

AFRL-RY-WP-TR-2017-0074

FULLY ADAPTIVE RADAR MODELING AND
SIMULATION DEVELOPMENT

Kristine L. Bell and Anthony Kellems
Metron, Inc.

Graeme E. Smith
The Ohio State University

Bruce L. McKinley
Signal Processing Consultants, Inc.

APRIL 2017
Final Report

THIS IS A SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE I REPORT.

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public
Affairs Office (PAO) and is available to the general public, including foreign nationals. Copies may
be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RY-WP-TR-2017-0074 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

// Signature// // Signature//

Muralidhar RangaswamyProgram Manager Gregory Cazzell, Chief
Program Manager Radio Frequency Exploitation Branch
Radio Frequency Exploitation Branch

// Signature//

Doug Hager, Deputy
Layered Sensing Exploitation Division

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

http://www.dtic.mil/

NOTICE TO ACCOMPANY THE DISSEMINATION
OF EXPORT CONTROLLED TECHNICAL DATA

Export of the attached information (which includes, in some circumstances, release to foreign
nationals within the United States) without first obtaining approval or license from the
Department of State for items controlled by the International Traffic in Arms Regulation (ITAR),
or the Department of Commerce for items controlled by the Export Administration Regulation
(EAR), may constitute a violation of law.

Under 22 U.S.C. 2778, the penalty for unlawful export of items or information controlled under
the ITAR is up to ten years imprisonment, or a fine of $1,000,000, or both. Under 50 U.S.C.,
appendix 2410, the penalty for unlawful export of items or information controlled under the EAR
is a fine of up to $1,000,000, or five times the value of the exports, whichever is greater; or for
an individual, imprisonment of up to 10 years, or fine of up to $250,000, or both.

In accordance with your certification that establishes you as a “qualified U.S. contractor,”
unauthorized dissemination of this information is prohibited and may result in your
disqualification as a qualified U.S. contractor, and may be considered in determining your
eligibility for future contracts with the Department of Defense.

The U.S. Government assumes no liability for direct patent infringement, or contributory patent
infringement, or misuse of technical data.

The U.S. Government does not warrant the adequacy, accuracy, currency, or completeness of the
technical data.

The U.S. Government assumes no liability for loss, damage, or injury resulting from
manufacture or use for any purpose of any product, article, system, or material involving reliance
upon any or all technical data furnished in response to the request for technical data.

If the technical data furnished by the Government will be used for commercial manufacturing or
other profit potential, a license for such use may be necessary. Any payments in support of the
request for data do not include or involve any license rights.

A copy of this notice shall be provided with any partial or complete reproduction of these data
that are provided to qualified U.S. contractors.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

April 2017 Final 9 June 2016 – 9 January 2017
4. TITLE AND SUBTITLE

FULLY ADAPTIVE RADAR MODELING AND SIMULATION
DEVELOPMENT

5a. CONTRACT NUMBER
FA8650-16-M-1774

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
65502F

6. AUTHOR(S)
Kristine L. Bell and Anthony Kellems (Metron, Inc.)
Graeme E. Smith (The Ohio State University)
Bruce L. McKinley (Signal Processing Consultants, Inc.)

5d. PROJECT NUMBER
3005

5e. TASK NUMBER
N/A

5f. WORK UNIT NUMBER
 Y1HV

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES)

Metron, Inc.
1818 Library St., Suite 600
Reston, VA 20190

The Ohio State University
Signal Processing Consultants, Inc.

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

AFRL/RYAP
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER(S)
AFRL-RY-WP-TR-2017-0074

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This is a Small Business Innovation Research (SBIR) Phase I Report. PAO case number 88ABW-2017-1028, Clearance Date 17
March 2017. SBIR data rights waived by contractor. Letter on file. Report contains color.

14. ABSTRACT
This is a Small Business Innovation Research (SBIR) Phase I Report developed under SBIR contract for topic AF161-132 Fully Adaptive
Radar Modeling and Simulation Development. We have developed a MATLAB-based modeling and simulation (M&S) architecture for
distributed fully adaptive radar (FAR) that will enable algorithm development and testing on simulated, previously collected, and real-time
streaming data. The architecture is coded in MATLAB using an object oriented programming approach. The architecture includes a FAR
engine to control the operation of the perception-action cycle and software objects that determine the next set of sensing parameters; obtain
data from the sensor; process the data to track the target; and store and display the results of the sensing and tracking processes. We have
developed modules that implement simulated and pre-recorded software defined radar (SDR) data examples, and real-time and simulated
data examples from the Cognitive Radar Engineering Workspace (CREW) at The Ohio State University. The FAR M&S architecture
allows for transparent switching between the simulated and experimental CREW data sources, as well as between FAR algorithms that
drive the sensing. The ability to easily interchange sensing and processing modules will allow for rapid development and testing of
cognitive radar algorithms by structuring the M&S functions to avoid duplicating effort and “single point” solutions. It will enable
collaboration between researchers in industry, academia, and the Air Force, as algorithms developed by different researchers can be tested
and compared using consistent simulations, collected data, and laboratory conditions. Report contains color.

15. SUBJECT TERMS
SBIR report, fully adaptive radar, cognitive radar, modeling and simulation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT:

SAR

8. NUMBER OF
PAGES

 50

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Muralidhar Rangaswamy
19b. TELEPHONE NUMBER (Include Area Code)

N/A
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Metron, Inc
1818 Library Street
Suite 600
Reston, VA 20190
(703) 787-8700
(703) 787-3518 FAX
www.metsci.com

 9 February 2017

Dr. Muralidhar Rangaswamy
AFRL/RYAP
2241 Avionics Circle
Wright-Patterson AFB, OH 45433

Subject: Contract Number FA8650-16-M-1774, Phase I SBIR Topic AF161-132
 Fully Adaptive Radar Modeling and Simulation Development
 Report # TBD

Dear Dr. Rangaswamy:

Metron, Inc. hereby waives its SBIR Data Rights to all contents of the final report for subject
contract. The Government is granted an unlimited nonexclusive license to use, modify,
reproduce, release, perform, and display or disclose this report and the data contained herein.

Sincerely,

Kristine L. Bell, Ph.D.
Senior Scientist
Advanced Mathematics Applications Division
Metron, Inc.
bell@metsci.com
703-326-2913

i

TABLE OF CONTENTS
Section Page

LIST OF FIGURES .. ii
LIST OF TABLES ... iii
1 SUMMARY ...1
2 INTRODUCTION ...2
3 METHODS, ASSUMPTIONS, AND PROCEDURES ...5

3.1 Fully Adaptive Radar Framework ...5
3.1.1 General Framework ..5
3.1.2 Cognitive Single Target Tracking ..8
3.1.3 Cognitive Single Target Tracking, Initiation, and Termination9
3.1.4 Cognitive MAP-PF Single Target Tracking ...14

3.2 Examples ..18
3.3 Summary ..18

4 RESULTS AND DISCUSSION ..19
4.1 FAR M&S Software Architecture Overview ...19
4.2 Using the FAR M&S MATLAB Code ..21

4.2.1 System Requirements ...21
4.2.2 Getting Started ..21

4.3 FAR M&S Architecture Base Classes ...22
4.3.1 Scene ..22
4.3.2 Sensor ...22
4.3.3 Processor ..22
4.3.4 Optimizer ..22
4.3.5 Storage Manager ..22
4.3.6 Display Manager ..23
4.3.7 Timing Manager ...23
4.3.8 Perception Action Cycle ...23
4.3.9 FAR Engine ..27
4.3.10 Utility Functions ..27

4.4 The CREW Sensor ...28
4.5 Summary ..31

5 CONCLUSIONS..32
6 REFERENCES ..33
LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS ..40

Approved for public release; distribution is unlimited

ii

LIST OF FIGURES

Figure Page

Figure 1: Cognitive Sensor/Processor System Framework .. 6

Figure 2: Cognitive MAP-PF Sensor/Processor System Framework ... 14

Figure 3: FAR M&S Architecture Block Diagram ... 20

Figure 4: CREW Schematic Showing the Digital Backend, IF Stage, and W-band RF Stage 28

Figure 5: CREW Sensor Object .. 30

Approved for public release; distribution is unlimited

iii

LIST OF TABLES

Table Page

Table 1: Cognitive Single Target Tracking Recursion ... 9
Table 2: Cognitive Single Target Tracking, Initiation, and Termination Recursion 13
Table 3: Cognitive Single Target MAP-PF Tracking Recursion .. 17

Approved for public release; distribution is unlimited

1

1 SUMMARY

The potential of cognitive approaches to enhance existing radar performance in almost all

respects has led to an upsurge in research in recent years and a key gap in the Air Force’s radar
modeling and simulation (M&S) tools is the lack of a comprehensive, dynamic distributed radar
scenario generation capability for distributed fully adaptive radar (FAR) systems. As of early
2015, the research had all been advancing concepts theoretically and examining their
performance through simulation, or at best using pre-recorded data. There had been no reports
of experimentally validated concepts, largely because the necessary hardware to test them had
not been developed. However, this step is vital in order to establish the true performance
potential of applying cognitive processing methods. To address this, the Cognitive Sensing
Laboratory (CSL) at The Ohio State University (OSU) ElectroScience Laboratory (ESL), in
conjunction with Metron, Inc., the Air Force Research Laboratory (AFRL), and the Air Force
Office of Scientific Research (AFOSR), has embarked on a program of research to develop and
examine cognitive radar processing concepts analytically and experimentally.

The CSL designed and built the Cognitive Radar Engineering Workspace (CREW), the

world’s first radar testbed built specifically to allow testing of fully adaptive and cognitive
algorithms, and Metron and OSU have developed a theoretical framework for a cognitive FAR
system that identifies and mathematically models the key system components within the context
of target detection and tracking for a single sensor and target. We have been developing
modeling, simulation, analysis, and experimentation capabilities to demonstrate the performance
improvement achieved by FAR systems over traditional feed-forward radar (FFR) systems. We
began with simulated scenarios and pre-recorded data from OSU’s Software Defined Radar
(SDR) system. We now have the capability to demonstrate the real-time operation of the
cognitive radar tracking system using the CREW.

The goal of this project is to develop a MATLAB-based M&S architecture for distributed

FAR radar that will enable algorithm development and testing on simulated, previously
collected, and real-time streaming data. In Phase I, we have developed a baseline FAR M&S
architecture that is coded in MATLAB using an object oriented programming (OOP) approach.
It includes a FAR engine to control the operation of the perception-action (PA) cycle and
software objects that determine the next set of sensing parameters; obtain data from the sensor;
process the data to track the target; and store and display the results of the sensing and tracking
processes. We have developed modules that implement simulated and pre-recorded SDR data
examples, and real-time and simulated CREW data examples.

The FAR M&S architecture developed in Phase I allows for transparent switching

between the simulated and experimental CREW data sources, as well as between FAR
algorithms that drive the sensing. The ability to easily interchange sensing and processing
objects will allow for rapid development and testing of cognitive radar algorithms by structuring
the M&S functions to avoid duplicating effort and “single point” solutions. It will enable
collaboration between researchers in industry, academia, and the Air Force, as algorithms
developed by different researchers can be tested and compared using consistent simulations,
collected data, and laboratory conditions.

Approved for public release; distribution is unlimited

2

2 INTRODUCTION

Radar systems are crucial for robust surveillance, target acquisition, and reconnaissance
in all weather conditions and over wide ranges of interest. Anti-access/area denial (A2/AD)
environments are especially challenging, therefore it is necessary to develop innovative signal
and data processing techniques to provide advanced sensing capabilities to the warfighter.
Distributed multiple input multiple output (MIMO) FAR systems provide the potential to exploit
all available degrees of freedom on transmit and receive in order to maximize radar system
performance, thus they offer much promise for improved sensing as well as the creation of new
sensing modalities.

MIMO radar systems employ multiple transmit and receive elements with transmit
elements that have the ability to transmit arbitrary waveforms simultaneously and receive
elements that have the ability to process all of the transmitted signals jointly [1]-[10]. Of
primary interest are MIMO ground moving target indicator (GMTI) systems consisting of
distributed airborne platforms. As in traditional single input single output (SISO) and single
input multiple output (SIMO) systems, effective clutter suppression is a key factor in system
performance, and the availability of realistic clutter models and simulated clutter data is critical
for advanced system design and performance analysis.

M&S tools developed by the Air Force include the Research Laboratory Space Time
Adaptive Processing (RLSTAP) Algorithm Development Tool [11], which provides a flexible
simulation and analysis tool for SIMO GMTI systems that employ monostatic space-time
adaptive processing (STAP) [12]-[14], and the Signal Modeling and Simulation Tool for
Multichannel Bistatic Systems (SMS-MBS) [15]-[17], which provides an advanced M&S
capability for bistatic SIMO STAP systems. The SMS-MBS tool can generate multiple data
cubes for multiple coherent processing intervals (CPIs) with automatically updated bistatic
scenarios, but is limited to geometries for which the bistatic angle is small and the monostatic-
bistatic equivalence theorem (MBET) approximation is valid. The MIMO Radar Clutter
Modeling and Simulation (MIMO-CMS) tool [18],[19], developed by Metron, OSU, and Signal
Processing Consultants, Inc. (SPC), provides a physics-based M&S capability for distributed
airborne MIMO GMTI systems and extends the M&S capabilities to multistatic STAP [20] and
multistatic MIMO [21] configurations. MIMO-CMS accurately characterizes the statistical and
spectral properties of the clutter for a variety of radar operating parameters and site-specific
geometry and scattering environments. It uses a physics-based bistatic scattering model
developed by OSU and is not limited by the MBET approximation [22]. A companion set of
toolbox functions calculates fundamental quantities such as iso-range contours, the radar range
equation, mean clutter radar cross section (RCS), clutter amplitude and spectral characteristics,
the true covariance matrix, and the clutter rank [23]. Additional functions perform MIMO signal
processing, calculate performance metrics such as signal-to-noise-ratio (SNR), mean-square
error (MSE), detection and false alarm probabilities; and perform statistical and experimental
model goodness-of-fit tests. MIMO-CMS currently only provides a single CPI data cube for a
fixed set of radar system parameters.

FAR systems, also called cognitive radar (CR) systems, mimic the PA cycle of cognition
[24],[25] to adapt the radar sensor in real-time to collect data to achieve a required level of

Approved for public release; distribution is unlimited

3

performance [26]-[43]. This requires developing a perception of the current system status,
prediction of the effect different sensing actions, and choosing the next sensing action, all in real-
time. Haykin introduced the concept of cognitive radar in [26], however the motivation and
many of the underlying ideas grew out of the fields of knowledge-aided radar signal processing
[41]-[47], agile waveform design [48]-[55], sensor management [56]-[66], sonar ping control
[67]-[69], bio-mimetic signal processing [70]-[75], and echoic flow [76],[77]. Although the
concept of sensor adaptation goes back several decades, research into truly cognitive systems is
currently in its infancy.

The potential of cognitive approaches to enhance existing radar performance in almost all

respects has led to an upsurge in research in recent years. As of early 2015, the research had all
been advancing concepts theoretically and examining their performance through simulation, or at
best using pre-recorded data. There had been no reports of experimentally validated concepts,
largely because the necessary hardware to test them had not been developed. However, this step
is vital in order to establish the true performance potential of applying cognitive processing
methods. To address this, the CSL at the OSU ESL, in conjunction with Metron, Inc., AFRL,
and AFOSR, has embarked on a program of research to develop and examine cognitive radar
processing concepts analytically and experimentally.

Under an AFOSR-sponsored grant from the 2013 Defense University Research

Instrumentation Program (DURIP), the CSL designed and built the CREW, the world’s first
radar testbed built specifically to allow testing of fully adaptive and cognitive algorithms. The
CREW became operational in early 2015. Under AFRL-sponsored Small Business Innovative
Research (SBIR) Topic AF 131-135 Fully Adaptive Radar, Metron and OSU have developed a
theoretical framework for a cognitive FAR system that identifies and mathematically models the
key system components within the context of target detection and tracking for a single sensor
and target [30]-[34]. In the on-going FAR Phase II, we have been investigating theoretical
extensions to the FAR framework and developing modeling, simulation, analysis, and
experimentation capabilities to demonstrate the performance improvement achieved by FAR
systems over traditional FFR systems [35]-[40]. We began with simulated scenarios [31]-[33]
and pre-recorded data [34]-[35] from OSU’s SDR system [78]-[84]. Pre-recorded data offers
limited opportunities to test cognitive algorithms since the sensing does not truly adapt in real-
time, and cognitive processing must be done “after-the-fact” in an artificial manner. We now
have the capability to demonstrate the real-time operation of the cognitive radar tracking system
using the CREW [36]-[40]. Demonstrations were given to AFRL senior management in October
2015 and May 2016.

A key gap in the Air Force’s previously developed radar M&S tools is the lack of a
comprehensive, dynamic distributed radar scenario generation capability for distributed FAR
systems. Therefore, the goal of this project (SBIR Topic 161-132 FAR M&S Development) is to
develop a MATLAB-based M&S architecture for distributed FAR radar that will enable
algorithm development and testing on simulated, previously collected, and real-time streaming
data. In Phase I, we have developed a baseline FAR M&S architecture that implements the FAR
framework for a stationary sensor system. Throughout this report we use the term “FAR
framework” to denote the mathematical model of a FAR system and the term “FAR M&S
architecture” to denote the MATLAB-based software implementation of the FAR framework.

Approved for public release; distribution is unlimited

4

The FAR M&S architecture is coded in MATLAB using an OOP approach. It includes a
FAR engine to control the operation of the PA cycle and software objects that determine the next
set of sensing parameters; obtain data from the sensor; process the data to track the target; and
store and display the results of the sensing and tracking processes. We have developed modules
that implement simulated and pre-recorded data examples in [30]-[35], and the real-time CREW
data examples in [36]-[39]. We have developed a simulation of the CREW and the application
programming interface (API) layers for the simulated and experimental CREW data sources to
enable switching between simulated and experimental data. A demonstration was given in
March 2016 for members of the North Atlantic Treaty Organization (NATO) Sensors Electronics
Technology (SET)-227 Panel on Cognitive Radar.

The FAR M&S architecture developed in Phase I allows for transparent switching
between the simulated and experimental data sources, as well as between FAR algorithms that
drive the sensing. The ability to easily interchange sensing and processing objects will allow for
rapid development and testing of cognitive radar algorithms by structuring the M&S functions to
avoid duplicating effort and “single point” solutions. It will enable collaboration between
researchers in industry, academia, and the Air Force, as algorithms developed by different
researchers can be tested and compared using consistent simulations, collected data, and
laboratory conditions. In Phase II, we plan to make the FAR M&S architecture code available to
members of the NATO SET-227 Panel on Cognitive Radar. Collaborations with members of
this panel to develop and test algorithms on the CREW are already underway. Furthermore,
several members have already begun development of their own cognitive radar test beds
[85],[86] and our FAR M&S architecture will enable further collaboration within the panel using
these data sources.

In Phase II, we also plan to extend the baseline architecture to model a dynamic,
distributed airborne MIMO radar FAR system using the full MIMO-CMS tool as the simulation
base. This will provide a comprehensive radar scenario generation capability that will fill a key
gap in the Air Force’s previously developed radar M&S tools.

This report is organized as follows. In Chapter 3, we provide an overview of the FAR
framework and the applications developed in [30]-[40]. In Section 3.1, we develop the
theoretical framework and in Section 3.2, we give an overview of the applications. In Chapter 4,
we provide a description of the FAR M&S architecture developed for this project. In Section 4.1
we describe the software structure and modules, in Section 4.2 we provide a guide to using the
MATLAB code, in Section 4.3 we give a more detailed description of the base classes, and in
Section 4.4, we provide a description of the CREW sensor object. Chapter 5 contains a summary
and conclusions.

Approved for public release; distribution is unlimited

5

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Fully Adaptive Radar Framework

3.1.1 General Framework

The heart of cognition is the perception-action cycle that both informs and is informed by

memory [24]-[25]. Cognition requires stimulation by sensors. In the human this is via hearing,
touch, smell, vision, and taste. The nervous system processes the sensed stimuli and converts
them into a perception of the world. We are able to take informed action by interpreting our
perception of the world and making decisions. As a consequence, the nervous system sends
signals that activate our muscles, thus enabling the desired action to take place. Informed
decision-making is a key feature of the perception-action cycle. It requires the establishment of
choices and the selection of one according to a desired goal. There is an element of prediction
that arises in which perceptual information is combined with a model of the environment to
predict the effect actions may have on it. Attention is closely related to perception and may be
thought of as the requirement to allocate and direct the sensing resources towards relevant
information.

Artificial cognition in a cognitive/FAR system attempts to mimic the PA cycle to make
the best use of system resources for the situation at hand [26]-[29]. According to Haykin [28], a
cognitive radar has the following capabilities: it predicts the consequences of actions, performs
explicit decision-making, learns from the environment, and uses memory to store the learned
knowledge. Haykin's approach uses Bayesian filtering [87],[88] as the basis for the artificial PA
cycle. It provides the processing, perception, and memory inherent in a cognitive system. The
Bayesian filter is augmented with a decision-making controller that uses perception from the
filter and prediction of future outcomes to determine the next action taken by the sensor.

In [30]-[34], Metron and OSU developed a general mathematical framework for a

cognitive/FAR system that incorporates the main components of cognition. The basic
mathematical model of a cognitive sensor/processor system is shown in Figure 1. The system
consists of four components: (i) the scene, which includes the target and the environment, (ii) the
sensor that observes the scene and generally consists of a transmitter and receiver, (iii) the
processor that converts the observed data into a perception of the scene, and (iv) the controller
that determines the next actions taken by the sensor and processor based on feedback
(perception) from the processor. The controller is the novel component that distinguishes a
cognitive system from a traditional feed-forward sensor/processor system.

In this framework, we assume that the objective of the system is to estimate the state of a

target in the scene. The target state at time tk is denoted as xk. The sensor observes the scene and
produces a measurement vector zk that depends on the target state xk and the sensor parameters
θk. We assume that the estimate of the target state at time tk is a function of the observations up
to time tk, which in turn depend on the sensor parameters up to time tk, which we denote as Zk ≡
{z1, z2, …, zk} and Θk ≡ {θ1, θ2, …, θk}, respectively.

Approved for public release; distribution is unlimited

6

Figure 1: Cognitive Sensor/Processor System Framework

We assume a first-order Markov motion model with initial target state probability density
function (PDF) q(x0) and transition PDF q(xk|xk-1;θk), which may depend on the sensor
parameters. This will occur, for example, when the choice of sensor parameters affects the time
difference tk-tk-1. The measurement model is described by the conditional PDF f (zk | xk; θk), which
is also called the likelihood function. The cost of obtaining an observation and any constraints
on the sensor parameters are modeled by the sensor cost function RΘ(θk). The processor
processes the data and produces an estimate of the target state ˆ ()k kx Z by minimizing the
expected value of the processor cost function ()ˆ (),k k kC x Z x .

The controller decides on the next value for the sensor parameters θk by minimizing a
loss function LC,Θ(⋅) that balances the performance of the processor via the processor cost
function C(⋅,⋅) and the cost of using the sensor via the sensor cost function RΘ(⋅).

For the first-order Markov motion model, the conditional or posterior PDF of xk given Zk
may be obtained from the Bayes-Markov recursion [87]-[89]:

() () () ()1 1 1 1| ; | ;k k k k k k k k kf f q f d− +
− − − −≡ = ∫x x Z Θ x x θ x x (1)

() () () ()
() ()

| ;
| ;

| ;
k k k k

k k k k
k k k k k

f f
f f

f f d

−
+

−
≡ =

∫
z x θ x

x x Z Θ
z x θ x x

, (2)

where ()kf − x is the motion-updated predicted density and ()kf + x is the information-updated
posterior density. The recursion is initialized with

() ()0 0f q+ =x x . (3)

Approved for public release; distribution is unlimited

7

The conditional Bayes risk is the expected value of the processor cost function with
respect to the conditional PDF of xk given Zk,

 () ()(){ }ˆ; ,C k k k k kR E C+ +=Z Θ x Z x , (4)

where { }kE+ ⋅ denotes expectation with respect to ()kf + x . The estimator is found by
minimizing the conditional Bayes risk [90]:
 ()

()
()

ˆ
ˆ arg min ;

k
k C k kR+=

x Z
x Z Z Θ . (5)

In the controller, we assume that we have received the observations up to time tk-1 and

want to find the next set of sensor parameters to optimize the performance of the state estimator
that will include the next observation zk as well as the previous observations Zk-1. We define the
joint conditional PDF of xk and zk conditioned on Zk-1 as:

() ()

() ()
() ()

1

1

, , | ;

| ; | ;

| ; .

k k k k k k

k k k k k k

k k k k

f f

f f

f f

↑
−

−

−

≡

=

=

x z x z Z Θ

z x θ x Z Θ

z x θ x

 (6)

We define the predicted conditional Bayes risk for the estimator ˆ ()k kx Z by taking the
expectation of the processor cost function with respect to the joint conditional PDF (),k kf ↑ x z ,

 () ()(){ }1 1 ˆ| ; ,C k k k k k kR E C↑ ↑
− − ≡θ Z Θ x Z x . (7)

It is important to emphasize that the predicted conditional Bayes risk is a function of the known
past observations Zk-1 but not the unknown next observation zk since it has been averaged over
both zk and xk. It is also function of all the sensor parameters in Θk, however we separate the
dependence on the unknown next sensor parameter θk from the known past sensor parameters

1kΘ - so that we may optimize over θk.

The next value of θk is chosen to minimize a loss function that balances the predicted

conditional Bayes risk and the sensor cost,

 () () (){ }, 1 1 1 1| ; | ; ,C k k k C k k k kL L R R↑
Θ − − − − Θ=θ Z Θ θ Z Θ θ . (8)

The controller optimization problem is then given by:
 (), 1 1arg min | ;k C k kL Θ − −=

θ
θ θ Z Θ . (9)

The cognitive sensor/processor system framework described by Figure 1 and Eqs. (1)-(9)

is very general and can be applied to many problems. It is based on the perception-action cycle
and includes sensing, processing, perception, memory, attention, prediction, and decision-
making. In [30]-[34], the framework was specialized for single target tracking, as well as for
target detection and track initiation/termination. A summary of the results is given in Sections
3.1.2-3.1.4. By separating the general principles from the specific application and
implementation details, our formulation provides a flexible framework applicable to the general
tracking problem. It provides a generalization and formalism to the cognitive radar tracking
formulations in [26]-[28],[51]-[65].

Approved for public release; distribution is unlimited

8

3.1.2 Cognitive Single Target Tracking

To specialize the framework for single target tracking, we specify the processor cost
function and derive the corresponding state estimator and predicted conditional Bayes risk
function used by the controller.

For vector parameter estimation, a commonly used cost function is the sum of the
squared estimation errors, which is given by:

()() () (){ }ˆ ˆ ˆ, tr
T

k k k k k kC = − −      x Z x x Z x x Z x . (10)

For this cost function, the solution to (5) is the minimum mean-square error (MMSE) estimator,
which is the conditional mean Error! Reference source not found.:

() { }ˆ k k k kE+ += ≡x Z μ x . (11)
The predicted conditional Bayes risk is given by:

() (){ }1 1 1 1| ; tr | ;C k k k k k k kR↑ ↑
− − − −=θ Z Θ S θ Z Θ , (12)

where

() () (){ }1 1 ˆ ˆ| ;
T

k k k k k k k k kE↑ ↑
− − ≡ − −      S θ Z Θ x Z x x Z x (13)

is the predicted conditional MSE matrix.

In most cases, it is not possible to evaluate the MSE analytically or numerically.
However, the Bayesian Cramér-Rao lower bound (BCRLB), which is the inverse of the
Bayesian information matrix (BIM), provides a (matrix) lower bound on the MSE matrix of any
estimator [90],[91] and is usually analytically tractable. Here we develop a predicted conditional
BIM (PC-BIM), ()1 1| ;k k k k

↑
− −B θ Z Θ , and a predicted conditional Cramér-Rao lower bound (PC-

CRLB) to bound the predicted conditional MSE matrix in (13),
() (){ }1

1 1 1 1| ; tr | ;T
C k k k k k k kR −↑ ↑

− − − −≥θ Z Θ C B θ Z Θ C . (14)

The PC-BIM may be expressed as the sum of two terms as follows:

() () ()1 1 1 1 1 1| ; | ; | ;k k k k k k k k k k k k
↑ − −

− − − − − −≡ +B θ Z Θ B θ Z Θ J θ Z Θ . (15)

The first term is the predicted information matrix (PIM), which can be approximated by the
inverse of the predicted covariance matrix:

() () 1
1 1 1 1| ; | ;k k k k k k k k

−− −
− − − −≅B θ Z Θ Σ θ Z Θ , (16)

and the second term is the expected value of the Fisher information matrix (FIM) with respect to
the predicted density ()kf − x . The expected Fisher information matrix (EFIM) is given by:

() (){ }1 1| ; ;k k k k k k kE− −
− − =J θ Z Θ J x θ , (17)

where ();k kJ x θ is the standard FIM [90],[91].

The expressions in (1)-(3), (11), and (14)-(17) provide the Bayes-Markov tracking
recursion, the state estimate, and the predicted conditional Bayes risk expressions for a cognitive

Approved for public release; distribution is unlimited

9

sensor/processor system whose objective is single target tracking. The cognitive single target
tracking system recursion is summarized in Table 1.

Table 1: Cognitive Single Target Tracking Recursion

Initialization
 1 () ()0 0f q+ =x x

Controller Optimization
 2 () () ()1 1 1; | ;k k k k kf q f d− +

− − −= ∫x θ x x θ x x

 3 () () 1
1 1 1 1| ; | ;k k k k k k

−− −
− − − −≅B θ Z Θ Σ θ Z Θ

 4 () (){ }1 1| ; ;k k k k kE− −
− − =J θ Z Θ J x θ

 5 () () ()1 1 1 1 1 1| ; | ; | ;k k k k k k k k k
↑ − −

− − − − − −≡ +B θ Z Θ B θ Z Θ J θ Z Θ

 6 () (){ }1 1arg min | ; ,k k k kL R↑
− − Θ=

θ
θ B θ Z Θ θ

Motion Update
 7 () () ()1 1 1| ;k k k k k kf q f d− +

− − −= ∫x x x θ x x

Measurement
 8 Obtain measurement zk according to θk
Information Update

 9 () () ()
() ()

| ;
| ;
k k k k

k
k k k k k

f f
f

f f d

−
+

−
=
∫

z x θ x
x

z x θ x x

Track Estimate
 10 Obtain ()ˆ kx Z from mean of ()kf + x

3.1.3 Cognitive Single Target Tracking, Initiation, and Termination

For track initiation and termination, the system objective is to minimize the time to detect
the presence or absence of a target. We do this by maximizing the probability of making a
correct decision at each time. To specialize the general cognitive framework for this problem,
we follow the likelihood ratio detection and tracking (LRDT) methodology in Chapter 7 of [87].
On H1 when the target is present, kx XÎ , where X is the target-present state space. We define
a null (target-absent) state ∅ so that on H0 when the target is absent, k =∅x :

 0

1

:
: .

k

k

H
H

=∅
∈

x
x X

 (18)

Approved for public release; distribution is unlimited

10

We define the augmented state space ∅ ≡ ∪∅X X and develop the Bayes-Markov recursions for
this model. We then specify the processor cost function and derive the corresponding state
estimator and predicted conditional Bayes risk function used by the controller.

A PDF on the augmented state space ∅X is characterized by two components ()kP ∅
and ()kf x , where

() ()Prk kP ∅ ≡ =∅x , (19)
and ()kf x is the conditional PDF of xk given that kx XÎ . Therefore, the predicted and
posterior PDFs on the augmented state space are characterized by components ()kP− ∅ , ()kf − x
and ()kP+ ∅ , ()kf + x , respectively.

The initial target PDF is characterized by ()0P ∅ and ()0q x and the transition density on
the augmented state space is characterized by four components:

() ()
() ()
()
()

1 1 1

1 1 1

1 1

1 1

| Pr | ,
| Pr | ,

| ,
| ; , .

k k k k k k

k k k k k k

k k k k

k k k k k

P
P
q
q

− − −

− − −

− −

− −

∅ ∅ ≡ =∅ =∅ =∅ =∅
∅ ≡ =∅ ∈ =∅ ∈

∅ ∈ =∅
∈ ∈

x x x x
x x x x

x x x
x x θ x x

X X X
X
X X

(20)

The likelihood function on the augmented state space is characterized by the likelihood
functions on H0 and H1, which are denoted by ()| ;k k kf ∅z θ and ()| ;k k kf z x θ , respectively.

We express the Bayes-Markov recursions for the predicted and posterior PDFs as
recursions on ()kP− ∅ , ()kf − x , ()kP+ ∅ , and ()kf + x . Following [87], the Bayes-Markov
recursions are initialized with:

() ()0 0P P+ ∅ = ∅ (21)

() ()0 0f q+ =x x . (22)
If we assume that the transition probabilities are defined such that the motion update does not
affect the probability of being in the null state, then we have:

() ()1k kP P− +
−∅ = ∅ . (23)

Under this assumption, we obtain the “simplified recursion” [87] in which the predicted PDF on
H1 is found from:

() () () () () ()1 1 1 1 1 1| | 1 | | ; .k k k k k k k k k k k kf P q P q f d− +
− − − − − −= ∅ ∅ + − ∅   ∫x x x x θ x xX X (24)

For target detection, we assume that the state estimate takes one of two values,
ˆ ()k k =∅x Z or ˆ ()k kx Z XÎ , thus the estimation problem becomes a binary detection problem.
We assume the standard binary detection cost function [87],[90], and the optimal state estimator
(decision rule), found by minimizing the conditional Bayes risk, is the Bayesian integrated
likelihood ratio test (BLRT) [87]:

Approved for public release; distribution is unlimited

11

 ()
ˆ

ˆ

k

k

k

τ
∈
>Λ <
=∅

x
Z

x

X
, (25)

where ()kΛ Z is the Bayesian integrated likelihood ratio (BLR). For the simplified recursion, it
has the form:
 () () ()1 1|k k k k− −Λ ≡ ΛZ Z z ZL , (26)

where ()1|k k−z ZL is the integrated likelihood ratio (ILR) for the current data, defined as:

 () ()
() ()1

| ;
|

| ;
k k k

k k k k
k k k

f
f d

f
−

− ≡
∅∫

z x θ
z Z x x

z θ
L . (27)

The information update is given by:

 () ()
1

1k
k

P+ ∅ =
+Λ Z

 (28)

 () () ()
() ()

| ;
| ;
k k k k

k
k k k k k

f f
f

f f d

−
+

−
=
∫

z x θ x
x

z x θ x x
. (29)

As discussed in [30],[32],[33], the condition in (23) can be satisfied if we set

 () (){ }1
1 1| min ,k k kP P−
− − ∅∅ = Λ ZX , (30)

where P∅ is a fixed upper limit close to one.

The predicted conditional Bayes risk includes probabilities of missed and false

detections, which are generally difficult to calculate, so we must resort to an approximation or
surrogate function to perform the controller optimization. As discussed in [30],[32],[33], we
take a heuristic approach and use the same criterion that we used for track estimation, namely to
minimize the trace of the PC-CRLB, which is the inverse of the PC-BIM. This maximizes the
Bayesian information, which is useful for making statistical inferences about xk in both the
estimation and detection settings. Thus,
 () (){ }1

1 1 1 1| ; tr | ;T
C k k k k k k kR −↑ ↑

− − − −⇒θ Z Θ C B θ Z Θ C , (31)

where we use the notation Þ to denote replacement by a surrogate function.

For track initiation, we initially assume the target is absent and initialize ()0Λ Z to some
small value well below the target-present detection threshold τP. If a target is present, then the
BLR will grow over time as evidence in favor of H1 is accumulated. Eventually it will cross the
threshold and the target will be declared present. If the target is absent, the BLR will decrease
over time. However, if we allow the BLR to decrease below the initial value during periods
when there is no target, then when a target appears and the BLR starts to grow, it will take longer
to detect. To prevent this, we restrict the BLR to stay at or above the initial value, which we
denote as minΛ .

Once the target is declared present, processing continues in the same manner, except now

we assume the target is present and restrict the BLR to stay at or below some maximum value

Approved for public release; distribution is unlimited

12

maxΛ , which is well above the target-absent detection threshold τA. To allow some robustness in
the system, we set τA to be less than τP. This way, once the BLR exceeds τP and the target is
declared present, sufficient evidence in favor of H0 must accumulate before the BLR drops
below τA and the target is declared absent again.1 Since the target is assumed present, we can
compute a target state estimate after the information update and we obtain the simultaneous
single target tracking and track initiation/termination recursion summarized in Table 2. This
recursion reduces to the single target tracking recursion in Table 1 if we always set
()1| 0k kP −∅ =X on line 5. This recursion is used in the distributed sensor resource allocation

examples in [30]-[34].

1 Proper operation of the track initiation and termination recursions requires that maxPt £ L and minAt ³ L .

Approved for public release; distribution is unlimited

13

Table 2: Cognitive Single Target Tracking, Initiation, and Termination Recursion

Initialization
 1 Declare target absent
 2 ()0 minΛ = ΛZ
 3 () ()() 1

0 01P
−+ ∅ = +Λ Z

 4 () ()0 0f q+ =x x

Motion Update – Part I
 5 () (){ }1

1 1| min ,k k kP P−
− − ∅∅ = Λ ZX

 6 () ()1k kP P− +
−∅ = ∅

Controller Optimization
 7 () () () () () ()1 1 1 1 1 1; | | 1 | | ;k k k k k k k k k k kf P q P q f d− +

− − − − − −= ∅ ∅ + − ∅   ∫x θ x x x θ x xX X

 8 () () 1
1 1 1 1| ; | ;k k k k k k

−− −
− − − −≅B θ Z Θ Σ θ Z Θ

 9 () (){ }1 1| ; ;k k k k kE− −
− − =J θ Z Θ J x θ

 10 () () ()1 1 1 1 1 1| ; | ; | ;k k k k k k k k k
↑ − −

− − − − − −≡ +B θ Z Θ B θ Z Θ J θ Z Θ

 11 () (){ }1 1arg min | ; ,k k k kL R↑
− − Θ=

θ
θ B θ Z Θ θ

Motion Update – Part II
 12 () () () () () ()1 1 1 1 1 1| | 1 | | ;k k k k k k k k k k k kf P q P q f d− +

− − − − − −= ∅ ∅ + − ∅   ∫x x x x θ x xX X

Measurement
 13 Obtain measurement zk according to θk
BLR

 11 () ()
() ()1

| ;
|

| ;
k k k

k k k k
k k k

f
f d

f
−

− ≡
∅∫

z x θ
z Z x x

z θ
L

 12 () () (){ }{ }min max 1 1max ,min |k k k k− −Λ = Λ Λ ΛZ Z z Z, L
Information Update
 13 () ()() 1

1k kP
−+ ∅ = +Λ Z

 14 () () ()
() ()

| ;
| ;
k k k k

k
k k k k k

f f
f

f f d

−
+

−
=
∫

z x θ x
x

z x θ x x

BLRT
16 if target absent and ()k PτΛ ≥Z , then declare target present and initiate track,

elseif target present and ()k AτΛ <Z , then declare target absent and terminate track
end

Track Estimate (if target present)
 15 Obtain ()ˆ kx Z from mean of ()kf + x

Approved for public release; distribution is unlimited

14

3.1.4 Cognitive MAP-PF Single Target Tracking

The recursions in Tables 1 and 2 are applicable to detection-based and track-before-detect
tracking systems. In a detection-based system, the sensor performs “hard detection,” i.e. there is
some signal processing of the sensor data that converts the data to a detection surface, which is
then thresholded to produce a “detection” in the form of a measurement in the natural
measurement space of the sensor (e.g. angle, range, and/or Doppler). The observation zk is the
measurement obtained from hard detection processing. In a track-before-detect system, zk is the
sensor data and the information update involves computing the likelihood function of the sensor
data with respect to the target state vector. This can be computationally intensive but can yield
significant performance improvements over a detection-based system. In this subsection, we
extend the recursions to maximum a posteriori penalty function (MAP-PF) tracking systems.
The MAP-PF methodology applies to problems in which the likelihood function ()| ;k k kf z x θ
depends on the target state vector only through a known, possibly nonlinear mapping to the
natural measurement space of the sensor. The MAP-PF methodology offers reduced
computational complexity over track-before-detect systems, while maintaining the performance
advantage over detection-based systems. The cognitive MAP-PF tracking system, in which the
processor includes the detector and tracker, is shown in Figure 2. It is particularly suitable for
FAR systems, as it already contains feedback within the tracking processor.

Figure 2: Cognitive MAP-PF Sensor/Processor System Framework

MAP-PF is a multi-target tracking methodology developed in [92]-[97] and described in
Chapter 6 of [87]. In this approach, the multi-target track estimation problem is formulated
directly from the sensor data zk using the maximum a posteriori (MAP) estimation criterion. The
penalty function method of nonlinear programming [98] is used to obtain a tractable solution.
The result is a two-step estimation process similar to traditional feed-forward detection-based

Approved for public release; distribution is unlimited

15

systems, except the processes are coupled via the penalty function and the data association step
of traditional multi-target tracking approaches is eliminated. In the detection process, the penalty
function uses the current target states to guide the detector to the relevant region of the detection
surface. In the track estimation process, the penalty function determines the influence of the
detector measurements on the final track estimates by adaptively adjusting the measurement
error variance using the FIM.

Let yk denote the natural parameters. They are related to the state parameters by the

nonlinear mapping
 ()k k=y h x . (32)

Let ()| ;k k kf z y θ denote the likelihood function with respect to the natural parameters and let
();k kyJ y θ denote the FIM of the natural parameters. The likelihood function and FIM with

respect to the state parameters are given by [90]:

 () ()()| ; | ;k k k k k k kf f= =z x θ z y h x θ (33)

 () () ()() (); ;T
k k k k k k=x yJ x θ H x J h x θ H x , (34)

where H(xk) is the Jacobian matrix, defined as:

 () ()
k

TT
k

=

 ≡ ∇ x
x x

H x h x . (35)

The MAP-PF algorithm employs a penalty function ()(),φ y h x which is equal to zero

when y = h(x) and becomes smaller (more negative) as the distance between y and h(x)
increases. For example, a quadratic penalty function is:

 () [] []11, (); () ()
2

Tφ −≡ − − −y h x Ω y h x Ω y h x , (36)

where Ω is a matrix chosen to weight the components of the penalty function in some desirable
manner. The MAP-PF motion update is the same as in the standard Bayes-Markov recursion and
the MAP-PF information update is given by:

 ()ˆ arg max
k

k kf− −=
x

x x (37)

 () ()()ˆ ˆarg max ln ; , ;k k k kf φ −= +
y

y z y θ y h x Ω (38)

 ()
()(){ } ()
()(){ } ()

ˆexp , ;

ˆexp , ;
k k k

k
k k k k

f
f

f d

φ

φ

−
+

−
=
∫

y h x Ω x
x

y h x Ω x x
. (39)

In the first step, the MAP estimate of the predicted density is found. Depending on the

implementation, it may be easier to find the MMSE estimate, which is the mean of the predicted
density, instead.

In the second step, the optimization problem in (38) is a penalized maximum likelihood

(ML) problem. If the second term in (38) had the form ()ln f y , it would be a MAP estimation

Approved for public release; distribution is unlimited

16

problem. Thus the penalty function can be interpreted as a prior term in a MAP estimation
problem. In a traditional feed-forward detection-based tracking system, the optimal detector
would solve the standard ML problem (i.e. (38) without the penalty function) to get the detector
measurement. In MAP-PF, the penalty function restricts the detector estimate to be in the
vicinity of where the tracker predicts it to be, hence MAP-PF is performing “guided” detection.
By specifying a quadratic penalty function, we are implicitly modeling the prior distribution of

ky as Gaussian with mean ()ˆ k
−h x and covariance matrix Ω. We have some flexibility in

choosing Ω, and a logical choice would be the covariance matrix of the predicted density of ky
obtained from a transformation of the predicted density ()kf − x . Using a locally linear
approximation of the function ()h x at the point ˆ k

−x , we choose Ω to be the predicted covariance
matrix of ky , which is approximately given by:

() (), ˆ ˆ
k

T

MAP k k k k
− − − −= ≅yΩ Σ H x Σ H x . (40)

The third step in (39) looks like a standard information update with ˆ ky acting as the
measurement vector and the exponential of the penalty function, ()(){ }ˆexp , ;k kφ y h x Ω , acting
as the measurement likelihood function ˆ(| ;)k k kf y x θ . Here the quadratic penalty function is
implicitly modeling ˆ ky as Gaussian with mean h(xk) and covariance matrix Ω. As in [87],[92]-
[97], we choose Ω to be the inverse of the FIM of the natural parameters, ();k kyJ y θ .
Calculation of the FIM often requires knowledge of the true value of ky , however we can obtain
a reasonably accurate approximation to the FIM by substituting in an estimate of ky . The
transformation of the predicted state estimate ()ˆ k

−h x is a less volatile estimate than the current
measurement ˆ ky , therefore we evaluate the FIM at ()ˆ k

−h x . Thus, for the information update we
choose

()()1
, ˆ ;I k k k
− −= yΩ J h x θ . (41)

The MAP-PF single target tracking recursion is summarized in Table 3. We also
developed a MAP-PF single target tracking, initiation, and termination recursion in [30]. The
recursion in Table 3 is used in the SDR and CREW examples in [30],[34]-[40].

Approved for public release; distribution is unlimited

17

Table 3: Cognitive Single Target MAP-PF Tracking Recursion

Initialization
 1 () ()0 0f q+ =x x

Controller Optimization
 2 () () ()1 1 1; | ;k k k k kf q f d− +

− − −= ∫x θ x x θ x x

 3 () () 1
1 1 1 1| ; | ;k k k k k k

−− −
− − − −≅B θ Z Θ Σ θ Z Θ

 4 () (){ }1 1| ; ;k k k k kE− −
− − =J θ Z Θ J x θ

 5 () () ()1 1 1 1 1 1| ; | ; | ;k k k k k k k k k
↑ − −

− − − − − −≡ +B θ Z Θ B θ Z Θ J θ Z Θ

 6 () (){ }1 1arg min | ; ,k k k kL R↑
− − Θ=

θ
θ B θ Z Θ θ

Motion Update
 7 () () ()1 1 1| ;k k k k k kf q f d− +

− − −= ∫x x x θ x x

Measurement
 8 Obtain measurement zk according to θk
 9 Obtain ˆ k

−x from mean or maximum of ()kf − x

 10 () (), ˆ ˆ
T

MAP k k k k
− − −=Ω H x Σ H x

 11 () ()(),ˆ ˆarg max ln ; , ;k k k k LF kf φ −= +
y

y z y θ y h x Ω

Information Update
 12 ()()1

, ˆ ;I k k k
− −= yΩ J h x θ

 13 ()
()(){ } ()
()(){ } ()

,

,

ˆexp , ;

ˆexp , ;
k k I k k

k
k k I k k k

f
f

f d

φ

φ

−

+

−
=
∫

y h x Ω x
x

y h x Ω x x

Track Estimate
 14 Obtain ()ˆ kx Z from mean or maximum of ()kf + x

Approved for public release; distribution is unlimited

18

3.2 Examples

For a specific application, we need to specify the components of the state vector, the
motion and measurement models, the sensor parameters being controlled, and the form of the
controller loss function. Finally, we need to specify the implementation details that include the
type of tracker used to implement the Bayes-Markov recursion and the method for solving the
controller optimization problem. In [30]-[34], we showed how the general tracking framework
could be specialized for a distributed sensor system similar to the cognitive radar networks in
[64],[65], in which system resources (observation time on each sensor) were allocated to
optimize tracking performance. Using simulated data, we showed that the cognitive radar system
offered significant performance gains over a standard feed-forward radar system. In
[30],[34],[35], we showed how the tracking framework could be applied to a single sensor pulse-
Doppler radar system in which the pulse repetition frequency (PRF) is adjusted to optimize
tracking performance, while keeping the target from being Doppler-aliased and away from the
zero-Doppler clutter. Results were shown on experimentally collected data using OSU’s SDR
system. In [36]-[39], we applied the same algorithm to real-time data using OSU’s CREW
system, and also allowed for simultaneous adjustment of the PRF and number of pulses.

3.3 Summary

In this section, we provided an overview of the general framework for a cognitive
sensor/processor tracking system developed in [30]-[34]. The framework is based on the
perception-action cycle and includes sensing in the sensor; processing in the detector and
tracker; perception in the conversion of sensor data to the posterior PDF of the state vector;
memory of all the past data in the posterior PDF; attention in the penalty function of the guided
adaptive detector, which focuses the detector on the relevant region of the detection surface;
prediction in the PC-BIM, which predicts the performance of the next measurement; and
decision-making in the controller, which decides on the next values for the sensor parameters
based on the predicted performance.

Approved for public release; distribution is unlimited

4 RESULTS AND DISCUSSION

4.1 FAR M&S Software Architecture Overview

The FAR M&S codebase has been designed in an object-oriented architecture so that the
interfaces for the various components (optimizer, sensor, processor, etc.) are defined by base
classes. Specific implementations of these objects (for example, an optimizer for five
parameters) are subclasses of their respective base class so that they inherit common methods
and properties.

The FAR M&S architecture is managed by a FAR_Engine. A conceptual block diagram
of the FAR_Engine showing the basic objects, processing, and data flow is shown in Figure 3.
The FAR_Engine consists of eight objects:
1. Scene [Simulation only]: defines the target, clutter and noise characteristics used for

simulation.
2. Optimizer: solves the controller optimization problem to obtain the next set of sensor

parameters
3. Sensor: obtains raw data from simulation, pre-recorded data, or experimentation.
4. Processor: performs raw data processing and Bayesian filtering.
5. StorageManager: maintains a history of variables of interest from the Scene, Optimizer,

Sensor, and Processor and stores them to a file (long-term memory).
6. DisplayManager: displays values of interest each cycle while the algorithm is running and

provides a final display of quantities of interest.
7. TimingManager: maintains timing during the cycle.
8. PerceptionActionCycle: runs one cycle of the PA cycle by calling object methods (functions)

in the proper sequence, as shown in Figure 3.

The repository where the codebase is stored has been divided into two folders: an
“architecture” folder to store the base classes and other common pieces of code, and a “modules”
folder which stores the specific subclasses or implementations. The “architecture” folder
contains eight files defining the base classes plus a UtilityFunctions object, which contains some
commonly used functions. The FAR Engine is written as a script and there is no base class. The
files in the “architecture” folder provide the interfaces (that is, common properties and methods)
for how to create specific objects that provide functionality to different parts of the
PerceptionActionCycle and FAR_Engine. The files in this folder should not be modified.

In Phase I, we developed specific implementations of the FAR M&S architecture for
three examples: (i) the distributed sensor resource allocation (DSRA) simulation example in
[33], (ii) the SDR pre-recorded data example in [35], and (iii) a CREW example in which five
parameters are optimized and the data may be from simulation or real time experimentation. The
“modules” folder contains separate folders for each of these examples named “DSRA,” “SDR,”
and “CREW.”

Approved for public release; distribution is unlimited

19

20

Figure 3: FAR M&S Architecture Block Diagram

Approved for public release; distribution is unlimited

21

4.2 Using the FAR M&S MATLAB Code

4.2.1 System Requirements

To run the codebase, you will need MATLAB version 2014b or later. It is possible that it
will run on earlier versions, but this has not been tested. No MATLAB Toolboxes are required.

4.2.2 Getting Started

To get up and running, do the following:
• Install the codebase into a folder on your computer.
• Start MATLAB.
• In MATLAB, navigate to the folder that you just stored. In this folder there should at least be

a “code” folder and a file named set_matlab_path_far_codebase().
• At the command prompt, type set_matlab_path_far_codebase(). This sets the proper

paths for use with the code.

You can now run any of the three examples provided in the codebase. Navigate to one of
the folders “code/modules/DSRA”, “code/modules/SDR”, or “code/modules/CREW”. Open the
FAR_Engine file for that example (FAR_Engine_JSTSP, FAR_Engine_SDR_PRF, or
FAR_Engine_CREW_5Par) and run it.

Approved for public release; distribution is unlimited

22

4.3 FAR M&S Architecture Base Classes

In this section, we provide an overview of the base classes in the FAR M&S
Architecture. For the Scene, Sensor, Processor, Optimizer, Storage Manager, Display Manager,
and Timing Manager, we provide a list of properties and abstract methods in each class. The
PerceptionActionCycle class implements a method to run the cycle and it is described in detail.

The DSRA, SDR, and CREW modules provide implementations of each of the base
classes and the FAR_Engines to run the examples for those applications. In Section 4.4, we
provide a description of the CREW Sensor and Scene objects. We do not provide descriptions of
the remaining codebase modules.

4.3.1 Scene

The Scene base class consists of
• Properties: N/A
• Abstract Methods: N/A

This is currently just a placeholder as we have not identified properties or methods that
are common to all Scenes.

4.3.2 Sensor

The Sensor base class consists of:
• Properties: N/A
• Abstract Methods: get_measurement

4.3.3 Processor

The Processor base class consists of:
• Properties: MotionModel (structure), MeasModel (structure), Settings (structure)
• Abstract Methods: preprocess_rawdata, prior_initialization, predicted_update,

posterior_update

4.3.4 Optimizer

The Optimizer base class consists of:
• Properties: PredActualFlag
• Abstract Methods: get_sensor_parameters, set_sensor_params,

opt_sensor_params_pred_update

4.3.5 Storage Manager

The StorageManager base class consists of:
• Properties: Params (structure), history (structure)
• Abstract Methods: history_update

Approved for public release; distribution is unlimited

23

4.3.6 Display Manager

The DisplayManagerManager base class consists of:
• Properties: Params (structure), DisplayData (structure)
• Abstract Methods: store_display_data, display_cycle

4.3.7 Timing Manager

The TimingManager base class consists of:
• Properties: time (structure), k
• Abstract Methods: cycle_timing_init, cycle_timing_opt, cycle_timing_sens,

cycle_timing_proc, cycle_timing_mgmt, timing_update

4.3.8 Perception Action Cycle

The PerceptionActionCycle base class consists of:
• Properties: f_post (structure), theta_opt (structure), cycle_timing (structure)
• Methods: PerceptionActionCycle (constructor), run_cycle

The PerceptionActionCycle base class provides implementations for the object
constructor method and for the run_cycle method. Thus, the PerceptionActionCycle object is
common to all examples.

The properties f_post (the posterior density), theta_opt (the optimum sensor parameters
for the current cycle), and cycle_timing (various timing values for the current cycle) are updated
during the execution of run_cycle and are passed out to the FAR_Engine at the end of the cycle.
They are passed back in to run_cycle at the beginning of the next cycle. Passing these
parameters to the next cycle is represented by the purple short term memory data in Figure 3.

The constructor method PerceptionActionCycle(f_post, theta0) is called by FAR_Engine
up front to create the PerceptionActionCycle object and initialize the posterior density and sensor
parameters. The code is

function cycleObj = PerceptionActionCycle(f_post, theta0)

 if nargin >0
cycleObj.f_post = f_post;
cycleObj.theta_opt = theta0;
cycleObj.cycle_timing = [];

 end % if nargin

 end % constructor function

The run_cycle method implements the PA cycle. A detailed description is provided
below.

Approved for public release; distribution is unlimited

24

function [cycleObj,sensorObj,processorObj,timingObj,storageObj,displayObj]...
= run_cycle(cycleObj,sceneObj, sensorObj, processorObj,
optimizerObj, timingObj, storageObj, displayObj)

This defines the interface for calling run_cycle. Inputs are the scene, sensor, processor,
optimizer, timing, storage, and display objects. During run_cycle, the cycle, sensor, processor,
timing, storage, and display objects are updated and passed out to the FAR_Engine.

 %--
 % previous sensor parameters
 %--
 theta_old = cycleObj.theta_opt;

This gets the optimum sensor values from the last cycle.

 %--
 % initialize cycle timing
 %--
 cycleObj.cycle_timing = timingObj.cycle_timing_init;

This calls the method cycle_timing_init, implemented in timingObj, a specific
implementation of the TimingMagager object. It initializes the timing values for the current
cycle.

 %--
 % tentative motion update & theta optimization
 %--
 [cycleObj.theta_opt, optParams, f_pred] = ...

 optimizerObj.opt_sensor_params_pred_update(...
theta_old, cycleObj.f_post, sensorObj, processorObj,...
cycleObj.cycle_timing);

This calls the method opt_sensor_params_pred_update, implemented in optimizerObj, a
specific implementation of the Optimizer object. It performs the controller optimization to
obtain the next set of sensor parameters. Inputs are the previous set of sensor values, the
posterior density from last cycle, the sensor and processor objects, and the cycle_timing
structure. As part of the optimization, the predicted density is computed for each set of sensor
values that is evaluated. In some cases, the actual predicted density is computed and returned to
the PA cycle in the variable f_pred. In this case the property optimizerObj.PredActualFlag
is set equal to true. If not, it is false. The optimum sensor parameters are returned in
cycleObj.theta_opt and other quantities of interest calculated during the optimization are
returned in optParams. These will be stored or displayed later.

 cycleObj.cycle_timing = timingObj.cycle_timing_opt(optimizerObj,...
cycleObj.cycle_timing);

This calls the method cycle_timing_opt, implemented in timingObj. It stores the
optimization timing values for the current cycle. Inputs are the optimizer object and the cycle
timing structure, and the output is the updated cycle timing structure.

Approved for public release; distribution is unlimited

25

 %--
 % set sensor/processor parameters and get measurement
 %--
 [sensorObj, processorObj] = optimizerObj.set_sensor_params(...

cycleObj.theta_opt, sensorObj, processorObj);

This calls the method set_sensor_params, implemented in optimizerObj. It updates the
sensor and processor objects with the new sensor parameter values. Inputs are the optimum
sensor values and the sensor and processor objects. Outputs are the updated sensor and
processor objects.

 [rawdata, sens_timing] = sensorObj.get_measurement(sceneObj,...
cycleObj.cycle_timing);

This calls the method get_measurement, implemented in sensorObj, a specific
implementation of the Sensor object. It gets the measurement for the appropriate data source.
Inputs are the scene object (if simulation), and timing for the data collect. Outputs are the raw
sensor data and sensor timing values.

 cycleObj.cycle_timing = timingObj.cycle_timing_sens(sens_timing,...
cycleObj.cycle_timing);

This calls the method cycle_timing_sens, implemented in timingObj. It stores the sensor
timing values for the current cycle. Inputs are the sensor timing structure and the cycle timing
structure, and the output is the updated cycle timing structure. One of the values is a flag that
indicates if data was available. The following loop to process the data is only executed if data is
available.

 if cycleObj.cycle_timing.data_available
 %--
 % actual motion update
 %--

if ~optimizerObj.PredActualFlag
f_pred = processorObj.predicted_update(cycleObj.f_post, ...

cycleObj.cycle_timing.dt, cycleObj.theta_opt, theta_old);
end

This calls the method predicted_update, implemented in processorObj, a specific
implementation of the Processor object. It performs the Bayesian filtering motion update, if not
already performed as part of the sensor optimization. Inputs are the posterior density from last
cycle, the total scan time of the current cycle, and the current and previous values of the sensor
parameters. The output is the predicted density.

%--
% pre-process raw data
%--
zdata = processorObj.preprocess_rawdata(rawdata, sensorObj);

This calls the method process_rawdata, implemented in processorObj. It performs pre-
processing of the raw data to get it into the form required by the information update, such as

Approved for public release; distribution is unlimited

26

converting raw radar data to a range/Doppler surface. Inputs are the raw data and the sensor
object. The output is the processed data.

 %--
% information update
%--
[cycleObj.f_post, LF, proc_timing] = ...

processorObj.posterior_update(f_pred, zdata);

This calls the method posterior_update, implemented in processorObj. It performs the
information update. Inputs are the predicted density and processed data. Outputs are the
posterior density, the likelihood function structure containing quantities of interest to be stored
or displayed later, and processor timing values.

else
f_pred = cycleObj.f_post;
LF = [];
proc_timing.track_new = 0;

end % if data_available

If there is no data available, the predicted density is the posterior density from the last cycle, and
the posterior density is also the posterior density from last cycle. The likelihood structure is
empty and the flag indicating a new track is false.

 cycleObj.cycle_timing = timingObj.cycle_timing_proc(proc_timing,...
cycleObj.cycle_timing);

This calls the method cycle_timing_proc, implemented in timingObj. It stores the processor
timing values for the current cycle. Inputs are the processor timing structure and the cycle
timing structure, and the output is the updated cycle timing structure.

 %--
 % storage update
 %--
 storageObj = storageObj.history_update(cycleObj.cycle_timing,...

cycleObj.theta_opt, optParams, f_pred, cycleObj.f_post, LF);

This calls the method history_update, implemented in storageObj, a specific
implementation of the StorageManager object. It stores quantities of interest from the current
cycle in the history structure, to be saved to a file later. Inputs are the cycle timing, the
optimum sensor parameters, the additional optimization values, the predicted density, the
posterior density, and the likelihood function structure. The output is the updated storage object.

 %--
 % display update
 %--
 if displayObj.Params.PlotCycleFlag

displayObj = displayObj.store_display_data(cycleObj.cycle_timing,...
cycleObj.theta_opt, optParams, f_pred, cycleObj.f_post, LF);

displayObj.display_cycle(timingObj.k);
 end

Approved for public release; distribution is unlimited

27

There is an option not to display any data while the algorithm is running in order to save time. If
the displayObj.Params.PlotCycleFlag is false, then nothing is done. If it is true, then this
code calls the methods store_display_data and display_cycle, implemented in
displayObj, a specific implementation of the DisplayManager object. The method
store_display_data stores quantities of interest from the current cycle in the display object
and display_cycle updates the display screen. Inputs to store_display_data are the cycle
timing, the optimum sensor parameters, the additional optimization values, the predicted density,
the posterior density, and the likelihood function structure. The output is the updated display
object. The inputs to display_cycle are the current cycle index and (implicitly) the display
object.

 cycleObj.cycle_timing = timingObj.cycle_timing_mgmt(...
cycleObj.cycle_timing);

This calls the method cycle_timing_mgmt, implemented in timingObj. It stores the storage
and display management timing values for the current cycle. The input is the cycle timing
structure, and the output is the updated cycle timing structure.

 %--
 % timing update
 %--
 timingObj=timingObj.timing_update(cycleObj.cycle_timing);

This calls the method timing_update, implemented in timingObj. It transfers the current
cycle timing to the timing object, for later storage. The input is the cycle timing structure, and
the output is the updated timing object.

end % run_cycle

This is the end of the cycle.

4.3.9 FAR Engine

For a particular example, the FAR engine first defines specific implementations of each
of the objects, then runs the perception-action cycle, and completes any storage or display
management functions.

4.3.10 Utility Functions

The utility functions object contains common utility functions. It consists of:
• Methods: hamming, compute_csigma_ellipse, TimeNowInSeconds.

Approved for public release; distribution is unlimited

28

4.4 The CREW Sensor

The CREW is the world’s first radar test bed built specifically to allow testing of fully
adaptive and cognitive algorithms. The CREW was built using an approximately $600K grant
from the 2013 DURIP, sponsored by AFOSR. The CREW was designed and specified by CSL
director Dr. Graeme Smith and developed by Keysight Technologies (formerly Agilent) and
Millitech. The system is a four-channel multistatic radar operating in W-band. There are four
pairs of transmit and receive heads allowing full distributed MIMO operation. A block diagram
is provided in Figure 4.

The CREW has a fully digital back end, shown to the left in Figure 4, comprising a
control PC, four analog-to-digital converters (ADCs) and four arbitrary waveform generators
(AWGs). The ADCs and AWGs are connected to the PCI via a PXIe extension system, meaning
that the PC is genuinely “in-the-loop” since the transfer rates are high enough that the digitized
signals on all four channels can be evaluated and modifications made to the transmit waveforms
in real-time. The system can be programmed using MATLAB allowing for rapid prototyping of
fully adaptive and cognitive algorithms.

For the radio frequency (RF) front end, shown to the right in Figure 4, the instantaneous
bandwidth of the system is 1 GHz, the transmit center frequency is 94 GHz (W-band), the
effective radiated isotropic power is 50 dBW, the receiver gain is 55 dB and the receiver noise
figure is ≈5 dB. The system is fully coherent across all four channels with a phase stability/error
better than 1° root mean square (RMS). A two stage up/downconversion scheme is used and
variation in the second local oscillator frequency allows stepped frequency processing across a
4 GHz operational bandwidth.

Figure 4: CREW Schematic Showing the Digital Backend, IF Stage, and W-band RF Stage

Approved for public release; distribution is unlimited

The CREW is a unique test bed able to facilitate research into fully adaptive and
cognitive algorithms and distributed/multistatic operation all within the laboratory. The
extremely high bandwidths result in a range resolution of a few centimeters making it possible to
observe multiple scattering centers in smaller targets and easy to range-gate out the walls of the
laboratory. The W-band center frequency means the narrowband assumption can be made even if
the full 4 GHz bandwidth is used. As such it is easy to set-up sophisticated experiments using the
CREW within CSL.

However, developing and debugging FAR algorithms while running experiments can be
cumbersome and time-consuming. While developing algorithms under the FAR Phase II SBIR,
it became apparent that a simulation of the CREW was needed for algorithm development and
testing under controlled and reproducible conditions, with the ability to switch between
simulated and experimental data sources easily. In this project, we have developed this
capability.

The implementation of the CREW Sensor object consists of:
• Properties: c, transmitter (structure), receiver (structure), waveform (structure), Simulated,

ConfigMaster, ConfigSlave, driver
• Methods: Sensor_CREW (constructor), get_measurement, constructWaveform,

sendWaveform, receiveDataSim, receiveDataCREW

The property c is the speed of light and transmitter, receiver, and waveform are
structures that contain parameters that characterize the CREW sensor. The parameters we can
adapt are in waveform. For the five-parameter example, the parameters are PRF, number of
pulses, pulse length, bandwidth, and transmitted power. The flag Simulated is set true for
simulation and false for experiment. The parameters ConfigMaster, ConfigSlave, and
driver are used to interface to the CREW.

The object Sensor_CREW implements the get_measurement method as shown in
Figure 5. It contains a switch to toggle between simulated and CREW data. The CREW API
consists of the methods sendWaveform and receiveDataCrew. These interface directly with the
CREW to transmit pulses and receive echo returns. The simulation API and sensor consists of
the methods constructWaveform and receiveDataSim. The method receiveDataSim gets
target, clutter and noise parameters from Scene_CREW, and generates random samples of complex
clutter data.

Approved for public release; distribution is unlimited

29

30

Figure 5: CREW Sensor Object

Approved for public release; distribution is unlimited

31

4.5 Summary

This chapter provided a description of the MATLAB-based FAR M&S architecture. The
architecture is coded in MATLAB using an OOP approach. It includes a FAR engine to control
the operation of the perception-action cycle and software objects that determine the next set of
sensing parameters; obtain data from the sensor; process the data to track the target; and store
and display the results of the sensing and tracking processes. We have developed modules that
implement simulated DSRA and pre-recorded SDR data examples in [30]-[35], and the real-time
CREW data examples in [36]-[39]. We have developed a simulation of the CREW and the API
layers for the simulated and experimental CREW data sources to enable switching between
simulated and experimental data.

Approved for public release; distribution is unlimited

5 CONCLUSIONS

The potential of cognitive approaches to enhance existing radar performance in almost all
respects has led to an upsurge in research in recent years and a key gap in the Air Force’s radar
M&S tools is the lack of a comprehensive, dynamic distributed radar scenario generation
capability for distributed FAR systems.

In this project we have developed a MATLAB-based M&S architecture for distributed
FAR radar that will enable algorithm development and testing on simulated, previously
collected, and real-time streaming data. The architecture is coded in MATLAB using an OOP
approach and implements the FAR framework developed in [30]-[35]. It includes a FAR engine
to control the operation of the perception-action cycle and software objects that determine the
next set of sensing parameters; obtain data from the sensor; process the data to track the target;
and store and display the results of the sensing and tracking processes. We have developed
modules that implement simulated DSRA example in [33], the pre-recorded SDR data example
in [35], and the real-time CREW data examples in [36]-[40]. We have developed a simulation of
the CREW and the API layers for the simulated and experimental CREW data sources to enable
switching between simulated and experimental data. A demonstration was given in March 2016
for members of the NATO SET-227 Panel on Cognitive Radar.

The FAR M&S architecture developed in Phase I allows for transparent switching
between the simulated and experimental CREW data sources, as well as between FAR
algorithms that drive the sensing. The ability to easily interchange sensing and processing
objects will allow for rapid development and testing of cognitive radar algorithms by structuring
the M&S functions to avoid duplicating effort and “single point” solutions. It will enable
collaboration between researchers in industry, academia, and the Air Force, as algorithms
developed by different researchers can be tested and compared using consistent simulations,
collected data, and laboratory conditions. In Phase II, we plan to make the FAR M&S
architecture code available to members of the NATO SET-227 Panel on Cognitive Radar.
Collaborations with members of this panel to develop and test algorithms on the CREW are
already underway. Furthermore, several members have already begun development of their own
cognitive radar test beds and our FAR M&S architecture will enable further collaboration within
the panel using these data sources.

In Phase II, we also plan extend the baseline architecture to model a dynamic, distributed
airborne MIMO radar FAR system using the full MIMO-CMS tool as the simulation base. This
will provide a comprehensive radar scenario generation capability that will fill a key gap in the
Air Force’s previously developed radar M&S tools.

Approved for public release; distribution is unlimited

32

33

6 REFERENCES

[1] Li, J. and Stoica, P., Eds., MIMO Radar Signal Processing, Hoboken, NJ: Wiley, 2008.
[2] San Antonio, G., Fuhrmann, D. R., and Robey, F. C., “MIMO radar ambiguity functions,”

IEEE J. Selected Topics in Signal Processing; special issue on Adaptive Waveform
Design, vol. 1, no. 1, pp. 167-177, June 2007.

[3] Fishler, E., Haimovich, A., Blum, R. S., Cimini, Jr., L. J., Chizhik, D., and Valenzuela, R.
A., “Spatial diversity in radars - models and detection performance,” IEEE Trans. Signal
Processing, vol. 54, no. 3, pp. 823-838, Mar. 2006.

[4] Haimovich, A., Blum, R. S., and Cimini, Jr., L. J, “MIMO radar with widely separated
antennas,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 116-129, Jan. 2008.

[5] He, Q., Lehmann, N. H., Blum, R. S., and Haimovich, A. M., “MIMO radar moving target
detection in homogeneous clutter,” IEEE Trans. Aerosp. Electron. Syst., vol. 46, no. 3, pp.
1290-1300, July 2010.

[6] Wang, P., Li, H., and Himed, B., “Moving target detection using distributed MIMO radar
in clutter with nonhomogeneous power,” IEEE Trans. Signal Processing, vol. 59, no. 10,
pp. 4809-4820, Oct. 2011.

[7] Chen, C.-Y. and Vaidyanathan, P. P., “MIMO radar space-time adaptive processing using
prolate spheroidal wave functions,” IEEE Trans. Signal Processing, vol. 56, no. 2, pp.
623-634, Feb. 2008.

[8] Forsythe, K. W. and Bliss, D. W., “MIMO radar waveform constraints for GMTI,” IEEE
J. Selected Topics in Signal Processing, special issue on MIMO Radar, vol. 4, no. 1, pp.
21-32, February 2010.

[9] Kantor, J. M. and Bliss, D. W., “Clutter covariance matrices for GMTI MIMO radar,” in
Proc. 44th Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, pp.
1821-1826, November 2010.

[10] Fuhrmann, D. R., Browning, J. P., and Rangaswamy, M., “Signaling strategies for the
hybrid MIMO phased array radar,” IEEE J. Selected Topics in Signal Processing, special
issue on MIMO Radar, vol. 4, no. 1, pp. 66-78, February 2010.

[11] Pugh, M. L. and Zulch, P. A., “RLSTAP Algorithm Development Tool for analysis of
advanced signal processing techniques,” in Proc. 29th Asilomar Conf. on Signals,
Systems, and Computers, Pacific Grove, CA, pp. 1178-1182, November 1995.

[12] Ward, J., “Space-time adaptive processing for airborne radar,” MIT Lincoln Laboratory
Tech. Report 1015, DTIC No. ESC-TR-94-109, December 13, 1994.

[13] Guerci, J. R., Space-Time Adaptive Processing for Radar, Norwood, MA: Artech
House, 2003.

[14] Klemm, R., Principles of Space-Time Adaptive Processing, 3rd ed., London, UK: The
Institution of Engineering and Technology, 2006.

[15] Zhang, Y. and Himed, B., “Bistatic space-time adaptive processing (STAP) for
airborne/spaceborne applications,” AFRL Tech. Report AFRL-SN-RS-TR-1999-97, May
1999.

[16] Zhang, Y. and Hajjari, S., “Bistatic space-time adaptive processing for
airborne/spaceborne applications – clutter characteristics and signal processing
algorithms,” AFRL Tech. Report AFRL-SN-RS-TR-2001-201, Part I, Aug. 2002.

Approved for public release; distribution is unlimited

34

[17] Zhang, Y. and Hajjari, S., “Bistatic space-time adaptive processing for
airborne/spaceborne applications – signal modeling and simulation tool for multichannel
bistatic systems (SMS-MBS),” AFRL Tech. Report AFRL-SN-RS-TR-2001-201, Part II,
Aug. 2002.

[18] Bell, K. L., Johnson, J. T., and Smith, G. E., “MIMO radar clutter modeling and
simulation,” AFOSR Phase II Final Tech. Report, April 2016.

[19] Bell, K. L., Johnson, J. T., Baker, C. J., and Smith, G. E., “MIMO radar clutter modeling,”
AFRL Tech. Report AFRL-RY-WP-TR-2012-0308, October 2012.

[20] Goodman, N. A. and Bruyere, D., “Optimum and decentralized detection for multistatic
airborne radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 2, pp. 806-813, April
2007.

[21] Bell, K. L., Johnson, J. T., Baker, C. J., Smith, G. E. and Rangaswamy, M., “Modeling
and simulation for multistatic coherent MIMO radar,” in Proc. 2013 IEEE Radar Conf.,
Ottawa, Canada, April 2013.

[22] Johnson, J. T., Baker, C. J., Smith, G. E., Bell, K. L., and Rangaswamy, M., “The
monostatic-bistatic equivalence theorem and bistatic radar clutter,” in Proc. European
Radar Conference 2014, Rome, Italy, October 2014.

[23] Bell, K. L., Johnson, J. T., Baker, C. J., Smith, G. E. and Rangaswamy, M., “Bistatic
coherent MIMO clutter rank analysis,” in Proc. 2015 European Signal Processing Conf.,
Nice, France, Aug. 2015.

[24] Fuster, J. M., Cortex & Mind: Unifying Cognition, Oxford, UK: Oxford University
Press, 2003.

[25] Fuster, J. M, “The cognit: A network model of cortical representation,” Intl. Journal of
Psychophysiology, vol. 60, no. 2, pp. 125-132, May 2006.

[26] Haykin, S., “Cognitive radar: a way of the future,” IEEE Signal Processing Magazine, vol.
23, no. 1, pp. 30–40, Jan. 2006.

[27] Haykin, S., Xue, Y., and Setoodeh, M. P., “Cognitive radar: step toward bridging the gap
between neuroscience and engineering,” Proc. IEEE, vol. 100, no. 11, pp. 3102-3130,
November 2012.

[28] Haykin, S., Cognitive Dynamic Systems (Perception-Action Cycle, Radar, and Radio),
Cambridge University Press, 2012.

[29] “Cognitive Dynamic Systems,” S. Haykin, Ed., special issue of Proc. IEEE, vol. 102, no.
4, Apr. 2014.

[30] Bell, K. L., Baker, C. J., Smith, G. E., and Johnson, J. T., “Fully Adaptive Radar,” AFRL
Tech. Report AFRL-RY-WP-TR-2014-0072, March 2014.

[31] Bell, K. L., Baker, C. J., Smith, G. E., Johnson, J. T., and Rangaswamy, M., “Fully
adaptive radar for target tracking part I: single target tracking,” in Proc. 2014 IEEE Radar
Conf., Cincinnati, OH, pp. 303-308, May 2014.

[32] Bell, K. L., Baker, C. J., Smith, G. E., Johnson, J. T., and Rangaswamy, M., “Fully
adaptive radar for target tracking part II: target detection and track initiation,” in Proc.
2014 IEEE Radar Conf., Cincinnati, OH, pp. 309-314, May 2014.

[33] Bell, K. L., Baker, C. J., Smith, G. E., Johnson, J. T., and Rangaswamy, M., “Cognitive
radar for target tracking,” IEEE J. Selected Topics in Signal Processing; special issue on
Advanced Signal Processing Techniques for Radar Applications, vol. 9, no. 8, pp.1427-
1439, December 2015.

Approved for public release; distribution is unlimited

35

[34] Bell, K. L., Baker, C. J., Smith, G. E., Johnson, J. T., and Rangaswamy, M., “Cognitive
sensor/processor system framework for target tracking,” chapter in Biologically Inspired
Radar and Sonar: Lessons from Nature, A. Balleri, H. Griffiths, and C. Baker, eds., in
press.

[35] Bell, K. L., Johnson, J. T., Smith, G. E., Baker, C. J., and Rangaswamy, M., “Cognitive
radar for target tracking using a software defined radar system,” in Proc. 2015 IEEE
Radar Conf., Arlington, VA, pp. 1394-1399, May 2015.

[36] Smith, G. E., Cammenga, Z., Mitchell, A., Bell, K. L., Rangaswamy, M., Johnson, J. T.,
and Baker, C. J., “Experiments with cognitive radar,” in Proc. IEEE Intl. Wkshp. on
Comp. Adv. in Multi-Sensor Adaptive Processing (CAMSAP 2015), Dec. 2015.

[37] Smith, G. E., Cammenga, Z., Mitchell, A., Bell, K. L., Johnson, J. T., Rangaswamy, M.,
and Baker, C. J., “Experiments with cognitive radar,” IEEE Aerospace and Electronic
Systems Magazine, special issue on Waveform Diversity: Part II, vol. 31, no. 12, pp. 34-
46, Dec. 2016.

[38] Mitchell, A. E., Bell, K. L., Smith, G. E. and Rangaswamy, M., “Cognitive radar
adaptation through coordinate descent optimization,” in Proc. 2016 CIE Intl. Radar Conf.,
China, Oct. 2016.

[39] Butterfield, A., Mitchell, A. E., Smith, G. E., Bell, K. L., and Rangaswamy, M., “Metrics
for quantifying cognitive radar performance, in Proc. 2016 CIE Intl. Radar Conf., China,
Oct. 2016.

[40] Mitchell, A. E., Smith, G. E., Bell, K. L., and Rangaswamy, M., “Single target tracking
with distributed cognitive radar,” to appear in Proc. 2017 IEEE Radar Conf., Seattle, WA,
May 2017.

[41] Gini, F. and Rangaswamy, M., Eds., Knowledge Based Radar Detection, Tracking, and
Classification, Hoboken, NJ: Wiley, 2008.

[42] Guerci, J. R., Cognitive Radar: The Knowledge Aided Fully Adaptive Approach,
Reading, MA: Artech House, 2010.

[43] Guerci, J., Guerci, R., Rangaswamy, M., Bergin, J., and Wicks, M., “Cognitive Fully
Adaptive Radar (CoFAR),” in Proc. 2014 IEEE Radar Conf., Cincinnati, OH, May 2014.

[44] Miranda, S. L. C., Baker, C. J., Woodbridge, K. D., and Griffiths, H. D., “Knowledge
based resource management for multifunction radar,” IEEE Signal Processing Magazine,
vol. 23, no. 1, pp. 66-76, 2006.

[45] Miranda, S. L. C., Baker, C. J., Woodbridge, K. D., and Griffiths, H. D., “Fuzzy logic
approach for prioritization of radar tasks and sectors of surveillance in multifunction
radar,” IET Proc. Radar, Sonar, Navig., vol. 1, no. 2, pp. 131-141, 2007.

[46] Vespe, M., Baker, C. J., and Griffiths, H. D., “Automatic target recognition using multi-
diversity radar,” IET Proc. Radar, Sonar, Navig., vol. 1, no. 6, pp. 470-478, Dec 2007.

[47] Miranda, S., Baker, C. J., Woodbridge, K., and Griffiths, H. D., “Intelligent radar resource
management,” chapter in Knowledge Based Radar Detection, Tracking and
Classification, F. Gini and M. Rangaswamy, Eds., ISBN: 978-0-470-14930-0, Wiley,
2008.

[48] Aubry, A., De Maio, A., Piezzo, M., Farina, A., and Wicks, M. “Cognitive design of the
receive filter and transmitted phase code in reverberating environment,” IET Radar, Sonar
and Navigation, vol. 6, no. 9, pp. 822-833, 2012.

Approved for public release; distribution is unlimited

36

[49] Stinco, P., Greco, M., and Gini, F., “Spectrum sensing and sharing for cognitive radars,”
IET Radar, Sonar and Navigation, vol. 10, no. 3, pp. 595–602, 2016.

[50] Stinco, P., Greco, M., Gini, F., and Himed B., “Cognitive radars in spectrally dense
environments,” IEEE Aerosp. Electron. Syst. Magazine, vol. 31, no. 10, pp. 20-27,
October 2016.

[51] Kershaw, D. J. and Evans, R. J., “Optimal waveform selection for tracking systems,”
IEEE Trans. Inform. Theory, vol. 40, no. 5, pp. 1536-1550, Sep. 1994.

[52] Fuhrmann, D., “Active-testing surveillance systems, or, playing twenty questions with
radar,'' in Proc. 11th Annual Adaptive Sensor and Array Processing (ASAP) Workshop,
MIT Lincoln Laboratory, Lexington, MA, Mar. 2003.

[53] Sira, S. P., Papandreou-Suppappola, A., and Morrell, D., “Dynamic configuration of time-
varying waveforms for agile sensing and tracking in clutter,” IEEE Trans. Signal
Processing, vol. 55, no. 7, pp. 3207-3217, Jul. 2007.

[54] Hurtado, M., Zhao, T., and Nehorai, A., “Adaptive polarized waveform design for target
tracking based on sequential Bayesian inference,” IEEE Trans. Signal Processing, vol. 56,
no. 13, pp. 1120-1133, Mar. 2008.

[55] Sira, S. P., Li, Y., Papandreou-Suppappola, A., Morrell, D., Cochran, D., and
Rangaswamy, M., “Waveform-agile sensing for tracking,” IEEE Signal Processing
Magazine, vol. 26, no. 1, pp. 53-64, Jan. 2009.

[56] Hernandez, M. L., Kirubarajan, T., and Bar-Shalom, Y., “Multisensor resource
deployment using posterior Cramér-Rao Bounds,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 40, no. 2, pp. 399-416, Apr. 2004.

[57] Kreucher, C., Hero, A. O., Kastella, K., and Chang, D., “Efficient methods of non-myopic
sensor management for multitarget tracking,” in Proc. 43rd IEEE Conf. Decision and
Control, Atlantis, Bahamas, pp. 722-727, December 2004.

[58] Kreucher, C., Kastella, K. , and Hero, A. O., “Sensor management using an active sensing
approach,” Signal Processing, vol. 85, no. 3, pp. 607-624, March 2005.

[59] Kreucher, C. M., Hero, A. O., Kastella, K. D., and Shapo, B., “Information-based sensor
management for simultaneous multitarget tracking and identification,” in Proc. 13th Ann.
Conf. on Adaptive Sensor Array Processing, MIT Lincoln Laboratory, Lexington, MA,
June 2005.

[60] Kreucher, C., Hero, A. O., and Kastella, K., “A comparison of task driven and information
driven sensor management for target tracking,” in Proc. 44th IEEE Conf. Decision and
Control, Seville, Spain, pp. 4004-4009, December 2005.

[61] Kreucher, C. M., Hero, A. O., Kastella, K. D., and Morelande, M. R., “An information-
based approach to sensor management in large dynamic networks”, Proc. IEEE, vol. 95,
no. 5, pp. 978-999, May 2007.

[62] Tharmarasa, R., Kirubarajan, T., and Hernandez, M. L., “Large-scale optimal sensor array
management for multitarget tracking,” IEEE Trans. Syst., Man, Cybern. C: Appl. Rev.,
vol. 37, no. 5, pp. 803-814, Sep. 2007.

[63] Chong, E. K. P., Kreucher, C. M., and Hero, A. O. “Monte-Carlo-based partially
observable Markov decision process approximations for adaptive sensing,” in Proc. 9th

Intl. Wkshp. Discrete Event Systems, Goteborg, Sweden, pp. 173-180, May 2008.

Approved for public release; distribution is unlimited

37

[64] Chavali, P. and Nehorai, A., “Scheduling and power allocation in a cognitive radar
network for multiple-target tracking,” IEEE Trans. Signal Process., vol. 60, no. 2, pp.
715-729, Feb. 2012.

[65] Romero, R. A. and Goodman, N. A., “Cognitive radar network: cooperative adaptive
beamsteering for integrated search-and-track application,” IEEE Trans. Aerosp. Electron.
Syst., vol. 49, no. 2, pp. 915-931, Apr. 2013.

[66] Charlish, A. and Hoffmann, F., “Anticipation in cognitive radar using stochastic control,”
in Proc. 2015 IEEE Radar Conf., Arlington, VA, pp. 751-756, May 2015.

[67] Saksena, A. and Wang, I-J., “Dynamic ping optimization for surveillance in multistatic
sonar buoy networks with energy constraints,” in Proc. 47th IEEE Conf. Decision and
Control, Cancun, Mexico, pp. 1109-1114, Dec. 2008.

[68] Wakayama, C. Y. and Grimmett, D. J., “Adaptive ping control for track-holding in
multistatic active sonar networks,” in Proc. 13th Intl. Conf. on Information Fusion,
Edinburgh, UK, July 2010.

[69] Wakayama, C. Y., Grimmett, D. J., and Zabinsky, Z. B., “Forecasting probability of target
presence for ping control in multistatic sonar networks using detection and tracking
models,” in Proc. 14th Intl. Conf. on Information Fusion, Chicago, IL, July 2011.

[70] Holdereid, M. W., Baker, C. J., Vespe, M., and Jones, G., “Understanding signal design
during the pursuit of aerial insects by echo locating bats: tools and applications,”
Integrative and Comparative Biology, vol. 48, pp. 78-84, May 2008.

[71] Baker, C. J. and Griffiths, H. D., “Biologically inspired waveform diversity,” chapter in
Waveform Design and Diversity for Advanced Radar Systems, F. Gini, A. De Maio,
and L. Patton, Eds., IET publishing, Aug. 2012.

[72] Balleri, A., Griffiths, H. D., Baker, C. J., Woodbridge, K., and Holderied, M. W.,
“Analysis of acoustic echoes from a bat-pollinated plant species: insight into strategies for
radar and sonar target classification,” IET Proc. Radar, Sonar, Navig., vol. 6, no. 6, pp.
536-544, July 2012.

[73] Baker, C. J. and Smith, G. E., “Aspects of cognition and echolocation,” in Proc. 2012
IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 1-2, 8-
14 July 2012.

[74] Baker, C. J., Smith, G. E., Balleri, A., Holderied, M. and Griffiths, H. D., “Biomimetic
echolocation with application to radar and sonar sensing,” Proc. IEEE, vol. 102, no. 4, pp.
447–458, Apr. 2014.

[75] Baker, C. J., Smith, G. E., Balleri, A., Holderied, M. and Griffiths, H. D., “Sensing,
cognition, and engineering application [further thoughts],” Proc. IEEE, vol. 102, no. 4, p.
459, Apr. 2014.

[76] Smith, G. E. and Baker, C. J., “Echoic flow for radar and sonar,” IET Electronics Letters,
vol. 48, no. 18, pp. 1160-1161, August 2012.

[77] Smith, G. E. and Baker, C. J., “Echoic flow for autonomous navigation,” in Proc. of
Radar 2012, The International Conference On Radar, 2012.

[78] Frankford, M., Majurec, N., and Johnson, J. T., “Software-defined radar for MIMO and
adaptive waveform applications”, 2010 IEEE Radar Conf., Washington, DC, pp. 724-728,
May 2010.

Approved for public release; distribution is unlimited

38

[79] Frankford, M., Johnson, J. T., and Ertin, E., “Including spatial correlations in the statistical
MIMO radar target model,” IEEE Signal Processing Letters, vol. 17, no. 6, pp. 575-578,
June 2010.

[80] Frankford, M., Stewart, K. B., Majurec, N., and Johnson, J. T., “Numerical and
experimental studies of target detection with MIMO radar,” IEEE Trans. Aerosp.
Electron. Syst., vol. 50, no. 2, pp. 1569-1577, April 2014.

[81] Stewart, K., Frankford, M., Johnson, J. T., and Ertin, E., “MIMO radar target
measurements,” in Proc. 45th Asilomar Conf. Signals, Systems, and Computers, Pacific Grove,
CA, pp. 1067-1071, Nov. 2011.

[82] Park, J., “Multi-frequency radar signatures of human motion: measurements and models,”
Ph.D. Dissertation, The Ohio State University, 2012.

[83] Park, J., Johnson, J. T., Majurec, N., Frankford, M., Culpepper, E., Reynolds, J.,
Tenbarge, J., and Westbrook, L., “Software defined radar studies of human motion
signatures,” in Proc. 2012 IEEE Radar Conf., Atlanta, GA, pp. 596-601, May 2012.

[84] Park, J., Johnson, J. T., Majurec, N., Frankford, M., Stewart, K., Smith, G., and
Westbrook, L., “Simulation and analysis of polarimetric radar signatures of human gaits,”
IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 3, pp. 2164-2175, July 2014.

[85] Oechslin, R., Smith, G. E. , Aulenbacher, U., Rech, K., Hinrichsen, S., Bell, K. L. and
Wellig, P., “Cognitive radar testbed development,” in Proc. 50th Asilomar Conf. on
Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2016.

[86] Christiansen, J. M., Smith, G. E., and Olsen, K. E., “USRP based cognitive radar testbed,"
to appear in Proc. 2017 IEEE Radar Conf., Seattle, WA, May 2017.

[87] Stone, L. D., Streit, R. L., Corwin, T. L., and Bell, K. L., Bayesian Multiple Target
Tracking, 2nd Ed.. Norwood, MA: Artech House, 2014.

[88] Ristic, B., Arulampalam, S., and Gordon, N., Beyond the Kalman Filter: Particle Filters
for Tracking Applications, Boston, MA: Artech House, 2004.

[89] Bar-Shalom, Y., Li, X. R., and Kirubarajan, T., Estimation with Applications to
Tracking and Navigation, New York, NY: Wiley, 2001.

[90] Van Trees, H. L., Bell, K. L., and Tian, Z., Detection, Estimation, and Modulation
Theory, Part I, 2nd Ed., Hoboken, NJ: Wiley, 2013.

[91] Van Trees, H. L. and Bell, K. L., Eds., Bayesian Bounds for Parameter Estimation and
Nonlinear Filtering/Tracking, Piscataway, NJ: Wiley-IEEE Press, 2007.

[92] Zarnich, R. E., Bell, K. L., and Van Trees, H. L., “A unified method for measurement and
tracking of multiple contacts from sensor array data,” IEEE Trans. Sig. Proc., vol. 49,
no.12, pp. 2950 –2961, Dec. 2001.

[93] Bell, K. L., “MAP-PF position tracking with a network of sensor arrays,” in Proc. 2005
IEEE Intl. Conf. on Acoust., Speech, Sig. Proc. (ICASSP `05), Philadelphia, PA, vol. IV,
pp. 849-852, March 2005.

[94] Bell, K. L. and Pitre, R. “MAP-PF 3D position tracking using multiple sensor arrays,” in
Proc. Fifth IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM
2008), Darmstadt, Germany, pp. 238-242, July 2008.

[95] Bell, K. L., Zarnich, R. E., and Wasyk, R., “MAP-PF wideband multitarget and colored
noise tracking,” in Proc. 2010 IEEE Intl. Conf. on Acoust., Speech, Sig. Proc. (ICASSP
`10), Dallas, TX, pp. 2710-2713, March 2010.

Approved for public release; distribution is unlimited

39

[96] Bell, K. L., “MAP-PF multi-mode tracking for over-the-horizon radar,” in Proc. 2012
IEEE Radar Conf., Atlanta, GA, pp. 326-331, May 2012.

[97] Bell, K. L. and Zarnich, R. E., “MAP-PF multitarget tracking with propagation modeling
uncertainties,” in Proc. 47th Asilomar Conf. Signals, Systems, and Computers, Pacific Grove,
CA, Nov. 2013.

[98] Zangwill, W. I., Nonlinear Programming: A Unified Approach, Englewood Cliffs, NJ:
Prentice-Hall, 1969.

Approved for public release; distribution is unlimited

40

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

ACRONYM DESCRIPTION

A2/AD anti-access/area denial
ADC analog-to-digital converter
AFOSR Air Force Office of Scientific Research
AFRL Air Force Research Laboratory
API application programming interface
AWG arbitrary waveform generator
BCRLB Bayesian Cramér-Rao lower bound
BIM Bayesian information matrix
BLR Bayesian likelihood ratio
BLRT Bayesian likelihood ratio test
CPI coherent processing interval
CR Cognitive radar
CREW Cognitive Radar Engineering Workspace
CSL Cognitive Sensing Laboratory
DSRA distributed sensor resource allocation
DURIP Defense University Research Instrumentation Program
EFIM expected Fisher information matrix
ESL ElectroScience Laboratory
FAR fully adaptive radar
FFR feed-forward radar
FIM Fisher information matrix
GMTI ground moving target indicator
IF intermediate frequency
ILR integrated likelihood ratio
LRDT likelihood ratio detection and tracking
M&S modeling and simulation
MAP maximum a posteriori
MAP-PF maximum a posteriori penalty function
MBET monostatic-bistatic equivalence theorem
MIMO multiple input multiple output
MIMO-CMS MIMO radar clutter modeling and simulation
ML maximum likelihood
MMSE minimum mean square error
MSE mean square error

Approved for public release; distribution is unlimited

41

NATO North Atlantic Treaty Organization
OOP object oriented programming
OSU The Ohio State University
PA perception-action
PDF probability density function
PC-BIM predicted conditional Bayesian information matrix
PC-CRLB predicted conditional Cramér-Rao lower bound
PIM predicted information matrix
PRF pulse repetition frequency
RCS radar cross section
RF radio frequency
RLSTAP Research Laboratory Space Time Adaptive Processing
RMS root mean square
SDR software defined radar
SET Sensors Electronics Technology
SIMO single input multiple output
SISO single input single output
SMS-MBS Signal Modeling and Simulation Tool for Multichannel Bistatic Systems
SNR signal-to-noise ratio
SPC Signal Processing Consultants, Inc.
STAP space-time adaptive processing

Approved for public release; distribution is unlimited

	LIST OF FIGURES
	LIST OF Tables
	1 Summary
	2 Introduction
	3 Methods, Assumptions, and Procedures
	3.1 Fully Adaptive Radar Framework
	3.1.1 General Framework
	3.1.2 Cognitive Single Target Tracking
	3.1.3 Cognitive Single Target Tracking, Initiation, and Termination
	3.1.4 Cognitive MAP-PF Single Target Tracking

	3.2 Examples
	3.3 Summary

	4 Results and Discussion
	4.1 FAR M&S Software Architecture Overview
	4.2 Using the FAR M&S MATLAB Code
	4.2.1 System Requirements
	4.2.2 Getting Started

	4.3 FAR M&S Architecture Base Classes
	4.3.1 Scene
	4.3.2 Sensor
	4.3.3 Processor
	4.3.4 Optimizer
	4.3.5 Storage Manager
	4.3.6 Display Manager
	4.3.7 Timing Manager
	4.3.8 Perception Action Cycle
	4.3.9 FAR Engine
	4.3.10 Utility Functions

	4.4 The CREW Sensor
	4.5 Summary

	5 Conclusions
	6 References
	List of Acronyms, Abbreviations, and Symbols
	CoverPage.pdf
	afrl-rY-wp-tR-2017-0074

	SF298.pdf
	REPORT DOCUMENTATION PAGE

