
AFRL-AFOSR-VA-TR-2017-0081

QUANTUM NETWORKS WITH SINGLE ATOMS, PHOTONS AND PHONONS

H Kimble
CALIFORNIA INSTITUTE OF TECHNOLOGY

Final Report
10/04/2016

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTA1
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
  data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or 
  any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188). 
  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information 
  if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)
     12-04-2017

2. REPORT TYPE
Final Performance

3. DATES COVERED (From - To)
01 May 2010 to 30 Jun 2016

4. TITLE AND SUBTITLE
QUANTUM NETWORKS WITH SINGLE ATOMS, PHOTONS AND PHONONS

5a.  CONTRACT NUMBER

5b.  GRANT NUMBER
FA9550-10-1-0197

5c.  PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)
H Kimble 

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
CALIFORNIA INSTITUTE OF TECHNOLOGY
1200 E. CALIFORNIA BLDV
PASADENA, CA 91125 US

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AF Office of Scientific Research
875 N. Randolph St. Room 3112
Arlington, VA 22203

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/AFOSR RTA1

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

AFRL-AFOSR-VA-TR-2017-0081 
12. DISTRIBUTION/AVAILABILITY STATEMENT
A DISTRIBUTION UNLIMITED: PB Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The NSSEFF research program has been directed to create new paradigms for the strong interaction of
light and matter. In general terms, the research has laid foundations for building complex quantum systems
from 'simple' components of single atoms and photons. Theoretical investigations have predicted surprising
quantum phenomena that have not heretofore existed in Nature. More specifically, the research
investigated new quantum phases of matter with photon-mediated atom-atom interactions in one and twodimensional
nano-photonic lattices (e.g., self-organization of free-space atoms into crystals bound by light).
In a complimentary fashion, exotic quantum phases for photons become possible by way of strong photonphoton
interactions created by an underlying lattice of atoms (e.g., two propagating photons bonded to
become a 'molecule').
In terms of methodology, the NSSEFF research required an interdisciplinary 'toolkit' from atomic physics,
quantum optics, and nano-photonics for the control, manipulation, and interaction of atoms and photons
with a complexity and scalability well beyond the prior state-of-the-art. The NSSEFF research achieved
important goals toward such integration across disciplines and utilized these tools to investigate novel
phenomena in the physics of light-matter interactions.
More specifically, with NSSEFF support, a technical infrastructure was created for 1) the advancement of
the frontier for the design, fabrication, and characterization of new generations of 1D and 2D photonic
crystals in low-loss dielectrics, and 2) the integration of these devices into the realm of ultra-cold atomic
physics to produce nano-scopic lattices of trapped atoms that are strongly coupled to single photons within
the photonic crystals.
For operation in the dispersive regime of a one-dimensional photonic crystal waveguide (PCW),
observations of cooperative atomic emis Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39.18

Page 1 of 2FORM SF 298

4/12/2017https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

DISTRIBUTION A: Distribution approved for public release.



a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

15. SUBJECT TERMS
PHOTONS, ATOMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

19a.  NAME OF RESPONSIBLE PERSON
LAWAL, RAHEEM

19b.  TELEPHONE NUMBER (Include area code)
703-696-7313

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Page 2 of 2FORM SF 298

4/12/2017https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

DISTRIBUTION A: Distribution approved for public release.



QUANTUM NETWORKS WITH SINGLE ATOMS, PHOTONS AND PHONONS

National Security Science and Engineering Fellowship (NSSEFF) H. J. Kimble 

NSSEFF Publications 

1 May 2010 to 30 June 2016 

[1.] A. Asenjo-Garcia, J. D. Hood, D. E. Chang, and H. J. Kimble, "Atom-Light Interactions in 
Quasi-1D Nanostructures: A Green’s Function Perspective," New J. Phys. (in review, June 
2016); available at http://arxiv.org/abs/1606.04977. 

[2.] C.-L. Hung, A. González-Tudela, J. I. Cirac, and H. J. Kimble, "Quantum Spin Dynamics 
with Pairwise-Tunable, Long-Range Interactions," PNAS 2016 113 (34) E4946-E4955; published 
ahead of print August 5, 2016; available at doi:10.1073/pnas.1603777113. 

[3.] J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. J. Kimble, 
"Atom-atom interactions around the band edge of a photonic crystal waveguide," PNAS 2016 
113 (38); published ahead of print August 31, 2016; available at doi:10.1073/pnas.1603788113. 

DISTRIBUTION A: Distribution approved for public release.



Atom-light interactions in quasi-1D nanostructures:
a Green’s function perspective

A. Asenjo-Garcia1,2‡, J. D. Hood1,2‡, D. E. Chang3, and H. J.
Kimble1,2

1 Norman Bridge Laboratory of Physics MC12-33
2 Institute for Quantum Information and Matter, California Institute of Technology,
Pasadena, CA 91125, USA
3 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and
Technology, 08860 Castelldefels (Barcelona), Spain

E-mail: ana.asenjo@caltech.edu

17 June 2016

Abstract. Based on a formalism that describes atom-light interactions in terms
of the classical electromagnetic Green’s function, we study the optical response of
atoms and other quantum emitters coupled to one-dimensional photonic structures,
such as cavities, waveguides, and photonic crystals. We demonstrate a clear mapping
between the transmission spectra and the local Green’s function that allows to identify
signatures of dispersive and dissipative interactions between atoms, gaining insight
into recent experiments.

PACS numbers: 42.50.Ct, 42.50.Nn

Keywords: Quantum optics, nanophotonics, waveguide QED.

1. Introduction

As already noticed by Purcell in the first half of the past century, the decay rate of an
atom can be either diminished or enhanced by tailoring its dielectric environment [1–3].
Likewise, by placing more than one atom in the vicinity of photonic nanostructures, one
can curtail or accelerate their collective decay. In addition to modifying the radiative
decay, nanophotonic structures can be employed to spatially and spectrally engineer
atom-light interactions, thus obtaining fundamentally different atom dynamics to those
observed in free-space [4].

In the past decade, atoms and other quantum emitters have been interfaced with the
electromagnetic fields of a plethora of quasi-1D nanostructured reservoirs, ranging from
high-quality optical [5–10] and microwave [11,12] cavities to dielectric [13–18], metallic

‡ These authors contributed equally to this research.
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Atom-light interactions in quasi-1D nanostructures: a Green’s function perspective 2

[19–22], and superconducting [23,24] waveguides. Photonic crystal waveguides, periodic
dielectric structures that display a bandgap where light propagation is forbidden [25,26],
have been proposed as promising candidates to study long- and tunable-range coherent
interactions between quantum emitters [27–30]. Due to the different character of the
guided modes at various frequencies within the band structure of the photonic crystal,
the interaction of the quantum emitters with the nanostructure can be remarkably
distinct depending on the emitter resonance frequency. Far away from the bandgap,
where light propagates, the guided modes resemble those of a conventional waveguide.
Close to the bandgap, but still in the propagating region, the fields are similar to those
of a quasi-1D cavity, whereas inside the bandgap the fields become evanescent, decaying
exponentially.

All these regimes have been recently explored in the lab, where atoms [31–33] and
quantum dots [4, 34, 35] have been interfaced with photonic crystal waveguides. Most
of these experiments have been performed in conditions where the resonance frequency
of the emitter lies outside the bandgap. However, very recently, the first experiments
of atoms [36] and superconducting qubits [37] interacting with evanescent modes in the
bandgap of photonic crystal waveguides have been reported.

Within this context, it has become a necessity to understand the rich spectral
signatures of atom-like emitters interacting through the guided modes of quasi one-
dimensional nanophotonic structures within a unified framework that extends beyond
those of cavity [38] or waveguide QED [39]. In this work, we employ a formalism based
on the classical electromagnetic Green’s function [40–44] to characterize the response
of atoms that interact by emitting and absorbing photons through the guided mode of
the nanostructure. Since the fields in the vicinity of the structure might have complex
spatial and polarization patterns, the full Green’s function is only known analytically for
a handful of systems (such as planar multilayer stacks [45], infinite nanofibers [46, 47],
and a few more [42]) and beyond that one has to resort to numerical solvers of Maxwell’s
equations. However, in quasi-1D nanostructures, one can isolate the most relevant
guided mode and build a simple prescription for the 1D Green’s function that accounts
for the behavior of this mode, greatly simplifying the problem.

In the first part of the article, we summarize the procedure to obtain an effective
atom-atom Hamiltonian, in which the guided-mode fields are effectively eliminated and
the atom interactions are written in terms of Green’s functions [40–42]. We then apply
this formalism to a collection of atoms in different quasi one-dimensional dielectric
environments, and analyze the atomic transmission and reflection spectra in terms
of the eigenvalues of the matrix consisting of the Green’s functions between every
pair of atoms. We show that, in the linear (low-saturation) regime, asymmetry in
the transmission spectra and frequency shifts are signatures of coherent atom-light
interactions, whereas symmetric lineshapes reveal dissipation. Finally, based on the
rapid technical advances in fabrication of both photonic and microwave structures, we
project observable signatures that can be made in the next generation of experiments
of atoms and superconducting qubits interacting in the bandgap of photonic crystal

DISTRIBUTION A: Distribution approved for public release.



Atom-light interactions in quasi-1D nanostructures: a Green’s function perspective 3

waveguides.

2. Atom-light interactions in terms of Green’s functions

Much effort has gone into developing a quantum formalism to describe atoms coupled to
radiation. A conventional technique is to express the field in terms of a set of eigenmodes
of the system, with corresponding creation and annihilation operators a† and a [39]. This
canonical quantization technique is well suited for approximately closed systems such
as high-Q cavities and homogeneous structures such as waveguides, both of which have
simple eigenmode decompositions. However, the application of this quantization scheme
to more involved nanostructures is not straight forward. Further, the formalism is not
suited for dispersive and absorbing media as the commutation relations for the field
operators are not conserved [48].

Instead, here we describe atom-light interactions using a quantization scheme based
on the classical electromagnetic Green’s function, valid for any medium characterized by
a linear and isotropic dielectric function ε(r, ω), closely following the work of Welsch and
colleagues [40–42, 44]. In the following, we employ this formalism to derive an atom-
atom Hamiltonian in which the field is effectively eliminated, yielding an expression
that only depends on atomic operators. Moreover, once the dynamics of the atoms is
solved, the electric field at every point along the quasi one-dimensional structure can be
recovered through an expression that relates the field to the atomic operators.

Classically, the field E(r, ω) at a point r due to a source current j(r′, ω) at r′ is
obtained by means of the propagator of the electromagnetic field, the dyadic Green’s
function (or Green’s tensor), as E(r, ω) = iµ0ω

∫
dr′G(r, r′, ω) · j(r′, ω). In particular,

for a dipole source p located at r0, the current is j(r, ω) = −iωp δ(r− r0), and the field
reads E(r, ω) = µ0ω

2 G(r, r0, ω) · p. The tensorial structure of the Green’s function
accounts for the vectorial nature of the electromagnetic field, as a dipole directed along
the x̂-direction can create a field polarized not only along x̂, but also along ŷ and ẑ §.

The Green’s function G(r, r′, ω) is the fundamental solution of the electromagnetic
wave equation, and obeys [49]:

∇×∇×G(r, r′, ω)− ω2

c2 ε(r, ω) G(r, r′, ω) = δ(r− r′)1, (1)

where ε(r, ω) is the medium relative permittivity. For a scalar permittivity, Lorentz
reciprocity holds and, then, GT(r, r′, ω) = G(r′, r, ω), where T stands for transpose
(and operates on the polarization indexes). In analogy to its classical counterpart,
the electric field operator can be written in terms of bosonic annihilation (creation)
operators f̂ (̂f†) as [40]

Ê(r, ω) = iµ0 ω
2

√
~ε0
π

∫
dr′

√
Im{ε(r′, ω)}G(r, r′ω) · f̂(r′, ω) + h.c. (2)

= Ê+(r, ω) + Ê−(r, ω),

§ Throughout this manuscript, the Green’s tensor will be also denoted as Green’s function.
DISTRIBUTION A: Distribution approved for public release.



Atom-light interactions in quasi-1D nanostructures: a Green’s function perspective 4

where Ê+(−)(r, ω) is the positive (negative) frequency component of the field operator,
and h.c. stands for Hermitian conjugate. Within this quantization framework,
f̂(r, ω) is associated with the degrees of freedom of local material polarization noise,
which accompanies the material dissipation Im{ε(r, ω)} as required by the fluctuation-
dissipation theorem [44]. This expression guarantees the fulfillment of the canonical
field commutation relations, even in the presence of material loss. The appearance of
the Green’s function reveals that the quantumness of the system is encoded in either the
correlations of the noise operators f̂ or in any other quantum sources (such as atoms),
but the field propagation obeys the wave equation and as such the spatial profile of the
photons is determined by the classical propagator.

We now want to investigate the evolution of N identical two-level atoms of
resonance frequency ωA that interact through a guided mode probe field of frequency ωp.
Within the Born-Markov approximation, we trace out the photonic degrees of freedom,
obtaining an effective atom-atom Hamiltonian [41, 50, 51]. This approximation is valid
when the atomic correlations decay much slower than the photon bath correlations,
or, in other words, when the Green’s function is characterized by a broad spectrum,
which can be considered to be flat over the atomic linewidth. Then, the atomic density
matrix ρ̂A evolves according to ˙̂ρA = −(i/~) [H, ρ̂A] + L[ρ̂A] [38]. Within the rotating
wave approximation, and in the frame rotating with the probe field frequency, the
Hamiltonian and Lindblad operators read

H= −~∆A

N∑
i=1

σ̂iee − ~
N∑

i,j=1
J ijσ̂iegσ̂

j
ge −

N∑
i=1

(
d · Ê−p (ri) σ̂ige + d∗ · Ê+

p (ri) σ̂ieg
)
, (3a)

L[ρ̂A] =
N∑

i,j=1

Γij
2
(
2σ̂igeρ̂Aσ̂

j
eg − σ̂iegσ̂jgeρ̂A − ρ̂Aσ̂

i
egσ̂

j
ge

)
, (3b)

where Êp is the guided mode probe field, and ∆A = ωp − ωA is the detuning between
the guided mode probe field and the atom. The dipole moment operator is expressed
in terms of the dipole matrix elements as p̂j = d∗ σ̂jeg + d σ̂jge, where σ̂jeg = |e〉 〈g| is
the atomic coherence operator between the ground and excited states of atom j, and
d = 〈g|d̂|e〉 is the dipole matrix element associated with that transition. The spin-
exchange and decay rates are

J ij = (µ0ω
2
p/~)d∗ · ReG(ri, rj, ωp) · d, (4a)

Γij = (2µ0 ω
2
p/~)d∗ · ImG(ri, rj, ωp) · d. (4b)

Note that the dispersive and dissipative atom-atom couplings are given in terms of
the total Green’s function of the medium. For a quasi-1D nanostructure, the Green’s
function can be expressed as G(ri, rj, ωp) = G1D(ri, rj, ωp) + G′(ri, rj, ωp), where the
first term corresponds to the guided mode that propagates along the structure mediating
atom-atom interactions, and the second term accounts for all other field modes (e.g.,
emission into free space).

DISTRIBUTION A: Distribution approved for public release.



Atom-light interactions in quasi-1D nanostructures: a Green’s function perspective 5

Due to the fast spatial decay of the non-guided Green’s function, the interaction
mediated by G′(ri, rj, ωp) is not collective in the low-density limit (i.e. when the
atoms are far away from each other). We can then write J ij = J ij1D + J ′δij and
Γij = Γij1D + Γ′δij, where δij is the Kronecker delta. In particular, in free-space, Γ′
is simply Γ0 = (2µ0 ω

2
p/~)d∗ · ImG0(ri, ri, ωp) · d = ω3

p|d|2/3π~ε0c3, where G0 is the
vacuum’s Green’s function [i.e. the solution to Eq. (1) when ε(r, ω) = 1]. Depending on
the geometry and dielectric response of the nanostructure, and on the atom position, Γ′
can be larger or smaller than Γ0. J ′ accounts for frequency shifts due to other guided
and non-guided modes, and is in general spatially dependent. In fact, the value of J ′ is
dependent upon particular details of atom trapping and geometry of the nanostructure.
We will for simplicity consider J ′ identical for every atom and assume that this constant
value has been incorporated into the definition of ωA.

Once the dynamics of the atomic coherences are solved for, one can reconstruct the
field at any point in space. Generalizing Eq. (6.16) of Ref. [41] for more than a single
atom, the evolution of the bosonic field operator is given by

˙̂f (r, ω) = −iω f̂(r, ω) + ω2

c2

√
1

π~ε0
Im{ε(r, ω)}

N∑
j=1

G∗(r, rj, ω) · d σ̂jge, (5)

where the atoms act as sources for the bosonic fields. We can formally integrate this
expression and plug it into the equation for the field [Eq. (2)]. After some algebra,
and performing Markov’s approximation, we arrive at the final expression for the field
operator, which is simply

Ê+(r) = Ê+
p (r) + µ0ω

2
p

N∑
j=1

G(r, rj, ωp) · d σ̂jge. (6)

This expression can be understood as a generalized input-output equation, where the
total guided mode field is the sum of the probe, i.e. free, field Ê+

p (r) and the field re-
scattered by the atoms. The quantum nature of these equations has been treated before
when deriving a generalized input-output formalism for unstructured waveguides [52,53].

3. Transmission and reflection in quasi-1D systems

3.1. Atomic coherences in the low saturation regime

We now explore the behavior of the atoms under a coherent, continuous-wave probe field.
In the single-excitation manifold and low saturation (linear) regime (〈σ̂ee〉 = 0), the
atoms behave as classical dipoles. Then, the Heisenberg equations for the expectation
value of the atomic coherences (〈σ̂eg〉 = σeg) are linear on the atomic operators, and
read

σ̇ige = i
(

∆A + iΓ
′

2

)
σige + iΩi + i

N∑
i=1

gij σ
j
ge, (7)

where Ωi = d∗ · E+
p (ri)/~ is the guided mode Rabi frequency (with Ep = 〈Êp〉), and

gij = J ij1D + iΓij1D/2 = (µ0ω
2
p/~)d∗ ·G1D(ri, rj, ωp) · d

DISTRIBUTION A: Distribution approved for public release.



Atom-light interactions in quasi-1D nanostructures: a Green’s function perspective 6

depends only on the Green’s function of the guided mode. For long times, the coherences
will damp out to a steady state (σ̇ige = 0). The solution for the atomic coherences is
then

~σge = −M−1Ω with M= (∆A + iΓ′/2) 1 + g. (8)

In the above equation, ~σge = (σ1
ge, . . . , σ

N
ge) and Ω = (Ω1, . . . ,ΩN) are vectors of

N components, and M is a N × N matrix that includes the dipole-projected matrix
g of elements gij. Significantly, the matrix is not Hermitian, as there is radiation
loss. However, due to reciprocity, the Green’s function matrix is complex symmetric
[GT(r, r′, ω) = G(r′, r, ω)], and g inherits this property if the dipole matrix elements
are real, which will be a condition enforced from now on. Complex symmetric matrices
can be diagonalized, gvξ = λξvξ with ξ = 1 . . . N , where λξ and vξ are the eigenvalues
and eigenvectors of g, respectively. Since the first term of M is proportional to the
identity, M and g share the same set of eigenvectors.

The eigenmodes represent the spatial profile of the collective atomic excitation,
i.e., the dipole amplitude and phase at each atom. However, as the matrix g is non-
Hermitian, the eigenmodes are not orthonormal in the regular sense, but instead follow
different orthogonality and completeness prescriptions, namely vTξ · vξ′ = δξ,ξ′ and∑N
ξ=1 vξ ⊗ vTξ′ = 1, where T indicates transpose instead of the customary conjugate

transpose [54]. After inserting the completeness relation into Eq. (8), we find that the
expected value of the atomic coherences in the steady state in terms of the eigenvalues
and eigenvectors of the quasi-1D Green’s function is

~σge = −
∑

ξ∈mode

(vTξ ·Ω)
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2vξ, (9)

where Jξ,1D = Reλξ and Γξ,1D = 2 Imλξ are the frequency shifts and decay rates
corresponding to mode ξ, and the sum is performed over mode number from 1 to N . The
scalar product in the numerator vTξ · ~Ω = ∑N

j=1 vξ,j Ωj describes the coupling between
the probe field and a particular collective atomic mode.

Therefore, the dynamics of the atoms can be understood in terms of the eigenmodes
of g, where the real and imaginary parts of the eigenvalues correspond to cooperative
frequency shifts and decay rates of the collective atomic modes {ξ}. As the modes are
non-normal, the observables cannot be expressed as the sum over all different mode
contributions but, instead, any measurable quantity will show signatures of interference
between different modes. Although it could be considered a mathematical detail, the fact
that the modes of a system are non-normal has deep physical consequences. For instance,
non-normal dynamics is responsible of phenomena as different as the Petermann excess-
noise factor observed in lasers [55–57] or the transient growth of the shaking of a building
after an earthquake [58].

DISTRIBUTION A: Distribution approved for public release.



Atom-light interactions in quasi-1D nanostructures: a Green’s function perspective 7

3.2. Transmission and reflection coefficients

Having previously calculated the linear response of an ensemble of atoms to an input
field, we now relate the response to observable outputs, i.e. the reflected and transmitted
fields. One can calculate the total field from Eq. (6), by substituting in the solution of
Eq. (9) for the atomic coherences σge. For the sake of simplicity, we now assume that
the atomic chain and the main axis of the nanostructure are oriented along x̂, and the
atoms have all the same radial position and thus the same ’transversal’ coupling into
the nanostructure. The field is considered to be polarized along ŷ, and reads

E+(x) ≡ E+
y (x) = E+

p (x)−
N∑
ξ=1

(
gT (x) · vξ

) (
vTξ · E+

p

)
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2 , (10)

where the j-component of vector g(x) is gj(x) = g(x, xj) = (µ0ωpd
2/~)G1D,yy(x, xj, ωp),

and gT (x) ·vξ = ∑N
i=j gj(x)vξ,j represents how much the mode ξ contributes to the field

emitted by the atoms. Note that now the electric field vector E+
p in Eq. (10) no longer

represents different polarization components, but a single polarization at different atom
positions.

In order to connect the above expression to the transmission and reflection
coefficients, we evaluate the field E+(x) at the positions x = xright and x = xleft , which
are considered to be immediately outside the atomic chain. The details of the derivation
are provided in Appendix A. The normalized transmission and reflection coefficients are

t(∆A)/t0(∆A) = 1− 1
g(xright, xleft)

N∑
ξ=1

(
gT (xright) · vξ

) (
vTξ · g(xleft)

)
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2 , (11a)

r(∆A) = r0(∆A)− 1
g(xleft, xleft)

N∑
ξ=1

(
gT (xleft) · vξ

) (
vTξ · g(xleft)

)
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2 , (11b)

where t0(∆A) and r0(∆A) are the transmission and reflection coefficients for the 1D
photonic structure when no atoms are present. One can further simplify the expression
for the transmission so that the resulting equation only depends on the eigenvalues, and
not the eigenfunctions, of the Green’s function matrix g (as shown in Appendix B).
Then,

t(∆A)/t0(∆A) =
N∏
ξ=1

∆A + iΓ′/2
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2 ≡

N∏
ξ=1

tξ(∆A). (12)

The total transmission coefficient can thus be written as the product of the transmission
coefficients of each of the collective atomic modes. Noticeably, when looking at the
transmission spectrum of atoms that interact through the guided mode of a quasi-1D
nanostructure, there is a redundancy between the eigenfunctions and eigenvalues, and
one is able to obtain an expression that does not depend on the former (i.e. all the
relevant information about the geometry is contained in the collective frequency shifts

DISTRIBUTION A: Distribution approved for public release.
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Figure 1. (a) Sketch of an atom interacting with the guided mode of a structured
1D nanostructure. The single-atom decay rate is Γ1D, and the decay into non-guided
modes is characterized by Γ′. (b) Normalized transmission spectra (|t/t0|2) for a single
atom for different values of the ratio between the real and imaginary parts of the guided
mode Green’s function, following Eq. (13). The decay rate into the guided modes is
taken to be Γ1D = Γ′ for all cases.

and decay rates). In particular, for a single atom located at xj with J jj1D ≡ J1D and
Γjj1D ≡ Γ1D, the eigenvalues are directly proportional to the local Green’s function, and

t(∆A)/t0(∆A) = ∆A + iΓ′/2
(∆A + J1D) + i(Γ′ + Γ1D)/2 . (13)

The transmittance T = |t|2 can be recast into a Fano-like lineshape [59] as

T/T0 = (q + χ)2

1 + χ2 +
(

Γ′
Γ′ + Γ1D

)2 1
1 + χ2 , (14)

where χ = 2(∆A +J1D)/(Γ1D +Γ′) and q = −2J1D/(Γ1D +Γ′) is the so-called asymmetry
parameter. For Γ′ � Γ1D, the second term is negligible and T/T0 is a pure Fano
resonance, with q = −Re{G1D(rj, rj, ωp)}/Im{G1D(rj, rj, ωp)}. Fano resonances arise
whenever there is interference between two different transport channels. For instance,
in a cavity far from resonance, there is interference arising from all the possible optical
paths that contribute to the transmission signal due to reflections at the mirrors, whereas
in an unstructured waveguide there is no such interference and thus the lineshape is
Lorentzian.

For a single atom, there is a clear mapping between the spectrum lineshape and
the local 1D Green’s function. For a nanostructure with a purely imaginary self Green’s
function G(xi, xi) (such as a wave-guide or a cavity at resonance), the spectrum is
Lorentzian, and centered around the atomic frequency. However, if the real part is
finite, one would observe a frequency shift of the spectrum, which becomes asymmetric.
Figure 1(b) shows how the normalized transmission spectrum for a single atom becomes
more and more asymmetric for higher ratios J1D/Γ1D. Also, there is an appreciable
blueshift of the spectral features.
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We would like to remark that the Markov approximation has thus far been employed
in our analysis, as every Green’s function is considered to be a complex constant over
frequency ranges larger than the linewidth of the atoms. If that is not the case, it is
not possible to find simple expressions for the Hamiltonian and Lindblad terms for the
atomic density matrix. However, the expressions for the transmission and reflection
coefficients are valid even when the spectral variation of the Green’s function occurs
within frequency intervals comparable to and smaller than the atomic linewidth. This
fact might not be surprising as, in the low saturation limit, atoms behave as classical
dipoles, and an equation for the transmission coefficient identical to Eq. (12) can be
found for classical emitters, without resorting to Markov’s approximation.

4. Application to several one-dimensional photonic structures

In this section, we analyze the transmission spectra of atoms placed along common
quasi-1D nanostructures, such as cavities, waveguides, and photonic crystals.

4.1. Standing-wave cavities

To begin with, we want to illustrate the connection between the Green’s function
formalism and the well-known Jaynes Cummings (JC) model [38] . For N atoms in a
driven cavity of length L and effective area A, the JC Hamiltonian, and its corresponding
Lindblad operator read

H= −~∆câ
†â− ~∆A

N∑
i=1

σ̂iee + ~
N∑
i=1

qi
(
â†σ̂ige + σ̂iegâ

)
+ ~η (â+ â†), (15a)

L[ρ̂] = Γ′
2

N∑
i,j=1

(
2σ̂igeρ̂σ̂jeg − σ̂iegσ̂jgeρ̂− ρ̂σ̂iegσ̂jge

)
+ κc

2
(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
, (15b)

where â is the cavity-field annihilation operator, ρ̂ is the density matrix for the atoms
and the cavity field, η is a frequency that represents the amplitude of the classical driving
field, ∆c = ωp − ωc is the detuning between the driving (probe) and the cavity fields,
and κc is the cavity-field decay. The atom cavity coupling is qi = q cos(kcxi), where
q = d

√
ωc/(~ε0LA) is modulated by a function that depends on the atoms’ positions

and the cavity wave-vector kc. The Heisenberg equations of motion for the field and
atomic operators are

˙̂a =
(

i∆c −
κc

2

)
â− i

N∑
i=1

qiσ̂
i
ge − iη,

˙̂σige =
(

i∆A −
Γ′
2

)
σ̂ige + iqi

(
σ̂iee − σ̂igg

)
â.
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When Γ′ � κc and q < min{∆c, κc}, the cavity field can be adiabatically eliminated,
and the field operator re-expressed in terms of the atomic ones, i.e.,

˙̂a = 0 → â = 1(
∆c + iκc

2

) (η +
N∑
i=1

qiσ̂
i
ge

)
.

Introducing this expression back into the equation for the atomic operator, one can
deduce a master equation for the atomic density matrix ρ̂A. The new Hamiltonian
and Lindblad operators read just as those of Eqs. (3a) and (3b), but for a classical
driving field, and with spin exchange and decay rates into the cavity mode given
by J ij1D(Γij1D) = J1D(Γ1D) cos(kcxi) cos(kcxj), with J1D = −q2∆c/(∆2

c + κ2
c/4), and

Γ1D = q2κc/(∆2
c + κ2

c/4). It can thus be seen that the Markovian approximation to
arrive at these equations is equivalent to the absence of strong coupling effects within
the JC model.

The last step for connecting this simple model with our formalism is to calculate the
Green’s function of a cavity and confirm that J ij1D and Γij1D are precisely those obtained
within the JC framework. The Green’s function of a quasi-1D cavity formed by partially
transmitting mirrors of reflection coefficient r (chosen to be real) is [60]

G1D(xi, xj, ωp) ' ic2

2vgωpA
eikp|xi−xj | + reikp(L+xi+xj) + reikp[L−(xi+xj)] + r2eikp(2L−|xi−xj |)

1− r2e2ikpL
,

where vg is the group velocity. For high-Q standing-wave cavities, i.e. with r ' 1, and
choosing vg = c, the Green’s function can be approximated as

G1D(xi, xj, ωp) '
(

2ic
ωpA

)
1

1− r2e2ikpL
cos(kpxi) cos(kpxj).

The cavity is resonant at a frequency ωc with corresponding wave-vector kc, chosen to
be such that kcL = 2πm, with m being an integer. Close to resonance, one can write
kp = kc + δk, and assume that δkL� 1. Then 1− r2e2ikpL ' 1− r2 − 2ir2δkL, and the
Green’s function is simply

G1D(xi, xj, ωp) ' −
(

c2

ωpLA

)
1

∆c + iκc/2
cos(kcxi) cos(kcxj),

where κc = (1 − r2)c/L is the cavity linewidth. Therefore, the atoms’ spin-exchange
and decay rates are given by

J ij1D = (µ0ω
2
pd

2/~)ReG1D(xi, xj, ωp) = −qiqj
∆c

(∆2
c + κ2

c/4) ≡ J1D cos(kcxi) cos(kcxj),

Γij1D = (2µ0ω
2
pd

2/~) ImG1D(xi, xj, ωp) = qiqj
κc

(∆2
c + κ2

c/4) ≡ Γ1D cos(kcxi) cos(kcxj),

which is precisely what is obtained within the Jaynes Cummings model.
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Let’s now look at the transmission spectrum of N atoms in a cavity. As we have
just demonstrated, coefficients of the dipole-projected Green’s function matrix g read

gij = g(ωp) cos(kcxi) cos(kcxj), (17)

where g(ωp) = J1D + iΓ1D/2. Depending on the detuning between the probe field and
the cavity resonance, g(ωp) can be purely imaginary, yielding dissipative atom-atom
interactions, or can have both real and imaginary parts, resulting in both dissipative
and dispersive couplings.

The matrix g is separable (has rank one) as it can be written as the tensor product
of just one vector by itself. The matrix has one eigenstate describing a superposition
of atomic coherences that couples to the cavity (a "bright mode"), with eigenvalue
λB = ∑N

i=1 g
ii = (J1D + iΓ1D/2)∑N

i=1 cos2(kcxi). This atomic collective excitation follows
spatially the mode profile of the cavity, i.e. σige ∝ cos(kcxi). The matrix g has also N−1
decoupled ("dark") modes of eigenvalue 0. Because these dark modes have a zero decay
rate into the cavity mode, it is also impossible to excite them employing the cavity field.
The optical response is thus entirely controlled by the bright mode, and the transmission
is simply

t(∆A)/t0(∆A) = ∆A + iΓ′/2
(∆A +∑N

i=1 J
ii
1D) + i(Γ′ +∑N

i=1 Γii1D)/2
. (18)

Remarkably, this expression is valid no matter the separation between the atoms
or whether they form an ordered or disordered chain. The transmission spectrum
corresponds to that of a ‘super-atom’, where the decay rates and the frequency shifts
are enhanced (N-fold if all the diagonal components of g are equal) compared to those of
a single atom. This result replicates the well-known expressions for conventional cavity
QED.

4.2. Waveguides

Another paradigm that has been investigated frequently is that of "waveguide QED" [39].
The simple model of such a system consists of a single guided mode with translational
invariance, and where the dispersion relation is well-approximated as linear around the
atomic resonance frequency. In a 1D translationally invariant system, a source simply
emits a plane wave whose phase at the detection point is proportional to the distance
of separation. Therefore, the elements of the Green’s function matrix g depend on the
distance between the atoms, and read

gij = iΓ1D

2 eikp|xi−xj |. (19)

Remarkably, the self Green’s function in a waveguide is purely imaginary. The coherent
interactions between atom i and atom j are dictated by the Hamiltonian [given by
Eq. (3a)], and are proportional to Re{gij} = −(Γ1D/2) sin kp|xi − xj|, whereas the
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Figure 2. (a) Frequency shifts and (b) decay rates of the collective modes of a regular
chain of 5 atoms placed along a waveguide normalized to the single-atom decay rate
into the guided mode Γ1D, as a function of the distance d between the atoms in units
of the probe wavelength.

dissipation is given by the Lindblad operator [given by Eq. (3b)], which is proportional
to Im{gij} = (Γ1D/2) cos kp(xi − xj) [22, 50]. It is thus clear that by carefully tuning
the distance between the emitters, one can engineer fully dissipative interactions. If the
atoms form a regular chain and are spaced by a distance d such that kpd = nπ, where
n is an integer number, the matrix g has only one non-zero eigenvalue λB = iNΓ1D/2
associated with the bright atomic mode. This situation is analogous to the case of
atoms interacting in an on-resonance cavity. Therefore, there will not be any collective
frequency shift, and the lineshape will be a Lorentzian of width ΓB + Γ′. For n even,
the phases of the dipole moments of the atoms are all identical, whereas for odd n the
dipole moments of adjacent atoms are π out of phase.

For a regular chain with lattice constant different from kpd = nπ, or for atoms
placed randomly along the waveguide, the coefficients of matrix g have both a real
and imaginary part, and, to the best of our knowledge, there is no analytic expression
for the eigenvalues of g. Figure 2 shows the frequency shifts and decay rates of the
collective modes of a N = 5 atom chain as a function of the separation between the
atoms. For separations where kpd = nπ, the real part of the Green’s function is zero
and the imaginary part of all modes but one goes to zero, whereas for other spacings one
generically gets a zoo of coherent and dissipative couplings of comparable strength. This
occurs because the real and imaginary parts of gij are generically of similar magnitude.
Figure 3 shows the transmission and reflection spectra for N = 20 atoms separated by
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Figure 3. (a) Normalized transmission spectra for 20 atoms interacting through
the guided modes of an unstructured waveguide. The blue line represents a regular
separation between the atoms of d = λp/2. The orange curves show 10 different spectra
obtained by randomly placing the atoms along the nanostructure. The black curve
represents the "non-interacting" case of Eq. (20). (b) Normalized reflection spectra for
the same situations as in (a). We have chosen Γ1D = Γ′.

kpd = π (blue curve), and for several random realizations where each atomic position
is chosen randomly from a distribution kpxi ∈ [0, 2π] (orange curves). The black line
represents the non-interacting case, which is obtained by setting the non-diagonal terms
of g to zero, yielding a transmission spectrum

t(∆A)/t0(∆A) =
(

∆A + iΓ′/2
∆A + i(Γ′ + Γ1D)/2

)N
, (20)

where the transmission coefficient is a product of the transmission coefficient of each
single atom, and the frequency shifts and decay rates are not collective quantities but,
instead, single-atom parameters.

Figure 3(a) also shows that, for random filling, although the atoms interact with
each other (gij 6=i 6= 0), the transmission spectra follow closely that of a non-interacting
system, for which all the off-diagonal elements are zero (gij 6=i = 0), and the eigenvalues of
matrix g are proportional to the self Green’s functions [G(xi, xi)] at the atoms’ positions.
In this case, the behavior of the emitters cannot be understood in terms of the ‘super-
atom’ picture, as the transmission spectrum of the system is significantly different from
a Lorentzian. In particular, for the non-interacting scenario, one can recast Eq. (20) into
an exponential, and the transmittance recovers the well-known form of a Beer-Lambert
law, reading

T (∆A)/T0(∆A) = exp
[
−N ln ∆2

A + (Γ′ + Γ1D)2/4
∆2

A + Γ′2/4

]
' exp

[
− OD

1 + (2∆A/Γ′)2

]
, (21)

where OD ≡ 2NΓ1D/Γ′ is the optical depth and the last equality holds for Γ1D � Γ′.
This is exactly the same behavior that an atomic ensemble in free space would exhibit.
This occurs only for non-negligible Γ′, which suppresses multiple reflections. Otherwise
one would see huge fluctuations associated with Anderson localization in the spectra.
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Figure 4. Collective frequency shifts of the modes of a regular chain of N=10 atoms
in the bandgap of an infinite photonic crystal as a function of κxd, where κ−1

x is the
spatial range of the interaction and d is the distance between atoms. The atoms are
placed at even antinodes of the Bloch modes.

The reflectance spectrum, on the other hand, is more complex and carries more
information than the transmittance, as shown in Fig. 3(b). In contrast to the case of
the transmission coefficient, the reflection does not admit a simple formula in terms
of the eigenvalues of the system. This is only possible when the Green’s function is
separable, namely, when the distance between the atoms is d = nλp/2.

4.3. Photonic crystal bandgaps

The band-gap region of a photonic crystal waveguide (PCW) is a very appealing scenario
to explore coherent atom-atom interactions, as light cannot propagate, and atoms
interact with each other through evanescent fields [30]. For a photonic crystal waveguide
of lattice constant a the elements of matrix g are well approximated by

gij = J1D cos(πxi/a) cos(πxj/a)e−κx|xi−xj |, (22)

where the cosine terms account for the spatial profile of the Bloch modes, and κ−1
x is

the finite range of interaction due to the evanescent decay of the guided mode field in
the bandgap, which is controlled by detuning the band-edge frequency from the atomic
resonance. It should be noted that in this idealized picture, gij is purely real, indicating
the absence of collective emission into the PCW. This is naturally expected, due to the
absence of guided modes at the atomic frequency. In practice, residual decay might still
exist to the extent that the mediating photon has a decay channel. This could be either
due to the finite length of the PCW, which can cause the photon to leak out the ends
and is suppressed when κxL � 1, or through scattering and absorption losses of the
PCW. Given that these photonic decay processes can be made small, for conceptual
simplicity here we treat the idealized case.

For a chain of periodically spaced atoms placed in even antinodes of the Bloch
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modes, the dipole-projected Green’s function matrix reads

g = J1D


1 χ χ2 · · · χN−1

χ 1 χ · · · χN−2

... ... ... . . . ...
χN−1 χN−2 χN−3 · · · 1

 , (23)

where we have defined χ ≡ e−κxd, with d being the distance between nearest-neighbor
atoms. The matrix g is a real symmetric Toeplitz matrix (or bisymmetric matrix).
Neglecting higher order contributions besides first-neighbor, an approximation valid for
κxd � 1, g becomes a tridiagonal Toeplitz matrix whose eigenvalues and eigenvectors
are [61]:

λξ ≡ J1D,ξ = 1 + 2e−κxd cos
(

ξπ

N + 1

)
, (24a)

vξ,j =
√

2
N + 1 sin

(
ξjπ

N + 1

)
. (24b)

In this simple tight binding model, the frequency shifts of the collective atomic
modes are distributed around J1D with a frequency spread controlled by κx (i.e., for
larger κx, the modes are closer in frequency). However, if the interaction length is very
large compared to the distance between the atoms, the approximation of neglecting
higher order neighbors falls apart, and the eigenvalues start to show a different behavior.
Eventually, when the interaction length becomes infinite (or much larger than the length
of the atomic cloud), there is only one bright mode, of eigenvalue λB = NJ1D. This is
analogous to the cavity case, where the interaction range is also infinite, except now the
eigenvalue is purely real. This can be observed in Fig. 4, which shows how the collective
frequency shifts coalesce towards J1D for large κxd. The band-edge of a photonic crystal
is thus a cross-over region in which the single bright mode approximation holds and
then transitions to another regime where it breaks down, as the guided mode becomes
evanescent and decays substantially within the length of the PCW. Importantly, the
bandgap of a photonic crystal provides a tunable interaction range, a feature which is
unique to this kind of nanostructure, and makes PCWs remarkably different reservoirs
from either cavities or unstructured waveguides.

In the following section, we present some predictions for the transmission spectrum
of two atoms coupled to a PCW for Γ1D and J1D values that can be achieved
experimentally in the coming years. We hope that the foreseen large coherent couplings
between the atoms combined with low dissipation through the guided mode help to
stimulate a new generation of experiments that go beyond the current state of the art.

5. Experimental perspectives

In a recent experiment [36], the authors have observed signatures of collective atom-
light interactions in the transmission spectra of atoms coupled to an alligator photonic
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Figure 5. (a) Magnitude of the ratio between the coherent and dissipative couplings
through the guided mode of an alligator PCW [36]. The dashed line shows the ratio
as given in Fig.4 of Ref. [36], and the continuous curve represents the expected ratio
that could be achieved within the next years (see text for more details). (b) Evolution
of the excited state population of atom 1 (blue curve) and 2 (orange curve) after fully
inverting atom 1 at the initial time. The resonance frequency of the atoms lies in the
bandgap of the photonic crystal, with the atoms placed at successive even antinodes
(continuous curve). The dashed line represents the non-interacting scenario, where the
off-diagonal terms of g are zero. The spin exchange and decay rates are chosen to be
J1D = −3Γ0, Γ1D = 0.15Γ0, and Γ′ = 0.5Γ0. The lattice constant is a = 370 nm and
the range of interaction is κ−1

x = 80a.

crystal waveguide. They have recorded these spectra for various frequencies around
the band edge of the PCW, exploring different physical regimes. Outside the bandgap,
due to the finite size of the PCW, they observe the formation of a low-finesse cavity
mode [as shown in Fig. 3(a) of Ref. [36], at a frequency ν1]. At resonance with this
cavity mode, the dissipative single-atom coupling to the structure is Γ1D(ν1) ' 1.5Γ0,
as obtained from steady-state transmission lineshape measurements. The decay rate
into leaky modes is Γ′/Γ0 ' 1.1, estimated from finite-difference time-domain (FDTD)
numerical calculations.

After tuning the spectral features of the PCW so that the resonance frequency of the
atoms moves into the bandgap, they observe asymmetric lineshapes, revealing significant
coherent coupling. Specifically at νBG = 60 GHz inside the bandgap, the spin exchange
and decay rates are J1D(νBG)/Γ0 ' −0.2 and Γ1D(νBG)/Γ0 ' 0.01, respectively. Due to
the evanescent character of the field in the bandgap, the interaction range is finite, and
at νBG its value is κ−1

x ' 80a, being a = 370 nm the lattice constant of the alligator
PCW. While this experiment constitutes the first observation of more than one emitter
interacting through the guided modes around the band edge of a PCW, the values of J1D

and Γ1D are not yet good enough to observe direct signatures of atom-atom interactions
such as time-dependent spin exchange. Nevertheless, we expect that near-term advances
of the current set up will yield dramatic improvements on these rates, opening the door
to exploring exciting collective atomic phenomena.

In particular, instead of using an alligator PCW, one can employ a slot photonic
DISTRIBUTION A: Distribution approved for public release.
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crystal waveguide [4,62], i.e. a quasi-1D waveguide embedded in a 2D photonic crystal.
This structure would be advantageous due to several reasons. First of all, it inhibits
atomic emission into non-guided modes due to the surrounding 2D photonic bandgap
that reduces the modes into which the atom can radiate. Absent inhomogeneous
broadening, early simulations demonstrate that it is possible to achieve a very small
non-guided decay rate, i.e. Γ′ ' 0.5Γ0. Moreover, one can engineer flatter bands,
which leads to an increase of the group index of ng ' 30 near the band-edge (three
times larger than that of the current alligator), according to FDTD simulations. Then,
both J1D and Γ1D would experience a three-fold increase. Finally, by trapping the
atoms at the center of the nanostructure, in between the two slots and not above as
it is currently done, we have estimated that J1D and Γ1D would be five times larger.
Summarizing, we project Γ1D(ν1)/Γ0 ' 22 at the first cavity resonance. This yields the
values of J1D(νBG)/Γ0 ' −3 and Γ1D(νBG)/Γ0 ' 0.15 for a detuning from the band edge
νBG = 20 GHz, where the range of interaction is κ−1

x ' 80a.
Figure 5(a) compares the ratio |J1D/Γ1D| between the coherent and dissipative

guided-mode rates for the current alligator PCW (dashed line) and the described slot
PCW (continuous line). The improved ratio for the later structure can already be
observed at frequencies just beyond the band-edge, and becomes |J1D/Γ1D| ' 104 at
a detuning of 0.5 THz from the band-edge. An indisputable signature of collective
behavior is represented in Fig. 5(b), which shows the evolution of the excited state
populations of two atoms placed at successive even antinodes (continuous curve), after
initially inverting one of them. The atoms interact through the guided modes of the
already described slot PCW, and their resonance frequency lies inside the bandgap, at
the frequency for which the interaction range is κ−1

x ' 80a. The dashed lines show the
expected result for non interacting atoms, where the off-diagonal terms of g are zero, a
situation that occurs when the atoms are separated by a distance d� κ−1

x .
To summarize, we believe that there is a bright future for experiments involving not

only atoms, but also superconducting qubits interacting through the guided modes of a
microwave photonic crystal. In a recent experiment, a ratio of Γ1D/Γ′ = 50 has already
been achieved for transmon qubits connected to a 1D coplanar microwave transmission
line [23]. Combined with the exciting recent advances in microwave photonic crystal
fabrication [37], we expect a next generation of experiments where many qubits interact
with each other in a mostly coherent manner.

6. Conclusion

We have analyzed the optical response of a chain of atoms placed along a quasi-1D
nanophotonic structure in terms of the classical electromagnetic Green’s function. This
formalism is valid in the presence of absorptive and dispersive media.

We find that the linear response of the atoms can be understood in terms of
collective atomic eigenstates of the Green’s function matrix g(xi, xj) for all pairs of
atoms. In particular, we have derived a closed expression for the transmission spectra
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that only depends on the cooperative frequency shifts and decay rates of these modes.
We have shown that the transmission coefficient is a direct probe of the Green’s function
of the nanostructure, enabling us to determine whether the atom-light interactions are
fundamentally dispersive or dissipative in character as well as to quantify the degree of
cooperative interaction. We have gained insight into the interactions between atoms and
quasi-1D cavities, waveguides, and photonic crystals, structures of relevance in recent
experiments, as well as provided estimations of what can be observed in the near future.

The Green’s function formalism provides a natural language that unifies
nanophotonics and quantum optics, and our results apply not only to atoms [36], but
to many other quantum emitters, such as superconducting qubits [37], NV centers [63],
rare earth ions [64] or quantum dots [4], interacting with any kind of quasi-1D photonic
structures or circuits.

Appendix A. Transmission and reflection coefficients in terms of Green’s
functions

We begin by recalling Eq. (10),

E+(x) ≡ E+
y (x) = E+

p (x)−
N∑
ξ=1

(
gT (x) · vξ

) (
vTξ · E+

p

)
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2 ,

which relates the field along any point of the structure with the collective atomic modes.
In order to calculate the transmission spectra, we need an expression that connects the
output and the input fields. To do so, let’s consider that we have a dipole pleft placed to
the left of the first atom of the chain, at position xleft, which is the source of the probe
field E+

p . For the sake of simplicity, pleft is polarized along ŷ, the same polarization
of the guided mode field. To obtain the transmission coefficient, we evaluate the field
at position xright, immediately to the right of the last atom of the chain. When the
atoms are not present, the probe field at the left and right positions of the quasi-1D
nanostructure are

E+
p (xleft) = µ0ω

2
pG1D(xleft, xleft) pleft, (A.1a)

E+
p (xright) = µ0ω

2
pG1D(xright, xleft) pleft. (A.1b)

Then, the transmission for the system without the atoms is simply

t0(∆A) =
E+

p (xright)
E+

p (xleft)
= G1D(xright, xleft)

G1D(xleft, xleft)
. (A.2)

When N atoms are placed in the vicinity of the nanostructure, the field at position
xright is

E+(xright) = E+
p (xright)−

1
g(xleft, xleft)

N∑
ξ=1

(
gT (xright) · vξ

) (
vTξ · g(xleft)

)
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2E

+
p (xleft)

=
t0(∆A)− 1

g(xleft, xleft)

N∑
ξ=1

(
gT (xright) · vξ

) (
vTξ · g(xleft)

)
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2

E+
p (xleft),
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where we have employed that the probe field at atom xj can be related to E+
p (xleft)

as E+
p (xj) = µ0ω

2
pG1D(xj, xleft) pleft = G1D(xj ,xleft)

G1D(xleft,xleft)E
+
p (xleft). Then, the normalized

transmission coefficient is

t(∆A)/t0(∆A) = 1− 1
g(xright, xleft)

N∑
ξ=1

(
gT (xright) · vξ

) (
vTξ · g(xleft)

)
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2 , (A.3)

as shown in the main text. Let’s now calculate the reflection coefficient. Without the
atoms, the field at xleft is E+(xleft) = [1+r0(∆A)]E+

p (xleft). When the atoms are present,
the field reads

E+(xleft) = [1 + r0(∆A)]E+
p (xleft)−

1
g(xleft, xleft)

N∑
ξ=1

(
gT (xleft) · vξ

) (
vTξ · g(xleft)

)
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2E

+
p (xleft).

Following similar steps as those above, we find

r(∆A) = r0(∆A)− 1
g(xleft, xleft)

N∑
ξ=1

(
gT (xleft) · vξ

) (
vTξ · g(xleft)

)
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2 , (A.4)

the equation in the main text.

Appendix B. Derivation of Equation (12) for the transmission

We can exploit some properties of 1D systems to arrive to the closed expression for the
transmission shown in Eq. (12), which only depends of the decay rates and frequency
shifts of the modes, not on their spatial structure (i.e. the eigenfunctions). We first
show how to derive the 1D Green’s function wave equation, and how the solution is
related to the full quasi-1D solution. We start with the 3D Green’s function G1D for the
guided mode, which follows Eq. (1). We assume that the guided modes are transverse
waves that travel in the ±x̂ direction and are polarized along ŷ, and that the field
is approximately uniform in the transverse directions. From 3D, one can in principle
construct the guided modes and their dispersion relations ω(k), from which one can
identify an effective dielectric constant εeff(x, ω) which produces the same behavior (at
least within some bandwidth). The final answer that we are trying to achieve does not
depend on explicit construction of εeff(x, ω). The result is a Helmoltz equation for the
Green’s function that reads[

d2

dx2 + ω2

c2 εeff(x, ω)
]
G̃1D(x, x′, ω) = −δ(x− x′), (B.1)

where G̃1D = AG1D, being A the effective mode area. The solution for this second order
linear ordinary differential equation can be expressed as the sum of the two homogeneous
solutions. The Green’s function can then be written in terms of the auxiliary fields
φ̃L,R(x), which are solutions of the homogeneous equation, as

G̃1D(x, x′) = Θ(x′ − x)φ̃L(x′)φ̃R(x) + Θ(x− x′)φ̃R(x′)φ̃L(x)
W

, (B.2)
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where W is the Wronskian, which does not depend on the position, and is given by

W = φ̃R(x′)d φ̃L(x′)
dx′ − d φ̃R(x′)

dx′ φ̃L(x′). (B.3)

We can then recover the full Green’s function between atom i and atom j as

G1D(xi, xj, ω) = 1
A
G̃1D(xi, xj, ω) = [Θ(xj − xi)φL(xj)φR(xi) + Θ(xi − xj)φL(xi)φR(xj)] ,

(B.4)

where φR,L ≡ φ̃R,L/
√
AW . Then, the dipole-projected Green’s function is

gij = Θ(xj − xi)sji + Θ(xi − xj)sij,

where sij = ϕL(xi)ϕR(xj), with ϕL,i =
√
µ0ωpd2/~ φL(xi) and ϕR,j =√

µ0ωpd2/~ φR(xj). It is convenient to define the rank-one matrix s = ϕL ⊗ϕT
R, where

ϕ{R,L} = (ϕ{R,L}(x1), ..., ϕ{R,L}(xN)) is a vector of N components. Let’s now proceed to
demonstrate Eq. (12). In terms of the eigenfunctions of g, the transmission is

t(∆A)/t0(∆A) = 1− 1
g(xright, xleft)

N∑
ξ=1

(
gT (xright) · vξ

) (
vTξ · g(xleft)

)
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2

= 1− 1
g(xright, xleft)

(
gT (xright) ·M−1 · g(xleft)

)
,

where M is given in Eq. (8). Since g ∝ G1D, and using the expression for the Green’s
function in terms of the right-going and left-going field solutions [Eq. (B.4)], we find

t(∆A)/t0(∆A) = 1−ϕT
R ·

1
∆A + iΓ′/2 + g

·ϕL = 1− vT · 1
1 + g̃

· u,

where we have defined v ≡ ϕR/
√

∆A + iΓ′/2, u ≡ ϕL/
√

∆A + iΓ′/2, and g̃ ≡ g/(∆A +
iΓ′/2). By the matrix determinant lemma [54], we know that for a invertible matrix A
and a pair of vectors u,v, we can write det(A + u ⊗ vT ) = det(A)

(
1 + vT ·A−1 · u

)
.

Choosing A = −(1 + g̃), we find

t(∆A)/t0(∆A) = det(1 + g̃− u⊗ vT )
det(1 + g̃) = det((∆A + iΓ′/2)1 + g− s)

det((∆A + iΓ′/2)1 + g) .

Since (∆A + iΓ′/2)1 + g − s is a triangular matrix with (∆A + iΓ′/2) in the diagonal
entries, and the determinant of a triangular matrix is the product of the diagonal entries,
we find det((∆A + iΓ′/2)1 + g− s) = (∆A + iΓ′/2)N , which yields

t(∆A)/t0(∆A) = (∆A + iΓ′/2)N
det((∆A + iΓ′/2)1 + g) =

N∏
ξ=1

∆A + iΓ′/2
(∆A + Jξ,1D) + i(Γ′ + Γξ,1D)/2 ,

as the determinant of a matrix is the product of its eigenvalues. The above expression is
precisely Eq. (12). To the best of our knowledge, it is not possible to obtain a simplified
expression for the reflection coefficient.
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We present a platform for the simulation of quantum magnetism
with full control of interactions between pairs of spins at arbitrary
distances in 1D and 2D lattices. In our scheme, two internal atomic
states represent a pseudospin for atoms trapped within a photonic
crystal waveguide (PCW). With the atomic transition frequency
aligned inside a band gap of the PCW, virtual photons mediate
coherent spin–spin interactions between lattice sites. To obtain full
control of interaction coefficients at arbitrary atom–atom separa-
tions, ground-state energy shifts are introduced as a function of
distance across the PCW. In conjunction with auxiliary pump fields,
spin-exchange versus atom–atom separation can be engineered
with arbitrary magnitude and phase, and arranged to introduce
nontrivial Berry phases in the spin lattice, thus opening new ave-
nues for realizing topological spin models. We illustrate the broad
applicability of our scheme by explicit construction for several well-
known spin models.

nanophotonics | quantum matter | cold atoms | quantum many-body |
quantum spin

Quantum simulation has become an important theme for re-
search in contemporary physics (1). A quantum simulator

consists of quantum particles (e.g., neutral atoms) that interact by
way of a variety of processes, such as atomic collisions. Such pro-
cesses typically lead to short-range, nearest-neighbor interactions
(2–6). Alternative approaches for quantum simulation use dipolar
quantum gases (7, 8), polar molecules (9–11), and Rydberg atoms
(12–15), leading to interactions that typically scale as 1=r3, where r is
the interparticle separation. For trapped ion quantum simulators
(16–20), tunability in a power law scaling of r−η with 0< η< 3 can in
principle be achieved. Beyond simple power law scaling, it is also
possible to engineer arbitrary long-range interactions mediated by
the collective phonon modes, which can be achieved by independent
Raman addressing on individual ions (21).
Using photons to mediate controllable long-range interactions

between isolated quantum systems presents yet another approach
for assembling quantum simulators (22). Recent successful ap-
proaches include coupling ultracold atoms to a driven photonic
mode in a conventional mirror cavity, thereby creating quantum
many-body models (using atomic external degrees of freedom)
with cavity-field–mediated infinite-range interactions (23).
Finite-range and spatially disordered interactions can be realized
by using multimode cavities (24). Recent demonstrations on
coupling cold atoms to guided mode photons in photonic crystal
waveguides (25, 26) and cavities (27, 28) present promising ave-
nues (using atomic internal degrees of freedom) due to unprec-
edented strong single atom–photon coupling rate and scalability.
Related efforts also exists for coupling solid-state quantum emit-
ters, such as quantum dots (29, 30) and diamond nitrogen-vacancy
centers (31, 32), to photonic crystals. Scaling to a many-body
quantum simulator based on solid-state systems, however, still
remains elusive. Successful implementations can be found in
the microwave domain, where superconducting qubits behave as
artificial atoms strongly coupled to microwave photons propa-
gating in a network formed by superconducting resonators and
transmission lines (33–35).

Here, we propose and analyze a physical platform for simulating
long-range quantum magnetism in which full control is achieved for
the spin-exchange coefficient between a pair of spins at arbitrary
distances in 1D and 2D lattices. The enabling platform, as described
in refs. 36 and 37, is trapped atoms within photonic crystal wave-
guides (PCWs), with atom–atom interactions mediated by photons
of the guided modes (GMs) in the PCWs. As illustrated in Fig. 1 A
and B, single atoms are localized within unit cells of the PCWs in 1D
and 2D periodic dielectric structures. At each site, two internal
atomic states are treated as pseudospin states, with spin-1/2 con-
sidered here for definiteness (e.g., states jgi and jsi in Fig. 1C).
Our scheme uses strong, and coherent atom–photon interactions

inside a photonic band gap (36–40), and long-range transport
property of GM photons for the exploration of a large class of
quantum magnetism. This is contrary to conventional hybrid
schemes based on, for example, arrays of high finesse cavities
(41–44) in which the pseudospin acquires only the nearest (or at
most the next-nearest) neighbor interactions due to strong expo-
nential suppression of photonic wave packet beyond single cavities.
In its original form (36–40), the localization of pseudospin is

effectively controlled by single-atom defect cavities (36). The cavity
mode function can be adjusted to extend over long distances within
the PCWs, thereby permitting long-range spin exchange interac-
tions. The interaction can also be tuned dynamically, via external
addressing beams, to induce complex long-range spin transport,
which we describe in the following (36, 37).
To engineer tunable, long-range spin Hamiltonians, we use an

atomic Λ scheme and two-photon Raman transitions, where an atom
flips its spin state by scattering one photon from an external pump
field into the GMs of a PCW. The GM photon then propagates
within the waveguide, inducing spin flip in an atom located at a
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distant site via the reverse two-photon Raman process. When we
align the atomic resonant frequency inside the photonic band gap, as
depicted in Fig. 1D, only virtual photons can mediate this remote
spin exchange and the GM dynamics are fully coherent, effectively
creating a spin Hamiltonian with long-range interactions. As dis-
cussed in refs. 36 and 37, the overall strength and length scale of the
spin-exchange coefficients can be tuned by an external pump field,
albeit within the constraints set by a functional form that depends on
the dimensionality and the photonic band structure. These con-
straints may limit our ability to explore novel quantum phases and
nonequilibrium dynamics in various spin models, because many ef-
fects display strong dependencies on the functional form of long-
range interactions (45–50). It is therefore highly desirable to obtain
full control of interactions without the need to investigate over a
wide range of PCW designs with different photonic band structures.
To fully control spin-exchange coefficients at arbitrary separations,

here we adopt a Raman-addressing scheme similarly discussed for
cold atoms and trapped ions (51–55). We introduce atomic ground-
state energy shifts as a function of distance across the PCW. Due to
conservation of energy, these shifts suppress reverse two-photon
Raman processes in the original scheme (36, 37), forbidding spin
exchange within the entire PCW. However, we can selectively acti-
vate certain spin-exchange interactions Jðrm,nÞ between atom pairs
ðm, nÞ separated by rm,n, by applying an auxiliary sideband whose
frequency matches that of the original pump plus the ground-state
energy shift between the atom pairs. This allows us to build a pre-
scribed spin Hamiltonian with interaction terms “one by one.” Note
that each sideband in a Raman-addressing beam can be easily in-
troduced, for example, by an electro-optical modulator. By in-
troducing multiple sidebands and by controlling their frequencies,
amplitudes, and relative phases, we can engineer spin Hamiltonians
with arbitrary, complex interaction coefficients Jðrm,nÞ. Depending
on the dimensionality and the type of spin Hamiltonians, our scheme
requires only one or a few Raman beams to generate the desired
interactions. Furthermore, by properly choosing the propagation
phases of the Raman beams, we can imprint geometric phases in the
spin system, thus providing unique opportunities for realizing topo-
logical spin models.
We substantiate the broad applicability of our methods by

explicit elaboration of the set of pump fields required to realize
well-known spin Hamiltonians. For 1D spin chains, we consider
the implementation of the Haldane–Shastry model (56, 57). For
2D spin lattices, we elaborate the configurations for realizing
topological flat bands (58, 59) in Haldane’s spin model (56), as
well as a “checkerboard” chiral-flux lattice (58, 59). We also
consider a 2D XXZ spin Hamiltonian with Jðrm,nÞ∝ 1=rηm,n and

η= 1,2,3 (60). In addition, we report numerical results on the η
dependence of its magnetization diagram.

Controlling Spin–Spin Interaction Through Multifrequency
Driving
In the following, we discuss how to achieve full control of interac-
tions by multifrequency pump fields. We assume (i)N atoms trapped
in either a 1D or 2D PCW, as depicted in Fig. 1 A and B, with a
spatially dependent ground-state energy shift ωg. For simplicity, we
assume one atom per unit cell of the PCW, although this assumption
can be relaxed afterward; (ii) the structure is engineered (22–28)
such that the GM polarization is coupled to the atomic dipole,
jgi↔ jei, as shown in Fig. 1C, and, under rotating wave approxi-
mation, is described by the following Hamiltonian (using Z= 1):

Hlm =
X
k, n

gkðrnÞakσneg + h.c.  , [1]

where gkðrnÞ= gkeik·rn is the single-photon coupling constant at
site location rn, with n being the site index; ak, the GM field
operator; and σnab ≡ jainhbj, the atomic operators with a, b being
one of the g, s, e states. Moreover, as in refs. 36 and 37, we
assume (iii) there is another hyperfine level jsi, addressed by a
Raman field with coupling strength Ω as follows:

HdðtÞ=
X
n

�
ΩðtÞ
2

σnsee
iωLt + h.c.

�
, [2]

where ωL is the main driving frequency. The Raman field ΩðtÞ
contains mP frequency components that are introduced to
achieve full control of the final effective spin Hamiltonian. Full
dependence of ΩðtÞ can be written as follows:

ΩðtÞ≡
Xmp−1

α=0

Ωαei~ωα t, [3]

where ~ωα are the detunings of the sidebands from the main frequency
ωL such that ~ω0 = 0, and Ωα, the complex amplitudes.
We can adiabatically eliminate the excited states jei and the

photonic GMs under the condition that (iv) maxfjΩj, j~ωα − ~ωβjg �
jΔj= jωe −ωLj. This condition guarantees that, first, the excited
state is only virtually populated, and that, second, the time de-
pendence induced by the sideband driving is approximately constant
over the timescale Δ−1. As discussed in refs. 36 and 37, if ωL −ωg
lies in the photonic band gap, photon-mediated interactions by GMs
are purely coherent.† Under the Born–Markov approximation, we
then arrive at an effective XYHamiltonian (SI Appendix A: Complete
Derivation of Final Time-Dependent Hamiltonian):

HXY ðtÞ=
XN

m, n≠m

XmP−1

α, β=0

XαX*
β
~J
�
rm,n

�
eiðωg,m−ωg,n+~ωα−~ωβÞtσmgsσnsg, [4]

where we have defined Xα =Ωα=ð2ΔÞ; ωg,n =ωgðrnÞ is the site-
dependent ground-state energy shift, and ~Jðrm,nÞ is the atom-
GM photon coupling strength (36, 37) that typically depends
on atomic separation rm,n = rm − rn.
We focus on “sideband engineering” and treat ~Jðrm,nÞ as ap-

proximately constant over atomic separations considered.‡ This
is valid as long as the farthest atomic separation with nonzero
engineered interaction is much smaller than the decay length

x

y

A

C

B

D

Fig. 1. Photon-mediated atom–atom interactions in (A) 1D and (B) 2D PCWs.
(C) Atomic-level scheme: atomic dipole jsi↔ jei is coupled to an external pump,
jgi↔ jei coupled to a GMphoton, and Γ*, the excited state decay rate to free space
and leakymodes.† (D) Simplified band structureωðkÞ near the band edge k= kc and
ωðkcÞ=ωc. Atomic transition frequency ωeg =ωe −ωg lies within the band gap.

†To simplify the discussion, in this paper, we neglect decoherence effects caused by
atomic emission into free space and leaky modes as well as photon loss due to imper-
fections in the PCW. These effects were both carefully discussed in refs. 36 and 37,
suggesting the number of spin-exchange cycles in the presence of decoherence can re-
alistically reach N ≈ 35∼ 100 using ultra-high Q PCWs.

‡One may also replace a PCW with a single-mode nanophotonic cavity, operating in the
strong dispersive regime (61, 62), to achieve constant GM coupling ~J independent of
jrm,nj. Realistic nanophotonic cavity implementations will be considered elsewhere.
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scale ξ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijA=Δcj

p
of the coupling strength ~Jðrm,nÞ. Here, A is the

band curvature (Fig. 1D), Δc =maxfωc − ðωL −ωg,nÞg is the
maximal detuning of the band edge to the frequency of coupled
virtual photons that mediate interactions (Fig. 1C), and we have
assumed that the variation of ground-state energies ωg,n are small
compared with Δc. Exact functional form of ~Jðrm,nÞ can be found
in refs. 36 and 37, and in SI Appendix A: Complete Derivation of
Final Time-Dependent Hamiltonian.
The time dependence in Eq. 4 can be further engineered and

simplified. We note that the interaction between two atoms n andm
will be highly dependent on the resonant condition ωg,m −ωg,n =
~ωβ − ~ωα, provided the ground-state energy difference jωg,n −ωg,mj is
much larger than the characteristic timescale of interactions
jXαX*

β
~Jj. The intuitive picture is depicted in Fig. 2A: the atom

n scatters from sideband α a photon with energy ωL + ~ωα −ωg,n into
the GMs. When this GM photon propagates to the atomm, it will
only be rescattered into a sideband β that satisfies ωL + ~ωα −
ωg,n =ωL + ~ωβ −ωg,m, whereas the rest of the sidebands remain
off-resonant. Fig. 2B depicts a reversed process.
For concreteness, we discuss a 1D case where we assume (v) a

linear gradient in the ground-state energy ωg,n ≡ nδ, with δ being
the energy difference between adjacent sites. The sidebands will
be chosen accordingly such that ~ωα = αδ, with α∈Z.
Summing up, with all these assumptions (i–v), the resulting

effective Hamiltonian Eq. 4 can finally be rewritten as follows:

HXY ðtÞ=
X
p

HXY , p eipδt, [5]

where HXY ,  p is the contribution that oscillates with frequency pδ.
Written explicitly,

HXY , p =
XN

m, n≠m

XmP−1

α, β=0

XαX*
β
~Jδn−m,β−α−pσ

m
gsσ

n
sg. [6]

In an ideal situation, the gradient per site satisfies δ � jXαX*
β
~Jj

such that the contributions from HXY ,  p ∀  p≠ 0 can be neglected.
Under these assumptions, we arrive at an effective time-indepen-
dent Hamiltonian:

HXY ðtÞ≈HXY ,0 =
XN

m, n≠m
Jm,nσ

m
gsσ

n
sg, [7]

where couplings Jm,n can be tuned by adjusting the amplitudes
and phases of the sidebands Xα as they are given by the following:

Jm,n =
XmP−1

α, β=0

XαX*
β
~Jδn−m,β−α. [8]

It can be shown that the set of equations defined by Eq. 8 has at least
one solution for any arbitrary choice of Jm,n, that is, by choosing
Ω0 � Ωα≠0 and Jm,n ≈ ðX0X*

n−m +X*
0Xm−nÞ~J. More solutions can

be found by directly solving the set of nonlinear equations Eq. 8.
It is important to highlight that multifrequency driving also

enables the possibility to engineer geometrical phases and,
therefore, topological spin models. If the pump field propagation
is not perfectly transverse, that is, kL · rmðnÞ ≠ 0 (kL being the
wave vector of the Raman field), the effective Hamiltonian Eq. 7
acquires spatial-dependent, complex spin-exchange coefficients
via the phase of XαX*

β in Eq. 8; see later discussions.
Beyond an ideal setting, we now stress a few potential error

sources. First, for practical situations, the gradient per site δ will
be a limited resource, making Eq. 7 not an ideal approximation.
Careful Floquet analysis on time-dependent Hamiltonian in Eqs.
5 and 6 is required, to be discussed later. Second, there is an
additional Stark shift on state jsi due to the Raman fields:

δωsðtÞ=−
XmP−1

α=0

jΩαj2
4Δ

−
XmP−1

α>β

ℜ

"
ΩαΩ*

β

2Δ
eið~ωα−~ωβÞt

#
, [9]

where ℜ½.� indicates real part. We note that the time-independent
contribution in Eq. 9 can be absorbed into the energy of ωs without
significant contribution to the dynamics, whereas the time-depen-
dent terms may be averaged out over the atomic timescales that we
are interested in. We will present strategies for optimizing the
choice of δ, and minimizing detrimental effects due to undesired
time-dependent terms in Eqs. 5 and 9 in later discussions.

Independent Control of XX and YY Interactions. So far, we can fully
engineer an XY Hamiltonian with equal weight between XX and
YY terms by defining the Pauli operators ðσx, σy, σzÞ= ðσsg +
σgs, iðσsg − σgsÞ, σgg − σssÞ. We now show flexible control of XX and
YY interactions with slight modifications in the atomic level structure
and the Raman-addressing scheme. In particular, we use a butterfly-
like level structure where there are two transitions, jgi↔ jei and
jsi↔ j~ei, coupled to the same GM, as depicted in Fig. 3. We will use
two multifrequency Raman pump fields, ΩgðtÞ and ΩsðtÞ, to induce
jgi↔ j~ei↔ jsi and jsi↔ jei↔ jgi two-photon Raman transitions,
respectively.
For example, to control XX or YY interactions, we require that

the two pump fields induce spin flips with equal amplitude, that
is, σgs ± σsg. This is possible if we choose the main frequencies of
the pumps (ωL,g and ωL,s) such that ωL,s =ωL,g + 2ωg, and match
their amplitudes such that jΩg,αj=Δg = jΩs,αj=Δs, where Δs =
ωe −ωL,s, Δg =ω~e − ðωL,g +ωgÞ, and jΔs,gj � jΩs,gj.
Adiabatically eliminating the excited states as well as the GMs,

we arrive at the following Hamiltonian:

HXX ,YY ,0 =
XN

m, n>m

h
Jm,n

�
σmgs + eiϕgsσmsg

��
σnsg + e−iϕgsσngs

�
+ h.c.

i
,

[10]

where ϕgs is the relative phase between the pumps fields Ωg,s. Assum-
ing the laser beams that generate the Raman fields are copropagating
or are both illuminating the atoms transversely, that is, kL · rm,n = 0,
we can generate either X or Y components, ðσmsg ± σmgsÞ, by setting the
phase ϕgs = 0 or π; more exotic combinations are available with
generic choice of ϕgs. Moreover, if the laser beams are not cop-
ropagating, they create spatially dependent phases ϕgs,m. This can
create site-dependent XX, YY , or XY terms.

Atom Atom 

A

B

Fig. 2. Schematics to engineer long-range spin exchange interactions via
resonant Raman-scattering processes. Spin exchanges (A) jsn,gmi→ jgn, smi
and (B) jgn, smi→ jsn,gmi are allowed only when the condition ωg,m −ωg,n =
~ωβ − ~ωα is satisfied. Ωα=Δ and Ωβ=Δ control the exchange rate.
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Independent Control of ZZ Interactions. An independently con-
trolled ZZHamiltonian, in combination with arbitrary XY terms,
would allow us to engineer SU(2)-invariant spin models as well
as a large class of XXZ models, that is, the following:

HXXZ =HXY +HZZ =
XN

m, n>m

h�
2Jxym,nσ

m
gsσ

n
sg + h.c.

�
+ Jzm,nσ

m
z σ

n
z

i
.

[11]

In refs. 36 and 37, it was shown that ZZ interaction can be created
by adding an extra pump field to the jgi↔ jei transition in Fig. 1C.
However, as ZZ terms in this scheme (36, 37) do not involve flipping
atomic states, it is not directly applicable to our multifrequency pump
method. Nonetheless, because we can generate XX and YY inter-
actions independently, a straightforward scheme to engineer HZZ is
to use single qubit rotations to rotate the spin coordinates X ↔Z or
Y ↔Z, followed by stroboscopic evolutions (63) to engineer the full-
spin Hamiltonian. Spin-rotation can be realized, for example, with
a collective microwave driving Hmw =

P
n
ððΩmw=2Þσnsg + h.c.Þ, in

which a π=2-microwave pulse rotates the basis fjgin, jsing→
fðjgin + jsinÞ=

ffiffiffi
2

p
, ð−jgin + jsinÞ=

ffiffiffi
2

p g.
Thus, an HXXZ Hamiltonian can be simulated using the fol-

lowing stroboscopic evolution: fHXY ,HZZ,HXY ,HZZ, . . . g in Nt
steps as schematically depicted in Fig. 4. As shown in SI Appendix
A: Complete Derivation of Final Time-Dependent Hamiltonian,
the error accumulated in these Nt steps can be bounded by the
following:

E2 ≤
NðRJtÞ2

Nt
, [12]

where J =max½Jm,n� is the largest energy scale of the Hamiltonian we
want to simulate, and R is the approximate number of atoms coupled
through the interaction. For example, if Jm,n is a nearest-neighbor
interaction, R= 1. If Jm,n ∝ 1=jm− njη, then R∝

PN
n=11=jnjη, which

typically grows much slower than N. Because E2 ∝ 1=Nt, the Trotter
error in Nt steps can in principle be decreased to a given accuracy «
by using enough steps, that is, Nt ≥ ðNðRJtÞ2Þ=«.

More complicated stroboscopic evolutions may lead to a more
favorable error scaling (64–66), although in real experiments
there will be a trade-off between minimizing the Trotter error
and the fidelity of the individual operations to achieve HXY and
HZZ. As this will depend on the particular experimental setup, we
will leave such analysis out of current discussions. For illustra-
tion, we will only consider the simplest kind of stroboscopic
evolution that we depicted in Fig. 4.

Engineering Spin Hamiltonians for 1D Systems: The
Haldane–Shastry S= 1=2 Spin Chain
In the first example, we engineer a Haldane–Shastry spin
Hamiltonian in one dimension (56, 57):

HHS =
XN−1

m=1

XN−m

n=1

Jn
h
2
�
σmsgσ

m+n
gs + h.c.

�
+ σmz σ

m+n
z

i
, [13]

where Jn = J0=sin2ðnπ=NÞ, J0 = Jπ2=N2, and N is the number of
spins. The interaction strength decays slowly with approximately
a 1=r2 dependence while satisfying a periodic boundary condi-
tion. Such a spin Hamiltonian is difficult to realize in most phys-
ical setups that interact, for example, via dipolar interactions.
We can engineer the periodic boundary condition and the

long-range interaction Jn directly using a linear array of trapped
atoms coupled to a PCW. To achieve this, we induce atomic
ground-state energy shift mδ according to the spin index m, and
then uniformly illuminate the trapped atoms with an external
pump consisting of N frequency components ~ωα = αδ, each with
an amplitude denoted by Ωα and α= 0,1, . . . ,N − 1. Regardless
of the position of atoms, all pump pairs with frequency dif-
ference nδ contribute to the spin interaction Jn. Considering
first the XY terms, and according to Eq. 7, we demand the
following:

Jn ≈~J
XN−n−1

α=0

XαX*
α+n =

J0
sin2ðnπ=NÞ, [14]

where ~J is the GM photon coupling rate (Eq. 8) that we will
assume to be a constant for the simplicity of discussions. This
requires that the physical size of the spin chain be small
compared with the decay length of ~J. That is, Nd � ξ, where
d is the atomic separation. It is then straightforward to find
the required pump amplitudes Ωα (or equivalently Xα) by
solving Eq. 14 for all n. Notice that the system of equations
Eq. 14 is overdetermined, and therefore one can find several
solutions of it. However, we choose the solution that mini-
mizes the total intensity

P
α
jΩαj2. Fig. 5 shows that the total in-

tensity converges to a constant value for large N, as a result of
decreasing sideband amplitudes for decreasing 1=r2 interaction
strengths. This is confirmed in Fig. 5 as we see the growth of
the ratio between maximum and minimum sideband amplitudes
when N increases. The same external pump configuration can also
be used to induce the ZZ terms by applying stroboscopic proce-
dures as discussed in the previous section.

Engineering Spin Hamiltonians for 2D Systems: Topological
and Frustrated Hamiltonians
In the following, we discuss specific examples for engineering 2D
spin Hamiltonians that are topologically nontrivial. In particular,
we discuss two chiral-flux lattice models that require long-range

Atom n Atom m

Fig. 3. Atomic “butterfly” level structure. Two pump fields Ωs and Ωg,
tuned to couple to the same GM photon, are introduced to control XX and
YY interactions independently.

... Time t

Fig. 4. Scheme for generating an XXZ spin Hamiltonian using a stroboscopic
evolution. The scheme contains periodic applications of a multifrequency Raman
field to induce the HXY interaction (in green), two fast microwave pulses (or
optical two-photon transition) forming Hmw that uniformly rotate the spin basis
fjgin, jsing↔ fðjgin + jsinÞ=

ffiffiffi
2

p
, ðjgin − jsinÞ=

ffiffiffi
2

p g back and forth (in blue), and a
butterfly-like pumping scheme that applies HZZ in the rotated basis.
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hopping terms to engineer single particle flat-bands with nonzero
Chern numbers, which are key ingredients to realizing fractional
quantum Hall effects (FQHEs) without Landau levels (58, 59).
In recent years, the field of ultracold atoms has made re-

markable progress in engineering topological quantum matter.
An artificial gauge field (67) has been realized using cold atoms
loaded into shaken optical lattices (68, 69) as well as in lattices
with laser-induced tunneling (55, 54, 70–72). Various topolog-
ical models, including Haldane’s honeycomb lattice (73, 74),
have been successfully implemented. Berry curvature and to-
pological invariants such as the Chern number (74–80) can be
measured. Chiral edge currents in synthetic quantum Hall lat-
tices are also observed (81, 82). Most of the demonstrations
so far focus on probing topological band structures and single-
particle physics. Realizing strongly interacting topological
phases such as FQH states, however, still remains elusive. This
in part is due to limited topological bandwidth-to-gap ratio, but
a number of improved schemes (e.g., refs. 83 and 84) have
been proposed.
Coupling cold atoms to mobile PCW photons also allows to-

pological band engineering and band flattening. Moreover, the
pseudo spin-1/2 system already interacts like hard-core bosons
because individual atoms that participate in the spin-exchange
process cannot be doubly excited. With the addition of tunable
long-range ZZ interactions, we can readily build many-body
systems that should exhibit, for example, FQH and supersolid
phases (85), providing a powerful route toward realizing strongly
interacting topological phases.

Chiral-Flux Square Lattice Model. The first example discussed here
can be mapped to a topological flat-band model similarly de-
scribed in refs. 58, 59, and 85. The topological spin Hamiltonian
is written as follows:

Hflat =H0 +H′
H0 = t1

X
hm, ni

eiϕmnσ†mσn ± t2
X

hhm, nii
σ†mσn + h.c

H′= t3
X

hhhm, niii
σ†mσn + h.c,

[15]

in which we define σ†m ≡ σmsg and σm ≡ σmgs; h.i denotes nearest
neighbors (NN), and t1 is the coupling coefficient, hh.ii [hhh.iii]
denotes [next-]next-nearest neighbors (NNN) [and NNNN, re-
spectively] with t2 [t3] being the respective coupling coefficients.
The NN coupling phases ϕmn =±ϕ are staggered across lattice
sites, where the phase factor ϕ is the one that breaks time reversal
symmetry for ϕ≠ 0,nπ (with n∈Z). Spin exchange between next-
nearest neighbors (NNN) has real coefficients ±t2 with alternating
sign along the lattice checkerboard (Fig. 6). One can show that

already H0 has a small bandwidth with nontrivial Chern number
that, choosing t2 = t1=

ffiffiffi
2

p
and ϕ= π=4, results in a simple band

dispersion E0ðkÞ= ±
ffiffiffi
2

p
t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3+ cosðkx + kyÞcosðkx − kyÞ

p
. Adding

H′ to H0 with, for example, t3 = 1=4
ffiffiffi
6

p
t1 allows us to engineer an

even flatter lower band whose bandwidth is ∼ 1 % of the band gap.
We can use an array of atoms trapped within a 2D PCW, as

in Fig. 1B, to engineer the Hamiltonian Hflat of Eq. 15. For
simplicity, we assume that there is one atom per site although
this is not a fundamental assumption.§ As shown in Fig. 6A, we
need to engineer spin exchange in four different directions,
namely, x̂, ŷ, x̂± ŷ. We first introduce linear Zeeman shifts by
properly choosing a magnetic field gradient ∇B (SI Appendix B:
Proper Choice of Ground-State Energy Shifts in 2D Models) such
that δα = jμB∇B ·Δrαj, where μB is the magnetic moment, Δrα
are vectors associated with the directions of spin exchange:

fΔrαgα=x,y,xy,xyp = fdx̂, dŷ, dðx̂+ ŷÞ, dðx̂− ŷÞg, and d is the lattice
constant. To activate spin exchange along these directions while
suppressing all other processes, we consider a simplest case by
applying a strong pump field of amplitude Ω0 (frequency ωL) to
pair with sidebands jΩαj � jΩ0j of detunings ~ωα = δα to satisfy the
resonant conditions. To generate the desired chiral-flux lattice, we
need to carefully consider the propagation phases k0 · rn (kα · rn)
of the pump field (and sidebands), where rn = dðnxx̂+ nyŷÞ is the
site coordinate and nx,y ∈Z. In the following, we pick k= kα = π=d.
We can generate the couplings in Hflat, term by term, as follows.

Staggered NN coupling along Δrα=x,y. We consider the strong pump
field to be propagating along ŷ, that is, X0ðrnÞ= ðjΩ0j=2ΔÞe−inyπ.
At the NN site rm = rn +Δrx, it can pair with an auxiliary
sideband of detuning ~ωx = δx = jμB∇B ·Δrxj with XxðrmÞ=
ðjΩ1j=2ΔÞ½e−inyπ − iζe−iðnx+1Þπ � to generate coupling along Δrx. The
sideband is formed by two field components in «yðtÞ and «xðtÞ, propa-
gating along ŷ and x̂, respectively (Fig. 6), with an amplitude ratio of
ζ and with an initial π=2 phase difference. These two fields are used to
independently control real and imaginary parts of the spin-exchange
coefficients. Using Eq. 8 under the condition jΩ0j � jΩαj, the cou-
pling rate along Δrx is as follows:

Jm,n =~JX0X*
x = t1

½1− iζð−1Þnx−ny �ffiffiffiffiffiffiffiffiffiffiffiffi
1+ ζ2

p = t1e±iϕ, [16]

where t1 =~JjX0jjXxj
ffiffiffiffiffiffiffiffiffiffiffiffi
1+ ζ2

p
. This results in the staggered phase

pattern with tunable ϕ= tan−1 ζ. The NN coupling along Δry can

Fig. 5. Sideband amplitude for Haldane–Shastry model: total intensity

(black)
P
α
jXαj2 and maximum/minimum ratio (red) of sideband amplitudes

jXαj as a function of N.

A B

Fig. 6. Engineering a chiral-flux square lattice. (A) Two sublattices (nx +ny

odd or even) are marked by blue and red circles, respectively. Solid lines
mark the NN hopping with phase gain ϕ (arbitrarily tuned) along the di-
rection of the arrows. Dashed (dotted) lines mark the NNN hopping terms
(coefficients ±t2). NNNN long-range hopping along curved lines are included
to assist band flattening. Filled arrows indicate the propagation of pump
electric fields «y and «x, respectively; see text. (B) Resulting two-band struc-
ture with ðt2, t3,ϕÞ= ðt1=

ffiffiffi
2

p
, t1=4

ffiffiffi
6

p
, π=4Þ.

§In principle, exact physical separations between trapped atoms do not play a significant
role with photon-mediated long-range interactions. One may also engineer the spin
Hamiltonian based on atoms sparsely trapped along a photonic crystal, even without
specific ordering. It is only necessary to map the underlying symmetry and dimensionality
of the desired spin Hamiltonian onto the physical system.
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be introduced via another sideband with detuning ~ωy = δy =
jμB∇B ·Δryj and Xyðrn +ΔryÞ= −ðjΩ1j=2ΔÞ ½e−iðny+1Þπ + iζe−inxπ �.
NNN coupling along Δrα=xy,xyp . The sign of the coefficient depends
on the sublattices. To engineer these couplings, we use two
sidebands formed by field components in «xðtÞ, with detunings
δα=xy,xyp and Xαðrn +Δrxy,xypÞ=±ðjΩ2j=2ΔÞe−iπðnx+1Þ at NNN sites.
After pairing with the pump field X0 at site rn, the resulting ex-
change coefficients are Jm,n =~JX0X*

α=xy,xy* =∓t2ð−1Þnx−ny, forming
the required pattern with t2 =~JjX0jjXxyj.
NNNN coupling along 2Δrα=x,y. We use two sidebands X2x,2y =
jΩ3je−iπny=2Δ, propagating along ŷ with detunings 2δα=x,y, to in-
troduce the real coupling coefficient t3 =~JjX0jjX2xj.
Summing up, all of the components in the Raman field can be

introduced by merely two pump beams propagating along x̂ and
ŷ directions, respectively. In SI Appendix C: Pump Field Config-
urations for Engineering a Chiral-Flux Square Lattice Model, we
explicitly write down the time-dependent electric field that
contains all of the sidebands.
We note that it is also possible to simultaneously introduce both

blue-detuned (δα > 0) and red-detuned (δ−α =−δα) sidebands in
the Raman field to control the same spin-exchange term. That is,
Jm,n =~J½X0ðrnÞX*

αðrmÞ+X*
0 ðrmÞX−αðrnÞ�, which has contributions

from Xα and X−α of blue and red sidebands, respectively. Arranging
both sidebands with equal amplitudes lead to equal contribu-
tions in the engineered coupling coefficient. This corresponds
to applying amplitude modulations in the pump electric field.
In real experiments, amplitude modulation can be achieved
by, for example, the combination of acoustic-optical modulators,
and optical IQ-modulators.

“Honeycomb”-Equivalent Topological Lattice Model. To further
demonstrate the flexibility of the proposed platform, we create
Haldane’s honeycomb model (73) via a topologically equivalent
brick wall lattice (74, 86). Here, we engineer the brick wall
configuration using the identical atom–PCW platform discussed
in the previous example. Mapping between the two models is
illustrated in Fig. 7 A and B, which contains the following two
nontrivial steps: (i) generating a checkerboard-like NN-exchange
pattern in the x̂ direction; (ii) obtaining NNN (along Δrxy,xyp) and

NNNN (along 2Δry) couplings with the same strength and
with a coupling phase ϕmn =±ϕ, which alternates sign across
two sublattices. Thus, our target Hamiltonian is given by the
following:

H = t1
X
hm, ni

�
σ†mσn + h.c.

�
+ t2

X
fm, ng

�
eiϕmnσ†mσn + h.c.

�
, [17]

where h. i denotes NN pairs in the brick wall configuration (Fig.
7) and t1 is the coupling coefficient. Note that, for simplicity, we
discuss a special case where all NN-coupling coefficients from a
brick wall vertex are identical. The second summation in Eq. 17
runs over both NNN and NNNN pairs with identical coupling
coefficient t2 and alternating phase ϕmn =±ϕ (Fig. 7).
As in the previous case, we use a strong pump field (propa-

gating along ŷ), as well as several other weak sidebands to gen-
erate all necessary spin-exchange terms. Detailed descriptions on
engineering individual terms can be found in SI Appendix D:
Pump Field Configurations for Engineering a Topological Spin
Model in a Brick Wall Lattice. The most important ingredient,
discussed here, is that we can generate checkerboard-like NN
coupling (along x̂), with Jm,n =~JX0X*

x = ðt1=2Þ½1− ð−1Þnx−ny �. This is
achieved by using a sideband of detuning δx and amplitude
Xx = ðjΩj=4ΔÞ½e−inyπ + ζe−iðnx+1Þπ � at position rm = rn +Δrx, formed
by two fields propagating along ŷ and x̂, respectively. If both
fields have the same amplitude (ζ= 1), they either add up or
cancel completely depending on whether nx − ny is odd or even.
If one applies the same trick toward NN coupling along ŷ, but
with ζ≠ 1, the coupling amplitude modulates spatially in a
checkerboard pattern. Essentially, all three NN terms around a
brick wall vertex can be independently controlled, opening up
further possibilities to engineer, for example, Kitaev’s honey-
comb lattice model (87, 88).
For physical implementations, again only two pump beams can

introduce all components required in the Raman field, which is
very similar to the previous case. We stress that, by merely
changing the way the Raman field is modulated, one can dy-
namically adjust the engineered spin Hamiltonians and even
the topology, as we compare both cases. This is a unique feature
enabled by our capability to fully engineer long-range spin
interactions.
Moreover, many of the tricks discussed above can also be

implemented in 1D PCWs. It is even possible to engineer a
topological 1D spin chain, by exploiting long-range interac-
tions to map out nontrivial connection between spins. For
example, our method can readily serve as an realistic ap-
proach to realize a topological 1D spin chain as recently
proposed in ref. 89.

XXZ Spin Hamiltonian with Tunable Interaction 1=rη. In the last ex-
ample, we highlight the possibility of engineering a large class of
XXZ spin Hamiltonians, which were studied extensively in the
literature because of the emergence of frustration related phe-
nomena (60, 90–96) and their intriguing nonequilibrium dynamics
(45–50). An XXZ Hamiltonian is typically written as follows:

HXXZ =−B
X
n

σzn +
X
n<m

J
rηn,m

	
cosðθÞσznσzm + sinðθÞ�σxnσxm + σynσ

y
m

�

,

[18]

where an effective magnetic field B controls the number of excita-
tions, rm,m = jrn − rmj, and the parameter θ determines the relative
strength between the ZZ and XY interactions. This class of spin
models has been previously studied, but mostly restricted to nearest
neighbors (90–93) or dipolar (η= 3) interactions (60, 94, 95).
In our setup, one can simulate XXZ models with arbitrary η by

first introducing unique ground-state energy shifts at each of the
separation rn − rm, and then applying a strong pump field of am-
plitude Ω0 together with Nd auxiliary fields Ωα of different detunings

A B

C D
x

xy

xy * 

y

Fig. 7. Engineering a honeycomb-equivalent topological brick wall lattice.
(A) Unit cell of a honeycomb lattice. Solid lines mark the NN hopping.
Dashed lines mark the NNN hopping with phase gain ϕ along the direction
of the arrows. (B) Unit cell of a brick wall lattice. Solid lines indicate the NN
hopping as in A. NNNN hopping (curved dashed lines) and NNN hopping
(diagonal dashed lines) correspond to the complex NNN hopping in A,
making the two models topologically equivalent. (C) Brick wall lattice. Filled
arrows illustrate the pump electric fields. (D) Band structure of the brick wall
lattice, plotted with cosϕ= 3

ffiffiffiffiffiffiffiffiffiffiffi
3=43

p
(58).
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to introduce spin interactions at each separations.¶ Moreover, the
parameter θ that determines the ratio between ZZ and XY in-
teraction can be controlled by using different pump intensities in the
stroboscopic steps (SI Appendix E: PCW and Pump Field Configu-
rations for Engineering an XXZ Spin Hamiltonian with 1/rη

Interaction).
To illustrate physics that can emerge in the first experimental

setups with only a few atoms, we study the total magnetization of a
small square lattice of ns × ns (=N) 16 atomic spins. We apply exact
diagonalization restricting to Nexc ≤ 8 excitations for N = 16 spins
and cover one-half of the phase diagram with B> 0. In Fig. 8, we
explore the mean magnetization of the systemM=N = 1

2

PN
i hσzi i=N as

a function of B and θ for η= 1 (A), 2 (B), 3 (C), and NN cou-
plings (D). At θ= 0, the system behaves classically showing the so-
called “devil staircase” (97) of insulating states with different
rational filling factors and crystalline structures. As already explored
in ref. 95 for 1D dipolar systems (η= 3), the presence of long-range
interactions, compared with nearest-neighbor models, lead to
stronger frustration effects. This manifests in the magnetization
diagram with an asymmetry between θ ≶ 0. In Fig. 8, we show that
longer-range interactions lead to even higher degree of asymmetry.
Moreover, in refs. 60 and 95, it was discussed that long-range
coupling leads to the formation of supersolid phases, in which
crystalline structure and long-range order coexist. These may be
even more favored by longer-range interactions. Full character-
ization of the phases diagram is, however, beyond the scope of this
paper and will be discussed elsewhere.
Another especially interesting arena is the behavior of strongly

long-range interacting systems (η smaller than the lattice di-
mension D) under nonequilibrium dynamics. It has recently been
predicted to yield “instantaneous” transmission of correlations
after a local quench (45, 47, 48, 96), breaking the so-called Lieb-
Robinson bound.
Finally, it is interesting to point out that magnetization can be

measured by first freezing the interaction (via shutting off the pump
lasers) followed by atom number counting using state-dependent
fluorescence imaging. Coherence and off-diagonal long-range orders

of the many-body states may be probed via guided photons in an-
other propagation mode along the PCW (98).

Limitations and Error Analysis. Until now, we have mainly focused
on how to engineer H0 in an ideal situation. We neglected spon-
taneous emission or GM photon losses and considered that the
energy gradient (or δ, the ground-state energy difference between
nearest neighboring atoms) can be made very large compared
with the interaction energy scales that we want to simulate
(jδj � jJm,m+1j). Because the effect of finite cooperativities was
considered in detail in refs. 36 and 37, and their conclusions
translate immediately to our extension to multifrequency pumps,
in this work we mainly focus on the effect of finite δ. In addition,
we also discuss the effects of AC Stark shifts as in Eq. 9, and its
error contributions, together with other possible error sources.

Corrections Introduced from Higher Harmonics: A Floquet Analysis.
We discuss errors and the associated error reduction scheme
following a Floquet analysis with multifrequency driving (99,
100), applicable mainly to 1D models. Including all of the time-
dependent terms in a multifrequency pumping scheme, we have
(Eq. 5) HðtÞ= P

p
Hpe

ipδt, where Hp represents the part that oscil-

lates at frequency pδ. This Hamiltonian has a period T = 2π=δ. It
can be shown that at integer multiples of T, the observed system
should behave as if it is evolving under an effective Hamiltonian#:

Heff,1 ≈H0 +
1
δ

X
p

	
Hp,H−p



p

+
1
2δ2

X
p

		
Hp,H0



,H−p



+
		
H−p,H0



,Hp



p2

.

[19]

This means that the leading error in our simple scheme would be
on the order of J2=δ, where J is the simulated interaction
strength. However, we note that if Hp =±H−p, the leading error

term
P
p
½Hp,H−p�=ðpδÞ should vanish. In other words, first-order

error vanishes if Hp is either symmetric or antisymmetric under a
time reversal operation T . Although the original Hamiltonian
HðtÞ does not necessarily possess such symmetry, it is possible
to introduce a two-step periodic operation H2step = fH,T H,
H,T H, . . . g to cancel the first-order error while keeping the
time-independent part H2step,0 =H0 identical. This results in an
effective Hamiltonian in the Floquet picture:

Heff,2 =H0 +Herr,2 ≈H0 +
4
δ2

X
p

ð−1Þp
		
~Hp,H0



, ~Hp



p2

, [20]

where ~Hp is the (operator) Fourier coefficient of the two-step
Hamiltonian and the leading error reduces to the order of J3=δ2.
To achieve the time reversal operation, we must reverse the

phase of the driving lasers, as well as the sign of the energy
offsets between the atoms. Specifically, we can engineer a peri-
odic two-step Hamiltonian by first making the system evolve
under presumed H0 (along with other time-dependent terms) for
a time interval T, and then, for the next time interval T, we flip
the sign of the energy gradient, followed by reversing the prop-
agation direction of the Raman fields such that Xα →X*

α in Eq. 5.
As a result, all of the time-dependent Hamiltonians Hp, ∀p≠ 0,
become H−p in the second step, resulting in ~Hp = ð−1Þp ~H−p re-
quired for error reduction; whereas the time-independent
Hamiltonian H0 remains identical in the two-step Hamiltonian.
See SI Appendix F: Error Reduction and Analysis for more discussions.
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Fig. 8. Mean magnetizationM=N for a system with N= 16 atoms in a square
lattice, restricted to Nexc ≤ 8 excitations and η= 1 (A), 2 (B), 3 (C), and NN
couplings (D).

¶To simulate a square lattice of ns ×ns (=N) atomic spins, we find that the number of
different distances grows as Nd = ðnsðns + 1Þ− 2Þ=2, which is linearly proportional to the
number of atoms Nd ∝N.

#When the measurement time is incommensurate with period T, small-amplitude and
fast-oscillating spin-dynamics due to time-dependent terms in Eq. 5 manifest as extra
errors; see the discussion about micromotion in refs. 99 and 100.
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Numerical Analysis on the Haldane–Shastry Spin Chain. We now
analyze numerically and discuss error on one particular example.
For numerical simplicity, we choose the Haldane–Shastry model
as its 1D character makes it numerically more accessible. How-
ever, the conclusions regarding the estimation of errors can be
mostly extended to other models. As we have shown in Eq. 13,
the Haldane–Shastry Hamiltonian is composed by an XY term
plus a ZZ term that we can simulate stroboscopically. As we
already analyzed the Trotter error due to the stroboscopic evo-
lution, here we focus on the XY part of the Hamiltonian, which
reads as follows:

HHS,xy =
XN
m=1

XN−m

n=1

J0
sin2ðnπ=NÞ

�
σmsgσ

m+n
gs + σm+n

sg σmgs

�
, [21]

where J0 = Jπ2=N2. Following the prescribed engineering steps,
the total time-dependent Hamiltonian resulting from multiple
sidebands can be written as HðtÞ= P

p
Hpe

ipδt, with the following:

Hp =
XN
m=1

XN−m

n=1

�
Jn,ðpÞσmsgσ

m+n
gs + J*n,ð−pÞσ

m+n
sg σmgs

�
, [22]

and we have defined Jn,ðpÞ =
PN−1

α,β=0XαX*
β δn−p,β−α. Here, Xα are

fixed such that H0 =HHS,xy.
To illustrate the effect of error cancellations, we consider first

a scenario where we directly apply Eq. 22. To leading order, the
effective Hamiltonian is Heff,1 as in Eq. 19. We then analyze the
two-step driving, using the effective Hamiltonian Heff,2 in Eq. 20,
with ~Hp given by Eqs. S45 and S46.
We calculate the ground-state energies and eigenvectors of

H0, Heff,1, and Heff,2, which we denote as E0,1,2 and jΨ0,1,2i, re-
spectively, for different number of atoms and different ratios of
δ=J0. The results are shown in Figs. 9 and 10. In panels A, we
show the error in absolute value with respect to the ideal
Hamiltonian H0. Interestingly, due to particular structure of jΨ0i
and Hp, one can show that hΨ0j½Hp,H−p�jΨ0i≈ 0 and the first-
order correction to the energy vanishes. This is confirmed in Fig.
10A, where we found that the error actually scales with 1=δ2.
Moreover, it is also enlightening to compare the overlap of the

ground states as shown in Figs. 9B and 10B. We only compute

the even-atom number configuration as the odd ones are de-
generate and therefore the ground state is not uniquely defined.
We see that the ground-state overlap of Heff,2 is several orders
of magnitude better than the one with Heff,1. Moreover, its
dependence on δ is better than the 1=δ2 expectation.

The Role of Time-Dependent Stark Shifts in the Error Analysis. In the
previous discussions, we have dropped the contribution of the
time-dependent Stark shifts:

HacðtÞ=−
X
n

XmP−1

α>β

ℜ

"
ΩαΩ*

β

2Δ
ei~ωα,β t

#
σnss, [23]

where ~ωα,β = ~ωα − ~ωβ. In SI Appendix F: Error Reduction and
Analysis, we discuss its role in the effective Hamiltonian, using
the Floquet error analysis. To summarize, we evaluated the error
in the two-step driving scheme in various configurations.
Generic Hamiltonians with translational invariance. By translational
invariance, we mean that there are no site-dependent spin in-
teractions, and the spin-exchange coefficients remain identical as
we offset the spin index by one or more. This means that all
components in the pump field should drive the system with
uniform optical phases as in the Haldane–Shastry model dis-
cussed above. The error by HacðtÞ averages out to zero in the
Floquet picture. In the butterfly scheme, however, both jgi and
jsi states are pumped and they may be shifted differently. This
leads to slight modifications in the engineered XX and YY terms.
Models containing sublattices. For topological models that contain
sublattices, as in our examples, the pump fields are not perfectly
transverse and Stark shifts are site dependent, resulting in non-
vanishing error. For realistic PCW realizations, one should set
moderate pump detuning ~J=ΔJOð1Þ such that leading error
contribution will be K J3=δ2, and for δ � J, the Stark shift
terms may be ignored.
Stark shift-dominated regime. It may be possible that our sublattice
models be purposely driven with large-amplitude pumps such
that jΩj2=ΔJ δ. Stark shift contributions would become important
in the resulting spin dynamics. However, if we choose a large pump

A

B

Fig. 9. (A) Comparison of ground-state energy error jðE0 − EiÞ=E0j and (B)
ground-state overlap jhΨ0jΨiij as a function of N for Hamiltonians Heff,1

(black) and Heff,2 (red) with detuning δ=J1 = 40.

B

A

Fig. 10. (A) Comparison of ground-state energy error jðE0 − EiÞ=E0j and (B)
ground-state overlap jhΨ0jΨiij as a function of δ=J1 for Hamiltonians Heff,1

(black) and Heff,2 (red) for N= 12 atoms.
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detuning Δ>~J, the dominant error contribution can in fact be
written in the following simple form:

Herr,2 ≈
X
m, n

~Am,n

�
Jm,nσ

m
gsσ

n
sg + h.c.

�
, [24]

where ~Am,n is a site-dependent amplitude. In a special case that
only two sublattices are present, as in our examples, we note that
~Am,n may only depend on the distance rm,n and is site independent.
This “error” term would then uniformly modify the XY coupling
strengths to a new value:

J ′m,n =
�
1+ ~Am,n

�
Jm,n. [25]

The next leading order errors are a factor of ∼~J=Δ smaller than
this leading Stark shift contribution, suggesting we can always
increase the detuning Δ, while keeping jΩj=Δ constant, to reduce
the error contribution.

Other Error Sources and Heating Effects. Apart from errors arising
from multifrequency driving, there are other common error
sources in cold atoms that we have not considered so far, such as
motional heating. In the PCW platform, atoms are tightly con-
fined with a trap depth more than three orders of magnitude
larger than the recoil energy, rendering well-separated motional
bands such that effects like interband heating (101) can be
suppressed. Spin-exchange rates in the PCW platform, however,
can be adjusted to 1 MHz J jJxy,zj � 1 kHz so that the many-
body time scales (� 1 ms) can be much faster than those asso-
ciated with motional heating.
In fact, spin temperature can be decoupled from real atomic

temperature while simulating the spin models. For example, one
can polarize atomic spins initially in a strong magnetic field
(B � jJxy,zj) to approximate a zero-temperature paramagnetic
phase (17). The magnetic field can then be ramped down adia-
batically to the final value of the desired spin model. Limitations
to adiabaticity and, therefore, to the accessible spin temperature
will ultimately be limited by the fidelity of the spin-exchange (36,
37) or by motional heating that leads to dephasing, whichever
gives a more stringent bound.

Conclusions and Outlook
In this paper, we have shown that atom-nanophotonic systems
present appealing platforms to engineer many-body quantum
matter by using low-dimensional photons to mediate interaction
between distant atom pairs. We have shown that, by introducing
energy gradients in 1D and 2D, and by applying multifrequency

Raman addressing beams, it is possible to engineer a large class
of many-body Hamiltonians. In particular, by carefully arranging
the propagation phases of Raman beams, it is possible to introduce
geometric phases into the spin system, thereby realizing nontrivial
topological models with long-range spin–spin interactions.
Another appealing feature of our platform is the possibility of

engineering periodic boundary conditions, as explicitly shown in
the 1D Haldane–Shastry model, or other global lattice topology by
introducing long-range interactions between spins located at the
boundaries of a finite system. Using 2D PCWs, for example, it is
possible to create previously unavailable spin-lattice geometries such
as Möbius strip, torus, or lattice models with singular curvatures such
as conic geometries (102) that may lead to localized topological
states with potential applications in quantum computations.
We emphasize that all of the pairwise-tunable interactions can

be dynamically tuned via, for example, electro-optical modula-
tors at timescales much faster than that of characteristic spin
interactions. Therefore, the spin interactions can either be adi-
abatically adjusted to transform between spin models or even be
suddenly quenched down to zero by removing all or part of the
Raman coupling beams. We may monitor spin dynamics with
great detail: after we initially prepare the atomic spins in a
known state by, say, individual or collective microwave address-
ing, we can set the system to evolve under a designated spin
Hamiltonian, followed by removing all of the interactions to
“freeze” the dynamics for atomic state detection. Potentially, this
allows for detailed studies on quantum dynamics of long-range,
strongly interacting spin systems that are driven out-of-equilibrium.
The dynamics may be even richer because the spins are weakly
coupled to a structured environment via photon dissipations. We
expect such a platform may bring novel opportunities to the study of
quantum thermalization in long-range many-body systems, or for
further understanding of information propagation in a long-range
quantum network.
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SI Summary
In SI Appendix A: Complete Derivation of Final Time-Dependent
Hamiltonian, we give a detailed derivation of the time- dependent
effective Hamiltonian (Eq. 4 of the main text):

HXY ðtÞ=
XN

m, n≠m

XmP−1

α, β=0

XαX*
β
~J
�
rm,n

�
eiðωg,m−ωg,n+~ωα−~ωβÞtσmgsσnsg. [S1]

In SI Appendix B: Proper Choice of Ground-State Energy Shifts in
2D Models, we discuss how to properly introduce ground-state
energy shifts to engineer generic spin models in 2D. In SI Appendix
C: Pump Field Configurations for Engineering a Chiral-Flux Square
Lattice Model, SI Appendix D: Pump Field Configurations for Engi-
neering a Topological Spin Model in a Brick Wall Lattice, and SI
Appendix E: PCW and Pump Field Configurations for Engineering
anXXZ Spin Hamiltonian with 1/rη Interaction, we describe in detail
the PCW and the pump field configurations to engineer a topolog-
ical chiral-flux lattice model, a brick wall lattice model, and an XXZ
model with 1=rη dependence, respectively. In SI Appendix F: Error
Reduction and Analysis, we discuss in detail regarding error reduc-
tion and analysis.

SI Appendix A: Complete Derivation of Final Time-
Dependent Hamiltonian
The PCWs support localized one or 2D photonic guided modes
(GMs), which can be described by a Hamiltonian (using Z= 1):

HGM =
X
k

ωka†kak, [S2]

where ωk is the dispersion relation of the GMs. Neglecting counter
rotating terms, the light-matter Hamiltonian can be written as follows:

Hlm =
X
k, n

gkðrnÞakσneg + h.c., [S3]

where gkðrnÞ= gkeik·rn is the single-photon coupling constant. The
atomic Hamiltonian is given by the following:

Ha =
X
n

�
ωeσ

n
ee +ωg,nσ

n
gg

�
 , [S4]

where it is important to highlight that we introduce a site-depen-
dent energy in the hyperfine level jgin that can be achieved, for
example, by introducing a magnetic field gradient (or a Stark
shift gradient) in either 1D or 2D as depicted in Fig. 1 A and
B in the main text. This site-dependent energy, together with a
multifrequency driving for jsin ↔ jein are the key ingredients of
our proposal. Multifrequency driving with mP different compo-
nents can be described through a Hamiltonian:

HdðtÞ=
X
n

�
ΩðtÞ
2

σnsee
iωLt + h.c.

�
, [S5]

where we have used the notation σnab = jainhbj, and ωL is the main
driving frequency. All components of the driving field are em-
bedded in ΩðtÞ, which can be written as follows:

ΩðtÞ≡
XmP−1

α=0

Ωαei~ωα t, [S6]

where ~ωα are mP different frequency detunings (~ωα=0 = 0) and Ωα

the Rabi frequency that will be used to achieve full control of the

atom–atom interactions. The dynamics of the system is described
by the sum of all of the above Hamiltonians: H =Ha +HGM +
HdðtÞ+Hlm.
We are interested in the conditions where jΔj= jωe −ωLj � Ω,

such that the excited states are only virtually populated.
To adiabatically eliminate states jein, it is convenient to
work in a rotating frame defined by the transformation
U = expðiðPnωLσneet+ i

P
kωka†kakÞtÞ, which transforms the

Hamiltonian by H→UHU† − iU∂tU†. Writing each of the trans-
formed Hamiltonians, we have the following:

Hlm → ~H lm =
X
k, n

gkðrnÞakσnegeiðωL−ωkÞt + h.c.,

Hd → ~Hd =
X
n

�
ΩðtÞ
2

σnse + h.c.
�
,

Ha → ~Ha =
X
n

�
Δσnee +ωg,nσngg

�
,

[S7]

while HGM transforms to zero. Notice that, due to the multifre-
quency driving, it is not possible to find a reference frame where
the Hamiltonian is time independent. Despite the time depen-
dence, it is still possible to adiabatically eliminate the excited
states. For this purpose, we define a projector operator for the
atomic subspace, P=

P
nðσngg + σnssÞ, that projects out the excited

states, and its orthogonal counterpart, Q=
P

nσ
n
ee. Using these

operators, one can formally project out slow and fast subspaces
in the Schrödinger equation:

i
dPjΨj
dt

=PHPjΨi+PHQjΨi,

i
dQjΨi
dt

=QHPjΨi+QHQjΨi.
[S8]

By using the fact that QHQ is actually time independent and
assuming that initially there are no contributions from the ex-
cited states, that is, QjΨð0Þi= 0, one can formally integrate QjΨi
(by parts), input the result into the equation of PjΨi, and obtain
an effective Hamiltonian for the slow subspace:

i
dPjΨi
dt

≈
�
PHP−PHQ

1
QHQ

QHP

�
PjΨi≡HeffPjΨi. [S9]

The resulting effective Hamiltonian then reads as the following:

Heff = ~Heff,a + ~Heff,lm + ~H

=
X
n

 
ωg,nσgg,n −

ΩðtÞΩ*ðtÞ
4Δ

σss,n

!

−
X
k, n

gkðrnÞΩðtÞ
2Δ

akσnsge
iðωL−ωkÞt + h.c. ,

−
X
k, n

jgkðrnÞj2
Δ

a†kakσ
n
gg,

[S10]

where we have absorbed some irrelevant phases. The contribution
of ~H =−

P
k,nðjgkðrnÞj2=ΔÞa†kakσngg will be negligible because it is

proportional to the number of GM photons, which is close to 0 in
our situation (36, 37). Rewriting the effective Hamiltonian in the
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interaction picture with respect to ~Heff,a, we arrive at the follow-
ing light-matter Hamiltonian:

Heff,lmðtÞ=−
X
k, n

gkðrnÞΩðtÞ
2Δ

akσnsge
iðωL−ωk−ωg,nÞt + h.c. [S11]

Note that, for simplicity in the derivation, we have neglected the
contribution of the time-dependent Stark shift in the jsin states,
which is given by the following:

δωsðtÞ=−
ΩðtÞΩ*ðtÞ

4Δ
=−

XmP−1

α=0

jΩαj2
4Δ

−
XmP−1

α>β

ℜ

"
ΩαΩ*

β

2Δ
eið~ωα−~ωβÞt

#
.

[S12]

Here, ℜ½.� indicates real part. The time-independent contribu-
tion can be absorbed into the energy of ωs without significant
contribution to the dynamics, whereas the time-dependent terms
will be averaged out in the atomic timescales that we are inter-
ested in. We consider its possible detrimental effects in SI Ap-
pendix F: Error Reduction and Analysis, where we analyze the
limitations and other error sources.
The relaxation timescales of the GMs in the PCWs are typi-

cality much faster than the atomic ones, such that we can trace out
the photonic information to obtain an effective master equation
that describes the dynamics of the atomic system through its
density matrix evolution (103):

dρ
dt

=
X
m, n

h
Γm,nðtÞ

�
σnsgρσ

m
gs − σnsgσ

m
gsρ
�
+Γ*

m,nðtÞ
�
σmsgρσ

n
gs − ρσmsgσ

n
gs

�i
,

[S13]

where the time-dependent coefficients are given by the following:

Γm,nðtÞ=
Z ∞

0
dsfk,m,neiðωg,m−ωg,nÞte−iðωk+ωg,m−ωLÞsΩðtÞΩ*ðt− sÞ

4Δ2 ,

[S14]

with fk,m,n =
P

kjgkj2eik·ðrn−rmÞ. Expanding ΩðtÞΩ*ðt− sÞ=P
α,βΩαΩ*

βe
ið~ωα−~ωβÞtei~ωβs, we find that

Γm,nðtÞ=
X
α, β

ΩαΩ*
β

4Δ2 Γm,n,β,∞eiðωg,m−ωg,n+~ωα−~ωβÞt, [S15]

where Γm,n,β,∞ is the time-independent contribution that can be
written as follows:

Γm,n,β,∞ =
Z ∞

0
dsfk,m,ne−iðωk+ωg,m−ωL−~ωβÞs. [S16]

Using that
R∞
0 eixτdτ= πδðxÞ− iPð1=xÞ, and assuming that we are

working in the regime within the band gap (Fig. 1D; assuming an
infinite structure), that is, Δm,β =ωc −ωL +ωg,m − ~ωβ < 0 such that
the dissipative terms [δ-contribution] vanish, Γm,nðtÞ contains only
dispersive contributions,

Γm,nðtÞ= i
X
α, β

ΩαΩ*
β

4Δ2
~Jm,neiðωg,m−ωg,n+~ωα−~ωβÞt, [S17]

and ~Jm,n is defined as follows:

~Jm,n =
X
k∈BZ

jgkj2�
ωL −ωk −ωg,m + ~ωβ

� eik·ðrn−rmÞ, [S18]

coinciding with the expressions obtained in refs. 36 and 37 when
j~ωβ −ωg,mj � jωL −ωcj. Then, depending on the dimensionality
of the reservoir, we have the following (36, 37):

~Jm,n,1d ∝ e−jrm,nj=ξ, [S19]

~Jm,n,2d ∝K0
���rm,nj

	
ξ
�
, [S20]

where rm,n = rm − rn and K0ðxÞ is the modified Bessel function of
the second kind; ξ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=jΔxyj

p
controls the effective range of the

interaction; Δxy = jωc −ωLj is the effective detuning with respect
to the band edge, and A is the curvature of the band (Fig. 1C).
Notice that there is another underlying assumption in the deri-
vation, namely, that the coupling strength jgkj2 of the driven
GMs must be approximately constant for all of the sideband
frequencies ωL + ~ωα. If not, the variation of jgkj2 can be compen-
sated by adjusting sideband amplitudes Ωα. Furthermore, be-
cause we focus on full control introduced by multifrequency
drivings, we will not specify the form of ~Jm,n and simply assume
a constant ~Jm,n =~J throughout the interaction range considered.
However, one should be aware that the length scale ξ will pose
the ultimate limitation of the range of the interactions that we
can simulate.
Because we have Γp

m,nðtÞ=−Γn,mðtÞ, the evolution of the
density matrix in Eq. S13 is governed by an effective XY
Hamiltonian:

HxyðtÞ=
XN

m, n≠m

X
α, β

ΩαΩ*
β

4Δ2
~Jm,neiðωg,m−ωg,n+~ωα−~ωβÞtσmgsσnsg. [S21]

Interestingly, if we choose ωq,n −ωq,m ≠ 0, we can control the
resonant processes by adjusting the laser frequencies ~ωα. In par-
ticular, two atoms n andm, will be interacting through a resonant
process with rate ΩαΩ*

β
~Jm,n=ð4Δ2Þ when the resonant condition,

ωg,m −ωg,n = ~ωβ − ~ωα, [S22]

is satisfied. The intuitive picture is depicted in Fig. 2A in the main
text: the atom n scatters from sideband α a photon with energy
ωL + ~ωα −ωg,n into GMs. When this photon propagates to atom
m, it will only be absorbed via a sideband β that satisfies
ωL + ~ωα −ωg,n =ωL + ~ωβ −ωg,m, with the rest of the sidebands
being off-resonant; Fig. 2B depicts the reversed process. There-
fore, the Hamiltonian HxyðtÞ can be separated into time-inde-
pendent (on-resonant) and time-independent (off-resonant)
contributions: HxyðtÞ=Hxy,0 + ~HxyðtÞ, where Hxy,0 is an XY spin
Hamiltonian,

Hxy,0 =
XN

m, n≠m
Jm,nσ

m
gsσ

n
sg, [S23]

where the spin-exchange coefficient Jm,n can be fully controlled
by adjusting Ωα and ~ωα. We have the following:

Jm,n =
X
α, β

ΩαΩ*
β

4Δ2
~Jm,nδ

�
ωg,m −ωg,n + ~ωα − ~ωβ

�
, [S24]

where δð0Þ= 1 and δðx≠ 0Þ= 0. Note that, to fully control Jm,n at
each distance rm,n, we need to introduce enough sidebands to
cover all of the energy differences ωg,m −ωg,n.
If the characteristic energy scale of the spin Hamiltonian

Hxy,0 is much smaller than the minimum energy detuning
δω ≡minfjωg,n −ωg,mjg between different sites, that is, δω �
ΩαΩβ=ð4Δ2Þ, the time-dependent processes will be highly
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off-resonant, yielding the ideal Hamiltonian HxyðtÞ≈Hxy,0. In
practical situations, δω will be a limited resource because of
the requirement for large field gradient over the distance of a
PCW unit cell. Thus, in SI Appendix F: Error Reduction and
Analysis, we discuss errors created by the time-dependent
processes, and strategies to minimize the errors.
As a last remark, if we explicitly write down the phase de-

pendence of the Raman pump in Eq. S23, it follows that
Jm,n ≡ jJm,njeikL ·rm,n (and now Jm,n = Jn,m for kL · rm,n = 0). If the
illumination is not perfectly transverse, that is, kL · rm,n ≠ 0,
then Hxy,0 acquires spatial-dependent, complex coupling
coefficients:

Hxy,0 =
XN

m, n>m
Jm,n

�
eikL ·rm,nσmgsσ

n
sg + e−ikL ·rm,nσngsσ

m
sg

�
, [S25]

which gives us the possibility to engineer geometrical phases and
nontrivial topological spin models.We also note that, in the above
simple expression, we are assuming kα = kL being a constant for
all different sidebands Ωα.

Independent Control of XX and YY Interactions. So far, we have been
able to engineer full control of spin-exchange or XY Hamilto-
nians. In this section, we will show how by slight modification of
the atomic-level structure, we can engineer the XX and YY terms
independently. In particular, we use a butterfly-like structure as
depicted in Fig. 3B, where there are two transitions coupled to
the GMs, that is, jgi↔ jei and jsi↔ j~ei, and two different mul-
tifrequency Raman fields, ΩgðtÞ and ΩsðtÞ. Assuming that we
have copropagating beams or perfectly transverse illumination,
that is, kL · rm,n = 0, we can adiabatically eliminate the excited
states jei and j~ei following a similar procedure as in the pre-
vious section (Eq. S11) to obtain an effective light-matter
Hamiltonian:

Heff,lmðtÞ=−
X
k, n

gkðrnÞΩðtÞ
2Δ

ak
�
σnsg + e−iϕgsσngs

�
eiðωL−ωk−ωg,nÞt + h.c.,

[S26]

where we assumed that ΩsðtÞ=Δs =ΩgðtÞeiϕgs=Δg ≡ΩðtÞ=Δ, Δs,g =
ωe −ωL,s,g, and ϕgs is the relative phase between the two multi-
frequency Raman fields that can be adjusted at will.
Adiabatically eliminating the photonic modes under all of the

approximations that we used in the previous section, we arrive at
an effective Hamiltonian:

Hxx,yy,0 =
XN

m, n>m

h
Jm,n

�
σmgs + eiϕgsσmsg

��
σnsg + e−iϕgsσngs

�
+ h.c.

i
,

[S27]

which, depending on the phase ϕgs, can drive either X or Y
component, that is, ðσmgs ± σmsgÞ, or more exotic combinations for
general ϕgs. Moreover, if the two pump beams are not copropa-
gating, they create spatial-dependent phases ϕgs. This can create
site-dependent XX, YY , or XY terms.

Stroboscopic Engineering of ZZ Interactions. One way to engi-
neer HZZ from pure XY terms is to notice that Rxð±π=2Þ
ðσnx σmx + σny σ

m
y ÞR†

x ð±π=2Þ= σnxσ
m
x ∓σnz σmz and Ryð±π=2Þðσnx σmx +

σny σ
m
y ÞR†

y ð±π=2Þ= σny σ
m
y ± σnz σ

m
z , where we have used the fol-

lowing notation to characterize rotations along the n axis,
that is, RnðθÞ= eiσ·nθ=2. This is particularly useful when both
XY and ZZ interactions have the same coupling strengths
(e.g., the Haldane–Shastry model). For engineering ZZ terms
in a generic spin Hamiltonian, one can apply spin rotations

Ryðπ=2Þ, such that Ryðπ=2ÞσxR†
y ðπ=2Þ= σz, to transform arbi-

trary XX terms into desired ZZ interactions. Spin rotation can
be realized, for example, with a collective microwave driving
Hmw =

P
nððΩmw=2Þσnsg + h.c. Þ, in which a π=2-microwave pulse

rotates the basis fjgin, jsing→ fðjgin + jsinÞ=
ffiffiffi
2

p
, ð−jgin + jsinÞ=

ffiffiffi
2

p g.
Thus, an HXXZ Hamiltonian can be simulated using the following

stroboscopic evolution: fHXY ,HZZ,HXY ,HZZ, . . .g in Nt step as
schematically depicted in Fig. 4. The unitary evolution in each
step δt= t=Nt is given by the following:

e−iðHXY+HZZÞδt ≈ e−iHXY δte−iHZZδt
�
1−

i½HXY ,HZZ�δt2
2

�
, [S28]

where we see that the leading error isOðδt2Þ. When repeating this
step Nt times, the leading error in the evolution can be bounded
by the following:

E2 ≤
k½HXY ,HZZ�kt2

2Nt
, [S29]

for Nt � 1. It can be shown (104) that higher-order error terms
give smaller error bounds. Because of long-range interactions,
the commutator ½HXY ,HZZ� contains up to NðN − 1ÞðN − 2Þ
terms that are different from 0.† Thus, the scaling of the error
in the limit of N � 1 is approximately given by the following:

E2 ≤
NðRJtÞ2

Nt
, [S30]

where J =max½Jm,n� is the largest energy scale of the Hamiltonian
we want to simulate, and R is the approximate number of atoms
coupled through the interaction. For example, if Jm,n is a
nearest neighbor interaction, R= 1. If Jm,n ∝ 1=jm− njη, then
R∝

PN
n=11=jnjη, which typically grows much slower than N. Be-

cause E2 ∝ 1=Nt, the Trotter error in Nt steps can in principle be
decreased to a given accuracy « by using enough steps, that is,
Nt ≥NðRJtÞ2=«.

More complicated stroboscopic evolutions may lead to a more
favorable error scaling (64–66), although in real experiments
there will be a trade-off between minimizing the Trotter error
and the fidelity of the individual operations to achieve HXY and
HZZ. As this will depend on the particular experimental setup, we
will leave such analysis out of current discussions. For illustra-
tion, we will only consider the simplest kind of stroboscopic
evolution that we depicted in Fig. 4.

SI Appendix B: Proper Choice of Ground-State Energy Shifts
in 2D Models
For generic 2D lattice models, we need to introduce ground-state
energy shifts between sites ðm,nÞ separated by rm,n = rm − rn to
engineer the interaction between them. The energy shifts need to
be unique for specific site separation vector rm,n, but should be
independent of rm to preserve translational invariance, which is
generally required for spin lattice models. To do this, we can
introduce a linear magnetic field gradient ∇B · al ≡Bl, where al
(l= 1,2) are the Bravais vectors of a unit cell. We require that the
ratio q=B1=B2 of B-field gradients along two Bravais vectors
be an irrational number such that, for any rn = ðnx, nyÞ with
nx, ny ∈Z, ωg,n = μBðnx × q+ nyÞB2 is a unique number. As a re-
sult, each sideband can only induce a resonant interaction at a
specific separation rm,n. Moreover, we also need to ensure that
there exists no rm such that jωg,m −ωg,njK Jm,n that can lead to

†More precisely, ½HXY ,HZZ �=−2
PN

m≠nJ
xy
m,nΔz

m,nσ
m
gsσ

n
sg, where Δz

m,n ≡
P

q≠m,nðJzq,m − Jzq,nÞσqz .
Assuming a highly frustrated state, we simply estimate that jhΔz

m,nijK JR and
k½HXY ,HZZ �k≤ 2ðJRÞ2.
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significant time-dependent terms in Eq. 6 of the main text. In
general, for a finite-size system, this situation can be avoided.

SI Appendix C: Pump Field Configurations for Engineering a
Chiral-Flux Square Lattice Model
In this section, we explicitly write down the time-dependent electric
field Eðrn, tÞ that generates the desired Raman field ΩðtÞ≡
hsjd ·E*jei for the chiral-flux Hamiltonian, Eq. 15, discussed in the
main text. We have Eðrn, tÞ= ẑ½«xðtÞeikx̂ ·rn + «yðtÞeikŷ ·rn �e−iωL t, where
hsjdjei is the transition dipole moment. For the field propagating
along ŷ, the amplitude reads as follows:

«yðtÞ= «0 + «1
�
e−iδxt − e−iδyt

�
+ «3

�
e−2iδxt + e−2iδyt

�
. [S31]

For the field propagating along x̂, we similarly require the
following:

«xðtÞ= iζ«1
�
e−iδxt + e−iδyt

�
+ «2

�
e−iδxyt − e−iδxypt

�
. [S32]

Each term in Eqs. S31 and S32 contributes to specific sideband in
the Raman field and jΩαj= hsjd · ẑjei«α. Pairing individual side-
bands to the main Raman field introduced by the leading term
«0 � «1,2,3 leads to the desired spin-exchange interactions as
discussed in the main text.
We note that there are more ways other than Eqs. S31 and S32

to engineer the spin Hamiltonian. It is also possible to introduce
both blue-detuned (δα > 0) and red-detuned (δ−α =−δα) side-
bands in the Raman field to control the same spin-exchange
term. That is,

Jm,n =~J
h
X0ðrnÞX*

αðrmÞ+X*
0 ðrmÞX−αðrnÞ

i
, [S33]

which has contributions from Xα and X−α of blue and red side-
bands, respectively. Arranging both sidebands with equal ampli-
tudes can lead to equal contributions in the engineered coupling
coefficient. This corresponds to replacing frequency shifts e−iδα t
in Eqs. S31 and S32 with amplitude modulations cos δαt. We may
replace the fields by the following:

«yðtÞ= «0 +
«1
2
�
cos δxt− cos δyt

�
+
«3
2
�
cos 2δxt+ cos 2δyt

�
, [S34]

«xðtÞ= iζ
«1
2
�
cos δxt+ cos δyt

�
+
«2
2

�
cos δxyt− cos δxy*t

�
. [S35]

SI Appendix D: Pump Field Configurations for Engineering a
Topological Spin Model in a Brick Wall Lattice
In this section, we describe in detail how to engineer Haldane’s
topological spin model, Eq. 17 of the main text,

H = t1
X
hm, ni

�
σ†mσn + h.c.

�
+ t2

X
fm, ng

�
eiϕmnσ†mσn + h.c.

�
, [S36]

in a brick wall configuration. Introducing a strong pump field of
amplitude Ω0, propagating along ŷ, we can engineer the interac-
tion terms one-by-one as the following:

• Uniform NN coupling along ŷ: This term can be realized
with a sideband of detuning δy and Xyðrn +ΔryÞ=−ðjΩ1j=
2ΔÞe−iðny+1Þπ, pairing with the strong pump field X0ðrnÞ=
ðjΩ0j=2ΔÞe−inyπ, which propagates along ŷ. The resulting cou-
pling coefficient is t1 =~JjX0jjXyj. This term can also be ex-
tended to engineer nonuniform coupling coefficients; see
the following discussion.

• Checkerboard-like NN coupling along x̂: We introduce
a sideband of detuning δx and amplitude Xxðrn +ΔrxÞ=

ðjΩj=4ΔÞ½e−inyπ + ζe−iðnx+1Þπ �, formed by two fields propagat-
ing along ŷ and x̂, respectively. If both fields have the same
amplitude (ζ= 1), they either add up or cancel completely,
depending on whether nx + ny is odd or even. The resulting
coupling rate is real with amplitude as follows:

Jm,n =~JX0X*
x =

t1
2
½1− ð−1Þnx−ny �  , [S37]

and vanishes exactly in a checkerboard pattern. If one applies the
same trick toward NN coupling along ŷ, but with ζ≠ 1, the cou-
pling amplitude also modulates in a checkerboard pattern. Essen-
tially, all three NN terms around a brick wall vertex can be
independently controlled, opening up further possibility to engi-
neer, for example, Kitaev’s honeycomb lattice model (87, 88).

• Complex NNN and NNNN couplings: The NNNN terms can
be similarly generated by using a sideband of detuning 2δy,
and X2yðrn +Δr2yÞ= jΩ2 j

2Δ ½e−iðny+2Þπ + iζe−inxπ �, formed by two ini-
tially π=2 out-of-phase fields propagating, respectively, along ŷ
and x̂. The same trick can be used for NNN couplings using
sidebands of detunings δxy, δxyp respectively. The coupling
phase ϕ can be arbitrarily controlled by the amplitude ratio
ζ, as we showed in Eq. 16 in the main text.

To engineer this model, again only two pump beams can in-
troduce all components required in the Raman field. We can
write down the x̂-, ŷ-propagating fields with amplitude modula-
tions (that is, with equal blue- and red-sideband contributions);
for the field propagating along ŷ, we have the following:

«yðtÞ= «0 + «1

�
1
2
cos δxt− cos δyt

�

+ «2
�
cos 2δyt− cos δxyt− cos δxyp t

�
,

[S38]

and, for the field propagating along x̂, we require the following:

«xðtÞ= «1
2
cos δxt− iζ«2

�
cos 2δyt+ cos δxyt− cos δxypt

�
. [S39]

One may similarly replace amplitude modulations cos δαt by fre-
quency modulation e−iδαt to engineer the spin model, as in Eqs.
S31 and S32.

SI Appendix E: PCW and Pump Field Configurations for
Engineering an XXZ Spin Hamiltonian with 1/rη Interaction
We describe how to engineer an XXZ Hamiltonian, which is
typically written as follows:

HXXZ =−B
X
n

σzn+
X
n<m

J
jrn − rmjη

�
cosðθÞσznσzm

+ sinðθÞ�σxnσxm + σ y
nσ

y
m

��
,

[S40]

where an effective magnetic field B that controls the number of
excitations can be introduced by the detuning of addressing
beams; the parameter θ determines the relative strength between
the ZZ and XY interactions.
We can simulate any η and θ in a 2D PCW as follows:

• First, we require the decay length scale ξ to be sufficiently
large such that GM photon coupling strength ~Jðrm,nÞ is only
limited by the energy spread in the low-dimensional reservoir.
For example, in 2D with quadratic dispersion as depicted in
Fig. 1D of the main text, one can simulate any interaction that
decays faster than K0ðjrm,nj=ξÞ≈ logðξ=jrm,njÞ, where K0ðxÞ is the
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modified Bessel function of the second kind (36, 37) (SI Appendix
A: Complete Derivation of Final Time-Dependent Hamiltonian).

• Then, to simulate the jrn − rmj−η dependence, we introduce a
linear magnetic field gradient ∇B or linear ground-state en-
ergy shifts as described in SI Appendix B: Proper Choice of
Ground-State Energy Shifts in 2D Models.

• Thus, as we did in the previous discussions, we introduce a
strong pump field of amplitude Ω0 together with Nd auxiliary
fields Ωα of detuning δα to cover all of the different separa-
tions rm,n. For example, to simulate a square lattice of ns × ns
(=N) atomic spins, we can see that the number of different
distances grows as Nd = ðnsðns + 1Þ− 2Þ=2, linearly propor-
tional to the number of atoms Nd ∝N.

• Finally, the parameter θ that determines the ratio between ZZ
and XY interaction can be controlled by using different pump
intensities when doing the stroboscopic evolution.

SI Appendix F: Error Reduction and Analysis
Engineering a Two-Step Hamiltonian.As derived in SI Appendix A:
Complete Derivation of Final Time-Dependent Hamiltonian,
the resulting time-dependent couplings introduced by a mul-
tifrequency pump is HðtÞ= PpHpeipδt, where Hp represents the
part in the Hamiltonian that oscillates with frequency pδ. The
time-dependent Hamiltonian has a period T = 2π=δ, and it can be
shown that the effective Hamiltonian that repeats every time period
T; that is, e−iHeffT, where the measurements would take place in an
experiment, is given by the following (99):

Heff,1 ≈H0 +
1
δ

X
p

�
Hp,H−p

�
p

+
1
2δ2

X
p

��
Hp,H0

�
,H−p

�
+
��
H−p,H0

�
,Hp

�
p2

.

[S41]

This means that, if we apply the multifrequency pumps just as
we explained in the previous sections, the leading error would
be on the order of J2=δ, where J is the interaction strength that
we want to simulate. However, we also observe that the leading
error term

P
p½Hp,H−p�=ðpδÞ vanishes if Hp =±H−p. In other

words, first-order error vanishes if Hp is either symmetric or anti-
symmetric under time reversal operation T . Although the original
Hamiltonian HðtÞ does not necessarily possess such symmetry, it
is possible to introduce a two-step periodic operation H2step =
fH,T H,H,T H, . . . g to cancel the first-order error while keep-
ing the time-independent part H2step,0 =H0 identical. This reduces
the leading error to the order of J3=δ2.
To achieve the time reversal operation, we must reverse the

phase of the driving lasers, as well as the sign of the energy offsets
between the atoms. Specifically, we can engineer the two-step
Hamiltonian as follows:

• After applying a proper magnetic (or Stark shift) gradient to
ensure a position-dependent energy shift, we apply sidebands
using either frequency or amplitude modulations to engineer
the Hamiltonian H0 following Eq. S23.

• After a time T = 2π=δ, we flip the sign of the gradient. In 1D, if
ωg,n −ωg,m = jn−mjδ, then we switch to ωg,n −ωg,m =−jn−mjδ.
Meanwhile, we also reverse the propagation direction of
the Raman fields such that Xα →X*

α. As a result, all of the
time-dependent Hamiltonians Hp, ∀p≠ 0, become H−p in the
second step; whereas the time-independent Hamiltonian
H0 remains identical. After holding for an evolution time
T = 2π=δ, we repeat the first step.

To formally prove that the above idea leads to smaller error, we
can write our two-step periodic Hamiltonian as follows:

H2stepðtÞ=HðtÞTðtÞ+Hð−tÞTðt−TÞ, [S42]

where TðtÞ is a periodic square-wave envelope, controlling the on
and off of HðtÞ at time interval ½0,T� within a period 2T. TðtÞ can
be expanded as follows:

TðtÞ= 1
2
+
1
πi

X
m  odd

�
eimδt=2 − e−imδt=2

�
m

, [S43]

where m= 1,3, . . .. Plugging the expansion HðtÞ=PpHpeipδt into
Eq. S42, we now have the following:

H2stepðtÞ= 1
2

X
p

"
Hpe

ipδt

 
1+

2
πi

X
m  odd

�
eimδt=2 − e−imδt=2

�
m

!

+Hpe
−ipδt

 
1−

2
πi

X
m  odd

�
eimδt=2 − e−imδt=2

�
m

!#
.

[S44]

Writing H2stepðtÞ=
P

p
~Hpe

ipðδ=2Þt, the Fourier components ~Hp of
the two-step periodic Hamiltonian are as follows:

~HpðevenÞ =
1
2
�
Hp=2 +H−p=2

�
, [S45]

~HpðoddÞ =
1
πi

X
m  odd

1
m

�
Hðp−mÞ=2 −H−ðp−mÞ=2 +Hðp+mÞ=2 −H−ðp+mÞ=2

�
.

[S46]

So we have ~Hp = ð−1Þp ~H−p and the leading order error in Eq. S41
vanishes. According to the Floquet theory, we arrive at an effec-
tive time-independent Hamiltonian Heff,2 at every time interval
T2 = 4π=δ,

Heff,2 =H0 +Herr,2 ≈H0 +
4
δ2

X
p

ð−1Þp
��
~Hp,H0

�
, ~Hp

�
p2

. [S47]

Time-Dependent Stark Shifts in the Error Analysis. In the previous
discussions, we have dropped the contribution of the time-
dependent Stark shifts:

HacðtÞ=−
X
n

XmP−1

α>β

ℜ

"
ΩαΩ*

β

2Δ
ei~ωα,β t

#
σnss, [S48]

where ~ωα,β = ~ωα − ~ωβ. In the following, we discuss its role in the
effective Hamiltonian, using the Floquet error analysis.‡ The
Fourier coefficients of the Stark shifts can be written as follows:

Hac, p =
X
n

An
pσ

n
ss, [S49]

where the on-site amplitude

An
p =−Δ

X
α≠β

XαX*
β δ
�
~ωα,β − pδ

�
; [S50]

An
p may be site dependent if the phase differences between the

Raman fields Ωα vary across sites. Comparing Eq. S50 with Eq. 8
of the main text, we see that An

p ∼OðJΔ=~JÞ may be even larger

‡Here, we discuss a special case where only jsi state is shifted. For a general case when
both jgi and jsi states are shifted, see later discussion.
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than the engineered interaction J ≡max½Jm,n� if ΔJ~J. In the two-
step driving scheme, we replace the amplitude An

p by ~A
n
p according

to Eqs. S45 and S46.
As discussed in the previous section, with two-step driving,

the leading Stark shift error contribution only appears in the
second order:

Herr,2 ≈
4
δ2
X
p

ð−1Þp
��
~Hp + ~Hac,p,H0

�
, ~Hp + ~Hac,p

�
p2

, [S51]

where ~Hac,p are the Fourier coefficients of the two-step Stark-
shift Hamiltonian. Only the following nested commutators,
½½ ~Hac,p,H0�, ~Hac,p�, ½½ ~Hac,p,H0�, ~Hp�, and ½½ ~Hp,H0�, ~Hac,p� are re-
lated to the time-dependent Stark shifts, and should be evaluated
in various configurations as follows.
Generic Hamiltonians with translational invariance. By translational
invariance, we mean that there are no site-dependent spin inter-
actions, and the spin-exchange coefficients remain identical as we
offset the spin index by one ormore. This means that all components
in the pump field should drive the systemwith uniformoptical phases
as in the Haldane–Shastry model discussed above. The resulting
Fourier coefficients ~Hac,p = ~Ap

P
nσ

n
ss would have identical effect on

all spins (~Ap being a constant amplitude). As a result, the above-
mentioned commutators vanish, suggesting that the error by ~HacðtÞ
averages out to zero in the Floquet picture. In the butterfly scheme,
however, both jgi and jsi states are pumped and they may be shifted
differently. This leads to slight modifications in the engineered XX
and YY terms (see later discussion).
Models containing sublattices. For topological models that contain
sublattices, as in our examples, the pump fields are not perfectly
transverse and Stark shifts are site dependent, resulting in
nonvanishing error. However, we also note that the coupling co-
efficients appearing in the commutators ½½ ~Hac,p,H0�, ~Hac,p� and
½½ ~Hp,H0�, ~Hac,p�ð½½ ~Hac,p,H0�, ~Hp�Þ are on the order of JjΩj4=Δ2 and
J2jΩj2=Δ, respectively. For realistic PCW realizations, we may set
~J=ΔJOð1Þ. Because An

p=Jm,n ∼OðΔ=~JÞ, the energy scales of the
commutators are all on the order K J3, and the energy scale in
Herr,2 will be K J3=δ2. Therefore, for δ � J, the Stark shift terms
may be ignored.
Stark shift-dominated regime. It may be possible that our sublattice
models be purposely driven with large-amplitude pumps such that
jΩj2=ΔJ δ. Stark shift contributions would become important in
the resulting spin dynamics. However, if we choose a large pump
detuning Δ>~J, the dominant error contribution [recall that
J ∼ ð~J=ΔÞðjΩj2=ΔÞ] comes from the ½½ ~Hac,p,H0�, ~Hac,p� term, which
can be written in the following simple form:

Herr,2 ≈
4
δ2

X
p

ð−1Þp
p2

��
~Hac,p,H0

�
, ~Hac,p

�

≈
X
m, n

~Am,n

�
Jm,nσmgsσ

n
sg + h.c.

�
.

[S52]

Here, the site-dependent Fourier coefficient is defined as ~Hac,p ≡P
n
~A
n
pσ

n
ss and ~Am,n =

P
pðð4ð−1Þp+1Þ=δ2p2Þð~A

m
p − ~A

n
pÞ2 ≠ 0 in gen-

eral for interactions Jm,n that are not translationally invariant. In
a special case that only two sublattices are present, as in our
examples, we note that ~Am,n may only depend on the distance
rm,n and is site independent. This “error” term would then uni-
formly modify the XY coupling strengths to a modified value:

Jm,n′ =
�
1+ ~Am,n

�
Jm,n. [S53]

The next leading order errors are due to ½½ ~Hp,H0�, ~Hac,p�=δ2 and
½½ ~Hac,p,H0�, ~Hp�=δ2 terms, which are on the order of J2jΩj2=ðΔδ2Þ
and are a factor of ∼~J=Δ smaller than the leading Stark shift
contribution. This suggests we can always increase the detuning
Δ, while keeping jΩj=Δ constant, to reduce the error contribution.

Time-Dependent Stark Shifts in the Butterfly Scheme. We discuss the
error contribution due to time-dependent Stark shifts in the
butterfly scheme for independent control of XX or YY interac-
tions (as well as ZZ interaction in stroboscopic evolution). The
time-dependent Stark shift is as follows:

HacðtÞ=−
X
n

XmP−1

α>β

ℜ

"
Ωg,αΩ*

g,β

2Δg
ei~ωα,β t

#
σngg −ℜ

"
Ωs,αΩ*

s,β

2Δs
ei~ωα,β t

#
σnss,

[S54]

where ~ωα,β = ~ωα − ~ωβ. The Fourier coefficients of the Stark shifts
can be written as follows:

Hac, p =
X
n

An
p

Δ

�
Δgσ

n
gg +Δsσ

n
ss

�
, [S55]

where An
p =−

P
α≠β

ðΩαΩ*
β=4ΔÞδð~ωα,β − pδÞ, and we have used that

fact that jΩg,αj=Δg = jΩs,αj=Δs = jΩαj=Δ. In two-step driving, we
replace An

p with ~A
n
p according to Eqs. S45 and S46. We note that

states jgi and jsi can be driven differently when Δg ≠Δs. This
leads to different error comparing to simple Raman driving only
on one of the state.
In two-step driving, the leading Stark shift error contribution

appears in the second order:

Herr,2 ≈
4
δ2
X
p

ð−1Þp
��
~Hp + ~Hac, p,H0

�
, ~Hp + ~Hac, p

�
p2

, [S56]

where ~Hac,p are the Fourier coefficients of the two-step Stark
shift Hamiltonian. To simplify the discussion, we discuss XX in-
teraction with ϕgs = 0 and the following:

H0 =HXX ,0 =
XN

m, n>m
Jm,n

�
σmgs + σmsg

��
σnsg + σngs

�
. [S57]

For illustration, we evaluate the following nested commutators,
½½ ~Hac,p,H0�, ~Hac,p�, to access the error contribution due to time-
dependent Stark shifts. We find the following:

��
~Hac, p,H0

�
, ~Hac, p

�
=−

XN
m, n>m

Jm,n

Δ2

�
Δg −Δs

�2�~Am
p + ~A

n
p

�2�
σmgsσ

n
gs

+ σmsgσ
n
sg

�
+
�
~A
m
p − ~A

n
p

�2�
σmsgσ

n
gs + σmgsσ

n
sg

��
[S58]

=−
XN

m, n>m

Jm,n

Δ2

�
Δg −Δs

�2��~Am
p

�2
+
�
~A
n
p

�2�
σmx σ

n
x − 2~A

m
p
~A
n
pσ

m
y σ

n
y

�
 .

[S59]

We therefore see that, as long as Δg =Δs, there is no error due
to time-dependent Stark shifts as a result that both jgi and jsi
states are shifted exactly the same way. However, one may find
that the atomic-level structure for a butterfly scheme dictates
that Δg ≠Δs. As a result, we find ½½ ~Hac,p,H0�, ~Hac,p�≠ 0 even for
translational-invariant models, where ~A

n
p ≡ ~Ap are independent of

sites. This is in contrast to the case of XY Hamiltonians with the
Raman field driving only one ground state. It is, however, still
possible to minimize the error contribution by driving with ~J >Δ
and δ � J, as the criterion needed for sublattice models (see
main text).
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In the case of strong driving with Δg ≠Δs and Δ>~J, the
commutator ½½ ~Hac,p,H0�, ~Hac,p� can be made as the dominant
error contribution. Interestingly, as seen from Eq. S59, this error

term is in fact also driving XX and YY interactions. It is therefore
desirable to take the Stark shift contribution into account while
finding the proper pump fields to create the target Hamiltonians.
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Tailoring the interactions between quantum emitters and single
photons constitutes one of the cornerstones of quantum optics.
Coupling a quantum emitter to the band edge of a photonic crystal
waveguide (PCW) provides a unique platform for tuning these
interactions. In particular, the cross-over from propagating fields
E(x)∝ e±ikxx outside the bandgap to localized fields E(x)∝ e−κx jxj

within the bandgap should be accompanied by a transition from
largely dissipative atom–atom interactions to a regime where dis-
persive atom–atom interactions are dominant. Here, we experi-
mentally observe this transition by shifting the band edge
frequency of the PCW relative to the D1 line of atomic cesium
for �N=3.0±0.5 atoms trapped along the PCW. Our results are
the initial demonstration of this paradigm for coherent atom–

atom interactions with low dissipation into the guided mode.

quantum optics | nanophotonics | atomic physics

Recent years have witnessed a spark of interest in combining
atoms and other quantum emitters with photonic nano-

structures (1). Many efforts have focused on enhancing emission
into preferred electromagnetic modes relative to vacuum emis-
sion, thereby establishing efficient quantum matter–light inter-
faces and enabling diverse protocols in quantum information
processing (2). Photonic structures developed for this purpose
include high-quality cavities (3–7), dielectric fibers (8–13), me-
tallic waveguides (14–16), and superconducting circuits (17–19).
Photonic crystal waveguides (PCWs) are of particular interest,
because the periodicity of the dielectric structure drastically modifies
the field propagation, yielding a set of Bloch bands for the guided
modes (GMs) (20). For example, recent experiments have shown
superradiant atomic emission because of a reduction in group ve-
locity for an atomic frequency near a band edge of a PCW (21).
A quite different paradigm for atom–light interactions in pho-

tonic crystals was proposed in the works in refs. 22–25 but has yet
to be experimentally explored. In particular, when an atomic
transition frequency is situated within a bandgap of a PCW, an
atom can no longer emit propagating waves into GMs of the
structure. However, an evanescent wave surrounding the atoms
can still form, resulting in the formation of atom–photon-bound
states (26, 27). This phenomenon has attracted new interest re-
cently as a means to realize dispersive interactions between atoms
without dissipative decay into GMs. The spatial range of atom–

atom interactions is tunable for 1D and 2D PCWs and set by the
size of the photonic component of the bound state (28, 29). Many-
body physics with large spin exchange energies and low dissipation
can thereby be realized in a generalization of cavity quantum
electrodynamics (CQED) arrays (30, 31). Fueled by such perspec-
tives, there have been recent experimental observations with atoms
(21, 32, 33) and quantum dots (34, 35) interacting through the GMs
of PCWs, albeit in frequency regions outside the bandgap, where
GMs are propagating fields.
In this manuscript, we report the observation of collective dis-

persive shifts of the atomic resonance around the band edge of a
photonic crystal. Thermal tuning allows us to control the offset of

the band edge frequency (νBE) of the PCW relative to the frequency
νD1 of the D1 line of cesium (Cs). In both the dispersive do-
main [i.e., νD1 outside the bandgap with electric field EðxÞ∝ e±ikxx]
and reactive regime [i.e., νD1 inside the bandgap with EðxÞ∝ e−κxjxj],
we record transmission spectra for atoms trapped along the PCW,
as illustrated in Fig. 1A.
To connect the features of the measured transmission spectra

to underlying atom–atom radiative interactions, we have developed
a formalism based on the electromagnetic Green’s function. The
model allows us to infer the peak single-atom frequency shift of
the atomic resonance J1DðΔBEÞ and GM decay rate Γ1DðΔBEÞ as
functions of detuning ΔBE = νD1 − νBE between the atomic νD1 and
band edge νBE frequencies. From the observation of superradiant
emission outside the bandgap, we infer the average number of
trapped atoms to be �N = 3.0± 0.5, as described in ref. 21 and SI
Text. (SI Text has thorough descriptions of the design and charac-
terization of the PCW, how to obtain the attenuation coefficient
and the band edge position of the PCW, how to generate the
atomic spectra fits, and the measurements of atomic decay.) For
frequencies inside the bandgap (ΔBE = 50 GHz), the ratio of dis-
sipative to coherent rates is R=Γ1D=J1D = 0.05± 0.17 because of
the exponential localization of the atomic radiation in the bandgap.
For comparison, the prediction for our system from CQEDmodels
alone isRCQED = 0.30± 0.04. Other than yielding a more favorable
ratio between coherent and dissipative GM rates, PCWs offer
significant advantages compared with conventional cavities as

Significance

In recent years, there has been considerable effort to bring
ultracold atoms into the realm of nanophotonics. Nanoscopic
dielectric devices offer unprecedented opportunities to engi-
neer novel capabilities for the control of atom–photon inter-
actions. In particular, photonic crystals are periodic dielectric
structures that display a photonic bandgap where light cannot
propagate and provide a new setting for coherent photon-
mediated interactions between atoms with tunable range. Here,
we report the initial observation of cooperative atom–atom in-
teractions around the band edge of a photonic crystal wave-
guide. Our experiment opens the door to fascinating scenarios,
such as exploring many-body physics with large spin exchange
energies and low dissipation.
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platforms for atom–light interfaces. First, the range of interaction
in a PCW is tunable, ranging from effectively infinite to nearest
neighbor (28, 29, 36), in contrast to the fixed infinite range of a
cavity. Second, because of the multimode nature of PCWs, one
can use different GMs as different interaction channels to
which the atoms simultaneously couple.

Alligator PCW
Fig. 1A provides an overview of our experiment with atoms
trapped near and strongly interacting with the transverse-
electric (TE) mode of an alligator PCW. The suspended silicon
nitride (SiN) structure consists of Ncells = 150 nominally identical
unit cells of lattice constant a= 370 nm and is terminated by 30
tapering cells on each side, as shown in the SEM images in Fig. 1B.
The tapers mode-match the fields of the PCW to the fields of
uncorrugated nanobeams for efficient input and output coupling.
Design, fabrication, and characterization details are described in
refs. 21, 32, and 33. Fig. 1C shows the nominal cell dispersion
relations for the TE (polarized mainly along y) and transverse-
magnetic (TM)modes (polarized mainly along z). After release of the
SiN structure from the silicon (Si) substrate, a low-power CF4 etch is
used to align the lower/“dielectric” TE band edge (νBE) to the Cs D1
transition (νD1). The TM mode has band edges far detuned from the
both the Cs D1 and D2 lines. In our experiment, the TEmode is used
to probe the atoms, whereas the TM mode with approximately
linear dispersion serves to calibrate the density and trap properties.
To better understand atomic interactions with the PCW, it is

helpful to visualize the spatial profile of the fields generated absent
atoms, when light is input from one end. Fig. 2A shows the mea-
sured intensity along the length of the PCW as a function of probe
detuning δBE = νp − νBE around the band edge, where νp is the

probe frequency. The intensity was measured by imaging weak
scatterers along the length of the alligator PCW that, after cali-
bration, serve as local probes of the intensity (SI Text). Fig. 2B
shows the corresponding finite difference time domain (FDTD)
simulated intensity (37). In both images, resonances appear at
νp = ν1,2,3 because of the weak cavity formed by the reflections of
the tapers. The spatial modulation of the intensity at the resonances
caused by the cavity effect is approximated by jEðxÞj2 ≈ cos2ðδkx   xÞ,
where δkx = π=a− kx is the effective wavevector near the band edge.
The nth resonance at frequency νn is such that δkx = nπ=L, where
L is the effective length of the PCW (including field penetration
into the tapers). Fig. 2C shows a plot of jEðxÞj2 for a probe input
at frequency νp = ν1 at the first resonance. Inside the bandgap
(ΔBE > 0), the field is evanescent, and δkx = iκx. Fig. 2D plots jEðxÞj2
for probe frequency νp = νBG inside the bandgap and shows the
exponential decay of the intensity. Using a model for the field in a
finite photonic crystal (SI Text), we fit the measured intensity for each
frequency in Fig. 2 A and B and extract δkx and κx, thereby obtaining
the dispersion relations shown in Fig. 2E. Importantly, we determine
the band edge frequency for the actual device to be νBE − ν1 = 133± 9
GHz relative to the readily measured first resonance at ν1, which is in
good agreement with the FDTD-simulated result of 135 GHz.
Both ν1   and  νBG are relevant to our measurements of trans-

mission spectra with trapped atoms. The presence of a “cavity”
mode at ν1 implies that the emission of an atom with transition
frequency νD1 = ν1 will generate a field inside the PCW with an
analogous spatial profile to that of the cavity mode, as shown in
Fig. 2C. By contrast, atomic emission in the regime with
νD1 = νBG within the bandgap will excite an exponentially local-
ized mode centered around the atomic position xA, as illustrated
in Fig. 2F.

A

B

C

Fig. 1. Description of the alligator PCW. (A) Atoms are trapped above the PCW in an optical dipole trap formed by the reflection of a near-normal
incidence external beam (21). The orange cylinder represents the confinement of the atoms, which is ΔxA ’ ±6 μm along the axis of the device and
ΔyA ’ ΔzA ’ ±30 nm in the transverse directions (SI Text). The three green spheres represent trapped atoms that interact radiatively through the fun-
damental TE GM, polarized mainly along y. The decay rate for a single atom into the PCW is Γ1D (red arrows), and the decay rate into all other modes is Γ′
(wavy red arrow). (B) SEM images of portions of the tapering and PCW sections. The suspended SiN device (gray) consists of 150 cells and 30 tapering cells
on each side. The lattice constant is a= 370 nm, and thickness is 185 nm. (C ) Calculated band structure of the fundamental TE (solid) and TM (translucent)
modes using an eigenmode solver (38) and the measured SEM dimensions, which are modified within their uncertainty to match the measured bands. The
black curves represent the Bloch wavevector kx (lower axis). The red curves show the attenuation coefficient κx of the field for frequencies in the bandgap
(upper axis) and are calculated by means of an analytical model (SI Text). The dotted lines mark the frequencies of the Cs D1 (νD1 = 335.1 THz) and D2

(νD2 = 351.7 THz) transitions. The dielectric band edge is indicated as νBE. The pink shaded area represents the TE bandgap. The gray shaded area rep-
resents the light cone.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1603788113 Hood et al.DISTRIBUTION A: Distribution approved for public release.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603788113/-/DCSupplemental/pnas.201603788SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603788113/-/DCSupplemental/pnas.201603788SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603788113/-/DCSupplemental/pnas.201603788SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603788113/-/DCSupplemental/pnas.201603788SI.pdf?targetid=nameddest=STXT
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/www.pnas.org/cgi/doi/10.1073/pnas.1603788113


Experiment
Cs atoms are trapped above the surface of the alligator PCW, as
shown in Fig. 1A, using a similar experimental setup to that
reported in ref. 21. As described in more detail in ref. 21, the decay
rate Γ1D into the GM is exponentially sensitive to the trap position
above the surface of the alligator PCW. Our calculations and
measurements of Γ1D agree with COMSOL simulations (38) of the
trap position, and thus, we are able to determine that the Cs atoms
are trapped 145± 15 nm above the surface of the alligator PCW.
Atoms are cooled and trapped in a magneto-optical trap (MOT)
around the PCW and then loaded into a dipole trap formed by the
reflection from the device of a frequency red-detuned side illumi-
nation (SI) beam. The SI beam has a waist of 50 μm, and the po-
larization is aligned along the x axis for maximum reflection from
the PCW. We measure a 1=e trap lifetime of ∼ 30 ms, and we es-
timate an atom temperature of ∼ 30 μK from time of flight mea-
surements. From the trap simulations (details are in SI Text), we
infer that the atoms are confined to a region 145 nm above the
surface with dimensions ΔxA ’ ±6 μm and ΔyA ’ ΔzA ’ ±30 nm.
The simulations predict that more energetic atoms escape the trap
and collide into the structure, because the weakest direction of the
trap is along the diagonals of the y–z plane due to Casimir–
Polder forces.
To estimate the average number of trapped atoms, we measure

the superradiant atomic decay rate when the atom frequency νD1 is
tuned to the first resonance ν1 of the PCW (Fig. 2C) (21). Because
of the strong dissipative interactions between the atoms and with
J1D ≈ 0, the collective decay rate is enhanced compared with the
single-atom decay rate, and we infer an average atom number of
�N = 3.0± 0.5 (SI Text). In the low-density limit �N � 1, the mea-
sured decay rate corresponds to that of a single atom. We then
measure a GM decay rate Γ1D = ð1.5± 0.2Þ  Γ0, which is in good
agreement with the FDTD simulations at the calculated trap lo-
cation (SI Text).
After the atoms are loaded into the trap, we send a weak 5-ms probe

beam Ep with frequency νp in either the TE or TM GM through the

PCW and record the transmitted intensity
��tðνpÞ  EpðνpÞ

��2. The probe
beam scans near the Cs 6S1=2,F = 3→ 6P1=2,F′= 4 transition.
Each experimental cycle runs at a fixed detuning ΔA = νp − νD1

A

C D F

B E

Fig. 2. Characterization of the alligator PCW. (A) Measured and (B) calculated electric field magnitudes along the PCW as functions of position x along
the PCW and probe detuning δBE = νp − νBE relative to νBE for the dielectric band edge. (C and D) GM intensity jEðxÞj2 along PCW at two different fre-
quencies: (C ) ν1 for the first cavity resonance showing a resonant “supermode” and (D) νBG inside the bandgap displaying exponential decay (Ncellsκxa= 2.0
at νBG). For clarity, the number of cells of the nominal and tapering sections is decreased by a factor of five, and the Bloch periodicity (a= 370 nm), al-
though present, is not shown in the intensity. The orange ovals represent the confinement of the atoms in the optical trap above the PCW, which is
ΔxA ’ ±6 μm along the x axis of the device and ΔyA ’ ±30 nm, with a PCW gap width of 220 nm. (E ) Dispersion relation for the projected wavevector kx
and attenuation constant κx vs. probe detuning δBE deduced for the PCW obtained by fitting the data in A to a model of the device (SI Text). The shaded
pink area represents frequencies inside the bandgap. (F ) Plot of the exponentially localized emission e−2κx jx−xA j from an atom (green sphere) at position xA
with transition frequency νD1 = νBG inside the bandgap.

A B

C D

Fig. 3. Transmission spectra of the PCW (A) without and (B–D) with
trapped atoms. (A) Measured (black) and FDTD-simulated (blue) trans-
mission spectra of the PCW without atoms as a function of the probe
detuning from the band edge frequency, δBE = νp − νBE. There is a minimum
extinction of 25 dB for the transmitted signal because of fabrication im-
perfections. (B–D) Transmission spectrum for �N= 3.0± 0.5 trapped atoms
vs. probe detuning ΔA = νp − νD1 at several frequencies around the band
edge. The solid lines are fits using the transmission model in Eq. 4 aver-
aged over atom positions and different atom numbers. In B, the Cs D1 line
is aligned to the first cavity resonance ν1, resulting in symmetric spectra for
both the TE (black; ●) and TM (gray; ▲) modes. The TE spectra in C are for
frequencies on the negative side (ν−; ●) and positive side (ν+; ▲) of the ν1
resonance. The TE spectra in D are taken at the band edge (νBE; ●) and 60
GHz (νBG; ▲) into the bandgap. The asymmetry of the line shapes in C and
D implies a large ratio of coherent to dissipative interactions.
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relative to the free space atomic transition frequency νD1. We
observe little change of signal during the 5-ms probing time, sug-
gesting that the atom number is approximately constant over this
interval. The band edge of the PCW is tuned thermally by shining
an external laser onto a corner of the chip, where its light is
absorbed by the Si substrate. Hence, the Cs D1 line can be aligned
to be either outside or inside the bandgap with an uncertainty
δν ’ 5 GHz. The transmission for each data point is normalized by
the transmission with no atoms (

��t0Ep
��2), resulting in a measure-

ment of T=T0 ≡ jt=t0j2. The logarithm of the measured and simu-
lated transmission spectra with no atoms T0 =

��t0ðνpÞ��2 is shown
in Fig. 3A.
Examples of transmission spectra with atoms are shown in Fig.

3 B–D. Note that the spectra are shifted 12.5 MHz because of
both the alternating current (AC) Stark shift of the dipole trap
and the modified Lamb shift induced by the non-GMs of the
PCW. Notably, the transmission spectra at the first cavity reso-
nance ν1 exhibit a characteristic Lorentzian “dip,” and they be-
come more asymmetric as the frequency moves into the bandgap.

Transmission Model
We have developed a model to extract quantitative values for
collective decay rates and frequency shifts from these atomic
transmission spectra (39). Although the formalism of waveguide
(40) and CQED (41) is well-suited for describing atoms coupled
to uniform waveguides and cavities, it is not general enough to
capture the rich physics of atomic interactions in the vicinity of a
PCW. Instead, we describe our system by using a spin model in
terms of the classical electromagnetic Green’s function, in which
the atoms (or “pseudospins” for ground and excited states) in-
teract through the emission and reabsorption of guided photons
(42–44).
The electromagnetic Green’s tensor Gðr, ri,ωÞ is related to the

electric field Eðr,ωÞ emitted by a dipole pi oscillating at frequency ω
at position ri by Eðr,ωÞ= μ0ω2Gðr, ri,ωÞ · pi (43, 45). The dipole
moment operator for atom i is decomposed into p̂i = diσ̂ige + dpi σ̂

i
eg,

where di is the dipole matrix element and σ̂ige = jgihej is the atomic
coherence operator between the ground and excited states. The
spin model describes a system of N atoms coupled to and driven by
a GM of the PCW. In the low-saturation and steady-state regime,
expectation values for the atomic coherences (σige = hσ̂igei) are de-
scribed by a linear system of equations (39) (SI Text):

�
~ΔA + i

Γ′
2

�
σige +

XN
j=1

  gij   σgej =−Ωi, [1]

where ~ΔA = 2πΔA = 2πðνp − νD1Þ is the detuning between the
probe and the atomic angular frequencies, Ωi is the classical drive
(Rabi frequency) for the ith atom due to the GM input field, and
gij = Jij1D + iΓij

1D=2, where Jij1D = μ0ω2
p=Z  d

p
i ·Re Gðri, rj,ωpÞ · dj and

Γij
1D = 2μ0   ω2

p=Z  d
p
i · Im Gðri, rj,ωpÞ · dj. Each atom can also decay

into non-GMs, including free space, with a decay rate Γ′. The
appearance of the real and imaginary parts of the Green’s function
in the coherent and dissipative terms has the classical analog that
the in-phase and out of phase components of a field with re-
spect to an oscillating dipole store time-averaged energy and
perform time-averaged work, respectively. Because the first
term in Eq. 1 is diagonal, the atomic coherences can be un-
derstood in terms of the eigenvalues fλξg for ξ= f1,⋯,Ng and
the eigenfunctions of the matrix g, which has elements that are
gij; the real and imaginary parts of fλξg correspond to frequency
shifts and GM decay rates, respectively, of the collective
atomic mode ξ.

The transmission spectrum can be expressed in terms of the
eigenvalues of g as (39) (SI Text)

t
�
~ΔA,N

�
t0
�
~ΔA
� =

YN
ξ=1

 
~ΔA + iΓ′

�
2

~ΔA + iΓ′
�
2+ λξ

!
, [2]

where t0ð~ΔAÞ is the transmission without atoms. In the case of a
single atom i, the only eigenvalue is proportional to the self-
Green’s function, λξ = gii, which implies that the transmission spec-
trum is a direct measurement of the self-Green’s function at the
atom’s position. For noninteracting atoms, the off-diagonal ele-
ments of g are zero, and thus, the eigenvalues are single-atom
quantities, λξ = gii, because there is no cooperative response.
In contrast, for interacting atoms, the off-diagonal elements

are nonnegligible, and there is a cooperative response. In par-
ticular, for the atomic frequency inside the bandgap of a pho-
tonic crystal, the elements gij are well-approximated by (28)

gij =
�
J1D +

iΓ1D

2

�
cos
�πxi
a

	
cos
�πxj
a

	
e−κxjxi−xjj, [3]

where the cosine factors arise from the Bloch mode, and the
decay length 1=κx is caused by the exponential decay of the field
and results in a finite range of interaction. For an infinite pho-
tonic crystal, Γ1D = 0, because the light is localized, and there is
no dissipation through the GM. However, for a finite PCW of
length L, the GM dissipation Γ1D ∼ e−κxL is finite because of
leakage of the mode out of the edges of the structure.
In the limit where the interaction range 1=κx is much larger than

the separation δxij =
��xi − xj

�� of the atoms, κx   δxijK κx  ΔxA � 1,
the GM input field couples predominantly to a single collec-
tive “bright” mode of the system with eigenvalue λB =

PN
i=1gii =PN

i=1ðJii1D + i  Γii
1D=2Þ. Formally, when κx = 0, the matrix g is sepa-

rable [gij = uiuj with ui ∝ cosðπxi=aÞ] and therefore, only has one
nonzero eigenvalue. In this single bright mode approximation, the
transmission spectrum is given by

t
�
~ΔA,N

�
t0
�
~ΔA
� =

~ΔA + iΓ′
�
2�

~ΔA +
PN
I=1

Jii1D

�
+ i
�
Γ′+

PN
i=1

Γii
1D

�

2
. [4]

We have confirmed numerically that this single bright mode
picture is valid within the limits of our uncertainties for the range
of frequencies of the measured spectra in Fig. 3. In particular, at
the largest detuning into the bandgap ΔBE = 60 GHz, we have
κx  ΔxA ’ 0.2. However, for atomic frequencies farther away from
the band edge, this approximation eventually breaks down (e.g.,
at the bandgap center, κx  ΔxA ’ 1.5).
The single bright mode approximation is also valid in conven-

tional CQED. The Green’s function matrix is then given by
gij = ðJ1D + iΓ1D=2Þ  cosðkcxiÞcosðkcxjÞ, where kc is the wavevector of
the standing wave cavity. In this case, J1D ∝Δc=ð1+Δ2

c=γ2cÞ and
Γ1D ∝ γc=ð1+Δ2

c=γ2cÞ, where Δc is the detuning from the cavity
resonance and γc is the cavity linewidth. Importantly, the ratio of the
imaginary dissipative coupling rate to the real coherent coupling
rate falls off with inverse detuning, RCQED =Γ1D=J1D = γc=Δc for
large Δc, whereas in a PCW bandgap, the fall off is exponential with
detuning from the band edge.

Analysis of Measured Spectra
Eq. 4 provides a direct mapping between the observed trans-
mission spectra in Fig. 3 B–D and the electromagnetic Green’s
function of the PCW. In particular, the line shape is Lorentzian for
purely dissipative dynamics (Jii1D = 0). This line shape is precisely
what occurs at the frequency of the first cavity mode ν1, as shown
in Fig. 3B. When the GM band edge frequency is moved toward
the atomic resonance νD1, the dispersive interactions are switched
on, and the transmission line shape becomes asymmetric, displaying
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a Fano-like resonance (46), which can be observed in Fig. 3 C and
D. The appearance of an asymmetry in the atomic spectra directly
reveals a significant coherent coupling rate J1D, which is evident for
frequencies that are in the bandgap region.
For all relevant frequencies, the spectra for the TM GM are

approximately symmetric, since JTM1D � ΓTM
1D � Γ′ for this GM

polarization. An example of a TM spectrum is shown as the gray
curve in Fig. 3B. Because the TM bandgap is so far detuned, the
TM spectra are insensitive to ΔBE and serve as a calibration signal.
Using a waveguide transmission model, we fit the TM transmission
spectra and extract a TMGM decay rate of ΓTM

1D = ð0.045± .01Þ  Γ0.
This rate is ∼ 30 times smaller than the TE GM decay rate Γ1D at
the first resonance ν1. The ratio ΓTE

1D=Γ
TM
1D ≈ 30 is explained well by

the expected slow-light and cavity enhancement of the PCW de-
scribed in ref. 21 and SI Text. From the TM fits, we also measure
Γ′= 2π× 9.1 MHz, which because of inhomogeneous broadening,
is larger than the value Γ′= 2π× 5.0 MHz predicted from FDTD
numerical calculations (SI Text). While tuning the band edge to
move the atomic frequency νD1 into the bandgap, TM spectra are
measured to confirm in situ that the average atom number is ap-
proximately constant over the course of the measurements of
TE spectra.

To obtain quantitative values for the collective frequency shifts
and decay rates by fitting the TE atomic spectra to the spin
model, we must account for the fluctuations in atom number and
position along the x axis. As depicted in Figs. 1A and 2C, trapped
atoms are approximately free to move along the axis of the de-
vice (SI Text). Their coupling rates are thus modulated by the fast
oscillation of the Bloch function, which near the band edge, is
approximately given by Eq. 3, Γii

1DðxiÞ=Γ1D cos2ðxiπ=aÞ, and
Jii1DðxiÞ= J1D cos2ðxiπ=aÞ. Here, Γ1D and J1D are the peak values.
Furthermore, although we know the average atom number
�N = 3.0± 0.5 atoms from independent decay rate measurements (SI
Text), the atom number for each experiment follows an unknown
distribution. To model the experimental transmission spectra, such
as in Fig. 3, we average the expression in Eq. 4 over the atom
positions fxig along the Bloch function and assume a Poisson
distribution P �NðNÞ for the atom number N. We extract peak values
Γ1D and J1D and plot the resulting cooperative rates �NΓ1D and
�NJ1D in Fig. 4A. In particular, at the first resonance ν1, the fitted
single-atom GM decay rate is Γ1D = ð1.4± 0.2Þ  Γ0, which is in good
agreement with the decay time measurements Γ1D = ð1.5± 0.2Þ  Γ0.
More generally, we find good agreement between our measure-
ments and our model for the transmission, as shown in Fig. 3.
The ratio R=Γ1D=J1D is shown in Fig. 4B. Because of the ev-

anescent nature of the field in the bandgap, R decays exponen-
tially with increasing detuning into the bandgap, R∼ e−κxL, where
κx ∝

ffiffiffiffiffiffiffiffiffi
ΔBE

p
(28). As displayed in Fig. 4B, Inset, the ratio between

the GM decay rate Γ1D to the GM frequency shift J1D diminishes
much faster than would be the case in traditional settings, such as
CQED, for which RCQED = γc=Δc, where γc is the cavity linewidth
and Δc is the detuning from the cavity resonance. Indeed, by
performing an average of the last two measured frequencies in the
bandgap, we obtain R= 0.05± 0.17, whereasRCQED = 0.30± 0.04,
where we have taken the cavity linewidth to be a value consis-
tent with the linewidth of the first cavity mode of the PCW
(γc = 60± 8 GHz). We can then infer that the ratio of dispersive
to dissipative rates for GM atom–atom interactions (i.e., 1=R)
is significantly larger than is the case in conventional optical
physics (e.g., CQED).
Beyond the detailed modeling involving Eq. 4 averaged over

fluctuations in atom number and position, we also fit the spectra with
a generic transmission model with no averaging, as shown in SI Text.
We find that the effective values for the GM decay rate and fre-
quency shift are related to �NΓ1D and �NJ1D in Fig. 4A by a simple
scale factor related to the averaging of the Bloch function cos2ðπx=aÞ.

Despite favorable scaling between the collective frequency shifts
and the GM decay rates, there is still one obstacle to overcome
toward purely dispersive atomic interactions, namely atomic emis-
sion into non-GMs (characterized by Γ′). For this PCW structure,
the FDTD-simulated value of this decay rate is Γ′ ’ 1.1  Γ0 (21) for
the relevant frequencies of our experiment. Fortunately, it has been
shown that suitable engineering of a wide variety of nanophotonic
structures can lead to significant reductions in Γ′=Γ0 (47). For ex-
ample, ref. 1 reviews possibilities to achieve Γ′ ’ 0.1Γ0.

Concluding Remarks and Outlook
In conclusion, we report the initial observation of cooperative atom
interactions in the bandgap of a PCW. By tuning the band edge
frequency of the PCW, we are able to modify the interactions be-
tween the atoms that are trapped close to the device, reducing the
dissipative relative to coherent coupling for frequencies inside the
bandgap of the PCW. Equipped with a theoretical model based on
the electromagnetic Green’s function of the alligator PCW, we infer
quantitative values for the collective frequency shifts and decay rates
experienced by the atoms. Moreover, we infer a suppression of the
dissipative interactions with respect to the coherent ones several
times larger than is customarily obtained in atomic physics. This
measurement provides the first stepping stone toward the realization
of quantum many-body physics in bandgap systems.

A

B

Fig. 4. (A) Peak dissipative interaction rate �NΓ1D (green) and coherent rate
�NJ1D (blue) around the band edge. With �N determined from independent
decay rate measurements, the values for Γ1D, J1D are found from fits of the
transmission model in Eq. 4 to the measured atomic spectra and normalized
by the free space decay rate Γ0 = 2π× 4.56 MHz for the Cs D1 line. The lines
are the predictions from a numerical model based on 1D transfer matrices.
(B) The measured and calculated ratios R=Γ1D=J1D. The average of the two
points in the bandgap gives a ratio of the dissipative to coherent coupling
rate R= 0.05± 0.17. B, Inset is a comparison of R for the PCW calculation
(solid line) and CQED model (dashed line). From the measured linewidth of
the first cavity resonance, γc = 60±8 GHz, CQED predicts that RCQED = γc=Δc,
where Δc = ðνp − ν1Þ. Note that −J1D is plotted to more readily compare Γ1D

and J1D as the band edge is approached.
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Moreover, near-term extensions of our experiment open the door
to exploring new physical scenarios by using atoms coupled to PCWs.
By trapping the atoms at the center of the device with GMs (47), we
expect a sixfold increase to both coupling strengths J1D and Γ1D rel-
ative to Γ′. Moreover, by probing the atoms with the Cs D2 line tuned
to the upper band edge, where the intensity at the position of the
atoms is larger, we expect a further improvement by a factor of two.
Combining these two effects, we expect a significant enhancement of
interactions through GMs compared with conventional free space
interactions, namely J1D,Γ1D > 10×Γ′. This improvement could enable
investigations of new paradigms for atom–photon interactions (28, 29,
36), including the recently proposedmultiphoton dressed states (26, 27).

Note. After the submission of this manuscript, ref. 48 reported
measurements of transmission spectra for a superconducting qubit
placed within the bandgap of a microwave photonic crystal.
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SI Text
In our results in the main text, we measure collective frequency shifts
anddecay rates for atoms trapped near aPCW. In our previouswork in
ref. 21, we trapped multiple atoms in an optical dipole force trap
above the PCW. We operated with the atomic frequency outside the
bandgap in a regime with large decay rate Γ1D and small coherent
coupling rate J1D. By varying the density and observing the super-
radiant decay of the atoms Γð�NÞ

tot =ΓSRð �NÞ+Γ1D +Γ′, we inferred the
single-atom GM decay rate Γ1D and the average number of atoms �N.
Importantly, this measured single-atom decay rate Γ1D agreed well
with the FDTD simulations at the calculated trap location. This
good agreement is in part because of the nanometer-scale ac-
curacy in which the alligator PCWs are fabricated, which is re-
quired for both the band edge alignment and the device quality.
In our paper, the band edge of the PCW is tuned around the

resonance frequency of the atoms, and we observe the dominance of
the GM-coherent coupling rates J1D over the dissipative coupling
rates Γ1D, which is associated with atomic radiative processes
for operation within the bandgap. To extract quantitative values for
these parameters from our measurements of transmission spectra
for atoms trapped along a PCW, we have developed theoretical
techniques based on Green’s functions for the PCW, which are new
to atomic physics. As in ref. 21, the average number of atoms �N is
measured by way of transient decay. Our principal finding relates
to the turning off of the GM decay rate Γ1D, which in the bandgap,
is predicted to be exponentially suppressed, while nonetheless,
retaining appreciable coherent processes described by J1D.
For the spectra in our paper, the transmission through the

device decreases exponentially in the bandgap, and more time is
required to measure the transmission spectra compared with our
work in ref. 21. Unfortunately, Cs slowly coats the PCW during
the measurement, both degrading the device quality and shifting
the band edge out of the thermal tuning range. As a result, each
device only has a limited lifetime for making transmission mea-
surements. For our experiment, we first repeated superradiance
measurements outside the bandgap at the first resonance ν1 of the
PCW to determine the average number of atoms �N and the single-
atom GM decay rate Γ1D and show that the atoms behave as
a collective emitter. Then, with an average number of �N ’ 3, we
measured transmission spectra as the atomic frequency is shifted
into the bandgap. We simultaneously measured the TM spectra to
verify that the atom number is constant over the course of the
measurements of the TE spectra.

1. Alligator PCWDesign and Fabrication.The schematic of the device
is shown in Fig. S1A. Light is coupled into and out of the device
by mode-matching the output of an optical fiber to that of a
terminated rectangular-shaped waveguide on both sides of the
device (33). The fibers are glued permanently in etched v
grooves at optimized coupling positions. The design and fabri-
cation of the alligator PCW are detailed in ref. 33. The PCW is
fabricated on a 200-μm Si chip coated with a 200-nm-thick SiN
film. The SiN device is suspended across a 2-mm-wide window
after the Si substrate beneath it is removed, as shown in the image
in Fig. S1B. The window allows optical access for the trapping and
cooling of atoms around the device.
The dielectric TE mode band edge (νBE) is aligned to within

200 GHz of the Cs D1 line (νD1 = 335.12 THz) by a low-power
inductively coupled reactive ion CF4 etch. The directional etch thins
the SiN layer at a rate of 3 nm/min until a transmission measure-
ment confirms alignment of the band edge. The final geometric
dimensions of the device used in the text are given in Fig. S1C.

For the experiment, the chip is placed at the center of an ul-
trahigh vacuum chamber, and the optical fibers exit through Teflon
fiber feedthroughs. We measure the transmission through a device
using a superluminescent diode as the source and an optical
spectrum analyzer as the detector. The measured transmission and
reflection spectra are shown in Fig. S2A. The transmission spectra
near the lower (dielectric) and upper (air) band edges are com-
pared with an FDTD simulation in Fig. S2 B and C.

2. Alligator Dispersion Relation from Scattering Images. Here, we de-
scribe the analysis performed for the PCWdispersion relations in Fig.
2E. We send a single-frequency laser beam through the device and
image the scattered light with a microscope. We integrate the image
over the width of the PCW to produce a single plot of intensity vs.
position. Then, we scan the laser frequency around the lower band
edge to produce a 2D plot of scattered intensity as a function of
position x along the device and frequency ν of the input light.
The weak scattered light comes from small fabrication imper-

fections or intrinsic material defects and serves as a probe of the local
intensity. Because each scatterer emits light at a different rate, we
have to normalize the scattered light by a reference intensity spec-
trum in which the intensity of the device is known. For this reference
spectrum, we average over the intensities for frequencies far from the
band edge, where the PCW behaves like a waveguide and the local
intensity in the device is approximately constant. The normalized
data are shown in Fig. S3, and a zoomed-in version is in Fig. 2A.
In the FDTD simulation described above, we calculate the in-

tensity along the center of the device for frequencies around the band
edge. Taking the maximum intensity in each unit cell and normal-
izing by the intensity in the waveguide regime, we produce Fig. 2B.
Next, we fit the intensity spectrum at a given frequency to a

model to extract the wavevector for that frequency. Near the
band edge, the field in an infinite PCW is well-approximated by
EðxÞ∝ cosðxπ=aÞeiδkxx, where δkx = π=a− kx in the propagating
band ðΔBE < 0Þ and δkx = iκx inside the bandgap (ΔBE > 0). The
edges of a finite photonic crystal reflect with Rt because of a large
group index mismatch between the waveguide section and the
PCW. The resonances of the weak cavity result in the cavity-like
intensity profiles seen at frequencies ν1,2,3,4,5 in Fig. S3. The in-
tensity at a point x along a finite photonic crystal of length L is
well-approximated by a model based on the intensity in a cavity
with two mirrors of reflectivity Rt:

jEðxÞj2 = I1  
��eiδkxx −Rte2iδkxLe−iδkxx

��2, [S1]

where I1 is related to the overall intensity. This expression ignores
the fast oscillations of the Bloch function, which go as cos2ðxπ=aÞ.
Note that in the bandgap (when κxL � 1), the intensity model
reduces to an exponential decay: jEðxÞj2 ≈ I1   e−2κxx. Interestingly,
at the band edge (δkx → 0 and Rt → 1), the intensity displays a
quadratic dependence on the position: jEðxÞj2 ∝ ðL− xÞ2.

For each frequency, we fit the intensity along the nominal cells
with Eq. S1 and extract δkx. This procedure allows us to map out
the dispersion relation δkxðΔBEÞ, which we show in Fig. 2E for the
measured and simulated data. From the simulated fits, we find
that the effective length of the cavity is 162 cells, which is slightly
longer than the 150 nominal cells and is expected due to the
leakage of the cavity field into the tapering sections. We use this
length for the fits of the measured data. Examples of the mea-
sured and simulated intensities are shown in Fig. S4. The fluctu-
ation of the intensity, even after the normalization, is most likely
caused by the spatial profile of Bloch mode. The normalization
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trace is taken by averaging data for excitation frequencies farther
away from the band edge where the Bloch mode contrast is re-
duced, whereas the data closer to the band edge have a large
Bloch mode fringe visibility. However, the fluctuations do not
affect the statistical fits at the level of accuracy required for the
dispersion relation in this work.
The frequency for which δkx = 0 is defined as the band edge

frequency νBE. To extract this frequency and the curvature of the
dispersion relation near the band edge, we fit the measured and
simulated dispersion relations with a dispersion model (21),

δkxðνÞ= 2π
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνBE2 − νÞðνBE − νÞ
4ζ2 − ðνBE2 − νBEÞ2

s
, [S2]

where νBE (νBE2) is the lower (upper) band edge frequency, and ζ
is a frequency related to the curvature of the band near the band
edge. From the measured data fits, the distance between the
first resonance and band edge is νBE − ν1 = 133± 9 GHz and
ζ= 227± 3 THz. The simulated data give νBE − ν1 = 135.0 GHz,
and the curvature parameter is ζ= 226.0 THz. These values are
in good agreement with the dispersion relation from the eigen-
mode simulation of the infinite PCW in Fig. 1C, which gives
ζ= 229.1 THz.

3. SI Trap. In Fig. S5A, we show a schematic of the SI trap. The SI
beam is nearly perpendicular to the axis of the device, has a
50-μm diameter, and has a polarization aligned to the axis of the
device (Fig. S5A). The orange areas in Fig. S5A represent the
approximate localization of the atoms along x, y. By time of flight
measurements of atoms in the dipole trap, we estimate an
atomic temperature of ∼30 μK. From the beam waist and atom
temperature, we can infer that the atoms are localized to
2ΔxA = 12 μm along the x axis.

Simulations of the SI trap potential are shown in Fig. S5 B–D.
The simulations are performed for the infinite structure with
COMSOL. The trap depth is calibrated with the 12-MHz AC
Stark shift measured from the atomic spectra. Fig. S5B shows the
trap potential in the y–z plane. Atoms that are significantly
hotter than ∼ 100 μK are expected to crash into the device along
the diagonal directions because of Casimir–Polder forces. Fig.
S5C shows the trapping potential along the z axis. Atoms are
trapped at z= 240 nm. Fig. S5D shows the trap along the x axis.
Because of the photonic crystal, the trap modulates by ∼ 10 μK
along the x axis, which is significantly smaller than the estimated
trap temperature.
In addition to the results in Fig. S5, we have also carried out

numerical modeling of the optical trap using Lumerical simula-
tions (37) of the actual finite length PCW and tapers shown in
Fig. S1. We have as well included Casimir–Polder potentials as in
ref. 47. More details of the trap are discussed in ref. 21.

4. Transmission Model and Atomic Spectra Fits. Here, we give a more
detailed description of the transmission model in the text, which
follows the derivation given in ref. 39. A system ofN atoms coupled to
a radiation field can be described using formalism based on the
classical Green’s function (42, 43). In the Markovian limit, the field
can be eliminated to obtain a master equation that describes the
interactions between the atoms: _̂ρA =−i=Z½H, ρ̂A�+L½ρ̂A�. Here, the
Hamiltonian H gives the coherent evolution of the system:

H =−Z
XN
j=1

  ~ΔAσ̂eej − Z
XN
j, i=1

  Jji1Dσ̂eg
j σ̂gei − Z

XN
j=1

�
Ωjσ̂egj +Ωp

j σ̂ge
j
�
,

[S3]

and the Lindblad operator L½ρ̂A� gives the dissipation of the system:

L½ρA�=
XN
j, i=1

Γ′δji +Γji
1D

2
 

× ð2σ̂ge
j ρ̂Aσ̂eg

i − σ̂egj σ̂gei ρ̂A − ρ̂Aσ̂eg
j σ̂gei Þ. [S4]

The Hamiltonian and the Lindblad are expressed in terms of the
atomic coherence operator σ̂jge = jgihej between the ground and
excited states of atom j. The Hamiltonian contains terms for the
free-atom evolution, the coherent atom–atom interactions, and
the classical drive, respectively; ~ΔA = 2πΔA = 2πðνp − νD1Þ is the
detuning between the probe and the atomic angular frequencies,
and Ωj is the Rabi frequency for atom j caused by the GM field.
The atom–atom spin exchange rate Jji1D is expressed in terms of
the real part of the GM Green’s function as

Jji1D =

 
μ0ω2

p

Z

!
dpj ·Re G

�
rj, ri,ωp

�
· di, [S5]

where ωp = 2πνp, and dj is the dipole matrix element of atom j.
The Lindblad term is responsible for the dissipative interactions
in the system, which include atomic decay into non-GMs (Γ′) and
GMs (Γji

1D). The decay rate into the GM is written in terms of the
imaginary part of the Green’s function as

Γji
1D = 2

 
μ0ω2

p

Z

!
dpj · Im G

�
rj, ri,ωp

�
· di. [S6]

For low atomic density along the PCW, the nonguided emission
rate Γ′ is not cooperative and is described here as a single-atom
effect, with δji as the Kronecker delta.
In the low saturation regime, the Heisenberg equations for the

expectation value of the atomic coherences (hσ̂egi= σeg) can be
solved for with the master equation leading to

_σgej = i
�
~ΔA + i

Γ′
2

	
σgej + i Ωj + i

XN
i=1

gji   σgei , [S7]

where the complex coupling rate is

gij = Jij1D +
iΓij

1D

2
=

 
μ0ω2

p

Z

!
dpi ·G

�
ri, rj,ωp

�
· dj, [S8]

which is the Green’s function between atoms i and j projected onto
the respective dipole matrix elements. In the steady-state solution,
the time derivative is set to zero, and the result is the linear system
of equations for the atomic coherences given in the text.
The electric field in the system can be expressed in terms of the

input probe field E+ðr,ωpÞ and solutions for the atomic coherences
(39):

E+�r,ωp
�
=E+

p

�
r,ωp

�
+ μ0ω

2
p

XN
j=1

 G
�
r, rj,ωp

�
· djσgej . [S9]

An expression for the transmission through a quasi-1D structure
can be derived by solving the steady-state system of equations in
Eq. S7 for the atomic coherences σjge and substituting them into
Eq. S9. The expression can then be simplified in the case where
the dipole moments are real, in which case g is a complex sym-
metric matrix with eigenvectors and eigenvalues g  uξ = λξ   uξ, and
where the Green’s function is well-represented by a 1D Green’s
function. The final result is (37)
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t
�
~ΔA,N

�
t0
�
~ΔA
� =

YN
ξ=1

 
~ΔA + iΓ′



2

~ΔA + iΓ′


2+ λξ

!
, [S10]

where t0ð~ΔAÞ is the transmission without atoms.
In the bandgap, the matrix g of elements gij is well-approximated by

gij =
�
J1D +

iΓ1D

2

	
cos
�πxi
a

�
cos
�πxj
a

�
e−κxjxi−xj j. [S11]

As discussed in the text, when the interaction range 1=κx is much
larger than the separation distance (κxjxi − xjj � 1), there is only
a single atomic bright mode for which the frequency shift and
GM decay rate are given by

PN
i=1J

ii
1D and

PN
i=1Γ

ii
1D. The trans-

mission spectrum for N atoms in the single bright mode approx-
imation is given by

TðΔA,NÞ=T0ðΔAÞ
~ΔA + iΓ′=2

~ΔA + iΓ′=2+
P
i

�
Jii1D + iΓii

1D



2
�

�������
�������
2

, [S12]

where ~ΔA = 2πΔA = 2πðνp − νD1Þ is the detuning between the
pump and the atomic frequency, and T0ðΔAÞ is the device trans-
mission when no atoms are present.
Explicitly accounting for the atoms’ positions by substituting

Eq. S11 into Eq. S12, we find that the transmission is given by

TðΔA,N; x1, . . . , xNÞ=T0ðΔAÞ

=
Δ′

A + iΓ′=2

Δ′
A + iΓ′=2+

PN
j=1

�
J1D + iΓ1D=2

�
cos2

�
xjπ
a

�
���������

���������

2

.
[S13]

We have defined Δ′
A ≡ ~ΔA +Δ0 to account for the AC Stark shift

Δ0 of the atoms because of the dipole trap.
To accurately model the experimental conditions, we average

the transmission model over atom positions and atom number.
During a single measurement, the atoms are free to move along
the length of the device over the range 2ΔxA as in Fig. S5A, evenly
sampling the Bloch function. We let hTðΔA,N; x1, . . . , xNÞix be
an average over all positions, that is,

hTðΔA,N; x1, . . . , xNÞix

=T0ðΔAÞ
Za
0

dx1 . . . dxN
Δ′

A + iΓ′=2

Δ′
A + iΓ′=2+

PN
j=1

�
J1D + iΓ1D=2

�
cos2

�
xjπ
a

�
���������

���������

2

.

We repeat the measurement multiple times for each frequency
ΔA. Each experiment can have a different number of atoms, and
therefore, we average the transmission expression over a Poisson
distribution P �NðNÞ, which is a function of the average atom
number �N. The transmission model averaged over both atom
positions and atom numbers is given by

hTðΔA,N; x1, . . . , xNÞix,N
=T0ðΔAÞ

X
N

  P �NðNÞhTðΔA,N; x1, . . . , xNÞix. [S14]

This expression is the final form of the transmission model that we
use to fit the atomic spectra.

Assuming �N = 3.0, which is obtained from the atom decay rate
measurement, we fit the TE atomic spectra with Eq. S14 and
extract Γ1D, J1D, Γ′, and Δ0 for each frequency. We show the
values of Γ1D and J1D in Fig. 4A. We show the AC Stark shift and
nonguided decay rate in Fig. S6.
The average of the nonguided decay rate Γ′ for the TE data

outside the bandgap is Γ′= 2π× 9.1 MHz, which is significantly
larger than the expected value from the FDTD simulation,
Γ′= 2π× 5.0 MHz. This additional inhomogeneous broadening
could be caused by finite temperature of the trapped atoms,
vector shifts from circular light in the SI beam, atom density-
dependent collisional broadening, stray magnetic fields, and
electric fields from charges in the dielectric. We estimate the
contributions individually and find that they likely do not explain
the extraneous broadening. We note that the estimate of tem-
perature of trapped atoms could be improved in the future (49),
and it may help shed light on our excess broadening.
Interestingly, the fitted Γ′ increases in the bandgap and is as

high as Γ′= 2π× 16 MHz for the last measured point. One pos-
sible explanation is that this is because of the breakdown of the
single bright mode approximation, because coupling to multiple
collective atomic modes should result in a broadened linewidth.
Another possibility is that, because there is a large extinction of
the TE mode in the bandgap, there might be some mixing be-
tween the TE and TM modes.
We also measure transmission spectra for the TMmode, which

have band edges that are far-detuned from the Cs transitions.
The transmission in this waveguide regime is described by an
optical depth (OD) model

T
T0

= exp
−OD

1+
�

2Δ′A
ΓTM
1D +Γ′

�2
2
664

3
775, [S15]

where the resonant OD is given by OD= 2 �NΓTM
1D =~Γ′. We fit the

TM spectra with this model and extract Γ′, Δ0, and ΓTM
1D (as-

suming �N = 3). The values of Γ′ and Δ0 are shown with the TE
data in Fig. S6. The averaged ΓTM

1D value is 0.044 Γ0, which is
∼ 30 times smaller than Γ1D for the TE mode at the first res-
onance ν1 and clearly shows the enhanced interaction because
of the PCW.

5. Simple TransmissionModel. In the text, we fit atomic transmission
spectra with the averaged transmission model from Eq. S14 to
extract the peak GM decay rate Γ1D and frequency shift J1D. In
this section, we fit the spectra with a transmission model that
involves no averaging, and we extract an effective decay rate Γeff

1D
and frequency shift Jeff1D, which will be smaller than the corre-
sponding peak values because of the averaging of the cos2ðπx=aÞ
Bloch function as the atoms move along the x axis of the trap. In
the single bright mode approximation discussed in the text, the
transmission for a single collective mode with total decay rate A
and frequency shift B is given by

TðΔAÞ
T0ðΔAÞ=

Δ′
A + iΓ′=2

Δ′
A +B+ i ðΓ′+AÞ=2

����
����
2

. [S16]

Here, the detuning Δ′
A includes the AC stark shift Δ′

A =ΔA +Δ0.
Because the average number of atoms �N ≈ 3 is measured inde-
pendently in a decay rate measurement, the collective rates A
and B are related to the effective rates by A= �NΓeff

1D and
B= �NJeff1D. Examples of the fitted spectra for atoms outside and
inside the band gap are shown in Fig. S7. The translucent lines in
Fig. S7 are the expected signals for average atom numbers of
�N = 1 and �N = 9.
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The fitted values of A and B are plotted for each detuning
from the band edge ΔBE in Fig. S8A. The results are qualitatively
similar to the corresponding plot in Fig. 4A, except that the ef-
fective rates A= �NΓeff

1D and B= �NΓeff
1D are scaled down by η= 0.42

because of the modulation of the Bloch function cos2ðπx=aÞ. The
solid lines in Fig. S8A are the same theoretical curves as in Fig.
4A, except that they are scaled by η= 0.42.

The ratio of A=B=Γeff
1D=J

eff
1D is plotted in Fig. S8B. Because the

scale factors η cancel, the result is in good agreement with the
corresponding plot of R=Γ1D=J1D in Fig. 4B. The black theory
curve in Fig. S8B is the same as in Fig. 4B. Whereas the peak
decay rate and frequency shift are sensitive to the specific model,
the ratio of dissipative to coherent coupling is mostly model
insensitive.

6. Atom Decay Measurement. We exploit the superradiance of atoms
trapped near the alligator PCWto determine themean atomnumber
�N and the peak atom decay rate Γ1D (at ν1) into the GMs.
As established in ref. 21, the total exponential decay rate of the

atoms is Γtotð �NÞ=ΓSRð �NÞ+Γð1Þ
tot , where ΓSR is the �N-dependent

superradiance decay rate, and Γð1Þ
tot is the observed single-atom

decay rate. We note that, when �N � 1, Γtot ∼Γð1Þ
tot =Γ1D +Γ′, because

only the single-atom decay rates Γ1D into the GM and Γ′ into the
environment remain; Γ′ is numerically calculated to be 2π× 5.0
MHz for the Cs D1 line at the trapping site near the PCW (21).
We excite the atoms with a weak resonant light pulse through

the GM, whereas the first resonance ν1 near the band edge is
aligned with the Cs D1 line. Pulse properties are as in ref. 21. The
subsequent fluorescence decay rates Γtot are determined through
exponential fits. By varying the trap holding time tm after loading,
the mean atom numbers for the decay measurements are varied.
The decay rates are empirically fitted in an exponential form as
a function of holding time tm (21) : ΓtotðtmÞ=ΓSRe−tm=τSR +Γð1Þ

tot , as
shown in Fig. S9. From the fitted asymptotic value of the decay

rates, we deduce that the apparent single-atom decay rate is
Γ1D = ð1.12± 0.14ÞΓ′.

Because the atoms are randomly distributed along the x direction
in the trap, the observed decay curves are results after spatially av-
eraging the coupling rates Γ1DðxÞ. Assuming a uniform distribution
of N atoms around the center of the PCW, a more detailed model
specifies the form of fluorescence intensity decay as (21)

INðtÞ= γ2e−ðNγ+Γ′Þt · I0ðγtÞN−2 ·
�
NðN + 1Þ

4
I0ðγtÞ2

−
�
N
4γt

+
N2

2

	
I0ðγtÞI1ðγtÞ+NðN − 1Þ

4
I1ðγtÞ2

�
,

[S17]

where γ=Γ1D=2, and Ik is the modified Bessel function. Numerically
simulating the decay of single atoms in the trap by using I1ðtÞ, we
compare between the exponentially fitted value Γ1D and the value of
Γ1D used for I1ðtÞ, which yields a ratio of Γ1D=Γ1D = 0.81. This ratio
is consistent with the ratio of 0.8± 0.3 from measurement at long
hold time tm = 94 ms, when single-atom decay predominates (shown
as the asymptote in Fig. S9). Based on the values of Γ1D deduced
above, we conclude that Γ1D = ð1.4± 0.2ÞΓ′.

At early holding times, the atom number N noticeably fluctuates
around some mean values �NJ 1. To capture this �N-dependent
variation, we fit the decay curves by averaging INðtÞ with weight
function of Poisson distribution probability P �NðNÞ (21). The fitting
parameter here is �N, whereas we fix the value of Γ1D in Eq. S17.
The fit is consistent with �N = 3.0± 0.5 at tm = 4 ms when we carry
out the transmission spectra measurement. Based on the trap life-
time τ= 30 ms, we further deduce that �N ∼ 0.1 at tm = 94 ms.

The linear �N dependence of superradiance is given by
ΓSR = η · �N ·Γ1D, where η= 0.36± 0.06 is some linear coefficient
that has a value is consistent with that reported in ref. 21.

A

B C

Fig. S1. Alligator PCW chip and device overview. (A) Schematic of the entire device. The alligator PCW is at the center. Optical fibers (green) on both ends
couple light into and out of the waveguide. The waveguide is surrounded by supporting and cooling structures. (B) Image of a 10× 10-mm PCW chip. Multiple
waveguides stretch across the window of the chip, with the PCWs at the center of the window. The window provides optical access for trapping and cooling
atoms around the device. Reproduced from ref. 33, with the permission of AIP Publishing. (C) Overview of device variables. The lattice constant for the entire
device is a= 370 nm. The device dimensions are measured with an SEM and calibrated to the lattice constant. The device dimensions are w = 310± 10 nm,
2A= 262± 10 nm, g= 220± 10 nm, winitial = 268± 15 nm, and ginitial = 165± 10 nm. The thickness of the SiN is 185± 5 nm. The index of refraction for Si3 N4 is
n= 2.0 around our frequencies of interest.
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A

B C

Fig. S2. Measured and simulated transmission and reflection spectra. (A) Transmission (black) and reflection (blue) spectra through the entire chip for the TE
mode (polarization in the plane of the device). The red dashed lines are the Cs D1 (335.1 THz) and D2 (351.7 THz) lines. The TE transmission efficiency through
the entire device near the dielectric band edge is ∼ 23%, indicating that the single-pass efficiency from the fiber to device is approximately 49%. Most of the
loss is caused by the waveguide to fiber coupling section. The gray line is the TM transmission (polarization perpendicular to the plane of the device). Note that
the lower band edge of the TM mode is visible at around 365 THz but far detuned from both Cs D1,2 transitions. (B and C) TE transmission data are normalized
and compared with an FDTD simulation (37). The simulation uses the measured device parameters in Fig. S1 that are adjusted within the uncertainty of the
measurements so that the positions of the first resonances match those in the measured spectra.

Fig. S3. Normalized magnitude of the scattered electric field of the PCW for frequencies ΔBE = νp − νBE around the band edge. The schematic in Left shows the
PCW with the number of unit cells reduced by five.
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A B

Fig. S4. The electric field magnitude in (A) the PCW at the first resonance ν1 and (B) the bandgap νBG = νBE + 60 GHz. The points show measured data, and the
black lines are from an FDTD simulation. The electric field magnitude jEj is normalized by the electric field magnitude far from the band edge; thus, these plots
give the enhancement of jEj relative to the waveguide regime.

A

B C D

Fig. S5. (A) Schematic of the atoms in the SI trap. Given the estimated atom temperature of 30 μK, we infer that the atoms are confined to a length of
2ΔxA = 12 μm along the x axis. (B–D) Far-off–resonance optical trap (FORT) potentials for the SI trap simulation (B) in the y–z plane (21), (C) along the z axis, and
(D) along the x axis.

A B

Fig. S6. Fitted values from the averaged transmission model for TE (black circles) and TM (gray triangles) spectra. (A) Fitted AC Stark shift Δ0. (B) Fitted Γ′.

Hood et al. www.pnas.org/cgi/content/short/1603788113 6 of 7DISTRIBUTION A: Distribution approved for public release.

http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/www.pnas.org/cgi/content/short/1603788113


A B

Fig. S7. Fits of transmission spectra with the model in Eq. S16 for when the atomic resonance frequency is aligned to (A) the first resonance and (B) in the
bandgap. From the decay rate measurement, the average number of atoms is �N≈ 3 for the full (central) curves in A and B, while the translucent curves give the
expected spectra for �N= 1 and �N= 9 atoms.

A B

Fig. S8. (A) Fitted values for the effective collective decay rates A and frequency shifts B for various detunings from the band edge ΔBE. The solid lines are the
expected results for the peak values as in Fig. 4A, except scaled down by η= 0.42. (B) Ratio A=B=Γeff

1D=J
eff
1D along with the theoretical prediction for the peak

ratio Γ1D=J1D from Fig. 4B.

Fig. S9. Total decay rates as a function of holding time tm. The red solid curve is the empirical fit, and the dash-dot line represents the fitted asymptotic total
decay rate at very long times. The blue dashed lines specify fitted error boundaries. The fit yields τSR =16ms, ΓSR = 1.5Γ′, and the asymptote Γð1Þ

tot=Γ′= 2.12± 0.14.
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