
Implicitly-Defined Neural Networks for Sequence Labeling

Michaeel Kazi, Brian Thompson
MIT Lincoln Laboratory

244 Wood St, Lexington, MA, 02420, USA
{first.last}@ll.mit.edu

Abstract
1 In this paper, we propose an implicit neu-
ral network architecture and show that it can
be computed in a reasonably efficient manner.
Our architecture relaxes the causality assump-
tion in formulating recurrent neural networks,
so that the hidden states of the network are
coupled together, in order to improve perfor-
mance on complex, long-range dependencies
in either direction of a sequence. We contrast
our architecture with a bidirectional RNN, and
show that our proposed architecture the bidi-
rectional network matches it’s performance on
one task, while providing an ensembling ben-
efit greater than ensembling multiple bidirec-
tional networks.

1 Introduction
Feedforward neural networks were designed to approx-
imate and interpolate functions. Recurrent networks
were developed to predict sequences. These recur-
rent networks can be ‘unwrapped’, and thought of as
a very deep feedforward network, with each layer shar-
ing the same set of weights. Computation proceeds one
step at a time, like the trajectory of an ordinary dif-
ferential equation when solving an initial value prob-
lem. However, in certain applications in natural lan-
guage processing, especially those with long-distance
effects, and where grammar matters, sequence predic-
tion may be better thought of as a boundary value prob-
lem, because information flows inward from the bound-
ary and creates a strongly coupled system. The bidi-
rectional network addresses this problem by allowing
information to flow in both directions. However, this
still equates to running two ‘for’ loops through the
data. Many algorithms in practice require more than
two passes through the data to determine the answer.
We attempt to provide a slightly different mechanism
to the bidirectional network where our motivation is a
program which iterates over itself until convergence.

1Distribution A: Public Release, unlimited distrituon.
This work is sponsored by the Air Force Research Lab-
oratory under Air Force contract FA-8721-05-C-0002. Opin-
ions, interpretations, conclusions and recommendations are
those of the authors and are not necessarily endorsed by the
United States Government.

Figure 1: Traditional recurrent neural network struc-
ture.

1.1 Related Work
Long-range dependencies have been an issue as long
as there have been NLP tasks, and there are many ef-
fective approaches to dealing with them. In the con-
text of Hidden Markov models (HMMs), there are
the “Forward-Backward” models. In information ex-
traction, there are non-local sequence models that use
Gibbs sampling (Finkel et al., 2005), which is the pa-
per most similar to this work. In recent years, the pop-
ularity has soared for the Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and vari-
ants such as Gated Recurrent Unit (GRU) (Cho et al.,
2014), which enabled recurrent neural networks to pro-
cess long sequences without the problem of vanish-
ing or exploding gradients, and thus retain informa-
tion about dependencies. The Bidirectional LSTM (b-
LSTM) (Graves and Schmidhuber, 2005), a natural ex-
tension of (Schuster and Paliwal, 1997), incorporates
past and future hidden states via two separate recur-
rent networks, allowing information/gradients to flow
in two directions.

2 The Implicit Recurrent Neural
Network

2.1 Assumptions of Recurrent Neural Networks
A typical recurrent neural network has an input se-
quence [x1, x2, . . . , xs] and initial state h0 and itera-
tivly produces future states:

h1 = f(x1, h0)
h2 = f(x2, h1)
. . .
hs = f(xs, hs−1)

Figure 2: Proposed implicit network architecture

The LSTM, GRU, and related variants follow this
formula, with different choices for the state transi-
tion function. Computation proceeds left-to-right, with
each next state depending only on inputs and previ-
ously computed hidden states. In this work, we in-
vestigate relaxing this assumption by allowing ht =
f(xt, ht−1, ht+1)

2. This leads to an implicit set of
equations for the entire sequence of hidden states,
which can be thought of as a single tensor H:

H = [h0, h1, h2, . . . , hs]

This yields a system of nonlinear equations. This
setup has the potential for arriving at nonlocal, whole-
sequence dependent results. As an additional motiva-
tion, we may also wonder if such a system is more
‘stable’, whereby the predicted sequence may drift less
from the true meaning, since errors will not compound
with each time step in the same way.

2.2 Proposed Architecture

There are many potential ways to architect a neural net-
work – in fact, this flexibility is one of deep learning’s
best features – but we restrict our discussion to the one
depicted in Figure 2. In this setup, we have the follow-
ing variables:

data X
labels Y
parameters θ
transformed input ξ
hidden layers H

and functions:

loss function L = `(θ,H, Y)
implicit hidden layer definition H − F (θ, ξ,H) = 0
input layer transformation ξ = g(θ,X)

Our implicit definition function, F , is made up of
local state transitions, and forms a system of nonlinear
equations that we need to solve:

2A wider stencil can also be used, e.g. f(ht−2, ht−1, . . .).

h1 = f(h0, h2, ξ1)
. . .

hi = f(hi−1, hi+1, ξi)
. . .

hn = f(hn−1, hn+1, ξn)

2.3 Computing the forward pass

To evaluate the network, we must solve the equation
H = F (H). We computed this via an approximate
Newton solve:

Hn+1 = Hn − (I −∇HF)−1(Hn − F (Hn))

Since (I − ∇HF) is sparse, we apply Krylov sub-
space methods (Knoll and Keyes, 2004), specifically
BiCG-Stab method (Van der Vorst, 1992), since the
system is non-symmetric. This has the added advan-
tage of only relying on matrix-vector multiplies of the
gradient of F , which can be conveniently and effi-
ciently computed via the Theano (Bergstra et al., 2011)
operator Rop.

We also considered approximating the inverse via
a polynomial Pn(∇HF), and used the geometric se-
ries Pn(x) = 1 + x + x2 + . . . + xn, which con-
verges provided that ||∇HF || < 1. This, with n = 1,
proved a reasonable approximation for the task of Part-
of-Speech tagging (Section 3.1).

However, for other tasks, we found the eigenvalues
of the system were not as well-behaved.

2.4 Gradients

In order to train the model, we perform gradient de-
scent. Taking the gradient of the loss function:

∇θL = ∇θ`+∇H`∇θH

so we will need to know the gradient of the hidden
units with respect to the parameters, which we can find
via the implicit definition:

0 = ∇θH −∇θF −∇HF∇θH −∇ξF∇θξ
(I −∇HF)∇θH = ∇θF +∇ξF∇θξ

∇θH = (I −∇HF)−1 (∇θF +∇ξF∇θξ)

The entire gradient is then

∇θL = ∇θ`+∇H`(I−∇HF)−1 (∇θF +∇ξF∇θξ)

Once again, the inverse of I−∇HF appears, and we
can compute it via Krylov subspace methods. Since it
is more efficient to compute ∇H`(I − ∇HF)−1 first,
our solver in this case uses the Theano Lop operator.

2.5 Transition Functions
Recall the original GRU equations, with slight nota-
tional modifications:

final hidden ht = (1− zt)ĥt + zth̃t
candidate hidden h̃t = tanh(Wxt + U(rtĥt) + b̃)

update weight zt = σ(Wzxt + Uzĥt + bz)

reset gate rt = σ(Wrxt + Urĥt + br)

To make this implicit and bidirectional, we let ĥt
(defined as ht−1 in (Cho et al., 2014)) be a linear com-
bination of previous and future hidden states via the
switch variable s. s is in turn determined by a competi-
tion between two sigmoidal units sp and sn, represent-
ing the contributions of the previous and next hidden
states, respectively.

state combination ĥt = sht−1 + (1− s)ht+1

switch s = sl
sl+sr

previous switch sp = σ(Wpxt + Upht−1 + bp)
next switch sn = σ(Wnxt + Unht+1 + bn)

3 Experiments
3.1 Part-of-speech tagging
Next we apply our model to a real world problem.
Part of speech tagging fits naturally in the sequence
labeling framework, and has the advantage of a stan-
dard dataset that we can use to compare our network
with other techniques. To train a part-of-speech tag-
ger, we simply let L be a softmax layer transforming
each hidden unit output into a part of speech tag. Ini-
tially, ξ consisted only of word vectors for 39,000 case-
sensitive vocabulary words. Next, we lowercased the
vocabulary words, but added a single feature indicat-
ing whether case appeared in the data. Third, we added
six additional ‘word vector’ components to encode the
top-2000 most common prefixes and suffixes of words,
for affix lengths 2 to 4. Finally, we added in other
(binary) features to indicate the presence of numbers,
symbols, punctuation, and more rich case data, as used
by (Huang et al., 2015).

We trained the Part of Speech (POS) tagger on the
Penn Treebank Wall Street Journal corpus (Marcus
et al., 1993), blocks 0-18, validated on 19-21, and
tested on 22-24, and compared it to the results of
the off-the-shelf Stanford Part-of-Speech tagger. The
results are indicated in Table 1. We were able to
achieve comparable results, and as Manning notes, per-
formance gains past that point are quite difficult, due
to errors/inconsistencies in the dataset, ambiguity, and
very difficult linguistics, sometimes with dependencies
across sentences (Manning, 2011).

Training was done using stochastic gradient descent,
with an initial learning rate of 0.5, and a batch size of
20. Word vectors were of dimension 200, prefix and
suffix vectors were of dimension 12. Hidden unit size

Figure 3: Visualization of the switch variable. Posi-
tive values indicate a right-to-left flow of information,
while negative values indicate left-to-right. Note that
‘Tokyo’ is used to modify ‘market’, instead of being
a noun, and thus needs information from ‘market’ to
make the correct determination.

was equal to feature input size, so in this case, 280.
Training this way is takes about 5 seconds per batch.
Batching the nonlinear solver was slightly tricky – it
was straightforward to perform the same BiCG-stab
computations across different elements in the batch,
but different elements converged quicker than others,
and some elements required restarting from a different
random initialization. For part-of-speech tagging, how-
ever, most of the elements were well-behaved.

We also visualized some of the outputs of the
“switch” variables for various sentences. The switch
is made up of many features, so it does not necessarily
always correspond to human judgment, but by taking
the average, one can get a sense of the flow of informa-
tion. In Figure 3, we see a visualization of the switch
on a very simple sentence, and in Figure 4 we see it in
action over a more complicated sentence. Interestingly,
phrasal structures emerge.

4 Acknowledgements
This work would not be possible without the support
and funding of the Air Force Research Laboratory. We
also acknowledge Nick Malyska, Elizabeth Salesky,
and Jonathan Taylor at MIT Lincoln Lab for interest-
ing technical discussions related to this work.

Figure 4: A more complicated example, but that is
actually more representative of the types of sentences
within the WSJ corpus. Note the entire clause about
‘Health Care Property Investors Inc.’ propagates in-
formation from the right – without the Inc, it may not
realize it is the name of a company. Also of note
are phrases “offering of 200,000 shares” and “Merrill
Lynch Capital Markets.” This graphic was done using
the case-insensitive model.

Tagger WSJ Accuracy

Word vectors only 0.9626
Single case feature 0.9650
Ensemble of above (2) 0.9683
Affix word-vectors 0.9714
Case+Symbol feats 0.9730
Ensemble without case 0.9731
Ensemble with case 0.9736
Stanford POS Tagger 0.9732

Table 1: Tagging performance.

Architecture WSJ Accuracy

GRU 96.51
LSTM 96.53
Bidirectional GRU 97.26
b-LSTM 97.27
Implicit 97.30
b-LSTM Ensemble 97.31
Implicit Ensemble 97.36
Implicit + b-LSTM 97.40

Table 2: Tagging performance relative to other recur-
rent architectures.

References
James Bergstra, Frédéric Bastien, Olivier Breuleux,

Pascal Lamblin, Razvan Pascanu, Olivier Delalleau,
Guillaume Desjardins, David Warde-Farley, Ian
Goodfellow, Arnaud Bergeron, et al. 2011. Theano:
Deep learning on gpus with python. In NIPS 2011,
BigLearning Workshop, Granada, Spain.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. Syntax, Semantics and Structure in Statis-
tical Translation page 103.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics.
Association for Computational Linguistics, pages
363–370.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works 18(5):602–610.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8):1735–
1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Dana A Knoll and David E Keyes. 2004. Jacobian-
free newton–krylov methods: a survey of approaches
and applications. Journal of Computational Physics
193(2):357–397.

Christopher D Manning. 2011. Part-of-speech tag-
ging from 97% to 100%: is it time for some lin-
guistics? In International Conference on Intelli-
gent Text Processing and Computational Linguistics.
Springer, pages 171–189.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics 19(2):313–330.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. Signal Processing,
IEEE Transactions on 45(11):2673–2681.

Henk A Van der Vorst. 1992. Bi-cgstab: A fast and
smoothly converging variant of bi-cg for the solution
of nonsymmetric linear systems. SIAM Journal on
scientific and Statistical Computing 13(2):631–644.

