

REQUIREMENTS PATTERNS FOR FORMAL CONTRACTS IN
ARCHITECTURAL ANALYSIS AND DESIGN LANGUAGE (AADL)
MODELS

ROCKWELL COLLINS

APRIL 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-081

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2017-081 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
STEVEN DRAGER JOHN MATYJAS
Work Unit Manager Technical Advisor, Computing

& Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APRIL 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2015 – OCT 2016
4. TITLE AND SUBTITLE

REQUIREMENTS PATTERNS FOR FORMAL CONTRACTS IN
ARCHITECTURAL ANALYSIS AND DESIGN LANGUAGE
(AADL) MODELS

5a. CONTRACT NUMBER
FA8750-16-C-0018

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
63781D

6. AUTHOR(S)

John Backes

5d. PROJECT NUMBER
ASET

5e. TASK NUMBER
15

5f. WORK UNIT NUMBER
RC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rockwell Collins
7805 Telegraph Road
Bloomington, MN 55438

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-081
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2017-1665
Date Cleared: 10 Apr 2017
13. SUPPLEMENTARY NOTES
14. ABSTRACT
English language requirements are often used to specify the behavior of complex cyber-physical systems. The process
of transforming these requirements to a formal specification language is often challenging, especially if the specification
language does not contain constructs analogous to those used in the original requirements. For example, requirements
often contain real-time constraints, but many specification languages for model checkers have discrete time semantics.
Work in specification patterns helps to bridge these gaps, allowing straightforward expression of common requirements
patterns in formal languages. In this report we demonstrate how we support real-time specification patterns in the
Assume Guarantee Reasoning Environment (AGREE) using observers. We demonstrate that there are subtle
challenges, not mentioned in previous literature, to express real-time patterns accurately using observers. We
demonstrate that these patterns are sufficient to model real-time requirements for a real-world avionics systems.

15. SUBJECT TERMS
Cyberphysical Systems, Formal Methods, Requirements Patterns, AADL, Assume Guarantee Reasoning Environment

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STEVEN DRAGER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

42

i

Table of Contents

Table of Figures .. ii

1. Summary ... 1

2. Introduction ... 3

2.1 Related Work .. 4

2.2 Definitions... 5

3. Methods, Assumptions, and Procedures ... 7

3.1 RSL Patterns and Semantics Overview .. 8

3.1.1 Implementing RSL Patterns as Lustre Properties .. 10

3.1.2 Implementing RSL Patterns as Lustre Constraints .. 11

3.1.3 RSL Patterns Implemented in AGREE .. 14

3.1.3.1 Time Functions ... 15

3.2 Examples ... 20

3.2.1 Wheel Braking System .. 20

3.2.1.1 Differences between the CRP model and SWPI model .. 21

3.2.1.2 Use of CRP patterns .. 22

3.2.1.3 Properties of the CRP model... 24

3.2.2 Pilot Flying... 26

3.2.2.1 Differences between the SWPI model and CRP model .. 26

4. Results and Discussion ... 31

4.1 Wheel Braking System ... 31

4.2 Pilot Flying.. 33

5. Conclusions ... 34

References ... 35

List of Symbols, Abbreviations and Acronyms .. 37

ii

Table of Figures

Figure 1: An instance of a timing pattern to represent how frequently a message arrives on a shared
bus. .. 8
Figure 2: Two instances of a functional patterns used to describe when a thread begins executing,
and how long it takes to execute. .. 9
Figure 3: A graphical representation for the RSL pattern.. 9
Figure 4: The constraints added to a transition relation to verify if only the traces of Lpatt are
admissible. The transition relation only admits traces of Lpatt if and only if the variable pass is
invariant. ... 10
Figure 5: If c occurs then e occurs at least once during the specified interval. If c occurs multiple
times in close succession it is not necessary that there is an individual e that corresponds to each c
[1]. ... 15
Figure 6: If c occurs then e remains true during specified interval [1]. 16
Figure 7: The condition c occurs sporadically with inter arrival time t and jitter j. If this pattern is
specified without a value for jitter it is equivalent to using the same pattern with j = 0 [1]. 17
Figure 8: If the c remains true during the first interval e is true sometime during the second interval
[1]. ... 18
Figure 9: If c occurs then e remains true during specified interval [1]. 19
Figure 10: The condition c occurs periodically with period p and jitter j. If this pattern is specified
without a value for jitter it is equivalent to using the same pattern with j = 0 [1]. 19
Figure 11: The architecture for the Wheel Braking System. ... 20
Figure 12: Patterns used to constrain the execution of the MON and COM components for each
channel of the CRP version of the Wheel Braking System. ... 22
Figure 13: Patterns used to constrain the button pushes of the CRP version of the Wheel Braking
System. .. 23
Figure 14: Constraints used to constrain the button pushes for the SWPI version of the Wheel
Braking System. .. 24
Figure 15: Properties for each channel of the Wheel Braking System. 25
Figure 16: The top level properties for the Wheel Braking System. ... 25
Figure 17: The SWPI version of the properties from Figure 16. ... 26
Figure 18: The architecture of a Flight Guidance System. .. 26
Figure 19: The top level requirements for the SWPI version of the Pilot Flying model. 28
Figure 20: The top level requirements for the CRP version of the Pilot Flying model. 29
Figure 21: The assertions constraining the behavior of the clocks in the CRP version of the Pilot
Flying Model. .. 30
Figure 22: The “triggering” constraints needed to prove the top level properties of the CRP version
of the WBS model. .. 32
Figure 23: The “triggering” lemma needed to prove the top level properties of the CRP version of
the WBS model. .. 33

Approved for Public Release; Distribution Unlimited.
1

1. Summary

Modern aircraft are complex cyber-physical systems with safety and security requirements that
must be satisfied by their onboard software. As these systems have grown in complexity, their
verification has become the single most costly development activity [1]. The verification costs of
even more complex systems in the future will impact safety, not just through an increasing
incidence of errors and unforeseen interactions, but by delaying and preventing the deployment of
crucial safety functions.

Rockwell Collins has been addressing these challenges by developing compositional reasoning
methods that permit the verification of systems that exceed the complexity limits of current
approaches. Our approach is based on:

● Modeling the system architecture using standard notations that are usable by systems and
software engineers.

● Developing a sophisticated translation framework that automates the translation of system
architecture models for analysis by powerful general-purpose verification engines such as
Satisfiability Modulo Theories (SMT)-based model checkers.

● Developing techniques for compositional verification based on the system architecture to
divide the verification task into manageable, reusable pieces.

This approach has the potential to significantly reduce verification costs by identifying and
correcting system design errors early in the life cycle rather than waiting until system integration.
However, formally verifying requirements for complex cyber physical systems is a challenging
task. Practitioners will often make simplifying assumptions about the system in order to make
verification tractable.

A common simplification is to assume that all of the components of a system execute
synchronously in order to decrease the verification effort. Yet, real systems often contain
components that execute via different clock domains. Assumptions about synchrony are likely not
sound, and they can prevent engineers from discovering serious vulnerabilities, errors, and/or race
conditions. Skilled practitioners may be able to make sound abstractions about timing information,
such as modeling the systems execution with quasi-synchronous constraints. In a previous effort,
we developed a framework to model and reason about quasi-synchronous systems. We
successfully demonstrated our approach on a number of models that were based on actual
examples seen in industry. However, this approach contained a couple of pitfalls:

1. It can be difficult to determine how to formalize a natural language requirement in terms
of quasi-synchronous constraints.

2. It is not feasible to compositionally analyze systems containing quasi-synchronous
constraints.

Approved for Public Release; Distribution Unlimited.
2

To solve these issues we opted to alter the specification language of our compositional reasoning
tool called the Assume Guarantee Reasoning Environment (AGREE)1. The new specification
language allows users to write requirements using specification patterns. This reduces the burden
of determining how to specify requirements, and it also increases the likelihood of requirements
being formalized correctly. Furthermore, the patterns allow users to specify requirements with
respect to real-time. This not only makes the meaning of a formalization more clear, it also allows
requirements to compose more easily. For the remainder of this report we refer to this effort as
the Contract Requirements Patterns (CRP) project.

1 AGREE stands for Assume-Guarantee Reasoning Environment

Approved for Public Release; Distribution Unlimited.
3

2. Introduction

Specification patterns [2, 3] are an approach to ease the construction of formal specifications from
natural language requirements. These patterns describe how common reasoning patterns in
English language requirements can be represented in (sometimes complex) formulas in a variety
of formalisms. Following the seminal work of Dwyer [2] for discrete time specification patterns,
a variety of real-time specification pattern taxonomies have been developed [3–7]. An example
of a timed specification pattern expressible in each is: “Globally, it is always the case that if P
holds, then S holds between low and high time unit(s).” In most of this work, the specification
patterns are mapped to real-time temporal logics, such as Timed Computational Tree Logic
(TCTL) [8], Metric Temporal Logic (MTL) [9], Real-Time Graphical Interval Logic (RTGIL)
[10], and Extended Temporal Interval Logic (TILCOX) [5]. As an alternative, researchers have
investigated using observers to capture real-time specification patterns. Observers are code/model
fragments written in the modeling or implementation language to be verified, such as timed
automata, timed Petri nets, source code, and Simulink, among others. For example, Gruhn [4] and
Abid [11] describe real-time specifications as state machines in timed automata and timed Petri
nets, respectively. A benefit of this approach is that rather than checking complex timed temporal
logic properties (which can be very expensive and may not be supported by a wide variety of
analysis tools), it is possible to check simpler properties over the observer.

Despite this benefit, capturing real-time specification patterns with observers can be challenging,
especially in the presence of overlapping “trigger events.” That is, if P occurs multiple times
before low time units have elapsed in the example above. For example, most of the observers in
Abid [11] explicitly are not defined for ‘global’ scopes, and Gruhn, while stating that global
properties are supported, only checks a pattern for the first occurrence of the triggering event in an
infinite trace.

In this effort, we examined the use of observers to capture specification patterns that can involve
overlapping triggering events. We implemented our work in AGREE [12] which translates
Architectural Analysis and Design Language (AADL) [13] specifications into Lustre programs
[14]2. We describe the conditions under which we can use observers to faithfully represent the
semantics of patterns, for both positive instances of patterns and negations of patterns. We call
the former use properties and the latter use constraints.

The reason that we consider negations of patterns is that our overall goal is to use real-time
specification patterns in the service of assume/guarantee compositional reasoning. We used
AGREE to verify quasi-synchronous properties for four different models in the Software
Productivity Initiative (SWPI) project. In other recent efforts [15, 16], we used the AGREE tool
suite for reasoning about discrete time behavioral properties of complex models. Through adding
support for Requirements Specification Language (RSL) patterns [17] and calendar automata [18–
20], it becomes possible to lift our analysis to real-time systems. In AGREE, we prove implicative

2 Although our formalisms are expressed as Lustre specifications, the concepts and proofs presented in this report are
applicable to many other popular model checking specification languages.

Approved for Public Release; Distribution Unlimited.
4

properties: given that subcomponents satisfy their contracts, then a system should satisfy its
contract. This means that the RSL patterns for subsystems are used under a negation.

The rest of this report is organized as follows. In Section 2.2 we list formal definitions that are
used to describe the semantics of our patterns and perform proofs about our observers. In Section
3 we give a brief overview of the compositional verification rules of AGREE. In Section 3.1 we
describe the RSL patterns that we have implemented in AGREE along with their formal semantics.
In Section 3.2 we describe in detail two of the examples that we used the RSL patterns to model.
In Section 4 we discuss the analysis results for these examples. Overall we make the following
contributions with this report:

● We demonstrate a method for translating RSL Patterns into Lustre observers and system
invariants.

● We prove that it is possible to efficiently capture patterns involving arbitrary overlapping
intervals in Lustre using non-determinism.

● We argue that there is no method to efficiently encode a transition system in Lustre that
implements the exact semantics of all of the RSL patterns when considering their negation.

● We demonstrate how to encode these patterns as Lustre constraints for practical systems.
● We discuss the use of these patterns to model two real-world avionics system.

2.1 Related Work

This work focused on implementing real-time patterns from the RSL [6] that was created as part
of the Cost-efficient Methods and Processes for Safety-relevant Embedded Systems (CESAR)
project [17]. This language is an extension and modularization of the Contract Specification
Language (CSL) [24]. The goal of both of these projects was to provide contract-based reasoning
for complex embedded systems. We chose this as our initial pattern language because of the
similarity in the contract reasoning approach used by our AGREE tool suite [12].

There is considerable work on real-time specification patterns for different temporal logics.
Konrad and Cheng [3] provide the first systematic study of real-time specification patterns,
adapting and extending the patterns of Dwyer [2] for three different temporal logics: TCTL [8],
MTL [9], and RTGIL [10]. Independently, Gruhn [4] constructed a real-time pattern language
derived from Dwyer, presenting the patterns as observers in timed automata. In Konrad and Cheng,
multiple (and overlapping) occurrences of patterns are defined in a trace, whereas in Gruhn, only
the first occurrence of the patterns considered. This choice sidesteps the question of adequacy for
overlapping triggering events (as discussed in Section 3.1), but limits the expressiveness of the
specification. We use a weaker specification language than Konrad [3] which allows better scaling
to our analysis, but we also consider multiple occurrences of patterns, unlike Gruhn [4]. Bellini [5]
creates a classification scheme for both Gruhn’s and Konrad’s patterns and provides a rich
temporal language called TILCOX that allows more straightforward expression of many of the
real-time patterns. Like [3], this work considers multiple overlapping occurrences of trigger
events.

Approved for Public Release; Distribution Unlimited.
5

The closest work to ours is probably that of Abid et. al [11], who encode a subset of the CSL
patterns as observers in a timed extension of Petri nets called Timed Transition System (TTS), and
supplement the observers with properties that involve both safety and liveness in Linear Temporal
Logic (LTL). For most of the RSL patterns considered, the patterns are only required to hold for
the first triggering event, rather than globally across the input trace. In addition, the use of full
LTL makes the analysis more difficult with inductive model checkers. Other recent work [7]
considers very expressive real-time contracts with quantification for systems of systems. This
quantification makes the language expressive, but difficult to analyze.

Other researchers including Pike [25] and Sorea [26] have explored the idea of restricting traces
to disallow overlapping events in order to reason about real-time systems using safety properties.
The authors of [27] independently developed a similar technique of using a trigger variable to
specify real-time properties that quantify over events.

2.2 Definitions

AGREE proves properties of architectural models compositionally by proving a series of lemmas
about components at different levels in the model’s hierarchy. A detailed description of how these
proofs are constructed is provided in [12, 15] and a proof sketch of correctness of these rules is
described in [12, 21]. We also give a brief overview of these rules in the following section. The
AGREE tool translates AADL models annotated with component assumptions, guarantees, and
assertions into Lustre programs. Our explanations and formalizations in this report are described
by these target Lustre specifications. Most other SMT-based model checkers use a specification
language that has similar expressivity as Lustre; the techniques we present in this report can be
applied generally to other model checking specification languages.

A Lustre program M = (V, T, P) can be thought of as a finite collection of named variables V, a
transition relation T, and a finite collection of properties P. Each named variable is of type bool,
integer, or real. The transition relation is a Boolean constraint over these variables and theory
constants; the value of these variables represents the program’s current state, and the transition
relation constrains how the state changes. Each property p ∈ P is also a Boolean constraint over
the variables and theory constants. We sometimes refer to a Lustre program as a model,
specification, or transition system. The AGREE constraints specified via assumptions, assertions,
or guarantees in an AADL model are translated to either constraints in the transition relation or
properties of the Lustre program.

The expression for T contains common arithmetic and logical operations (+, −, ∗, ÷, ∨, ∧, ⇒, ¬, =)
as well as the “if-then-else” expression (ite) and two temporal operations: → and pre. The →
operation evaluates to its left hand side value when the program is in its initial state. Otherwise it
evaluates to its right hand side value. For example, the expression: true → false is true in the
initial state and false otherwise. The pre operation takes a single expression as an argument and
returns the value of this expression in the previous state of the transition system. For example, the
expression: x = (0 → pre(x) + 1) constrains the current value of variable x to be 0 in the initial state
otherwise it is the value of x in the previous state incremented by 1.

Approved for Public Release; Distribution Unlimited.
6

In the model’s initial state the value of the pre operation on any expression is undefined. Every
occurrence of a pre operator must be in a subexpression of the right hand side of the → operator.
The pre operation can be performed on expressions containing other pre operators, but there must
be → operations between each occurrence of a pre operation. For example, the expression:
true → pre(pre(x)) is not well-formed, but the expression: true → pre(x → pre(x)) is well-formed.

A Lustre program models a state transition system. The current values of the program’s variables
are constrained by values of the program’s variables in the previous state. In order to model timed
systems, we introduce a real-valued variable t which represents how much time has elapsed during
the previous transitions of the system. We adopt a similar model as timeout automata as described
in [18]. The system that is modeled has a collection of timeouts associated with the time of each
“interesting event” that will occur in the system. The current value of t is assigned to the least
timeout of the system greater than the previous elapsed time. Specifically, Formula 1 shows that
t has the following constraint:

 t = 0 → pre(t) + min_pos(t1 − pre(t), . . . , tn − pre(t)) (1)

where t1, . . . , tn are variables representing the timeout values of the system. The function min_pos
returns the value of its minimum positive argument. We constrain all the timeouts of the system
to be positive. A timeout may also be assigned to positive infinity (∞)3. There should always be
a timeout that is greater than the current time (and less than ∞). If this is true, then the invariant
true → t > pre(t) holds for the model, i.e., time always progresses.

A sequence of states is called a trace. A trace is said to be admissible (w.r.t. a Lustre model or
transition relation) if each state and its successor satisfy the transition relation. We adopt the
common notation (σ, τ) to represent a trace of a timed system where σ is a sequence of states (σ =
σ1σ2σ3 . . .) and τ is a sequence of time values (τ = τ1τ2τ3 . . .) such that ∀i : τi < τi+1. In some
literature, state transitions may take place without any time progress (i.e., ∀i : τi ≤ τi+1). We do not
allow these transitions as it dramatically increases the complexity of a model’s Lustre encoding.

A Lustre program implicitly describes a set of admissible traces. Each state σn in the sequence
represents the value of the variables V in state n. Each time value τn represents the value of the
time variable t in state n. We use the notation σn |= e, where e is Lustre expression over the variables
V and theory constants, if the expression e is satisfied in the state σn. Similarly, we use σn |≠ e
when e is not satisfied in the state σn. A property p is true (or invariant) in a model if and only if
for every admissible trace ∀n : σn |= p. For the purposes of this work, we only consider models
that do not admit so-called “Zeno traces” [22]. A trace (σ, τ) is a Zeno trace if and only if ∃v∀i :
τi < v, i.e., time never progresses beyond a fixed point.

3 In practice, we allow a timeout to be a negative number to represent infinity. This maintains the correct semantics
for the constraint for t in Formula 1.

Approved for Public Release; Distribution Unlimited.
7

3. Methods, Assumptions, and Procedures

In this section we briefly describe the rules that AGREE uses to create compositional proofs. A
more complete description is in [12] and a proof of correctness of these rules is provided in [12,
21].

AGREE is a language and a tool for compositional verification of AADL models. It is
implemented as a plugin to the Open Source AADL Tool Environment (OSATE). The behavior
of a model is described by contracts specified on each component. A contract contains a set of
assumptions about the component’s inputs and a set of guarantees about the component’s outputs.
The assumptions and guarantees may also contain predicates that reason about how the state of a
component evolves over time. By default the state transitions of each component in the model
occur synchronously with every other component (i.e., each component runs on the same clock).
However, AGREE can also model systems that have components with independent clocks. The
user can specify arbitrary constraints for these clocks or they can use built in quasi-synchronous
constraints that were developed under the SWPI project.

The guarantees of a component must be true provided that the component’s assumptions have
always been true. The goal of the analysis is to prove that a component’s contract is entailed by
the contracts of its subcomponents.

Formally, let a system S: (A, G, C) consist of a set of assumptions A, guarantees G, and
subcomponents C. We use the notation Sg to represent the conjunction of all guarantees of S and
Sa to represent the conjunction of all assumptions of S. Each subcomponent c ∈ C is itself a system
with assumptions, guarantees, and subcomponents. The goal of AGREE’s analysis is to prove that
the system’s guarantees hold as long as its assumptions have always held. This is accomplished
by proving that Formula 2 is an invariant.

 H(Sa) ⇒ Sg (2)

The predicate H is true if its argument has held historically (i.e., the expression has been true at
every step up until and including now). In order to prove that Formula 2 is invariant, we prove
that if the system level assumptions have held historically, and if all the subcomponent contracts
have held historically, then the system level guarantees hold. This is described by Formula 3.

 H(Sa) ∧ ⋀
𝑐𝑐 ∈ 𝐶𝐶 H(ca) ⇒ cg ⇒ Sg (3)

Proofs of systems with multiple levels of hierarchy take place compositionally. AGREE attempts
to prove Formula 3 for each level of the system. This allows proofs of contracts for components
at the highest levels of the system to rely only on the abstract representation of their direct
subcomponents provided by their contracts. This method of abstraction allows AGREE to scale
to larger systems.

As mentioned earlier, users can specify different clock domains for components in AGREE.
Formula 3 assumes that each component executes synchronously. If each component c ∈ C has a
different clock, AGREE instead attempts to prove Formula 4.

Approved for Public Release; Distribution Unlimited.
8

 H(Sa) ∧ ⋀
𝑐𝑐 ∈ 𝐶𝐶 H(cc ⇒ ca ⇒ cg) ⇒ Sg (4)

Here the variable cc is used to represent the clock variable for component c. The semantics of a
component’s clock variable is such that whenever cc is true the component transitions to its next
state based on its current state and the constraints specified by its guarantees. However, the
components contract is only enforced when its clock ticks.

AGREE uses a syntax similar to Lustre to express a contract’s assumptions and guarantees [14].
AGREE translates an AADL model annotated with AGREE annexes into Lustre corresponding to
Formula 4 and then queries a user selected model checker. AGREE then translates the results from
the model checker back into OSATE so they can be interpreted by the user. For this project we
chose to use the JKind model checker [23].

3.1 RSL Patterns and Semantics Overview

For this effort, we chose to target the natural language patterns proposed in the Cost-efficient
Methods and Processes for Safety-relevant Embedded Systems project because they are
representative of many types of natural language requirements [17]. These patterns are divided
into a number of categories. The categories of interest for this work are the functional patterns
and the timing patterns. Some examples of the functional patterns are:

1. Whenever event occurs event occurs during interval

2. Whenever event occurs condition holds during interval

3. When condition holds during interval event occurs during interval

4. Always condition

Some examples of timing patterns are:

1. Event occurs each period [with jitter jitter]

2. Event occurs sporadic with IAT interarrivaltime [and jitter jitter]

Generally speaking, the timing patterns are used to constrain how often a system is required to
respond to events. For instance, a component that listens to messages on a shared bus might
assume that new messages arrive at most every 50ms. The second timing pattern listed above
would be ideal to express this assumption. In AGREE, this requirement may appear as a system
assumption using the pattern shown in Figure 1.

Figure 1: An instance of a timing pattern to represent how frequently a message arrives on a shared bus.

Approved for Public Release; Distribution Unlimited.
9

The functional patterns can be used to describe how the system’s state changes in response to
external stimuli. Continuing with the previous example, suppose that the bus connected
component performs some computation whenever a new message arrives. The functional patterns
can be used to describe when a thread is scheduled to process this message and how long the thread
takes to complete its computation. The intervals in these patterns have a specified lower and upper
bound, and they may be open or closed. The time specified by the lower and upper bound
corresponds to the time that progresses since the triggering event occurs. Both the lower and upper
bounds must be positive real numbers, and the upper bound must be greater than or equal to the
lower bound. An AGREE user may specify the instances of patterns shown in Figure 2 as
properties she would like to prove about this system. For the purposes of demonstration we assume
that the thread should take 10ms to 20ms to execute.

Figure 2: Two instances of a functional patterns used to describe when a thread begins executing, and how long it

takes to execute.

Figure 3 shows a graphical representation of the first functional pattern listed at the beginning of
this section. The variable tc represents the time that event c occurs. Similarly, the variable te
represents the time that event e occurs. The formal semantics for many of the RSL patterns are
described in [6]. The semantics for the pattern described in Figure 3 are represented by the set of
admissible traces Lpatt described below.

Lpatt = {(σ, τ) | ∀i∃j : σi |= c ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ∧ (σj |= e)}

The remainder of this section discusses how the pattern in Figure 3 can be translated into either a
Lustre property or a constraint on the admissible traces of a transition system described by Lustre.
Although we discuss only this pattern, the techniques that we present can be applied generally to
all except one of the functional and timing RSL patterns4.

Figure 3: A graphical representation for the RSL pattern.

4 The single pattern that cannot be implemented requires an independent event to occur for each of an unbounded
number of causes. There are 12 functional and timing RSL patterns in total.

Approved for Public Release; Distribution Unlimited.
10

3.1.1 Implementing RSL Patterns as Lustre Properties

One can determine if a transition system described in Lustre admits only traces in Lpatt by adding
additional constraints over fresh variables (variables that are not already present in the program)
to the model. This commonly used technique is referred to as adding an observer to the model.
These constraints are over fresh variables: run, timer, recc, and pass; they are shown in Figure 4.
The constraints only restrict the values of the fresh variables, therefore they do not restrict the
traces admissible by the transition relation.

Figure 4: The constraints added to a transition relation to verify if only the traces of Lpatt are admissible. The

transition relation only admits traces of Lpatt if and only if the variable pass is invariant.

The intuition behind these constraints is that one can record how much time progresses since an
occurrence of c. This time is recorded in the timer variable. The value of the timer variable only
increases if the previous value of the run variable is true. The run variable is true if an occurrence
of c is recorded and no occurrence of e happens until after the timer counts to at least l. The
variable recc non-deterministically records an occurrence of c. If the transition system admits a
trace outside of Lpatt, then the recc variable can choose to record only an event that violates the
conditions of Lpatt. In this case the pass variable will become false in some state.

Theorem 1. Let LM represent the admissible traces of a transition system containing the
constraints of Figure 4. The transition system admits only traces in Lpatt if and only if the property
pass is invariant. Formally: (LM ⊆ Lpatt) ⇔ (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass)

Proof: First we show that if pass is invariant for a trace of the transition relation, then that trace is
in Lpatt.

Lemma 1. (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass) ⇒ (LM ⊆ Lpatt).

Proof: Towards contradiction, assume LM ⊈ Lpatt. Let (σ, τ) be a trace in LM but not in Lpatt. Since
(σ, τ) ∉ Lpatt, by definition there exists i such that σi |= c and

 ∀j : (j > i) ∧ τi + l ≤ τj ≤ τi + h ⇒ σj |≠ e. (5)

Without loss of generality, we can assume that this is the only time when c is recorded. That is, σi
|= recc and ∀k : k ≠ i ⇒ σk |≠ recc. From constraint 1 in Figure 4 we have:

∀j : ((j < i) ⇒ σj |≠ run) ∧ ((τi ≤ τj < τi + l) ⇒ σj |= run)

Approved for Public Release; Distribution Unlimited.
11

This can actually be strengthened more. From Formula 5 the event e does not occur between τi +
l and τi + h. So the variable run will become invariant after τi.

∀j : ((j < i) ⇒ σj |≠ run) ∧ (τi ≤ τj) ⇒ σj |= run)

From this and constraint 2 in Figure 4, we have

∀j : (j ≤ i) ⇒ σj |= timer = 0

and

∀j : (τi < τj) ⇒ (σj |= timer = (pre(timer) + (τj – τj−1)))

From this and the invariant ∀i : τi+1 > τi, we have

∀j : (τi < τj) ⇒ (σj |= timer > pre(timer))

Therefore since the value of timer is zero before τi and always increasing after τi, and since we
only consider non-Zeno traces (∀v∃i : v < τi), eventually timer > h and so pass becomes false. This
contradicts the assumption (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass). Therefore LM ⊆ Lpatt.

Next we show if a trace of LM is in Lpatt, then pass is invariant for this trace.

Lemma 2. (LM ⊆ Lpatt) ⇒ (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass)

Proof. Towards contradiction, assume that there exists a trace of LM for which pass is not invariant.
This means that for some state σj |= timer > h. For this to be true, the timer must be running
continuously since it started with some recorded occurrence of c. That is there exists i such that σi
|= timer = 0, σi |= recc, σi |= c, ∀k : i ≤ k < j ⇒ σk |= run, and τj − τi > h. Thus ∀k : i ≤ k ≤ j ⇒ σk |=
timer = τk − τi. By the definition of Lpatt we have a k such that τi + l ≤ τk ≤ τi + h and σk |= e. This
means l ≤ τk − τi ≤ h and so σk |= l ≤ timer ≤ h. Therefore σk |= run. We also have τk ≤ τi + h < τj so
that k < j. Thus from ∀k : i ≤ k < j ⇒ σk |= run we have σk |= run which is a contradiction. Therefore,
pass is invariant.

From Lemmas 1 and 2 we have (LM ⊆ Lpatt) ⇔ (∀σ, τ, i : (σ, τ) ∈ LM ⇒ σi |= pass).

3.1.2 Implementing RSL Patterns as Lustre Constraints

As we demonstrated with Figure 4, one can specify a Lustre property that verifies whether or not
some transition system only admits traces of Lpatt. However, it is surprisingly non-trivial to
actually implement a transition system that admits exactly the traces of Lpatt. Naively, one could
attempt to add the constraints of Figure 4 to a transition system and then assert that pass is
invariant. However, this transition system will admit all traces where every occurrence of c is
never recorded (∀σi : σi |= recc). Clearly some of these traces would not be in Lpatt.

Approved for Public Release; Distribution Unlimited.
12

We conjecture that given the Lustre expression language described in Section 2.2 it is not possible
to model a transition system that admits only and all of the traces of Lpatt. The intuition behind
this claim is that Lustre specifications contain a fixed number of state variables, and variables have
non-recursive types. Thus a Lustre specification only has a finite amount of memory (though it
can, for example, have arbitrary sized integers). If a Lustre specification has n variables we can
always consider a trace in Lpatt where event c occurs more than n times in a tiny interval. In order
for the pattern to hold true, the Lustre specification must constrain itself so that at least one
occurrence of e occurs precisely between tc + l and tc + h after each event c. This requires “more
memory” than the Lustre specification has available.

Rather than model the exact semantics of this pattern, we choose to take a more pragmatic
approach. We model a strengthened version of Figure 3 which does not allow overlapping
instances of the pattern. That is, after an event c there can be no more occurrences of c until the
corresponding occurrence of e. We do this by proving that c cannot occur frequently enough to
cause an overlapping occurrence of the pattern. Then if we constrain the system based on a simple
non-overlapping check of the pattern, the resulting system is the same as if we had constrained it
using the full pattern. This simple non-overlapping check and the property limiting the frequency
of c are both easily expressed in Lustre since they only look back at the most recent occurrence of
c. Moreover, they can both be used freely in positive and negative contexts. Formally, the property
we prove is Lprop and the constraints we make are Lcons:

Lprop = {(σ, τ) | ∀i : σi |= c ⇒ ∀j : (j > i) ∧ (τj ≤ τi + h) ∧ σj |= c ⇒

∃k ∈ (i, j] : τi + l ≤ τk ∧ σk |= e}

Lcons = {(σ, τ) | ∀i : σi |= c ⇒

∃j : (j > i) ∧ [(τi + l ≤ τj ≤ τi + h ∧ σj |= e) ∨ (τj ≤ τi + h ∧ σj |= c)]}

The correctness of Lprop and Lcons are captured by the following theorem.

Theorem 2. Let M be a transition system and LM its corresponding set of admissible traces.
Suppose LM ⊆ Lprop. Then Lcons and Lpatt are equivalent restrictions on LM, that is LM ∩ Lcons = LM
∩ Lpatt.

Proof. We prove the theorem by showing that the subset relationship between LM ∩ Lcons and LM
∩ Lpatt holds in both directions.

Lemma 3. LM ∩ Lpatt ⊆ LM ∩ Lcons

Proof. From the definitions of Lpatt and Lcons it follows directly that Lpatt ⊆ Lcons. Therefore LM ∩
Lpatt ⊆ LM ∩ Lcons.

Lemma 4. Suppose LM ⊆ Lprop, then LM ∩ Lcons ⊆ LM ∩ Lpatt

Approved for Public Release; Distribution Unlimited.
13

Proof. Suppose towards contradiction that LM ∩ Lcons ⊈ LM ∩ Lpatt. Consider a trace (σ, τ) ∈ LM
∩ Lcons with (σ, τ) ∉ LM ∩ Lpatt. Then we have (σ, τ) ∈ Lcons, (σ, τ) ∈ Lprop, and (σ, τ) ∉ Lpatt. From
the definition of Lpatt we have an i such that σi |= c and

 ∀j : (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ⇒ σj |= e. (6)

Then from the definition of Lcons with σi |= c we have a j such that j > i and either (τi + l ≤ τj ≤ τi +
h ∧ σj |= e) or (τj ≤ τi + h ∧ σj |= c). The former option directly contradicts Formula 6, so we must
have τj ≤ τi + h and σj |= c. From the definition of Lprop with σi |= c and our j, we have a k in (i, j]
such that τi + l ≤ τk and σk |= e. From k ≤ j we have τk ≤ τj and thus τi +l ≤ τk ≤ τi +h. Instantiating
Formula 6 with k yields σk |= e, a contradiction. Therefore LM ∩ Lcons ⊆ LM ∩ Lpatt.

From Lemmas 3 and 4 we have LM ∩ Lcons = LM ∩ Lpatt.

Example 1. Suppose we want to model a system of components communicating on a shared bus.
The transition relation for this system must contain constraints that dictate when threads can start
and stop and how frequently new messages may arrive. First we constrain the event new message
from occurring too frequently according to the pattern instance in Figure 1. Let Lnm represent the
set of admissible traces for this pattern. This set is defined explicitly in Formula 1.

Lnm = {(σ, τ) | ∀i : σi |= new_message ⇒ ¬[∃j : (j > i) ∧ (τj < τi + 50) ∧ (σj |= new_message)]}

Suppose we wish to constrain the system to the pattern instances in Figure 2. The first pattern
instance is represented by the set Lstart and the second by Lstop:

Lstart = {(σ, τ) | ∀i : σi |= new_message ⇒ σi |= thread_start}

Lstop = {(σ, τ) | ∀i∃j : σi |= thread_start ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ∧ (σj |= thread_stop)}

Let LM denote the admissible traces of the transition system that is being modeled. The goal is to
specify the transition system in Lustre such that LM = Lnm ∩ Lstart ∩ Lstop. Writing a Lustre
constraint to represent the set of traces Lstart is trivial. The traces that are contained in Lstart are
those whose states all satisfy the expression new_message = thread_stop. However, as we noted
earlier, it is not possible to develop a set of Lustre constraints that admit only (and all of) the traces
of Lstop.

Note that the second pattern in Figure 2 is an instance of the pattern described in Figure 3.
Therefore we can split the set Lstop into two sets, Lstopc and Lstopp:

Lstopc = {(σ, τ) | ∀i : σi |= thread_start ⇒ ∃j : (j > i) ∧

[(τi + l ≤ τj ≤ τi + h ∧ σj |= thread_stop) ∨

(τj ≤ τi + h ∧ σj |= thread_start)]}

Lstopp = {(σ, τ) | ∀i : σi |= thread_start ⇒ ∀j : (j > i) ∧

Approved for Public Release; Distribution Unlimited.
14

(τj ≤ τi + h) ∧ σj |= thread_start ⇒

∃k ∈ (i, j] : τi + l ≤ τk ∧ σk |= thread_stop}

In this example, the sets of admissible traces representing the patterns happen to have the following
relationship:

 Lnm ∩ Lstart ⊆ Lstopp (7)

This is because for every trace in Lnm the event new_message only occurs at most every 50ms.
Likewise, for each state of every trace of Lstart the variable thread_start is true if and only if
new_message is true. Finally, the set Lstopp contains every trace where thread_start occurs at most
every 20ms. From Formula 7 and Theorem 2 we have Lnm ∩ Lstart ∩ Lstopc = Lnm ∩ Lstart ∩ Lstop.
Thus the system Lnm ∩ Lstart ∩ Lstopc, which we can model in Lustre, is equivalent to a system
constrained by the pattern instances in Figures 1 and 2.

Example 1 is meant to demonstrate that, in practical systems, there is usually some constraint on
how frequently events outside the system may occur. Systems described by the functional RSL
patterns generally have some limitations on how many events they can respond to within a finite
amount of time. The Lustre implementations of Lcons and Lprop are simpler than Figure 4, and their
proof of correctness is also simpler then Theorem 1, though we omit both due to space limitations.

3.1.3 RSL Patterns Implemented in AGREE

In this section we list all of the RSL patterns that we have implemented in AGREE along with
their formal semantics, Lustre property observer, and Lustre constraint observer. The English
language description for each pattern is taken nearly verbatim from the CESAR documentation
titled “Definition and exemplification of RSL and RMM” [1].

In each of the following figures we first list the syntax for the pattern that AGREE accepts.
Immediately afterwards we define the set of traces that the pattern accepts. This set is denoted by
the symbol L for each pattern. We then list the Lustre observers that AGREE generates to
implement the pattern. The first observer listed is labelled as the property observer. AGREE
generates this observer when the pattern is used in a positive context. This occurs when a pattern
is used in a system level guarantee that we are proving or a subcomponent assumption that we are
proving. The constraint observer is used when the pattern appears in a negative context. This is
either when a pattern is being used to describe a subcomponent guarantee, a system level
assumption, or a component assertion. The constraint property is created whenever the constraint
observer is used. If the pass variable is invariant then the constraint observer property implements
the semantics of the pattern. The reason for generating the constraint property observers is
described in the previous section. For example, the constraint property described in Figure 5
implements Lprop as described in Example 1 in the previous section.

Approved for Public Release; Distribution Unlimited.
15

3.1.3.1 Time Functions

When AGREE translates each pattern into an observer it introduces extra variables into the Lustre
program. Often the model checker needs to discover lemmas containing these new variables in
order to prove the properties of interest. These lemmas can be very subtle, and the model checker
may never discover them. In order to help the model checker the user may specify lemmas by
hand for the model checker to verify and use to prove other properties. However, if the user is
unable to reference these new variables created by the pattern observers they may be unable to
specify the lemmas necessary to prove the properties of interest.

To enable the users to specify these lemmas we have introduced three new functions into the
AGREE grammar that allow users to reference some of these observer variables in an intuitive
way. These functions along with their descriptions are listed below.

L = {(σ, τ) | ∀i∃j : σi |= c ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ∧ (σj |= e)}

Property observer:

Constraint observer:

Constraint property:

Figure 5: If c occurs then e occurs at least once during the specified interval. If c occurs multiple times in close

succession it is not necessary that there is an individual e that corresponds to each c [1].

● timeof(e) : 𝔹𝔹 → ℝ - This function evaluates to -1.0 if e has never been true in the past.
Otherwise it evaluates to the last time that e was true. When an AGREE contract is
translated to Lustre occurrences of timeof(e) are replaced by the variable te as defined by
the observers in Figures 5, 6, 8, and 9.

Approved for Public Release; Distribution Unlimited.
16

● timerise(e) : 𝔹𝔹 → ℝ - This function evaluates to -1.0 if e has never been true in the past.
Otherwise it evaluates to the last time that e transitioned from false to true. When an
AGREE contract is translated to Lustre occurrences of timerise(e) are replaced by the
variable trisee as defined by the observer in Figure 8.

● timefall(e) : 𝔹𝔹 → ℝ - This function evaluates to -1.0 if e has never been false in the past.
Otherwise it evaluates to the last time that e was transitioned from true to false. When an
AGREE contract is translated to Lustre occurrences of timefall(e) are replaced by the
variable tfalle as defined by the observer in Figure 8.

Through the course of this project we discovered that we often need to specify lemmas that
constrained the distance between the timing of multiple events. For example, if event e1 always
occurs within s seconds of event e2 one might specify the lemma: timeof(e1) − timeof(e2) ≤ s. We
discuss some of the lemmas we needed to prove in the examples in Section 3.2.

L = {(σ, τ) | ∀i, j : σi |= c ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ⇒ (σj |= e)}

Property observer:

Constraint observer:

Constraint property:

Figure 6: If c occurs then e remains true during specified interval [1].

Approved for Public Release; Distribution Unlimited.
17

L = {(σ, τ) | ∀i : σi |= c ⇒ ∀j : τi ≤ τj ≤ τi + t ⇒ σj |= c}

Constraint observer:

Figure 7: The condition c occurs sporadically with inter arrival time t and jitter j. If this pattern is specified without

a value for jitter it is equivalent to using the same pattern with j = 0 [1].

Approved for Public Release; Distribution Unlimited.
18

L = {(σ, τ) | ∃i∀j : τi ≤ τj ≤ τi + h1 − l1 ∧ σj |= c ⇒

∃k : (k > i) ∧ (τi + h1 − l1 + l2 ≤ τk ≤ τi + h1 − l1 + h2) ∧ (σk |= e)}

Property observer:

Constraint observer:

Constraint property:

Figure 8: If the c remains true during the first interval e is true sometime during the second interval [1].

Approved for Public Release; Distribution Unlimited.
19

L = {(σ, τ) | ∀i, j : σi |= c ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + h) ⇒ σj |= e1 ⇒ σj |= e2}

Property observer:

Constraint observer:

Constraint property:

Figure 9: If c occurs then e remains true during specified interval [1].

L = {(σ, τ) | ∃i : 0 ≤ τi ≤ p ∧ ∀a : 1 ≤ a ⇒ ∃m : (a − 1)pτi − j ≤ τm ≤ apτi + j ∧ σm |= c

∧ ∀n : (a − 1)pτi − j ≤ τn ≤ apτi + j ∧ n = m ⇒ σn |= c}

Constraint observer:

Figure 10: The condition c occurs periodically with period p and jitter j. If this pattern is specified without a value

for jitter it is equivalent to using the same pattern with j = 0 [1].

Approved for Public Release; Distribution Unlimited.
20

3.2 Examples

In this section we discuss our experience re-implementing two of the models from the SWPI
project using the real-time patterns that we implemented in AGREE. We make the following
assumptions about these systems to ensure that our models are accurate:

1. The only possible system faults are modeled explicitly. E.g., a component cannot fail unless
there are constraints in the model which represent component failure.

2. The only communication channels in the system are explicit in the model.
3. The system obeys all system level assumptions explicitly stated in the top level contract of

the model.

3.2.1 Wheel Braking System

The Wheel Braking System (WBS) model was derived from an accident report for an Airbus A320
aircraft that occurred on May 21st 1998. The accident occurred because of simultaneous failures
in two of the aircrafts braking system. The architecture of the primary Braking System Control
Unit (BSCU) is shown in Figure 11.

Figure 11: The architecture for the Wheel Braking System.

The BSCU is composed of two channels (CH1 and CH2). Each channel contains one command
(COM) and monitor (MON) component. The MON function checks the correctness of the value
sent by the COM function. When a disagreement is detected (different result between the COM
and MON elements), the MON function raises an error signal. Then, the BSCU switches to the
other channel. If this second channel later encounters a disagreement between COM and MON

Approved for Public Release; Distribution Unlimited.
21

functions, the alternate braking mode is also lost and the only available braking is that provided
by manual operation of the parking mode.

Either BSCU channel can operate three different auto-braking modes:

● LOW minimum pressure is applied when landing approximately 4 seconds after the
ground spoilers are deployed to give a nominal deceleration of 1.7m/s2 or about 0.17g.

● MED medium pressure is applied when landing about 2 seconds after the ground spoilers
are deployed to give a deceleration of approximately 3m/s2.

● MAX high pressure is applied as soon as the ground spoilers are deployed give a higher
deceleration rate consistent with a rejected take-off or similar takeoff or landing situation.

Because the MON and COM components run on separate clocks each channel can produce
spurious errors if the brake commands and/or pedal commands change too frequently.
Specifically, the incoming data (either button presses or pedal pressure) must remain constant for
a certain amount of time to be guaranteed to be seen by both the MON and COM components
(which will guarantee that the MON component does not produce an error).

3.2.1.1 Differences between the CRP model and SWPI model

The goal of the CRP project is to develop more concise patterns to represent timing constraints for
systems. In order to demonstrate that these patterns serve this purpose, we re-implemented the
model developed under the SWPI program to use the newly developed patterns. There are three
main differences between the SWPI version of the BSCU and the CRP version:

1. The error logic is slightly different between the two models. In the SWPI version the MON
component does not produce an error unless it disagrees with the COM component for a
number of clock cycles. In the CRP version it reports an error immediately if it disagrees.
There is not really a technical reason for this difference. It is not clear from the
documentation what the exact behavior of the real system is.

2. The SWPI version uses quasi-synchronous (QS) constraints to model the timing behavior
of the clocks of the MON and COM components. These constraints are not as explicit as
constraining the periods and execution times of the individual components. It is more
difficult to prove timing properties of the system with QS constraints (because timing is in
reference to some base clock). In the CRP version of the model we utilize the real-time
patterns to express the period of the component clocks.

3. The SWPI model is not compositional. The model is a flat hierarchy of four components
with four clocks. In contrast, the CRP model consists of two channels, and each channel
consists of two components. The SWPI model is not organized hierarchically because it is
difficult to analyze QS systems this way. Verifying the system compositionally can greatly
improve the scalability of model checking.

Approved for Public Release; Distribution Unlimited.
22

3.2.1.2 Use of CRP patterns

We make use of real-time patterns in two aspects of the model. First, we use the patterns to
constrain how frequently the MON and COM components execute and for how long they execute.
These constraints appear as assertions in the CHANNEL component implementation. They are
shown in Figure 12:

Figure 12: Patterns used to constrain the execution of the MON and COM components for each channel of the CRP

version of the Wheel Braking System.

We use the constants mon_period, com_period, mon_exec_min, mon_exec_max, com_exec_min,
and com_exec_max defined in the BSCU package AGREE annex to set the various parameters for
the system. The periods, as indicated in the accident report, are set to 20ms. We do not have
values for the minimum and maximum execution times for the components so we made-up values
that we believe are plausible (5ms for the minimum and 7ms for the maximum).

We also used the patterns as system level assumptions to constrain how frequently the buttons are
allowed to be pressed and how frequently the pedal value is allowed to change. These assumptions
are shown in Figure 13. The constants button_push_min and pedal_push_min were chosen to
satisfy the system level properties. These values were derived analytically based on the periods of
the COM and MON components. If these values were to be increased, the system level properties
would still be satisfied.

Approved for Public Release; Distribution Unlimited.
23

Figure 13: Patterns used to constrain the button pushes of the CRP version of the Wheel Braking System.

In contrast, the button press frequency assumptions for the SWPI version of the model are shown
in Figure 14. In these assumptions the integers 13 and 20 refer to the number of time steps that
occur in reference to the base clock. It is unclear how this number corresponds to the actual timing
information of the system (how long are 13 and 20 time steps in real time?). This timing
information is made explicit in the assumptions for the CRP version of the model.

Approved for Public Release; Distribution Unlimited.
24

Figure 14: Constraints used to constrain the button pushes for the SWPI version of the Wheel Braking System.

3.2.1.3 Properties of the CRP model

As mentioned earlier, the CRP version of the WBS model proves its properties compositionally.
There is an AGREE contract for the BSCU, an AGREE contract for each CHANNEL, an AGREE
contract for the MON component and an AGREE contract for the COM component. The contracts
of the MON and COM components prove the contract of the CHANNEL components. Likewise,
the contracts of the CHANNEL components prove the contracts of the BSCU component.

We prove that neither CHANNEL produces an error if there are no changes on the interfaces (the
pedal or the buttons) for more than 87ms. This is also assuming that neither of the MON or COM
components has failed. This property is expressed by the guarantees shown in Figure 15.

The variable t_last_status_change records the time of the last change from a button or the pedal.
The first guarantee says if over 87ms have passed since this last change (and if neither the MON
nor COM has ever failed) then the channel will not produce a failure. The other two guarantees
are used to assert that this event actually triggers with a certain frequency. This is important for
proving properties in the parent BSCU component.

The property that we prove for the BSCU is similar to this. We prove that if at most one MON or
COM component has failed then at least one channel is error free if the status has not changed for
at least 87ms. We also prove that if there has been at most one single failure and if the alternate
braking system is engaged then the alternative braking system has only been engaged for a finite
amount of time. This indicates that as long as the system has no more than one failure then errors
produced by the channel will only be transient. These formalized properties are shown Figure 16.

Approved for Public Release; Distribution Unlimited.
25

Figure 15: Properties for each channel of the Wheel Braking System.

Figure 16: The top level properties for the Wheel Braking System.

The analogous requirement for the SWPI version of the model is shown Figure 17.

Approved for Public Release; Distribution Unlimited.
26

Figure 17: The SWPI version of the properties from Figure 16.

Once again this requirement is in reference to the time of the base clock of the quasi-synchronous
system. It is not clear how the integer 7 corresponds to the real-time constraint of the system. This
is made explicit in the properties for the CRP version of the model.

3.2.2 Pilot Flying

A Flight Guidance System (FGS) is a component of the overall Flight Control System (FCS) that
compares the measured state of an aircraft (position, speed, and attitude) to the desired state and
generates pitch and roll guidance commands to minimize the difference between the measured and
desired state. In many aircraft, the Flight Guidance function at the system level is implemented as
two physical sides, or channels, one on the left and one on the right side of the aircraft. These
redundant implementations communicate with each other over a cross-channel bus as shown in
Figure 18.

Figure 18: The architecture of a Flight Guidance System.

3.2.2.1 Differences between the SWPI model and CRP model

In the final report for the SWIPI project, we discussed different implementations of this system
assuming synchronous, asynchronous, and quasi-synchronous architectures. The report discusses
results for implementing the quasi-synchronous version. In the CRP project we re-implemented

Approved for Public Release; Distribution Unlimited.
27

the quasi-synchronous version of the model using real-time patterns. In this version of the
architecture each side and each bus runs on its own independent clock. We assume that the buses
run at a rate that is faster than the clock of each individual side. However, neither the clocks of
the side components nor the bus components are synchronized.

We also simplified the AADL architecture. The SWIPI version of the model contained three
components within each side. One component computes the state of the side (either Flying,
Inhibited, or Listening). This component is referred to as the “Pilot Flying Side Logic”. The
remaining two components send a signal to this logic component when the transfer switch state
transitions from low to high and when the bus sends a signal indicating that the other side
component has transferred from a non-flying state to a flying state.

Rather than explicitly modeling these components that send signals to the logic component when
some other external signal transitions from false to true we opted to consolidate the behavior of
these three components into a single AGREE contract for the side component. From a verification
standpoint this makes the model easier to analyze. We do not believe that this decreases the fidelity
between the AADL model and how the model would be physically implemented.

Figure 19 shows the top level contract for the quasi-synchronous version of the model from the
SWPI project and Figure 20 shows the top level contract for the CRP version of the model. There
are three clear difference between the top level specifications in for each version of the model:

Approved for Public Release; Distribution Unlimited.
28

Figure 19: The top level requirements for the SWPI version of the Pilot Flying model.

Approved for Public Release; Distribution Unlimited.
29

Figure 20: The top level requirements for the CRP version of the Pilot Flying model.

1. The SWPI version of the model references integer bounds referring to the number of clock
steps in the model. In contrast the CRP version of the model contains bounds in reference
to real-time. This makes the specifications in the CRP version of the model easier to
understand.

2. The specifications in the CRP version of the model do not distinguish whether or not the
system is “initializing”. During the SWIPI project we did not have a way to constrain the
initial output values of components before their clocks have ticked. We have since added
new constructs to the language so we no longer need to tick each component’s clock to
initialize their outputs.

3. The CRP version of the model has weaker assumptions about how frequently the transfer
switch is pressed. In the CRP version of the model the button must be held down (set to

Approved for Public Release; Distribution Unlimited.
30

true) for at least 100ms, but there are no constraints on how long the button needs to be
depressed.

The relationships between the clocks are represented very concisely using assertions and patterns
in the top level AADL implementation of the model. These constraints are shown in Figure 21.

Figure 21: The assertions constraining the behavior of the clocks in the CRP version of the Pilot Flying Model.

Similar to the CRP version of the WBS model we picked somewhat arbitrary parameters for the
periods of the side components and bus components. However, we made sure that the bus
component would execute at least twice since each side component. We chose the side periods to
be 20ms, the bus periods to be 10ms, the maximum side execution time to be 5ms, and the
maximum bus execution time to be 2ms. Based on these timing values we inferred that the transfer
switch would likely need to be held down for at least 100ms before both sides could reach
agreement on who was the pilot flying side.

Approved for Public Release; Distribution Unlimited.
31

4. Results and Discussion

4.1 Wheel Braking System

The analysis time of the properties for the CRP version of the Wheel Braking System has improved
significantly. Using a laptop computer with an Intel CoreTM i7 running at 2.7 GHz it takes
roughly 8 minutes to prove the top level guarantees of the quasi-synchronous version of the model.
In contrast, on the same machine it takes less than 2 minutes to prove the top level requirements
of the CRP version of the model and less than two minutes to prove the requirements of one of the
channel components. The quasi-synchronous version of the model takes longer to analyze because
of the exponential increase in the possible number of interleaving’s between different component
clocks. In the quasi-synchronous version of the model each component’s clock can tick at most
twice since any other component in the system. Loosening this constraint dramatically increases
the runtime of the model.

The CRP version of the model does not suffer the same performance consequences. However, a
significant amount of effort was taken in order to figure out the correct lemmas needed in the
model to prove the top level requirements. This task was not only time consuming, it was
intellectually challenging to complete. We discovered these lemmas by inspecting the
counterexamples of the inductive check from the model checker to determine what additional facts
the system needed to learn in order to eliminate the counterexamples. The constraints for the
lemma that was most challenging to discover is shown in Figures 22 and 23. These constraints are
used to define a “trigger time” which determines the time range in which the alternate braking
system would have engaged in response to a particular input (either a button press or change in
pedal pressure). It took significant insight into the behavior of the system in order to determine
these constraints.

Approved for Public Release; Distribution Unlimited.
32

Figure 22: The “triggering” constraints needed to prove the top level properties of the CRP version of the WBS

model.

Approved for Public Release; Distribution Unlimited.
33

Figure 23: The “triggering” lemma needed to prove the top level properties of the CRP version of the WBS model.

4.2 Pilot Flying

While we were able to report a faster analysis time for the CRP version of the WBS model, the
analysis time for the pilot flying model is much slower. This is due to two reasons:

1. The architecture that we chose for the model is not compositional. We could possibly
improve this by placing each side and bus pair into another component. However we would
need to develop a contract for this new component.

2. We have not yet discovered the lemmas that we need to prove all of the properties of the
model.

Using a laptop computer with an Intel CoreTMi7 running at 2.7 GHz it takes roughly 6 minutes to
prove all of the properties of the SWPI version of the model. However, on the same machine we
are only able to prove Requirements 1 and 4 of the CRP version of the model. Requirement 4
proves in less than a minute, but Requirement 1 takes over an hour. At this time we are unable to
produce proofs for the remaining requirements for the model. With more time spent on discovering
lemmas we could likely achieve similar runtimes for this model as we did with the CRP version
of the WBS model.

Approved for Public Release; Distribution Unlimited.
34

5. Conclusions

The main goal of this project was to investigate the use of patterns to specify formal requirements
for timed systems. We found that many of the specifications that we developed for the examples
from the SWPI project where unintuitive or hard to understand. We argue that these unintuitive
specifications are a bi-product of modeling systems quasi-synchronously. This is because the
notion of time for these systems is very abstract; we do not model how quickly events occur in
terms of real-time. Timing of events is constrained in reference to how often one clock in the
system ticks with respect to another. Therefore we cannot specify that a button must be held for a
specific number of seconds. Instead how long a button must be pressed needs to be in reference
to some base rate. This can vastly over-approximate the necessary bounds needed for the property
to hold in a real system.

For example, consider a system of 10 components running on separate clock domains that all
receive the same input. Assume that each clock runs at 10ms and has 1ms of jitter with no drift.
If one were to model this system using quasi-synchronous constraints they would assume each
clock ticks no more than once since any other clock ticks. In order for all components to receive
the same input the value must remain constant for at least 10 ticks. If one were to translate this
constraint from quasi-synchronous ticks into real-time they would conclude that inputs must
remain constant for at-least 10*11ms = 110ms. However, without making the quasi-synchronous
abstraction it should be clear that all components should see the same input as long as it is held for
at least 11ms (the period of each clock plus the jitter).

In order to make the specification language easier to understand it was clear that properties should
be specified in terms of real-time constraints. This example also demonstrates the loss of fidelity
that one gets when making quasi-synchronous abstractions. This concern led us to implement the
real-time patterns from the CESAR project [17] into the AGREE tool. However, through the
course of the project we have discovered that increased modeling fidelity and clarity of
specifications has come with the tradeoff of more difficult proofs. Much of the time spent
developing the examples for this project was used on discovering the correct lemmas needed to
prove the properties of interest. Once the lemmas were discovered verification became more
tractable on the CRP versions of the models than the SWPI versions.

For future work we plan to improve and automate the task of real-time lemma discovery. This
could dramatically decrease the amount of time needed to prove specifications. This would also
make AGREE easier to use for users who do not have formal methods experience.

Approved for Public Release; Distribution Unlimited.
35

References

1. CESAR: Definition and exemplification of RSL and RMM. Technical report, Cost-
efficient methods and processes for safety relevant embedded systems (2010)

http://www.cesarproject.eu/fileadmin/user upload/CESAR D SP2 R2.1 M1 v1.000.pdf.

2. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-
state verification. In: ICSE, IEEE (1999) 411–420

3. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the 27th
international conference on Software engineering, ACM (2005) 372–381

4. Gruhn, V., Laue, R.: Patterns for timed property specifications. Electronic Notes in
Theoretical Computer Science 153 (2006) 117–133

5. Bellini, P., Nesi, P., Rogai, D.: Expressing and organizing real-time specification patterns
via temporal logics. Journal of Systems and Software 82 (2009) 183–196

6. Reinkemeier, P., Stierand, I., Rehkop, P., Henkler, S.: A pattern-based requirement
specification language: Mapping automotive specific timing requirements. In: Fachtagung des GI-
Fachbereichs Softwaretechnik. (2011) 99–108

7. Etzien, C., Gezgin, T., Froschle, S., Henkler, S., Rettberg, A.: Contracts for evolving
systems. In: ISORC. (2013) 1–8

8. Alur, R.: Techniques for automatic verification of real-time systems. PhD thesis, Stanford
University (1991)

9. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time
systems 2 (1990) 255–299

10. Moser, L.E., Ramakrishna, Y., Kutty, G., Melliar-Smith, P.M., Dillon, L.K.: A graphical
environment for the design of concurrent real-time systems. ACM Trans- actions on Software
Engineering and Methodology (TOSEM) 6 (1997) 31–79

11. Abid, N., Dal Zilio, S., Le Botlan, D.: Real-time specification patterns and tools. In: Formal
Methods for Industrial Critical Systems. Springer (2012) 1–15

12. Cofer, D.D., Gacek, A., Miller, S.P., Whalen, M.W., LaValley, B., Sha, L.: Com- positional
verification of architectural models. In Goodloe, A.E., Person, S., eds.: NFM. Volume 7226,
Berlin, Heidelberg, Springer-Verlag (2012) 126–140

13. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to the
SAE Architecture Analysis & Design Language. 1st edn. Addison-Wesley Professional (2012)

14. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language LUSTRE. In: Proceedings of the IEEE. (1991) 1305–1320

15. Backes, J.D., Cofer, D., Miller, S., Whalen, M.: Requirements analysis of a quad-
redundant flight control system. In: NFM. (2015) 82–96

Approved for Public Release; Distribution Unlimited.
36

16. Murugesan, A., Heimdahl, M.P., Whalen, M.W., Rayadurgam, S., Komp, J., Duan, L.,
Kim, B.G., Sokolsky, O., Lee, I.: From requirements to code: Model based development of a
medical cyber physical system. SEHC (2014)

17. CESAR: The CESAR project. http://www.cesarproject.eu/ (2010)

18. Dutertre, B., Sorea, M.: Timed systems in SAL. Technical report, SRI International (2004)

19. Pike, L.: Real-time system verification by k-induction. Technical report, NASA (2005)

20. Gao, J., Whalen, M., Van Wyk, E.: Extending lustre with timeout automata. In: SLA++P.
(2007)

21. Gacek, A., Backes, J., Whalen, M.W., Cofer, D.: AGREE Users Guide5 (2014)

22. G´omez, R., Bowman, H.: Efficient Detection of Zeno Runs in Timed Automata. In:
FORMATS. Springer Berlin Heidelberg (2007) 195–210

23. JKind: A Java implementation of the KIND model checker6. (2013)

24. Gafni, V., Benveniste, A., Caillaud, B., Graf, S., Josko, B.: Contract specification language
(CSL). Technical report, SPEEDS Deliverable D.2.5.4 (2008)

25. Pike, L.: Modeling time-triggered protocols and verifying their real-time schedules. In:
Formal Methods in Computer-Aided Design. (2007) 231–238

26. Sorea, M., Dutertre, B., Steiner, W.: Modeling and verification of time-triggered
communication protocols. In: Object Oriented Real-Time Distributed Computing (ISORC), 2008
11th IEEE International Symposium on, IEEE (2008) 422–428

27. Li, W., Grard, L., Shankar, N.: Design and verification of multi-rate distributed systems.
In: Formal Methods and Models for Codesign (MEMOCODE), 2015 ACM/IEEE International
Conference on. (2015) 20–29

5 Available at: http://github.com/smaccm/smaccm
6 Available at: http://github.com/agacek/jkind

Approved for Public Release; Distribution Unlimited.
37

List of Symbols, Abbreviations and Acronyms

AADL Architectural Analysis and Design Language

AGREE Assume Guarantee Reasoning Environment

BSCU Braking System Control Unit

CESAR Cost-efficient Methods and Processes for Safety-relevant Embedded Systems

COM Command

CRP Contract Requirements Patterns

CSL Contract Specification Language

FCS Flight Control System

FGS Flight Guidance System

LTL Linear Temporal Logic

MON Monitor

MTL Metric Temporal Logic

OSATE Open Source AADL Tool Environment

QS Quasi-synchronous

RMM Requirement Meta-Model

RSL Requirements Specification Language

RTGIL Real-Time Graphical Interval Logic

SMT Satisfiability Modulo Theories

SWPI Software Productivity Initiative

TCTL Timed Computational Tree Logic

TTS Timed Transition System

TILCOX Extended Temporal Interval Logic

WBS Wheel Braking System

	Table of Contents
	Table of Figures
	1. Summary
	2. Introduction
	2.1 Related Work
	2.2 Definitions

	3. Methods, Assumptions, and Procedures
	3.1 RSL Patterns and Semantics Overview
	3.1.1 Implementing RSL Patterns as Lustre Properties
	3.1.2 Implementing RSL Patterns as Lustre Constraints
	3.1.3 RSL Patterns Implemented in AGREE
	3.1.3.1 Time Functions

	3.2 Examples
	3.2.1 Wheel Braking System
	3.2.1.1 Differences between the CRP model and SWPI model
	3.2.1.2 Use of CRP patterns
	3.2.1.3 Properties of the CRP model
	3.2.2 Pilot Flying
	3.2.2.1 Differences between the SWPI model and CRP model

	4. Results and Discussion
	4.1 Wheel Braking System
	4.2 Pilot Flying

	5. Conclusions
	References
	List of Symbols, Abbreviations and Acronyms

