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LiTbF4 has the potential to replace traditional magneto-optic garnet materials as a Faraday rotator in high
power laser systems due to its high Verdet constant. New measurements are reported of the ordinary and extraor-
dinary refractive indices of LiTbF4 as functions of wavelength and temperature, respectively, as well as their
corresponding Sellmeier expressions. Consequently, the Verdet coefficient was calculated and plotted as a func-
tion of wavelength and temperature. These measurements will aid in further development of LiTbF4 as an optical
isolator. © 2016 Optical Society of America

OCIS codes: (160.3820) Magneto-optical materials; (160.4670) Optical materials; (230.3810) Magneto-optic systems.

http://dx.doi.org/10.1364/AO.55.000834

1. INTRODUCTION

Magneto-optical materials have been the subject of intense
study for several decades. The independence of the polarization
rotation on propagation direction makes magneto-optic devices
ideal for a variety of applications including switching, modu-
lation, interferometry, imaging, biomolecular detection, and
optical isolation [1–5]. Faraday rotators are the basis for optical
isolation and light amplitude modulation. For example, the
most popular and principal technique in high power laser sys-
tems is linear polarization rotation by Faraday elements (FEs)
for laser output extraction of the system. FEs are also used as
isolators in laser chains and birefringence compensation in a
solid-state laser medium [6]. For FEs being used in high power
laser systems, a large Verdet constant, small absorption, small
scattering losses, and a small nonlinear refractive index are nec-
essary. These properties are characteristic of low-dispersion
fluoride hosts, such as alkali fluorides [7], making them excel-
lent choices for FEs. However, as the power of laser systems
grows larger, FEs are exposed to very high field densities which
can alter their optical and physical properties due to nonuni-
form temperatures in the element. In order to compensate for
these changes, the temperature dependence of basic optical and
mechanical properties such as the refractive index and stress-
optic coefficients must be known. In this paper, we describe
the measurement of the refractive index and its dependence
on temperature of LiTbF4.

2. EXPERIMENTS

Single crystals of LiTbF4 were grown at Northrop Grumman
SYNOPTICS by the Czochralski technique, utilizing an inert
gas resistance furnace. The system is incongruently melting,
with several reported peritectic compositions. A melt contain-
ing 63 mol. % LiF, the peritectic composition reported by
Weber [3], was chosen as the starting composition. The melt
was prepared using 4-9’s purity TbF3 and LiF, obtained from
suppliers previously qualified by SYNOPTICS. A nitrogen
atmosphere was employed for both the melting and growth
at temperatures less than 900°C.

Crystals grown from the 63 mol. % LiF melt were just under
4 cm in diameter × 7 cm in length. These crystals had inclu-
sions, as well as scattering centers (precipitates), but did contain
areas of high quality material. Starting melt compositions
(percent molar compositions) were varied systematically to im-
prove crystal quality. However, more work is required to better
understand the melt composition needed for high optical
quality crystals.

The method of minimum deviation was used in order to
obtain the refractive indices of the LiTbF4 crystal, using the
Moller–Wedel divided circle spectrometer [8]. LiTbF4 is a
tetragonal crystal with a 4/m point group and is therefore uni-
axial. Triangular prisms of LiTbF4 were cut from the boule
with the optic axis perpendicular to the triangular faces. In this
way, the ordinary and extraordinary indices could be measured
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independently by changing the polarization of the input light.
To standardize the system, measurements of the refractive
indices were made on a calcium fluoride prism from 0.4 to
5.0 μm. These measurements correlated with the published
literature to within 0.0001 [9].

The apex angle was obtained by using an autocollimator
attached to a Moller–Wedel divided circle spectrometer. The
measured valued of the apex angle was 62.389°� 0.002°.
The tolerance on the measurements is the standard deviation
calculated from 10 separate measurements of the apex angle.

Light produced by a mercury xenon source or an infrared
source was coupled into a monochromator to provide discrete
wavelengths ranging from 4 to 5.0 μm and then transmitted
through a prism of LiTbF4. Different detectors were used to
detect the refracted light depending on the spectral range.
This measurement was repeated five times and the average
reported for each wavelength. The error estimated at any indi-
vidual wavelength was less than 1.5 × 10−4.

Measuring the change of refractive index as a function of
temperature was also carried out by means of the method

of minimum deviation. A type K thermocouple was mounted
inside a small hole drilled into the nontransmitting face of
the prism in order to monitor the temperature of the prism.
The thermocouple was held in place by Permatex Ultra
Copper RTV silicone. The prism sample of LiTbF4 was placed
between two copper blocks, which were heated by two cartridge
heaters within each block. The temperature was set using a
Eurotherm 2416 temperature controller and allowed to stabi-
lize for 45 min before refractive index data was taken. The tem-
perature stability was �1°C. Refractive indices were measured
from 25 to 200 deg in increments of 25 deg.

3. RESULTS

The ordinary and extraordinary refractive indices of LiTbF4 at
their corresponding temperatures are shown in Figs. 1 and 2.

The data were fit to a modified version of a temperature-
dependent Sellmeier equation discussed by Schlarb and
Betzler [10] using the Levenburg–Marquardt algorithm,

n2 � A� �B � CF �λ2
λ2 − �λ1 � DF�2 � Eλ2; (1)

where the parameter F is given by

F � �T − T 0� � �T � T 0 � 546.3�: (2)

The parameter T 0 in the expression for F represents the room
temperature (taken as 23°C), and T is the temperature that the
LiTbF4 crystal was set at in order to take refractive index mea-
surements. The additive factor of 546.3 represents the conver-
sion of T and T 0 to the Kelvin scale. The values for the
coefficients are shown in Table 1.

The values for dn∕dT can be found by differentiating
Eq. (1) in order to obtain

2n
∂n
∂T

�
��λ2−�λ1�DF�2�Cλ2−��B�CF �λ2��2D�λ1�DF ��

�λ2−�λ1�DF �2�2
�
∂F
∂T

:

(3)

The values of dn∕dT at various wavelengths and temperatures
are shown in Tables 2 and 3 and Fig. 3.
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Fig. 1. Room temperature refractive indices of LiTbF4.
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Fig. 2. Temperature dependence. (a) Ordinary refractive index. (b) Extraordinary refractive index.
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The data show that LiTbF4 is positive birefringent with a
negative dn∕dT .

4. DISCUSSION

The effect of temperature on the optical elements used in high
power laser systems has been studied extensively. [11] Output
beams can be distorted due to nonuniformities in the temper-
ature profile of the various elements in the system, and the
performance of each of the elements can be compromised. In
the case of magneto-optic devices such as Faraday isolators, the
polarization of the output beam is affected by the temperature
dependence of the Verdet coefficient and the addition of linear

birefringence caused by mechanical stresses due to nonuniform
temperature distribution through the elasto-optic effect.

Khazanov [12] has analyzed beam distortion and depolari-
zation of beams in high power laser systems. In his analysis,
the temperature dependent refractive index profile is expressed
as [13]

n�r� � n�T o� � �T �r� − T o	P;
where

P � dn
dT

− α
n3o
4

1� ν

1 − ν
�p11 � p12�;

r is the radial distance from the center of the fiber, dn
dT is the

change of the refractive index with temperature, α is the ther-
mal expansion coefficient, ν is the Poisson ratio, and p11 and
p12 are the piezo-optic coefficients. In order to judge the utility
of LiTbF4 versus a more widely used material such as terbium
gallium garnet (TGG), knowledge not only of dn∕dT but also
the thermal expansion coefficient, the Poisson ratio, and the
piezo-optic constants is required. Regrettably, these measure-
ments have not been made to sufficient accuracy in TGG [14],
and to our knowledge, no such measurements have been
performed on LiTbF4. However, limited measurements of
dn∕dT have been measured for TGG, and the values are about
twice those of LiTbF4 and have the opposite sign. This may

Table 1. Temperature Dependent Sellmeier Coefficients
for LiTbF4

Sellmeier Parameter no ne
A 1.80878 1.81294
B 0.34546 0.42458
C −2.575 × 10−8 −3.284 × 10−8
D 1.924 × 10−8 2.087 × 10−8
E −0.00497 −0.00518
λ1 0.14003 0.13492

Table 2. Values of dno∕dT (×106) Calculated from Eq. (3)

λ�μ� 25°C 50°C 75°C 100°C 125°C 150°C 175°C 200°C 225°C

0.40 −8.78 −9.53 −10.3 −11.0 −11.8 −12.5 −13.3 −14.1 −14.8
0.50 −7.30 −7.92 −8.54 −9.16 −9.78 −10.4 −11.0 −11.7 −12.3
0.60 −6.59 −7.15 −7.71 −8.27 −8.82 −9.39 −9.95 −10.5 −11.1
0.70 −6.19 −6.72 −7.24 −7.76 −8.29 −8.81 −9.34 −9.86 −10.4
0.80 −5.95 −6.45 −6.95 −7.45 −7.95 −8.46 −8.96 −9.46 −9.97
0.90 −5.78 −6.27 −6.76 −7.24 −7.73 −8.22 −8.71 −9.20 −9.69
1.0 −5.67 −6.14 −6.62 −7.10 −7.58 −8.05 −8.53 −9.01 −9.49
1.1 −5.58 −6.05 −6.52 −6.99 −7.46 −7.93 −8.41 −8.88 −9.35
1.2 −5.52 −5.98 −6.45 −6.91 −7.38 −7.84 −8.31 −8.78 −9.24
1.3 −5.47 −5.93 −6.39 −6.85 −7.31 −7.78 −8.24 −8.70 −9.16
1.4 −5.44 −5.89 −6.35 −6.81 −7.26 −7.72 −8.18 −8.64 −9.10
1.5 −5.41 −5.86 −6.31 −6.77 −7.22 −7.68 −8.14 −8.59 −9.05
1.6 −5.38 −5.83 −6.29 −6.74 −7.19 −7.65 −8.10 −8.55 −9.01
1.7 −5.36 −5.81 −6.26 −6.72 −7.17 −7.62 −8.07 −8.52 −8.97

Table 3. Values of dne∕dT (×106) Calculated from Eq. (3)

λ�μ� 25°C 50°C 75°C 100°C 125°C 150°C 175°C 200°C 225°C

0.40 −11.0 −12.0 −12.9 −13.9 −14.8 −15.8 −16.8 −17.7 −18.7
0.50 −9.21 −9.99 −10.8 −11.6 −12.3 −13.1 −13.9 −14.7 −15.5
0.60 −8.33 −9.03 −9.73 −10.4 −11.1 −11.9 −12.6 −13.3 −14.0
0.70 −7.82 −8.48 −9.15 −9.81 −10.5 −11.1 −11.8 −12.5 −13.1
0.80 −7.51 −8.14 −8.78 −9.41 −10.0 −10.7 −11.3 −12.0 −12.6
0.90 −7.30 −7.92 −8.53 −9.15 −9.77 −10.4 −11.0 −11.6 −12.2
1.0 −7.16 −7.76 −8.36 −8.97 −9.57 −10.2 −10.8 −11.4 −12.0
1.1 −7.05 −7.65 −8.24 −8.83 −9.43 −10.0 −10.6 −11.2 −11.8
1.2 −6.97 −7.56 −8.15 −8.73 −9.32 −9.91 −10.5 −11.1 −11.7
1.3 −6.91 −7.49 −8.08 −8.66 −9.24 −9.82 −10.4 −11.0 −11.6
1.4 −6.87 −7.44 −8.02 −8.60 −9.18 −9.75 −10.3 −10.9 −11.5
1.5 −6.83 −7.40 −7.98 −8.55 −9.13 −9.70 −10.3 −10.9 −11.4
1.6 −6.80 −7.37 −7.94 −8.51 −9.09 −9.66 −10.2 −10.8 −11.4
1.7 −6.77 −7.34 −7.91 −8.48 −9.05 −9.62 −10.2 −10.8 −11.3
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make the problem of compensation for thermal lensing in
isolators using LiTbF4 more tractable.

5. CONCLUSION

We have measured the refractive index of LiTbF4 as a function
of wavelength and temperature. The parameters for a temper-
ature dependent Sellmeier equation have been calculated and
can be used for modeling the performance of LiTbF4 in high
power systems. The value obtained for dn∕dT are about half
those of TGG and are negative. This implies that the problem
of compensating for thermal lensing for a Faraday isolator
fabricated with LiTbF4 should be simpler.
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