95-63-6 220 J 98 250 250 05288 1,3,5-Trimethylbenzene 108-67-8 250 U 98 250 250 05288 Vinyl Acetate 108-05-4 350 U 98 250 350 05288 Vinyl Acetate 108-05-4 350 U 180 350 350 05288 Myl Acetate 108-05-4 100 U 51 130 130 05288 Myl Chloride 75-01-4 130 U 51 130 130 05298 o-Xylene 95-47-6 270 87 220 220 Reporting limits were raised due to interference from the sample matrix. General Sample Comments All 0C is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples. Date and Time Pate and Time Pate and Time 10.5 10 154330BA 07/09/2015 01	298 Tr	ichloroethene		79-01-6	270	U	110		270	100		
05298 1,2,4-Trimethylbenzene 95-63-6 220 J 98 250 250 05298 1,3,5-Trimethylbenzene 108-67-8 250 0 98 250 250 05298 Vinyl Acetate 108-05-4 350 0 180 350 350 05298 Vinyl Acetate 108-05-4 350 0 180 350 350 05298 Vinyl Acetate 175-01-2 1.0 0 87 430 430 05298 o-Xylene 95-47-6 270 87 220 220 Reporting limits were raised due to interference from the sample matrix. General Sample Comments All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples. Analysis Analysi Analysi Analysi Analysi Dis 5238 10 15 VOA Ext. List EPA TO-15 1 D1518930BA 07/09/2015 01:12 Jacob E Bailey 10 15298 TO 15 VOA Ext. List EPA TO-15 1										100		
108-67-6 250 0 98 250 250 108-67-6 250 0 98 250 250 108-67-4 350 0 180 350 350 108-05-4 350 0 180 350 350 108-05-4 350 0 180 350 350 105298 Myl Acetate 179601-23-1 1,000 87 430 430 15298 or Aylene 35-47-6 270 87 220 220 Reporting limits were raised due to interference from the sample matrix. 0 200 200 200 General Sample Comments All QC is compliant unless otherwise noted. Please refer to the Quality 200 200 200 Control Summary for overall QC performance data and associated samples. 200 200 200 S298 T0 15 VOA Ext. List EPA TO-15 1 D1518930BA 07/09/2015 001:1 Jacob E Bailey 10 *-This limit was used in the evaluation of the fin						-				100		
05288 vinyl Chloride 75-01-4 130 130 130 05298 m/p-Xylene 17501-23-1 1,00 87 430 430 05298 o-Xylene 95-47-6 270 87 220 220 Reporting limits were raised due to interference from the sample matrix. General Sample Comments 20 20 All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples. Analysis Record Kar Analysis Name Method Trial# Batch# Analysis Analyst Dil 5298 TO 15 VOA Ext. List EPA TO-15 1 D1518930BA 07/09/2015 00:12 Jacob E Bailey 10 5298 TO 15 VOA Ext. List EPA TO-15 1 D1518930BA 07/09/2015 11:24 Jacob E Bailey 50 *-This limit was used in the evaluation of the final result IP232 Page 20 of 642										100		
05298 m/p ⁻ Xylene 179601-23-1 1,000 87 430 430 05298 o-Xylene 95-47-6 270 87 220 220 Reporting limits were raised due to interference from the sample matrix. General Sample Comments All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples. Laboratory Sample Analysis Record Trial# Eatch# Analysis Analyst Dil Date and Time Fa IDIS10830BA 07/09/2015 01:2 Jacob E Bailey 10 *-This limit was used in the evaluation of the final result IP232 Page 20 of 642										100		
05298 o-Xylene 95-47-6 270 87 220 220 Reporting limits were raised due to interference from the sample matrix. General Sample Comments All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples. Laboratory Sample Analysis Record Date and Time Analysis Name Method Trial# Batch# Analysis Analyst Dil 15298 TO 15 VOA Ext. List EPA TO-15 1 D1518930BA 07/09/2015 01:12 Jacob E Bailey 10 15298 TO 15 VOA Ext. List EPA TO-15 1 D1518930BA 07/09/2015 11:24 Jacob E Bailey 50 *-This limit was used in the evaluation of the final result IP232 Page 20 of 642						U				100		
General Sample Comments All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples. Laboratory Sample Analysis Record Date and Time Pai Date and Time Pai S298 TO 15 VOA Ext. List EPA TO-15 1 D1518930BA O7/09/2015 00:12 Jacob E Bailey 10 *-This limit was used in the evaluation of the final result IP232 Page 20 of 642										100		
All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples. Laboratory Sample Analysis Record Method Trial# Batch# Analysis Analysi Dil Date and Time Fa 15298 TO 15 VOA Ext. List EPA TO-15 1 D1518930BA 07/09/2015 00:12 Jacob E Bailey 10 15298 TO 15 VOA Ext. List EPA TO-15 1 D1518930BA 07/09/2015 11:24 Jacob E Bailey 50 *-This limit was used in the evaluation of the final result IP232 Page 20 of 642	Reportin	ng limits were r	aised due to	interference	a from th	e sampl	e matrix.					
CAT Analysis Name Method Trial# Batch# Analysis Analyst Dil No. D5298 TO 15 VOA Ext. List EPA TO-15 1 D1518930BA 07/09/2015 00:12 Jacob E Bailey 10 D5298 TO 15 VOA Ext. List EPA TO-15 1 D1518930BA 07/09/2015 11:24 Jacob E Bailey 50 *-This limit was used in the evaluation of the final result IP232 Page 20 of 642				noted, Pleas mance data ar	se refer 1d associ	to the ated sa	Quality mples.					
No. Date and Time Pa Date And	Ana	lysis Name	Metho			12.7			Analyst	Dilution		
05298 TO 15 VOA Ext. List EPA TO-15 1 D1518930BA 07/09/2015 11:24 Jacob E Bailey 50 *-This limit was used in the evaluation of the final result IP232 Page 20 of 642								Date and Time		Factor		
*-This limit was used in the evaluation of the final result IP232 Page 20 of 642										100		
IP232 Page 20 of 642							27.5.55		and a second			
IP232 Page 20 of 642			-	\$ 11.1. C	ait sum	d in the s	valuation of	that final same				
1232 Page 20 01 642				- i nis hr								
Page 15 of 31					IP232 P	Page age 15	20 Of 62 of 31	12				
Report ID: 13177 CERTIFICATE OF ANALYSIS Page 23	Report IF	D: 13177			EDTIEN	ATE		1010	D	ana 23 of 24		
- 이상 방송 사람은 사람이 있는 것은 것은 것을 알려야 한다. 것은 것은 것을 알려야 한다. 이것은 것을 같이 하는 것을 알려야 한다. 이것은 것을 않아야 한다. 이것은 것을 알려야 한다. 이것은 이것은 것을 알려야 한다. 이것은 이 있는 것을 알려야 한다. 이 이 있는 것을 알려야 한다. 이 이 있는 것을 알려야 한다. 이 이 이 이 이 있는 것을 알려야 한다. 이 이 이 있는 것을 같이 같이 같이 같이 같이 같이 같이 같이 같다. 이 이 있는 것을 같이										age 23 of 34 015 11:46:30 AM		

		Lancaster Environme	Laboratori antal	es		A	nalys	is Repo	ort
24	25 New Holland Pike, Lanca	ster, PA 17601 + 3	717-656-2300 · F	ax: 717-656-26	581 • WW	w.LancasterLabs.com	n		
	4	131770007 13177 / RE P232D1 Sum	D SMOKE II	HALATIC			LI	Sample # AQ 79 Group # 15694 count # 04694	87
1.1	ct Name: P232D1								
olle	cted: 06/15/201	5 12:27				USAPHC/AIP			
ubmit	ted: 06/16/201	5 17.00				8899 E 56T	GFEBS - HQ04:	90	
	ted: 07/10/201						is IN 46249-3	300	
32D7	SDG#: IP232-	07							
AT	At the train from					Detection	Limit of	Limit of	2
ο.	Analysis Name		CAS Number	Result		Limit*	Detection	Quantitation	DF
	iles in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3	
5298 5298	Acetone Acetonitrile		67-64-1 75-05-8	13,000 1,000		590	2,400	2,400	500 100
5298	Acrolein		107-02-8	7,000		84 570	170	570	500
5298	Acrylonitrile		107-13-1	220	υ	110	220	220	100
5298	Benzene		71-43-2	760	U	64	160	160	100
5298 5298	Benzyl Chloride Bromobenzene		100-44-7	260	U	260 130	260 320	260 320	100
5298	Bromodichlorometha	ine	75-27-4	340	U	130	340	340	100
	Bromoform		75-25-2	520	υ	210	520	520	100
5298 5298	Bromomethane 1,3-Butadiene		74-83-9	190	UU	78	190	190	100
	1,3-Butadiene 2-Butanone		78-93-3	1,300	U	150	590	110 590	100
	tert-Butyl Alcohol		75-65-0	300	σ	150	300	300	100
	Carbon Disulfide		75-15-0	310	U	160	310	310	100
	Carbon Tetrachlori	.de	56-23-5	310 230	U U	130	310	310	100
	Chlorobenzene Chlorodifluorometh	ane	108-90-7 75-45-6	180	U	92 71	230 180	230 180	100
	Chloroethane		75-00-3	130	Ŭ	53	130	130	100
	Chloroform		67-66-3	240	U	98	240	240	100
5298 5298	Chloromethane 3-Chloropropene		74-87-3	200	J U	41	210 160	210 160	100
5298	Cumene		98-82-8	490	U	98	490	490	100
5298	Cyclohexane		110-82-7	170	υ	69	170	170	100
5298 5298	Dibromochlorometha 1,2-Dibromoethane	ine	124-48-1 106-93-4	430 380	U U	170	430 380	430 380	100
5298	Dibromomethane		74-95-3	360	U	140	360	360	100
5298	1,2-Dichlorobenzer		95-50-1	300	U	120	300	300	100
5298	1,3-Dichlorobenzer		541-73-1	300	σ	120	300	300	100
5298 5298	1,4-Dichlorobenzen Dichlorodifluorome		106-46-7 75-71-8	300 250	U U	120 99	300 250	300 250	100
5298	1,1-Dichloroethane		75-34-3	200	U	81	200	200	100
5298	1,2-Dichloroethane		107-06-2	200	U	81	200	200	100
5298 5298	1,1-Dichloroethene cis-1,2-Dichloroet		75-35-4	200	UU	79 79	200	200	100
5298	trans-1,2-Dichlord	ethene	156-60-5	200	U	79	200	200	100
5298	Dichlorofluorometh	lane	75-43-4	210	U	84	210	210	100
5298 5298	1,2-Dichloropropan cis-1,3-Dichloropr		78-87-5	230	U	92 91	230 230	230 230	100
5298	trans-1,3-Dichloro		10061-01-5	230	U	91	230	230	100
5298	1,4-Dioxane		123-91-1	360	U	180	360	360	100
5298	Ethyl Acetate		141-78-6	180	U	180	180	180	100
5298 5298	Ethyl Acrylate Ethyl Methacrylate		140-88-5 97-63-2	410 470	U U	82 93	410 470	410 470	100
5298	Ethylbenzene		100-41-4	250		87	220	220	100
5298	4-Ethyltoluene		622-96-8	250	υ	98	250	250	100
5298 5298	Freon 113 Freon 114		76-13-1 76-14-2	380	U U	380 140	380	380 350	100
5298	Freon 114 Heptane		142-82-5	200	UU	140 82	350 200	200	100
5298	Hexachlorobutadien Hexachloroethane	le	87-68-3	2,100	υ	430	2,100	2,100	100
5298	nexachioroethane		67-72-1 *-This li	970 nit was used	U l in the e	190 valuation of the fin	970. al result	970	100
			111011	IP232		21 of 642			

2425 New Holland Plke, Lanc	aster, PA 17601 • 1	717-656-2300 • Fi	ax: 717-656-3	2681 • www	w.LancasterLa	bs.com		
	13177 / RE P232D1 Sum	D SMOKE II	TALATI				LL Sample # AQ LL Group # 156 Account # 046	59487
roject Name: P232D1						-		
ollected: 06/15/201 ubmitted: 06/16/201 eported: 07/10/201	5 17:00				8899 E	/AIPH N VP GFEBS - HQ 56TH ST apolis IN 46249		
32D7 SDG#: 1P232-	07							
TAT Analysis Name		CAS Number	Result		Detection Limit*	n Limit of Detection	Limit of Quantitation	DF
olatiles in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3	
5298 Hexane		110-54-3	180	σ	70	180	180	100
5298 2-Hexanone 5298 Isooctane		591-78-6 540-84-1	820 470	U	200	820 470	820 470	100
5298 Isopropanol		67-63-0	970	ų	120	250	250	100
5298 Methyl Acrylate		96-33-3	350	U	70	350	350	100
5298 Methyl Iodide 5298 Methyl Methacryla	te	74-88-4 80-62-6	290 410	U	120 82	290	290 410	100
5298 Alpha Methyl Styr		98-83-9	480	U	97	480	480	100
5298 Methyl t-Butyl Et	her	1634-04-4	180	υ	72	180	180	100
5298 4-Methyl-2-pentan 5298 Methylene Chlorid		108-10-1 75-09-2	820 570	U	200	820	820 350	100
5298 Octane	Ÿ.	111-65-9	470	U.	93	470	470	100
5298 Propene		115-07-1	1,200		34	170	170	100
5298 Styrene 5298 1,1,1,2-Tetrachlo:	roethane	100-42-5 630-20-6	120	JU	85 140	210 340	210	100
5298 1,1,2,2-Tetrachlo:	roethane	79-34-5	340	υ	140	340	340	100
5298 Tetrachloroethene 5298 Tetrahydrofuran		127-18-4 109-99-9	340 150	UU	140	340	340	100
5298 Toluene		108-88-3	670	U.	75	190	150	100
5298 1,2,4-Trichlorober		120-82-1	1,500	U	370	1,500	1,500	100
5298 1,1,1-Trichloroet 5298 1,1,2-Trichloroet		71-55-6 79-00-5	270 270	U	110	270	270 270	100
5298 Trichloroethene		79-01-6	270	U	110	270	270	100
5298 Trichlorofluorome 5298 1,2,3-Trichloropr		75-69-4 96-18-4	280	UU	110 120	280	280 300	100
5298 1,2,4-Trimethylbe		95-63-6	230	J	98	250	250	100
5298 1,3,5-Trimethylber		108-67-8	250	U	98	250	250	100
5298 Vinyl Acetate 5298 Vinyl Chloride		108-05-4 75-01-4	350 130	U	180	350 130	350 130	100
5298 m/p-Xylene		179601-23-1	800		87	430	430	100
5298 o-Xylene Reporting limits were a	caised due to	95-47-6 interference	240 e from th	ie sampl	87 e matrix.	220	220	100
			General	Sampl	Le Commer	nts		
ll QC is compliant unles ontrol Summary for overa	ss otherwise m all QC perform	noted. Plea	se refer	to the	Quality			
	1.0	Labora	atory S	ample	Analysia	Record		
AT Analysis Name o.	Metho	fethod		Batch		Analysis Date and Time	Analyst Dilut: Facto	
298 TO 15 VOA Ext. List 298 TO 15 VOA Ext. List		EPA TO-15 EPA TO-15		D15189 D15189		07/09/2015 01:00 07/09/2015 12:07	Jacob E Bailey Jacob E Bailey	100
			1		****C01		and a minut	
	-	*-This li	mit was use	d in the e	valuation of t	he final result		
				Page age 17	22 of 64 of 31	2		
Report ID: 13177					OF ANALY	210	-	age 25 of 34

10	eurofins	Lancaster	Laboratori	es		A	nalys	is Repo	ort
2425	New Holland Pike, Lanca	ester, PA 17601 • 3	717-656-2300 • F	ax: 717-656-	2681 • W	ww.LancasterLabs.com	m		
		13177 / RE P232D1 Sum	D SMOKE II	NHALATI			LI	Sample # AQ 79 Group # 15694 count # 04694	187
	Name: P232D1								
Submitte	ed: 06/15/201 ed: 06/16/201 d: 07/10/201	5 17:00				8899 E 56T	GFEBS - HQ04		
232D8	SDG#: IP232-	08							
CAT					-	Detection Limit*	Limit of Detection	Limit of Quantitation	2
	nalysis Name		CAS Number	Result					DF
Volatil 05298 A	es in Air	EPA TO-15	67-64-1	ug/m3 6,000		ug/m3 300	ug/m3 1,200	ug/m3 1,200	250
	cetone cetonitrile		67-64-1 75-05-8	6,000		300	1,200	1,200	250
05298 A	crolein		107-02-8	3,500	÷.	110	110	110	100
05298 A	crylonitrile		107-13-1 71-43-2	14 200	Д	11 6.4	22 16	22 16	10
	enzene enzyl Chloride		100-44-7	260	υ	6.4 26	26	26	10
05298 B	romobenzene		108-86-1	32	υ	13	32	32	10
	romodichlorometha	ane	75-27-4	3.4	U	13	34	34	10
05298 B	romoform romomethane		75-25-2	52 19	บ บ	21 7.8	52 19	52 19	10
05298 1	,3-Butadiene		106-99-0	80		8.8	11	19	10
05298 2	-Butanone		78-93-3	370		15	59	59	10
	ert-Butyl Alcohol		75-65-0	30	U U	15	30	30	10
	arbon Disulfide arbon Tetrachlor:		75-15-0	31	U	16 13	31 31	31 31	10
	hlorobenzene	7	108-90-7	23	U	9.2	23	23	10
05298 C	hlorodifluorometh	nane	75-45-6	18	υ	7.1	18	18	10
	hloroethane		75-00-3	13	U	5.3	13	13	10
	hloroform hloromethane		67-66-3 74-87-3	17	J	9.8	24	24 21	10
	-Chloropropene		107-05-1	16	U	6.3	16	16	10
05298 C	umene		98-82-8	49	υ	9.8	49	4.9	10
	yclohexane ibromochlorometha	The	110-82-7 124-48-1	17 43	UU	6.9 17	17 43	17	10
	,2-Dibromoethane		106-93-4	38	U	15	38	38	10
05298 D	ibromomethane		74-95-3	36	U	14	3.6	36	10
	,2-Dichlorobenzer		95-50-1	30	U	12	30	30	10
	,3-Dichlorobenzer ,4-Dichlorobenzer		541-73-1 106-46-7	30	U U	12 12	30 30	30 30	10
	ichlorodífluorome		75-71-8	25	U	9.9	25	25	10
	,1-Dichloroethane		75-34-3	20	U	8.1	20	20	10
	,2-Dichloroethane		107-06-2	20	UUU	8.1	20 20	20 20	10
	is-1,2-Dichloroet		156-59-2	20	U	7.9	20	20	10
05298 t	rans-1,2-Dichlord	pethene	156-60-5	20	U	7.9	2.0	20	10
	ichlorofluorometh		75-43-4	21	U U	8,4	21	21	10
	,2-Dichloropropar is-1,3-Dichlorop		78-87-5 10061-01-5	23	U	9.2	23	23 23	10
05298 t	rans-1,3-Dichlord		10061-02-6	23	U	9.1	23	23	10
05298 1	,4-Dioxane		123-91-1	36	υ	18	36	36	10
	thyl Acetate thyl Acrylate		141-78-6 140-88-5	1B 41	u u	18 8.2	18 41	18	10
	thyl Methacrylate	2	97-63-2	47	U	9.3	47	47	10
05298 E	thylbenzene		100-41-4	56		8.7	22	22	10
	-Ethyltoluene		622-96-8	25 38	U U	9.8	25	25	10
	reon 113 reon 114		76-13-1 76-14-2	38	U	38 14	38 35	38 35	10
	eptane		142-82-5	20	U	8.2	20	20	10
05298 H	exachlorobutadier	ne	87-68-3	210	U	43	210	210	10
05298 H	exachloroethane		67-72-1 * 1752-1	97	U Lin den	19 malanting of the Gr	97	97	10
			-1 ms h	IP232	Pag	evaluation of the fin e 23 of 642 8 of 31	ar result		
Dennet	ID: 12177								
	ID: 13177 Serial #: 76326					OF ANALYSIS eproduced, except in fu			26 of 34

🄅 eurofins	Lancaster	Laboratori	es			Analysis Report					
2425 New Holland Pike, Lanc	ester, PA 17601 + 7	17-656-2300 · Fe	x: 717-656-2	2681 • ww	w.LancasterL	abs.com	2. S. T. Y.				
Sample Description:	131770008 13177 / RE P232D1 Sum	D SMOKE IN	HALATI		LL Sample # AQ 79308 LL Group # 1569487 Account # 04694						
roject Name: P232D1											
Collected: 06/15/201	5 13:27				USAPHC						
Submitted: 06/16/201 Reported: 07/10/201					8899 E	N VP GFEBS - HQ 56TH ST apolis IN 46249					
232D8 SDG#: IP232-	-08										
CAT No. Analysis Name		CAS Number	Result		Detectio Limit*	n Limit of Detection	Limit of Quantitation	DF			
Volatiles in Air	EPA TO-15		ug/m3		ug/m3	ug/m3	ug/m3				
05298 Hexane	-010010010	110-54-3	18	U	7.0	18	18	10			
05298 2-Hexanone 05298 Isooctane		591-78-6 540-84-1	82 47	U U	20	82. 47	82 47	10			
05298 Isopropanol		67-63-0	25	U	12	25	2.5	10			
05298 Methyl Acrylate 05298 Methyl Iodide		96-33-3 74-88-4	35 29	U U	7.0	35	35	10			
05298 Methyl Methacryla		80-62-6	41	U	8.2	41	41	10			
05298 Alpha Methyl Styr	ene	98-83-9	48	U U	9.7	48	48	10			
05298 Methyl t-Butyl Et 05298 4-Methyl-2-pentan		1634-04-4	18	U	7.2	18 82	18	10			
05298 Methylene Chlorid	e	75-09-2	27	J	6.9	35	35	10			
05298 Octane 05298 Propene		111-65-9 115-07-1	47	U	9.3	47	47	10 100			
05298 Propene 05298 Styrene		100-42-5	2,500	J.	34 8.5	170	170 21	100			
05298 1,1,1,2-Tetrachlo	roethane	630-20-6	34	υ	14	3.4	34	10			
05298 1,1,2,2-Tetrachlo 05298 Tetrachloroethene		79-34-5 127-18-4	34 34	U	14 14	34 34	34 34	10			
05298 Tetrahydrofuran		109-99-9	15	U	14	34 15	15	10			
05298 Toluene		108-88-3	90		7.5	19	19	10			
05298 1,2,4-Trichlorobe 05298 1,1,1-Trichloroet		120-82-1 71-55-6	150 27	U	37	150	150 27	10			
05298 1,1,2-Trichloroet	hane	79-00-5	27	υ	11	27	27	10			
05298 Trichloroethene		79-01-6	27	U	11	27	27	10			
05298 Trichlorofluorome 05298 1,2,3-Trichloropr		75-69-4 96-18-4	28	UU	11 12	28 30	28 30	10			
05298 1,2,4-Trimethylbe	nzene	95-63-6	25	U	9.8	25	25	10			
05298 1,3,5-Trimethylbe 05298 Vinyl Acetate	nzene	108-67-8	25	U U	9.8 18	25	25 35	10			
05298 Vinyl Acetate 05298 Vinyl Chloride		75-01-4	13	U	5.1	13	13	10			
05298 m/p-Xylene		179601-23-1			8.7	43	43	10			
05298 o-Xylene Reporting limits were :	raised due to	95-47-6 interference	40 e from th	e sampl	8.7 e matrix.	22	22	10			
All QC is compliant unle Control Summary for over	ss otherwise r all QC perform	oted. Pleas	se refer	to the	e Comme Quality mples.	nts					
			atory S	ample	Analysi	s Record	- C				
CAT Analysis Name	Metho	d	Trial#	Batch	ŧ.	Analysis	Analyst	Dilution			
Io. 15298 TO 15 VOA Ext. Lis	t EPA T		1	D15189	30BA	Date and Time 07/09/2015 01:43	Jacob E Bailey	Factor 10			
5298 TO 15 VOA Ext. Lis	t EPA T	0-15	1	D15185	30BB	07/09/2015 19:52	Jacob E Bailey	100 250			
5298 TO 15 VOA Ext. Lie	SPA T	0-10	4	D15189		07/10/2015 11:10	Jacob E Bailey	200			
		*-This lin	nit was use	d in the e	valuation of	he final result					
				Page age 19	24 of 64 of 31	2					
Report ID: 13177		(ERTIFIC	CATE C	FANALY	SIS	Pa	ige 27 of 34			

🔅 eurofins	Lancaster Environm		tories			Ana	aly	sis	Re	po	rt
2425 New Holland Pike, Lanc	aster, PA 17601 •	717-656-230	0 • Fax: 717-65	6-2681 • www	v.LancasterLa	bs.com	~				
	Qual	ity C	Contro:	l Sum	nary						
Client Name: USA Reported: 07/10/				G	roup Nur	nber: 15	59487				
Matrix QC may not be situations, to demon specified in the met	strate preci	insuffi sion and	cient samp accuracy	le or sit at a batc	e-specifi h level,	c QC sampl a LCS/LCSD	es were was pe	not su	ibmitted. 1, unless o	In the therwis	se se
All Inorganic Initia otherwise noted on t			ntinuing C	alibratio	n Blanks	met accept	able me	thod ci	riteria unl	ess	
	Lal	orato	ry Com	liance	a Qual:	ity Con	trol				
Applygig North		Blank	Blank DL**	Blank LOD	Blank LOQ	Report	LCS %REC	LCSD	LCS/LCSD	ppp	RI
Analysis Name Batch number: D15189	3083	Sample	number(s);	and so as	and a state of the state	Units	SREC	SREC	<u>Limits</u>	RPD	Ma
Acetone	JUDA	2.4 U	1.2	2.4	2.4	ug/m3	91	82	58-128	10	25
Acetonitrile		1.7 U	0.84	1.7	1.7	ug/m3					
Acrolein		1,1 U	1.1	1,1	1,1	ug/m3	122	108	62-126	12	25
Acrylonitrile		2.2 U	1.1	2.2	2.2	ug/m3					
Benzene		1.6 U	0.64	1.6	1.6	ug/m3	91	85	69-119	7	25
Benzyl Chloride		2.6 U	2.6	2.6	2.6	ug/m3	114	101	50-147	13	25
Bromobenzene		3.2 U	1.3	3.2	3.2	ug/m3					
Bromodichloromethane		3.4 U	1.3	3.4	3.4	ug/m3	90	83	72-128	8	25
Bromoform		5.2 U	2.1	5.2	5.2	ug/m3	96	85	66-139	13	25
Bromomethane		1.9 U	0,78	1.9	1.9	ug/m3	86	82	63-134	4	25
1,3-Butadiene		1.1 U	0.44	1.1	1.1	ug/m3	8.7	83	66-134	4	25
2-Butanone		2.9 U	1.5	2.9	2.9	ug/m3	95	82	67-130	15	25
tert-Butyl Alcohol		3.0 U	1.5	3.0	3.0	ug/m3					
Carbon Disulfide		3.1 U	1.6	3.1	3.1	ug/m3	81	81	57-134	1	25
Carbon Tetrachloride		3.1 U	1.3	3.1	3.1	ug/m3	97	92	68-132	4	25
Chlorobenzene		2.3 U	0.92	2.3	2.3	ug/m3	86	77	70-119	11	25
Chlorodifluoromethan	e	1.8 U	0,71	1.8	1.8	ug/m3					
Chloroethane		1.3 U	0.53	1.3	1.3	ug/m3	85	79	63-127	7	25
Chloroform		2.4 U	0.98	2.4	2.4	ug/m3	92	86	68-123	7	25
Chloromethane		2.1 U	0.41	2.1	2.1	ug/m3	69	63	59-132	8	25
3-Chloropropene		1,6 U	0.63	1.6	1,6	ug/m3					
*- Outside of specificat **-This limit was used i (1) The result for one or (2) The unspiked result (3) The surrogate spike	n the evaluation both determine was more than	ations wa four time	is less than f is the spike a	ive times th							
			IP232	Page 20 c	25 of 642 f 31	2					
Report ID: 13177			CERTIF	ICATE OF	ANALYS	IS			P	age 28 c	of 34

	Environm	r Labora iental	tories			Ana	aly	sis	Re	po	rt
2425 New Holland Pike, Lanca	ster, PA 17601 •	717-656-230	0 • Fax: 717-6	56-2681 • ww	w.LancasterLa	bs.com	~		122		_
	Qual	ity C	ontro	1 Sum	nary						
Client Name: USAP Reported: 07/10/2						mber: 15					
Analysis Name Cumene		Blank <u>Result</u> 4.9 U	Blank DL** 0.98	Blank LOD 4.9	Blank <u>LOQ</u> 4.9	Report <u>Units</u> ug/m3	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD Limits	RPD	RI Ma
Cyclohexane		1.7	0.69	1.7	1.7	ug/m3	90	87	70-117	4	25
Dibromochloromethane		U 4.3	1.7	4.3	4.3	ug/m3	93	83	70-130	11	25
1,2-Dibromoethane		U 3.8	1.5	3.8	3.8	ug/m3	95	83	74-122	14	25
Dibromomethane		U 3.6 U	1.4	3.6	3.6	ug/m3					
1,2-Dichlorobenzene		3.0 U	1.2	3.0	3.0	ug/m3	85	78	63-129	8	25
1,3-Dichlorobenzene		3.0 U	1.2	3.0	3.0	ug/m3	82	76	65-130	7	25
1,4-Dichlorobenzene		3.0 U	1.2	3.0	3.0	ug/m3	84	77	60-131	9	25
Dichlorodifluorometha	ne	2.5 U	0,99	2.5	2.5	ug/m3	90	81	59-128	11	25
1,1-Dichloroethane		2.0 U	0.81	2.0	2.0	ug/m3	89	83	68-126	6	25
1,2-Dichloroethane		2.0 U	0.81	2.0	2.0	ug/m3	95	8.8	65-128	7	25
1,1-Dichloroethene		2.0 U	0.79	2.0	2.0	ug/m3	88	86	61-133	3	25
cis-1,2-Dichloroethen	e	2.0 U	0.79	2.0	2.0	ug/m3	89	85	70-121	4	25
trans-1,2-Dichloroeth	ene	2.0 U	0,79	2.0	2,0	ug/m3	87	85	67-124	2	25
Dichlorofluoromethane		2.1 U	0.84	2.1	2,1	ug/m3					
1,2-Dichloropropane		2.3 U	0.92	2.3	2.3	ug/m3	85	80	69-123	7	25
cis-1,3-Dichloroprope	ne	2.3 U	0.91	2.3	2.3	ug/m3	118	107	70-128	10	25
trans-1,3-Dichloropro	pene	2.3 U	0.91	2.3	2.3	ug/m3	103	8.9	75-133	14	25
1,4-Dioxane		3.6 U	1.8	3.6	3.6	ug/m3	94	80	71-122	15	25
Ethyl Acetate		1.8 U	0.72	1.8	1,8	ug/m3	78	66	65-128	16	25
Ethyl Acrylate		4.1 U	2.0	4.1	4.1	ug/m3					
Ethyl Methacrylate		4.7 U	2.3	4.7	4.7	ug/m3					
Ethylbenzene		2.2 U	0.87	2.2	2.2	ug/m3	95	83	70-124	13	25
4-Ethyltoluene		2.5 U	0.98	2.5	2.5	ug/m3	98	83	67-129	17	2!
Freon 113		3.8 U	1.5	3.8	3.8	ug/m3	87	84	66-126	3	25
Freon 114		3.5 U	1.4	3, 5	3,5	ug/m3	84	80	63-121	5	2
Heptane		2.0 U	0.82	2.0	2.0	ug/m3	90	85	69-123	6	2
Hexachlorobutadiene		11	5.3	11	11	ug/m3	81	65	56-138	22	2!
*- Outside of specification **-This limit was used in (1) The result for one or 1 (2) The unspiked result w (3) The surrogate spike and	the evaluation of the evaluati	nations wa 1 four time	s less than s the spike	five times t							
			IP23	2 Page 2 Page 21 d	26 of 642 of 31	2					
Report ID: 13177											

2425 New Holland Pike, Lanca		00 • Fax: 717-6	56-2681 • ww			ary.	513	Re	pu	
				w.LancasterLa	bs.com	~				
	A									
	Quality	Contro	1 Sum	mary						
Client Name: USAP Reported: 07/10/2			G	roup Nut	mber: 15	59487				
Analysis Name	Blank <u>Result</u>	Blank DL**	Blank LOD	Blank LOQ	Report Units	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RP Ma
Hexachloroethane	U 9.7	4.8	9.7	9.7	ug/m3					
Hexane	U 1.8	0.70	1.8	1.8	ug/m3	90	86	63-120	4	25
2-Hexanone	U 4.1	2.0	4.1	4.1	ug/m3	87	76	62-128	14	25
Isooctane	U 4.7	2.3	4.7	4.7	ug/m3					
Isopropanol	U 2.5	1.2	2.5	2.5	ug/m3	82	77	52-125	7	25
Methyl Acrylate	U 3.5	1.8	3.5	3.5	ug/m3					
Methyl Iodide	U 2.9 U	1.2	2.9	2.9	ug/m3					
Methyl Methacrylate	4.1 U	2.0	4.1	4.1	ug/m3	96	82	70-128	15	25
Alpha Methyl Styrene	4.8 U	0.97	4.8	4.8	ug/m3					
Methyl t-Butyl Ether	1.8 U	0.72	1.8	1.8	ug/m3	93	87	66-126	7	25
4-Methyl-2-pentanone	4.1 U	2.0	4.1	4.1	ug/m3	84	75	67-130	11	25
Methylene Chloride	3.5 U	1.7	3.5	3.5	ug/m3	90	87	62-115	4	25
Octane	4.7 U	2,3	4.7	4.7	ug/m3					
Propene	1.7 U	0.86	1.7	1.7	ug/m3	76	67	57-136	12	25
Styrene	2.1 U	0.85	2.1	2,1	ug/m3	100	86	73-127	15	25
1,1,1,2-Tetrachloroet		1,4	3.4	3.4	ug/m3					
1,1,2,2-Tetrachloroet		1.4	3.4	3.4	ug/m3	90	77	65-127	16	25
Tetrachloroethene	3.4 U	1,4	3.4	3.4	ug/m3	82	75	66-124	9	25
Tetrahydrofuran	1.5 U	0.59	1.5	1.5	ug/m3	96	84	64-123	13	25
Toluene	1.9 U	0.75	1.9	1.9	ug/m3	91	83	66-119	10	25
1,2,4-Trichlorobenzen		3.7	7.4	7.4	ug/m3	70	58	55-142	18	25
1,1,1-Trichloroethane	2.7 U	1,1	2.7	2.7	ug/m3	93	88	68-125	5	25
1,1,2-Trichloroethane		1,1	2.7	2.7	ug/m3	86	77	73-119	11	25
Trichloroethene	2.7 U	1.1	2.7	2.7	ug/m3	90	82	71-123	9	25
Trichlorofluoromethan	e 2.8 U	1.1	2.8	2.8	ug/m3	91	87	62-126	4	25
1,2,3-Trichloropropan		1.2	3.0	3.0	ug/m3					
1,2,4-Trimethylbenzen	e 2.5	0.98	2.5	2.5	ug/m3	85	79	66-132	7	25

Report ID: 13177	CERTIFICATE OF ANALYSIS	Page 30 of 34
Report Serial #: 76326	This report shall not be reproduced, except in full,	7/14/2015 11:46:30 AM
	without the written consent of AIPH.	AR3100 (2015.03.19a)

	Lancaster Environme		tories			Ana	aly	sis	Re	po	rt
2425 New Holland Pike, Land	caster, PA 17601 • 7	17-656-230	0 • Fax: 717-65	6-2681 • ww	w.LancasterLa	bs.com	~		223		
	Quali	ty C	ontrol	L Sum	mary						
Client Name: USA Reported: 07/10/				G	roup Num	nber: 15	59487				
Analysis Name 1,3,5-Trimethylbenze	ne	Blank Result 2.5	Blank DL** 0.98	Blank LOD 2.5	Blank <u>LOQ</u> 2.5	Report <u>Units</u> ug/m3	LCS <u>%REC</u> 99	LCSD <u>%REC</u> 84	LCS/LCSD Limits 67-130	<u>RPD</u> 17	RP <u>Ma</u> 25
Vinyl Acetate		U 3.5	1.8	3.5	3.5	ug/m3	140*	123	56-139	13	25
Vinyl Chloride		U 1.3 U	0.51	1.3	1.3	ug/m3	87	83	64-127	4	25
m/p-Xylene		2.2	0.87	2.2	2,2	ug/m3	94	82	61-134	14	25
o-Xylene		U 2.2 U	0.87	2.2	2.2	ug/m3	104	90	67-125	14	25
Batch number: D15189 Acetone	30BB	Sample	number(s):		,7930854,7			82	58-128	10	
Acetonitrile	1.1	2.4 U 1.7	1.2	2.4	2.4	ug/m3 ug/m3	91	02	50-128	10	25
Acrolein		U 1.1	1,1	1.1	1.1	ug/m3	122	108	62-126	12	25
Propene	11	U 1.7	0.86	1.7	1.7	ug/m3	76	67	57-136	12	25
*- Outside of specificat **- This limit was used i	in the evaluation										
	in the evaluation r both determina was more than f amount was less	tions was	s less than fi s the spike a e LOD.	ive times t idded.		2					
**-This limit was used i(1) The result for one or(2) The unspiked result(3) The surrogate spike	in the evaluation r both determina was more than f amount was less	tions was	s less than fi s the spike a e LOD. IP232 F	ive times t idded. Page 2 Page 23 d	he LOQ.				P	tage 31 c	of 34

Report ID: 13177			
7/13/2015 8:45:10 AN	И	IP232 Page 39 of 642	Page 1 of
indicating a po	ositive bias: Vin	yl Acetate	
The recovery(ie	es) for the follow		xceeds the acceptance window
The recovery for Spike(s) is out Summary. Since	or a target analyt tside the QC accep a the recovery is	57: Analysis: 05298) e(s) in the Laboratory Cont tance limits as noted on th high and the target analyte the data is reported.	e QC
LCS/LCSD			
QUALITY CON	TROL AND NONCO	ONFORMANCE SUMMARY:	
All criteria we	are met.		
CALIBRATION	STANDARDIZATI	ON:	
All holding tim	nes were met.		
HOLDING TIM	Е:		
Samples were re	eceived in good co	ndition and within temperat	ure requirements.
SAMPLE RECE	IPT:		
See QC Reference	List for Associated Batc	h QC Samples	
7930856 7930857	131770007 131770008	100; 500 10; 100; 250	
7930854 7930855	131770005 131770006	10; 50 100; 500	
7930852 7930853	131770003 131770004	10; 100; 500 10; 100	
7930850 7930851	131770001 131770002	5 10; 100; 500	
Sample #	Client ID	DF	Comments
Fraction: Volatile O	organics in Air by GC/M	S	
Volatiles in Ai	and the second	Concerns of second	
		CLIENT: USAPHC/AIPH SDG: IP232	
	Case Nari	rative/Conformance S	Summary
	Environmental		
	Lancaster Laborat	APLAC	

7/13/2015 8:45:10 AM		IP232 Page 40 of 642	Page 2 of
E- out of calibration rat	ige		
ND = Not Detected J = Estimated Value		RE = Repreparation/Reanalysis * = Out of Specification	
MDL = Method Detecti		LCS – Lab Control Sample LCSD = Lab Control Sample Duplicate	
): 7930850-7930 were raised du	1857: Analysis: 05298) ue to interference from the sample matr	ix]
	US EPA Methods	lysis: 05298) s for organic compounds do not require sification matrix QC results.	action by the
Sample Duplicate			
Volatiles in Air Fraction: Volatile Org	ganics in Air by GC/M	SDG: IP232 MS	
		CLIENT: USAPHC/AIPH	
	Case Nar	rrative/Conformance Summar	У
	Environmental		
	Lancaster Labora Environmental	atories	

🏶 eurofins	Lancaster Laboratories Environmental	Explanation of Sy	mbols and Ab	breviations
The following d		d abbreviations used in reporting tec		
RL N.D. TNTC IU umhos/cm	Reporting Limit none detected Too Numerous To Count International Units micromhos/cm	BMQL	Below Minimum Quantita Most Probable Number cobalt-chloroplatinate un nephelometric turbidity u nanogram(s)	its
C meq g μg mL m3	micromitositi degrees Celsius milliequivalents gram(s) microgram(s) milliliter(s) cubic meter(s)	F Ib. kg μ L μL	degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s) microliter(s)	
<	less than	pg/L	picogram/liter	
>	greater than			
ppm	parts per million - One pp aqueous liquids, ppm is o	om is equivalent to one milligram per usually taken to be equivalent to milli For gases or vapors, one ppm is eq	grams per liter (mg/l), beca	use one liter of water has a weight
ppb	parts per billion			
Dry weight basis		s heading have been adjusted for mo nate the value present in a similar sa		
Laboratory Data	a Qualifiers:			
J (or G P - Co U - An V - Co and ev	ncentration difference between alyte was not detected at the incentration difference between vident interference	ne Method Detection Limit (MDL or D een the primary and confirmation col le value indicated een the primary and confirmation col	umn >40%. The lower rest lumn >100%. The reporting	Ilt is reported. I limit is raised due to this disparity
Qualifi	iers specific to Dioxin/Furan	CLP qualifiers may be used with For s and PCB Congeners are detailed o	on the individual Analysis R	eport.
	ed under the individual an	ents of the associated regulatory alysis.	program (i.e., NELAC (IN	i), DoD, ISO17025) unless
Measurement u	incertainty values, as applic	able, are available upon request.		
collection of the meaningless. It responsible for	e sample. Unless the sampl f you have questions regard sample integrity, however, u	ed. Clients should be aware that a c e analyzed is truly representative of ling the proper techniques of collecti unless sampling has been performed in full, without the written approval o	the bulk of material involved ng samples, please contact I by a member of our staff.	d, the test results will be
Times are local 15 minutes.	to the area of activity. Para	ameters listed in the 40 CFR Part 13	6 Table II as "analyze imme	diately" are not performed within
THE FOREGOI IMPLIED. WE PARTICULAR (ENVIRONMEN) LIMITED TO, D CONCURRENT LABORATORIE responsibility fo Eurofins Lances	ING EXPRESS WARRANT DISCLAIM ANY OTHER W. PURPOSE AND WARRANT TAL, LLC BE LIABLE FOR MAGES FOR LOSS OF F T) OF EUROFINS LANCAS ES ENVIRONMENTAL HAS or the purposes for which the ster Laboratories Environme	- In accepting analytical work, we wa Y IS EXCLUSIVE AND IS GIVEN IN ARRANTIES, EXPRESSED OR IMP TY OF MERCHANTABILITY. IN NO INDIRECT, SPECIAL, CONSEQUEI ROFIT OR GOODWILL REGARDLI TER LABORATORIES ENVIRONME BEEN INFORMED OF THE POSSI a client uses the test results. No pur antal which includes any conditions t antal hereby objects to any conflicting	LIEU OF ALL OTHER WAI LIED, INCLUDING A WAR EVENT SHALL EUROFINS WTIAL, OR INCIDENTAL D. ESS OF (A) THE NEGLIGE ENTAL AND (B) WHETHER BILITY OF SUCH DAMAGI chase order or other order i hat vary from the Standard g terms contained in any ac	RRANTIES, EXPRESSED OR RANTY OF FITNESS FOR 5 LANCASTER LABORATORIES AMAGES INCLUDING, BUT NOT NCE (EITHER SOLE OR 1 EUROFINS LANCASTER ES, We accept no legal for work shall be accepted by Terms and Conditions, and
		IP232 Page 36 of Page 31 of 31	642	
Report ID: 1317 Report Serial #:		CERTIFICATE OF ANA This report shall not be reproduced, without the written consent of	except in full,	Page 34 of 34 7/14/2015 11:46:30 AM AR3100 (2015.03:19a.)

Toxicology Report No. S.0036333-15, April – September 2015

Appendix S

Benchmark Dose Data

Table S-1Protocol No. 35-15-01-01Acute and Subacute Inhalation Toxicity Study in RatsExposed to Pyrotechnically Disseminated M18 Red Smoke

Benchmark Dose Output Male Rats

Model Name	Gamma*	Logistic*	LogLogistic*	LogProbit*	Multistage 2	Multistage 3*	Probit*	Weibull*	Quantal-Linear
BMD	0.98454	1.35091	1.27404	1.10264	0.509751	0.701681	1.2218	1.30757	0.238949
BMDL	0.31521	0.490699	0.326282	0.33534	0.182693	0.235426	0.4475	0.30944	0.113642
P-value	1	1	1	1	0.856	0.9693	1	1	0.482
AIC	9.64003	11.6382	11.6382	11.6382	11.006	10.1132	11.638	11.6382	13.4514
Scaled residual for dose group nearest the BMD	-0.03	0	0	0	-0.8	-0.483	0	0	-0.425
Scaled residual for control group	0	0	0	0	0	0	0	0	0

* Model selected with an appropriate fit

Female Rats

Model Name	Gamma*	Logistic	LogLogistic	LogProbit	Multistage 2*	Multistage 3*	Probit	Weibull*	Quantal-Linear*
BMD	0.09568	0.291399	0.0878013	0.187717	0.101495	0.104962	0.274	0.09568	0.095683
BMDL	0.05351	0.16069	0.0268433	0.087194	0.0535612	0.053705	0.1613	0.05351	0.05351
P-value	0.9246	0.6911	0.6882	0.5893	0.7866	0.7928	0.7009	0.9246	0.9246
AIC	20.8971	23.6409	23.2082	23.6918	22.8875	22.861	23.574	20.8971	20.8971
Scaled residual for dose group nearest the BMD	0.5	0.362	0.4	0.734	0.559	0.593	0.4	0.5	0.5
Scaled residual for control group	0	-0.718	0	-0.551	0	0	-0.688	0	0

* Model selected with an appropriate fit

Toxicology Report No. S.0036333-15, April – September 2015

Appendix T

Study Protocol with Modifications

ANIMAL USE PROTOCOL U.S. ARMY PUBLIC HEALTH COMMAND ABERDEEN PROVING GROUND MD 21010-5403

PROTOCOL TITLE: Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke

PROTOCOL NUMBER: $35 - (5 - \emptyset I - \emptyset I)$

DATE OF APPROVAL: 27 JAN 2015

STUDY DIRECTOR/PRINCIPAL INVESTIGATOR (SD/PI):

Lee C.B. Crouse Biologist Toxicity Evaluation Program (410) 436-5088 lee.crouse.civ@mail.mil

PRIMARY CO-INVESTIGATOR(S):

Matthew A. Bazar Biologist Toxicity Evaluation Program (410) 436-7704 matthew.a.bazar.civ@mail.mil

CO-INVESTIGATOR(S):

Charles Crouse ORISE Fellow Toxicity Evaluation Program (410) 436-4622 charles.l.crouse4.ctr@mail.mil

Theresa Hanna Biological Science Technician Toxicity Evaluation Program (410) 436-5072 theresa.l.hanna.civ@mail.mil

PROJECT SPONSOR:

Kimberly A. Watts U.S. Army Research Development and Engineering Command (RDECOM) Environmental Acquisition and Logistics Sustainment Program (AMSRD-FE) 3072 Aberdeen Blvd., Aberdeen Proving Ground, MD 21005

SPONSOR'S REPRESENTATIVE:

Mark Johnson, Ph.D., DABT Director, Toxicology Portfolio Army Institute of Public Health 5158 Blackhawk Rd., Aberdeen Proving Ground, MD 21010

ACRONYMS:

AEHA: Army Environmental Hygiene Agency AEQT: Army Environmental Quality Technology AIPH: Army Institute of Public Health ALB: albumin ALKP: alkaline phosphatase ALT: alanine aminotransferase AMYL: amylase ANCOVA: Analysis of Covariance ANOVA: Analysis of Variance AST: aspartate aminotransferase ASTM: American Society for Testing and Materials AV: Attending Veterinarian **BRD:** Biomedical Research Database BUN: blood urea nitrogen CA: calcium CFR: Code of Federal Regulations CHOL: cholesterol CHPPM: Center for Health Promotion and Preventive Medicine CO: carbon monoxide CO₂: carbon dioxide COT: Committee on Toxicology **CREA:** creatinine Crl(CD): Charles River Laboratories (Sprague-Dawley) **DTIC:** Defense Technical Information Service EDTA: Ethylenediaminetetraacetic acid GLOB: globulin **GLP:** Good Laboratory Practices HEPA: high efficiency particulate air GLU: Glucose IACUC: Institutional Animal Care and Use Committee IAW: in accordance with LC₅₀: median lethal concentration LDH: lactate dehydrogenase LPM: liters per minute LS: Laboratory Sciences Portfolio, AIPH

mg/m³: milligrams per cubic meter mL: milliliters N/A: not applicable NIOSH: National Institute of Occupational Safety and Health NO_x: nitrogen oxides NRC: National Research Council NTIS: National Technical Information Service NYU: New York University OECD: Organisation for Economic Co-operation and Development **OEP:** Ordnance Environmental Program PHOS: inorganic phosphate PI/SD: Principal Investigator/Study Director PPE: personal protective equipment PVC: polyvinyl chloride SAS: Statistical Analysis System SOP: Standing Operating Procedure SPSS: Statistical Package for the Social Sciences TBIL: total bilirubin TOX: Toxicology Portfolio, AIPH TP: total protein **TSCA:** Toxic Substances Control Act USAIPH: United States Army Institute of Public Health USAPHC: United States Army Public Health Command USEPA: United States Environmental Protection Agency

VMD: Veterinary Medicine Division

I. NON-TECHNICAL SYNOPSIS

mg/L: milligrams per liter

The inhalation toxicity of a pyrotechnically disseminated red smoke formulation proposed for military use will be determined in two phases of testing. The first phase will evaluate the acute (single exposure) inhalation toxicity of the red smoke formulation in rats. The second phase will evaluate the subacute (repeated exposure) inhalation toxicity of the red smoke formulation by exposing the rats for a total of 10 days. Rats will be exposed (head-only) to emissions from the smoke grenade and monitored for the appropriate observation periods for body weight, food consumption (repeated-exposure only), and clinical signs of toxicity. At the conclusion of each phase of the study, the rats will be euthanized and the tissues observed for possible compound-related lesions. Only animals from the subacute phase will be anesthetized to obtain blood samples for clinical chemistry and hematology analysis and selected tissues will be weighed and processed for histopathology.

II. BACKGROUND

II.1. Background:

The U.S. Military uses colored smokes in a variety of ways including identification of potential targets and friendly troops, simulation of battlefield events, and as a means of communication. Previously-used colored smoke formulations were developed strictly based on their ability to produce the desired color for a specified period of time. Recent changes made to the smoke formulations and dissemination systems used in M18 colored smoke grenades have focused more on soldier safety during training and deployed scenarios as well as the public living or working near military training facilities. The primary changes made to the colored smoke formulations involved the use of sugar instead of sulfur as the fuel and the replacement of sodium bicarbonate by magnesium carbonate as the coolant; however, additional changes have also been made to refine burn times and the colors produced.

At the onset of the transition, the Army requested the NRC to independently review the available toxicity data on certain smokes and obscurants and recommend exposure guidance levels for each. In response to this request, the NRC's COT convened the Subcommittee on Military Smokes and Obscurants, which published three volumes on the toxicity of military smokes and obscurants. Volume 3 of this series assesses toxicity data for seven old and new colored smoke formulations (NRC, 1999). In short, the Subcommittee found that the database for all seven smoke formulations, including the old and new red smokes, was inadequate for assessing the potential toxicity of the combustion products. They further recommended that acute inhalation studies be conducted in experimental animals to evaluate the toxicity of the combusted smoke formulations for emergency and short-term exposure guidance levels. Repeated exposure inhalation toxicity studies were recommended for military training instructors and people living in communities near military training facilities. Since the time of this review, the red dye proposed for use in the new red smoke formulation has changed from a mixture of solvent red 1 (α -meth-oxybenzenazo- β -naphthol) and disperse red 11 (1,4-diamino-2-methoxyanthraquionone) to solvent red 169 ((1-(isopropylamino) anthraguinone) only (E-mail, 2013). Neat solvent red 169 was evaluated by this Institute for acute inhalation toxicity and was found to be non-toxic in rats up to 2.4 mg/L (USACHPPM, 2009). The toxicity of the combusted red smoke formulation has not been evaluated.

II.2. Literature Search for Duplication:

II.2.1. Literature Source(s) Searched: BRD, National Technical Information Service, PubMed, Web of Science, DTIC

II.2.2. Date of Search: 30 June 2014

II.2.3. Period of Search: 1900-2014

II.2.4. Key Words of Search: ("colored smoke*" or "m-18 smoke grenade" or "m18 smoke grenade" or "m 18 smoke grenade" or "red smoke" or "red dye") and (toxic or toxicity) and ("lethal concentration 50" or "median lethal concentration" or mlc or lc50 or lc-50 or "lc 50" or "lethal dose 50" or "median lethal dose" or mld or ld50 or ld-50 or "ld 50" or inhal* or lung or pulmo* or pneumo* or aerosol* or respir* or alveol* or bronchi*) and (rat or rats)

II.2.5. Results of Search: A total of 275 references resulted from the literature search that was performed using the key words and databases listed above. All of the relevant references were performed on the old smoke formulations/dyes used by the Military prior to the transition to sugar-based formulation. In addition, none of these studies evaluated the toxicity of the pyrotechnically-disseminated smoke. They only evaluated the toxicity of the neat dyes used in the smoke grenade formulations. Therefore, no references were found that would suggest that this study would be a duplicate effort.

III. OBJECTIVE/HYPOTHESIS

The objectives of this study are to evaluate the acute inhalation toxicity of the dissemination products from the red M18 smoke grenade in the rat and to determine the effects of repetitive inhalation exposures in male and female rats.

IV. MILITARY RELEVANCE

Pyrotechnic colored smoke M18 grenades are used by the military for ground-to-ground and ground-to-air signaling. It is imperative that soldiers are trained in a similar manner in which they fight, therefore, these training exercises often result in soldiers and training instructors being repeatedly exposed to materials used to simulate battlefield scenarios. Current Army policy regarding colored smokes (old formulation) states that, during training, troops must carry a protective mask, mask when passing through or operating in a dense smoke cloud (visibility < 50 meters), mask when operating or passing through a smoke haze (visibility > 50 meters) if exposure duration exceeds 4 hours, and mask anytime exposure to smoke produces breathing difficulty. In addition, production personnel who are exposed to the dyes/mixtures, or propellant and fuse system materials must wear coveralls, butyl rubber gloves, head and shoe coverings, and a NIOSH-approved full face or hood type supplied air respirator (AEHA, 1992, 1993a, 1993b). A health risk assessment was performed on the combustion products of the old red smoke grenade formulation to determine the risk associated with living near military training facilities that conduct colored smoke exercises. The risk assessment concluded that residents who live as close as 100 meters directly downwind from training areas are safe from breathing air emissions from the old red-colored M18 (AEHA, 1992, 1993a, 1993b). As the Army transitions to colored smoke formulations believed to pose less of a health risk, the toxicity of the combustion products must be evaluated so that exposure guidance can be updated.

Research, development, testing, and training with explosives and pyrotechnics potentially less hazardous to human health and the environment is vital to the readiness

of the U.S. Army. The AEQT OEP is dedicated to finding replacements for substances causing environmental and/or occupational risks to health. Toxicity assessments such as this proposed study are necessary for safeguarding the health of Soldiers, civilians, and the environment and, if begun early in the research, development, testing, and evaluation process, can save significant time and effort by identifying unacceptable replacement compounds (ASTM, 2008).

V. MATERIALS AND METHODS

Test Article: Both phases of this study will be conducted on the emission products from the new sugar-based red smoke formulation in a M18 style grenade. A list of the neat ingredients in the red smoke formulation along with their recommended parts by weight is provided below. A description of the test atmosphere analysis is provided in section V.1.1.4. The M18 smoke grenade is approximately 5.75 inches long, 2.50 inches in diameter and weighs 19 ounces. The smoke mixture itself weighs approximately 11.5 ounces and is pressed into a total of 4 pellets inside the canister.

M18 Red Smoke Formulation

Ingredient	Recommended Parts By Weight
Dye, Solvent Red 169	36.5
Magnesium Carbonate	16.5
Potassium Chlorate	20.5
Sugar, Type 1, Style C	19
Sugar, Type 1, Style B	6.5
Polyvinyl Acetate	1

V.1. Experimental Design and General Procedures:

The acute and subacute inhalation toxicity of a pyrotechnically disseminated red smoke formulation will be determined using a two-phased laboratory study in rats. The acute toxicity (LC_{50}) will first be conducted in male and female rats. Based upon the results of the LC_{50} , a 10-exposure subacute inhalation toxicity study will then be performed to determine the potential effects of repeated daily exposure to the red smoke formulation.

Group	Male Rats	Female Rats	Male Recovery	Female Recovery	Pain Category
Acute (LC ₅₀)					
2000 mg/m ³	5	5			5C/5E
TBD (if needed)	5	5			5C/5E
TBD (if needed)	5	5			5C/5E
	TOTAL = 15	TOTAL = 15			TOTAL = 15C/15E

Subacute					
Air Control	6	6	6	6	24D
Low	6	6			12D
Intermediate	6	6			12D
High	6	6	6	6	12D/12E
	TOTAL =	TOTAL =			TOTAL =
	24	24			60D/12E
	GRAND TOTAL = 39	GRAND TOTAL = 39	GRAND TOTAL = 12	GRAND TOTAL = 12	GRAND TOTAL = 15C / 60D / 27E

If animals do not show any signs of distress, the pain category will be downgraded. Pain categories were determined as follows:

- B: Held, but not used on study.
- C: No pain or distress. It is expected that half of the acute study rats will not experience pain or distress.
- D: Alleviated pain/distress with moribund euthanasia or drug treatment (e.g., anesthesia). Rats placed in this category were done so due to the method of blood collection (cardiac puncture).
- E: More than momentary pain/distress that cannot be alleviated. Rats placed in this category have the potential to experience toxic effects from exposure.
- V.1.1. Acute Study:

In an attempt to determine the acute toxicity associated with single, high-concentration exposures to red smoke, 5 male and 5 female rats will be exposed for 30 minutes to atmospheric concentrations of the test material targeted to 2000 mg/m³. The design of the acute study is based primarily on the limit test provision outlined in the EPA Health Effects Test Guidelines for an Acute Inhalation Study (USEPA, 1998). By guideline, if the test material produces any lethality at the limit concentration targeted to 2000 mg/m³, additional exposures at lower concentrations may need to be considered. Two additional groups of 5 male and 5 female rats each are included in the animal numbers requested for this protocol but will not be ordered unless necessary for the LC₅₀ determination. Additional modifications to the acute inhalation test guidelines were made to reflect the unique issues associated with conducting an inhalation study with pyrotechnically-disseminated smokes and to accurately reflect a typical military exposure regime.

V.1.1.1. Administration of Test Substance and Exposure Mode:

Rats will be exposed nose-only to atmospheres of the test substance. The nose-only (head-only) exposure mode is typically used for test atmospheres that contain particulates/aerosols in an attempt to minimize deposition of the test substance onto the fur of the animals and, therefore, minimize inadvertent dermal and oral exposure to the animals. For the nose-only exposures, rats will be individually restrained during

exposure in perforated, stainless steel cylinders with conical nosepieces. These types of cylinders are typically used for nose-only inhalation exposures and are widely accepted equipment for inhalation toxicity test systems (Phalen, 1984 & 1997). Rats will be positioned in the exposure cylinders such that their noses will be at the conical end of the cylinder. In order to secure the rat in this position, a plastic disc with a hole in the center will be inserted over the tail and positioned within the cylinder close to the base of the rat's tail to prevent the animal from backing out of the rear of the cylinder. Care will be taken to properly insert each rat into its exposure cylinder, such that there is a balance between allowing the rat space to move while ensuring that it is positioned properly for adequate exposure. Each exposure cylinder will be inserted into one of the ports in the faceplate of the exposure chamber such that only the head/nose of each rat extends into the exposure chamber. Exposure cylinders will be appropriately cleaned after each animal/use.

V.1.1.2. Exposure Duration:

Rats for the acute phase will be exposed to a single 30-minute exposure of red smoke atmosphere. The starting time of the exposure will be defined as the time when the chamber has reached the desired concentration (see section V.1.1.3 below for confirmation of atmosphere generation and the concentration of red smoke) and the rats have been placed into the faceplate. The ending time of each exposure will be defined as the time when the rats are removed from the faceplate. At the end of each exposure, the rats will be removed from the exposure cylinders and returned to their home cages in the animal room. Rats will be restrained in the exposure cylinders for no more than approximately 90 minutes which includes the time required to place the rats in the cylinders, expose them, and remove the rats from the cylinders.

V.1.1.3. Atmosphere Generation:

Chamber atmospheres will be generated by pyrotechnic dissemination of the test material inside an empty inhalation chamber with solid rubber stoppers placed in the faceplate to contain the smoke atmosphere. This inhalation experiment is somewhat unique in that the pyrotechnic dissemination of the test material in the chamber will serve as the generation system rather than metering a test substance at a constant rate into the chamber. Test atmospheres exiting the exposure chamber will be directed through a pre-filter and high-capacity HEPA filter prior to discharge into the exhaust system. The concentration of red smoke will be monitored gravimetrically after grenade initiation to determine when the target concentration has been achieved and the rats can be placed in the faceplate.

Measurements will be obtained during method development to ensure a uniform distribution of the test substance within the exposure chamber. The methods for performing the chamber distribution analysis are described in TOX SOP 058 (USAPHC, 2013b).

Three chambers will be utilized for acute phase of this experiment. One chamber will

serve as the initiation chamber that will house the M18 red smoke grenade. Two additional chambers are connected to the initiation chamber with 2 inch PVC pipe and serve to contain the overpressure generated from the smoke grenade and supply the initiation chamber with oxygen for the smoke grenade to burn. The PVC pipes come out of 2 side ports in the initiation chamber and are connected to the top turrets of the other 2 chambers. These additional 2 chambers are also connected from the bottom to the exhaust with PVC pipe to contain any additional overpressure should it exceed the capacity of the 3 chambers. All exposure chambers are constructed of stainless steel and glass/Lexan with a nominal internal volume of approximately 1 m³. The chambers are modeled after the NYU style inhalation exposure chambers. The NYU design refers to an inhalation exposure chamber with a cubical mid-section, squarepyramidal inlets and outlets, and a tangential feed at the top of the chamber inlet to promote uniform distribution of the test atmosphere (Drew, 1978). Each of the 3 connected exposure chambers is equipped with Lexan nose-only faceplates so that any of the 3 may be used for the acute exposure. The chamber to be used for the exposure will be determined during method development. No animals will be placed in a chamber until the grenade has completed its burn in the initiation chamber and temperature/oxygen measurements are taken in the exposure chamber to ensure oxygen is > 19% and the temperature is within the targeted range of $23 \pm 3^{\circ}$ C.

V.1.1.4 Analyses of the Test Atmosphere:

The atmospheric concentration of the red smoke particulate will be determined at least twice during the half-hour acute exposure. Known volumes of chamber atmosphere will be drawn from the exposure chamber through a filter cassette containing a pre-weighed glass fiber filter. Filters are weighed again after the sampling period is completed. All filters will be weighed on a Cahn microbalance. The atmospheric concentration of red smoke particulate will be calculated from the difference in the preand post-sampling filter weights divided by the volume of chamber atmosphere sampled. Samples to determine particle size distribution (mass median aerodynamic diameter and percent particles less than 1, 3, and 10 µm diameter) of the red smoke particulate will be collected at least once for the acute study. Particle size samples will be collected with a Sierra® Series 210 8-Stage Cascade Impactor fitted with a cyclone preseparator and an Anderson Series 110 Constant Flow Air Sampler (USAPHC, 2015b).

Combustion gases (e.g., CO_2 , CO, NO_x) will be analyzed at least once during the acute study. The appropriate method for analysis will be determined by either Aberdeen Test Center or LS personnel. The method and results for the analysis will be appropriately documented in the study records. In addition, analysis of the particulate contained on the filters may also be performed on selected filters collected during the acute study. The appropriate method for analysis will be determined by LS personnel. The method and results for the analysis will be appropriately documented in the study records is will be appropriately documented by LS personnel. The method and results for the analysis will be appropriately documented in the study records.

Since the exposure chamber will essentially be a static system, chamber airflow will

not be measured during this study. Oxygen content will be measured prior to placing the acute animals in the exposure chamber and during the exposure to ensure they have adequate oxygen (i.e., \geq 19%). Oxygen readings will be collected at least twice during each exposure. Chamber temperature and relative humidity will be targeted to 23 ± 3°C and 50 ± 20%, respectively. Temperature and humidity will be monitored continuously and recorded at least 2 times during the acute exposure.

V.1.1.5. Observations:

A thorough physical examination of each rat will be performed by study personnel at least once per day, ideally at a similar time, during the 14-day observation period (weekends excluded). The examination process will consist of each rat being removed from its home cage, individually handled, and carefully observed. Observations will include, but not be limited to, evaluation of skin and fur, eyes and mucous membranes, respiratory and circulatory effects, autonomic effects such as salivation, central nervous system effects, including tremors and convulsions, changes in the level of activity, gait and posture, reactivity to handling or sensory stimuli, altered strength, and stereotypes or abnormal behavior (e.g., self-mutilation, walking backwards) (USAPHC, 2014g). All data related to the observation of rats will be detailed and thoroughly documented in the study records by study personnel.

V.1.1.6. Body Weight and Food Consumption:

Animals will be weighed prior to the exposure, at least weekly thereafter, and at termination. In addition, any animals displaying toxic signs will be weighed if necessary to determine health status. Food consumption will not be monitored during the acute study.

V.1.1.7. Gross Necropsy, Tissue Collection and Preservation:

At the time of termination, animals will be euthanized as described in section V.4.6. Animals will then be necropsied and examined macroscopically for any structural abnormalities or pathological changes. Tissues may be removed, weighed and processed as described in sections V.1.2.8.2 and V.1.2.8.3, at the discretion of the PI/SD.

V.1.2. Subacute Study:

Four groups of 12 rats each (6 rats/sex/group) will be exposed to control (0 mg/m³), low, intermediate, and high concentrations of red smoke. Target concentrations for the low, intermediate, and high levels will be determined after evaluating the results of the acute phase. The high concentration will be targeted to not exceed 2000 mg/m³. Animals will be randomly assigned to exposure groups stratified by weight sextile. Rats will be exposed nose-only for 30-minutes per day, 5 days/week, for a total of 10 exposure days (weekends excluded). The start date will be staggered over a period of several days to facilitate the scheduling of necropsies. In addition, the control and high dose levels will each have an additional recovery group utilizing 6 rats/sex/group. Both recovery groups

will be exposed to the target concentrations for a total of 10 exposure days, but will be held for a one-month observation period following the exposures. The design of the subacute study is based on a military-unique exposure scenario rather than an EPA Health Effects Test Guideline. Modifications were again made to reflect the unique issues associated with conducting an inhalation study with pyrotechnically-disseminated smokes and to accurately reflect a typical military exposure regime.

V.1.2.1. Administration of Test Substance and Exposure Mode:

Rats will be exposed nose-only to atmospheres of the test substance for the subacute study. A complete explanation of the nose-only exposure mode is provided in V.1.1.1. above.

V.1.2.2. Concentration Level Selection:

Results from the acute study will be used to finalize design concentrations for the subacute study. Exposure levels for the subacute study will be designed such that the low level should not produce adverse toxicological effects, the intermediate level should produce some degree of toxicity, and the high level will produce toxic effects without symptoms of pulmonary overload.

V.1.2.3. Exposure Duration:

Rats for the subacute phase will be exposed to a 30 minutes per day, 5 days/week, for a total of 10 exposure days. The initiation/completion of the exposure period for the subacute study will be staggered over several days in order to accommodate limitations in the necropsy scheduling process. The starting time of the exposure will be defined as the time when the chamber has reached the desired concentration and the rats have been placed into the faceplate. The ending time of each exposure will be defined as the time when the rats are removed from the faceplate. At the end of each exposure, the rats will be removed from the exposure cylinders and returned to their home cages in the animal room.

V.1.2.4. Atmosphere Generation:

The atmosphere generation method used for the subacute study will be the same as that described in section V.1.1.3 for the acute study. A total of four chambers will be utilized for this phase of this experiment with one chamber for all air control exposures and 3 additional chambers for all smoke exposures. One smoke chamber will serve as the initiation chamber that will house the M18 red smoke grenade. Two additional chambers are connected to the initiation chamber with 2 inch PVC pipe and serve to contain the overpressure generated from the smoke grenade and supply the initiation chamber with oxygen for the smoke grenade to burn. The PVC pipes come out of 2 side ports in the initiation chamber and are connected to the top turrets of the other 2 chambers. These additional 2 chambers are also connected from the bottom to the exhaust with PVC pipe to contain any additional overpressure should it exceed the

capacity of the 3 chambers. All exposure chambers are constructed of stainless steel and glass/Lexan with a nominal internal volume of approximately 1 m³. The chambers are modeled after the NYU style inhalation exposure chambers. The NYU design refers to an inhalation exposure chamber with a cubical mid-section, square-pyramidal inlets and outlets, and a tangential feed at the top of the chamber inlet to promote uniform distribution of the test atmosphere (Drew, 1978). Each of the 3 connected exposure chambers is equipped with Lexan nose-only faceplates so that any of the 3 may be used for the different exposure levels of the subacute experiment. The chamber to be used for each exposure level will be determined during method development. No animals will be placed in a chamber until the grenade has completed its burn in the initiation chamber and temperature/oxygen measurements are within targeted ranges in the exposure chamber.

V.1.2.5 Analyses of the Test Atmosphere:

A complete description of the test atmosphere analysis is provided in section V.1.1.4 for the acute study and the types of analyses will remain the same for the subacute phase. Gravimetric analysis of the test atmosphere will be performed at least twice during each subacute exposure for each exposure concentration. Particle size and combustion gas samples will be collected at least 2 times from each of the test atmosphere concentrations over the 2-week study period. Oxygen, temperature, and humidity readings will also be recorded at least 2 times per exposure for each exposure concentration.

V.1.2.6. Observations:

A thorough physical examination of each rat will be performed by study personnel prior to each exposure. The examination process will consist of each rat being removed from its home cage, individually handled, and carefully observed. Observations will include, but not be limited to, evaluation of skin and fur, eyes and mucous membranes, respiratory and circulatory effects, autonomic effects such as salivation, central nervous system effects, including tremors and convulsions, changes in the level of activity, gait and posture, reactivity to handling or sensory stimuli, altered strength, and stereotypes or abnormal behavior (e.g., self-mutilation, walking backwards) (USAPHC, 2014g). Observations will also be performed daily on all animals once all exposures are completed. Observations taken during the exposure chambers. Daily observations will also be performed on the recovery animals during the 4-week recovery period. All data related to the observation of rats will be detailed and thoroughly documented in the study records by study personnel.

V.1.2.7. Body Weight and Food Consumption:

All rats will be weighed at least once per week. Weights will be collected during the acclimation period and on specified days during the exposure period. In addition, any animals displaying toxic signs may be weighed if necessary to determine health

status. Food consumption will be monitored weekly during the subacute study.

V.1.2.8. Terminal Observations:

V.1.2.8.1. Clinical Chemistry and Hematology Assessments:

Fasted blood samples will be taken from all animals at termination (as described in section V.4.4.3.1.) and subjected to hematology and clinical chemistry analyses. The following hematology parameters will be evaluated: hematocrit, hemoglobin concentration, erythrocyte count, total and differential leukocyte count, platelet count, and clotting time. Serum will be evaluated for the following chemistries: BUN, CREA, GLU, TP, ALB, ALT, ALK P, AMYL, AST, GLOB, CHOL, TBIL, CA, PHOS, LDH, and electrolytes. Details concerning clinical chemistry and hematology analyses are outlined in TOX SOP 011 and TOX SOP 013, respectively (USAPHC, 2015a & 2013a).

V.1.2.8.2. Gross Necropsy, Organ Weight, and Tissue Preservation:

At the time of reported pre-term death or euthanasia, all animals will be necropsied by trained study personnel and examined macroscopically for any structural abnormalities or pathological changes. Wet weights of the organs listed below from all animals will be determined as soon as possible after dissection to avoid drying. Testes and epididymides from each male animal and ovaries and uterus from each female animal will be placed in Davidson's fixative (2-Propanol, acetic acid, formaldehyde, water) overnight (no longer than 24 hours) and then transferred to 70% ethanol. All other organs will be placed in 10% buffered formalin for at least 24 hours for fixation. All gross pathology changes will be recorded on TOX DOC 4.0. This tissue list may be altered at the discretion of the study staff based on observed toxicity and gross pathology findings.

- Uterus (with oviducts and cervix)
- Ovaries
- Testes
- Epididymides
- Brain
- Liver
- Kidneys
- Heart
- Spleen
- Thymus
- Adrenal glands
- Lungs

In addition to the organs listed above, samples of peripheral nerve, muscle, spinal cord, eye(s) plus optic nerve, gastrointestinal tract, urinary bladder, trachea (with thyroid and parathyroid attached), pharynx, larynx, nose, salivary glands, pancreas,

seminal vesicles, prostate, representative lymph node(s), mammary gland, thigh musculature, exorbital lacrimal gland, femur, skin, bone marrow, pituitary, vagina, and all gross lesions may be collected and placed in 10% buffered formalin for at least 24 hours for fixation. Trained study personnel and the procedures they perform will be documented at the time of necropsy.

V.1.2.8.3. Histopathology:

Full histopathology of the organs listed in section V.1.2.8.2. will be performed for all high-dose and control animals. Organs demonstrating treatment-related changes may also be examined in animals in the lower dose groups. Additionally, all gross lesions will be subjected to histopathological evaluation. At a minimum, full histopathology will be performed on the respiratory tract of all recovery animals.

V.1.3. Study Time Frame:

Estimated initiation date for the study is February 2015 but will depend on receipt of test material. Estimated completion date for the study is April 2015. V.2. Sample Size Evaluation, Data Analysis Plan, and Archiving of Data:

Sample sizes were selected in accordance with applicable USEPA and OECD Health Effects Testing Guidelines as well as previous inhalation toxicity studies performed on smokes by this Institute (USEPA, 1998, OECD, 1981, & USAPHC, 2014g). These samples sizes have been widely used and have been demonstrated to provide adequate statistical power in these methods. Data from the acute study will be evaluated by the study director for an LC_{50} determination and will not require a formal statistical evaluation.

For variables that are measured only at the end of the subacute phase (clinical pathology and organ weights), the exposure levels will be compared using a one-factor ANOVA. Organ to brain and organ to body weight ratios will be calculated and analyzed similarly to the other parameters measured at the end of the study. If the dose group effect is significant, an appropriate post hoc test will be used to compare pairs of dose groups and dose groups to the control group. Data will be tested for normality and variance equality and adjusted if necessary.

For absolute organ weights, comparison of the dose groups will be made using an ANCOVA, with body weight at the end of the study being the covariate used. Even though the dose groups will be assigned at Day 0 to keep the average weight for each dose group similar, the weights can change during the study dependent on the dose group. The ANCOVA will adjust for any differences in body weights among the dose groups at the end of the study, because heavier animals would tend to have heavier organs. If the dose group effect is significant, an appropriate post hoc test will be used to compare pairs of dose groups and dose groups to the control group.

Exposure levels will also be compared with respect to absolute body weights, as well as weekly changes in body weight and net weight changes using a repeated measures model. Exposure levels will also be compared with respect to net food consumption for the study using a one-factor ANOVA. If the ANOVA is significant, an appropriate post hoc test will be used to compare pairs of dose groups. Data will be tested for normality and variance equality and adjusted if necessary.

Other observational data including gross necropsy observations and histopathology data may be converted to categorical data and analyzed using a Chi-square or Fisher's exact test.

An appropriate statistical software package, such as $SPSS^{\ensuremath{\mathbb{R}}}$ and/or $SAS^{\ensuremath{\mathbb{R}}}$ will be used to perform all analyses and statistical significance will be defined as p<0.05 for all tests.

This study will be conducted in a manner consistent with the principles of 40 CFR Part 792 TSCA GLP Regulation (CFR, 1989). The investigators and technicians will adhere to the Guide for Care and Use of Laboratory Animals (NRC, 2011).

Records will be kept in standard USAPHC laboratory notebooks and/or three ring binders. Daily records will be kept on survival and clinical signs collected on the animals during the study. Procedures for preparation of any euthanasia solution, drug administration, animal blood collection, observation logs, morbidity/mortality logs, etc., will be stored with the study records. All post mortem procedures not listed in this protocol will be documented in the study records and kept with the study raw data. These records will be made available to oversight organizations such as the USEPA, Quality Systems Office, and the IACUC. The protocol, protocol amendments, raw data, statistical analysis, tabular calculations, and graphic analysis of the data will be saved with the study records. Additionally, memoranda to the study file, study logs, signature logs, final reports, and final report amendments will be archived at USAIPH. Some ancillary records such as maintenance and calibration logs, environmental monitoring logs, animal room husbandry and health rounds sheets, training files, etc. may be stored in the archives but not stored with the study files.

V.3. Laboratory Animals Required and Justification

V.3.1. Non-animal Alternatives Considered:

The objectives of this study are to determine the acute and subacute toxicity of pyrotechnically-disseminated red smoke. There are no appropriate animal substitutes (e.g., computer models, tissue/cell cultures) that simulate the pharmacokinetics and pharmacodynamics of *in vivo* animal exposure. No non-animal alternative would provide the necessary toxicological information provided by this study. Therefore, it is necessary to perform this study in an animal model.

V.3.2. Animal Model and Species Justification:

Applicable EPA and OECD test guidelines state that the rat is the preferred species (USEPA, 1998 & OECD, 1981). Sprague-Dawley rats are the strain of rat that have been historically used for toxicity studies by USAIPH PTOX and are the recommended species due to an historical and extensive database.

V.3.3. Laboratory Animals

V.3.3.1. Genus species: Rattus norvegicus

V.3.3.2. Strain / Stock / Breed: Sprague-Dawley (Crl: CD)

V.3.3.3. Source / Vendor: Charles River Laboratories, Wilmington, MA (USDA 14-R-0144)

V.3.3.4. Age: Acute Study: 7-9 weeks old on arrival Subacute Study: 6-8 weeks old on arrival

- V.3.3.5. Weight: Appropriate for age
- V.3.3.6. Sex: Male and female (nulliparous and non-pregnant)
- V.3.3.7. Special Considerations: None

V.3.4. Number of Animals Required (by Species): 108

V.3.5. Refinement, Reduction, Replacement (3 Rs):

V.3.5.1. Refinement:

Standard rat enrichment will be implemented in accordance with the version VMD SOP 004 current at the time of study initiation (USAPHC, 2014c). All animals on this study will be handled on a frequent basis and provided a form of environmental enrichment (e.g., nylabones, rodent retreats) throughout the study period. Animals will be considered for early removal from this study as described in section V.4.5. Animals will be anesthetized prior to painful procedures as described in section V.4.1.2.1. In addition, for the subacute study, an approximately 30-minute acclimation for the rats to the exposure cylinders will be performed at least one day prior to their initial exposure. V.3.5.2. Reduction:

The limit test provision will be employed to initially evaluate the acute toxicity rather than the traditional evaluation using several concentrations.

V.3.5.3. Replacement:

No non-animal alternatives are known to exist that will provide the required data. At this time, there are no non-animal alternatives that can fully replicate the complex processes that occur within an intact mammalian organism.

V.4. Technical Methods:

V.4.1. Pain / Distress Assessment:

V.4.1.1. APHIS Form 7023 Information:

V.4.1.1.1. Number of Animals

V.4.1.1.1.1. Column B: 0

V.4.1.1.1.2. Column C: 15

V.4.1.1.1.3. Column D: 60

V.4.1.1.1.4. Column E: 27

V.4.1.2. Pain Relief / Prevention

V.4.1.2.1. Anesthesia / Analgesia / Tranquilization:

Animals will be anesthetized with CO₂ prior to blood collection. Animals will be brought to the necropsy room preferably in their home cage or in a transport cage. The appropriately-sized stainless steel lid will be placed on the cage. The CO₂ tank will be turned on, then the regulator opened to approximately 1/2 turn, and the flow meter set to 4-5 LPM. Animals will remain in the cage until they are recumbent with a shallow breathing pattern. Once recumbent, a toe or space between the toes will be pinched to assess appropriate depth of anesthesia. If no response to the toe pinch, animals will be removed and blood collected (as described in V.4.4.3.1.). Upon completion of blood collection animals will be returned to the home/transport cage and euthanized IAW the version of VMD SOP 002 current at the time of study initiation (USAPHC, 2014b).

V.4.1.2.2. Pre- and Post-Procedural Provisions:

A physical examination will be made at least once each day during all phases of the study. Observations will be detailed and carefully recorded in the study records. Details related to observations and/or physical examinations of rats are described in Sections V.1.1.5. and V.1.2.6.

V.4.1.2.3. Paralytics: N/A

V.4.1.3. Literature Search for Alternatives to Painful or Distressful Procedures:

V.4.1.3.1. Source(s) Searched: NTIS, PubMed, Web of Science

V.4.1.3.2. Date of Search: 30 June 2014

V.4.1.3.3. Period of Search: 1900-2014

V.4.1.3.4. Key Words of Search: ("colored smoke*" or "m-18 smoke grenade" or "m18 smoke grenade" or "m 18 smoke grenade" or "red smoke" or "red dye") and (toxic or

toxicity) and ("lethal concentration 50" or "median lethal concentration" or mlc or lc50 or lc-50 or "lc 50" or "lethal dose 50" or "median lethal dose" or mld or ld50 or ld-50 or "ld 50" or inhal* or lung or pulmo* or pneumo* or aerosol* or respir* or inhal* or alveol* or bronchi*) and (pain or distress or refine or reduce or replace or artificial or vitro or culture or tissue or cell or organ or insect or arachnid or invertebrate or fish or mollusk or cephalopod or simulate or digital or interactive or mannequin or manikin or model)

V.4.1.3.5. Results of Search: The literature search did not identify any references pertaining to alternatives to the painful procedures described in this protocol. Although certain *in vitro* toxicity screens are known to exist, a live mammalian model is required to provide the necessary toxicity information at this time. In addition, other methods of blood collection are known to exist (e.g., saphenous vein, tail vein) but would not provide a sufficient volume to perform the clinical chemistry and hematology analyses.

V.4.1.4. Unalleviated Painful or Distressful Procedure Justification:

The nature of these studies precludes the use of totally painless procedures. An attempt to alleviate pain or distress by the administration of anesthetics, analgesics, or drugs may alter the manifestation of the toxic responses. Typical pain relievers such as opiates and non-steroidal anti-inflammatories as well as anesthetics have the ability to mask certain toxic signs that may be observed due to the administration of the test compound, especially those signs resulting from pain or distress. In addition, certain side effects such as alterations in blood chemistry and hematology may arise from the use of these drugs and could be misinterpreted by the investigator as clinical signs caused by the test material. The observation of the onset, duration and/or reversibility of toxic signs is critical to mechanistic interpretation, especially since the acute study is being used to set dosages for a longer-term study. "Toxic signs" are defined in the version VMD SOP 016 current at the time of study initiation (USAPHC, 2014f). Animals determined to be moribund with no possibility for recovery will be euthanized as described in section V.4.6. However, unalleviated pain and mortality is expected to occur in the determination of a median lethal concentration.

V.4.2. Prolonged Restraint and Restraint Methods:

Rats will be contained in nose-only exposure cylinders during the 30-minute exposure period. Rats will be contained in the exposure cylinders during both the time it takes to insert the rats into the cylinder prior to the exposure (approximately 30 minutes) and the time it takes to remove the rats from the cylinders following the exposure (approximately 30 minutes). The total time that the rats will be in the exposure cylinders is estimated to be approximately 90 minutes. This type of exposure cylinder and restraint regimen is a commonly accepted method of restraint for rats exposed nose-only during an inhalation exposure (Phalen, 1984 & 1997). A 30-minute period of acclimation for the rats to the restrainers will be performed at least one day prior to their initial exposure for the subacute study.

V.4.3. Surgery: N/A

V.4.3.1. Pre-surgical Provisions: N/A

V.4.3.2. Procedure: N/A

V.4.3.3. Post-surgical Provisions: N/A

V.4.3.4. Location: N/A

V.4.3.5. Surgeon: N/A

V.4.3.6. Multiple Survival Operative Procedures

V.4.3.6.1. Procedures: N/A

V.4.3.6.2 Scientific Justification: N/A

V.4.4. Animal Manipulations

V.4.4.1. Injections: N/A

V.4.4.2. Use of Non-Pharmaceutical-Grade Chemicals: The compounds being tested are not available in a pharmaceutical-grade composition. They are under investigation as described in the objectives section (III) of this protocol.

V.4.4.3. Biosamples:

V.4.4.3.1. Blood Collection and Analysis:

Blood will be collected from all animals at termination of the subacute study. All blood collection will be conducted under CO₂ gas anesthesia (as described in section V.4.1.2.1) just prior to euthanasia. Once the anesthetic has taken effect (ensured by a toe pinch) the rat will be placed in dorsal recumbency. The rat can then be immobilized by either holding the base of the tail or by holding the forelimbs apart and upward with the thumb and index finger. There should be no response by the rat to entry of the needle into its skin. If there is any response, the rat is not at a deep enough level of anesthesia for this method of blood collection and the procedure will stop until the rat is anesthetized to a deeper plane of anesthesia. An appropriate size needle (18-25 gauge, 1-1.5 inch needle, depending on the size of the rat) will be fitted onto a 3-10 mL syringe and inserted anteriorly under the xiphoid region of the rat at an approximately 45° angle and advanced firmly through the diaphragm and into the heart. Slight negative pressure will be placed on the syringe plunger and the required amount of blood withdrawn from the rat. The goal of the blood draw is to obtain as large a sample as possible, and is generally 4-6 mL. Following collection of the blood sample, the needle will be slowly withdrawn from the rat. To minimize blood hemolysis, the needle should be removed from the syringe before discharging the blood sample into microtubes. Blood collection will be promptly followed by euthanasia as described in section V.4.6.

For hematology samples, approximately 1-2 mL of blood will be transferred to an EDTA microtube and immediately inverted gently several times. For clinical chemistry samples, approximately 1-2 mL of blood will be transferred to a serum-gel microtube

and allowed to stand at room temperature for at least 20 minutes to allow sufficient clotting prior to centrifugation. The remainder of the blood from each animal (approx. 1-2 mL) will be transferred to a sodium citrate microtube for analysis of prothrombin time. Details concerning clinical chemistry and hematology parameters are outlined in TOX SOP 011 and TOX SOP 013, respectively (USAPHC, 2015a & 2013a).

V.4.4.4. Adjuvants: N/A

V.4.4.5. Monoclonal Antibody (MAb) Production: N/A

V.4.4.6. Animal Identification:

Animals will be identified by cage cards according to the version of VMD SOP 014 current at the time of study initiation (USAPHC, 2014e). An identification number (e.g., the last 3 digits of the animal number) will also be marked on the tail of each rat with a water-insoluble marker in order to ensure proper identification of rats when removed from their cages.

V.4.4.7. Behavioral Studies: N/A

V.4.4.8. Other Procedures: N/A

V.4.4.9. Tissue Sharing:

Tissues from animals euthanized on this study may be made available to other personnel with approved protocols if coordinated through the PI/SD and the AV. Tissue sharing will be allowed only if doing so does not affect the quality and validity of the study or change the euthanasia methods.

V.4.5. Study Endpoint:

The study endpoint of the acute study is intervention euthanasia of moribund animals, study-related mortality, or euthanasia following an observation period not to exceed 14 days. The study endpoint of the subacute study is intervention euthanasia of moribund animals, study-related mortality or euthanasia on the day following the final exposure or recovery period.

Although some form of euthanasia is the projected study endpoint, the possibility still exists that a compound-related death may occur during an unobserved period (i.e., overnight). The novelty of the compound being tested prevents the assurance that a compound-related death may not occur. Additionally, the time at which signs of toxicity appear, their duration, and the time to death are important, especially if there is a tendency for deaths or morbidity to be delayed or if the signs of toxicity are reversible or recovery is possible. This is particularly important in the acute study when the type, onset and duration of toxic signs are still unknown. As such, potentially moribund animals will be monitored, in consultation with the AV, during the acute and subacute studies for possible reversal and recovery of toxic signs.

Animals will be assessed for morbidity based on a weight of evidence of the following signs: impaired ambulation which prevents animals from reaching food/water; excessive weight loss or emaciation (\geq 20% body weight loss compared to controls); lack of physical or mental alertness; prolonged labored breathing (e.g., lasting longer than 8 hours and accompanied by extreme lethargy); unabated seizure activity (e.g., lasting longer than 1 hour); inability to urinate or defecate for greater than 24 hours; or a prolonged inability to remain upright (e.g., lasting more than 2 hours). The AV may be consulted, if needed, to evaluate potentially moribund animals, unless the PI/SD plans to immediately euthanize the animal. Intervention euthanasia will be conducted by trained study staff on animals determined to be moribund by the PI/SD or AV.

V.4.6. Euthanasia:

Euthanasia will be accomplished by asphyxiation from CO₂ exposure IAW the version of VMD SOP 002 current at the time of study initiation (USAPHC, 2014b). Death of all rats euthanized by CO₂ will be ensured by bilateral thoracotomy or immediate necropsy with perforation of the diaphragm. Thoracotomy will be accomplished by inserting a sharp blade into the chest cavity behind a rib and moving the blade the length of the ribcage on both sides. Alternatively, for animals being immediately necropsied, the abdomen will be opened and a puncture made through the diaphragm via the abdominal cavity.

V.5. Husbandry & Veterinary Care:

V.5.1. Husbandry Considerations:

Animal rooms will be maintained IAW the version of VMD SOP 008 current at the time of study initiation (USAPHC, 2014d). Animals will be provided ad lib rodent chow that is certified free of contaminants (except during exposure and periods of overnight fasting prior to necropsy). Water will be provided ad lib by the automated watering system, by reservoirs that feed into the racks, or by water bottles. Light cycle will be 12 hours on and 12 hours off. Room temperature will be set at 68-79°F and humidity at 30-70%. Cage sanitation will be checked at least once daily by animal care staff. The animals will be housed in plastic, solid-bottom shoebox cages (size appropriate to the body weight of the rat). Rats will be individually housed during both phases of the study to minimize ingestion of the test material that typically results from pair-housed animals preening each other. All rats will undergo a minimum of a 5-day acclimation period during which time they may be pair-housed (sexes separate). Body weight and observation data may also be collected on rats by study personnel during the acclimation period in an attempt to more accurately monitor the health status of the rats in preparation for their use on study. However, animals will not be weighed or handled by study personnel within the first 24 hours after their arrival to the facility.

V.5.1.1. Study Room:

Inhalation exposures will be conducted at the AIPH TOX animal facility, Bldg E-2101, IACUC-approved room 10. Housing room will be as assigned, preferably Bldg. E-2101

or Bldg. E-2100. All live animal work will occur in either the housing room, necropsy suite (E-2100) or the exposure room (room 10, E2101).

V.5.1.2. Special Husbandry Provisions:

Food consumption for all subacute study animals will be monitored based on the weight of the food hopper. Therefore, feed should not be added to feeders and feeders should not be replaced without consulting the PI/SD. Food enrichment may not be used due to food consumption monitoring. When animals are being fasted, PI/SD or study staff (or Vet Med staff when directed to do so) will remove the food hopper no earlier than 1600 the day prior to necropsy. Fasting of rats will not exceed 18 hours before necropsy.

V.5.1.3. Exceptions:

Restraint cylinder acclimation, as well as body weight measurements, will be conducted during the animals' acclimation period, but not during the first 24 hours following their arrival in this facility. These procedures will be performed by the study staff. Rats will be individually housed with the exception of acclimation periods. As stated in V.5.1., individual housing is necessary to minimize ingestion of the test material that typically results from pair-housed animals preening each other. Attempts to remove residual test material from the animal's fur (e.g., wiping or vacuuming) to allow for pair-housing would simply smear, rather than remove, it from the animal. The test substance contains a high concentration of dye that is not easily removed and attempts to do so would increase the potential dermal exposure and possibly induce additional stress associated with the exposure. Test substances will be evaluated on an "as received" basis and are non-pharmaceutical grade.

V.5.2. Veterinary Medical Care

V.5.2.1. Routine Veterinary Medical Care:

Animals will routinely be observed no less than once daily by assigned veterinary medical personnel for husbandry conditions, humane care, and general health status. IAW current IACUC policy, in the event an animal becomes ill or injured, veterinary or toxicology personnel will contact the AV or his/her designated backup who will determine the appropriate course of action. Animals will be observed daily by study personnel as described in sections V.1.1.5 and V.1.2.6. Animals appearing ill or displaying toxic signs will be assessed for morbidity and early removal from the study as described in section V.4.5. Animals will routinely be observed no less than once daily by assigned veterinary medical personnel for husbandry conditions, humane care, and general health status. In the event an animal becomes ill or injured, veterinary or toxicology personnel will contact the Attending Veterinarian or his/her designated backup who will determine the appropriate course of action. V.5.2.2. Emergency Veterinary Medical Care:

In the event an animal requires after-hours emergency veterinary care, a veterinarian is available 24 hours a day, 7 days a week. In the case of an emergency health problem, if the PI or co-PI is unavailable and the present investigator staff and veterinary staff

cannot reach consensus on treatment of a study animal, the AV has the authority to treat the animal, remove it from the experiment, institute appropriate measures to relieve severe pain or distress, or perform euthanasia if necessary. However, all decisions involving the treatment of a study animal in which a consensus cannot be reached will only be made after the veterinarian or designated backup veterinarian has actually observed and examined the animal in question. To facilitate communication, the PI and study staff will provide the Veterinary Medicine Office a current emergency contact roster. In an emergency, the animal care staff will phone the numbers (office, home, and mobile) listed for the PI and co-PI. If the PI or co-PI cannot be reached by phone within 15 minutes, then they are considered unavailable.

- V.5.3. Environmental Enrichment
- V.5.3.1. Enrichment Strategy:

All animals will be individually housed except during acclimation periods. All animals will have an enrichment device (e.g., nylabone, rodent retreat) in their cage. All animals on this study will receive the same type of enrichment throughout the study. There will be an environmental enrichment plan posted on the door of the animal room to communicate the enrichment plan to everyone working on the study. This enrichment plan will be in accordance with the version of VMD SOP 004 current at the time of study initiation (USAPHC, 2014c), unless otherwise noted in this section.

V.5.3.2. Enrichment Restrictions:

Food enrichment may not be used due to food consumption monitoring during the subacute study. Rodent retreats may be removed for observation of animals, but will be replaced following observation periods of no more than eight hours. All animals will be individually housed following exposure initiation as described in V.5.1.3. above.

Personnel on Protocol	Activity to be Performed on Protocol	Formal Training	Qualifications and Experience
Lee Crouse	Handling/observations	Rodent handling techniques (11/21/96); Rat handling (7/19/07)	M.S.,Environmental Science
	Test Article Exposures	OJT ('96-present)	
	CO ₂ anesthesia/blood collection	OJT (1996-present)	19+ Yrs Animal Research Experience
	Intra-cardiac blood collection	Rat bleeding techniques: cardiac under isoflurane (12/17/08); rat blood collection (7/19/07); Terminal cardiac blood draw	
	CO ₂ euthanasia	Rat euthanasia via CO ₂ (08/14)	
Matthew	Handling/observations	Rodent and Small Animal Handling Workshop (MRICD, 12/07/04); Rodent Handling Workshop (MRICD, 02/17/04); Rodent Surgical Techniques (hands-on workshop) (CHPPM, 02/17/05);	M.S., Biology 14+ Yrs Animal

VI. STUDY PERSONNEL QUALIFICATIONS AND TRAINING:

Bazar	Test article exposures	OJT ('05-present)	Research Experience
Theresa Hanna	Handling/observations	Animal handling: rat (3/12/92); rat techniques: handling/observations (11/3/08); Rodent small animal handling workshop (2/25/98; 4/2/04; 11/22/05)	ALAT 24+ Yrs Animal Research Experience
Allison Jackovitz	Handling/observations	Small animal handling workshop (6/4/09); Rat handling, injections, oral gavage, vaginal lavage, CO2 euthanasia (06/2012)	B.S., Biology, 4+ years Animal Research Experience
Alicia Shiflett	Handling/observations	Rat techniques: handling/observations (11/3/08); Rat handling, oral gavage, vaginal lavage (6/12/12);	Associates Degree, Histology/ Science 4+ Yrs Animal Research Experience
Emily Lent	Handling/observations	Rat handling (7/19/07)	Ph.D., Natural Resources and Environmental Studies; M.S., Wildlife Biology 15+ Yrs Animal Research Experience
Adolph Januszkiewicz	Handling/observations	WRAIR Rodent Workshop; Mouse, Rat (Feb 06); ACUP (Aug 09); Aseptic Class (Mar 07)	Ph.D., Pharmacology and Toxicology
	Test article exposures	OJT 1980 - present	35+ Yrs Animal Research Experience
Charles Crouse	Test article exposures (no animal handling)	OJT 1970-present AAALAC online learning courses (6/2014)	41+ Yrs Inhalation Toxicology Experience

VII. BIOHAZARD/SAFETY: Risks associated with this protocol include bites/scratches/needle sticks, transmission of zoonotic diseases, the development of animal allergies and potential exposure to smoke grenade emissions. To minimize risk, appropriate handling techniques will be used and appropriate PPE will be worn for all animal handling work. This includes (but may not be limited to) facemask, gloves, disposable lab coat, and an N95 mask when loading/unloading animals into chambers containing particulate atmospheres. Personnel will wash their hands upon completion of animal work. Applicable current TOX and VMD SOPs at the time of study initiation and PHC regulations (USAPHC, 2014a & USACHPPM, 2007) will be followed. These documents specify hazardous waste disposal, bite/scratch procedures, and zoonotic disease prevention. A sharps container will be present at all times when using sharps and needles will not be recapped after entering animal tissue. Precautions have been taken to contain the overpressure generated from igniting the M18 smoke grenades inside the exposure chamber including the use of a 3-chamber design for the exposures and overpressure valves while the grenade is burning. The minimum number of study

personnel will be present in the exposure room when the grenades are ignited and burning.

- VIII. ENCLOSURES:
 - A. References

IX. ASSURANCES:

IX.1. As the Principal Investigator on this protocol, I acknowledge my responsibilities and provide assurances for the following:

A. Animal Use: The animals authorized for use in this protocol will be used only in the activities and in the manner described herein, unless a modification is specifically approved by the IACUC prior to its implementation.

B. Duplication of Effort: I have made every effort to ensure that this protocol is not an unnecessary duplication of previous experiments.

C. Statistical Assurance: I assure that I have consulted with a gualified individual who evaluated the experimental design with respect to the statistical analysis, and that the minimum number of animals needed for scientific validity will be used.

D. Biohazard/Safety: I have taken into consideration and made the proper coordination regarding all applicable rules and regulations concerning radiation protection, biosafety, recombinant issues, and so forth, in the preparation of this protocol.

E. Training: I verify that the personnel performing the animal procedures / manipulations / observations described in this protocol are technically competent and have been properly trained to ensure that no unnecessary pain or distress will be caused to the animals as a result of the procedures / manipulations.

F. Responsibility: I acknowledge the inherent moral, ethical and administrative obligations associated with the performance of this animal use protocol, and I assure that all individuals associated with this project will demonstrate a concern for the health, comfort, welfare, and wellbeing of the research animals. Additionally, I pledge to conduct this study in the spirit of the fourth "R", namely, "Responsibility," which the DOD has embraced for implementing animal use alternatives where feasible and conducting humane and lawful research.

G. Scientific Review: This proposed animal use protocol has received appropriate peer scientific review and is consistent with good scientific research practice.

H. Painful Procedures: (Applicable if the research being conducted has the potential to cause more than momentary or slight pain or distress even if an anesthetic or analgesic is used to relieve the pain and/or distress.)

I am conducting biomedical experiments, which may potentially cause more than momentary or slight pain or distress to animals. This potential pain and/or distress WILL/ WILL NOT (circle one or both, if applicable) be relieved with the use of anesthetics, analgesics and/or tranquilizers. I have considered alternatives to such procedures; however, I have determined that alternative procedures are not available to accomplish the objectives of this proposed experiment.

I. Unexpected Adverse Events: I acknowledge the responsibility for reporting unexpected adverse events IAW the most current version of IACUC Policy Memorandum No. 8. "Policy on Unexpected Adverse Event Reporting".

(PRINT) Principal Investigator

IX.2. As the Primary Co-Investigator on this protocol, I provide the following assurances:

A. Animal Use: The animals authorized for use in this protocol will be used only in the activities and in the manner described herein, unless a modification is specifically approved by the IACUC prior to its implementation.

B. Authority: I understand that, as the Primary Co-Investigator, I am authorized and responsible for performing all procedures and manipulations as assigned to the SD/PI in the SD/PI's absence. This includes euthanasia of distressed animals.

C. Training: I verify that I am technically competent and have been properly trained to ensure that no unnecessary pain or distress will be caused to the animals as a result of the procedures/manipulations.

D. Responsibility: I acknowledge the inherent moral and administrative obligations associated with the performance of this animal use protocol, and I assure that I will demonstrate a concern for the health, comfort, welfare, and well-being of the research animals. Additionally, I pledge to conduct this study in the spirit of the fourth "R", namely "Responsibility," which the DOD has embraced for implementing animal use alternatives where feasible, and conducting humane and lawful research.

E. Painful Procedures: I am conducting biomedical experiments, which may potentially cause more than momentary or slight pain or distress to animals. This potential pain and/or distress WILL or WILL NOT (circle one or both, if applicable) be relieved with the use of anesthetics, analgesics and/or tranquilizers. I have considered alternatives to such procedures; however, I have determined that alternative procedures are not available to accomplish the objectives of this proposed experiment.

F. Unexpected Adverse Events: I acknowledge the responsibility for reporting unexpected adverse events IAW the most current version of IACUC Policy Memorandum No. 8. "Policy on Unexpected Adverse Event Reporting".

<u>Mathew</u> <u>A.</u> <u>Bazar</u> (PRINT) First name, MI, Last name of Primary Co-Investigator

Matthew a . Bayon

(Signature)

26 Jan 2015

(Date)

IX.3. As a Co-Investigator on this protocol, I provide the following assurances:

A. Animal Use: The animals authorized for use in this protocol will be used only in the activities and in the manner described herein, unless a modification is specifically approved by the IACUC prior to its implementation.

B. Authority: I understand that, as a Co-Investigator, I am authorized, responsible for, and willing to perform all procedures and manipulations as assigned to me by the SD/PI.

C. Training: I verify that I am technically competent and have been or will be properly trained to ensure that no unnecessary pain or distress will be caused to the animals as a result of the assigned procedures/manipulations performed by me.

D. Responsibility: I acknowledge the inherent moral and administrative obligations associated with the performance of this animal use protocol, and I assure that I will demonstrate a concern for the health, comfort, welfare, and well-being of the research animals. Additionally, I pledge to participate in this study in the spirit of the fourth "R", namely "Responsibility," which the DOD has embraced for implementing animal use alternatives where feasible, and conducting humane and lawful research.

E. Painful Procedures: I am participating in biomedical experiments, which may potentially cause more than momentary or slight pain or distress to animals. I will follow the direction of the SD/PI relative to potential pain and/or distress and relief by use of anesthetics, analgesics, and/or tranquilizers.

F. Unexpected Adverse Events: I acknowledge the responsibility for reporting unexpected adverse events IAW the most current version of IACUC Policy Memorandum No. 8. "Policy on Unexpected Adverse Event Reporting".

Charles L Crouse	Charles L Crouse	1-26-15
(PRINT)	(SIGNATURE)	(DATE)
First name, MI, Last name of C		
Theresal Hannal	Terry Cheresa Honza	1/26/15
(PRINT)	(SIGNATURE)	(DATE)
First name, MI, Last name of C	o-Investigator	
(PRINT)	(SIGNATURE)	(DATE)
First name, MI, Last name of C	o-Investigator	
(PRINT)	(SIGNATURE)	(DATE)
First name ML Last name of C	, ,	

First name, MI, Last name of Co-Investigator

APPENDIX A

REFERENCES

- AEHA. 1992. Initial Health Hazard Assessment Report (RCS MED 388) on the M18 Colored (Red, Green, and Yellow) Smoke Grenade Components. 69-37-XN46-92. U.S. Army Environmental Hygiene Agency, Aberdeen Proving Ground, Edgewood, MD.
- AEHA. 1993a. Health Hazard Assessment Report (RCS MED 388) on the 40 MM Colored Smoke Ground Marker. 69-37-XY57-93. U.S. Army Environmental Hygiene Agency, Aberdeen Proving Ground, Edgewood, MD.
- AEHA. 1993b. Health Hazard Assessment Report (RCS MED 388) on the M18 Colored (Red and Violet) Smoke Grenade Components. 69-37-XN46-93. U.S. Army Environmental Hygiene Agency, Aberdeen Proving Ground, Edgewood, MD.
- ASTM 2008. Standard Guide for Assessing the Environmental and Human Health Impacts of New Energetic Compounds. Conshohocken, PA.
- CFR 1989. Title 40, Code of Federal Regulations (CFR), Part 792, Toxic Substances Control Act (TSCA), Good Laboratory Practice Standards.
- DREW RT. 1978. Workshop on Inhalation Chamber Technology held at Brookhaven National Laboratory, NY. Contract No. DE-AC02-76CH00016 with U.S. Dept. of Energy. BNL-51318, pp. 3-8.
- Electronic Mail, ARDEC, Ms. Gretel Raibeck, 30 October 2013, subject: Red Smoke Grenades.
- NRC. 1999. Toxicity of Military Smokes and Obscurants, Volume 3. Washington, D.C.: National Academy Press.
- NRC 2011. Guide for the Care and Use of Laboratory Animals. National Academies Press.
- OECD 1981. Guideline for Testing of Chemicals. OECD 412: Repeated Dose Inhalation Toxicity: 28-Day or 14-Day Study.
- Phalen, RF. 1984. Inhalation Studies: Foundations and Techniques. CRC Press, pp. 129-136.
- Phalen, RF. 1997. Methods in Inhalation Toxicology. CRC Press, pp. 70-74.

USACHPPM 2007. Regulation 385-5, Occupational Health and Safety of Animal Users.

- USACHPPM. 2009. Acute Inhalation Toxicity Study (LC50) with Solvent Red 169 in Rats. Toxicology Report No. 87-XE-09FM-09, Prepared by A.J. O'Neill, U.S. Army Center for Health Promotion and Preventive Medicine, Aberdeen Proving Ground, MD 21010-5403.
- USAPHC 2013a. TOX SOP 013.001, Cell-Dyn Hematology Analyzer. Aberdeen Proving Ground, Maryland.
- USAPHC 2013b. TOX SOP 058.000 Distribution of Test Atmosphere within Inhalation Exposure Chambers. Aberdeen Proving Ground, Maryland.
- USAPHC 2014a. TOX SOP 046.002, Health and Safety of Laboratory Personnel, Aberdeen Proving Ground, Maryland.
- USAPHC 2014b. VMD SOP 002.000, Animal Euthanasia. Aberdeen Proving Ground, Maryland.
- USAPHC 2014c. VMD SOP 004.000, Animal Environmental Enrichment. Aberdeen Proving Ground, Maryland.
- USAPHC 2014d. VMD SOP 008.001, Animal Health Technician Duties for Animal Holding Rooms. Aberdeen Proving Ground, Maryland.
- USAPHC 2014e. VMD SOP 014.000, Individual Animal Identification. Aberdeen Proving Ground, Maryland.
- USAPHC 2014f. VMD SOP 016.000, Test System Observations. Aberdeen Proving Ground, Maryland.
- USAPHC 2014g. Acute and Four-Week Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated Black Smoke (PVA). Toxicology Study No. 87-XC-0CKC-11, Prepared by A.J. O'Neill and L.C.B. Crouse, U.S. Army Public Health Command, Aberdeen Proving Ground, MD 21010-5403.
- USAPHC 2015a. TOX SOP 011.001, Clinical Chemistry Analysis of Blood Specimens. Aberdeen Proving Ground, Maryland.
- USAPHC 2015b. TOX SOP 057.002, Aerodynamic Particle Size Measurement, Aberdeen Proving Ground, Maryland.
- USEPA 1998. Health Effects Test Guideline. OPPTS 870.1300: Acute Inhalation Toxicity.

PROTOCOL REVIEW, SUPPORT, APPROVAL SHEET					
PROTOCOL NUMBER:	TITLE: Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke				
- 35 - 15-01-01					
SUB-JONO TEST TYPE IACUC NUMBER					
1. SCIENTIFIC MERIT (PEER REVIEW)					
1a. Printed Name (First, MI, Last)	1b. Title	1c. Signature	1d. Date (yyyy/mm/dd)		
Emily N. Reinke	Biologist	REINKE, EMILY, NICOLE, 14475606	20141113		
2. DIRECTOR					
2a. Printed Name (First, MI, Last)	2b. Title	2c. Signature	2d. Date (yyyy/mm/dd)		
Mark S. Johnson	Portfolio Director, Toxicology	Lilck to Approve			
3. PROGRAM MANAGER		1			
3a. Printed Name (First, MI, Last)	3b. Title	3c. Signature	3d. Date (yyyy/mm/dd)		
Arthur J. O'Neill	Program Manager, Toxicity Evaluation	Lilick to Approve			
4. ATTENDING VETERINARIAN					
4a. Printed Name (First, MI, Last)	4b. Title	4c. Signature	4d. Date (yyyy/mm/dd)		
Mary E. Sprangel	MAJ, VC Attending Veterinarian	SPRANGEL.MARY.E.10237768	20141211		
5. ANALYTICAL CHEMISTRY (If Applicable)					
5a. Printed Name (First, MI, Last)	5b. Title	5c. Signature	5d. Date (yyyy/mm/dd)		
Jose M. Pizarro	MAJ, Chief Molecular Biology Section	Liick ta Apprave			
6. SAFETY MANAGER					
6a. Printed Name (First, MI, Last)	6b. Title	6c. Signature	6d. Date (yyyy/mm/dd)		
Roy A. Valiant	Safety Manager	Lick to Approve			
7. STATISTICIAN (If Applicable)					
7a. Printed Name (First, MI, Last)	7b. Title	7c. Signature	7d. Date (yyyy/mm/dd)		
Shane Hall	Statistician	HALL.SHANE.138427613	20141113		

PROTOCOL NUMBER:	TITLE: Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated M18 Red Smoke					
- 35 - 15-01-01 SUB-JONO TEST TYPE IACUC NUMBER						
8. SIO-QAT (GLP COMPLIANCE AND QA SUPPORT)						
8a. Printed Name (First, MI, Last)	8b. Title	8c. Signature	8d. Date (yyyy/mm/dd)			
Michael P. Kefauver	QSRC	Click in Approve				
9. CHAIRMAN, IACUC						
9a. Printed Name (First, MI, Last)	9b. Title	9c. Signature	9d. Date (yyyy/mm/dd)			
Kristin T. Newkirk	Animal Care & Use Specialist, Chairman, IACUC	NEWKIRK KRISTIN TORELL 1014786895 🤗	20150126			
10. INSTITUTIONAL OFFICIAL						
10a. Printed Name (First, MI, Last)	10b. Title	10c. Signature	10d. Date (yyyy/mm/dd)			
John J. Resta	Director, IPH	RESTA.JOHN.J.122912930	20150127			
11. STUDY DIRECTOR/PRINCIPAL INVESTIGATOR		<u>, </u>				
11a. Printed Name (First, MI, Last)	11b. Title	11c. Signature	11d. Date (yyyy/mm/dd)			
Lee C.B. Crouse	Biologist, Toxicity Evaluation Program	CROUSE.LEE.1239523269	20150128			
12. OTHER ORGANIZATION(S) PROVIDING SUPPORT (AS NEEDED):						
12a. Printed Name (First, MI, Last)	12b. Title	12c. Signature	12d. Date (yyyy/mm/dd)			
13. STUDY SPONSOR:						
13a. Printed Name (First, MI, Last)	13b. Title	13c. Signature	13d. Date (yyyy/mm/dd)			
		•	•			

USACHPPM PROTOCOL MODIFICATION For use of this form, see DTOX SOP 085							
1. DATE: (YYYY/N	M/DD) 2015/06/26 2. PROTOCOL NUMBER: 35-15-01-01 3. MODIFICA			ATION#:	ATION#: 1		
4. PROTOCOL TITLE: Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically-Disseminated M18 Red Smoke							
5. STUDY DIREC	TOR/PRINCIPAL INVESTIGAT	OR:		6. WORK PHONE:		7. OFF	FICE SYMBOL:
Lee Crouse	an in the second se			410-436-5088		MCHB-I	IP-TEP
	SECTION I. PREV	IOUSLY APPROVED AND C	URRENTLY IN U	ISE PROTOCOL MOD	FICATIONS:		
1. MODIFICATIO NUMBER	2. SHORT DESCRIPTION	ON OF PRIOR APPROVED M	ODIFICATION(S	Incent we show have the second state	3. NO. & SPECIES OF ANIMAL REQUESTED		
					50		
	<u>a</u>						
		14					
	SECTION II. CHANG	GE IN TOTAL # OF ANIMALS	USED AND/OR	CHANGE IN USDA PA	IN CATEGOR	łY	
1a. CHANGE: IN	CREASE TOTAL APPROVED	ANIMALS BY:					1b. N/A 🗸
2. ORIGINAL PRO	DTOCOL TOTAL: 102		3. PROTOCO	L TOTAL AFTER MOD	IFICATION:	102	
2a. USDA pain ca	it: B: C: 15	D: 60 E. 27	3a. USDA pain o	cat: B: C:	15	D: 60	E: 27
4. Yes No			///////////////////////////////////////		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Modification requires specific	changes or additions to the e	xperimental desig	n of the protocol. (Sec	tion V.I. of the	e template	e.)
	Modification requires changes the protocol template.) Indicat				iosample colle	ection, et	c. (Section V.4. of
	Modification requires additions or changes in personnel performing procedures. (Section VI of the protocol template.) Include training and qualification information and tasks that each individual will be performing. If changing the Study Director/PI, a signed Assurance Statement needs to be submitted with the modifications.						
PROTOCOL Page, paragraph, section		SECTION Explain the modification ind 3R's (Refinement, Reduction	icated above in th				
Page 6, V.1., Page 7, V.1.1	1. MODIFICATION:						
Page 7, V.1.1., Page 10, V.1.1.5. & V.1.1.6.	One acute exposure with 5 male and 5 female rats has already been completed at a limit concentration of 2 mg/L. The protocol allows for up to 2 additional acute exposures (5 male and 5 female rats each) if needed for an LC50 determination. This modification is requesting the use of these 20 rats but not for a traditional LC50 determination (justification provided below). Five male and 5 female animals will be exposed again to a targeted red smoke concentration of 2 mg/L. Three male and 3 female animals will receive a gross necropsy the day after this exposure and 2 male and 2 female animals will receive a gross necropsy the day after this exposure and 2 male and 2 female animals will receive a gross necropsy after the traditional 14-day observation period. If the lung lesions observed during the first round of acute exposures are again observed in any of the animals used for the second round of acute exposures (regardless of scheduled recovery time prior to necropsy), this modified necropsy schedule will be repeated at a lower targeted red smoke concentration with 10 rats in an attempt to determine a safe level of acute exposure. If no lung lesions are observed as a result of the second round of acute exposures, no additional animals will be required. This modification is not requesting any additional animals beyond those already approved in the original protocol.						
	1a. JUSTIFICATION/REASO	N:					
	This first acute exposure at a limit concentration of 2 mg/L did not produce any mortality; however, moderate/severe lung lesions were observed in all 10 animals during gross necropsy following a 2-week recovery period. These lesions were not observed in any of the repeated-exposure animals (10 exposures total) exposed to red smoke at an average concentration up to and including 1.5 mg/L. Microscopic evaluation of a small sample of the lungs from the acute exposure revealed effects similar to those observed with a respiratory illness such as emphysema. Although the additional animal exposures would not be used for a traditional LC50 determination, the information gained will be used to determine if the effects observed were due to a pre-existing respiratory illness or were caused by exposure to the red smoke. In addition, the different necropsy times proposed for the second round of acute exposures will also determine if the lung lesions observed were the result of a response mechanism by the lungs in an attempt to repair themselves following exposure or were present the day following exposure. The proposed third round of acute exposures, if needed, would be used to determine a safe level of acute exposure for soldiers using these smoke grenades.						

PROTOCOL Page, paragraph, section		rea below. Indicate any changes to the 3R's (Refinement, Reduct g from changes in number of animals used.	ion, Replacement)			
occiton -	2. MODIFICATION:					
	2a. JUSTIFICATION/REASON:					
	3. MODIFICATION:					
	3a. JUSTIFICATION/REASON:					
	4. MODIFICATION:					
	4. MODIFICATION.					
4a. JUSTIFICATION/REASON:						
Rective the reaction of the Residence of the reaction of the	Continued on ne	xt page YES NO 🗸				
1. STUDY DIRECT		SIGNATURES AND DATES				
Lee Crouse	OR. (Printed Name)	Ju Signature	DATE: (yyyy/mm/dd) 2015/07/07			
	NAGER:: (Printed Name)	Signature	DATE: (yyyy/mm/dd) 2015/07/07			
3. ATTENDING VE	TERINARIAN: (Printed Name)	M Stan	DATE: (yyyy/mm/dd) 2015-107/07			
4. CHPPM SAFET	4. CHPPM SAFETY OFFICER/OCC HEALTH REP: (IF APPLICABLE) Signature DATE: (yyyy/mm/d					
5. CHAIR, IACUC	OR QA (If no animal related changes): (Printed Name)		DATE: (yyyy/mm/dd)			
Kristin Newkirk	Kristin Newkirk 2015/07/07					

CHPPM FORM 28-R-E, NOV 2006 (MCHB-TS-T) REPLACES CHPPM FORM 28-E, MAY 1996

CHPPM PE v2.00