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1. Summary 

Modern aircraft are complex cyber-physical systems with safety and security requirements that 
must be satisfied by their onboard software.  As these systems have grown in complexity, their 
verification has become the single most costly development activity [1].  The verification costs of 
even more complex systems in the future will impact safety, not just through an increasing 
incidence of errors and unforeseen interactions, but by delaying and preventing the deployment of 
crucial safety functions. 

Rockwell Collins has been addressing these challenges by developing compositional reasoning 
methods that permit the verification of systems that exceed the complexity limits of current 
approaches.  Our approach is based on: 

● Modeling the system architecture using standard notations that are usable by systems and 
software engineers. 

● Developing a sophisticated translation framework that automates the translation of system 
architecture models for analysis by powerful general-purpose verification engines such as 
Satisfiability Modulo Theories (SMT)-based model checkers. 

● Developing techniques for compositional verification based on the system architecture to 
divide the verification task into manageable, reusable pieces. 

This approach has the potential to significantly reduce verification costs by identifying and 
correcting system design errors early in the life cycle rather than waiting until system integration.  
However, formally verifying requirements for complex cyber physical systems is a challenging 
task.  Practitioners will often make simplifying assumptions about the system in order to make 
verification tractable. 

A common simplification is to assume that all of the components of a system execute 
synchronously in order to decrease the verification effort.  Yet, real systems often contain 
components that execute via different clock domains.  Assumptions about synchrony are likely not 
sound, and they can prevent engineers from discovering serious vulnerabilities, errors, and/or race 
conditions.  Skilled practitioners may be able to make sound abstractions about timing information, 
such as modeling the systems execution with quasi-synchronous constraints.  In a previous effort, 
we developed a framework to model and reason about quasi-synchronous systems.  We 
successfully demonstrated our approach on a number of models that were based on actual 
examples seen in industry.  However, this approach contained a couple of pitfalls: 

1. It can be difficult to determine how to formalize a natural language requirement in terms 
of quasi-synchronous constraints. 

2. It is not feasible to compositionally analyze systems containing quasi-synchronous 
constraints. 
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To solve these issues we opted to alter the specification language of our compositional reasoning 
tool called the Assume Guarantee Reasoning Environment (AGREE)1.  The new specification 
language allows users to write requirements using specification patterns.  This reduces the burden 
of determining how to specify requirements, and it also increases the likelihood of requirements 
being formalized correctly.  Furthermore, the patterns allow users to specify requirements with 
respect to real-time.  This not only makes the meaning of a formalization more clear, it also allows 
requirements to compose more easily.  For the remainder of this report we refer to this effort as 
the Contract Requirements Patterns (CRP) project. 

  

                                                 
1 AGREE stands for Assume-Guarantee Reasoning Environment 
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2. Introduction 

Specification patterns [2, 3] are an approach to ease the construction of formal specifications from 
natural language requirements.  These patterns describe how common reasoning patterns in 
English language requirements can be represented in (sometimes complex) formulas in a variety 
of formalisms.  Following the seminal work of Dwyer [2] for discrete time specification patterns, 
a variety of real-time specification pattern taxonomies have been developed [3–7].  An example 
of a timed specification pattern expressible in each is: “Globally, it is always the case that if P 
holds, then S holds between low and high time unit(s).”  In most of this work, the specification 
patterns are mapped to real-time temporal logics, such as Timed Computational Tree Logic 
(TCTL) [8], Metric Temporal Logic (MTL) [9], Real-Time Graphical Interval Logic (RTGIL) 
[10], and Extended Temporal Interval Logic (TILCOX) [5].  As an alternative, researchers have 
investigated using observers to capture real-time specification patterns.  Observers are code/model 
fragments written in the modeling or implementation language to be verified, such as timed 
automata, timed Petri nets, source code, and Simulink, among others.  For example, Gruhn [4] and 
Abid [11] describe real-time specifications as state machines in timed automata and timed Petri 
nets, respectively.  A benefit of this approach is that rather than checking complex timed temporal 
logic properties (which can be very expensive and may not be supported by a wide variety of 
analysis tools), it is possible to check simpler properties over the observer. 

Despite this benefit, capturing real-time specification patterns with observers can be challenging, 
especially in the presence of overlapping “trigger events.”  That is, if P occurs multiple times 
before low time units have elapsed in the example above.  For example, most of the observers in 
Abid [11] explicitly are not defined for ‘global’ scopes, and Gruhn, while stating that global 
properties are supported, only checks a pattern for the first occurrence of the triggering event in an 
infinite trace. 

In this effort, we examined the use of observers to capture specification patterns that can involve 
overlapping triggering events.  We implemented our work in AGREE [12] which translates 
Architectural Analysis and Design Language (AADL) [13] specifications into Lustre programs 
[14]2.  We describe the conditions under which we can use observers to faithfully represent the 
semantics of patterns, for both positive instances of patterns and negations of patterns.  We call 
the former use properties and the latter use constraints. 

The reason that we consider negations of patterns is that our overall goal is to use real-time 
specification patterns in the service of assume/guarantee compositional reasoning.  We used 
AGREE to verify quasi-synchronous properties for four different models in the Software 
Productivity Initiative (SWPI) project.  In other recent efforts [15, 16], we used the AGREE tool 
suite for reasoning about discrete time behavioral properties of complex models.  Through adding 
support for Requirements Specification Language (RSL) patterns [17] and calendar automata [18–
20], it becomes possible to lift our analysis to real-time systems.  In AGREE, we prove implicative 

                                                 
2 Although our formalisms are expressed as Lustre specifications, the concepts and proofs presented in this report are 
applicable to many other popular model checking specification languages. 
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properties: given that subcomponents satisfy their contracts, then a system should satisfy its 
contract.  This means that the RSL patterns for subsystems are used under a negation. 

The rest of this report is organized as follows.  In Section 2.2 we list formal definitions that are 
used to describe the semantics of our patterns and perform proofs about our observers.  In Section 
3 we give a brief overview of the compositional verification rules of AGREE.  In Section 3.1 we 
describe the RSL patterns that we have implemented in AGREE along with their formal semantics.  
In Section 3.2 we describe in detail two of the examples that we used the RSL patterns to model.  
In Section 4 we discuss the analysis results for these examples.  Overall we make the following 
contributions with this report: 

● We demonstrate a method for translating RSL Patterns into Lustre observers and system 
invariants. 

● We prove that it is possible to efficiently capture patterns involving arbitrary overlapping 
intervals in Lustre using non-determinism. 

● We argue that there is no method to efficiently encode a transition system in Lustre that 
implements the exact semantics of all of the RSL patterns when considering their negation. 

● We demonstrate how to encode these patterns as Lustre constraints for practical systems. 
● We discuss the use of these patterns to model two real-world avionics system. 
 

2.1 Related Work 

This work focused on implementing real-time patterns from the RSL [6] that was created as part 
of the Cost-efficient Methods and Processes for Safety-relevant Embedded Systems (CESAR) 
project [17].  This language is an extension and modularization of the Contract Specification 
Language (CSL) [24].  The goal of both of these projects was to provide contract-based reasoning 
for complex embedded systems.  We chose this as our initial pattern language because of the 
similarity in the contract reasoning approach used by our AGREE tool suite [12]. 

There is considerable work on real-time specification patterns for different temporal logics.  
Konrad and Cheng [3] provide the first systematic study of real-time specification patterns, 
adapting and extending the patterns of Dwyer [2] for three different temporal logics: TCTL [8], 
MTL [9], and RTGIL [10].  Independently, Gruhn [4] constructed a real-time pattern language 
derived from Dwyer, presenting the patterns as observers in timed automata. In Konrad and Cheng, 
multiple (and overlapping) occurrences of patterns are defined in a trace, whereas in Gruhn, only 
the first occurrence of the patterns considered.  This choice sidesteps the question of adequacy for 
overlapping triggering events (as discussed in Section 3.1), but limits the expressiveness of the 
specification.  We use a weaker specification language than Konrad [3] which allows better scaling 
to our analysis, but we also consider multiple occurrences of patterns, unlike Gruhn [4]. Bellini [5] 
creates a classification scheme for both Gruhn’s and Konrad’s patterns and provides a rich 
temporal language called TILCOX that allows more straightforward expression of many of the 
real-time patterns.  Like [3], this work considers multiple overlapping occurrences of trigger 
events. 
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The closest work to ours is probably that of Abid et. al [11], who encode a subset of the CSL 
patterns as observers in a timed extension of Petri nets called Timed Transition System (TTS), and 
supplement the observers with properties that involve both safety and liveness in Linear Temporal 
Logic (LTL).  For most of the RSL patterns considered, the patterns are only required to hold for 
the first triggering event, rather than globally across the input trace.  In addition, the use of full 
LTL makes the analysis more difficult with inductive model checkers.  Other recent work [7] 
considers very expressive real-time contracts with quantification for systems of systems.  This 
quantification makes the language expressive, but difficult to analyze. 

Other researchers including Pike [25] and Sorea [26] have explored the idea of restricting traces 
to disallow overlapping events in order to reason about real-time systems using safety properties.  
The authors of [27] independently developed a similar technique of using a trigger variable to 
specify real-time properties that quantify over events. 

 

2.2 Definitions 

AGREE proves properties of architectural models compositionally by proving a series of lemmas 
about components at different levels in the model’s hierarchy.  A detailed description of how these 
proofs are constructed is provided in [12, 15] and a proof sketch of correctness of these rules is 
described in [12, 21].  We also give a brief overview of these rules in the following section.  The 
AGREE tool translates AADL models annotated with component assumptions, guarantees, and 
assertions into Lustre programs.  Our explanations and formalizations in this report are described 
by these target Lustre specifications.  Most other SMT-based model checkers use a specification 
language that has similar expressivity as Lustre; the techniques we present in this report can be 
applied generally to other model checking specification languages. 

A Lustre program M = (V, T, P) can be thought of as a finite collection of named variables V, a 
transition relation T, and a finite collection of properties P.  Each named variable is of type bool, 
integer, or real.  The transition relation is a Boolean constraint over these variables and theory 
constants; the value of these variables represents the program’s current state, and the transition 
relation constrains how the state changes.  Each property p ∈ P is also a Boolean constraint over 
the variables and theory constants.  We sometimes refer to a Lustre program as a model, 
specification, or transition system.  The AGREE constraints specified via assumptions, assertions, 
or guarantees in an AADL model are translated to either constraints in the transition relation or 
properties of the Lustre program. 

The expression for T contains common arithmetic and logical operations (+, −, ∗, ÷, ∨, ∧, ⇒, ¬, =) 
as well as the “if-then-else” expression (ite) and two temporal operations: → and pre.  The → 
operation evaluates to its left hand side value when the program is in its initial state.  Otherwise it 
evaluates to its right hand side value.  For example, the expression: true → false is true in the 
initial state and false otherwise.  The pre operation takes a single expression as an argument and 
returns the value of this expression in the previous state of the transition system.  For example, the 
expression: x = (0 → pre(x) + 1) constrains the current value of variable x to be 0 in the initial state 
otherwise it is the value of x in the previous state incremented by 1. 
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In the model’s initial state the value of the pre operation on any expression is undefined.  Every 
occurrence of a pre operator must be in a subexpression of the right hand side of the → operator.  
The pre operation can be performed on expressions containing other pre operators, but there must 
be → operations between each occurrence of a pre operation.  For example, the expression:         
true → pre(pre(x)) is not well-formed, but the expression: true → pre(x → pre(x)) is well-formed. 

A Lustre program models a state transition system.  The current values of the program’s variables 
are constrained by values of the program’s variables in the previous state.  In order to model timed 
systems, we introduce a real-valued variable t which represents how much time has elapsed during 
the previous transitions of the system.  We adopt a similar model as timeout automata as described 
in [18].  The system that is modeled has a collection of timeouts associated with the time of each 
“interesting event” that will occur in the system.  The current value of t is assigned to the least 
timeout of the system greater than the previous elapsed time.  Specifically, Formula 1 shows that 
t has the following constraint: 

 t = 0 → pre(t) + min_pos(t1 − pre(t), . . . , tn − pre(t)) (1) 

where t1, . . . , tn are variables representing the timeout values of the system.  The function min_pos 
returns the value of its minimum positive argument.  We constrain all the timeouts of the system 
to be positive.  A timeout may also be assigned to positive infinity (∞)3.  There should always be 
a timeout that is greater than the current time (and less than ∞).  If this is true, then the invariant 
true → t > pre(t) holds for the model, i.e., time always progresses. 

A sequence of states is called a trace.  A trace is said to be admissible (w.r.t. a Lustre model or 
transition relation) if each state and its successor satisfy the transition relation.  We adopt the 
common notation (σ, τ) to represent a trace of a timed system where σ is a sequence of states (σ = 
σ1σ2σ3 . . .) and τ is a sequence of time values (τ = τ1τ2τ3 . . .) such that ∀i : τi < τi+1.  In some 
literature, state transitions may take place without any time progress (i.e., ∀i : τi ≤ τi+1).  We do not 
allow these transitions as it dramatically increases the complexity of a model’s Lustre encoding. 

A Lustre program implicitly describes a set of admissible traces.  Each state σn in the sequence 
represents the value of the variables V in state n.  Each time value τn represents the value of the 
time variable t in state n. We use the notation σn |= e, where e is Lustre expression over the variables 
V and theory constants, if the expression e is satisfied in the state σn.  Similarly, we use σn |≠ e 
when e is not satisfied in the state σn.  A property p is true (or invariant) in a model if and only if 
for every admissible trace ∀n : σn |= p.  For the purposes of this work, we only consider models 
that do not admit so-called “Zeno traces” [22].  A trace (σ, τ) is a Zeno trace if and only if ∃v∀i : 
τi < v, i.e., time never progresses beyond a fixed point. 

  

                                                 
3 In practice, we allow a timeout to be a negative number to represent infinity. This maintains the correct semantics 
for the constraint for t in Formula 1. 
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3. Methods, Assumptions, and Procedures 

In this section we briefly describe the rules that AGREE uses to create compositional proofs.  A 
more complete description is in [12] and a proof of correctness of these rules is provided in [12, 
21]. 

AGREE is a language and a tool for compositional verification of AADL models.  It is 
implemented as a plugin to the Open Source AADL Tool Environment (OSATE).  The behavior 
of a model is described by contracts specified on each component.  A contract contains a set of 
assumptions about the component’s inputs and a set of guarantees about the component’s outputs.  
The assumptions and guarantees may also contain predicates that reason about how the state of a 
component evolves over time.  By default the state transitions of each component in the model 
occur synchronously with every other component (i.e., each component runs on the same clock).  
However, AGREE can also model systems that have components with independent clocks.  The 
user can specify arbitrary constraints for these clocks or they can use built in quasi-synchronous 
constraints that were developed under the SWPI project. 

The guarantees of a component must be true provided that the component’s assumptions have 
always been true.  The goal of the analysis is to prove that a component’s contract is entailed by 
the contracts of its subcomponents. 

Formally, let a system S: (A, G, C) consist of a set of assumptions A, guarantees G, and 
subcomponents C.  We use the notation Sg to represent the conjunction of all guarantees of S and 
Sa to represent the conjunction of all assumptions of S.  Each subcomponent c ∈ C is itself a system 
with assumptions, guarantees, and subcomponents.  The goal of AGREE’s analysis is to prove that 
the system’s guarantees hold as long as its assumptions have always held.  This is accomplished 
by proving that Formula 2 is an invariant. 

 H(Sa) ⇒ Sg (2) 

The predicate H is true if its argument has held historically (i.e., the expression has been true at 
every step up until and including now).  In order to prove that Formula 2 is invariant, we prove 
that if the system level assumptions have held historically, and if all the subcomponent contracts 
have held historically, then the system level guarantees hold.  This is described by Formula 3. 

 H(Sa) ∧ ⋀
𝑐𝑐 ∈ 𝐶𝐶 H(ca) ⇒ cg  ⇒ Sg (3) 

Proofs of systems with multiple levels of hierarchy take place compositionally.  AGREE attempts 
to prove Formula 3 for each level of the system.  This allows proofs of contracts for components 
at the highest levels of the system to rely only on the abstract representation of their direct 
subcomponents provided by their contracts.  This method of abstraction allows AGREE to scale 
to larger systems. 

As mentioned earlier, users can specify different clock domains for components in AGREE. 
Formula 3 assumes that each component executes synchronously.  If each component c ∈ C has a 
different clock, AGREE instead attempts to prove Formula 4. 
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 H(Sa) ∧ ⋀
𝑐𝑐 ∈ 𝐶𝐶 H(cc ⇒ ca ⇒ cg) ⇒ Sg (4) 

Here the variable cc is used to represent the clock variable for component c.  The semantics of a 
component’s clock variable is such that whenever cc is true the component transitions to its next 
state based on its current state and the constraints specified by its guarantees.  However, the 
components contract is only enforced when its clock ticks. 

AGREE uses a syntax similar to Lustre to express a contract’s assumptions and guarantees [14].  
AGREE translates an AADL model annotated with AGREE annexes into Lustre corresponding to 
Formula 4 and then queries a user selected model checker.  AGREE then translates the results from 
the model checker back into OSATE so they can be interpreted by the user.  For this project we 
chose to use the JKind model checker [23]. 

 

3.1 RSL Patterns and Semantics Overview 

For this effort, we chose to target the natural language patterns proposed in the Cost-efficient 
Methods and Processes for Safety-relevant Embedded Systems project because they are 
representative of many types of natural language requirements [17].  These patterns are divided 
into a number of categories.  The categories of interest for this work are the functional patterns 
and the timing patterns.  Some examples of the functional patterns are: 

1. Whenever event occurs event occurs during interval 

2. Whenever event occurs condition holds during interval 

3. When condition holds during interval event occurs during interval 

4. Always condition 

Some examples of timing patterns are: 

1. Event occurs each period [with jitter jitter] 

2. Event occurs sporadic with IAT interarrivaltime [and jitter jitter] 

Generally speaking, the timing patterns are used to constrain how often a system is required to 
respond to events.  For instance, a component that listens to messages on a shared bus might 
assume that new messages arrive at most every 50ms.  The second timing pattern listed above 
would be ideal to express this assumption.  In AGREE, this requirement may appear as a system 
assumption using the pattern shown in Figure 1. 

 

 
Figure 1:  An instance of a timing pattern to represent how frequently a message arrives on a shared bus. 
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The functional patterns can be used to describe how the system’s state changes in response to 
external stimuli.  Continuing with the previous example, suppose that the bus connected 
component performs some computation whenever a new message arrives.  The functional patterns 
can be used to describe when a thread is scheduled to process this message and how long the thread 
takes to complete its computation.  The intervals in these patterns have a specified lower and upper 
bound, and they may be open or closed.  The time specified by the lower and upper bound 
corresponds to the time that progresses since the triggering event occurs.  Both the lower and upper 
bounds must be positive real numbers, and the upper bound must be greater than or equal to the 
lower bound.  An AGREE user may specify the instances of patterns shown in Figure 2 as 
properties she would like to prove about this system.  For the purposes of demonstration we assume 
that the thread should take 10ms to 20ms to execute. 

 

 
Figure 2:  Two instances of a functional patterns used to describe when a thread begins executing, and how long it 

takes to execute. 

Figure 3 shows a graphical representation of the first functional pattern listed at the beginning of 
this section.  The variable tc represents the time that event c occurs.  Similarly, the variable te 
represents the time that event e occurs.  The formal semantics for many of the RSL patterns are 
described in [6].  The semantics for the pattern described in Figure 3 are represented by the set of 
admissible traces Lpatt described below. 

Lpatt = {(σ, τ) | ∀i∃j : σi |= c ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ∧ (σj |= e)} 

The remainder of this section discusses how the pattern in Figure 3 can be translated into either a 
Lustre property or a constraint on the admissible traces of a transition system described by Lustre.  
Although we discuss only this pattern, the techniques that we present can be applied generally to 
all except one of the functional and timing RSL patterns4. 

 

 
Figure 3:  A graphical representation for the RSL pattern. 

                                                 
4 The single pattern that cannot be implemented requires an independent event to occur for each of an unbounded 
number of causes. There are 12 functional and timing RSL patterns in total. 
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3.1.1 Implementing RSL Patterns as Lustre Properties 

One can determine if a transition system described in Lustre admits only traces in Lpatt by adding 
additional constraints over fresh variables (variables that are not already present in the program) 
to the model.  This commonly used technique is referred to as adding an observer to the model.  
These constraints are over fresh variables: run, timer, recc, and pass; they are shown in Figure 4.  
The constraints only restrict the values of the fresh variables, therefore they do not restrict the 
traces admissible by the transition relation. 

 

 
Figure 4:  The constraints added to a transition relation to verify if only the traces of Lpatt are admissible. The 

transition relation only admits traces of Lpatt if and only if the variable pass is invariant. 

The intuition behind these constraints is that one can record how much time progresses since an 
occurrence of c.  This time is recorded in the timer variable.  The value of the timer variable only 
increases if the previous value of the run variable is true.  The run variable is true if an occurrence 
of c is recorded and no occurrence of e happens until after the timer counts to at least l.  The 
variable recc non-deterministically records an occurrence of c.  If the transition system admits a 
trace outside of Lpatt, then the recc variable can choose to record only an event that violates the 
conditions of Lpatt.  In this case the pass variable will become false in some state. 

Theorem 1. Let LM represent the admissible traces of a transition system containing the 
constraints of Figure 4.  The transition system admits only traces in Lpatt if and only if the property 
pass is invariant.  Formally: (LM ⊆ Lpatt) ⇔ (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass) 

Proof: First we show that if pass is invariant for a trace of the transition relation, then that trace is 
in Lpatt. 

Lemma 1. (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass) ⇒ (LM ⊆ Lpatt). 

Proof:  Towards contradiction, assume LM ⊈ Lpatt.  Let (σ, τ) be a trace in LM but not in Lpatt.  Since 
(σ, τ) ∉ Lpatt, by definition there exists i such that σi |= c and 

 ∀j : (j > i) ∧ τi + l ≤ τj ≤ τi + h ⇒ σj |≠ e. (5) 

Without loss of generality, we can assume that this is the only time when c is recorded.  That is, σi 
|= recc and ∀k : k ≠ i ⇒ σk |≠ recc.  From constraint 1 in Figure 4 we have: 

∀j : ((j < i) ⇒ σj |≠ run) ∧ ((τi ≤ τj < τi + l) ⇒ σj |= run) 
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This can actually be strengthened more.  From Formula 5 the event e does not occur between τi + 
l and τi + h.  So the variable run will become invariant after τi. 

∀j : ((j < i) ⇒ σj |≠ run) ∧ (τi ≤ τj) ⇒ σj |= run) 

From this and constraint 2 in Figure 4, we have 

∀j : (j ≤ i) ⇒ σj |= timer = 0 

and 

∀j : (τi < τj) ⇒ (σj |= timer = (pre(timer) + (τj – τj−1))) 

From this and the invariant ∀i : τi+1 > τi, we have 

∀j : (τi < τj) ⇒ (σj |= timer > pre(timer)) 

Therefore since the value of timer is zero before τi and always increasing after τi, and since we 
only consider non-Zeno traces (∀v∃i : v < τi), eventually timer > h and so pass becomes false.  This 
contradicts the assumption (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass).  Therefore LM ⊆ Lpatt. 

Next we show if a trace of LM is in Lpatt, then pass is invariant for this trace. 

Lemma 2. (LM ⊆ Lpatt) ⇒ (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass) 

Proof.  Towards contradiction, assume that there exists a trace of LM for which pass is not invariant.  
This means that for some state σj |= timer > h.  For this to be true, the timer must be running 
continuously since it started with some recorded occurrence of c.  That is there exists i such that σi 
|= timer = 0, σi |= recc, σi |= c, ∀k : i ≤ k < j ⇒ σk |= run, and τj − τi > h.  Thus ∀k : i ≤ k ≤ j ⇒ σk |= 
timer = τk − τi.  By the definition of Lpatt we have a k such that τi + l ≤ τk ≤ τi + h and σk |= e.  This 
means l ≤ τk − τi ≤ h and so σk |= l ≤ timer ≤ h.  Therefore σk |= run.  We also have τk ≤ τi + h < τj so 
that k < j.  Thus from ∀k : i ≤ k < j ⇒ σk |= run we have σk |= run which is a contradiction.  Therefore, 
pass is invariant. 

From Lemmas 1 and 2 we have (LM ⊆ Lpatt) ⇔ (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass). 

 

3.1.2 Implementing RSL Patterns as Lustre Constraints 

As we demonstrated with Figure 4, one can specify a Lustre property that verifies whether or not 
some transition system only admits traces of Lpatt.  However, it is surprisingly non-trivial to 
actually implement a transition system that admits exactly the traces of Lpatt.  Naively, one could 
attempt to add the constraints of Figure 4 to a transition system and then assert that pass is 
invariant.  However, this transition system will admit all traces where every occurrence of c is 
never recorded (∀σi : σi |= recc).  Clearly some of these traces would not be in Lpatt. 
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We conjecture that given the Lustre expression language described in Section 2.2 it is not possible 
to model a transition system that admits only and all of the traces of Lpatt.  The intuition behind 
this claim is that Lustre specifications contain a fixed number of state variables, and variables have 
non-recursive types.  Thus a Lustre specification only has a finite amount of memory (though it 
can, for example, have arbitrary sized integers).  If a Lustre specification has n variables we can 
always consider a trace in Lpatt where event c occurs more than n times in a tiny interval.  In order 
for the pattern to hold true, the Lustre specification must constrain itself so that at least one 
occurrence of e occurs precisely between tc + l and tc + h after each event c.  This requires “more 
memory” than the Lustre specification has available. 

Rather than model the exact semantics of this pattern, we choose to take a more pragmatic 
approach.  We model a strengthened version of Figure 3 which does not allow overlapping 
instances of the pattern.  That is, after an event c there can be no more occurrences of c until the 
corresponding occurrence of e.  We do this by proving that c cannot occur frequently enough to 
cause an overlapping occurrence of the pattern.  Then if we constrain the system based on a simple 
non-overlapping check of the pattern, the resulting system is the same as if we had constrained it 
using the full pattern.  This simple non-overlapping check and the property limiting the frequency 
of c are both easily expressed in Lustre since they only look back at the most recent occurrence of 
c.  Moreover, they can both be used freely in positive and negative contexts.  Formally, the property 
we prove is Lprop and the constraints we make are Lcons: 

Lprop = {(σ, τ) | ∀i : σi |= c ⇒ ∀j : (j > i) ∧ (τj ≤ τi + h) ∧ σj |= c ⇒ 

∃k ∈ (i, j] : τi + l ≤ τk ∧ σk |= e} 

Lcons = {(σ, τ) | ∀i : σi |= c ⇒ 

∃j : (j > i) ∧ [(τi + l ≤ τj ≤ τi + h ∧ σj |= e) ∨ (τj ≤ τi + h ∧ σj |= c)]} 

The correctness of Lprop and Lcons are captured by the following theorem. 

Theorem 2. Let M be a transition system and LM its corresponding set of admissible traces.  
Suppose LM ⊆ Lprop.  Then Lcons and Lpatt are equivalent restrictions on LM, that is LM ∩ Lcons = LM 
∩ Lpatt. 

Proof.  We prove the theorem by showing that the subset relationship between LM ∩ Lcons and LM 
∩ Lpatt holds in both directions. 

Lemma 3.  LM ∩ Lpatt ⊆ LM ∩ Lcons 

Proof.  From the definitions of Lpatt and Lcons it follows directly that Lpatt ⊆ Lcons.  Therefore LM ∩ 
Lpatt ⊆ LM ∩ Lcons. 

Lemma 4.  Suppose LM ⊆ Lprop, then LM ∩ Lcons ⊆ LM ∩ Lpatt 
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Proof. Suppose towards contradiction that LM ∩ Lcons ⊈ LM ∩ Lpatt.  Consider a trace (σ, τ) ∈ LM 
∩ Lcons with (σ, τ) ∉ LM ∩ Lpatt.  Then we have (σ, τ) ∈ Lcons, (σ, τ) ∈ Lprop, and (σ, τ) ∉ Lpatt.  From 
the definition of Lpatt we have an i such that σi |= c and 

 ∀j : (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ⇒ σj |= e. (6) 

Then from the definition of Lcons with σi |= c we have a j such that j > i and either (τi + l ≤ τj ≤ τi + 
h ∧ σj |= e) or (τj ≤ τi + h ∧ σj |= c).  The former option directly contradicts Formula 6, so we must 
have τj ≤ τi + h and σj |= c.  From the definition of Lprop with σi |= c and our j, we have a k in (i, j] 
such that τi + l ≤ τk and σk |= e.  From k ≤ j we have τk ≤ τj and thus τi +l ≤ τk ≤ τi +h.  Instantiating 
Formula 6 with k yields σk |= e, a contradiction.  Therefore LM ∩ Lcons ⊆ LM ∩ Lpatt. 

From Lemmas 3 and 4 we have LM ∩ Lcons = LM ∩ Lpatt. 

Example 1. Suppose we want to model a system of components communicating on a shared bus.  
The transition relation for this system must contain constraints that dictate when threads can start 
and stop and how frequently new messages may arrive.  First we constrain the event new message 
from occurring too frequently according to the pattern instance in Figure 1.  Let Lnm represent the 
set of admissible traces for this pattern.  This set is defined explicitly in Formula 1. 

Lnm = {(σ, τ) | ∀i : σi |= new_message ⇒ ¬[∃j : (j > i) ∧ (τj < τi + 50) ∧ (σj |= new_message)]} 

Suppose we wish to constrain the system to the pattern instances in Figure 2.  The first pattern 
instance is represented by the set Lstart and the second by Lstop: 

Lstart = {(σ, τ) | ∀i : σi |= new_message ⇒ σi |= thread_start} 

Lstop = {(σ, τ) | ∀i∃j : σi |= thread_start ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ∧ (σj |= thread_stop)} 

Let LM denote the admissible traces of the transition system that is being modeled.  The goal is to 
specify the transition system in Lustre such that LM = Lnm ∩ Lstart ∩ Lstop.  Writing a Lustre 
constraint to represent the set of traces Lstart is trivial.  The traces that are contained in Lstart are 
those whose states all satisfy the expression new_message = thread_stop.  However, as we noted 
earlier, it is not possible to develop a set of Lustre constraints that admit only (and all of) the traces 
of Lstop. 

Note that the second pattern in Figure 2 is an instance of the pattern described in Figure 3.  
Therefore we can split the set Lstop into two sets, Lstopc and Lstopp: 

Lstopc = {(σ, τ) | ∀i : σi |= thread_start ⇒ ∃j : (j > i) ∧ 

[(τi + l ≤ τj ≤ τi + h ∧ σj |= thread_stop) ∨ 

(τj ≤ τi + h ∧ σj |= thread_start)]} 

Lstopp = {(σ, τ) | ∀i : σi |= thread_start ⇒ ∀j : (j > i) ∧ 
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(τj ≤ τi + h) ∧ σj |= thread_start ⇒ 

∃k ∈ (i, j] : τi + l ≤ τk ∧ σk |= thread_stop} 

In this example, the sets of admissible traces representing the patterns happen to have the following 
relationship: 

 Lnm ∩ Lstart ⊆ Lstopp (7) 

This is because for every trace in Lnm the event new_message only occurs at most every 50ms.  
Likewise, for each state of every trace of Lstart the variable thread_start is true if and only if 
new_message is true.  Finally, the set Lstopp contains every trace where thread_start occurs at most 
every 20ms.  From Formula 7 and Theorem 2 we have Lnm ∩ Lstart ∩ Lstopc = Lnm ∩ Lstart ∩ Lstop.  
Thus the system Lnm ∩ Lstart ∩ Lstopc, which we can model in Lustre, is equivalent to a system 
constrained by the pattern instances in Figures 1 and 2. 

Example 1 is meant to demonstrate that, in practical systems, there is usually some constraint on 
how frequently events outside the system may occur.  Systems described by the functional RSL 
patterns generally have some limitations on how many events they can respond to within a finite 
amount of time. The Lustre implementations of Lcons and Lprop are simpler than Figure 4, and their 
proof of correctness is also simpler then Theorem 1, though we omit both due to space limitations. 

 

3.1.3 RSL Patterns Implemented in AGREE 

In this section we list all of the RSL patterns that we have implemented in AGREE along with 
their formal semantics, Lustre property observer, and Lustre constraint observer.  The English 
language description for each pattern is taken nearly verbatim from the CESAR documentation 
titled “Definition and exemplification of RSL and RMM” [1]. 

In each of the following figures we first list the syntax for the pattern that AGREE accepts.  
Immediately afterwards we define the set of traces that the pattern accepts.  This set is denoted by 
the symbol L for each pattern.  We then list the Lustre observers that AGREE generates to 
implement the pattern.  The first observer listed is labelled as the property observer.  AGREE 
generates this observer when the pattern is used in a positive context.  This occurs when a pattern 
is used in a system level guarantee that we are proving or a subcomponent assumption that we are 
proving.  The constraint observer is used when the pattern appears in a negative context.  This is 
either when a pattern is being used to describe a subcomponent guarantee, a system level 
assumption, or a component assertion.  The constraint property is created whenever the constraint 
observer is used.  If the pass variable is invariant then the constraint observer property implements 
the semantics of the pattern.  The reason for generating the constraint property observers is 
described in the previous section.  For example, the constraint property described in Figure 5 
implements Lprop as described in Example 1 in the previous section. 
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3.1.3.1 Time Functions 

When AGREE translates each pattern into an observer it introduces extra variables into the Lustre 
program.  Often the model checker needs to discover lemmas containing these new variables in 
order to prove the properties of interest.  These lemmas can be very subtle, and the model checker 
may never discover them.  In order to help the model checker the user may specify lemmas by 
hand for the model checker to verify and use to prove other properties.  However, if the user is 
unable to reference these new variables created by the pattern observers they may be unable to 
specify the lemmas necessary to prove the properties of interest. 

To enable the users to specify these lemmas we have introduced three new functions into the 
AGREE grammar that allow users to reference some of these observer variables in an intuitive 
way.  These functions along with their descriptions are listed below. 

 

 

L = {(σ, τ) | ∀i∃j : σi |= c ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ∧ (σj |= e)} 

Property observer: 

 
Constraint observer: 

 
Constraint property: 

 
Figure 5:  If c occurs then e occurs at least once during the specified interval. If c occurs multiple times in close 

succession it is not necessary that there is an individual e that corresponds to each c [1]. 

● timeof(e) : 𝔹𝔹 → ℝ - This function evaluates to -1.0 if e has never been true in the past.  
Otherwise it evaluates to the last time that e was true.  When an AGREE contract is 
translated to Lustre occurrences of timeof(e) are replaced by the variable te as defined by 
the observers in Figures 5, 6, 8, and 9. 
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● timerise(e) : 𝔹𝔹 → ℝ - This function evaluates to -1.0 if e has never been true in the past. 
Otherwise it evaluates to the last time that e transitioned from false to true.  When an 
AGREE contract is translated to Lustre occurrences of timerise(e) are replaced by the 
variable trisee as defined by the observer in Figure 8. 

● timefall(e) : 𝔹𝔹 → ℝ - This function evaluates to -1.0 if e has never been false in the past.  
Otherwise it evaluates to the last time that e was transitioned from true to false.  When an 
AGREE contract is translated to Lustre occurrences of timefall(e) are replaced by the 
variable tfalle as defined by the observer in Figure 8. 

 
Through the course of this project we discovered that we often need to specify lemmas that 
constrained the distance between the timing of multiple events.  For example, if event e1 always 
occurs within s seconds of event e2 one might specify the lemma: timeof(e1) − timeof(e2) ≤ s.  We 
discuss some of the lemmas we needed to prove in the examples in Section 3.2. 

 

 

L = {(σ, τ) | ∀i, j : σi |= c ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ⇒ (σj |= e)} 

Property observer: 

 
Constraint observer: 

 
Constraint property: 

 
Figure 6:  If c occurs then e remains true during specified interval [1]. 
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L = {(σ, τ) | ∀i : σi |= c ⇒ ∀j : τi ≤ τj ≤ τi + t ⇒ σj |= c} 

Constraint observer: 

 
Figure 7:  The condition c occurs sporadically with inter arrival time t and jitter j. If this pattern is specified without 

a value for jitter it is equivalent to using the same pattern with j = 0 [1]. 
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L = {(σ, τ) | ∃i∀j : τi ≤ τj ≤ τi + h1 − l1 ∧ σj |= c ⇒ 

∃k : (k > i) ∧ (τi + h1 − l1 + l2 ≤ τk ≤ τi + h1 − l1 + h2) ∧ (σk |= e)} 

Property observer: 

 
Constraint observer: 

 
Constraint property: 

 
Figure 8:  If the c remains true during the first interval e is true sometime during the second interval [1]. 

 

 

 

 

 

 



Approved for Public Release; Distribution Unlimited.  
19 

 

 

L = {(σ, τ) | ∀i, j : σi |= c ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ⇒ σj |= e1 ⇒ σj |= e2} 

Property observer: 

 
Constraint observer: 

 
Constraint property: 

 
Figure 9:  If c occurs then e remains true during specified interval [1]. 

 

 

L = {(σ, τ) | ∃i : 0 ≤ τi ≤ p ∧ ∀a : 1 ≤ a ⇒ ∃m : (a − 1)pτi − j ≤ τm ≤ apτi + j ∧ σm |= c 

∧ ∀n : (a − 1)pτi − j ≤ τn ≤ apτi + j ∧ n = m ⇒ σn |= c} 

Constraint observer: 

 
Figure 10:  The condition c occurs periodically with period p and jitter j. If this pattern is specified without a value 

for jitter it is equivalent to using the same pattern with j = 0 [1]. 
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3.2 Examples 

In this section we discuss our experience re-implementing two of the models from the SWPI 
project using the real-time patterns that we implemented in AGREE.  We make the following 
assumptions about these systems to ensure that our models are accurate: 

1. The only possible system faults are modeled explicitly. E.g., a component cannot fail unless 
there are constraints in the model which represent component failure. 

2. The only communication channels in the system are explicit in the model. 
3. The system obeys all system level assumptions explicitly stated in the top level contract of 

the model. 
 

3.2.1 Wheel Braking System 

The Wheel Braking System (WBS) model was derived from an accident report for an Airbus A320 
aircraft that occurred on May 21st 1998.  The accident occurred because of simultaneous failures 
in two of the aircrafts braking system.  The architecture of the primary Braking System Control 
Unit (BSCU) is shown in Figure 11. 

 

 
Figure 11:  The architecture for the Wheel Braking System. 

The BSCU is composed of two channels (CH1 and CH2).  Each channel contains one command 
(COM) and monitor (MON) component.  The MON function checks the correctness of the value 
sent by the COM function.  When a disagreement is detected (different result between the COM 
and MON elements), the MON function raises an error signal.  Then, the BSCU switches to the 
other channel.  If this second channel later encounters a disagreement between COM and MON 
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functions, the alternate braking mode is also lost and the only available braking is that provided 
by manual operation of the parking mode. 

Either BSCU channel can operate three different auto-braking modes: 

● LOW minimum pressure is applied when landing approximately 4 seconds after the 
ground spoilers are deployed to give a nominal deceleration of 1.7m/s2 or about 0.17g. 

● MED medium pressure is applied when landing about 2 seconds after the ground spoilers 
are deployed to give a deceleration of approximately 3m/s2. 

● MAX high pressure is applied as soon as the ground spoilers are deployed give a higher 
deceleration rate consistent with a rejected take-off or similar takeoff or landing situation. 

 
Because the MON and COM components run on separate clocks each channel can produce 
spurious errors if the brake commands and/or pedal commands change too frequently.  
Specifically, the incoming data (either button presses or pedal pressure) must remain constant for 
a certain amount of time to be guaranteed to be seen by both the MON and COM components 
(which will guarantee that the MON component does not produce an error). 

 

3.2.1.1 Differences between the CRP model and SWPI model 

The goal of the CRP project is to develop more concise patterns to represent timing constraints for 
systems.  In order to demonstrate that these patterns serve this purpose, we re-implemented the 
model developed under the SWPI program to use the newly developed patterns.  There are three 
main differences between the SWPI version of the BSCU and the CRP version: 

1. The error logic is slightly different between the two models.  In the SWPI version the MON 
component does not produce an error unless it disagrees with the COM component for a 
number of clock cycles.  In the CRP version it reports an error immediately if it disagrees.  
There is not really a technical reason for this difference.  It is not clear from the 
documentation what the exact behavior of the real system is. 

2. The SWPI version uses quasi-synchronous (QS) constraints to model the timing behavior 
of the clocks of the MON and COM components.  These constraints are not as explicit as 
constraining the periods and execution times of the individual components.  It is more 
difficult to prove timing properties of the system with QS constraints (because timing is in 
reference to some base clock).  In the CRP version of the model we utilize the real-time 
patterns to express the period of the component clocks. 

3. The SWPI model is not compositional.  The model is a flat hierarchy of four components 
with four clocks.  In contrast, the CRP model consists of two channels, and each channel 
consists of two components.  The SWPI model is not organized hierarchically because it is 
difficult to analyze QS systems this way.  Verifying the system compositionally can greatly 
improve the scalability of model checking. 
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3.2.1.2 Use of CRP patterns 

We make use of real-time patterns in two aspects of the model.  First, we use the patterns to 
constrain how frequently the MON and COM components execute and for how long they execute.  
These constraints appear as assertions in the CHANNEL component implementation.  They are 
shown in Figure 12: 

 

 
Figure 12:  Patterns used to constrain the execution of the MON and COM components for each channel of the CRP 

version of the Wheel Braking System. 

We use the constants mon_period, com_period, mon_exec_min, mon_exec_max, com_exec_min, 
and com_exec_max defined in the BSCU package AGREE annex to set the various parameters for 
the system.  The periods, as indicated in the accident report, are set to 20ms.  We do not have 
values for the minimum and maximum execution times for the components so we made-up values 
that we believe are plausible (5ms for the minimum and 7ms for the maximum). 

We also used the patterns as system level assumptions to constrain how frequently the buttons are 
allowed to be pressed and how frequently the pedal value is allowed to change.  These assumptions 
are shown in Figure 13.  The constants button_push_min and pedal_push_min were chosen to 
satisfy the system level properties.  These values were derived analytically based on the periods of 
the COM and MON components.  If these values were to be increased, the system level properties 
would still be satisfied. 
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Figure 13:  Patterns used to constrain the button pushes of the CRP version of the Wheel Braking System. 

In contrast, the button press frequency assumptions for the SWPI version of the model are shown 
in Figure 14.  In these assumptions the integers 13 and 20 refer to the number of time steps that 
occur in reference to the base clock.  It is unclear how this number corresponds to the actual timing 
information of the system (how long are 13 and 20 time steps in real time?).  This timing 
information is made explicit in the assumptions for the CRP version of the model. 
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Figure 14:  Constraints used to constrain the button pushes for the SWPI version of the Wheel Braking System. 

 

3.2.1.3 Properties of the CRP model 

As mentioned earlier, the CRP version of the WBS model proves its properties compositionally.  
There is an AGREE contract for the BSCU, an AGREE contract for each CHANNEL, an AGREE 
contract for the MON component and an AGREE contract for the COM component.  The contracts 
of the MON and COM components prove the contract of the CHANNEL components.  Likewise, 
the contracts of the CHANNEL components prove the contracts of the BSCU component. 

We prove that neither CHANNEL produces an error if there are no changes on the interfaces (the 
pedal or the buttons) for more than 87ms.  This is also assuming that neither of the MON or COM 
components has failed.  This property is expressed by the guarantees shown in Figure 15. 

The variable t_last_status_change records the time of the last change from a button or the pedal.  
The first guarantee says if over 87ms have passed since this last change (and if neither the MON 
nor COM has ever failed) then the channel will not produce a failure.  The other two guarantees 
are used to assert that this event actually triggers with a certain frequency.  This is important for 
proving properties in the parent BSCU component. 

The property that we prove for the BSCU is similar to this.  We prove that if at most one MON or 
COM component has failed then at least one channel is error free if the status has not changed for 
at least 87ms.  We also prove that if there has been at most one single failure and if the alternate 
braking system is engaged then the alternative braking system has only been engaged for a finite 
amount of time.  This indicates that as long as the system has no more than one failure then errors 
produced by the channel will only be transient.  These formalized properties are shown Figure 16. 
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Figure 15:  Properties for each channel of the Wheel Braking System. 

 
Figure 16:  The top level properties for the Wheel Braking System. 

 

The analogous requirement for the SWPI version of the model is shown Figure 17. 
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Figure 17:  The SWPI version of the properties from Figure 16. 

Once again this requirement is in reference to the time of the base clock of the quasi-synchronous 
system.  It is not clear how the integer 7 corresponds to the real-time constraint of the system.  This 
is made explicit in the properties for the CRP version of the model. 

 

3.2.2 Pilot Flying 

A Flight Guidance System (FGS) is a component of the overall Flight Control System (FCS) that 
compares the measured state of an aircraft (position, speed, and attitude) to the desired state and 
generates pitch and roll guidance commands to minimize the difference between the measured and 
desired state.  In many aircraft, the Flight Guidance function at the system level is implemented as 
two physical sides, or channels, one on the left and one on the right side of the aircraft.  These 
redundant implementations communicate with each other over a cross-channel bus as shown in 
Figure 18. 

 

 
Figure 18:  The architecture of a Flight Guidance System. 

 

3.2.2.1 Differences between the SWPI model and CRP model 

In the final report for the SWIPI project, we discussed different implementations of this system 
assuming synchronous, asynchronous, and quasi-synchronous architectures.  The report discusses 
results for implementing the quasi-synchronous version.  In the CRP project we re-implemented 
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the quasi-synchronous version of the model using real-time patterns.  In this version of the 
architecture each side and each bus runs on its own independent clock.  We assume that the buses 
run at a rate that is faster than the clock of each individual side.  However, neither the clocks of 
the side components nor the bus components are synchronized. 

We also simplified the AADL architecture.  The SWIPI version of the model contained three 
components within each side.  One component computes the state of the side (either Flying, 
Inhibited, or Listening).  This component is referred to as the “Pilot Flying Side Logic”.  The 
remaining two components send a signal to this logic component when the transfer switch state 
transitions from low to high and when the bus sends a signal indicating that the other side 
component has transferred from a non-flying state to a flying state. 

Rather than explicitly modeling these components that send signals to the logic component when 
some other external signal transitions from false to true we opted to consolidate the behavior of 
these three components into a single AGREE contract for the side component.  From a verification 
standpoint this makes the model easier to analyze.  We do not believe that this decreases the fidelity 
between the AADL model and how the model would be physically implemented. 

Figure 19 shows the top level contract for the quasi-synchronous version of the model from the 
SWPI project and Figure 20 shows the top level contract for the CRP version of the model.  There 
are three clear difference between the top level specifications in for each version of the model: 
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Figure 19:  The top level requirements for the SWPI version of the Pilot Flying model. 
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Figure 20:  The top level requirements for the CRP version of the Pilot Flying model. 

1. The SWPI version of the model references integer bounds referring to the number of clock 
steps in the model.  In contrast the CRP version of the model contains bounds in reference 
to real-time.  This makes the specifications in the CRP version of the model easier to 
understand. 

2. The specifications in the CRP version of the model do not distinguish whether or not the 
system is “initializing”.  During the SWIPI project we did not have a way to constrain the 
initial output values of components before their clocks have ticked.  We have since added 
new constructs to the language so we no longer need to tick each component’s clock to 
initialize their outputs. 

3. The CRP version of the model has weaker assumptions about how frequently the transfer 
switch is pressed.  In the CRP version of the model the button must be held down (set to 
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true) for at least 100ms, but there are no constraints on how long the button needs to be 
depressed. 

The relationships between the clocks are represented very concisely using assertions and patterns 
in the top level AADL implementation of the model.  These constraints are shown in Figure 21. 

 

 
Figure 21:  The assertions constraining the behavior of the clocks in the CRP version of the Pilot Flying Model. 

Similar to the CRP version of the WBS model we picked somewhat arbitrary parameters for the 
periods of the side components and bus components.  However, we made sure that the bus 
component would execute at least twice since each side component.  We chose the side periods to 
be 20ms, the bus periods to be 10ms, the maximum side execution time to be 5ms, and the 
maximum bus execution time to be 2ms.  Based on these timing values we inferred that the transfer 
switch would likely need to be held down for at least 100ms before both sides could reach 
agreement on who was the pilot flying side. 
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4. Results and Discussion 

4.1 Wheel Braking System 

The analysis time of the properties for the CRP version of the Wheel Braking System has improved 
significantly.  Using a laptop computer with an Intel CoreTM i7 running at 2.7 GHz it takes 
roughly 8 minutes to prove the top level guarantees of the quasi-synchronous version of the model.  
In contrast, on the same machine it takes less than 2 minutes to prove the top level requirements 
of the CRP version of the model and less than two minutes to prove the requirements of one of the 
channel components.  The quasi-synchronous version of the model takes longer to analyze because 
of the exponential increase in the possible number of interleaving’s between different component 
clocks.  In the quasi-synchronous version of the model each component’s clock can tick at most 
twice since any other component in the system.  Loosening this constraint dramatically increases 
the runtime of the model. 

The CRP version of the model does not suffer the same performance consequences.  However, a 
significant amount of effort was taken in order to figure out the correct lemmas needed in the 
model to prove the top level requirements.  This task was not only time consuming, it was 
intellectually challenging to complete.  We discovered these lemmas by inspecting the 
counterexamples of the inductive check from the model checker to determine what additional facts 
the system needed to learn in order to eliminate the counterexamples.  The constraints for the 
lemma that was most challenging to discover is shown in Figures 22 and 23.  These constraints are 
used to define a “trigger time” which determines the time range in which the alternate braking 
system would have engaged in response to a particular input (either a button press or change in 
pedal pressure).  It took significant insight into the behavior of the system in order to determine 
these constraints. 
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Figure 22:  The “triggering” constraints needed to prove the top level properties of the CRP version of the WBS 

model. 
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Figure 23:  The “triggering” lemma needed to prove the top level properties of the CRP version of the WBS model. 

 

4.2 Pilot Flying 

While we were able to report a faster analysis time for the CRP version of the WBS model, the 
analysis time for the pilot flying model is much slower.  This is due to two reasons: 

1. The architecture that we chose for the model is not compositional.  We could possibly 
improve this by placing each side and bus pair into another component.  However we would 
need to develop a contract for this new component. 

2. We have not yet discovered the lemmas that we need to prove all of the properties of the 
model. 

Using a laptop computer with an Intel CoreTMi7 running at 2.7 GHz it takes roughly 6 minutes to 
prove all of the properties of the SWPI version of the model.  However, on the same machine we 
are only able to prove Requirements 1 and 4 of the CRP version of the model.  Requirement 4 
proves in less than a minute, but Requirement 1 takes over an hour.  At this time we are unable to 
produce proofs for the remaining requirements for the model.  With more time spent on discovering 
lemmas we could likely achieve similar runtimes for this model as we did with the CRP version 
of the WBS model. 
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5. Conclusions 

The main goal of this project was to investigate the use of patterns to specify formal requirements 
for timed systems.  We found that many of the specifications that we developed for the examples 
from the SWPI project where unintuitive or hard to understand.  We argue that these unintuitive 
specifications are a bi-product of modeling systems quasi-synchronously.  This is because the 
notion of time for these systems is very abstract; we do not model how quickly events occur in 
terms of real-time.  Timing of events is constrained in reference to how often one clock in the 
system ticks with respect to another.  Therefore we cannot specify that a button must be held for a 
specific number of seconds.  Instead how long a button must be pressed needs to be in reference 
to some base rate.  This can vastly over-approximate the necessary bounds needed for the property 
to hold in a real system. 

For example, consider a system of 10 components running on separate clock domains that all 
receive the same input.  Assume that each clock runs at 10ms and has 1ms of jitter with no drift.  
If one were to model this system using quasi-synchronous constraints they would assume each 
clock ticks no more than once since any other clock ticks.  In order for all components to receive 
the same input the value must remain constant for at least 10 ticks.  If one were to translate this 
constraint from quasi-synchronous ticks into real-time they would conclude that inputs must 
remain constant for at-least 10*11ms = 110ms.  However, without making the quasi-synchronous 
abstraction it should be clear that all components should see the same input as long as it is held for 
at least 11ms (the period of each clock plus the jitter). 

In order to make the specification language easier to understand it was clear that properties should 
be specified in terms of real-time constraints.  This example also demonstrates the loss of fidelity 
that one gets when making quasi-synchronous abstractions.  This concern led us to implement the 
real-time patterns from the CESAR project [17] into the AGREE tool.  However, through the 
course of the project we have discovered that increased modeling fidelity and clarity of 
specifications has come with the tradeoff of more difficult proofs.  Much of the time spent 
developing the examples for this project was used on discovering the correct lemmas needed to 
prove the properties of interest.  Once the lemmas were discovered verification became more 
tractable on the CRP versions of the models than the SWPI versions. 

For future work we plan to improve and automate the task of real-time lemma discovery.  This 
could dramatically decrease the amount of time needed to prove specifications.  This would also 
make AGREE easier to use for users who do not have formal methods experience. 
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List of Symbols, Abbreviations and Acronyms 

AADL Architectural Analysis and Design Language 

AGREE Assume Guarantee Reasoning Environment 

BSCU Braking System Control Unit 

CESAR Cost-efficient Methods and Processes for Safety-relevant Embedded Systems 

COM Command 

CRP Contract Requirements Patterns 

CSL Contract Specification Language 

FCS Flight Control System 

FGS Flight Guidance System 

LTL Linear Temporal Logic 

MON Monitor 

MTL Metric Temporal Logic 

OSATE Open Source AADL Tool Environment 

QS Quasi-synchronous 

RMM Requirement Meta-Model 

RSL Requirements Specification Language 

RTGIL Real-Time Graphical Interval Logic 

SMT Satisfiability Modulo Theories 

SWPI Software Productivity Initiative 

TCTL Timed Computational Tree Logic 

TTS Timed Transition System 

TILCOX Extended Temporal Interval Logic 

WBS Wheel Braking System 
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