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1 SUMMARY 
 
The potential of cognitive approaches to enhance existing radar performance in almost all 

respects has led to an upsurge in research in recent years and a key gap in the Air Force’s radar 
modeling and simulation (M&S) tools is the lack of a comprehensive, dynamic distributed radar 
scenario generation capability for distributed fully adaptive radar (FAR) systems.  As of early 
2015, the research had all been advancing concepts theoretically and examining their 
performance through simulation, or at best using pre-recorded data.  There had been no reports 
of experimentally validated concepts, largely because the necessary hardware to test them had 
not been developed. However, this step is vital in order to establish the true performance 
potential of applying cognitive processing methods.  To address this, the Cognitive Sensing 
Laboratory (CSL) at The Ohio State University (OSU) ElectroScience Laboratory (ESL), in 
conjunction with Metron, Inc., the Air Force Research Laboratory (AFRL), and the Air Force 
Office of Scientific Research (AFOSR), has embarked on a program of research to develop and 
examine cognitive radar processing concepts analytically and experimentally.   

 
The CSL designed and built the Cognitive Radar Engineering Workspace (CREW), the 

world’s first radar testbed built specifically to allow testing of fully adaptive and cognitive 
algorithms, and Metron and OSU have developed a theoretical framework for a cognitive FAR 
system that identifies and mathematically models the key system components within the context 
of target detection and tracking for a single sensor and target.  We have been developing 
modeling, simulation, analysis, and experimentation capabilities to demonstrate the performance 
improvement achieved by FAR systems over traditional feed-forward radar (FFR) systems.  We 
began with simulated scenarios and pre-recorded data from OSU’s Software Defined Radar 
(SDR) system.  We now have the capability to demonstrate the real-time operation of the 
cognitive radar tracking system using the CREW. 

 
The goal of this project is to develop a MATLAB-based M&S architecture for distributed 

FAR radar that will enable algorithm development and testing on simulated, previously 
collected, and real-time streaming data.  In Phase I, we have developed a baseline FAR M&S 
architecture that is coded in MATLAB using an object oriented programming (OOP) approach.  
It includes a FAR engine to control the operation of the perception-action (PA) cycle and 
software objects that determine the next set of sensing parameters; obtain data from the sensor; 
process the data to track the target; and store and display the results of the sensing and tracking 
processes.  We have developed modules that implement simulated and pre-recorded SDR data 
examples, and real-time and simulated CREW data examples.   

 
The FAR M&S architecture developed in Phase I allows for transparent switching 

between the simulated and experimental CREW data sources, as well as between FAR 
algorithms that drive the sensing.  The ability to easily interchange sensing and processing 
objects will allow for rapid development and testing of cognitive radar algorithms by structuring 
the M&S functions to avoid duplicating effort and “single point” solutions.  It will enable 
collaboration between researchers in industry, academia, and the Air Force, as algorithms 
developed by different researchers can be tested and compared using consistent simulations, 
collected data, and laboratory conditions.   
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2 INTRODUCTION 

Radar systems are crucial for robust surveillance, target acquisition, and reconnaissance 
in all weather conditions and over wide ranges of interest.  Anti-access/area denial (A2/AD) 
environments are especially challenging, therefore it is necessary to develop innovative signal 
and data processing techniques to provide advanced sensing capabilities to the warfighter.  
Distributed multiple input multiple output (MIMO) FAR systems provide the potential to exploit 
all available degrees of freedom on transmit and receive in order to maximize radar system 
performance, thus they offer much promise for improved sensing as well as the creation of new 
sensing modalities.   

MIMO radar systems employ multiple transmit and receive elements with transmit 
elements that have the ability to transmit arbitrary waveforms simultaneously and receive 
elements that have the ability to process all of the transmitted signals jointly [1]-[10].  Of 
primary interest are MIMO ground moving target indicator (GMTI) systems consisting of 
distributed airborne platforms. As in traditional single input single output (SISO) and single 
input multiple output (SIMO) systems, effective clutter suppression is a key factor in system 
performance, and the availability of realistic clutter models and simulated clutter data is critical 
for advanced system design and performance analysis.   

M&S tools developed by the Air Force include the Research Laboratory Space Time 
Adaptive Processing (RLSTAP) Algorithm Development Tool [11], which provides a flexible 
simulation and analysis tool for SIMO GMTI systems that employ monostatic space-time 
adaptive processing (STAP) [12]-[14], and the Signal Modeling and Simulation Tool for 
Multichannel Bistatic Systems (SMS-MBS) [15]-[17], which provides an advanced M&S 
capability for bistatic SIMO STAP systems.  The SMS-MBS tool can generate multiple data 
cubes for multiple coherent processing intervals (CPIs) with automatically updated bistatic 
scenarios, but is limited to geometries for which the bistatic angle is small and the monostatic-
bistatic equivalence theorem (MBET) approximation is valid.  The MIMO Radar Clutter 
Modeling and Simulation (MIMO-CMS) tool [18],[19], developed by Metron, OSU, and Signal 
Processing Consultants, Inc. (SPC), provides a physics-based M&S capability for distributed 
airborne MIMO GMTI systems and extends the M&S capabilities to multistatic STAP [20] and 
multistatic MIMO [21] configurations.  MIMO-CMS accurately characterizes the statistical and 
spectral properties of the clutter for a variety of radar operating parameters and site-specific 
geometry and scattering environments.  It uses a physics-based bistatic scattering model 
developed by OSU and is not limited by the MBET approximation [22].  A companion set of 
toolbox functions calculates fundamental quantities such as iso-range contours, the radar range 
equation, mean clutter radar cross section (RCS), clutter amplitude and spectral characteristics, 
the true covariance matrix, and the clutter rank [23].  Additional functions perform MIMO signal 
processing, calculate performance metrics such as signal-to-noise-ratio (SNR), mean-square 
error (MSE), detection and false alarm probabilities; and perform statistical and experimental 
model goodness-of-fit tests. MIMO-CMS currently only provides a single CPI data cube for a 
fixed set of radar system parameters.  

FAR systems, also called cognitive radar (CR) systems, mimic the PA cycle of cognition 
[24],[25] to adapt the radar sensor in real-time to collect data to achieve a required level of 
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performance [26]-[43].  This requires developing a perception of the current system status, 
prediction of the effect different sensing actions, and choosing the next sensing action, all in real-
time.  Haykin introduced the concept of cognitive radar in [26], however the motivation and 
many of the underlying ideas grew out of the fields of knowledge-aided radar signal processing 
[41]-[47], agile waveform design [48]-[55], sensor management [56]-[66], sonar ping control 
[67]-[69], bio-mimetic signal processing [70]-[75], and echoic flow [76],[77].  Although the 
concept of sensor adaptation goes back several decades, research into truly cognitive systems is 
currently in its infancy.   

 
The potential of cognitive approaches to enhance existing radar performance in almost all 

respects has led to an upsurge in research in recent years.  As of early 2015, the research had all 
been advancing concepts theoretically and examining their performance through simulation, or at 
best using pre-recorded data.  There had been no reports of experimentally validated concepts, 
largely because the necessary hardware to test them had not been developed. However, this step 
is vital in order to establish the true performance potential of applying cognitive processing 
methods.  To address this, the CSL at the OSU ESL, in conjunction with Metron, Inc., AFRL, 
and AFOSR, has embarked on a program of research to develop and examine cognitive radar 
processing concepts analytically and experimentally.   

 
Under an AFOSR-sponsored grant from the 2013 Defense University Research 

Instrumentation Program (DURIP), the CSL designed and built the CREW, the world’s first 
radar testbed built specifically to allow testing of fully adaptive and cognitive algorithms.  The 
CREW became operational in early 2015.  Under AFRL-sponsored Small Business Innovative 
Research (SBIR) Topic AF 131-135 Fully Adaptive Radar, Metron and OSU have developed a 
theoretical framework for a cognitive FAR system that identifies and mathematically models the 
key system components within the context of target detection and tracking for a single sensor 
and target [30]-[34].  In the on-going FAR Phase II, we have been investigating theoretical 
extensions to the FAR framework and developing modeling, simulation, analysis, and 
experimentation capabilities to demonstrate the performance improvement achieved by FAR 
systems over traditional FFR systems [35]-[40].  We began with simulated scenarios [31]-[33] 
and pre-recorded data [34]-[35] from OSU’s SDR system [78]-[84].  Pre-recorded data offers 
limited opportunities to test cognitive algorithms since the sensing does not truly adapt in real-
time, and cognitive processing must be done “after-the-fact” in an artificial manner.  We now 
have the capability to demonstrate the real-time operation of the cognitive radar tracking system 
using the CREW [36]-[40].  Demonstrations were given to AFRL senior management in October 
2015 and May 2016. 
 

A key gap in the Air Force’s previously developed radar M&S tools is the lack of a 
comprehensive, dynamic distributed radar scenario generation capability for distributed FAR 
systems.  Therefore, the goal of this project (SBIR Topic 161-132 FAR M&S Development) is to 
develop a MATLAB-based M&S architecture for distributed FAR radar that will enable 
algorithm development and testing on simulated, previously collected, and real-time streaming 
data.  In Phase I, we have developed a baseline FAR M&S architecture that implements the FAR 
framework for a stationary sensor system.  Throughout this report we use the term “FAR 
framework” to denote the mathematical model of a FAR system and the term “FAR M&S 
architecture” to denote the MATLAB-based software implementation of the FAR framework.   
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The FAR M&S architecture is coded in MATLAB using an OOP approach.  It includes a 
FAR engine to control the operation of the PA cycle and software objects that determine the next 
set of sensing parameters; obtain data from the sensor; process the data to track the target; and 
store and display the results of the sensing and tracking processes.  We have developed modules 
that implement simulated and pre-recorded data examples in [30]-[35], and the real-time CREW 
data examples in [36]-[39].  We have developed a simulation of the CREW and the application 
programming interface (API) layers for the simulated and experimental CREW data sources to 
enable switching between simulated and experimental data.  A demonstration was given in 
March 2016 for members of the North Atlantic Treaty Organization (NATO) Sensors Electronics 
Technology (SET)-227 Panel on Cognitive Radar. 

The FAR M&S architecture developed in Phase I allows for transparent switching 
between the simulated and experimental data sources, as well as between FAR algorithms that 
drive the sensing.  The ability to easily interchange sensing and processing objects will allow for 
rapid development and testing of cognitive radar algorithms by structuring the M&S functions to 
avoid duplicating effort and “single point” solutions.  It will enable collaboration between 
researchers in industry, academia, and the Air Force, as algorithms developed by different 
researchers can be tested and compared using consistent simulations, collected data, and 
laboratory conditions.  In Phase II, we plan to make the FAR M&S architecture code available to 
members of the NATO SET-227 Panel on Cognitive Radar.  Collaborations with members of 
this panel to develop and test algorithms on the CREW are already underway.  Furthermore, 
several members have already begun development of their own cognitive radar test beds 
[85],[86] and our FAR M&S architecture will enable further collaboration within the panel using 
these data sources. 

In Phase II, we also plan to extend the baseline architecture to model a dynamic, 
distributed airborne MIMO radar FAR system using the full MIMO-CMS tool as the simulation 
base.  This will provide a comprehensive radar scenario generation capability that will fill a key 
gap in the Air Force’s previously developed radar M&S tools.   

This report is organized as follows.  In Chapter 3, we provide an overview of the FAR 
framework and the applications developed in [30]-[40].  In Section 3.1, we develop the 
theoretical framework and in Section 3.2, we give an overview of the applications.  In Chapter 4, 
we provide a description of the FAR M&S architecture developed for this project.  In Section 4.1 
we describe the software structure and modules, in Section 4.2 we provide a guide to using the 
MATLAB code, in Section 4.3 we give a more detailed description of the base classes, and in 
Section 4.4, we provide a description of the CREW sensor object.  Chapter 5 contains a summary 
and conclusions. 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 
 

3.1 Fully Adaptive Radar Framework 
 

3.1.1 General Framework 
 
The heart of cognition is the perception-action cycle that both informs and is informed by 

memory [24]-[25]. Cognition requires stimulation by sensors.  In the human this is via hearing, 
touch, smell, vision, and taste.  The nervous system processes the sensed stimuli and converts 
them into a perception of the world.  We are able to take informed action by interpreting our 
perception of the world and making decisions.  As a consequence, the nervous system sends 
signals that activate our muscles, thus enabling the desired action to take place. Informed 
decision-making is a key feature of the perception-action cycle.  It requires the establishment of 
choices and the selection of one according to a desired goal.  There is an element of prediction 
that arises in which perceptual information is combined with a model of the environment to 
predict the effect actions may have on it.  Attention is closely related to perception and may be 
thought of as the requirement to allocate and direct the sensing resources towards relevant 
information.   
 

Artificial cognition in a cognitive/FAR system attempts to mimic the PA cycle to make 
the best use of system resources for the situation at hand [26]-[29].  According to Haykin [28], a 
cognitive radar has the following capabilities: it predicts the consequences of actions, performs 
explicit decision-making, learns from the environment, and uses memory to store the learned 
knowledge.  Haykin's approach uses Bayesian filtering [87],[88] as the basis for the artificial PA 
cycle.  It provides the processing, perception, and memory inherent in a cognitive system.  The 
Bayesian filter is augmented with a decision-making controller that uses perception from the 
filter and prediction of future outcomes to determine the next action taken by the sensor.   

 
In [30]-[34], Metron and OSU developed a general mathematical framework for a 

cognitive/FAR system that incorporates the main components of cognition.  The basic 
mathematical model of a cognitive sensor/processor system is shown in Figure 1.  The system 
consists of four components: (i) the scene, which includes the target and the environment, (ii) the 
sensor that observes the scene and generally consists of a transmitter and receiver, (iii) the 
processor that converts the observed data into a perception of the scene, and (iv) the controller 
that determines the next actions taken by the sensor and processor based on feedback 
(perception) from the processor.  The controller is the novel component that distinguishes a 
cognitive system from a traditional feed-forward sensor/processor system.   

 
In this framework, we assume that the objective of the system is to estimate the state of a 

target in the scene.  The target state at time tk is denoted as xk.  The sensor observes the scene and 
produces a measurement vector zk that depends on the target state xk and the sensor parameters 
θk.  We assume that the estimate of the target state at time tk is a function of the observations up 
to time tk, which in turn depend on the sensor parameters up to time tk, which we denote as Zk ≡ 
{z1, z2, …, zk} and Θk ≡ {θ1, θ2, …, θk}, respectively. 
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Figure 1: Cognitive Sensor/Processor System Framework 

We assume a first-order Markov motion model with initial target state probability density 
function (PDF) q(x0) and transition PDF q(xk|xk-1;θk), which may depend on the sensor 
parameters.  This will occur, for example, when the choice of sensor parameters affects the time 
difference tk-tk-1. The measurement model is described by the conditional PDF f (zk | xk; θk), which 
is also called the likelihood function.  The cost of obtaining an observation and any constraints 
on the sensor parameters are modeled by the sensor cost function RΘ(θk). The processor 
processes the data and produces an estimate of the target state ˆ ( )k kx Z  by minimizing the 
expected value of the processor cost function ( )ˆ ( ),k k kC x Z x .   

The controller decides on the next value for the sensor parameters θk by minimizing a 
loss function LC,Θ(⋅) that balances the performance of the processor via the processor cost 
function C(⋅,⋅) and the cost of using the sensor via the sensor cost function RΘ(⋅).   

For the first-order Markov motion model, the conditional or posterior PDF of xk given Zk 
may be obtained from the Bayes-Markov recursion [87]-[89]:   

( ) ( ) ( ) ( )1 1 1 1| ; | ;k k k k k k k k kf f q f d− +
− − − −≡ = ∫x x Z Θ x x θ x x (1) 

( ) ( ) ( ) ( )
( ) ( )

| ;
| ;

| ;
k k k k

k k k k
k k k k k

f f
f f

f f d

−
+

−
≡ =

∫
z x θ x

x x Z Θ
z x θ x x

, (2) 

where ( )kf − x  is the motion-updated predicted density and ( )kf + x  is the information-updated 
posterior density.  The recursion is initialized with 

( ) ( )0 0f q+ =x x . (3) 
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The conditional Bayes risk is the expected value of the processor cost function with 
respect to the conditional PDF of xk given Zk, 

 ( ) ( )( ){ }ˆ; ,C k k k k kR E C+ +=Z Θ x Z x , (4) 

where { }kE+ ⋅  denotes expectation with respect to ( )kf + x .  The estimator is found by 
minimizing the conditional Bayes risk [90]: 
 ( )

( )
( )

ˆ
ˆ arg min ;

k
k C k kR+=

x Z
x Z Z Θ . (5) 

 
In the controller, we assume that we have received the observations up to time tk-1 and 

want to find the next set of sensor parameters to optimize the performance of the state estimator 
that will include the next observation zk as well as the previous observations Zk-1.   We define the 
joint conditional PDF of xk and zk conditioned on Zk-1 as: 

 
( ) ( )

( ) ( )
( ) ( )

1

1

, , | ;

| ; | ;

| ; .

k k k k k k

k k k k k k

k k k k

f f

f f

f f

↑
−

−

−

≡

=

=

x z x z Z Θ

z x θ x Z Θ

z x θ x

 (6) 

We define the predicted conditional Bayes risk for the estimator ˆ ( )k kx Z  by taking the 
expectation of the processor cost function with respect to the joint conditional PDF ( ),k kf ↑ x z , 

 ( ) ( )( ){ }1 1 ˆ| ; ,C k k k k k kR E C↑ ↑
− − ≡θ Z Θ x Z x . (7) 

It is important to emphasize that the predicted conditional Bayes risk is a function of the known 
past observations Zk-1 but not the unknown next observation zk since it has been averaged over 
both zk and xk.  It is also function of all the sensor parameters in Θk, however we separate the 
dependence on the unknown next sensor parameter θk from the known past sensor parameters 

1kΘ -  so that we may optimize over θk.   
 
The next value of θk is chosen to minimize a loss function that balances the predicted 

conditional Bayes risk and the sensor cost, 

 ( ) ( ) ( ){ }, 1 1 1 1| ; | ; ,C k k k C k k k kL L R R↑
Θ − − − − Θ=θ Z Θ θ Z Θ θ . (8) 

The controller optimization problem is then given by:  
 ( ), 1 1arg min  | ;k C k kL Θ − −=

θ
θ θ Z Θ . (9) 

 
The cognitive sensor/processor system framework described by Figure 1 and Eqs. (1)-(9) 

is very general and can be applied to many problems.  It is based on the perception-action cycle 
and includes sensing, processing, perception, memory, attention, prediction, and decision-
making.  In [30]-[34], the framework was specialized for single target tracking, as well as for 
target detection and track initiation/termination.  A summary of the results is given in Sections 
3.1.2-3.1.4.  By separating the general principles from the specific application and 
implementation details, our formulation provides a flexible framework applicable to the general 
tracking problem.  It provides a generalization and formalism to the cognitive radar tracking 
formulations in [26]-[28],[51]-[65]. 
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3.1.2 Cognitive Single Target Tracking 

To specialize the framework for single target tracking, we specify the processor cost 
function and derive the corresponding state estimator and predicted conditional Bayes risk 
function used by the controller.   

For vector parameter estimation, a commonly used cost function is the sum of the 
squared estimation errors, which is given by: 

( )( ) ( ) ( ){ }ˆ ˆ ˆ, tr
T

k k k k k kC = − −      x Z x x Z x x Z x . (10) 

For this cost function, the solution to (5) is the minimum mean-square error (MMSE) estimator, 
which is the conditional mean Error! Reference source not found.: 

( ) { }ˆ k k k kE+ += ≡x Z μ x . (11) 
The predicted conditional Bayes risk is given by: 

( ) ( ){ }1 1 1 1| ; tr | ;C k k k k k k kR↑ ↑
− − − −=θ Z Θ S θ Z Θ , (12) 

where 

( ) ( ) ( ){ }1 1 ˆ ˆ| ;
T

k k k k k k k k kE↑ ↑
− − ≡ − −      S θ Z Θ x Z x x Z x (13) 

is the predicted conditional MSE matrix. 

In most cases, it is not possible to evaluate the MSE analytically or numerically.  
However, the Bayesian Cramér-Rao lower bound (BCRLB), which is the inverse of the 
Bayesian information matrix (BIM), provides a (matrix) lower bound on the MSE matrix of any 
estimator [90],[91] and is usually analytically tractable.  Here we develop a predicted conditional 
BIM (PC-BIM), ( )1 1| ;k k k k

↑
− −B θ Z Θ , and a predicted conditional Cramér-Rao lower bound (PC-

CRLB) to bound the predicted conditional MSE matrix in (13), 
( ) ( ){ }1

1 1 1 1| ; tr | ;T
C k k k k k k kR −↑ ↑

− − − −≥θ Z Θ C B θ Z Θ C . (14) 

The PC-BIM may be expressed as the sum of two terms as follows: 

( ) ( ) ( )1 1 1 1 1 1| ; | ; | ;k k k k k k k k k k k k
↑ − −

− − − − − −≡ +B θ Z Θ B θ Z Θ J θ Z Θ . (15) 

The first term is the predicted information matrix (PIM), which can be approximated by the 
inverse of the predicted covariance matrix: 

( ) ( ) 1
1 1 1 1| ; | ;k k k k k k k k

−− −
− − − −≅B θ Z Θ Σ θ Z Θ , (16) 

and the second term is the expected value of the Fisher information matrix (FIM) with respect to 
the predicted density ( )kf − x . The expected Fisher information matrix (EFIM) is given by: 

( ) ( ){ }1 1| ; ;k k k k k k kE− −
− − =J θ Z Θ J x θ , (17) 

where ( );k kJ x θ  is the standard FIM [90],[91]. 

The expressions in (1)-(3), (11), and (14)-(17) provide the Bayes-Markov tracking 
recursion, the state estimate, and the predicted conditional Bayes risk expressions for a cognitive 
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sensor/processor system whose objective is single target tracking.  The cognitive single target 
tracking system recursion is summarized in Table 1.  

 
 

Table 1: Cognitive Single Target Tracking Recursion 
 

Initialization 
 1 ( ) ( )0 0f q+ =x x  

Controller Optimization 
 2 ( ) ( ) ( )1 1 1; | ;k k k k kf q f d− +

− − −= ∫x θ x x θ x x  

 3 ( ) ( ) 1
1 1 1 1| ; | ;k k k k k k

−− −
− − − −≅B θ Z Θ Σ θ Z Θ  

 4 ( ) ( ){ }1 1| ; ;k k k k kE− −
− − =J θ Z Θ J x θ  

 5 ( ) ( ) ( )1 1 1 1 1 1| ; | ; | ;k k k k k k k k k
↑ − −

− − − − − −≡ +B θ Z Θ B θ Z Θ J θ Z Θ  

 6 ( ) ( ){ }1 1arg min  | ; ,k k k kL R↑
− − Θ=

θ
θ B θ Z Θ θ  

Motion Update 
 7 ( ) ( ) ( )1 1 1| ;k k k k k kf q f d− +

− − −= ∫x x x θ x x  

Measurement 
 8 Obtain measurement zk according to θk 
Information Update 

 9 ( ) ( ) ( )
( ) ( )

| ;
| ;
k k k k

k
k k k k k

f f
f

f f d

−
+

−
=
∫

z x θ x
x

z x θ x x
 

Track Estimate 
 10 Obtain ( )ˆ kx Z  from mean of ( )kf + x  
 

 
 
 

3.1.3 Cognitive Single Target Tracking, Initiation, and Termination 
 

For track initiation and termination, the system objective is to minimize the time to detect 
the presence or absence of a target.  We do this by maximizing the probability of making a 
correct decision at each time.  To specialize the general cognitive framework for this problem, 
we follow the likelihood ratio detection and tracking (LRDT) methodology in Chapter 7 of [87].  
On H1 when the target is present, kx XÎ , where X  is the target-present state space.  We define 
a null (target-absent) state ∅  so that on H0 when the target is absent, k =∅x :  

 0

1

:
: .

k

k

H
H

=∅
∈

x
x X

 (18) 
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We define the augmented state space ∅ ≡ ∪∅X X  and develop the Bayes-Markov recursions for 
this model.  We then specify the processor cost function and derive the corresponding state 
estimator and predicted conditional Bayes risk function used by the controller.   

A PDF on the augmented state space ∅X  is characterized by two components ( )kP ∅
and ( )kf x , where 

( ) ( )Prk kP ∅ ≡ =∅x , (19) 
and ( )kf x  is the conditional PDF of xk given that kx XÎ .  Therefore, the predicted and 
posterior PDFs on the augmented state space are characterized by components ( )kP− ∅ , ( )kf − x
and ( )kP+ ∅ , ( )kf + x , respectively. 

The initial target PDF is characterized by ( )0P ∅  and ( )0q x  and the transition density on 
the augmented state space is characterized by four components: 

( ) ( )
( ) ( )
( )
( )

1 1 1

1 1 1

1 1

1 1

| Pr | ,
| Pr | ,

| ,
| ; , .

k k k k k k

k k k k k k

k k k k

k k k k k

P
P
q
q

− − −

− − −

− −

− −

∅ ∅ ≡ =∅ =∅ =∅ =∅
∅ ≡ =∅ ∈ =∅ ∈

∅ ∈ =∅
∈ ∈

x x x x
x x x x

x x x
x x θ x x

X X X
X
X X

(20) 

The likelihood function on the augmented state space is characterized by the likelihood 
functions on H0 and H1, which are denoted by ( )| ;k k kf ∅z θ  and ( )| ;k k kf z x θ , respectively. 

We express the Bayes-Markov recursions for the predicted and posterior PDFs as 
recursions on ( )kP− ∅ , ( )kf − x , ( )kP+ ∅ , and ( )kf + x .  Following [87], the Bayes-Markov 
recursions are initialized with: 

( ) ( )0 0P P+ ∅ = ∅  (21) 

( ) ( )0 0f q+ =x x . (22) 
If we assume that the transition probabilities are defined such that the motion update does not 
affect the probability of being in the null state, then we have: 

( ) ( )1k kP P− +
−∅ = ∅ . (23) 

Under this assumption, we obtain the “simplified recursion” [87] in which the predicted PDF on 
H1 is found from: 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1| | 1 | | ; .k k k k k k k k k k k kf P q P q f d− +
− − − − − −= ∅ ∅ + − ∅   ∫x x x x θ x xX X  (24) 

For target detection, we assume that the state estimate takes one of two values, 
ˆ ( )k k =∅x Z  or ˆ ( )k kx Z XÎ , thus the estimation problem becomes a binary detection problem.  
We assume the standard binary detection cost function [87],[90], and the optimal state estimator 
(decision rule), found by minimizing the conditional Bayes risk, is the Bayesian integrated 
likelihood ratio test (BLRT) [87]: 
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 ( )
ˆ

 
ˆ

k

k

k

τ
∈
>Λ <
=∅

x
Z

x

X
, (25) 

where ( )kΛ Z  is the Bayesian integrated likelihood ratio (BLR).  For the simplified recursion, it 
has the form: 
 ( ) ( ) ( )1 1|k k k k− −Λ ≡ ΛZ Z z ZL , (26) 

where ( )1|k k−z ZL  is the integrated likelihood ratio (ILR) for the current data, defined as: 

 ( ) ( )
( ) ( )1

| ;
|

| ;
k k k

k k k k
k k k

f
f d

f
−

− ≡
∅∫

z x θ
z Z x x

z θ
L . (27) 

 
The information update is given by: 

 ( ) ( )
1

1k
k

P+ ∅ =
+Λ Z

 (28) 

 ( ) ( ) ( )
( ) ( )

| ;
| ;
k k k k

k
k k k k k

f f
f

f f d

−
+

−
=
∫

z x θ x
x

z x θ x x
. (29) 

 
As discussed in [30],[32],[33], the condition in (23) can be satisfied if we set 

 ( ) ( ){ }1
1 1| min ,k k kP P−
− − ∅∅ = Λ ZX , (30) 

where P∅  is a fixed upper limit close to one. 
 
The predicted conditional Bayes risk includes probabilities of missed and false 

detections, which are generally difficult to calculate, so we must resort to an approximation or 
surrogate function to perform the controller optimization.  As discussed in [30],[32],[33], we 
take a heuristic approach and use the same criterion that we used for track estimation, namely to 
minimize the trace of the PC-CRLB, which is the inverse of the PC-BIM.  This maximizes the 
Bayesian information, which is useful for making statistical inferences about xk in both the 
estimation and detection settings.  Thus, 
 ( ) ( ){ }1

1 1 1 1| ; tr | ;T
C k k k k k k kR −↑ ↑

− − − −⇒θ Z Θ C B θ Z Θ C , (31) 

where we use the notation Þ  to denote replacement by a surrogate function.  
 

For track initiation, we initially assume the target is absent and initialize ( )0Λ Z  to some 
small value well below the target-present detection threshold τP.  If a target is present, then the 
BLR will grow over time as evidence in favor of H1 is accumulated. Eventually it will cross the 
threshold and the target will be declared present.  If the target is absent, the BLR will decrease 
over time.  However, if we allow the BLR to decrease below the initial value during periods 
when there is no target, then when a target appears and the BLR starts to grow, it will take longer 
to detect.  To prevent this, we restrict the BLR to stay at or above the initial value, which we 
denote as minΛ .   

 
Once the target is declared present, processing continues in the same manner, except now 

we assume the target is present and restrict the BLR to stay at or below some maximum value 
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maxΛ , which is well above the target-absent detection threshold τA.  To allow some robustness in 
the system, we set τA to be less than τP.  This way, once the BLR exceeds τP and the target is 
declared present, sufficient evidence in favor of H0 must accumulate before the BLR drops 
below τA and the target is declared absent again.1  Since the target is assumed present, we can 
compute a target state estimate after the information update and we obtain the simultaneous 
single target tracking and track initiation/termination recursion summarized in Table 2.  This 
recursion reduces to the single target tracking recursion in Table 1 if we always set 
( )1| 0k kP −∅ =X  on line 5.  This recursion is used in the distributed sensor resource allocation 

examples in [30]-[34]. 

1  Proper operation of the track initiation and termination recursions requires that maxPt £ L  and minAt ³ L . 
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Table 2: Cognitive Single Target Tracking, Initiation, and Termination Recursion 
 

Initialization 
 1 Declare target absent 
 2 ( )0 minΛ = ΛZ  
 3 ( ) ( )( ) 1

0 01P
−+ ∅ = +Λ Z  

 4 ( ) ( )0 0f q+ =x x  

Motion Update – Part I 
 5 ( ) ( ){ }1

1 1| min ,k k kP P−
− − ∅∅ = Λ ZX  

 6 ( ) ( )1k kP P− +
−∅ = ∅  

Controller Optimization 
 7 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1; | | 1 | | ;k k k k k k k k k k kf P q P q f d− +

− − − − − −= ∅ ∅ + − ∅   ∫x θ x x x θ x xX X  

 8 ( ) ( ) 1
1 1 1 1| ; | ;k k k k k k

−− −
− − − −≅B θ Z Θ Σ θ Z Θ  

 9 ( ) ( ){ }1 1| ; ;k k k k kE− −
− − =J θ Z Θ J x θ  

 10 ( ) ( ) ( )1 1 1 1 1 1| ; | ; | ;k k k k k k k k k
↑ − −

− − − − − −≡ +B θ Z Θ B θ Z Θ J θ Z Θ  

 11 ( ) ( ){ }1 1arg min  | ; ,k k k kL R↑
− − Θ=

θ
θ B θ Z Θ θ  

Motion Update – Part II 
 12 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1| | 1 | | ;k k k k k k k k k k k kf P q P q f d− +

− − − − − −= ∅ ∅ + − ∅   ∫x x x x θ x xX X  

Measurement 
 13 Obtain measurement zk according to θk 
BLR 

 11 ( ) ( )
( ) ( )1

| ;
|

| ;
k k k

k k k k
k k k

f
f d

f
−

− ≡
∅∫

z x θ
z Z x x

z θ
L  

 12 ( ) ( ) ( ){ }{ }min max 1 1max ,min |k k k k− −Λ = Λ Λ ΛZ Z z Z, L  
Information Update 
 13 ( ) ( )( ) 1

1k kP
−+ ∅ = +Λ Z  

 14 ( ) ( ) ( )
( ) ( )

| ;
| ;
k k k k

k
k k k k k

f f
f

f f d

−
+

−
=
∫

z x θ x
x

z x θ x x
 

BLRT 
16 if target absent and ( )k PτΛ ≥Z , then declare target present and initiate track,  

elseif target present and ( )k AτΛ <Z , then declare target absent and terminate track  
end  

Track Estimate (if target present) 
 15 Obtain ( )ˆ kx Z  from mean of ( )kf + x  
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3.1.4 Cognitive MAP-PF Single Target Tracking 

The recursions in Tables 1 and 2 are applicable to detection-based and track-before-detect 
tracking systems.  In a detection-based system, the sensor performs “hard detection,” i.e. there is 
some signal processing of the sensor data that converts the data to a detection surface, which is 
then thresholded to produce a “detection” in the form of a measurement in the natural 
measurement space of the sensor (e.g. angle, range, and/or Doppler).  The observation zk is the 
measurement obtained from hard detection processing.  In a track-before-detect system, zk is the 
sensor data and the information update involves computing the likelihood function of the sensor 
data with respect to the target state vector.  This can be computationally intensive but can yield 
significant performance improvements over a detection-based system.  In this subsection, we 
extend the recursions to maximum a posteriori penalty function (MAP-PF) tracking systems.  
The MAP-PF methodology applies to problems in which the likelihood function ( )| ;k k kf z x θ
depends on the target state vector only through a known, possibly nonlinear mapping to the 
natural measurement space of the sensor.  The MAP-PF methodology offers reduced 
computational complexity over track-before-detect systems, while maintaining the performance 
advantage over detection-based systems.  The cognitive MAP-PF tracking system, in which the 
processor includes the detector and tracker, is shown in Figure 2.  It is particularly suitable for 
FAR systems, as it already contains feedback within the tracking processor. 

Figure 2: Cognitive MAP-PF Sensor/Processor System Framework 

MAP-PF is a multi-target tracking methodology developed in [92]-[97] and described in 
Chapter 6 of [87].  In this approach, the multi-target track estimation problem is formulated 
directly from the sensor data zk using the maximum a posteriori (MAP) estimation criterion.  The 
penalty function method of nonlinear programming [98] is used to obtain a tractable solution.  
The result is a two-step estimation process similar to traditional feed-forward detection-based 
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systems, except the processes are coupled via the penalty function and the data association step 
of traditional multi-target tracking approaches is eliminated.  In the detection process, the penalty 
function uses the current target states to guide the detector to the relevant region of the detection 
surface.  In the track estimation process, the penalty function determines the influence of the 
detector measurements on the final track estimates by adaptively adjusting the measurement 
error variance using the FIM.   

 
Let yk denote the natural parameters.  They are related to the state parameters by the 

nonlinear mapping 
 ( )k k=y h x . (32) 

Let ( )| ;k k kf z y θ  denote the likelihood function with respect to the natural parameters and let 
( );k kyJ y θ  denote the FIM of the natural parameters.  The likelihood function and FIM with 

respect to the state parameters are given by [90]: 

 ( ) ( )( )| ; | ;k k k k k k kf f= =z x θ z y h x θ  (33) 

 ( ) ( ) ( )( ) ( ); ;T
k k k k k k=x yJ x θ H x J h x θ H x , (34) 

where H(xk) is the Jacobian matrix, defined as:  

 ( ) ( )
k

TT
k

=

 ≡ ∇ x
x x

H x h x . (35) 

 
The MAP-PF algorithm employs a penalty function ( )( ),φ y h x  which is equal to zero 

when y = h(x) and becomes smaller (more negative) as the distance between y and h(x) 
increases.  For example, a quadratic penalty function is: 

 ( ) [ ] [ ]11, ( ); ( ) ( )
2

Tφ −≡ − − −y h x Ω y h x Ω y h x , (36) 

where Ω is a matrix chosen to weight the components of the penalty function in some desirable 
manner.  The MAP-PF motion update is the same as in the standard Bayes-Markov recursion and 
the MAP-PF information update is given by: 

 ( )ˆ arg max
k

k kf− −=
x

x x  (37) 

 ( ) ( )( )ˆ ˆarg max ln ; , ;k k k kf φ −= +
y

y z y θ y h x Ω  (38) 

 ( )
( )( ){ } ( )
( )( ){ } ( )

ˆexp , ;

ˆexp , ;
k k k

k
k k k k

f
f

f d

φ

φ

−
+

−
=
∫

y h x Ω x
x

y h x Ω x x
. (39) 

 
In the first step, the MAP estimate of the predicted density is found.  Depending on the 

implementation, it may be easier to find the MMSE estimate, which is the mean of the predicted 
density, instead.   

 
In the second step, the optimization problem in (38) is a penalized maximum likelihood 

(ML) problem.  If the second term in (38) had the form ( )ln f y , it would be a MAP estimation 
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problem.  Thus the penalty function can be interpreted as a prior term in a MAP estimation 
problem.  In a traditional feed-forward detection-based tracking system, the optimal detector 
would solve the standard ML problem (i.e. (38) without the penalty function) to get the detector 
measurement.  In MAP-PF, the penalty function restricts the detector estimate to be in the 
vicinity of where the tracker predicts it to be, hence MAP-PF is performing “guided” detection.  
By specifying a quadratic penalty function, we are implicitly modeling the prior distribution of 

ky  as Gaussian with mean ( )ˆ k
−h x  and covariance matrix Ω.  We have some flexibility in

choosing Ω, and a logical choice would be the covariance matrix of the predicted density of ky
obtained from a transformation of the predicted density ( )kf − x .  Using a locally linear 
approximation of the function ( )h x  at the point ˆ k

−x , we choose Ω to be the predicted covariance
matrix of ky , which is approximately given by: 

( ) ( ), ˆ ˆ
k

T

MAP k k k k
− − − −= ≅yΩ Σ H x Σ H x . (40) 

The third step in (39) looks like a standard information update with ˆ ky  acting as the 
measurement vector and the exponential of the penalty function, ( )( ){ }ˆexp , ;k kφ y h x Ω , acting 
as the measurement likelihood function ˆ( | ; )k k kf y x θ .  Here the quadratic penalty function is 
implicitly modeling ˆ ky  as Gaussian with mean h(xk) and covariance matrix Ω.  As in [87],[92]-
[97], we choose Ω to be the inverse of the FIM of the natural parameters, ( );k kyJ y θ .  
Calculation of the FIM often requires knowledge of the true value of ky , however we can obtain 
a reasonably accurate approximation to the FIM by substituting in an estimate of ky .  The 
transformation of the predicted state estimate ( )ˆ k

−h x  is a less volatile estimate than the current 
measurement ˆ ky , therefore we evaluate the FIM at ( )ˆ k

−h x .  Thus, for the information update we 
choose 

( )( )1
, ˆ ;I k k k
− −= yΩ J h x θ . (41) 

The MAP-PF single target tracking recursion is summarized in Table 3.  We also 
developed a MAP-PF single target tracking, initiation, and termination recursion in [30].  The 
recursion in Table 3 is used in the SDR and CREW examples in [30],[34]-[40].   
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Table 3: Cognitive Single Target MAP-PF Tracking Recursion 

 
Initialization 
 1 ( ) ( )0 0f q+ =x x  

Controller Optimization 
 2 ( ) ( ) ( )1 1 1; | ;k k k k kf q f d− +

− − −= ∫x θ x x θ x x  

 3 ( ) ( ) 1
1 1 1 1| ; | ;k k k k k k

−− −
− − − −≅B θ Z Θ Σ θ Z Θ  

 4 ( ) ( ){ }1 1| ; ;k k k k kE− −
− − =J θ Z Θ J x θ  

 5 ( ) ( ) ( )1 1 1 1 1 1| ; | ; | ;k k k k k k k k k
↑ − −

− − − − − −≡ +B θ Z Θ B θ Z Θ J θ Z Θ  

 6 ( ) ( ){ }1 1arg min  | ; ,k k k kL R↑
− − Θ=

θ
θ B θ Z Θ θ  

Motion Update 
 7 ( ) ( ) ( )1 1 1| ;k k k k k kf q f d− +

− − −= ∫x x x θ x x  

Measurement 
 8 Obtain measurement zk according to θk 
 9 Obtain ˆ k

−x  from mean or maximum of ( )kf − x  

 10 ( ) ( ), ˆ ˆ
T

MAP k k k k
− − −=Ω H x Σ H x  

 11 ( ) ( )( ),ˆ ˆarg max ln ; , ;k k k k LF kf φ −= +
y

y z y θ y h x Ω  

Information Update 
 12 ( )( )1

, ˆ ;I k k k
− −= yΩ J h x θ  

 13 ( )
( )( ){ } ( )
( )( ){ } ( )

,

,

ˆexp , ;

ˆexp , ;
k k I k k

k
k k I k k k

f
f

f d

φ

φ

−

+

−
=
∫

y h x Ω x
x

y h x Ω x x
 

Track Estimate 
 14 Obtain ( )ˆ kx Z  from mean or maximum of ( )kf + x  
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3.2 Examples 

For a specific application, we need to specify the components of the state vector, the 
motion and measurement models, the sensor parameters being controlled, and the form of the 
controller loss function.  Finally, we need to specify the implementation details that include the 
type of tracker used to implement the Bayes-Markov recursion and the method for solving the 
controller optimization problem.  In [30]-[34], we showed how the general tracking framework 
could be specialized for a distributed sensor system similar to the cognitive radar networks in 
[64],[65], in which system resources (observation time on each sensor) were allocated to 
optimize tracking performance. Using simulated data, we showed that the cognitive radar system 
offered significant performance gains over a standard feed-forward radar system.  In 
[30],[34],[35], we showed how the tracking framework could be applied to a single sensor pulse-
Doppler radar system in which the pulse repetition frequency (PRF) is adjusted to optimize 
tracking performance, while keeping the target from being Doppler-aliased and away from the 
zero-Doppler clutter. Results were shown on experimentally collected data using OSU’s SDR 
system.  In [36]-[39], we applied the same algorithm to real-time data using OSU’s CREW 
system, and also allowed for simultaneous adjustment of the PRF and number of pulses.   

3.3 Summary 

In this section, we provided an overview of the general framework for a cognitive 
sensor/processor tracking system developed in [30]-[34].  The framework is based on the 
perception-action cycle and includes sensing in the sensor; processing in the detector and 
tracker; perception in the conversion of sensor data to the posterior PDF of the state vector; 
memory of all the past data in the posterior PDF; attention in the penalty function of the guided 
adaptive detector, which focuses the detector on the relevant region of the detection surface; 
prediction in the PC-BIM, which predicts the performance of the next measurement; and 
decision-making in the controller, which decides on the next values for the sensor parameters 
based on the predicted performance. 
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4 RESULTS AND DISCUSSION 

4.1 FAR M&S Software Architecture Overview 

The FAR M&S codebase has been designed in an object-oriented architecture so that the 
interfaces for the various components (optimizer, sensor, processor, etc.) are defined by base 
classes. Specific implementations of these objects (for example, an optimizer for five 
parameters) are subclasses of their respective base class so that they inherit common methods 
and properties. 

The FAR M&S architecture is managed by a FAR_Engine.  A conceptual block diagram 
of the FAR_Engine showing the basic objects, processing, and data flow is shown in Figure 3.  
The FAR_Engine consists of eight objects: 
1. Scene [Simulation only]: defines the target, clutter and noise characteristics used for

simulation.
2. Optimizer: solves the controller optimization problem to obtain the next set of sensor

parameters
3. Sensor: obtains raw data from simulation, pre-recorded data, or experimentation.
4. Processor: performs raw data processing and Bayesian filtering.
5. StorageManager: maintains a history of variables of interest from the Scene, Optimizer,

Sensor, and Processor and stores them to a file (long-term memory).
6. DisplayManager: displays values of interest each cycle while the algorithm is running and

provides a final display of quantities of interest.
7. TimingManager: maintains timing during the cycle.
8. PerceptionActionCycle: runs one cycle of the PA cycle by calling object methods (functions)

in the proper sequence, as shown in Figure 3.

The repository where the codebase is stored has been divided into two folders: an 
“architecture” folder to store the base classes and other common pieces of code, and a “modules” 
folder which stores the specific subclasses or implementations.  The “architecture” folder 
contains eight files defining the base classes plus a UtilityFunctions object, which contains some 
commonly used functions.  The FAR Engine is written as a script and there is no base class.  The 
files in the “architecture” folder provide the interfaces (that is, common properties and methods) 
for how to create specific objects that provide functionality to different parts of the 
PerceptionActionCycle and FAR_Engine.  The files in this folder should not be modified.   

In Phase I, we developed specific implementations of the FAR M&S architecture for 
three examples: (i) the distributed sensor resource allocation (DSRA) simulation example in 
[33], (ii) the SDR pre-recorded data example in [35], and (iii) a CREW example in which five 
parameters are optimized and the data may be from simulation or real time experimentation.  The 
“modules” folder contains separate folders for each of these examples named “DSRA,” “SDR,” 
and “CREW.”   
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Figure 3: FAR M&S Architecture Block Diagram 
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4.2 Using the FAR M&S MATLAB Code 

4.2.1 System Requirements 

To run the codebase, you will need MATLAB version 2014b or later. It is possible that it 
will run on earlier versions, but this has not been tested.  No MATLAB Toolboxes are required.  

4.2.2 Getting Started 

To get up and running, do the following: 
• Install the codebase into a folder on your computer.
• Start MATLAB.
• In MATLAB, navigate to the folder that you just stored. In this folder there should at least be

a “code” folder and a file named set_matlab_path_far_codebase().
• At the command prompt, type set_matlab_path_far_codebase(). This sets the proper

paths for use with the code.

You can now run any of the three examples provided in the codebase.  Navigate to one of 
the folders “code/modules/DSRA”, “code/modules/SDR”, or “code/modules/CREW”.  Open the 
FAR_Engine file for that example (FAR_Engine_JSTSP, FAR_Engine_SDR_PRF, or 
FAR_Engine_CREW_5Par) and run it. 
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4.3 FAR M&S Architecture Base Classes 

In this section, we provide an overview of the base classes in the FAR M&S 
Architecture.  For the Scene, Sensor, Processor, Optimizer, Storage Manager, Display Manager, 
and Timing Manager, we provide a list of properties and abstract methods in each class.  The 
PerceptionActionCycle class implements a method to run the cycle and it is described in detail. 

The DSRA, SDR, and CREW modules provide implementations of each of the base 
classes and the FAR_Engines to run the examples for those applications.  In Section 4.4, we 
provide a description of the CREW Sensor and Scene objects.  We do not provide descriptions of 
the remaining codebase modules. 

4.3.1 Scene 

The Scene base class consists of 
• Properties: N/A
• Abstract Methods: N/A

This is currently just a placeholder as we have not identified properties or methods that 
are common to all Scenes. 

4.3.2 Sensor 

The Sensor base class consists of: 
• Properties: N/A
• Abstract Methods: get_measurement

4.3.3 Processor 

The Processor base class consists of: 
• Properties: MotionModel (structure), MeasModel (structure), Settings (structure)
• Abstract Methods: preprocess_rawdata, prior_initialization, predicted_update,

posterior_update

4.3.4 Optimizer 

The Optimizer base class consists of: 
• Properties: PredActualFlag
• Abstract Methods: get_sensor_parameters, set_sensor_params,

opt_sensor_params_pred_update

4.3.5 Storage Manager 

The StorageManager base class consists of: 
• Properties: Params (structure), history (structure)
• Abstract Methods: history_update
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4.3.6 Display Manager 

The DisplayManagerManager base class consists of: 
• Properties: Params (structure), DisplayData (structure)
• Abstract Methods: store_display_data, display_cycle

4.3.7 Timing Manager 

The TimingManager base class consists of: 
• Properties: time (structure), k
• Abstract Methods:  cycle_timing_init, cycle_timing_opt, cycle_timing_sens,

cycle_timing_proc, cycle_timing_mgmt,  timing_update

4.3.8 Perception Action Cycle 

The PerceptionActionCycle base class consists of: 
• Properties: f_post (structure), theta_opt (structure), cycle_timing (structure)
• Methods:  PerceptionActionCycle (constructor), run_cycle

The PerceptionActionCycle base class provides implementations for the object 
constructor method and for the run_cycle method.  Thus, the PerceptionActionCycle object is 
common to all examples.   

The properties f_post (the posterior density), theta_opt (the optimum sensor parameters 
for the current cycle), and cycle_timing (various timing values for the current cycle) are updated 
during the execution of run_cycle and are passed out to the FAR_Engine at the end of the cycle.  
They are passed back in to run_cycle at the beginning of the next cycle.  Passing these 
parameters to the next cycle is represented by the purple short term memory data in Figure 3. 

The constructor method PerceptionActionCycle(f_post, theta0) is called by FAR_Engine 
up front to create the PerceptionActionCycle object and initialize the posterior density and sensor 
parameters.  The code is 

function cycleObj = PerceptionActionCycle(f_post, theta0) 

     if nargin >0 
cycleObj.f_post       = f_post; 
cycleObj.theta_opt    = theta0; 
cycleObj.cycle_timing = []; 

     end % if nargin 

 end % constructor function 

The run_cycle method implements the PA cycle.  A detailed description is provided 
below. 
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function [cycleObj,sensorObj,processorObj,timingObj,storageObj,displayObj]... 
= run_cycle(cycleObj,sceneObj, sensorObj, processorObj, 
optimizerObj, timingObj, storageObj, displayObj) 

This defines the interface for calling run_cycle.  Inputs are the scene, sensor, processor, 
optimizer, timing, storage, and display objects.  During run_cycle, the cycle, sensor, processor, 
timing, storage, and display objects are updated and passed out to the FAR_Engine. 

    %---------------------------------------------------------------------- 
    % previous sensor parameters 
    %---------------------------------------------------------------------- 
    theta_old = cycleObj.theta_opt; 

This gets the optimum sensor values from the last cycle. 

    %---------------------------------------------------------------------- 
    % initialize cycle timing 
    %---------------------------------------------------------------------- 
    cycleObj.cycle_timing = timingObj.cycle_timing_init; 

This calls the method cycle_timing_init, implemented in timingObj, a specific 
implementation of the TimingMagager object.  It initializes the timing values for the current 
cycle. 

    %---------------------------------------------------------------------- 
    % tentative motion update & theta optimization 
    %---------------------------------------------------------------------- 
    [cycleObj.theta_opt, optParams, f_pred] = ... 

 optimizerObj.opt_sensor_params_pred_update(... 
theta_old, cycleObj.f_post, sensorObj, processorObj,... 
cycleObj.cycle_timing); 

This calls the method opt_sensor_params_pred_update, implemented in optimizerObj, a 
specific implementation of the Optimizer object.  It performs the controller optimization to 
obtain the next set of sensor parameters.  Inputs are the previous set of sensor values, the 
posterior density from last cycle, the sensor and processor objects, and the cycle_timing 
structure.  As part of the optimization, the predicted density is computed for each set of sensor 
values that is evaluated.  In some cases, the actual predicted density is computed and returned to 
the PA cycle in the variable f_pred.  In this case the property optimizerObj.PredActualFlag 
is set equal to true.  If not, it is false.  The optimum sensor parameters are returned in 
cycleObj.theta_opt and other quantities of interest calculated during the optimization are 
returned in optParams.  These will be stored or displayed later. 

    cycleObj.cycle_timing = timingObj.cycle_timing_opt(optimizerObj,... 
cycleObj.cycle_timing); 

This calls the method cycle_timing_opt, implemented in timingObj.  It stores the 
optimization timing values for the current cycle.  Inputs are the optimizer object and the cycle 
timing structure, and the output is the updated cycle timing structure. 
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    %---------------------------------------------------------------------- 
    % set sensor/processor parameters and get measurement 
    %---------------------------------------------------------------------- 
    [sensorObj, processorObj] = optimizerObj.set_sensor_params(... 

cycleObj.theta_opt, sensorObj, processorObj); 

This calls the method set_sensor_params, implemented in optimizerObj.  It updates the 
sensor and processor objects with the new sensor parameter values.  Inputs are the optimum 
sensor values and the sensor and processor objects.  Outputs are the updated sensor and 
processor objects. 

    [rawdata, sens_timing] = sensorObj.get_measurement(sceneObj,... 
cycleObj.cycle_timing); 

This calls the method get_measurement, implemented in sensorObj, a specific 
implementation of the Sensor object.  It gets the measurement for the appropriate data source.  
Inputs are the scene object (if simulation), and timing for the data collect.  Outputs are the raw 
sensor data and sensor timing values. 

    cycleObj.cycle_timing = timingObj.cycle_timing_sens(sens_timing,... 
cycleObj.cycle_timing); 

This calls the method cycle_timing_sens, implemented in timingObj.  It stores the sensor 
timing values for the current cycle.  Inputs are the sensor timing structure and the cycle timing 
structure, and the output is the updated cycle timing structure. One of the values is a flag that 
indicates if data was available.  The following loop to process the data is only executed if data is 
available. 

    if cycleObj.cycle_timing.data_available 
    %---------------------------------------------------------------------- 
    % actual motion update 
    %---------------------------------------------------------------------- 

if ~optimizerObj.PredActualFlag 
f_pred = processorObj.predicted_update(cycleObj.f_post, ... 

cycleObj.cycle_timing.dt, cycleObj.theta_opt, theta_old); 
end 

This calls the method predicted_update, implemented in processorObj, a specific 
implementation of the Processor object.  It performs the Bayesian filtering motion update, if not 
already performed as part of the sensor optimization.  Inputs are the posterior density from last 
cycle, the total scan time of the current cycle, and the current and previous values of the sensor 
parameters.  The output is the predicted density. 

%-------------------------------------------------------------------- 
% pre-process raw data 
%-------------------------------------------------------------------- 
zdata = processorObj.preprocess_rawdata(rawdata, sensorObj); 

This calls the method process_rawdata, implemented in processorObj.  It performs pre-
processing of the raw data to get it into the form required by the information update, such as 
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converting raw radar data to a range/Doppler surface.  Inputs are the raw data and the sensor 
object.  The output is the processed data. 

 %-------------------------------------------------------------------- 
% information update 
%-------------------------------------------------------------------- 
[cycleObj.f_post, LF, proc_timing] = ... 

processorObj.posterior_update(f_pred, zdata); 

This calls the method posterior_update, implemented in processorObj.  It performs the 
information update.  Inputs are the predicted density and processed data.  Outputs are the 
posterior density, the likelihood function structure containing quantities of interest to be stored 
or displayed later, and processor timing values.  

else 
f_pred = cycleObj.f_post; 
LF = []; 
proc_timing.track_new = 0; 

end  % if data_available 

If there is no data available, the predicted density is the posterior density from the last cycle, and 
the posterior density is also the posterior density from last cycle.  The likelihood structure is 
empty and the flag indicating a new track is false.   

    cycleObj.cycle_timing = timingObj.cycle_timing_proc(proc_timing,... 
cycleObj.cycle_timing); 

This calls the method cycle_timing_proc, implemented in timingObj.  It stores the processor 
timing values for the current cycle.  Inputs are the processor timing structure and the cycle 
timing structure, and the output is the updated cycle timing structure. 

    %---------------------------------------------------------------------- 
    % storage update 
    %---------------------------------------------------------------------- 
    storageObj = storageObj.history_update(cycleObj.cycle_timing,... 

cycleObj.theta_opt, optParams, f_pred, cycleObj.f_post, LF); 

This calls the method history_update, implemented in storageObj, a specific 
implementation of the StorageManager object.  It stores quantities of interest from the current 
cycle in the history structure, to be saved to a file later.  Inputs are the cycle timing, the 
optimum sensor parameters, the additional optimization values, the predicted density, the 
posterior density, and the likelihood function structure.  The output is the updated storage object. 

    %---------------------------------------------------------------------- 
    % display update 
    %---------------------------------------------------------------------- 
    if displayObj.Params.PlotCycleFlag 

displayObj = displayObj.store_display_data(cycleObj.cycle_timing,... 
cycleObj.theta_opt, optParams, f_pred, cycleObj.f_post, LF); 

displayObj.display_cycle(timingObj.k); 
    end 
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There is an option not to display any data while the algorithm is running in order to save time.  If 
the displayObj.Params.PlotCycleFlag is false, then nothing is done.  If it is true, then this 
code calls the methods store_display_data and display_cycle, implemented in 
displayObj, a specific implementation of the DisplayManager object. The method 
store_display_data stores quantities of interest from the current cycle in the display object 
and display_cycle updates the display screen.  Inputs to store_display_data are the cycle 
timing, the optimum sensor parameters, the additional optimization values, the predicted density, 
the posterior density, and the likelihood function structure.  The output is the updated display 
object. The inputs to display_cycle are the current cycle index and (implicitly) the display 
object. 

    cycleObj.cycle_timing = timingObj.cycle_timing_mgmt(... 
cycleObj.cycle_timing); 

This calls the method cycle_timing_mgmt, implemented in timingObj.  It stores the storage 
and display management timing values for the current cycle.  The input is the cycle timing 
structure, and the output is the updated cycle timing structure. 

    %---------------------------------------------------------------------- 
    % timing update 
    %---------------------------------------------------------------------- 
    timingObj=timingObj.timing_update(cycleObj.cycle_timing); 

This calls the method timing_update, implemented in timingObj.  It transfers the current 
cycle timing to the timing object, for later storage.  The input is the cycle timing structure, and 
the output is the updated timing object. 

end  % run_cycle 

This is the end of the cycle. 

4.3.9 FAR Engine 

For a particular example, the FAR engine first defines specific implementations of each 
of the objects, then runs the perception-action cycle, and completes any storage or display 
management functions. 

4.3.10 Utility Functions 

The utility functions object contains common utility functions.  It consists of: 
• Methods: hamming, compute_csigma_ellipse, TimeNowInSeconds.
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4.4 The CREW Sensor 

The CREW is the world’s first radar test bed built specifically to allow testing of fully 
adaptive and cognitive algorithms. The CREW was built using an approximately $600K grant 
from the 2013 DURIP, sponsored by AFOSR.  The CREW was designed and specified by CSL 
director Dr. Graeme Smith and developed by Keysight Technologies (formerly Agilent) and 
Millitech. The system is a four-channel multistatic radar operating in W-band.  There are four 
pairs of transmit and receive heads allowing full distributed MIMO operation.  A block diagram 
is provided in Figure 4. 

The CREW has a fully digital back end, shown to the left in Figure 4, comprising a 
control PC, four analog-to-digital converters (ADCs) and four arbitrary waveform generators 
(AWGs).  The ADCs and AWGs are connected to the PCI via a PXIe extension system, meaning 
that the PC is genuinely “in-the-loop” since the transfer rates are high enough that the digitized 
signals on all four channels can be evaluated and modifications made to the transmit waveforms 
in real-time. The system can be programmed using MATLAB allowing for rapid prototyping of 
fully adaptive and cognitive algorithms.   

For the radio frequency (RF) front end, shown to the right in Figure 4, the instantaneous 
bandwidth of the system is 1 GHz, the transmit center frequency is 94 GHz (W-band), the 
effective radiated isotropic power is 50 dBW, the receiver gain is 55 dB and the receiver noise 
figure is ≈5 dB.  The system is fully coherent across all four channels with a phase stability/error 
better than 1° root mean square (RMS). A two stage up/downconversion scheme is used and 
variation in the second local oscillator frequency allows stepped frequency processing across a 
4 GHz operational bandwidth. 

Figure 4: CREW Schematic Showing the Digital Backend, IF Stage, and W-band RF Stage 
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The CREW is a unique test bed able to facilitate research into fully adaptive and 
cognitive algorithms and distributed/multistatic operation all within the laboratory. The 
extremely high bandwidths result in a range resolution of a few centimeters making it possible to 
observe multiple scattering centers in smaller targets and easy to range-gate out the walls of the 
laboratory. The W-band center frequency means the narrowband assumption can be made even if 
the full 4 GHz bandwidth is used. As such it is easy to set-up sophisticated experiments using the 
CREW within CSL.  

However, developing and debugging FAR algorithms while running experiments can be 
cumbersome and time-consuming.  While developing algorithms under the FAR Phase II SBIR, 
it became apparent that a simulation of the CREW was needed for algorithm development and 
testing under controlled and reproducible conditions, with the ability to switch between 
simulated and experimental data sources easily.  In this project, we have developed this 
capability.  

The implementation of the CREW Sensor object consists of: 
• Properties: c, transmitter (structure), receiver (structure), waveform (structure), Simulated,

ConfigMaster, ConfigSlave, driver
• Methods:  Sensor_CREW (constructor), get_measurement, constructWaveform,

sendWaveform, receiveDataSim, receiveDataCREW

The property c is the speed of light and transmitter, receiver, and waveform are 
structures that contain parameters that characterize the CREW sensor.  The parameters we can 
adapt are in waveform.  For the five-parameter example, the parameters are PRF, number of 
pulses, pulse length, bandwidth, and transmitted power.  The flag Simulated is set true for 
simulation and false for experiment.  The parameters ConfigMaster, ConfigSlave, and 
driver are used to interface to the CREW. 

The object Sensor_CREW implements the get_measurement method as shown in 
Figure 5.  It contains a switch to toggle between simulated and CREW data.  The CREW API 
consists of the methods sendWaveform and receiveDataCrew.  These interface directly with the 
CREW to transmit pulses and receive echo returns.  The simulation API and sensor consists of 
the methods constructWaveform and receiveDataSim.  The method receiveDataSim gets 
target, clutter and noise parameters from Scene_CREW, and generates random samples of complex 
clutter data.   
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Figure 5: CREW Sensor Object 
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4.5 Summary 

This chapter provided a description of the MATLAB-based FAR M&S architecture.  The 
architecture is coded in MATLAB using an OOP approach.  It includes a FAR engine to control 
the operation of the perception-action cycle and software objects that determine the next set of 
sensing parameters; obtain data from the sensor; process the data to track the target; and store 
and display the results of the sensing and tracking processes.  We have developed modules that 
implement simulated DSRA and pre-recorded SDR data examples in [30]-[35], and the real-time 
CREW data examples in [36]-[39].  We have developed a simulation of the CREW and the API 
layers for the simulated and experimental CREW data sources to enable switching between 
simulated and experimental data.   
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5 CONCLUSIONS 

The potential of cognitive approaches to enhance existing radar performance in almost all 
respects has led to an upsurge in research in recent years and a key gap in the Air Force’s radar 
M&S tools is the lack of a comprehensive, dynamic distributed radar scenario generation 
capability for distributed FAR systems.   

In this project we have developed a MATLAB-based M&S architecture for distributed 
FAR radar that will enable algorithm development and testing on simulated, previously 
collected, and real-time streaming data.  The architecture is coded in MATLAB using an OOP 
approach and implements the FAR framework developed in [30]-[35].  It includes a FAR engine 
to control the operation of the perception-action cycle and software objects that determine the 
next set of sensing parameters; obtain data from the sensor; process the data to track the target; 
and store and display the results of the sensing and tracking processes.  We have developed 
modules that implement simulated DSRA example in [33], the pre-recorded SDR data example 
in [35], and the real-time CREW data examples in [36]-[40].  We have developed a simulation of 
the CREW and the API layers for the simulated and experimental CREW data sources to enable 
switching between simulated and experimental data.  A demonstration was given in March 2016 
for members of the NATO SET-227 Panel on Cognitive Radar. 

The FAR M&S architecture developed in Phase I allows for transparent switching 
between the simulated and experimental CREW data sources, as well as between FAR 
algorithms that drive the sensing.  The ability to easily interchange sensing and processing 
objects will allow for rapid development and testing of cognitive radar algorithms by structuring 
the M&S functions to avoid duplicating effort and “single point” solutions.  It will enable 
collaboration between researchers in industry, academia, and the Air Force, as algorithms 
developed by different researchers can be tested and compared using consistent simulations, 
collected data, and laboratory conditions.  In Phase II, we plan to make the FAR M&S 
architecture code available to members of the NATO SET-227 Panel on Cognitive Radar.  
Collaborations with members of this panel to develop and test algorithms on the CREW are 
already underway.  Furthermore, several members have already begun development of their own 
cognitive radar test beds and our FAR M&S architecture will enable further collaboration within 
the panel using these data sources. 

In Phase II, we also plan extend the baseline architecture to model a dynamic, distributed 
airborne MIMO radar FAR system using the full MIMO-CMS tool as the simulation base.  This 
will provide a comprehensive radar scenario generation capability that will fill a key gap in the 
Air Force’s previously developed radar M&S tools.   
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACRONYM DESCRIPTION 

A2/AD anti-access/area denial 
ADC analog-to-digital converter 
AFOSR Air Force Office of Scientific Research  
AFRL Air Force Research Laboratory  
API application programming interface 
AWG arbitrary waveform generator 
BCRLB Bayesian Cramér-Rao lower bound 
BIM Bayesian information matrix 
BLR Bayesian likelihood ratio 
BLRT Bayesian likelihood ratio test 
CPI coherent processing interval 
CR Cognitive radar 
CREW Cognitive Radar Engineering Workspace 
CSL Cognitive Sensing Laboratory 
DSRA distributed sensor resource allocation 
DURIP Defense University Research Instrumentation Program 
EFIM expected Fisher information matrix 
ESL ElectroScience Laboratory 
FAR fully adaptive radar 
FFR feed-forward radar 
FIM Fisher information matrix 
GMTI ground moving target indicator 
IF intermediate frequency 
ILR integrated likelihood ratio 
LRDT likelihood ratio detection and tracking 
M&S modeling and simulation 
MAP maximum a posteriori 
MAP-PF maximum a posteriori penalty function 
MBET monostatic-bistatic equivalence theorem 
MIMO multiple input multiple output 
MIMO-CMS MIMO radar clutter modeling and simulation 
ML maximum likelihood 
MMSE minimum mean square error 
MSE mean square error 
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NATO North Atlantic Treaty Organization 
OOP object oriented programming 
OSU The Ohio State University 
PA perception-action 
PDF probability density function 
PC-BIM predicted conditional Bayesian information matrix 
PC-CRLB predicted conditional Cramér-Rao lower bound 
PIM predicted information matrix 
PRF pulse repetition frequency 
RCS radar cross section 
RF radio frequency 
RLSTAP Research Laboratory Space Time Adaptive Processing 
RMS root mean square 
SDR software defined radar 
SET Sensors Electronics Technology 
SIMO single input multiple output 
SISO single input single output 
SMS-MBS Signal Modeling and Simulation Tool for Multichannel Bistatic Systems 
SNR signal-to-noise ratio 
SPC Signal Processing Consultants, Inc. 
STAP space-time adaptive processing 
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