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ABSTRACT

Many simulation scenarios attempt to seek a balance between model fidelity and
computational efficiency. Unfortunately, scenario realism and model level of detail are
often reduced or eliminated due to the complexity of experimental design and corresponding
limitations of computational power. Such simplifications can produce misleading results.
For example, Radar Cross Section (RCS) effects in response to time-varying target aspect
angle are dominant yet often ignored. This work investigates a new approach. A hybrid,
high-fidelity sensor model can be achieved by using a Time-Step (TS) approach with
precomputed atemporal response factors (such as RCS), each situated on active simulation
entities that interact within an overall Discrete Event Simulation (DES) framework. This
work further applies regression analysis to the cumulative results of 1,281 design points
multiplied by 100 replications each to provide additional insight from massive results.
Through a rigorous cross-validation (CV) for ensuring proper model selection, this new
methodology adapts the best aspects of temporal control by each simulation approach,
integrating multiple high-fidelity physically based models in a variety of tactical scenarios
with tractable computational complexity. The meta-model generates statistically identical
results as the baseline hybrid sensor model in mean with higher variation. This outcome
sensor model performs in an efficient DES architecture by predicting only probability of
detection (Pd) and time-to-detect (TTD) of the targets with the consideration of the range
and the aspect relationship between the sensor and the target. The range and the aspect
factors were ignored in current existing DES sensor models due to the overly simplified
detection algorithm and the constraint of modeling complexity.

v



THIS PAGE INTENTIONALLY LEFT BLANK

vi



Table of Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivating Problem . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . 18

2 Related Work 21
2.1 Physics-Based Web 3D Model Generation and Animation . . . . . . . . 21
2.2 Discrete Event Simulation (DES) Structure . . . . . . . . . . . . . . 26
2.3 Computational Radar Measurements. . . . . . . . . . . . . . . . . 40

3 Prototype Advanced Sensor Models 51
3.1 Model I: Two-Tiers Sensor Model . . . . . . . . . . . . . . . . . . 51
3.2 Model II: Fractional MTTD Region Structure . . . . . . . . . . . . . 60
3.3 Model III: Hybrid Sensor Model . . . . . . . . . . . . . . . . . . 62

4 Design of Experiment (DoE) for Hybrid-Sensor Models 79
4.1 DoE by Full Factorial Design . . . . . . . . . . . . . . . . . . . 80
4.2 DoE by NOLH Design . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Hybrid Model Simulation Implementation . . . . . . . . . . . . . . 87
4.4 Hybrid Model Simulation Results . . . . . . . . . . . . . . . . . . 89

5 Simulation Data Regression Analysis 97
5.1 Linear Regression Estimation of Time to Detect . . . . . . . . . . . . 97
5.2 Logistic-Regression of Pd . . . . . . . . . . . . . . . . . . . . . 107
5.3 Shaping the Regression Model . . . . . . . . . . . . . . . . . . . 111
5.4 Meta-Model Verification . . . . . . . . . . . . . . . . . . . . . 115

vii



5.5 Meta-Model Predicting Results Verification . . . . . . . . . . . . . . 132

6 Conclusions and Recommendations 137
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . 140

Appendix A X3D Objects Animated by Simulink 145
A.1 Matlab.m Plot to X3D Objects Conversion . . . . . . . . . . . . . . 145
A.2 X3D Object Animated by Simulink . . . . . . . . . . . . . . . . . 146

Appendix B Hybrid Sensor Model Simulation Operator Manual 151
B.1 Hybrid 2D Planar Sensor Simulation User Manual . . . . . . . . . . . 151
B.2 Target Model Radar Cross Section (RCS) and the Maximum Detection Range

to the Sensor Model . . . . . . . . . . . . . . . . . . . . . . . 153
B.3 Conventional Military Aircraft. . . . . . . . . . . . . . . . . . .   154
B.4 Commercial Aircraft . . . . . . . . . . . . . . . . . . . . . . . 158
B.5 Stealth Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . 162
B.6 UAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.7 Missiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Appendix C Regression Analysis Meta Models 171
C.1 TTD Meta-Model Prediction Expression with the Predictors Interaction Terms

to Up to Four Degrees (D4) . . . . . . . . . . . . . . . . . . . . 171
C.2 TTD Meta-Model Prediction Expression Fit by The Predictor Waypoint_X . 174
C.3 TTD Meta-Model Prediction Expression with CV the Predictors Interaction

Terms to Up to Four Degrees (D4) . . . . . . . . . . . . . . . . . 176
C.4 Pd Logistic Meta-Model Prediction Expression with the Predictors Interaction

Terms to Up to Two Degrees (D2). . . . . . . . . . . . . . . . . . 178
C.5 Pd Logistic Meta-Model Prediction Expression with the Predictors Interaction

Terms to Up to Four Degrees (D4) . . . . . . . . . . . . . . . . . 179

List of References 183

viii



Initial Distribution List 191

ix



THIS PAGE INTENTIONALLY LEFT BLANK

x



List of Figures

Figure 1.1 Model confidence vs. model cost. Source: [3]. . . . . . . . . . . 3

Figure 1.2 Analog-to-Digital Converter sampling-architecture. Source:
[5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.3 The time series signal with a fixed TS sample size and converted 
into frequency domain by Short-Time Fourier Transform (STFT). 
Adapted from [8]. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 5

Figure 1.4 Four levels decomposition tree of wavelet transform. Adapted from:
[9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 1.5 Four levels decomposition of wavelet transfer of a signal contains
two frequencies f1= 32 Hz at Time=(0,2) and f2= 125 Hz at Time
=(2,4). Adapted from: [10]. . . . . . . . . . . . . . . . . . . . . 7

Figure 1.6 Exemplar results of a Lanchester salvo model between red force and
blue force. (a) shows themonotonic result as the initial strength of red
force has monotonic increment. (b) demonstrates the non-monotonic
result as the initial force strength of red force is increasing. Source:
[11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 1.7 Two example scenarios of a SAM system simulation. In the left 
scenario, the target is fortunate to have the intercepts always occur 
in area of low PK even if the target has higher RCS and results in 
larger high PK area. However, the target in the right scenario has 
lower RCS leading to smaller high PK area and is intercepted. 
Source: [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 10

Figure 1.8 High-efficiency and high-fidelity radar system simulation flowchart. 15

Figure 1.9 Methodology roadmaps: experimental-design flowchart showing
hybrid sensor models integrated from three simulation categories,
followed by overall regression analysis. . . . . . . . . . . . . . . 18

Figure 2.1 Design patterns for Matlab and Simulink creation and animation
of Extensible Three-Dimensional Graphics Standard (X3D) in
web-based simulation. . . . . . . . . . . . . . . . . . . . . . . . 22

xi



Figure 2.2 Phased-array antenna beam pattern model created in Matlab .m
source and converted to .x3d, .wrl, and .HTML models. (a) Source:
[23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.3 Block diagrams of Simulink implementation with plotted position,
velocity, and force variation of a bouncing/springing box. . . . . 24

Figure 2.4 TheX3D bouncing-box animation simulation rendering by Simulink.
The screen shots of object movement display three states: free fall
(left), compressed (center), and post-bounce (right). . . . . . . . 26

Figure 2.5 Fundamental event graph construct. Source: [29]. . . . . . . . . 27

Figure 2.6 ArrivalProcess event graph. Source: [29]. . . . . . . . . . . . . . 28

Figure 2.7 Event canceling edge. Source: [29]. . . . . . . . . . . . . . . . . 29

Figure 2.8 Scheduling edge with arguments and event with parameters. Source:
[29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.9 SimEventListener relationship. The "Listener" component "hears"
all component "Source" events . Source: [29]. . . . . . . . . . . 30

Figure 2.10 A DES event listener pattern example between two entities. Entity B
listens for "EndMove" event from Entity A. . . . . . . . . . . . . 31

Figure 2.11 The estimation errors comparison: (a) Eulermethod, (b) quantization
method. Source: [32]. . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.12 The event graph of DES structure quantized model. Source: [32]. 32

Figure 2.13 A DES event listening pattern of Path Manager entity and Simple
Mover entity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.14 The DES event graph of path manager. This entity manages the next
goal waypoint of mover entities. . . . . . . . . . . . . . . . . . . 34

Figure 2.15 The DES event graph of mover entity. This entity represents the
location of the object and receives the waypoints from the path
manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.16 Cookie-cutter sensor event graph. . . . . . . . . . . . . . . . . . 36

Figure 2.17 Referee event graph determines whether the movers enter the
maximum detection range of the sensor. . . . . . . . . . . . . . . 37

xii



Figure 2.18 Mediator event graph ensures fair adjudication of whether detection
occurs when the target enters the detectable range of the sensor.
Adapted from [15]. . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 2.19 DES cookie-cutter and constant-rate sensors scenario. . . . . . . 39

Figure 2.20 Radar range equation parameters only configured by sensors. . . . 42

Figure 2.21 A sphere object, the simplest geometry of RCS measure, in azimuth
angle 0◦ ≤ φ ≤ 360◦. . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 2.22 The RCS measure of two sphere objects are set apart by λ (left) and
2λ (right) , in azimuth angle 0◦ ≤ φ ≤ 360◦. Adapted from: [40] 44

Figure 2.23 The RCS measurement of two objects with the same 1 m2 physical
projecting area at broadside, showing a million-to one difference in
response characteristics. . . . . . . . . . . . . . . . . . . . . . . 45

Figure 2.24 Definition of local spherical coordinate system. The point P is
represented by the distance ρwith the elevation angle 0◦ ≤ θ ≤ 180◦
and the azimuth angle 0◦ ≤ φ ≤ 360◦. Adapted from [42]. . . . 46

Figure 2.25 The RCS measure of F-16 Falcon fighter model in θ = 90◦ and
0◦ ≤ φ ≤ 360◦. The F-16 model contains 2,056 vertices and 4,092
faces. See Appendix B for additional 3D and RCS models. . . . . 47

Figure 2.26 The maximum detection range of the radar to one target RCSwith the
fluctuation loss presented by case III Swerlingmodel. The simulation
is executed with 50 replications. . . . . . . . . . . . . . . . . . . 50

Figure 3.1 The two-tier TTD mediator event graph. The mediator ensures fair
adjudication of whether detection occurs when the targets enters the
detectable range of the sensor, providing two possible TTD Random
Variable (RV)s in two detection regions. . . . . . . . . . . . . . . 52

Figure 3.2 A two-tier constant-rate DES sensor operation scenario. . . . . . 53

Figure 3.3 The regression analysis result: (a) the constant-rate sensor model, (b)
the two-tier constant-rate sensor model. The regression observations
are executed by the 65 DPs of NOLH design with 100 replications
of each DoE. The predicted time to detect of meta-model with the
predictor parameters in factorial and polynomial interaction terms in
degree of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xiii



Figure 3.4 Gamma random variable Probability Density Function (PDF) of
different values of shape parameter α and scaling parameter β.
Source: [50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.5 The demonstration figures for illustrating multiple-tier constant-rate
sensors. The sensor detection rates are divided into small sectors. 61

Figure 3.6 The maximum detection range (Rmax) of an F-16 Falcon fighter
in azimuth angle with θ = 90◦. In (a) the Rmax of the object is
computed by the Radar Range Equation (RRE) with the RCS model,
which is pre-calculated by CST studio. In (b), the polar plot of the
Rmax of the sensor to detect the target, which is calculated by the
range equation with the RCS. . . . . . . . . . . . . . . . . . . . 64

Figure 3.7 A constantly scheduled "A Ping" event is scheduled by a fixed
time-step scheduling interval ∆t. The TS mechanism emulates the
fixed interval antenna revolutions per minute (rpm). . . . . . . . 65

Figure 3.8 RCS sensor event graph for DES detection of independent target
entities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 3.9 Hybrid mediator event graph ensures fair adjudication of whether
detection occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 3.10 Hybrid mediator event graph ensures fair adjudication of whether
detection occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 3.11 Hybrid sensor model overall DES event graph. . . . . . . . . . . 71

Figure 3.12 The hybrid sensor operation scenario. The blue figure represents the
aircraft detection range as viewed by the radar depending on radar
cross section (RCS) . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 3.13 UML time sequence diagram showing event-response progression
between DES, TS, and Atemporal simulation entities of a hybrid
sensor simulation scenario. . . . . . . . . . . . . . . . . . . . . 75

Figure 4.1 Scatterplot matrices of selected factorial and NOLH Design Point
(DP)s. Adapted from [56]. . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.2 Five factors DoEs for hybrid model simulation in full factorial vs.
NOLH design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xiv



Figure 4.3 DoE for hybrid-sensor model simulation scenario in incident angle
and position sweeping. . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.4 Hybrid-sensor simulation display and output produced by Java Simkit
program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.5 Hybrid-sensor model simulation outputs: results, emphasizing time
to detect (TTD), and related parameters. . . . . . . . . . . . . . . 90

Figure 4.6 Target’s relative position geometry to the sensor within the maximum
detection range. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 4.7 The quantitative summary of closest point of approach (CPA) of
no detection and the detection range when detection happens and
the time to detect the targets after the targets enter the maximum
detection range of the sensor. . . . . . . . . . . . . . . . . . . . 95

Figure 5.1 Residual differences between fitting model and actual data. . . . . 101

Figure 5.2 Residual plot by predicted time-to-detect (TTD) of fit model with the
predictor parameters in factorial and polynomial interaction terms in
degree of 2 and degree of 4. . . . . . . . . . . . . . . . . . . . . 107

Figure 5.3 Partial section of DPs of hybrid sensor model simulation TTD results
with regression analysis predictor and response variables. . . . . 110

Figure 5.4 Box-Cox transformation of TTD prediction response variable with
lowest SSE λ = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 5.5 Residual Plot by Predicted Time to Detect (TTD) of Fit Models with
the predictor parameters in factorial and polynomial interaction terms
in degree of 4. (a) applies the predictor conversion of waypoint from
“Incident Angle(degree)” converted into “Waypoint_X.” (b) applies
the response variable TTD with Box-Cox transformation by λ = 0.5. 113

Figure 5.6 The graphical illustration: (a) Underfitting model, (b) Overfitting
models with the analysis of bias of mean and variable. The
comparison is shown by the fitting line of the training dataset (blue
circles and red curve) and the validation dataset (green dots and green
curve). Source: [73]. . . . . . . . . . . . . . . . . . . . . . . . . 117

xv



Figure 5.7 RMSE of training dataset (gray dots) and validation dataset (red dots)
and test dataset (green dots) vs. training model complexity from low
to high. The left green box is the underfitting model while the right
blue box is the overfitting model. Adapted from [75]. . . . . . . . 120

Figure 5.8 Five factors NOLHDoE extended by four-time rotation, five stacking
(n=5) operations. The number of DPs is extended from 256 to
256×5−4 = 1281DPs. The DoE still maintains the same correlation
level between each factor. . . . . . . . . . . . . . . . . . . . . . 123

Figure 5.9 Residual plot by predicted time to detect of the fit models by 3 splits
cross-validationwith 1,285DPs. In (a), themodel is fit by the training
dataset with 2 degrees of interaction parameters. In (b) the model is
fit by the training dataset with 4 degrees of interaction parameters. 125

Figure 5.10 The confusion table of logistic Probability of Detection Pd regression
model with factorial and polynomial interaction predictors up to a
degree of two. The data is divided as follows: 60 percent for training
set, 20 percent for validation set, and 20 percent for test set. . . . 129

Figure 5.11 The cross-validation (CV) measurements of logistic model of Pd .
The data is divided as follows: 60 percent for training set, 20 percent
for validation set, and 20 percent for test set. In (a), the model is
fit by two-degree of interaction terms with 14 degrees of freedom of
predictors. In (b), the model is fit by four-degree of interaction terms
with 13 degrees of freedom of predictors. . . . . . . . . . . . . . 130

Figure 5.12 The confusion table of logistic probability of detection Pd regression
model with factorial and polynomial interaction predictors up to the
degree of four. The data is divided into 60 percent of training set, 20
percent of validation set, and 20 percent of test set. . . . . . . . . 131

Figure 5.13 t-test of acTTD between the meta-model and the baseline hybrid
sensor model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Figure 5.14 Equal-variance O’Brien test measurement of TTD between the
meta-model and the hybrid sensor model. . . . . . . . . . . . . . 135

xvi



Figure 6.1 The RCS of F-16 Falcon fighter model which is simulated by CST
Studio software with signal frequency = 8 GHz. In (a), the RCS of
F-16 sweeping by the elevation angle with φ = 0◦. In (c), the RCS
of F-16 sweeping by the azimuth angle with θ = 90◦. In (b), the
maximum detection range to the sensor is computed by the target
RCS in part(a). . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure A.1 VR sink software: Parameters settings block-diagram panel. . . . 147

Figure A.2 VR signal expander software: Simulink icon. . . . . . . . . . . . 148

Figure A.3 VR signal expander software: Parameters Setting block-diagram
panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure B.1 The polar plots of a F-16 Falcon fighter in azimuth angle (θ = 90◦).
In (a), the RCS of the object computed by CST studio with the signal
frequency = 8GHz. In (b), the Rmax of the sensor to detect the target
and calculated by the range equation with the RCS. . . . . . . . . 154

Figure B.2 Four different viewpoints of the F-16 Falcon fighter model. . . . . 155

Figure B.3 The polar plots of a F-18 Hornet fighter in azimuth angle (θ = 90◦).
In (a), the RCS of the object computed by CST studio with the signal
frequency = 8GHz. In (b), the Rmax of the sensor to detect the target
and calculated by the range equation with the RCS. . . . . . . . . 156

Figure B.4 Four different viewpoints of the F-18 Hornet fighter model. . . . 157

Figure B.5 The polar plots of a B-737 400 commercial aircraft in azimuth angle
(θ = 90◦). In (a), the RCS of the object computed by CST studio
with the signal frequency = 8GHz. In (b), the Rmax of the sensor to
detect the target and calculated by the range equation with the RCS. 158

Figure B.6 Four different viewpoints of the B-737 400 commercial flight model. 159

Figure B.7 The polar plots of a B-747 400 commercial aircraft in azimuth angle
(θ = 90◦). In (a), the RCS of the object computed by CST studio
with the signal frequency = 8GHz. In (b), the Rmax of the sensor to
detect the target and calculated by the range equation with the RCS. 160

Figure B.8 Four different viewpoints of the B-747 400 commercial flight model. 161

xvii



Figure B.9 The polar plots of a F-35Lightning fighter in azimuth angle (θ = 90◦).
In (a), the RCS of the object computed by CST studio with the signal
frequency = 8GHz. In (b), the Rmax of the sensor to detect the target
and calculated by the range equation with the RCS. . . . . . . . . 162

Figure B.10 Four different viewpoints of the F-35 Lightning fighter model. . . 163

Figure B.11 The polar plots of a B-2 Spirit bomber in azimuth angle (θ = 90◦).
In (a), the RCS of the object computed by CST studio with the signal
frequency = 8GHz. In (b), the Rmax of the sensor to detect the target
and calculated by the range equation with the RCS. . . . . . . . . 164

Figure B.12 Four different viewpoints of the B-2 Spirit bomber model. . . . . 165

Figure B.13 The polar plots of a MQ-1 Predator UAV in azimuth angle (θ = 90◦).
In (a), the RCS of the object computed by CST studio with the signal
frequency = 8GHz. In (b), the Rmax of the sensor to detect the target
and calculated by the range equation with the RCS. . . . . . . . . 166

Figure B.14 Four different viewpoints of the MQ-1 Predator UAV model. . . . 167

Figure B.15 The polar plots of a AA-11 Archer air-to-air missile in azimuth angle
(θ = 90◦). In (a), the RCS of the object computed by CST studio
with the signal frequency = 8GHz. In (b), the Rmax of the sensor to
detect the target and calculated by the range equation with the RCS. 168

Figure B.16 Four different viewpoints of the AA-11 Archer air-to-air missile
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xviii



List of Tables

Table 2.1 Cookie-cutter sensor simulation event schedule . . . . . . . . . . 38

Table 2.2 Constant-rate sensor simulation event schedule . . . . . . . . . . . 40

Table 3.1 Simulation event schedule for two-tier constant-rate sensor detects at
region 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 3.2 Simulation event schedule for two-tier constant-rate sensor does not
detect the target at region 1 . . . . . . . . . . . . . . . . . . . . . 55

Table 3.3 Simulation event schedule for when two-tier constant-rate sensor does
not detect the target in region 1 nor in region 2 . . . . . . . . . . 55

Table 3.4 Simulation event schedule for hybrid sensor scenario . . . . . . . 72

Table 4.1 Factor levels for range and decimals setting by NOLH DoE . . . . 87

Table 5.1 Two factors S1, S2, five levels O5
2 DoE . . . . . . . . . . . . . . . 122

Table 5.2 An O5
2 DoE with one stacking operation generates twice as many DPs

with one redundant row of 0s removed. . . . . . . . . . . . . . . . 122

xix



THIS PAGE INTENTIONALLY LEFT BLANK

xx



List of Acronyms and Abbreviations

2D Two dimensional

3D Three dimensional

ADC Analog-to-Digital Converter

AIC Akaike Information Criterion

AF Attenuation Force

BIC Bayes Information Criterion

C4ISR Command, Control, Communications, Computers, Intelligence,
Surveillance, and Reconnaissance

CI Confidence Interval

CPA Closest Point of Approach

CV Cross Validation

DES Discrete-Event Simulation

DoE Design of Experiment

DP Design Point

HPC High Performance Computing

LEGO Listener Event Graph Object

M&S Modeling and Simulation

MSE Mean Squared Error

MTTD Mean Time To Detect

NOLH Nearly Orthogonal Latin Hypercube

xxi



NPS Naval Postgraduate School

NVE Networked Virtual Environment

OMG Object Management Group

Pd Probability of Detection

PDF Probability Density Function

PEC Perfect Electric Conductor

PK Probability of Kill

prf pulse repetition frequency

pri pulse repetition interval

RASE Root Average Squared Error

RCS Radar Cross Section

RF Radio Frequency

Rmax maximum detection range

RMSE square Root of the Mean Squared prediction Error

rpm revolutions per minute

RRE Radar Range Equation

RSS Residual Sum of Squares

Ru maximum Unambiguous range

RV Random Variable

SAM Surface-to-Air Missile

SFD Space-Filling Design

SNR Signal-to-Noise-Ratio

xxii



SSE Sum of Squared Errors

STFT Short-Time Fourier Transform

ToT Time on Target

TS Time Step

TSS Total Sum of Squares

TTD Time to Detect

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

Viskit Visual Simkit

VRML Virtual Reality Modeling Language Standard

VV&A Verification, Validation and Accreditation

WT Wavelet Transfer

X3D Extensible Three-Dimensional Graphics Standard

xxiii



THIS PAGE INTENTIONALLY LEFT BLANK

xxiv



Executive Summary

In a dynamic sensor-targets simulation scenario, the location and aspect angle between
the sensor and the targets vary over time. The range and the angle play a key role in the
sensor’s detection ability based on the radar range equation (RRE) and aspect-dependent
signal response.

As more detailed parameters are integrated into the system for a higher-fidelity modeling
result, simulation practitioners always face "triangle of death" tradeoffs in pursuing the
optimal balance between "faster, better and cheaper." A balance must be found because
there is no single perfect solutions for the model. However, a modeling architecture that
integrates high-fidelity physics-based parameterswith coherent response times for all factors
is crucial for a simulation to perform coherently and accurately.

This work demonstrates a hybrid-structure sensor model that successfully integrates
high-fidelity RRE with dynamic radar cross section (RCS) response from varying-aspect
targets in a scenario of a stationary ground-based searching radar system. Based
on computationally efficient discrete event simulation (DES) structure, the simulation
isolates insignificant events out of computational consideration by utilizing the maximum
unambiguous range (Ru) of the sensor as the high-fidelity event trigger boundary. When the
target movement is out of Ru, the interaction events to the sensor model can be omitted since
these is no detection event for the sensor in that range. All events are scheduled precisely at
the moment of event-state transition. This event-driven architecture leads to no ambiguity
on simulation schedule timing and much great fidelity within longer simulations.

The sensor model isolates a high-complexity atemporal RCS model and integrates a
time-step (TS) mechanism for emulating the antenna sweeping behavior. The target RCS
model is laboriously calculated in advanced by the electron magnetic simulation software,
CST Studio, with the 3D object models in a real size scale. With the advantage of cluster
based computational power and atemporal model classification, the RCS computational
latency can be shortened and isolated from the whole system response time. Dominant
RCS effects are considered in the function of aspect angle of the target for satisfying a
dynamic sensor-target simulation scenario. The time-step antenna scanning behavior is
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scheduled repeatedly using precise time steps in the interval of the antenna revolution
period under the DES architecture.

The RRE is applied for determining the maximum detection range of the target to the
sensor by the current geometry between two objects at each scheduled detection attempt
event. With consideration of the target RCS fluctuation loss, the Swerling case III model is
introduced into the RRE and makes the simulation as a stochastic system. With the flexible
and efficient hybrid sensor model architecture, the target entities are extended into eight
different aircraft models for a further large scale simulation application.

This hybrid model not only introduces the angle-varying RCS factor and high-fidelity
radar parameters into the dynamic model scenario, but also keeps the computational
complexity of the whole scenario down to a reasonable level. A typical desktop PC is
capable of executing 1,281 design of experiments (DoE) with 100 repetitions in a matter
of minutes. Even with these benefits of a DES-based structure for the hybrid model, the
embedded TS mechanism for emulating the antenna sweeping period is still a key latency
for a comprehensive model. Additionally, the model also needs to include a maximum
detectable range table for the target. These factors still make the model bulky in some
sense, but further improvements are now feasible. This research also utilizes efficient
DoEs by Nearly Orthogonal Latin Hypercube (NOLH) design, which provides a well-filled
space of parameters with significantly fewer design points compared with an exhaustive
full-factorial design. This efficient DoE comprehensively tests the hybrid sensor model
behavior for all parameters across a satisfactory range of simulation scenario attempted.
Not only are the high-level resolutions covered in the range of parameters, but the interaction
relationships between each parameter are also satisfactorily illustrated by the DoEs.

Finally, regression analysis is applied based on the observations executed by the DoEs
for studying the significant factors of the hybrid sensor model. A logistic-regression
meta-model and a linear-regression meta-model are performed respectively for predicting
the probability of detection (Pd) and the time-to-detect (TTD) the target by the sensor. The
meta-models do present the hybrid model characteristics in a certain sense with much more
concise structure, even if the meta-models are curve-fit approximations that show some
heteroscedasticity in prediction results.

Interestingly, with the cross-validation (CV) performed by a generous amount of randomly
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selected independent datasets, these meta-models show a low estimation error with no
significant sign of over-fitting. The regression approximation analysis for the simplifying
the hybrid sensor model execution complexity and usability to a certain degree.
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CHAPTER 1:
Introduction

There are two kinds of time-steps: too small and too big.
         –Arnold H. Buss [1]

1.1 Background
Radar systems are a crucial information-acquisition feature in Command, Control,
Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR),
especially in military tactical applications. The battlefield environments inherently contains
a lot of variation and unknown features due to varied types of weapon platforms, such as
system arrangements, environmental barriers, tactical decisions [2]. It can also be time
consuming, costly, or even infeasible to arrange or reproduce scenarios through physical
hardware devices.

A radar system simulation is an essential capability for decision makers or weapon system
operators who need to evaluate and predict possible scenario consequences beforehand.
Radar systems are a sophisticated combination of hardware, software, and data systems
with a variety of features, functions, and configurations. Radar signal-propagation software
is also a complex nonlinear physical model that associates with many factors in the
environment. Dynamic Three dimensional (3D) visualization can significantly improve
researchers’ and operators’ understanding of these invisible signals. 3D objects often
provide a more intuitive approach for understanding the geometry of the object.

Simulation models are increasingly being used to solve problems and to aid in decision
making. The decision makers use information obtained from the results of the models
in simulation scenarios. Therefore, decision accuracy is highly dependent on whether
the models and the results used for decision reference are "correct" [3]. From a
simulation perspective, practitioners must always consider data Verification, Validation
and Accreditation (VV&A) throughout the models that are considered. The process of
verifying the internal consistency and correctness of data, validating that it represents
real-world entities appropriate for its intended purpose or an expected range of purposes,
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and accreditation is the official certification that a Modeling and Simulation (M&S) is
acceptable for use for a specific application [4]. In order to produce a validating model that
can represent a real-world scenario, the model construction and responding behavior have to
be as close as possible to the object that the simulation intends to represent. Therefore, the
implementation of both model and scenario need to be based on the true physics algorithm
for having genuine behavior.

1.2 Motivating Problem
Temporal modeling always presents a dilemma for simulation developers and users. On the
one hand, modelers want the simulation to contain as many details as possible, so that results
might be closer to the real world. On the other hand, simulation computation needs to be
executed efficiently and smoothly. As the models get more complicated, a computational
complexity and cumbersome system response are the price paid, especially when dealing
with a high-complexity physical model, like a radar system, in simulation. Better levels of
detail create higher computational complexity, which negatively impacts efficiency. Such
degradation can limit the practical usefulness of a physics-based simulation.

A model should be developed for a specific purpose and its validity determined with respect
to that purpose. It is often too costly and time consuming to determine that a model
is absolutely valid over its full range of intended application. Figure 1.1 illustrates the
relationship between the model confidence (also known as the model validity) and the cost
of model validation. As the model confidence increases to a certain level, the cost of such
a high confidence model has increased by exponential increments, while the value of the
model to the user does not have an equally likely positive response. This explains why
an extremely high model confidence does not always guarantee that the model is valid
everywhere in its application domain.
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Figure 1.1. Model confidence vs. model cost. Source: [3].

Time Step (TS) or fixed step architectures are widely used in the engineering application
field and the granularity of the step size play a key roll of the system performance. Powers
et al. [5] study the performance of signal sampling by a wide-bandwidth opto-electronic
Analog-to-Digital Converter (ADC). Figure 1.2 shows a sampling optoelectronic
architecture. The Radio Frequency (RF) signal is sampled by an optical pulse train in
an optical modular. The RF amplitude modulates the laser pulse and the optical laser
pulses are detected and electronically digitized. For no aliasing signal sampling result, the
sampling frequency has to be at least twice the highest frequency of the signal or more, also
known as Nyquist rate. in considering of pulse width, the timing jitter, and the amplitude
jitter of the sampling pulse train, the signal pulse width, 4t, must meet the condition

4t ≤

√
3

2n−1

π fm
(1.1)

where n is the desired number of bits and fm is the maximum frequency in the signal. The
pulse width is inverse-proportional to the maximum signal frequency. In other words, the
higher the signal frequency, the narrower and pulse width will be. The benefit of using
optoelectronic ADC is that the high frequency optical signal can sampling the signal with
much wider bandwidth then the lower sampling frequency electronic ADCs. The 10-bit
electronic ADC can only sample the signal bandwidth approximately up to 200 to 300
MHz while the an opto-electronic ADC would represent a significant achievement in ADC
performance to 10-GHz signal bandwidth.

A high detailed fixed step simulation for analyzing the performance of photonic sigma-delta
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Figure 1.2. ADC sampling-architecture. Source: [5].

modulator is proposed by Tan et al. [6]. A sigma-delta modulator is an oversampling
architecture that consists of an analog noise-shaping filter enclosed within a feedback loop
around a quantizer. Since the signal is oversampled at many times the Nyquist rate, the
high oversampling rate removes the high frequency quantization noise, down samples the
modulator output to Nyquistand, and increases the resolution of the output digital signal.
The electronic converters, however, have traditionally been limited to low and moderate
signal frequencies due to the much lower sampling rate than to photonic modulators. A
software simulation structure follow closely that of the physical hardware is proposed in
the study. Because the oversampling frequency by photonic sigma-delta modulator is high,
this high sampling rate brings the extremely computational complexity to the simulation
architecture. The system parameters such as the laser frequency, the laser pulse width, the
laser pulse repetition frequency (prf) must be scaled down due to the limited memory space
and processing time. This is an illustration of modeling cost increment associating with the
modeling fidelity.

Cheng [7] proposes a TS-based simulation algorithm for extracting time information of a
frequency-hopping signal by temporal-correlation functions, wavelet transformation, and
image recognition schemes. The study shows the capability of TS structure to extract the
time-varying information out of the sampling data in different TS resolutions. The left plot
of Figure 1.3 illustrates a Short-Time Fourier Transform (STFT) method that applies a fixed
TS sample size window to sample a time-series signal that potentially contains different
signal frequencies over different times. The fixed-width sample window slides through the
signal along the time axis in the same direction as the blue arrow shown in the left plot.

4



The right plot is the result of the STFT that converts the signal from the time domain into
the frequency domain in a fixed δt data-sampling resolution, i.e., the width of the sample
widow. The blue cell filled in the time-frequency contour plot indicates the present time
and frequency of the signal, which is sampled and converted by the STFT at that specific
sampling time (left plot). Because the duration of signal frequencies in a frequency-varying
signal is different from hop to hop, the frequency-hopping state transition happens in a
different time interval. A fixed TS of data sampling demonstrates the typical challenge of
choosing the proper TS scale for the good enough resolution for capturing the interested
information. For the too-coarse TS sampling interval, it may lose the precision of time
information when the frequency state transition happens between a sample window. For
the too-fine TS sampling interval, each sample will contain fewer data samples, while
many sample sets will contain no information sample data. This may also introduce higher
computational complexity for calculating more sample sets.

Figure 1.3. The time series signal with a fixed TS sample size and converted
into frequency domain by Short-Time Fourier Transform (STFT). Adapted
from [8].

Therefore, a multiple resolution level in time and frequency domainsWavelet Transfer (WT)
can be applied for analyzing the signal response in different resolutions. In the first level
of WT, the analysis has high resolution in the time-domain but with coarse frequency
resolution, while the analysis in the fourth level has fine frequency resolution with coarse
time resolution. The blue cell filled in the contour plots of WT in level (1,4) has different
resolution in both the time and frequency domains in every level. Figure 1.4 demonstrates
the WT analyzing the signal in different resolutions in both time and frequency domains by
the different levels of transformation.

Figure 1.5 demonstrates that the WT in level 1 to 4 of a signal contains two frequencies:
f1=32 Hz from time= (0,2) and f2= 125 Hz from time= (2,4). The top plot is the WT in
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Figure 1.4. Four levels decomposition tree of wavelet transform. Adapted
from: [9].

level =1. It has good time resolution that indicates the signal transition time = 2 (s), while
the frequencies of the two signals cannot be clearly resolved. As the level of WT increases,
such as the bottom plot in Figure 1.5, the WT in level 4, two signal frequencies are able to
be resolved but the time domain resolution is not as high as the level 1 analysis.

The concept of multi-resolution level compensates for the drawback of fixed resolution
STFT that does not have enough precision on the analyzed results if the improper TS is
chosen. Although in this frequency-hopping signal detection study the frequency transition
state is unknown and it requires a comprehensive time and frequency resolution level
to extract the time of state transition, the varying TS concept presents a solution for
higher-precision results with lower computational complexity. The goal is to have analyzing
time matching the time of state transition yielding high precision results and preventing
redundant computation in no-event transition periods.

Computer-based modeling for combat simulation has become an important role in the
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Figure 1.5. Four levels decomposition of wavelet transfer of a signal contains
two frequencies f1= 32 Hz at Time=(0,2) and f2= 125 Hz at Time =(2,4).
Adapted from: [10].

analysis of military training, strategy, tactics, and policy. These models can be most
rigorously tested and validated to achieve high validity of the attempted simulation. Due to
the model size and the complexity, it is almost impossible to fully understand the underlying
dynamics of the models, and such models may subsequently yield the occasional disturbing
nonintuitive result. Non-monotonicity and chaotic behavior of a deterministic combat
model based on TS granularity has been studied by Dewar et al. [11]. For example, a
Lanchester salvo model can simulate the attrition and the end of battle for two forces, blue
troops and red troops. Under certain TS granularity, the model shows a non-monotonicity
result as the monotonic initial troop strength is applied on the red-troops force. Figure 1.6
shows the end of battle results between two forces with monotonic initial troop strength on
red troops in different TS granularity. In (a), the result has monotonic probability of win
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for red troops as the initial troop strength is rising. However, the result does not match the
expectation of the strength increment of red troop in (b). In some scenarios, the increment
of the initial strength of red troop leads to the failed outcome for red troops as the win
outcome happens with less initial strength of red troops.

(a) Monotonic result of red force to win. (b) Meta stable, non-monotonic result of red force to win.

Figure 1.6. Exemplar results of a Lanchester salvo model between red force
and blue force. (a) shows the monotonic result as the initial strength of red
force has monotonic increment. (b) demonstrates the non-monotonic result
as the initial force strength of red force is increasing. Source: [11].

There are some possible causes of the non-monotonicity that deserve consideration:

1. Modelmisconstruction: Themodel is not constructed correctly in its original design
attempt. In other words, these are coding errors when building the model. This is the
most straightforward issue, and the non-monotonicity can be solved by correcting the
coding errors. This is the "verification" of constructing the simulation, the first "V"
of VV&A.

2. Round-off and precision: Computer calculations are subject to errors because of
how computations are rounded off by the machine and how many significant digits
the machine carries in the computations. The errors may not seem significant in a
single variable. However, in a complex model with many interaction behavior factors,
the small errors can lead to chaotic behavior that leads to a chain reaction with other
factors.

3. Time-step granularity: The discrete time steps over which the attrition is computed
correspond to a discrete approximation of a continuous "average" attrition in this
salvo model. The size of the chosen TS and the goodness of the approximation have
serious implications for the outcome.
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Through these undesirable factors, model chaos can be introduced into the simulation results
even if the simulation conditions are setup correctly. The chaotic behavior of the model
results in misleading outcomes of which the practitioners may not be aware.

As another cautionary example, Figure 1.7 shows the engagement footprints of a
Surface-to-Air Missile (SAM) simulation with deterministic detection and engagement
processes. This example shows the fixed detection ranges produce erroneous outcomes
in a complex situation. In the scenario on the left, the aircraft has higher Radar Cross
Section (RCS) that leads to a larger high Probability of Kill (PK) zone (red area) to the
SAM. By luck, the engagement of the missile to the target happened twice in the low
PK zone (green area) and the target survived. Nevertheless, in the right-side scenario, the
aircraft with lower RCS resulting in smaller high PK zone is nevertheless intercepted by the
SAM at the same waypoint. The result is because the target being tracked a little later in the
second scenario than the high RCS one, and that the result the one expected for the low RCS
target. However, such simulation results present a unexpected outcome for the simulation.

Lucas [2] shows examples of biases resulting from deterministic approximations of
stochastic events. A deterministic model is one in which a given input will always produce
the same output, while a stochastic model is one in which the results are determined by
using one or more random variables to represent uncertainty about a process or in which
a given input will produce an output according to some statistical distribution. There are
some reasons for utilizing the deterministic model:

• A good point estimation is sufficient for some simulations. Point estimations
provide "the most likely" or "average" outcomes. However, a point estimate from
a deterministic model is probably biased and possibly mistaken.

• Deterministic models require less processing. Unlike stochastic, a model requiring
multiple replications for obtaining precise estimates for a given input set, a
deterministic model has fixed output for each setup.

• Deterministic models are usually simpler. Adding necessary parameters to a model
costs in processing time and understanding, and good analysts try to keep models as
simple as possible.

Nevertheless, the closed-form solution of a model often does not necessarily exist due to the
complexity of the simulation scenario. Thus these combat model scenarios are inherently
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Figure 1.7. Two example scenarios of a SAM system simulation. In the left
scenario, the target is fortunate to have the intercepts always occur in area
of low PK even if the target has higher RCS and results in larger high PK
area. However, the target in the right scenario has lower RCS leading to
smaller high PK area and is intercepted. Source: [12].

stochastic. A vast number of factors have complex interactions that are difficult to determine
precisely because of the processing uncertainty, future uncertainty, and decision uncertainty.
These factors make it is impossible to model a detection event precisely. The attraction and
detection events can be estimated statistically, and uncertainties are often quantified with
Confidence Interval (CI). The benefits of applying stochastic models in combat simulation
are:

• Stochastic elements tend to reduce instability. The non-monotonicity errors of the
model can be suppressed by introducing parameters with Random Variable (RV),
which can average out some of hard breaking points in models.

• Monte Carlo models explore more regions of feasible model space. Monte Carlo
methods typically generatemanymore diverse trajectories through a simulationmodel
space, while a deterministic model uses only the means of these RVs.

• Deterministic models underestimate the total variability by omitting the variability
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of stochastic factors. Most combat models contain many random elements, which
contribute to the overall variance in outcomes. The total outcome variability increases
as the number of stochastic variables included in the model. Deterministic models
do not account for this variability, instead applying only an average of these factors.

• Monte Carlo methodology facilitates dealing with uncertainty and complexity. Even
a simple combat model makes the analytical solution prohibitive. If the uncertainties
are represented by RVs, this structure allows random samples of potential outcomes
to be extracted by the Monte Carlo approach.

For a radar-targets search simulation scenario estimating a radar’s Time to Detect (TTD)
against hostile targets, numerous factors can contribute to model performance such as
target’s distance, antenna sweeping period, aspect angle of targets, and target speed. Some
parameters are sensitive to the performance of the whole system and a rigorous computation
is often too complex to accomplish in a real-time simulation, such as RCS of targets from
different aspect angles.

Wang et al., in their study of constructing radar system simulations, propose a universal
program framework that considers the radar-target scenario using an object template. The
template divides the simulation into three subsystems classified by functions. These
functions include: 1) scene target echo-generation system; 2) radar information process
system; 3) radar control, display, and estimation system [13].

A recurring problem arises in approaches to dynamic target-sensor scenarios, when a
sensor’s detection algorithm is based only on the range between sensor and target [14], or
a sensor’s detection perimeter [15]. Both scenarios neglect the dominant factor of aspect
angle of targets, since the change of aspect angle can lead to drastic variations in RCS
response. Similarly the maximum detectable range of sensor derived from the Radar Range
Equation (RRE) in Equation 2.3 also fluctuates along with aspect angle. RCS can have a
huge influence on received signal power at the receiver, and has been recommended as a
topic of future work in radar M&S research by Inggs et al. [16].

Wang’s study [17] has incorporated RCS values into modeling by a ground clusters
numerical Weibull model in a radar M&S focusing on Terrain Environment effects. The
cluster backscatter RCS is the function of terrain range and aspect angle relative to the
sensor in the Weibull model that has been previously measured and built in prior research.
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This simulation applies the cluster RCS effect with aspect angle consideration, which has a
different RCS value as the object location varies in the simulation.

However, when integrating a non-parameterized RCS model generated from an arbitrary
target, a simulation application might produce incoherent responses due to considerable
computational latency from generating target RCS. In addition, TS size in a simulation
plays a crucial role in contributing to the accuracy and efficiency of simulation results. For
more detailed resolution purposes, the TS size has to be increased, while it also raises up
the simulation computational complexity and introduces insignificant data into the system.
Nevertheless, the precision of the result can only reach a certain level and can never be
exactly accurate. It is clear that better methodology is needed.

1.3 Problem Statements
To sum up the advantages and disadvantages of various simulation approaches from the
case studies, these are the characteristics of different types of models:

1. Physics models:
• Advantages: Physics models provide high accuracy and high fidelity for
representing events in the real world. When compared to statistical distributions
or simplified (cartoon physics) models, differential-equation based physics
models contribute to the fidelity of the simulation.

• Disadvantages: Physicmodels are typically complex and cumbersome due to the
inherent complexity of the real objects. The potential drawbacks of the physics
model in the simulation are the corresponding computational complexity of
model structure and the incoherent simulation timing between each component.

2. TS models:
• Advantages: TS models are relatively intuitive to build. The concept for
computing the next event based on a fixed time increment is familiar to
most simulation practitioners. Furthermore, model algorithmic resources are
abundant. The majority of simulation applications are built using TS structures.

• Disadvantages: Simulation efficiency and precision come as a high cost due
to the granularity of TS. Utility typically degrades either the efficiency or the
precision in the hybrid when choosing different TS resolutions to work together.

12



3. Discrete-Event Simulation (DES) models:
• Advantages: Simulation precision is high. Opposite to the step size granularity
issue of TSmodels, theDESmodels are executing precisely at the state-transition
event time. Model efficiency is also high. Since the simulation calculation
happens only at the state-transition time, there are no irrelevant events to be
considered, which reduces the redundant computation in the simulation.

• Disadvantages: Low model fidelity of physical phenomena is commonplace in
current combat-modeling simulation applications. Because the DES provides
much less model fidelity for physical architectures such as sensing then in the TS
models, the available sensor models for combat modeling seriously limit overall
model fidelity. They also raise major questions regarding simulation validity.

1.3.1 Barriers and Gaps
For constructing a high-fidelity simulation with complex behaviors, such as a dynamic
position sensors-targets simulation, there are barriers for model construction.

1. Model execution efficiency: The model efficiency degrades due to the divergent
computational latency factors integrated into the simulation.

2. Time-consuming calculation: To generate the highly detailed physics models,
comprehensive calculation is needed for a physics models with high resolution.

3. Model architectural complexity: The model complexity rises along with the
increment of the number of factors are considered into the systems.

Potential solutions for filling these gaps are:

1. Offline computation: For high computational-complexity models, if possible offline
computation is needed for isolating the tremendous computational latency for other
factors.

2. Applying high-performance computing (HPC) resources: To shorten the time to
compute highly complex model calculations, High Performance Computing (HPC)
such as cloud servers provides a possible solution if the model can be constructed in
a parallel form.

3. A new flexible modeling architecture: As efficient and flexible modeling
architecture is required for approaching higher resolution and more complex
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simulation scenarios.

1.4 Contributions
In a target-acquisiton search-radar simulation scenario, the primary information obtained
from the sensor entity is the time and the position of a detected target. Therefore, the
TTD of the target to the sensor, which is applied to resolve the detection location of the
target, is the key information needed for the sensor entity in the simulation. Buss et al. [15]
propose a DES constant-rate sensor, which determines only the TTD of the target when
successful contact between the target and the sensor occurs. The sensor model detection
behavior is efficient based on only two events: 1) whether the detection happens and 2) when
TTD occurs. However, the detection algorithm of this DES is too crude to consider the
target position and aspect angle variation in a dynamic sensors-targets simulation scenario.
Methodology improvements are possible. The contributions of this dissertation follow.

1.4.1 Accomplish anEfficientDESSensorModelwith theConsideration
of the Range and the Aspect Angle of the Targets based on
High-Fidelity Physics Models

The primary contribution of this study is to construct a high-fidelity sensor model in concert
with a highly efficient DES architecture.

Figure 1.8 depicts the goal of this study, which is to construct an efficiently executing DES
architecture meta sensor model with the same detection reports as the constant rate sensor:
1) whether the detection happens as determined by Probability of Detection (Pd), and 2)
when the TTD occurs, with the simulation incorporating high-fidelity physics models into
the sensor-detection algorithm. A two-stage approach is used to achieve this highly detailed
DES architecture sensor model:

1. Constructing a high-fidelity sensor model using a hybrid model architecture:
This model incorporates highly detailed physics models into the sensor detection
algorithm.

2. Forming a meta-model with statistically identical performance to the hybrid
model:
An associated meta-model learns the hybrid model detection algorithm from the
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Figure 1.8. High-efficiency and high-fidelity radar system simulation
flowchart.

observation data generated by the efficient Nearly Orthogonal Latin Hypercube
(NOLH) Design of Experiment (DoE) results.

1.4.2 Developing a Hybrid Sensor Architecture, which Incorporates
High-Fidelity Physics Models with Different Simulation Timing
Mechanisms: Atemporal, DES, and TS, into a Coherent
Simulation Timing Model

To integrate highly detailed physics models with divergent run times into a simulation,
a hybrid sensor structure that incorporates models from three categories with coherent
simulation timing is proposed in the study. The experimental flow chart is shown in Figure
1.9. The three categories of the hybrid sensor model are: 1) atemporal construction, 2)
discrete event simulation construction, and 3) TS construction.

The hybrid sensor model integrates the high-fidelity physics parameters into the RRE,
which considers the dynamic position between sensors and targets through simulation
with a comprehensive detection algorithm. Because of the variety of characteristics in
radar parameters, each of them has preferable and efficient methods to apply during the
simulation. In this study, all the considered radar equations are classified by the interaction
ability between entities. Those parameters having no interaction with other entities, which
can only be calibrated by radar design attempts, are classified as the controllable parameters
and are implemented in a specific initial value in the DoE. However, the parameters in the
RRE with the interaction relation between entities have to be computed as simulation state
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changes, such as RCS. Those parameters cannot be designated as the initial value in the
simulation, but they will be updated as the simulation is proceeding. Unfortunately, due to
the different characteristics between these two categories of the parameters, the modeling
structures associated with each type of them are different. The simulation time mechanisms
are also incoherent in different categories. This work constructs a hybrid model with
three modeling constructs that mitigate the disparate simulation time mechanisms of each
paradigm.

1. Atemporal model: The atemporal models have no time factor of the model response.
With the highly detailed physics characteristic, however, these cannot be interaction
coherently in the simulation with other factors due to the tremendous computational
latency, such as the target’s RCS value. The RCS value varies along with the aspect
angle between the targets and the sensor in dynamic simulation scenarios. The
RCS is highly sensitive to the geometry of the object, and the projection of the
object changes as the aspect angle varies. Due to the high computational latency,
these factors are classified as atemporal models and need to be processed separately
from other modeling structures. Interestingly, since the original phenomena (such
as electromagnetic response) required time-aware offline simulation, the resulting
response model can be thought of as having temporal response compiled or distilled
out of the results.

2. DES model: DES allows for precise and efficient event execution. As previously
discussed, the major limitations and drawback of TS simulation are the simulation
precision and execution efficiency. A simple detection algorithm DES sensor model
structure is applied as a framework for new sensor models to integrate more radar
detection-related parameters. This is intended to increase the detail of the radar
model detection algorithm while the simulation can still maintain the precision level
in the results with relatively higher execution efficiency than the pure TS simulation
structures.

3. TS simulation: Differential time step model structure is used to represent inherent
TS behavior. This model structure emulates radar antenna mechanical sweeping
behavior. The attempts of target detecting by a search radar happens once for every
antenna scan at the target in a period of scanning rate. The antenna scan period is
proportional to the target integration gain in the RRE but inversely proportional to
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the rate of updating the target position during simulations. The longer the antenna
sweeping integer, the higher the target integration gain, and the lower the target
updating rate.

1.4.3 Generating the High-Fidelity and Highly Efficiency DES Sensor
Model by a Meta-Model, which is Statistically Equivalent to the
Hybrid Model with Much Lower Modeling Complexity

Despite the hybrid sensor model integrating the incoherent modeling factors into one
modeling structure efficiently and coherently, the overall model structure is still bulky for
carrying all parameter information. The simulation execution efficiency is not optimal
either, due to the embedded TS structure. The execution efficiency is affected heavily by
the size of the TS. In most cases, the scanning events are processing no state change
scenarios repeatedly and these are the inherent behavior of TS structure. For forming a
more computationally efficient sensor model with the equally likely physics-based detecting
algorithm sensor, the second-stage process is applied for creating a simplified structure
sensor model. Forming a meta-model and generating results is relatively simple compared
with the baseline hybrid sensor model, which is the given DoE [18]. The highly efficient
DoE for analyzing the detailed interaction information between each parameter that has been
considered in the hybrid sensor model is generated by NOLH design. The DoE allows the
hybrid sensor model behavior to be studied comprehensively by the efficiently space-filling
Design Point (DP)s to cover the range of parameters of interest in the sensor model with a
concise number of DPs for a reasonable simulation execution loading. The meta-models are
fit by the regression analysis with the observation data from the simulations conducted by
the DoEs. The meta-models undergo multiple verification processes to prove the validation
of the meta-model to the baseline hybrid sensor model.

The properly fitted meta-model encapsulates parameters that have been considered in DoEs
without carrying bulky computational loading for simulation applications. Nevertheless, it
remains important to note that themeta-model is a smoothed representation of the simulation
experimental outputs. This derivation has a tendency to hide unusual occurrence (i.e.,
outlier events) that can occur in stochastic simulation, and indeed in the real world as
well. With three categories of modeling structures and the two-stage model construction
processes, the radar sensor models can not only integrate the model with high physical detail
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Figure 1.9. Methodology roadmaps: experimental-design flowchart showing
hybrid sensor models integrated from three simulation categories, followed
by overall regression analysis.

radar parameters into detection algorithms but also generate a relatively low construction
and computational complexity meta-model with validating behavior to the baseline hybrid
model. The meta-model predicts Pd and TTD. The results make the sensor model working
as the most succinct DES structure with considering the target range and aspect angle, which
is not considered by the DES sensor model before.

1.5 Dissertation Organization
This dissertation is organized as follows: Several important related works which support and
inspire this research are discussed in Chapter 2. These works provide a general knowledge
of DES and the construction of rudimentary and efficiently executing DES sensor models.
In addition, the fundamental radar principle and the parameters that have been considered
into the detection algorithm of new hybrid sensor model are also introduced. In this section,
the significant effect of radar maximum detection range by the variation of RCS in different
geometry of object is analyzed.

In Chapter 3, there three prototype advanced sensor model architectures are introduced.
Two-tier and multiple-tier probability of detection DES sensor models are proposed. These
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two models illustrate progressive thought on migrating from a basic DES sensor model
to a more complex model. The basic DoE and data analysis process are applied for the
rudimentary trial approach of further sophisticated sensormodels construction and advanced
DoE design and simulation analysis.

The advanced hybrid framework sensor model is introduced as the third model. To ensure
that maximum detail is incorporated into model parameters, a hybrid model that integrates
atemporal, TS structure into DES is used. This demonstrates the solution hybrid sensor
construction to incorporate the incoherent simulation time mechanism of models from three
categories. The event diagrams of the hybrid sensor and the simulation event schedule tables
are used for illustrating the structure of the hybrid sensor model.

Chapter 4 illustrates the principle of DoE for conducting the simulations. For the
regression analysis, which is the second-stage of the model efficiency optimization process,
comprehensive and efficient DoEs for analyzing the hybrid sensor model behavior are
necessary. The DoEs applied in this research are set up efficiently using NOLH from
Cioppa [18] and are introduced in this section.

In Chapter 5, the fundamental principles of linear regression analysis and logistic regression
analysis are introduced. The linear regression analysis is applied for predicting a generalized
TTD of the hybrid sensor model based on the observation data generated by the DoEs, while
the logistic regression analysis is for predicting the Pd of the sensor to detect the targets. For
the validation analysis of the fit meta-model to the baseline hybrid sensor model, a series
of model selection, model shaping and model verification methodologies are introduced.
Cross Validation (CV) is applied for making sure the fit meta-models can properly represent
the hybrid sensor models in particular. As the result, new numerical meta-models are
generated that incorporate the parameters considered in the hybrid simulation framework.

A summary, conclusions, and recommendations for future research are in Chapter 6.
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CHAPTER 2:
Related Work

Human beings, who are almost unique in having the ability to learn from the experience of 
others, are also remarkable for their apparent disinclination to do so. 
         –Douglas Adams [19]

2.1 Physics-BasedWeb3DModelGeneration andAnimation
Cheng et al. [20] produced a study that applies Matlab and Simulink creation and animation
of Extensible Three-Dimensional Graphics Standard (X3D) in web-based simulation.
Matlab is a powerful tool to compute high-fidelity engineering models and graphically plot
the results. Simulink implementsMatlab .m source code into block diagrams and flow charts
to execute the simulation. The project demonstrates how physics equations implemented
in Simulink can animate X3D or Virtual Reality Modeling Language Standard (VRML)
models, along with the methods to convert Matlab .fig format into an X3D object so we can
apply it into web-based animations. The overall operation flow chart is shown in Figure.2.1
and the processes are listed as follows:

1. The "Matlab.m" block implements the mathematical physics model in Matlab.
2. In the "Matlab.fig" block, the 3D model figure is plotted as *.fig based on the

mathematical model implemented by Matlab.
3. Using a built-in figure-conversion library inMatlab, the 3D *.figmodels are converted

into two widely used web-based 3D object formats: "VRML.wrl" and "X3D" since
these two formats are directly similar and capable of being converted from one to the
other.

4. "Simulink Simulation" animates the "VRML.wrl" objects by physics equations and
simulations can be shown in "VRML Players" or "HTML" web browsers.

5. The "X3D" models are also to be displayed in "HTML" web browsers.

2.1.1 High-Fidelity 3D Model Generation
In the first part of this demonstration, a phased-array antenna radiation pattern is calculated
from Matlab based on the antenna theory and then converted into web-based 3D models,
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Figure 2.1. Design patterns for Matlab and Simulink creation and animation
of X3D in web-based simulation.

such as .wrl, .x3d scenes for further application. The phased-array antennas are the antenna
set assembled by several antennas. These antennas are arranged in space and interconnected
to produce a directional radiation pattern. The array elements interact with each other and
alter the current from that which would exist if the elements were isolated. The interaction,
called mutual coupling, changes the current magnitude, phase, and distribution on each
element. This is manifested by a total array pattern, and these effects depend on frequency
and scan direction [21]. A 3D beam pattern of a seven elements phased-array antenna is
generated byMathworksMatlab based on linear array antenna electric field computation and
is shown in Figure 2.2a. For wider application on web-based simulation, the high-detailed
Matlab.m 3D figure is converted into a web-based 3D model .x3d format shown in Figure
2.2b, .wrl format in Figure 2.2c, and .HTML format in Figure 2.2d. X3D is the open
international standard for 3D on the web. X3D is used for building 3D models from simple
to sophisticated constructions. X3D can show animated objects from different perspectives,
and allow user insight and interaction. The X3D models can be combined and connected
to build sophisticated 3D virtual environments running in a web browser, locally or across
the Internet [22].

This study demonstrates an approach where a highly detailed and physically based model
generated by Matlab can be extended to other popular web-based 3D objects for Networked
Virtual Environment (NVE) application purposes, such as X3D and VRML objects. With
the benefit of computing and generating the objects with an efficient engineering application
tool Matlab, which has a variety of technical libraries support, the web-based 3D models
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(a) Antenna Beam Pattern Model in Matlab.m (b) Antenna Beam Pattern Model in .x3d

(c) Antenna Beam Pattern Model in .wrl (d) Antenna Beam Pattern Model in .HTML

Figure 2.2. Phased-array antenna beam pattern model created in Matlab .m
source and converted to .x3d, .wrl, and .HTML models. (a) Source: [23].

in NVE are no longer just for “pretty” visualized object demonstration, but also display
the results based on the accurate assumptions in the simulation scenarios. Detailed model
generation and conversion procedures are provided in Appendix A.1.
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2.1.2 Physics-Based 3D Model Animations
The second stage of the physics-based visualization study conducts a dynamic free-fall
object scenario. The simulation is animated by Simulink, which is the real-time simulation
toolkit of Mathworks Matlab [24], in a fixed TS 4t. The location of the object to present
the moving behaviors is based on the free-fall dynamic equations with G-force = 9.8 (m/s).
The object velocity v = G · 4t [25] and the velocity change of the object during the
simulation is shown in the bottom of Figure 2.3. The moving distance within time 4t is
4d = 1

2G · 4t2 [25] and the object position is monitored and shown at the bottom right of
Figure 2.3. The resilience force F of the X3D object bouncing behavior is implemented
by Hooke’s Law. F = −k · 4s [26] while k = 600 is a constant factor characteristic of the
spring and 4s is the compression distance of the cube. The resilience force is proportional
to the "squishiness" of the object during the contact of the ground and it is shown at bottom
right of Figure 2.3.

Figure 2.3. Block diagrams of Simulink implementation with plotted
position, velocity, and force variation of a bouncing/springing box.
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The Attenuation Force (AF) is applied for a more detailed simulation scenario to represent
the fractional loss during compression and resilient process in the real world bouncing object
behavior. AF = −6 · v , while the -6 is the attenuation factor. Therefore the attenuation can
be observed through the object movement monitors in Figure 2.3.

The shape of the red X3D box object is slightly expanded along x, y axis while the
squishiness is compressed along the z axis. In Figure 2.4, the object shape is transformed
from a squared cube into a flat box (center plot) and then resumes its original shape
after bouncing (right plot) with the scaling parameter a =

√
1.53

4z along x, y axis. Linear
deformation effects are assumed. Due to the accurate physics assumption for the animation
response, the scenario looks reasonable and close to the impression of real world physics
movement. The block diagram of the Simulink animation is shown Figure 2.3 and the detail
simulation construction is described in Appendix A.2.

This study has demonstrated an approach of 3D model construction based on highly
physics-detailed equations, which are computed by the efficient engineering simulation
tool and converted into popular NVE formats for wider simulation application. Also the
animation is rendered based on the physics movement equation by a well-developed real
time engineering simulation tool. However, the simulation precision and computation
complexity are still highly associated with the size of TS during the simulation. The finer
the TS, the higher the details of the simulation results and the higher the computational
complexity of the simulation.
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Figure 2.4. The X3D bouncing-box animation simulation rendering by
Simulink. The screen shots of object movement display three states: free
fall (left), compressed (center), and post-bounce (right).

2.2 Discrete Event Simulation (DES) Structure
A simulation model is a representation of an actual system and the activities that happen
in the system. A simulation advances time according to the model architecture. A TS
simulation, advances time according to a fixed time increment. The TS may be too coarse
to result the accurate information or too fine to introduce redundant computation into the
simulation. A DES model, however, advances simulation time from event to event. The
time between events is typically variable and the events can occur at any time. The DES
structure is illustrated in this section.

2.2.1 Concepts and Components of DES Models
The basic concepts and components regarding the construction of DES models are listed as
follows [27]:

• System variables: There are two types of variables in a DES model.
– Parameters: Parameters are variables that do not change during a simulation.
– State variables: These variables are the collection of all information needed to
define what is happening in the system. The determination of state variables
is a function of the purpose of the system models. The state variable can be
changed at any time during the simulation. The value of each state variable is
a function of its initial value together with the sequence of state transitions that
have occurred.
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• Entities: An entity represents an object that requires explicit definition. An entity
can be dynamic and move through the system, or it can be static and have interaction
with other entities. An entity may have instance variables that pertain to the entity
alone, which characterize the entity in the model.

• Event: An event indicates an instantaneous state transition during the simulation.
Events are scheduled in the future according to model’s design. Pending events are
contained in a future events list and proceed one at a time, with time advancing to
that of the next scheduled event.

2.2.2 DES Event Graph
The description of scheduling event in the basic DES framework indicates a directed, binary
relationship between the event that is being processed and an event that is scheduled. Event
graphs were introduced by Schruben [28] and are used to represent the activities in DES. An
event graph consists of nodes and directed edges. A node corresponds to an instantaneous
state transition. Each edge can have an associated Boolean condition and a time delay.
Figure 2.5 shows the fundamental construct for event graphs and is described as follows:
the occurrence of event A causes event B to be scheduled after a time delay of t by a Boolean
condition (i), i.e., the event B is scheduled only if the condition (i) is true. Therefore, the
basic event graph paradigm contains only two elements: the event node and the scheduling
edge with two options on the edges (time delay and edge condition).

Figure 2.5. Fundamental event graph construct. Source: [29].

A Simple Example of the Arrival Process
Figure 2.6 is an example of an arrival process modeled by two events: Run and Arrival.
There are two kinds of parameters in this arrival process model:

• Parameters
– {t A}: a sequence of (possibly random) times is between the occurrences of two
events.
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• State variables
– N : the number of times the event has occurred at each state transition. Its initial
value is 0.

Figure 2.6. ArrivalProcess event graph. Source: [29].

The description of the arrival process is:

1. When the simulation starts at "Run" event, the number of the event counter N is set as
0 and the "Arrival" event is scheduled with the time delay t A. If the parameter given
by the sequence of interarrival times {t A} is random, each value of the time delay
will be a different value.

2. The "Arrival" event has a self-scheduling loop with a time delay t A to recursively
schedule "Arrival" event.

3. "Arrival" event adds the increment of the event counter N by 1 at each time when the
"Arrival" event happens. Therefore, N has an increment of 1 in every time delay t A.

Canceling Edges
For the reason that the previously scheduled event is no longer valid, the canceling edge
represents the removal of the scheduled event. Figure 2.7 shows the canceling edge to cancel
the event "B", which is scheduled by event "A" under the condition (i). The canceling edge
is represented by a dotted-arrow to indicate the direction of the event source.
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Figure 2.7. Event canceling edge. Source: [29].

Parameters on Events and on Arguments Edges
For situations in which the data or the arguments are required to be passed through the
event transition to the next event, the passing arguments are denoted as j in a box on the
scheduling edge in Figure 2.8. It is often useful for data to be passed to an event and it is
much like passing an argument to a function or a method in computer programming.

A parameter on an event is indicated by a list of variables in parentheses. It is similar to the
syntax of parameters on a method in computer programming. The argument on the edge is
a list of expressions that match the event’s parameters syntactically.

Figure 2.8. Scheduling edge with arguments and event with parameters.
Source: [29].

2.2.3 DES Event Graph Components
When constructing a large scale model for which the entire model consists of a single
event graph, the number of entities and scheduling edges make the event graph difficult to
understand and maintain.

One solution is to define event graph components rather than to keep all functions in one
graph. An event graph component is only responsible for its own state variable and it is
not responsible for any other component’s state variables. An event graph component has
its own parameters, state variables, and operation algorithm to determine the outcome and
timing of the state transition in simulation.
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SimEventListener Pattern
In Simkit implementation, a listener pattern is called "SimEventListe ner Pattern" [30]. A
simulation component that is interested in responding to simulation events that occur in
other components is registered as a "SimEventListener" to those source components. The
SimEventListener pattern is the mechanism to indicate which event in a component can
affect the state of another. Figure 2.9 shows the representation of the SimEventListener
pattern. The "Listener" component listens to all events, which happen in the "Source"
component with a "fork-shape" mark to indicate the source component. If "Listener" has
an event that is identical (in both name and signature) to the "Source" component and is
scheduled, then the event will be processed in the Listener component as if the Listener
component had scheduled it. By convention, "Run" events are not dispatched to listeners.

Figure 2.9. SimEventListener relationship. The "Listener" component
"hears" all component "Source" events . Source: [29].

A SimEventListener Pattern Example
Figure 2.10 shows an example of the listening "Entity A" listens to the events from the
source "Entity B" with the connection of a SimEventListener pattern. The event listener
listens to the identical event with the same name and signature, such as "EndMove" in this
example. The simulation starts from the "Run" event in Entity A and then schedules the
"StartMove" event. When "StartMove" occurs, it schedules an "EndMove" event. Entity B
has no "StartMove" event, so it does nothing until the event listener hears the "EndMove"
from Entity A, and then the "MoveToWP" event is scheduled in Entity B. The arrow of the
event listener indicates the direction of the source entity and the responding entity.
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Figure 2.10. A DES event listener pattern example between two entities.
Entity B listens for "EndMove" event from Entity A.

2.2.4 Precision and Efficiency of DES
With this event-driven characteristic, the DES construction has an advantage in computation
precision and efficiency. Alrowaie [31] compares the accuracy of discrete event and discrete
time in an example of the Euler method approach for solving the differential equation. In
one dimension, a simple linear differential equation has the following form:

dy
dt
= f (y, t) (2.1)

The Euler method turns the differential equation into a difference equation by discretizing
time into intervals of size 4t and the Equation 2.1 is turned as follows:

y (t + 4t) = y (t) + 4t · f (y (t), t) (2.2)

Equation 2.2 is a first-order Taylor series approximation to Equation 2.1. The new state value
is the old state value plus an increment, which is the old state value multiplied by a fixed
differential time-step 4t. The resulting solution has significant variation for different size
of 4t and the difference is shown in Figure 2.11a. For the less-erroneous result, the smaller
time-step size is required. However, from the perspective of computational complexity,
the number of computation events has an exponential increment as the TS size decreasing.
When TS size is decreased by half, for example, this introduces twice as many interaction
states in each entity. The computation of the number of N states interaction increases to
N2.

An efficient DES approach to solve the differential equation "quantization method" was
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(a) Euler solution errors in different size of 4t (b) Quantized solution errors in different size of D

Figure 2.11. The estimation errors comparison: (a) Euler method, (b)
quantization method. Source: [32].

introduced by Nutaro [33]. For solving a simple differential equation model by the
quantization method, the simplest approach is to quantize the state space to be multiples of
a fixed quantity D. Depending on the sign of f (y, t), the next level of state may be higher
or lower than the current state. The model event graph is shown in Figure 2.12. The next
state value of y is the current state value with the quantity D in the sign of the current state
value. Figure 2.11b shows the results achieved by the quantization method are much more
satisfactory than the results from the Euler method. There is little deviation in behavior
for different sized quanta D. All solutions converge quickly to the steady state value of
1.0, which is the correct value of the equation. However, in the Euler method approach,
the results end up oscillating around the steady-state value. Even the closest solution has
never been closer to the true value than the quantization method. This study illustrates the
execution precision and efficiency of the DES structure.

Figure 2.12. The event graph of DES structure quantized model. Source:
[32].
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2.2.5 Event-Driven Movers and Path Managers
Many simulation scenarios involve the location and movement of entities, and the
location of entities plays a key role in the simulation scenario, such as a combat
simulation. Conventionally, the entities movement simulations are mostly handled under
the construction of the TS utilizing the fixed 4t to calculate the next entity’s location and
simulation progress based on the previous time step 4t−1 result. The result precision and
the simulation execution efficiency in the TS structure simulation are highly dependent on
the size of TS 4t while the efficient event-driven moving entity structure can compensate
for the drawback of the TS architecture. Buss et al. [15] propose a Listener Event Graph
Object (LEGO) framework for Simkit to accomplish the moving entities scenario with even
more complex interactive behavior between entities under DES architecture. The LEGO
framework breaks the simulation into subclasses and each subclass has certainmutual events
that get triggered when a relevant event transition happens during the simulation. There two
subclasses: 1) Path Manager, and 2) Simple Mover, that manage the entity moving scenario
under DES architecture. These two entities have mutual event listening pattern, which is
shown in Figure 2.13. The events are heard and schedule mutually by the identical events.

Figure 2.13. A DES event listening pattern of Path Manager entity and
Simple Mover entity.

The event graphs of two entities, which manage the moving entities scenario are illustrated
as follows:

• Path Manager class: The path manager class carries the designated waypoint and
assigns a waypoint to the mover entities one at a time. Figure 2.14 shows the event
graph of the "Path Manager" class. Each event gets scheduled during the simulation
from other entities, and it is also be possible to schedule the event in other classes
with the same signature during the simulation. When the simulation starts running
the "Run" event is triggered and the first waypoint is passed to the "MoveTo" event
in Point2D format. Point2D is the two dimensional coordinate system in Java. The
waypoint will be passed to the mover entity.

• Simple Mover class: In Figure 2.15, the simple mover entity has two parameters: 1)
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Figure 2.14. The DES event graph of path manager. This entity manages
the next goal waypoint of mover entities.

max speed and 2) the initial location. Once the "MoveTo" event is scheduled by the
"Path Manager" class, the next waypoint gets assigned and schedules the "StartMove"
event in this class. The time T1 for the mover to travel from the current position
to the next waypoint is calculated by the T1 =

Distance
MaxSeed . The "EndMove" event will

be schedule after T1 to represent the end of the move by the mover from the first
waypoint. If the "Stop" event is triggered before the mover reaches the waypoint, the
"EndMove" event gets canceled at the same time, but the current waypiont will still
be pending in the path manager.

The "EndMove" is scheduledwhen themover reaches the next waypoint, and a newwaypoint
is pulled from the path manager class when the "Start" event is scheduled again. When
the "EndMove" is scheduled by the "Stop" event from the mover class in the middle of
the waypoint, the pending incomplete continues for the mover, and the manager does not
provide a new one until the current waypoint is reached.
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Figure 2.15. The DES event graph of mover entity. This entity represents
the location of the object and receives the waypoints from the path manager.

2.2.6 Event-Driven Sensors and Targets
Extending from the DES mover and path manager structure, the dynamic sensors and
targets simulation scenario is also constructed by the event-driven structure. DES sensor
models can be executed efficiently and accurately in the simulation scenario because of
their event-driven structure. There are no redundant computational procedures between
scheduled events. There are two basic kinds of DES sensor models used in this work, which
are introduced here to explain this concept:

Cookie-Cutter Sensor
The cookie-cutter sensor is the simplest sensor model. The detection algorithm is based on
a detection perimeter of the sensor. The target detection mechanism is determined by three
entity classes:

• Sensor class. The sensor entity maintains a list of contact targets for the further
detection algorithm process. There are two events to manage the detection
mechanism, and the sensor entity event graph is shown in Figure 2.16. When
the "Detection" event happens, the sensor keeps the contact list of the target that
is detected. When the "UnDetection" event is scheduled, the target stored in the
contact list will be removed from the sensor entity. The events in the sensor entity
do not have scheduling arcs to indicate the event flow. This is because all the events
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Figure 2.16. Cookie-cutter sensor event graph.

are scheduled by the events with the same signature from other entities with the
event listener patterns. The event listener pattern manages the event invoking process
by designating the event triggering direction and event name between two entities
that contain mutual event activities during the simulation. The event with the same
signature and linked by the event listener pattern gets scheduled when the associated
event is scheduled in other entity.

• Referee class. The "Referee" entity event graph is shown in Figure 2.17. This entity
determines if the "EnterRange" and "ExitRange" events are scheduled by listening to
the location of the sensor and the target through the simulation when the "StartMove"
event is scheduled. As long as a target remains outside the maximum detection range
of a given sensor, there is no need to consider any interaction between the sensor and
the target. The interruption of a scheduled event is represented by a dotted arc. When
"Stop" event is triggered by the sensor or target entity, the scheduled "EnterRange"
event gets canceled if the target has not reached the maximum detection range. while
the "ExitRange" On the other hand, the "ExitRange" event gets canceled if it is
scheduled after the "EnterRange" event happened.

• Mediator class. The "Referee" entity manages the contact event between two mover
entities only. The detection condition after the movers make contact needs to be
defined. Because different detection algorithms can be applied when the target and
sensor make contact, another entity, which defines the detection algorithm of the
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Figure 2.17. Referee event graph determines whether the movers enter the
maximum detection range of the sensor.

sensor the target will be introduced. The "Mediator" is the entity that defines the
detection algorithm after the contact event is announced by the "Referee". Figure
2.18 shows the event graph of the cookie-cutter sensor mediator. The mediator
determines tD, the time to schedule the "Detect" event, when the "EnterRange" event
is scheduled. Since the detection happens at the same time as the "EnterRange"
happens in the cookie-cutter model, the "Detect" event gets scheduled with time
delay tD = 0. The "UnDetect" event gets scheduled when the "ExitRange" event is
scheduled by the Referee entity.

Figure 2.19 is an example scenario of a cookie-cutter sensor detecting a moving target.
When simulation starts at t−1, an aircraft flies from the orange diamond along the blue
dotted line at speed s. At simulation time t0, an "EnterRange" event is calculated and
scheduled by the referee, the target hits the detectable perimeter (green star) of the sensor
and then the "Dectect" event is scheduled by the mediator entity. The sensor declares that
the target was detected at t0. The "UnDetect" event is scheduled by the referee at t4 and the
"UnDetect" event is scheduled by the mediator at the same time. The target was undetected
when it reached the red square at t4. The resulting event schedule is shown in Table 2.1.
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Figure 2.18. Mediator event graph ensures fair adjudication of whether
detection occurs when the target enters the detectable range of the sensor.
Adapted from [15].

Table 2.1. Cookie-cutter sensor simulation event schedule

Simulation time Scheduled event
t−1 Target approaches, not yet detectable
t0 Target enters range
t0 Target is detected
t2 Target exits range, no longer detectable
t2 Target is undetected

Constant-Rate Sensor
The cookie-cutter sensor model is an ideal case of a sensor model since the detection time
delay of the target reaches the sensor maximum detection range, which is zero. In reality,
there is always the processing latency and false detection rate that exist in the real radar
system. To consider a TS detection behavior of a search radar sensor, as long as the target
is within the maximum detection range (the yellow perimeter), the sensor has a constant
Pd to detect the target in every time step 4t untill the detection of target happens. The
detection attempts are a sequence of Bernoulli trials with identical Pd . The number of
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Figure 2.19. DES cookie-cutter and constant-rate sensors scenario.

steps to detect the target is a geometric random variable with parameter Pd , so the Mean
Time To Detect (MTTD) is ∆t

Pd
. The TTD can be approximated by an exponential (µ) RV,

where µ = ∆t
Pd

[34]. An exponential random variable with a MTTD = µ represents the TTD
of a target after the target enters the detection perimeter (the green star in Figure 2.19).
The TTD: tD ∼ Exponential (µ) is the time delay for the constant-rate sensor mediator to
schedule the "Detect" event when the "EnterRange" event is scheduled by the referee. The
TTD represents a sequence of Bernoulli trials N with identical probability p until the first
successful detection while the tD = 0 is the cookie-cutter mediator entity. The tD brings
stochastic time delay into the detection algorithm, which makes the content rate sensor more
realistic than the cookie-cutter model. The resulting scenario event schedule is shown in
Table 2.2.

The constant-rate sensor model represents a more realistic situation for a sensor to detect
targets than the simple cookie-cutter sensor model. However, there are two points of
ambiguity with this design:
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Table 2.2. Constant-rate sensor simulation event schedule

Simulation time Scheduled event
t−1 Target approaches, not yet detectable
t0 Target enters detectable range

t1 = t0 + tD Target is detected
t2 Target exits range, no longer detectable
t2 Target is undetected

• There is no clear expression to define the relationship between the MTTD of tD and
the desired parameters within radar equations.

• There is only one mean time-to-detect µ for the whole detectable area of a sensor.
This assumption does not account for the RCS variation of a target at different angles,
which are the typical scenarios in dynamic sensor-target simulations. The relative
positions between targets and the sensor is varying as well as the aspect angle in
between.

More-detailed radar parameters need to be considered in the sensor model with further
analysis of sensor model performance. As shown later in this work, a hybrid approach
allows the DES framework to handle these complexities.

2.3 Computational Radar Measurements
The radar scenario involves a transmitter and a receiver with the same or two different
antennas, as well as a target and a signal that travels the round-trip between the radar and
the target. In most cases, the transmitter and the receiver are at the same location, which
is called a mono-static radar system, while the different locations of the transmitter and
receiver is called bi-static radar. The transmitted signal is usually an electromagnetic signal
that can be described by a carrier sine wave at frequency fc with modulation schemes of
amplitude, phase, and frequency. Radar system target detection is based on demodulating
the scattered signal from the antenna to targets. The changes observed in the returned
signal can provide information about the target position and motion. The time delay of the
returned signal yields information on the range. The antenna pointing direction yielding
maximum return strength provides the azimuth and elevation of the target relative to the

40



radar [35]. However, the gain slope of a conventional antenna beam peak is usually too flat
to give accurate angle information. Special tracking techniques such as beam switching or
monopulse are used for high accuracy angle measurements.

2.3.1 Radar Range Equation (RRE)
The RRE is used to compute the maximum detection range of the sensor to a target by
determining the time delay of the returned signal. In radar, the relationship between the
delay τ and the range R is given by

R =
1
2
τC

where C is the velocity of propagation, which is equal to the speed of light in a real
atmosphere. The factor of 1

2 is the result of the round trip travel time of the signal.

The maximum detection range (Rmax) is derived by the RRE as follows [36]:

Rmax = 4

√
Pt · Gt · Gr · λ2 · σT · NInt

4π3 · K · T0 · Br · FR · (S/N )1 · χ
2
df=4

(2.3)

and maximum Unambiguous range (Ru) of the sensor due to the radar prf constraint is
derived as follows:

Ru =
C

2 · pr f
(2.4)

The detectable range of targets from the sensor has to satisfy both Equations 2.3 and 2.4
i.e., the threshold range Rdetect in which the sensor will detect targets needs to meet these
two criteria:

Rdetect < Ru and Rdetect < Rmax (2.5)

These criteria are true of a low prf radar that does not have range ambiguities. It is possible
to operate in higher prf conditions and resolve the range ambiguities in the processing.

The parameters applied in the RRE have been classified into two categories in this study: 1)
the parameters that can only be configured by the radar system and under the control of the
radar designer. These parameters are listed in Figure 2.20, and they can be set up as in the
modeler’s attempt; and 2) the rest of the parameters that have an interactive relationship with
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Figure 2.20. Radar range equation parameters only configured by sensors.

other factors in the scenarios are set up accordingly. The target’s RCS is the parameter that
has corresponding responses with the aspect angle between the target and the sensor [37].
The RCS value varies as the aspect angle of the targets changes. This is a dominant factor
that can have significant effect on the RRE in a dynamic targets and sensors simulation
scenario, because the locations and relative aspects of targets and sensors are subject to
change as the simulation trajectories are executed.

Radar Cross Section (RCS) σT

RCS is the property of a scattering object that represents the magnitude of the echo signal
returned to the radar by the target. Electromagnetic waves are normally diffracted or
scattered in all directions when incident on a target. The intensity of the backscattered
energy with the same polarization as the radar’s receiving antenna is used to define the target
RCS. When a target is illuminated by RF signal, it acts like an antenna and backscatters RF
energy. Waves reflected and measured in the near field are spherical, while in the far field,
the wavefronts are decomposed into a linear combination of plane waves. When the signal
operational wavelength is much smaller than the target extent, this condition is referred to
as the optics region. The optics region is applied in the scenario in this research.

Assume the power density of a wave incident on a target located at range R away from the
radar is PDi. The amount of reflected power from the target is [38]

Pr = σT PDi (2.6)
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where σT denotes the target RCS. The power density of the backscattered signal at the
receiving antenna is as follows:

PDr =
Pr

4πR2 (2.7)

Equating Equation 2.6 and 2.7, yields the RCS:

σT = 4πR2
(

PDr

PDi

)
(2.8)

RCS is the measure of area in the unit of m2 and fluctuates as a function of radar aspect
angle and frequency.

Perhaps the simplest RCS target is the measure of a sphere. Due to the identical geometry
of a sphere from any angle, the RCS is independent to the aspect angle. A constant RCS
value is shown in Figure 2.21 for the aspect angle of the sphere 0◦ ≤ φ ≤ 360◦. The RCS
of a sphere is defined as follows [39]:

σT =
2πa
λ

(2.9)

where the radius of sphere is a, the signal wavelength is λ. The measure is in optical region,
which 2πa

λ � 1.

However, when two identical spheres are placed apart by λ (the left of Figure 2.22) and
2λ the RCS (the right of Figure 2.22) can vary considerably depending on view aspect and
signal frequency. The RCS model is defined as follows:

σr

σT
= 2

[
1 + cos

(
4πl
λ

sinφ
)]

(2.10)

where l is the separation and φ is the aspect angle to the two spheres with θ = 90◦. Although
this is a rather minimalist example of a "simple" complex target, its highly variable behavior
is indicative of more complicated targets.
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Figure 2.21. A sphere object, the simplest geometry of RCS measure, in
azimuth angle 0◦ ≤ φ ≤ 360◦.

Figure 2.22. The RCS measure of two sphere objects are set apart by λ
(left) and 2λ (right) , in azimuth angle 0◦ ≤ φ ≤ 360◦. Adapted from: [40]

A further question is whether the physical size of the target indicates RCS size. An
illustrative RCS example by comparing two different geometrical objects is shown in Figure
2.23. (a) is a flat plate object with the face perpendicular the to radio source, while (b) is a
cone-Sphere object with the tip pointing to the signal source. Both objects have the same
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1m2 physical projecting area from the view of the signal source (φ = 0◦). The RCS models
of these two objects in φ = 0◦ are computed as follows [41]:

• The RCS of a flat plate at broadside, A is the area of plate

σPlate =
4πA2

λ

�����λ=0.1m, f=3GHz,A=1m2
= 1000(m2)

• The RCS of a cone-sphere, a is the radius of the sphere with 30◦ of the cone angle

σCone =
2πa
λ

�����λ=0.1m, f=3GHz,a=0.564m
= 0.001(m2)

There is a million-to-one difference in the RCS of two targets even if each of them has the
same projected area. Observing the examples of spheres and the two preceding objects, the
geometry of the objects is definitely a critical factor of RCS.

(a) The RCS of a flat plate object (b) The RCS of a cone-sphere object

Figure 2.23. The RCS measurement of two objects with the same 1 m2

physical projecting area at broadside, showing a million-to one difference in
response characteristics.

The RCS of complex targets such as aircraft, missiles, vessels, and terrain can also vary
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Figure 2.24. Definition of local spherical coordinate system. The point P is
represented by the distance ρ with the elevation angle 0◦ ≤ θ ≤ 180◦ and
the azimuth angle 0◦ ≤ φ ≤ 360◦. Adapted from [42].

considerably depend on the view aspect and radio frequency. In the left of Figure 2.25, a
F-16 Falcon fighter model, which contains 2,056 vertices and 4,092 faces, is aligned along
the x-axis facing positive x vector direction while the body and wings are on the x − y

plane herizontially. In this study, the RCS values are computed along the azimuth angle
in a range of 0◦ ≤ φ ≤ 360◦ while the aircraft is aligned on the x − y plane as θ = 90◦

in a spherical coordinates system. The definition of a spherical coordinates in shown in
Figure 2.24. Spherical coordinates determine the position of a point P in three-dimensional
space-based on the distance ρ from the origin with the azimuth angle φ in a range of 0◦ to
360◦ on the x − y plane and the elevation angle θ in a range of 0◦ to 180◦ from the z-axis.

The RCS of an F-16 falcon fighter 3D model is computed by a high-fidelity electromagnetic
simulation software, CST Studio [43], in full-scale size using signal frequency 8 GHz. The
entire aircraft is modeled as Perfect Electric Conductor (PEC) material. The RCS result is
shown in the right of Figure 2.25. The RCS of the aircraft has agile change with the variance
of the azimuth angle φ. There are large RCS at front, back, and sides of the aircraft while
the RCS is relatively small at the diagonal angle of the model. Computing one angle of
RCS from the target takes around one minute. A Two dimensional (2D) RCS elevation cut
(θ = 90◦) with 0.5◦ resolution has 360 × 2 = 720 total angle of computation. It may take a
personal computer one day to accomplish a batch. In the larger physical size model or when
the model contains more vertices and faces, the computational time can be much longer.
For a 3D RCS pattern with 1◦ resolution and 0.5◦ azimuth resolution, the total number of
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Figure 2.25. The RCS measure of F-16 Falcon fighter model in θ = 90◦ and
0◦ ≤ φ ≤ 360◦. The F-16 model contains 2,056 vertices and 4,092 faces.
See Appendix B for additional 3D and RCS models.

new rays, each computationally intense, is 180× 360× 2 = 129,600. The computation time
for a computer to complete a batch is unbearable.

This computational complexity can cause tremendous latency during the simulation if
this atemporal factor, the RCS response of the object, is not isolated from others. To
avoid latency, the RCS of the targets is precalculated for the simulation application in this
research. Also the high-complexity object RCS models are performed by the HPC at the
Naval Postgraduate School (NPS) [44]. With the enormous computational power provided
by this resource, an excellent source of RCSmodels from arbitrary objects become available
for this study.

Pulse Integration Improvement Factor NInt

For a pulse radar, the signal is transmitted in a series of pulse trains. The scattering signal
returning from the object contains multiple pulses during each antenna scan. The more the
pulses returning from the target during each scan, the higher is the signal processing gain.
The number of pulses illuminating the target and returning back to the receiver during each
scan is called the pulse integration improvement factor and it is denoted as NInt in Equation
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2.3. The pulse integration improvement factor is determined by three radar parameters [45]:

• The radar prf (Hz): This factor represents the frequency of the radar that transmits
the pulses in the pulse train. The pri = 1

pr f is also commonly used and is thus called
the pulse repetition interval (pri).

• The antenna 3dB beamwidth θ3dB: This factor represents the effective beamwidth of
the antenna to illuminate on the targets. The effective beamwidth is twice the angle
from the maximum antenna gain to the half of the maximum antenna gain (3 dB
decay). Only the azimuth angle effect is considered in the study of this 2D planar
search radar model, though further fidelity might be gained by considering elevation
angle effects.

• The antenna revolutions perminute (rpm): This factor defines the speed of the antenna
sweeping mechanism.

There are two steps for computing the NInt :

1. The effective Time on Target (ToT): The effective radar signal illumination ToT per
revolution is calculated as follows:

ToT =
60s

rpm × 360◦
× θ3dB_AZ (s) (2.11)

2. The number of effective pulses provided to the integration improvement factor is
calculated as:

NInt = ToT × pr f (2.12)

A mono-static radar assumption is applied in this search radar model scenario, which
means the transmitting and receiving signal are at the same station. A coherent integration
improvement factor is applied in this system and it is denoted as NInt in Equation 2.3.

Target Fluctuation: Swerling III model χ2
df=4

The target detection algorithm utilizing the square law detector assumes a constant RCS
(nonfluctuating target). This work was extended by Peter Swerling to consider four distinct
cases of target RCS fluctuation. These cases have come to be known as Swerling models.
Target fluctuation introduces an additional loss factor as compared to the case where
fluctuation is not present [46]. Rather than being physically based, these stochastic variations
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attempt to characterize complex fluctuation effects between the target RCS and radar pulses
during a scan. The four cases of Swerling model approximations are defined as follows [47]
:

1. Case I: The echo pulses received from a target on any one scan are of constant
amplitude throughout the entire scan but are independent from scan to scan. It is
also known as slow fluctuation. The target RCS amplitude varies according to a
Chi-Squared probability density function with two degrees of freedom.

2. Case II: The fluctuations are independent from pulse to pulse rather than from scan
to scan as in Case I. This is sometimes called fast fluctuations. The target RCS
amplitude varies according to a Chi-Squared probability density function with two
degrees of freedom.

3. Case III: The RCS is assumed to be constant within a scan and independent from
scan to scan and fluctuates by a Chi-Squared probability density function with four
degrees of freedom.

4. Case IV: The fluctuation is pulse to pulse and fluctuates by a Chi-Squared probability
density function with four degrees of freedom.

Swerling showed that the statistics associated with case I and II models apply to targets
consisting of many small scatters of comparable RCS values, while the statistics associated
with case III and IV models apply to targets consisting of one large RCS scatterer and
many small equal RCS scatterers. Noncoherent integration can be applied to all four case
models while coherent integration cannot be used when the target fluctuation is either case
II or IV. This is because the RCS is not assumed to be constant between pulses. Swerling
case III matches the application and is applied in this study. A Chi-Squared probability
density function with four degrees of freedom is applied as the fluctuation loss in this
study. This factor models the fluctuation loss from targets between each antenna scan. The
RCS is assumed to be constant within a scan and independent from scan to scan; these
conditions are the same as those in this simulation scenario. The sensor model generates
stochastic time-to-detect results due to this fluctuation loss model which, is represented by
a Chi-Squared random variable with degree of freedom = 4. This Swerling loss factor is
denoted as χ2

df=4 in Equation 2.3. Figure 2.26 presents the Rmax of the sensor to detect the
target in one RCS by 50 replications with the fluctuation loss model of Swerling case III.
This scenario represents the Rmax of the sensor to detect the stationary target in 50 scans.
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Figure 2.26. The maximum detection range of the radar to one target RCS
with the fluctuation loss presented by case III Swerling model. The simulation
is executed with 50 replications.

Due to the fluctuation loss model factor χ2
df=4, the Rmax is less than the model without

fluctuation loss with the stochastic result at each antenna scan.
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CHAPTER 3:
Prototype Advanced Sensor Models

The perfect is the enemy of the good.
–Orlando Pescetti [48]

3.1 Model I: Two-Tiers Sensor Model
The constant-rate sensor model in section 2.2.6 applies one MTTD = µ to represent the time
delay TTD = tD of the targets to the sensor once the targets enter the Ru. The detection
attempts are a sequence of Bernoulli trials with identical probability Pd in number N of
detection attempts. Because Pd varies as the relative position between the targets and
the sensor changes, the constant-rate sensor applies only one µ to represent the tD for all
aspect angles. Section 2.3 illustrates that Rmax varies along with different aspect angles and
distances between targets and the sensor. These changes result from the variation of RCS and
the signal attenuation by the traveling distance, which affects Signal-to-Noise-Ratio (SNR)
in the RRE in Equation 2.3. The sensor detection ability is affected significantly as the aspect
angle and target distance change. The one µ structure fails to represent the aspect-angle
variation effect as varying Pd in a dynamic target-sensor scenario.

3.1.1 Model Structure
In order to represent different Pd in a dynamic scenario, a two-tier sensor model is proposed
that splits the maximum detectable range into two MTTD: µ1 and µ2 for two exponential
random variables to represent two different TTD: tD1 and tD2 when targets are in different
positions of the detection region: tD1 ∼ Exponential (µ1), tD2 ∼ Exponential (µ2).
Figure 3.1 displays the event graph of a two-tier constant-rate mediator. When the
"EnterRange" event is triggered by the referee, the time for the target traveling to the
midpoint towards its waypoint tm is calculated and applied for the condition decision that
if the tD > tm with the tD = TT D1. If the condition is true, the "EnterMidPoint" event gets
scheduled in tm. Then the second attempt of "Detect" event gets scheduled at tD = TT D2.
As the similar condition in the constant-rate mediator, the "UnDetect" event gets scheduled
once the "ExitRange" event is scheduled by the referee entity or the "UnDetect" event is
canceled if the "Detect" event is scheduled after the "ExitRange" event occurs.
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Figure 3.1. The two-tier TTD mediator event graph. The mediator ensures
fair adjudication of whether detection occurs when the targets enters the
detectable range of the sensor, providing two possible TTD RVs in two
detection regions.

The following example scenarios explain the behavior of the two-tier constant-rate sensor.
The two MTTDs’ transition boundary is located at the midpoint of the targets’ waypoint,
which is shown in the purple circle of Figure 3.2. Therefore, three possible simulation
scenarios exist for this sensor:
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Figure 3.2. A two-tier constant-rate DES sensor operation scenario.

3.1.2 Scenario I: Detection Occurs in Region 1
The target starts approaching the sensor at t−1 on the orange diamond of Figure 3.2. It is
similar to the constant-rate sensor in the section 2.2.6. The target enters the sensormaximum
detection range at t0 (green start) and the detection event is scheduled at t1 = t0 + tD1

(yellow circle) in Figure 3.2, which happens before the target enters the bottom region 2
with different MTTD. The tD1 is an exponential RV with MTTD1 = µ1 and it is denoted as
tD1 ∼ Exponential (µ1). The overall event schedule is shown in Table 3.1.
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Table 3.1. Simulation event schedule for two-tier constant-rate sensor
detects at region 1

Simulation time Scheduled event
t−1 Target approach, not yet detectable
t0 Target enters detectable range 1

t1 = t0 + tD1 Target is detected
t4 Target exits range
t4 Target is undetected

3.1.3 Scenario II: Detection Does Not Occur in Region 1
Because the tD1 is an exponential RV, the first scheduled detection event time t1 in region
1 may be later than the target arrives at the center of its waypoint at t2 (the purple circle) in
Figure 3.2. In this case, the detection event t1 gets canceled and the other detection event
gets scheduled when the target enters the middle of the waypoint at t2. The second target
detection time t3 = t2 + tD2. tD2 is an exponential RV with MTTD2 = µ2. The tD2 is to
represent the time delaywhen the target passes through themiddle of thewaypoint and enters
region 2, which is shown in the purple circle. It is denoted as tD2 ∼ Exponential (µ2). The
overall event schedule is shown in Table 3.2.

3.1.4 Scenario III: Detection Does Not Occur in Region 1 or 2
A similar scenario as no detection happening in region 1 in section 3.1.3. In this scenario,
the first scheduled detection time t1 is longer than the time the target passes through the
region 1 and the second detection t3 scheduled from t2 is also longer than the time when
the target exits the maximum detection range at t4 (the red square in Figure 3.2). In this
case, the detection event t3 gets canceled and scheduled as the target exits the maximum
detection range at t4 (red square). The overall event schedule is shown in Table 3.2, and the
detection event has never happened through the scenario.

3.1.5 Regression Analysis
A simple linear-regression analysis is applied to both the constant-rate sensor model and the
two-tier constant-rate sensor to analyze the significant factors that might affect the detection
capability of the sensor models. The regression analysis is based on the observations, which
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Table 3.2. Simulation event schedule for two-tier constant-rate sensor does
not detect the target at region 1

Simulation time Scheduled event
t−1 Target approaches, not yet detectable
t0 Target enters detectable range 1

t1 = t0 + tD1 Target is detected after tD1
if t1 = t0 + tD1 > t2 Target is not detected at region 1. Cancel target detection at t1

t2 Target enters detectable range 2
t3 = t2 + tD2 Target is detected in region 2

t4 Target exits range
t4 Target is undetected

Table 3.3. Simulation event schedule for when two-tier constant-rate sensor
does not detect the target in region 1 nor in region 2

Simulation time Scheduled event
t−1 Target approach, not yet detectable
t0 Target enters detectable range

t1 = t0 + tD1 Target is detected after tD1
if t1 = t0 + tD1 > t2 Target is not detected at region 1. Cancel target detection at t1

t2 Target enters detectable range 2
t3 = t2 + tD2 Target is detected in region 2

t4 Target exits range
t4 Target is undetected

are generated in the 65 DPs by the NOLH design. The DoE assigned a range of values for
the parameters of interest in the sensor models. The parameters of constant-rate sensor are:

• MTTD1: The MTTD of the sensor to detect the target.
• speed: The maximum speed of the target.
• IncidentAngle: The incident angle of the target flies close to the sensor.

The parameters of the two-tier sensor model are:

• MTTD1: The MTTD of the sensor to detect the target in the detection region 1.
• MTTD2: The MTTD of the sensor to detect the target in the detection region 2.
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• speed: The maximum speed of the target.
• IncidentAngle: The incident angle of the target flies close to the sensor.

Each DoE is executed with 100 replications for analyzing the stochastic behavior of these
two sensor models. This yields a total number of 65 × 100 = 6,500 data points as the
observations for the linear-regression analysis. Both meta-models are fit with the factorial
and polynomial interaction predictors up to a degree of 2. The detailed DoE and regression
analysis methodology are introduced in section 4 and section 5.

Figure 3.3 shows the goodness of fit of the both constant-rate sensor and the two-tier
constant-rate sensor to the regression meta-models. The RSquared values are 0.2375 and
0.27452 respectively. The RSquared value of both model do not show a good fit by the
meta-model in this case. Nevertheless, the linear-regression analysis allows the simulator
to determine the significant factors from the complex and unknown models.

3.1.6 Apply Gamma RVs as TTD
The linear-regression analysis results from both the one constant-rate sensor and two-tier
constant-rate sensor models do not show a good fit and low estimation error rate on the
meta-models due to the low RSquared values. This indicates that the linear-regression
analysis does not create a good model for predicting TTD of the constant-rate sensors. In
the next approach, the sensor construction is similar to the previous constant-rate sensors
except the original TTD exponential variables are being replaced by gamma RVs. The
definition of gamma RV is as follows [49]:

gamma(α, β) = f (y) =



yλ−1e
−y
β

βαΓ(α) , 0 ≤ y < ∞,

0, elsewhere,
(3.1)

where
Γ(α) =

∫ ∞

0
yα−1e−1dy.

α is the parameter of gamma RV shape and β is the scaling parameter of the
gamma-distributed random variable, which is a positive constant. Figure 3.4 displays
a family of different shapes and scaling parameters for gamma RV Probability Density
Function (PDF). The gamma RV family has a high skewness RV, such as gamma(1, 1) (red
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curve) and low skewness RV (blue curve), such as gamma(3, 1).

Exponential RVs are a special case of gamma(1, β) RVs, which are the high skewness
branch of gamma RVs. In this approach, the lower skewness TTD ∼ gamma(3, 2) is chosen
for the constant-rate sensor. The linear-regression analysis results for the one constant-rate
sensors and two-tier constant-rate sensors to predict TTD of the targets are as follows:

• One constant-rate sensor with TTD ∼ gamma(3, 2):
The linear-regression analysis is to predict TTD based on the 65 × 100 = 6500
simulation data. The simulation is conducted by 65 DPs by NOLH DoE with two
predictor parameters: 1) target incident angle, 2) target speed. Each DP executes
100 replications. The RSquared value of meta-model increases from 0.237527 to
0.739756. The results show that the TTD ∼ gamma(3, 2) sensor model has a lower
prediction error rate in the meta-model.

• Two-tier constant-rate sensor with TTD1,TTD2 ∼ gamma(3, 2):
The same DoE is applied to the two-tier constant-rate sensor with gamma RV. The
linear regression meta-model for predicting variable TTD by 6500 observation points
has RSquared value increases from 0.26185 to 0.704019. The meta-model also has
a lower prediction error rate with a lower-skewness gamma RV to represent TTD for
the constant-rate sensors.

The gamma RV constant-rate sensors do not represent or imply any specific meaning of the
sensor-detection algorithm in this moment. However, the regression analysis for studying
the behavior of an unknown system, such as the constant-rate sensor models, can create the
meta-model that have certain predictability to the baseline sensor models.
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(a) constant-rate sensor model regression with predictors to degree of 2

(b) Two-tier constant-rate sensor model regression with predictors to degree of 2

Figure 3.3. The regression analysis result: (a) the constant-rate sensor
model, (b) the two-tier constant-rate sensor model. The regression
observations are executed by the 65 DPs of NOLH design with 100
replications of each DoE. The predicted time to detect of meta-model with
the predictor parameters in factorial and polynomial interaction terms in
degree of 2.
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Figure 3.4. Gamma random variable PDF of different values of shape
parameter α and scaling parameter β. Source: [50]
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3.2 Model II: Fractional MTTD Region Structure
The constant-rate sensors with one or two MTTD RVs are still insufficient to represent the
range and aspect angle effects derived from the RRE, which is introduced in section.2.3.
Based on theRRE, the aspect angle and range between the target and sensor take an important
part in determining the detection ability of the sensor to the targets in that specific geometry
location during the simulation. Therefore, two advanced structures for constant-rate sensors
are proposed to cover the information of aspect angle and range from the target.

3.2.1 Multiple Fan-Sectors MTTDs Sensor
In Figure 3.5a, a sensor with multiple MTTD RVs divides the whole detection region into
several fine fan sectors. This structure is extended from the two-tier MTTD constant-rate
sensor with higher-level resolution in aspect angle to the target RCS response. With the
same scenario of the target movement, the target gets scanned by the sensor with time step
4t from simulation time t0 to t4. In each scanning event, the Pd of the target may be different
due to the different MTTD in the region. This approach considers the aspect angle varying
as the target is moving across the sensor. However, the range between the target and the
sensor is not considered. A further model experiment is proposed next.

3.2.2 Multiple Block-Sectors MTTDs Sensor
In Figure 3.5b, the detection region of the sensor is divided into multiple block sectors
with associated Pd according to the RRE. Each block sector has an MTTD for an RV to
represent Pd of the target at the location. The block sectors consider angle factor as the fan
sector model dividing the detection region into different angles of sectors. The range factor
is represented in different range cells in an angle sector.

3.2.3 Conclusions and Challenges of Multiple-Sectors MTTDs Sensor
Based on the two advanced multiple sectors of MTTDs sensor models, a conclusion can
be drawn that the more dividing sectors there are in the sensor detection region, the more
detailed resolution of Pd associated to the range and aspect angle between the sensor and
the targets. The multiple sectors sensor model seems to be the right approach for upgrading
the simple one constant-rate sensor into the advanced sensor model that contains more

60



(a) A sensor detection rate divided into fan sectors (b) A sensor detection rate divided into block sectors

Figure 3.5. The demonstration figures for illustrating multiple-tier
constant-rate sensors. The sensor detection rates are divided into small
sectors.

details of range and aspect angle information of the targets can be determined. However,
this improved approach has two inevitable challenges:

1. Model construction complexity: The complexity of model construction with DES
structure depends on the number of possible state transitions in the model. For the
multiple-sectors sensor model structure being considered, each sector gets considered
as the state transition region, and all states of the model are required to be constructed
into mediator and referee entities in order to determine the time and location that
targets enter the regions. A correspondingly tremendous increase in the number of
states can make it extremely difficult and complex to construct a sensor model with
multiple MTTD RVs in multiple sectors.

2. Model execution complexity: Assuming the multiple sectors sensor under DES
structure is feasible and completed, the model execution efficiency can be low due
to the computational latency of each sector response for the target travel through
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the sensor. Recall the scenario from the two-tier MTTD sensor model; the event
schedule of target pass through the sensor will be checking if the detection happens in
the region 1. If the detection does not happen in region 1, then schedule a determining
process repeatedly for the region 2 and so on for more regions. By these iteration
processes, the DES structure sensor loses the advantage of executing efficiency when
the model contains too many possible transition states.

By considering the two major challenges just mentioned, a sensor model that considers the
aspect angle and range to the targets is necessary. Thus, a more efficient model structure
framework is required and will be proposed in the later sections.

3.3 Model III: Hybrid Sensor Model
The multiple-sectors DES sensor, proposed in the previous section, presents challenges
when attempting to integrate parameters that have complex outcomes, such as the
complex RCS responses of moving targets. Due to the complexity of building a model
with so many fractional detection sectors and the tremendous deterioration of execution
efficiency by processing detection events at each sectors along with the target waypoint, the
multiple-sectors sensor structure is not an efficient implementation for this approach.

To address such problems, this research categorizes all high-fidelity parameters that have
been considered in the model and different simulation time mechanism models into
additional two categories:
1) The model integrates an atemporal model, which has a timeless factor but can lead to
noticeable computational latency, such as RCS value of the target in this study.
2) TS simulation methodologies are integrated into a DES framework to build a flexible
hybrid sensor model. The TS mechanism is utilized to emulate the sweeping behavior of
the search radar sensor. The sensor has a scan of the target once in every rpm.

This hybrid structure can integrate the highly detailed factors of atemporal and TS sensor
structure with the reasonable computational efficiency of DES models.
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3.3.1 Atemporal RCS Simulation Response
The RCS value of the target to the sensor is the function of the aspect angle regardless of the
time factor with other RRE parameters are configured as simulation design, which are listed
in Figure 2.20. The RCS values of the target are intensively computed by the high-fidelity,
physically based, simulation software CST studio [43]. The pre-computed RCS values table
of the target is in 360◦ orientation along φ with θ = 90◦ and 0.5◦ degree resolution. The
RCS model of the F-16 Falcon fighter is shown in Figure 2.25.

Due to the noticeable computational latency and the time independent characteristic of the
RCSmodel, thismodel is classified as an atemporal factor in the simulation construction.The
computational latency is isolated in order to execute it in a real time or differential simulation
time scenario, such as DES.

In Figure 3.6a, the Rmax is calculated based on the RRE with the RCS value in 0◦ ≤
φ ≤ 360◦ with a 0.5◦ increment. The Rmax reaches 110 km to 130 km around φ =

90◦, 180◦, 270◦, while the Rmax is down to 15 km to 20 km around φ = 60◦, 300◦. Figure
3.6b shows the Rmax in a polar plot. The range distributes identically with the RCS model
of the object with different scaling value due to the computation by the RRE. The Rmax
database of the target is carried by the sensor entity for detecting decision making. The
event graph of the sensor model that carries the target Rmax database is shown in Figure
3.12.
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(a) The Rmax of F-16 in φ = (0◦, 360◦) (b) The Rmax of F-16 polar plot in φ = (0◦, 360◦)

Figure 3.6. The Rmax of an F-16 Falcon fighter in azimuth angle with
θ = 90◦. In (a) the Rmax of the object is computed by the RRE with the
RCS model, which is pre-calculated by CST studio. In (b), the polar plot
of the Rmax of the sensor to detect the target, which is calculated by the
range equation with the RCS.

3.3.2 TS Structure
TS structure is applied to emulate the sweeping mechanism of a search radar antenna for
each scan. Since the sensor scans at the target once every rpm, a ping event is constantly
scheduled in sweeping intervals to represent the antenna sweeping behavior in the Ping
Angle Mediator entity. The event graph representation is shown in Figure 3.7. The
mediator entity determines the Rmax of the sensor based on the current position and the
aspect angle of the targets. The Rmax is calculated by the RRE with the RCS viewed by
the sensor at each sweeping event.

3.3.3 Hybrid Sensor Architecture Event Graphs
The hybrid sensor model is a DES-based architecture integrating the atemporal RCS model
from an arbitrary object and the TS simulation behavior to emulate the antenna sweeping
mechanism. The event graphs of two distinct entities in the hybrid sensor model are
introduced.
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Figure 3.7. A constantly scheduled "A Ping" event is scheduled by a fixed
time-step scheduling interval ∆t. The TS mechanism emulates the fixed
interval antenna rpm.

RCS Sensor Entity Event Graph
Unlike the cookie cutter sensor that contains only "Detection" and "UnDetection" events,
the RCS sensor entity, which is shown in Figure 3.12, contains detailed parameters that
integrates RRE and atemporal RCS factor into the hybrid architecture.

• Parameters: Parameters are the initial values or data that are designated during the
simulation initialization state. These variables do not change during the simulation
and can be accessed by the local class or globally by other classes, depending on the
entity design.

– AngleRangeArrayMap: It is the Rmax database of the target. The Rmax table
contains the detection range of the target to the sensor with the aspect angle
accordingly. During the detection process, the Rmax will be referred according
to the current aspect angle of the target.

– pinIteger: This is the parameter of the rpm of the antenna.
– isSwerling: A Boolean parameter to control whether the RCS fluctuation loss
is enabled.

– RCSSwerlingFactor: The RV represents the fluctuation loss of the target. A
χ2

df=4 RV is applied in this study for representing the model of Swerling case III.
– thetaAZ: The parameter of antenna 3 dB effective beamwidth.
– prf: The radar pulse repetitive frequency.

• State variables: The state variables are computed explicitly during event state
transition according to the parameters inside the entity class or from interactively
accessing other entity classes.
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Figure 3.8. RCS sensor event graph for DES detection of independent target
entities.

– Nint: The parameter of pulse integration improvement factor. The computation
is based on the two parameters "theatAZ" and "pinIteger." The detailed
computation has been introduced in section 2.3.1.

Ping Angle Mediator Entity Event Graph
This mediator entity determines whether the "Detection" event happens by checking the
position and aspect angle between the target and the sensor once every rpm. The parameters
and the state variables are listed as follows:

• Parameters:
– t1st : It is the time delay for scheduling the first "A Ping" event when
"EnterRange" event is scheduled by the "Referee" entity class. t1st ∼

uni f orm(0,∆t), which is a uniform distribution RV bonded between 0 and
the radar antenna rpm.

– ∆t: It is a fixed time interval for the self-scheduling "A Ping" event. ∆t = rpm.
• State Variables:

– Angle: Finding the current aspect angle between these two entities.
– RangeMax: Based on the current aspect angle, the Rmax of the target to the
sensor is read out from the sensor Rmax database.
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– MSDistance: The current distance between the sensor and the target are
calculated.

The decision making sequences are listed as follows:

1. The Ru represents the maximum detection range of the sensor for "Referee" to
determine the time of the target making contact with the sensor. When the contact
occurs, the "EnterRange" event is announced by the "Referee" entity class. The
"Referee" isolates the hybrid sensor architecture from the irrelevant and insignificant
events outside the Ru for boosting simulation executing efficiency.

2. Once the "EnterRange" event is scheduled by the "Referee" entity class, the first
"A Ping" event is scheduled with a time delay t1st ∼ uni f orm(0,∆t), which is an
uniform distribution RV bonded between 0 and the radar antenna rpm. Figure 3.9
demonstrates the three possible antenna revolution angles ρ1, ρ2, ρ3 out of 360◦ when
the contact of the target occurs. For a radar antenna sweeping in a constant angular
velocityω = rpm = ∆t, the antenna revolution angle ρwhen a target contact occurs is
uniformly distributed between 0◦ and 360◦. The probability of each antenna revolution
angle ρn when the target contact occurs is the same. Therefore, the minimum time
delay for the first effective scan from the antenna to the target is 0 when the contact
occurs at the antenna revolution angle ρ = 0◦. The maximum time delay for the first
scan happening is to wait for a whole antenna revolution cycle, which is the parameter
"rpm" in the model. It is when the contact occurs at the time when the effective scan
angle has just passed and happening at ρ = 1◦ for example.

67



Figure 3.9. Hybrid mediator event graph ensures fair adjudication of whether
detection occurs.

3. When the the "A Ping" event happens, the mediator checks the current geometry
location between the target and the sensor and computing the distance and the aspect
angle based on the current location of these two entities. Three state variables are
calculated in this event:

• Angle
• RangeMax
• MSDistance

The "Detect" event does not necessarily happen at each "A Ping" event due to the
detecting decision condition in Equation 2.5.

4. If the current Rmax is larger than the current target distance, this means the target
is within the detection range of the sensor. The "Detect" event is announced and
scheduled by the mediator entity at the same time as this "A Ping" event.

5. If the current Rmax is smaller than the current target distance, the target is not seen
by the sensor. Another "A Ping" event will be scheduled after one antenna rpm =
∆t and then checking for the "Detect" event as the logic in step "3." In Figure 3.7,
the "A Ping" event is scheduled repeatedly in a fixed TS interval: ∆t = rpm before
the "Detect" event condition is satisfied. The chance for the sensor to update the
information of the targets happens only once every rpm.

6. When the "ExitRange" event is scheduled by the "Referee" entity, the "UnDetect"
event will be scheduled in the same time and the next "A Ping" and "Detect" events
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Figure 3.10. Hybrid mediator event graph ensures fair adjudication of
whether detection occurs.

will be canceled to prevent conflicting schedules in the future simulation time.

Whole System Assembly Event Graph
Because the whole hybrid sensor model scenario is based on the DES architecture, the
subclass entities have interaction with each other based on events with the same name and
signature along with the direction of the event listener pattern. For each entity component
in this model, it is not necessary to have the "Run" event activated in the simulation. With
the connection of the event listener pattern between entities, the events of listener entity
components are scheduled by the identical events in the source entity components.

The blue dashed box in Figure 3.11 shows the event transiting relationship between "Path
Manager," "Simple Mover," and "RCS Sensor" entities. The corresponding events in the
entities, which have the same name and signature, are marked in the same color for clear
readability.

The simulation event scheduling algorithm is as follows:

1. The simulation starts at the "Run" event (light pink circle) in the "Path Manager"
entity, while other entities do not have a scheduling edge from "Run" event for the
event scheduling.

2. The "Start" event (white circle) is scheduled for starting the simulation. The "MoveTo"
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event (blue circle) is scheduled in the same time with the first waypoint for the mover.
3. The same event in "Simple Mover" is scheduled in the "Simple Mover" because the

event listener hears the event from the "Path Manager" to the "Simple Mover."
4. When the "EndMove" event (orange circle) in the "Simple Mover" happens, the same

event is triggered and is scheduled at "Path Manager."
5. The "PathManager" also listens to the "Stop" event (red circle) from the "RCS Sensor"

and "Simple Mover" for determining if the next waypoint is assigned to the "Simple
Mover" and "RCS Sensor" entities.

Since the "RCS Sensor" is basically stationary at one location in this scenario, there is no
waypoint assigned to the sensor entity.

The yellow dash-dotted box in Figure 3.11 manages the sensor detection algorithm by the
"Referee" and "PingAngleMediator." The detecting decision making sequence is as follows:

1. "Referee" determines when the "EnterRange" (light blue circle) is scheduled by
listening for the "StartMove" event (green circle) and gets the waypoints from
both "Simple Mover" and "RCS Sensor" entities. The time when the target gets
contact to the maximum detectable range of the sensor is calculated by "Math2D.
findIntersectionTimes(m, s)" in Simkit based on the waypoints.

2. When the "EnterRange" event happens in "Referee," the same event is scheduled
in "PingAngleMediator" and then the "A Ping" event (white circle) starts being
scheduled and checking if the target enters the Rmax repeatedly in the interval of
antenna rpm. The target aspect angle and the Rmax associated with this angle are
constantly updated in each "A Ping" event.

3. Once the "Detect" event (cyan circle) is announced by the "PingAngleMediator,"
the same event is listened for and registered, and the target is detected by the "RCS
Sensor" entity.

4. The "ExitRange" event (purple circle) is calculated and scheduled by the "Referee"
based on the waypoints of "Simple Mover" and "RCS Sensor." Once the "ExitRange"
event happens in "Referee," the same event will be triggered in "PingAngleMediator"
and then the "UnDetect" event (gray circle) gets scheduled in the same time.

5. The "UnDetect" event announced by the "PingAngleMediator" will be heard by the
"RCS Sensor," and the same event will be scheduled for the unregistered detection of
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the target.

Figure 3.11. Hybrid sensor model overall DES event graph.

3.3.4 Simulation Scenario
Figure 3.12 demonstrates a scenario of the detection decision processes of the hybrid sensor
model architecture as an aircraft closes in on the sensor. The simulation starts at t−1 as
the aircraft is outside the Ru at the orange diamond. The detecting decision algorithm is
computationally demanding and is not be scheduled when the target is outside of the Ru.
This DES structure saves computational cost from irrelevant events outside the possible
detectable range of the sensor. Recall the detection-decision algorithm in Equation 2.5; the
target detectable distance Rdetect has to be shorter than both Ru, which is the yellow rim,
and Rmax, which is the blue line figure in the center. The blue line figure is the target
detection range as viewed by the radar in a different aspect angle that depends on the RCS.
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Table 3.4. Simulation event schedule for hybrid sensor scenario

Simulation time Scheduled event
t−1 Target approach , not yet detectable
t0 Target enters detectable range

t1 = t0 + t1st A radar sweep
t2 = t1 + 4t A radar sweep

t2 Target is detected
t3 Target exits range
t3 Target is undetected

The first sweeping event is scheduled after the target reaches the sensor Ru (green star on
perimeter) with the time delay of an uniform RV t1st ∼ (0, 4t). The sensor starts repeatedly
scanning to the target in a fixed TS with a period of 4t = t2 − t1 · · · = tn − tn−1 while the
target moves in distance 4d = s · 4t at each TS. At each sweeping time step t1 and t2, the
aspect angle of the target changes from φ1 and φ2 respectively. Precise RCS is available
corresponding to angle changes for Rmax, which are computed from Equation 2.3. The
target does not reach the Rmax even though it is within Ru at t1 (the first yellow circle).

When the target arrives at t2 (the second yellow circle), the target has traveled the distance
= t1st · s + 4d since entering the Ru. The target’s position is within Rmax (the blue line
figure in the center). That is the moment the sensor declares the target is detected. The full
simulation event list is shown in Table 3.4.

The sensor might never detect a target if the target never reaches Rmax during all time steps.
The parameters attributed to the sensor model are:
1) Target RCS table, 2) Target speed, 3) Target aspect angle, 4) Radar sweeping period, 5)
Radar prf, 6) Antenna 3dB azimuth beam-width.
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Figure 3.12. The hybrid sensor operation scenario. The blue figure represents
the aircraft detection range as viewed by the radar depending on radar cross
section (RCS)

3.3.5 Simulation Sequence Diagrams
In this section, a Unified Modeling Language (UML) sequence diagram is introduced
for illustrating the event transition between the five entities and the time schedule in the
simulation. The UML is the successor to the wave of object-oriented analysis and design
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methods. The UML went through a standardization process with the Object Management
Group (OMG) and is now an OMG standard. The UML is called a modeling language, not
a method. The modeling language is the important part of the method. It is the key part for
the simulation practitioners to communicate the design of the model.

With the same simulation scenario, Figure 3.13 is a UML sequence diagram of the hybrid
sensor model in this simulation scenario. The vertical line is called the object’s lifeline.
The lifeline represents the object’s life during the interaction [51].

The five entities in the hybrid sensor model are listed in the sequential diagram from left to
right: RCS Sensor, Ping Angle Mediator, Referee, Simple Mover, and Path Manager. Each
message is represented by an arrow between the lifelines of two objects. The order in which
these messages occurs is shown top to bottom on the page. The "Simulation Time" block
is the event scheduling time sequence, which matches to the simulation event schedule in
Table 3.4. The events announced by the entities are in the rectangular boxes under each of
the entities for indicating the source of the events.

The blue-boxed events are in the advanced time structure, also known as DES in the study.
The "Path Manager" announces "Move To Waypoint" events to the "Simple Mover" entity
when the "End Move" event is fired by the mover. The "Simple Move" schedules the "End
Move" event when it receives the waypoint from the path manager with the "Start Move"
event. The duration of the start move event t4 − t−1 is calculated by the distance of the
waypoint and the speed of the target. The "Enter Range" and "Exit Range" events are
announced by the "Referee" with the duration t3 − t0, which is calculated by the range of
Ru in the current waypoint and the speed of the target.

The yellow-boxed events are scheduled in a fixed TS. The purple oval box represents the
atemporal RCS factor in this research. This entity provides the updated RCS value for the
"Ping AngleMediator" at each TS antenna sweeping event based on the current aspect angle
of the target.

The blue-diamond box represents the condition for the following event. In this scenario,
when "if detection" event is false, "Perform a radar sweep" eventwill be scheduled repeatedly
in an interval of 4t.
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Figure 3.13. UML time sequence diagram showing event-response
progression between DES, TS, and Atemporal simulation entities of a hybrid
sensor simulation scenario.

The "Detection" event is fired by the mediator when the detection condition is "true". The
"Detection" event is received by the "RCS Sensor" for registering the detected targets.

3.3.6 Conclusions
The hybrid sensor construction framework presented here successfully integrates three
different simulation-timing structures and also introduces high-detailed radar parameters
into the model-detection algorithm. The hybrid sensor construction has greatly mitigated
the incoherent timing issues between each unique timing mechanism simulation structure,
and the hybrid high-fidelity model can be executed efficiently and accurately as the typical
characteristics of DES. The overall scenario construction is built by multiple functionally
independent classes with mutual event interactions occurring in between.

Based on this flexible hybrid-sensor architecture, the RCS varying target-sensor models
are extended to eight more aircraft and missile models, which can be applied into multiple
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targets dynamic simulation scenario in future work. The RCS-varying available models in
this research are:

• Conventional Military Aircraft: The traditional military aircraft represent the
middle size RCS aircraft models.

– F-16 Falcon Fighter is the example aircraft model that has been used for the
prototype hybrid sensor model in this research.

– F-18 Hornet Fighter
• Commercial Aircraft: The commercial aircraft represents the large size RCS aircraft
models that have longer Rmax on average to the sensor.

– B-737 400
– B-747 400

• Stealth Aircraft: The Stealth aircraft has a relatively small RCS in comparison
with the conventional aircraft with similar physical size. These models have shorter
average Rmax than the similar size aircraft to the sensor.

– F-35 Lightning Fighter
– B-2 Spirit Bomber

• Unmanned Aerial Vehicle (UAV): The UAVs are a new type of tactical aircraft with
a size that can vary from that of a regular aircraft down to miniature size.

– MQ-1 Predator UAV
• Missiles: The missile objects have small RCS in the front size and relatively larger
RCS in the broadside.

– AA-11 Archer SAM

The detection response of each aircraft entity is based on its own RCS viewed by the
sensor entity by the specific aspect angle. The aircraft models are obtained from open
commercial and unclassified resources. The RCS are computed in full-size model with the
assumption of PEC material. The model RCS results may not be ideally matched to the
real object due to the imperfection of the model geometry and the lack of detailed covering
material information. Nevertheless, the RCS results still provide detailed high-resolution
information based on aspect angle, which affects the sensor detection ability to the targets.
All available models’ RCS data and the maximum detectable range to the sensor are shown
in Appendix B.
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3.3.7 Challenges
There are some intrinsic characteristics of hybrid sensor model structure that still make the
model structure complicated and cumbersome in a certain sense.

• Model Execution Efficiency:
The TS structure, which is used to emulate the radar antenna sweeping mechanism
periodically, can raise the number of scheduling events of target detection. The
frequent antenna sweeping events degrade the efficiency of the sensor model under
DES structure. The more trivial events that have been scheduled, the less efficient the
DES structure is and the closer to TS structure of the model.

• Model Structure Complexity:
In order to incorporate the crucial dynamic angle and range factors into the
sensor-target simulation model, the model constructing complexity of the hybrid
sensor model is much more efficient and less difficult than the immature proposed
fractional MTTD region sensor structure in section 3.2. However, the sensor model
carries the pre-computed atemporal RCS response table of the target. The RCS table
makes the sensor model append more data into the structure.

To mitigate these inherent drawbacks of the hybrid sensor framework, regression analysis is
next applied for forming simplified structure models with equally likely performance, and
the comprehensive and efficient DoE are required for analyzing the response and behavior
of the hybrid sensor model. The further simplified sensor-model response approximations
are introduced in section 4.
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CHAPTER 4:
Design of Experiment (DoE) for Hybrid-Sensor

Models

There are three principal means of acquiring knowledge: observation of nature, reflection, 
and experimentation. Observation collects facts; reflection combines them; experimentation 
verifies the result of that combination. 

- Denis Diderot [52]

This chapter introduces an approach to analyze the hybrid-sensor model behavior by 
executing multiple simulations with proper DoE designs. In experimental design 
terminology, the input parameters and structural assumption composing a model are 
called "factors," output performance measures are called "responses" or "observations." 
The decision of parameters and structural assumptions are considered fixed aspects of a 
model in a range of the goals of the study. These factors are usually in several different 
responses or performance measures of interest [53].

Thus the DoE in this study needs to provide the comprehensive insight of the hybrid-sensor 
model behavior in the range of values for the parameters of interest. The observations 
generated from the DoE are applied to regression analysis for studying the significant 
factors of the model for further forming a meta-model that retains the equally likely behavior 
as the hybrid-sensor model with much less structure complexity and more computational 
efficiency. There are two primary considerations for a proper DoE:

• For having a deeper insight into the comprehensive behavior of themodels, the number
of available experiments must be statistically significant for analyzers. Nevertheless,
because of realistic constraints such as budget, time, or available exercise space to
conduct experiments, experimenters are usually unable to get unlimited experimental
results for analysis. Efficiently designing experiments is important.

• A well space-filling measurement of the system parameters from the DoE is important.
The more detailed levels are included in the DoE, the more the relationship between
system and parameters will be captured by the analysis. This need for detail must be
balanced with the need for efficiency. A well-covered and succinct DoE is necessary.
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4.1 DoE by Full Factorial Design
To analyze the interactive relationship between all input parameters in the model, a DoE
that covers space in the range of parameters and the orthogonality between factors is crucial
to reveal the relationship between parameters and system state. If a model has only one
factor, the DoE is conceptually simple: the simulation is run at various values or levels of
that factor. However, now suppose there are k (k ≥ 2) factors and the effect of each factor’s
value are studied as well as the factor’s interaction with one another, i.e., whether the effect
of one factor on the response depends on the levels of the others.

A 2k factorial design chooses two levels for each factor and the calls for simulation runs at
each of 2k possible factor level combinations. These combinations are called design points
(DPs). Because there only two levels for each factor, the response is assumed to be linear
or monotonic over the range of the factor. If the response is non-monotonic (e.g., in the
shape of a parabola) over the analyzed range, a misleading outcome can result because that
the nonlinear factors have only a linear effect on the response [54].

Figure 4.1a shows a 25 factorial DoE with five factors in the variable range of the
hybrid-sensormodel simulation shown in Table 4.1. Each factor has two levels of resolution.
The 25 factorial design shows the prefect uncorrelated (zero correlation) behavior between
each parameter at the top of the correlation table between each parameter. There are 25 = 32
DPs in these five factors, two-level resolution DoE. However, compared to the NOLH 32
DPs DoE in Figure 4.1b, the space-filling in the parameters of 25 factorial design is scarce
and much more infrequent than the NOLH DoE for a similar number of DPs.

When the parameters have one level increment in the three-level resolution, the 3k factorial
design, the correlation is still zero between each parameter and the number of DoE has
an incremental from 25 = 32 to 35 = 243. Nevertheless, compared to nearly the same of
amount of 257 DPs NOLH DoE in Figure 4.1d, the space-filling in the parameters range is
still quite scarcely spreading out in 35 factorial DPs, as shown in Figure 4.1c. This sparse
35 factorial DoE will not capture enough detail information on a complex behavior model
such as the hybrid-sensor model in this study.

The parameters space-filling efficiency in full factorial design is much less efficient than in
NOLHDoE. When the space filling of parameters is sparse, theDoEs do not capture detailed
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levels of behavior for the model during regression analysis. The DoE skips many possible
values of parameters and loses a large portion of the observations of model information at
the uncovered region of parameters in the DoE.

The goal of Space-Filling Design (SFD) is to spread the DPs "uniformly" throughout the
experimental region. The efficiency of SFD is particularly important for the factors to
be continuous variables or discrete variables with potentially a large number of different
levels [55].
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(a) 25 factorial: 32 DPs with parameters in 2 levels (b) NOLH: 33 DPs with 5 parameters

(c) 35 factorial:243 DPs with parameters in 3 levels (d) NOLH: 257 DPs with 5 parameters

Figure 4.1. Scatterplot matrices of selected factorial and NOLH DPs.
Adapted from [56].

82



4.2 DoE by NOLH Design
When the five parameters resolution is increased to five levels in full factorial design, the
number of DoE increases to 55 = 3125, as shown in Figure 4.2a. The DPs keep the perfect
non-correlation characteristic between parameters, but the space-filling efficiency is still
insufficient for the highly detailed model analysis.

In full factorial design, if applying five factors with 250 levels of each factor, the number
of DPs = 2505 ' 9.7 × 1011. For each DP executing 100 repetitions, the total simulation
execution amount is up to ' 9.7× 1013. Even though in this computer based simulation the
number of experiments that can be conducted is not restricted, this execution amount is still
computational overwhelming.

TheNOLHpresented byCioppa et al. [18] provides an efficient space-fillingDoE that allows
a view of 257 levels, varying of up to 29 factors in 257 design points. With 100 repetitions,
the total number of simulations to process is 25, 500. Thismakes a 3 billion-to-one difference
on simulation execution tractability. Figure 4.2b shows that the design points of each factor
fills in the DoE space quite evenly, with only minor overlapping correlation to each other.
Compared to the full factorial DPs in Figure 4.2a, the five factors parameter with resolution
to five levels, the full factorial DoE has 3125 DPs while the NOLH DoE only generates
256 DPs. Furthermore, NOLH DoE covers much more parameter range space than the full
factorial DoE. The NOLH does not provide perfectly orthogonal DoE between each factor
like full factorial design. However, the concise DoEs generated by NOLH are a crucial
solution for executing comprehensive interaction simulations of high-complexity models
with many factors, and many levels in each factor, sacrificing only a minor correlation
between factors. This concise and highly efficient space-filling DoE makes a simulation
with high-level parameter resolution feasible, which is not otherwise executable in the
full-factorial DoE.

In the simulation scenario, the hybrid-sensor model is located at the origin coordinate point
S(0, 0) with the maximum detection range = 50 km (green line). The target initial position
is at 100 km north from the sensor at a(0, 100) (red square), which is displayed in Figure
4.3a. The waypoints are designated by the DoE.
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(a) 55 factorial: 3152 DPs with parameters in 5 levels (b) NOLH: 257 DPs with angle transformation

Figure 4.2. Five factors DoEs for hybrid model simulation in full factorial vs.
NOLH design.

The DoE is set up by NOLH with five parameters in 257 DPs. All parameters are in the
range that are listed in Table 4.1 and explained as follows:

• Waypoint(km): Target destination waypoint x-axis components.
For simpler waypoint arrangement in the simulation, the waypoints are assigned in a
vertical path (red-dotted arrow) and sweep horizontally along the x-axis (purple-dotted
arrow) shown in Figure 4.3b. The right bound of waypoint starts from aR(57.7, 100)
down to bR(57.7,−100) (right blue-dotted arrow), while the left bound of waypoint
starts from aL (−57.7, 100) down to bR(−57.7,−100) (left blue-dotted arrow). Other
waypoints are vertically interpolated in between and travel from ai (xi, 100) down
to bR(xi,−100) (red-dotted arrow). The parameter “Waypoint(km)” assigns the
different waypoints path along the x-axis xi that is arranged by NOLH design in the
range between -57.7 km and 57.7 km with two decimals level.

– Incident Angle (degree): Target incident angle conversion.
Converts vertical waypoints into relative target incident angle to the sensor
at a fixed initial position a(0, 100) in Figure 4.3a. The incident angle
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presentation provides a clear sense of target waypoints in different incident
angles relative to the sensor while the vertical waypoints are convenient for
program implementation in the DoE. The target incident angle of sensor is
computed by Equation 4.1 as follows:

Incident angle φ = sin−1
(
W
D

) �����W=xi−0
= sin−1

( xi

D

)
(4.1)

W = | |SSi | | =

√
(0 − xi)2 + (0 − yi)2

�����yi=0
= xi (4.2)

where D is the radius of the sensor maximum detectable range (green arrow) in
Figure 4.3. W is the shortest distance between waypoints vector and the sensor
origin (purple arrow) in Figure 4.3b. It is computed as Equation 4.2, because
aibi ⊥ SSi. When the W are the same in Figure 4.3, the waypoint vector aibi

in Figure 4.3b is equivalent to the waypoint with incident angle θi (red-dotted
line) in Figure 4.3a.
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(a) The sensor model DoE sweeping incident angle.

Radius=
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S(0,0)
SR (57.7 ,yi)SL(‐57.7 ,yi)

aR(57.7 ,100)

bR(57.7 ,‐100)
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W=xi‐ 0

Target waypoints sweeping range

(b) The sensor model DoE sweeping along the x-axis.

Figure 4.3. DoE for hybrid-sensor model simulation scenario in incident angle
and position sweeping.

86



• Speed (km/hr): The target flying speed.
The target is assumed moving in a constant speed along a linear path during the
simulation. The speed is in the range from 200 km/hr to 1200 km/hr with two
decimals level of precision.

• Sweeping Interval(s): The radar sensor antenna-sweeping period. The hybrid-sensor
model in this study emulates the detection behavior of a search radar; therefore, the
sensor engages targets once every antenna sweeping period. The antenna sweeping
period is designated in a range from 1 second to 8 seconds with one decimal level of
precision.

• prf(Hz): The prf. The prf of the sensor is set in the range from 375 Hz to 1500 Hz
with one decimal level.

• θ3dB(degree): The radar sensor antenna effective azimuth 3 dB beamwidth.
Since it is a 2D planar sensor scenario in this study, only azimuth 3dB beamwidth is
considered in the sensor parameters. The 3dB beamwidth is in the range from 3◦ to
6◦ with one decimal level.

Even though the parameters in Table 4.1 are set up using conventional units of radar
applications, all the parameter units have to be normalized identically in the simulation to
avoid misrepresenting the quantity of parameters. In the simulation, the unit of the antenna
“Sweeping Interval” parameter is converted from seconds to hours in order to match the
length unit in the “Target Speed” parameter.

Table 4.1. Factor levels for range and decimals setting by NOLH DoE
Factor
name

Way
point (km)

Speed
(km/hr)

Sweeping
interval(s)

prf(Hz) θ3dB
(degree)

Low level -57.7 200 1 375 3
High level 57.7 1200 8 1500 6
Decimals 2 2 1 1 1

4.3 Hybrid Model Simulation Implementation
This hybrid-sensor model simulation software is built on a Java platformwith Simkit library.
It is an open source library for DES created by Buss [57]. Figure 4.4 demonstrates two
waypoints scenarios of a target approaching the sensor:

87



1. Scenario 1, the blue-dotted waypoint:
(a) Simulation time:156.368, the target enters the maximum unambiguous range

Ru (orange star) of the sensor with the event called “EnterRange.”
(b) Simulation time:156.368 to 165.368, starts a series of antenna-sweeping events

in the period of “Sweeping interval,” which is designated by the DoE. The
sweeping event is called “APinging” in the simulation.

(c) Simulation time:166.368, the target is detected by the sensor at the yellow circle
with the event called “Detection.”

(d) Simulation time:176.368, the target leaves the range and is undetected by the
sensor at the red square with the events called “ExitRange” and “Undetection,”
respectively.

2. Scenario 2, the red-dotted waypoint:
(a) Simulation time:210.04, the target enters the Ru at the orange star called by the

"EnterRange" event.
(b) Simulation time:210.04 to 221.04, the sensor starts a series of antenna sweeping

"APinging" events for the detection attempts of the target.
(c) Simulation time:221.906, the "ExitRange" event occurs, and the target exits the

Ru (red square) without any detection event happening since the "EnterRange"
event simulation time.

The 257 DoE have been applied on the hybrid model and each DoE run 100 replications.
The waypoint DoE is in the range from 57.7 km to -57.7 km while the maximum detection
range of sensormodel is set up in 50 km radius. This is because thewaypoint bounding range
is larger than the sensor maximum detection range. The difference is expressed as follows:
waypoint range - the sensor maximum detection range diameter = 〈57.7− (−57.7)〉−2∗50 =
15.4 km. This range difference results in 36 out of 257 DPs have been dropped in the
simulation since the events that are outside of the maximum detectable will not be processed
due to the DES-based construction of the hybrid-sensor model. Therefore, 221 out of 257
DPs contain valid waypoints in the DoE, and the total number of valid data from simulation
replications is 22,100 after 100 replications of each valid DP.
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Figure 4.4. Hybrid-sensor simulation display and output produced by Java
Simkit program.

4.4 Hybrid Model Simulation Results
In the portion of simulation data shown in Figure 4.5, the NOLH DPs of five parameters
are shown in the blue columns, the TTD is in the yellow column, and there four
additional detection information data based on the relative geometry position of target
during simulation shown in the pink columns. Here the TTD results from two DoE are
displayed. The top half section (red box), the target incident angle is −0.7735165◦, while
the bottom half shows the target approaching the sensor from with the incident angle = 0◦.

89



Figure 4.5. Hybrid-sensor model simulation outputs: results, emphasizing
time to detect (TTD), and related parameters.

The TTDs in either DoE section do not have deterministic results due to introduction of the
Swerling factor, which is considered in the RRE by a Chi-Squared RV with four degrees
of freedom. The TTD represents the time delay for the sensor to detect the target once the
target enters the maximum detection range using units in hours.

Other detection data shown in the pink columns are the simulation information based on the
relative geometric position between the sensor and targets. The definitions are as follows:

• Number of sweeps till TTD. Once the target enters the maximum detection range
of the sensor, the sensor starts scanning on the target in the period of "Sweeping
Interval(s)," the input parameters in cyan column. This parameter shows the number
of sweeps the sensor applies on the target from when the target enters the range until
the detection happens.

• Number of sweeps till exit. This parameter shows the number of sweeps the sensor
applies on the target from when the target enters the range until the target leaves the
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maximum detection range of the sensor. The distance that the target travels through
the sensor maximum detection range by the waypoint is shown in Figure 4.6a and is
calculated as follows:

h =
√

R2 −W2 =
√

R2 − x2
i (4.3)

where the total distance that the target travels through the sensor is 2 × h.

Number of sweeps till target exits =
2h

Sweeping inteval(s)
(4.4)

• Moving distance per ping(m). This parameter calculates the moving distance of the
target during each sweeping period of the radar in the speed designated by DoE. It is
computed as follows:

Moving distance per ping (s) =
speed(km/hr)

602 × Sweeping interval (s) (4.5)
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(a) Target’s traveling distance within the sensor.
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(b) The distance when the target is detected.

Figure 4.6. Target’s relative position geometry to the sensor within the
maximum detection range.
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• The quantitative summary of the TTD of the sensor to detect targets after the targets
enter the maximum detection range is shown in Figure 4.7c. The maximum TTD
is 13.8 min while the minimum TTD is 2.4 min by the sensor with the maximum
detection range = 50 km. The traveling distance that the target covers during the TTD
depends not only on the length of TTD, but also on the speed of the target. The target
traveling range within the maximum detection range is introduced next.

• Detection range km. This parameter displays the distance of the target when it is
detected by the radar. In the first set of DoE (red box), the target incident angle =
−0.77◦, the detection distance is from 5.86 to 8.76 km, while the second DoE (black
box) with the target incident angle = 0◦, shows the detection distance is from 16.75
to 20.25 km. The geometric illustration of detection distance is shown in Figure 4.6b
and it is calculated as follows: Assume the target enters the range at Si (xi, yi) and
gets detected after TTD at St (xi, yt ), the distance L that the target travels during TTD
is

L = TT D × speed (4.6)

b = h − L (4.7)

where h is calculated in Equation 4.3. The distance of the target when detection
occurs is (red arrow):

Dist . =
√

W2 + b2 =
√

x2
i + b2 (4.8)

Figure 4.7b summarizes the target’s detected range and TTD of the target from the
sensor by 6,879 out of 22,100 valid waypoints simulation, for targets that have crossed
the maximum detection range of the sensor. The farthest detection distance to the
target is 20.65 km, while the closest detection distance is 4.52 km. The average
detection distance of this target is 10.12 km.

• The Closest Point of Approach (CPA) reveals the closest distance between sensor
and the waypoints of the target when the sensor fails to detect the target. The CPA
is shown as the length of the purple vector in Figure 4.6a and it is equivalent to the
variable “waypoint_x” in Table 4.1.
The quantitative summary of the CPA is shown in Figure 4.7a. There are 15,221
out of 22,100 valid waypoints simulation of the failure to detect the target. The
maximum CPA range is 49.62 km which is about the maximum detection range of
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the sensor while the minimum CPA range is 10.83 km. The average CPA range for
fail detection DoE is 32.63 km, which means that most detection failures happen at
farther CPA range rather than the short distance. This conclusion matches the general
radar detection principle that the farther the target is, the less likely the sensor detects
the target.
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(a) Quantitative summary of closest point of approach (km) when no detection occurs in
a given replication. The maximum range of 50 km was chosen to ensure that all outlier
scenarios were considered.

(b) Quantitative summary of detection range (km) when target is detected. All targets
are detected within 4.52 km; no target is detected beyond 20.65 km.

(c) Quantitative summary of time to detect (min) targets. The range of TTD after
targets enter the maximum detection range of the sensor is from 24 to 13.8 min.

Figure 4.7. The quantitative summary of closest point of approach (CPA) of
no detection and the detection range when detection happens and the time
to detect the targets after the targets enter the maximum detection range
of the sensor.

95



THIS PAGE INTENTIONALLY LEFT BLANK

96



CHAPTER 5:
Simulation Data Regression Analysis

The purpose of computing is insight, not numbers. - Richard W. Hamming [58].

5.1 Linear Regression Estimation of Time to Detect
Regression analysis is a statistical method that investigates the relationship between two or
more variables related in a non-deterministic manner [59]. The relationship is expressed in
the form of an equation or explanatory predictor variables. To learn the system behavior
or predict the outcome associated with the input parameters of the system, the analysis
process requires sufficient experiment data that cover as many detail levels in parameters as
possible. Tallavajhula [60] applies data-driven methods to learn the relationship between
input parameters and system state, then and constructs a high-fidelity model for a planar
range sensor.

In this chapter, regression analysis is applied for fitting the meta-models that retain the
equally likely behavior as the baseline hybrid sensor model, with less model structure
complexity and more execution efficiency. The regression analysis is based on the
observations generated by the DoE of the hybrid sensor model. Executing the DoEs
through the hybrid sensor model simulation yields TTD of the target, which is associated
with 255 design points with 100 replications of each DP. In this sensor, any DoE with the
waypoint that falls outside of the sensor Ru is ignored. There are 221 DPs executed, yielding
22,100 simulation replications. In order to have a more concise form to represent the hybrid
sensor model behavior, a meta-model is determined through linear-regression analysis for
predicting the response variable “time-to-detect” the target by the sensor. The regression
analysis proceeds based on the observation data generated by the DoE of the hybrid sensor
modelwith the parameters in the range listed in Table 4.1. For a goodmeta-model, the goal is
to minimize the difference between the predicted TTD frommeta-model and the actual TTD
generated from the baseline hybrid sensor model simulation. A simple linear-regression
model that describes the relationship between response variable Yand predictor variables
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X1, X2, · · · , Xp is defined as follows [61]:

Y = β0 + β1X1 + β2X2 + · · · + βpXp + ε (5.1)

where β0, β1 · · · , βp, called the regression coefficients, and ε is assumed to be a normal
random error to represent the failure of the model to fit the data exactly. It is represented as
follows:

ε ∼ N (0, σ2) (5.2)

These values are unknown constants to be determined from the simulation output data.
Backward elimination of least-Squared error estimation is applied to form the regression
meta-model. It is a commonly used technique to fit themodel withminimum sum of squared
errors between the meta-model and sample data. Mean Squared Error (MSE) is defined as
the error between fit model and sample data. It is represented as follows:

σ2 =
SSE
n − I

= MSE (5.3)

where the Sum of Squared Errors (SSE) and the total number of data samples is n and I is
the number of data sample groups.

5.1.1 Assumptions about the Data in Linear-Regression Model
There are three critical assumptions about the data when fitting a linear-regression model. If
the data violates these assumptions, the model may give misleading or incorrect results [62].

1. Independence:
The assumption may be violated when measurements are serially correlated, or when
collected in batches with the instruments that have intrinsic errors. For the most
common effects caused from the dependency data, the result is to underestimate true
variability, which leads to a higher probability of Type I error (false rejection of the
null hypothesis).

2. Normality :
The data is assumed to be normal distributed. It may increase Type II errors when
the data distribution has heavy tails, making it prone to producing outliers.
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3. Homoscedasticity :
This assumes data has equal-variance across treatments, while the unequal-variance
of data is called heteroscedasticity. Heteroscedasticity often goes with non-normality.
The typical effect is to make more Type I errors in the estimation.

5.1.2 Measuring Goodness of Fit
To evaluate the level of fitness between the predicted data from the meta-model to the actual
data in regression analysis, two measurement units are introduced in the regression analysis
to represent the goodness of fit in the meta-models:

1. Residuals:
Residuals are the errors made in using the regression predictions in place of the actual
y-values (the actual data):

ε̂i = yi − ŷi (5.4)

where yi denotes the actual data, ŷi is the predicted data from meta-model and ε̂i is
the residual of predicted yi.
In matrix notation:

ε̂ = y − X β̂ (5.5)

where ŷ denotes the actual data in n-vector, X β̂ is the predicted ŷ matrix, and ε̂
is the residuals in n-vector of predicted data. Figure 5.1 illustrates the relationship
of residuals and the predicted model. The blue surface is the predicted response
parameter ŷ , which consists of the predictor parameters xi and the predicted
coefficient βi. The residuals are the error between the predicted response ŷi and
the actual data yi. The summation of the square of residual vector provides an idea
of how well the regression prediction ŷ can approximate the value of the response
variable y [63]. The Residual Sum of Squares (RSS) is defined as:

RSS =
n∑

i=1
ε̂2

i = εT · ε = | |ε̂2
i | | = | | y − ŷ | |

2 (5.6)

and the estimated variance σ̂2 of the residual εi is defined as:
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σ̂2 =
RSS
n − I

(5.7)

2. RSquared value :
However, the RSS is hard to interpret by itself since it has its own measurement
unit as y . Thus a unitless quantity, “coefficient of determination” or “proportion of
variance explained,” is converted from RSS divided by Total Sum of Squares (TSS).
It is denoted as R2 and read as “RSquared Value”. R2 value is a useful measurement
to indicate how well the model fits the data, and it is in the range between zero and
one. It is defined as:

R2 = 1 −
RSS
T SS

(5.8)

while

T SS =
n∑

i=1
(yi − y) (5.9)

R2 = 0 implies that the regression was completely ineffective in improving prediction
of y , while R2 = 1 indicates the regression model perfectly predicts the data y . A
fairly high R2 regression model seems preferable to be able to successfully represent
the sample data behavior. However, there is no fixed standard value to indicate the
acceptable R2 value, and it does not guarantee the high R2 value model behaves
more accurately than the lower value model as expected. Unless the verification
methodologies have been applied and proven the meta-model has the consistent
ability to predict the results. Otherwise, the model may have just fit on insignificant
factors from the data without presenting the truly significant factors properly.

5.1.3 Multi-Degree Interaction Predictors
A regression model is classified as linear if E[Y |X = x] is a linear function of the predictor
parameter coefficients βi, not of the predictor parameters xi. Hence, the predictor parameters
can havemultiple degrees of interaction terms, and convert computation termsfit in the linear
meta-model for possible better fitting behavior of the data. There are three methodologies
that may be applied in this study:
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Figure 5.1. Residual differences between fitting model and actual data.

Multi-Order Polynomial Parameters
The different order of polynomial predictor parameters can be applied in the fitting model.
For an up to three degree of polynomial predictor parameter x, the model is represented as:

y = β0 + β1x + β2x2 + β3x3 (5.10)
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Multi-Order Factorial Parameters
The different order of interaction terms between predictor parameters can be applied. For a
model with up to three degree of factorial predictor parameters, themodel can be represented
as:

y = β0 + β1x1 + β2x1x2 + β3x2x3 + β4x1x3 + β5x1x2x3 (5.11)

Predictor Parameters Conversion
Mathematical converting operations can be applied on the predictor parameters and fit in
the model such as logarithmic conversion and trigonometric functions. The fitting model
can be represented as:

y = β0 + β1log(x1) + β2sin(x2) + β3cos(x2)sin(x3)... (5.12)

5.1.4 Model Selection Methodology
Often the correct model is unknown when fitting a regression model. Therefore the purpose
of the regression analysis includes figuring out what are the values of the regression
coefficients and which predictor variables belong in the regression model. The RSquared
value always has monotonic improvement as a variable and is included in the model.
However, the improvement does not necessarily mean the fit model is closer to the real
model. Introduced here are several model selection methodologies and criteria.

Least-Squared Error
A mathematical procedure for finding the best-fitting model to the sample data minimizes
the SSE of the offsets (“the residuals”) of the sample data from the fitting curve. The linear
least-squares fitting technique is the simplest and most commonly applied form of linear
regression, and often provides a solution to the problem of finding the best fitting model
through a set of data [64].

Forward Selection
The model fitting procedure is:
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• Start with no predictors in the model.
• Add the predictor that would have the smallest p-value and less than the threshold
α = 0.05.

• Keep the selection operation one predictor at a time until no more predictors meet the
selection threshold [63].

Backward Elimination
The selection procedure is opposite to the “Forward Selection”:

• Start with all predictors of interest in the model. The model can start from
“Least-Squared Error” models or models which have been fit by other selection
methods that may still have been overfitting.

• Remove the predictor that would have the largest p-value and larger than the threshold
α = 0.05.

• Keep the removal operation one predictor at a time until no more predictors meet the
elimination threshold.

Step-wise Selection
The model is built by the hybrid of forward selection and backward elimination selection
principle with the designated parameter selection rules. Themodels are fit by alternating the
selection and elimination steps. The typical predictor selection rule is by p-value threshold.
The alternating model selecting steps keeps going until no new predictor can meet the
p-value threshold for adding and no existing predictor can meet the p-value threshold for
elimination.

In the adding or subtracting process of predictor selection, the higher the p-value of the
predictors, the less likely to reject the null hypothesis. In other words, the high p-value
predictors represent the insignificant predictors in the model since these terms statistically
make no difference in the meta-model.

On the contrary, low p-value predictors represent the significant predictors in themeta-model
since themodel containing the new predictor statistically performs differently than themodel
without the new term.
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Akaike Information Criterion
When the model is fit with more predictors, it brings down RSS monotonically. This
criterion introduces penalty terms for the evaluation value as the number of predictors
included. The Akaike Information Criterion (AIC) is computed as follows [65]:

AIC = n log
(

RSS
n

)
+ 2p (5.13)

where p is the number of predictor parameters that have been included in the model and n is
the total number of observation data. This criterion can be applied to the stepwise selection
method for the model selecting stop point criteria. The preferred model is chosen with the
smallest value of AIC among those under consideration. For large values of q, there may be
a large number of predictors included, which can lead to overfitting models. The p factor
raises AIC for the model such that the complexity becomes too great.

Bayes Information Criterion
The Bayes Information Criterion (BIC) is defined as follows:

BIC = n log
(

RSS
n

)
+ p log(n) (5.14)

This criterion replaces the 2p in AIC with the p log(n) and tends to prefer smaller models
to the AIC. The BIC penalizes adding another predictor more than AIC does. This results
in smaller fit model. [66]

5.1.5 Fitting a Linear-Regression Model
The regression analysis is based on the DoE simulation scenario data in section 4.2.
Executing the simulations on the hybrid sensor model with five factors DoE, 256 NOLH
DPs, and each DP runs 100 replications respectively, a linear-regression analysis is applied
on the hybrid sensor model simulation results with the response parameter “TTD.” Because
fitting a regression model with predictors terms of different complexity produces different
predicted TTD response models, there is no simple rule for model selection and no quick
answer for judging the fidelity of the fitting meta-model. There are two meta-models
are fitted for predicting TTD with different complexity of predictors parameter interaction
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terms in this section, including analysis of the validity of the predicted data from these two
meta-models.

Fitting Model with Interaction Terms up to Degree of Two
Applying the predictor parameters listed in Table 4.1, up to two degrees of factorial and
polynomial terms in a fit model allow for capture of curvatures and distribution behavior in
the sample data. In order to fit a meta-model with proper terms, and avoid underfitting or
overfitting the model, there is a two-stage process for choosing the predictor terms for the
linear-regression model:

1. Forming a linear model by the method of the least-squared error approach. This
method generates the meta-model with the predictors that have the least-squared
error with the analysis data. This method should prevent the underfitting model
based on the all available predictors since the least error model has been found in the
process.

2. Applying "backward elimination" to the meta-model. The underfitting model is not
a preferable result. In contrast, the overfitting model also needs to be avoided since
the more insignificant predictors are kept, the more likely the model will present
insignificant and irrelevant results. These results are the misleading information from
the overfitting meta-model. Thus, after forming the meta-model by the least-squared
error approach, each predictor parameter has a p-value to indicate how significantly
the factor contributes to the model. The backward elimination approach is applied
to the least-squared error model by setting the significant p- value = 0.05 as the
threshold for selecting the predictor terms. The elimination starts from the term
with the highest p-value and then rebuilds the model after the elimination. Repeat
eliminating the highest p-value term that is over 0.05 one by one, until there is no
predictor term p-value larger than the significant value 0.05.

This meta-model has RSquared = 0.966. A higher RSquared value indicates more response
data around the baseline model mean.

σ2 =
SSE
n − I

= MSE = 0.008167 (5.15)

where the sum of squared errors is SSE, the total number of data samples is n=6878, and
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the number of data sample groups is I = 39 in this meta-model.
Figure 5.2a shows the residual of fit model by predicted “time-to-detect (TTD).” The
distribution of the residual of the meta-model shows in a concave-up trend which
makes the estimation of prediction error term misrepresented by the normal RV. The
distribution of the prediction data residual tends to be normally distributed. In addition,
certain heteroscedasticity can be observed in residual distribution. The variance of
residuals increases gradually along with the increment of the predicted TTD. This means
unequal-variance across treatments that is not the ideal assumption for forming ameta-model
by linear regression by degree of two interaction terms of predictor variables.

Fitting Model with Interaction Terms up to Degree of Four
The two-degree interaction terms meta-model does not seem to have enough expressive
power to represent the behavior of the hybrid model well. Increasing the complexity of
fitting the model with a higher order of interaction terms of predictor parameters allows the
meta-model to capture more complex curves in the simulation replication data distribution.
There exists another regression model with higher complexity of interaction terms of
predictor parameters up to four degrees of factorial and polynomial terms in a fit model.
Following a similar model selection process as the previous two-degree interaction terms
model, the meta-model has RSquared = 0.9947 with the estimated MSE = σ2 = 0.003217.
Figure 5.2b shows the residual of fit model by predicted “time-to-detect (TTD)” with a
much better information pattern shown in the predicted TTD residuals distribution than
the two-degree interaction terms model. Certain heteroscedasticity can be observed in
the residual distribution, but is much less obvious than in the previous low complexity
meta-model. This may be a more preferable meta-model to represent the hybrid sensor
model.

The overall meta-model expression is described in Appendix C.1. However, “all models
are wrong, but some are useful,” as observed by George Box. There will not be a perfect
model to represent the original model completely, thus the regression models with different
complexity of predictors can be created, and more evaluation methods for the fit models are
applied in further checking for fidelity and model selection. Furthermore, since the "data"
being fit is actually the metrics corresponding to individual simulation and replications,
interesting questions arise regarding inputs, outputs, and fundamental usefulness of the

106



curve-fit characteristics. Further future investigations may prove worthwhile.

(a) Fit model residual with predictors to degree of 2.(b) Fit model residual with predictors to degree of 4.

Figure 5.2. Residual plot by predicted time-to-detect (TTD) of fit model
with the predictor parameters in factorial and polynomial interaction terms
in degree of 2 and degree of 4.

5.2 Logistic-Regression of Pd
For a dichotomous dependent variable, such as if the target is detected, the numerical
value of the variable is not intrinsically interesting. The key point to focus on is whether
the classification of cases into one or another categories of the dependent variable can
be predicted by the independent predictor variables [67]. The probability of an event
happening is denoted as P(Y = 1). If the probability of an event happening is known,
then the probability of an event not happening is also known: P(Y = 0) = 1 − P(Y = 1).
Logistic-regression analysis models the ratio between P(Y = 1) and P(Y = 0) with a natural
logarithm of the ratio. This expression is called logit of Y:

ln
{

P(Y = 1)
[1 − P(Y = 1)]

}
= logit(Y ) = α + β1X1 + β2X2 + · · · + βpXp (5.16)

then the logit(Y ) in Equation 5.16 can be converted back to the probability that (Y=1) with
predictor variables in such equation:

Probability(Y = 1) = P(Y = 1) =
1

1 + e−(α+β1X1+β2X2+···+βpXp ) (5.17)
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Y represents "no detect" event is this study; therefore, the probability of no detection of the
sensor to the target is calculated by:

Probability(NoDetect=1) = Probability(Y = 1) = P(Y = 1) =
1

1 + e−logit(Y ) (5.18)

The probability of detection of the target is represented by the "no detect" event is false,
and it is calculated by:

Probability(Detection)

= Probability(NoDetect=0)

= P(Y = 0) = 1 − P(Y = 1)

= 1 −
1

1 + e−logit(Y )

=

[
1 + e−logit(Y )

]
− 1

1 + e−logit(Y )

=
e−logit(Y )

1 + e−logit(Y )

=

e−logit (Y )

e−logit (Y )

1
e−logit (Y ) +

e−logit (Y )

e−logit (Y )

=
1

1
e−logit (Y ) + 1

=
1

1 + elogit(Y )

(5.19)

5.2.1 Procedure for Fitting Logistic-Regression Model
A logistic-regression analysis is applied on the hybrid sensor model simulation described
in section 3.3. The DoE is based on a five factors, 256 NOLH DPs, and each DoE
runs 100 replications respectively. In the scenario, the sensor is set to the maximum
detectable range Ru = 50 km. When targets are outside this maximum range, the sensor
does not process the detection algorithm. This DES structure isolates the irrelevant events
outside of the significant information region. The logistic-regression analysis predicts the
response variable Pd of the sensor detects the target, using predictor parameters of up to a
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degree of two polynomial and factorial terms. Since not all the predictor parameters and
interactive predictors contribute a significant effect on the predicted meta-model during
the regression process, the meta-model should only contain significant predictors in the
meta-model. There is a similar two-stage process for choosing the proper predictor terms
for the logistic-regression model as shown earlier for the linear-regression model selection
process.

1. Forming a logistic model by the method of least-squared error approach. This method
generates the meta-model with the predictors that have the least-squared error with
the analysis data for preventing the underfitting model.

2. Applying "backward elimination" to the logistic meta-model. This process eliminates
the insignificant predictors by the threshold p-value = 0.05. The predictors, which
have the largest p-value and greater than the threshold value get removed one at a
time until there are no insignificant predictors remaining.

5.2.2 Logistic-Regression Model Representation
This logistic-regression analysis has an RSquared = 0.9376. The logistic meta-model
determines if the target is detected by the sensor in this DoE with a predicted probability.
Figure 5.3 shows part of the DoE that is applied on the hybrid model. The results from
the model indicate whether a detection happens in this DoE in this replication, and if
the detection happens what the TTD of the sensor to the target in this simulation. The
red box data in Figure 5.3 show that no detection occurs in these DoE replications. The
“NoDetection” column presents if the detection occurs from the hybrid model simulations.
When “NoDetection”=1, it indicates that no detection occurred. When “NoDetection”=0,
it indicates that a detection occurred (the blue box data). The predicted Pd is shown in the
“ProbOfDetection” column and is represented and calculated in the form of Equation
5.19 and the logit function in Equation 5.16 is described with all detailed predictor
terms in Appendix C.5. The “Most Likely NoDetection” prediction is determined by
the Probability(Y = 0) = P(Y = 0) in Equation 5.20 to predict the Pd of the sensor to the
target, and it is represented as follows:
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Figure 5.3. Partial section of DPs of hybrid sensor model simulation TTD
results with regression analysis predictor and response variables.

Most likely no detection =



0, Probability(Detection) < 0.5

1, Probability(Detection) > 0.5
(5.20)

In the simulation scenario based on the regression meta-model, the target detection can
be determined by comparing predicted Pd with a uniform random variable [0,1] in a DoE
scenario.

If detection =



0, Probability(Detection) < RV∼ Uniform [0,1]

1, Probability(Detection) > RV∼ Uniform [0,1]
(5.21)

If the target detection is determined to be true by comparing the Pd with a uniform random
variable [0,1], then time-to-detect the target can be estimated by the linear-regression model
described in section 5.1.
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5.3 Shaping the Regression Model
Recall from the definition of the regression analysis in section 5.1.1, the linear-regression
analysis is performed under two assumptions regarding variance of the observation data:

• Normality
• Homoscedasticity

In many cases, the observation data do not perfectly conform to these assumptions
for regression analysis. Osborne’s study [68] shows the significant violation of either
assumption can increase the chances of committing either a Type I or II error depending
on the nature of the analysis and violation of the assumption. The research tests these
assumptions and reports how to correct for violation of these assumptions. For improving
the fitness of data and correction of violations of linear-model assumptions, the operation
that shapes the regression-analysis parameters can be applied. There are two kinds of
parameters shaping operation introduced in this study.

5.3.1 Transformation on the Predictor Variables: Incident Angle of
the Target

The meta-model is fit with the interaction terms of predictor parameters up to four degrees
of factorial and polynomial terms. In the waypoint predictor parameter expression, instead
of applying “Incident Angle (degree)” as described in section 5.1.5, this model converts the
predictor variable “Incident Angle” into “Waypoint_x.” The “Waypoint_x” represents the
range of target waypoints in the x-axis component that is illustrated in section 4.2. Figure
5.5a shows the meta-model MSE=0.003228, which is similar to the model without target
incident angle transformation. The model is fit with the predictors in 32 degrees of freedom
and the full model prediction expression is provided in Appendix C.2.

5.3.2 Transformation of the Prediction Response Variable: Box-Cox
Transformation

For improving normality, the Box-Cox transformation represents a family of powerful
transformations that help researchers find the optimal normalization transformation for the
variable. The transformation represents a potential best practice where normalizing data or
equalizing variance is desired [69].
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Figure 5.4. Box-Cox transformation of TTD prediction response variable
with lowest SSE λ = 0.4.

TheBox-Cox transformation is usually appliedwhen the response variableY is non-negative
and takes a parameter λ. The definition is as follows [70]:

gλ (y) =



yλ−1
λ , λ , 0

log(y), λ = 0
(5.22)

To choose the best λ for the transformation of the response variable Y , the transformation
computes the SSEλ with λ[−5, 5] of all the response variables gλ (y) that have been
transformed by all different λ values by Equation 5.22. In Figure 5.4 shows the Box-Cox
transformation applied to the predicted response variable TTD. The good transformation
results can be visually observed about λ = 0.5 event if λ = 0.4 is the lowest point by the
computational report.

A comparison of the model before the transformation in Figure 5.2b with the model after
Box-Cox transformation with λ = 0.5 is shown in Figure 5.5b; the heteroscedasticity of
variance in the residual distribution has certain improvement after transformation. The
model applied to the transformation has MSE=0.00294, which is less than the one before
the transformation with the MSE = 0.003217. The results show that the model predicting
response has been positively modified in a certain sense after applying the Box-Cox
transformation with less MSE.
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(a) Fit Model with predictors “Waypoint_X.” (b) Fit Model with predicted TTD applied to Box-Cox.

Figure 5.5. Residual Plot by Predicted Time to Detect (TTD) of Fit
Models with the predictor parameters in factorial and polynomial interaction
terms in degree of 4. (a) applies the predictor conversion of waypoint
from “Incident Angle(degree)” converted into “Waypoint_X.” (b) applies
the response variable TTD with Box-Cox transformation by λ = 0.5.

Box-Cox Transform Limitation
1. The transformation is not a guarantee for normality. It is because the transformation

operation does not really check the normality of the response parameters. Thismethod
checks for MSEs and assumes the λ that creates the smallest MSE of transformed
gλ (y) has the best result [71].

2. The Box-Cox transform only works if all the data are positive. Non-positive data can
be offset by adding a constant that brings all data to be positive values before the
transformation process.

3. The transformation creates the biased estimator, and it is possibly difficult to convert
the transferred estimator back to the original response estimator. For a simpler
converting operation, choose the most conventional-looking λ in the CI. In this
study, λ = 0.5 Box-Cox transformation for TTD estimator y by Equation 5.22 is
chosen to avoid the complex conversion process, rather than choosing the lowest
λ = 0.4. The transformation is computed as follows:

gλ (y) =
y0.5 − 1

0.5
= 2y

1
2 − 2 (5.23)
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The expected value of the transferred TTD estimator gλ (y) is computed as follows:

E
[
gλ (y)

]
= E

[
2y

1
2 − 2

]

= 2E
[
2y

1
2

]
+ E[−2]

= 2E
[
2y

1
2

]
− 2

(5.24)

By definition:

E
[
X2

]
= E2 [X] + σ2

X

⇒ E2 [X] = E
[
X2

]
− σ2

X

⇒ E [X] = ±
√

E
[
X2] − σ2

X, assume X = y
1
2

⇒ E
[
y

1
2

]
= ±

√
E

[(
y

1
2
)2]
− σ2

y
1
2

⇒ E
[
y

1
2

]
= ±

√
E

[
y
]
− σ2

y
1
2

(5.25)

Substitute E
[
y

1
2

]
from Equation 5.25 into Equation 5.24, then the expected value of

transferred TTD estimator is:

E
[
gλ (y)

]
= 2 ±

√
E

[
y
]
− σ2

y
1
2
− 2 (5.26)

Equation 5.26 has shown that the Box-Cox transformation creates a biased estimator
that cannot be directly applied for the estimation.
The transferred estimator has to be inversely transferred back to the original estimator.
The inverse transformation of TTD estimator is computed as follows:

2y
1
2 = gλ (y) + 2

⇒ y
1
2 =

1
2
gλ (y) + 1

⇒ y =

(
1
2
gλ (y) + 1

)2

⇒ y =
1
4
gλ (y)2 + gλ (y) + 1

(5.27)
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5.4 Meta-Model Verification
The RSquared value is one of the factors that indicates how well fit the meta-model to
the hybrid sensor model. The four-degree polynomial and factorial interaction predictors
are given in section 5.1.5; the RSquared of this meta-model is 0.9947, which means the
meta-model is highly correlated to the sample data that is generated from the DoE.

The RSquared value indicates the goodness of fit of the meta-model to the sample data. One
factor about the relationship between the complexities of the fitting model to the RSquared
value of the model is that the RSquared value initially increases with the increment of
the complexity of the fitting model. The model might eventually reaches an RSquared
value almost equal to one, which means the fitting model perfectly match the sample data
by adding more predictor parameters to the meta-model. However, does the meta-model
represent the right data trend or the model actually captures the insignificant information
from the observation data? Therefore, the further model verification methodologies are
applied for examining if the meta-model performs correctly.

5.4.1 Cross-Validation
If there are unlimited number of examples for the analysis of the model available, the answer
to selecting a right model to fit the data becomes straightforward. Choosing the model that
provides the least error rate, i.e., the highest RSquared value, is the best model to represent
the entire population data. However, in real-world applications, it is always a finite set of
examples available for the analysis. In most situations, the amount of accessible data can
be small due to the difficulty or expense of conducting more experiments [72]. Curiously
for this work, since the replication data can be increased by adding more simulations with
greater diversity of input parameters, an even-broader relationship exists. Nevertheless,
the computer-based simulation in this study, which makes executing the simulation cheap,
still has a finite number of DoE available. Thus the highest RSquared Value is no longer
the only threshold for selecting the proper fitting model; since there a question remains
whether the meta-model fits the most significant factors from the data, or the model just fits
by the outliers that are insignificant behaviors of the data i.e., an overfitting model. Careful
analysis is necessary.

There are two kinds of undesirable complexity of fitting model that need to be avoided:
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• Underfitting model:
The model formed with too few predictor factors has insufficient ability to predict
the sample data behavior. Figure 5.6a shows an underfitting model that is fit by the
training dataset (the blue circles). Due to the lack of complexity of the model fit line
(red line), the model does not quite capture the trend of the sample data (blue circles).
Therefore, the model has high bias from the predicted results to the sample data.
When introducing another independent validation dataset (green dots) generated by
the same sample model, the low complexity model fit line that is generated from the
validation dataset almost overlaps with the fit line from the training dataset. This
is because the training dataset and the validation dataset have the same distribution
trend. Thus the underfitting model has low variance for predicted results.

• Overfitting model:
The model contains too-many complex interaction predictor parameters. The model
is sensitive to capture every detailed variation found in the sample data; therefore,
the results show low bias between predicted results and sample data in Figure 5.6b.
However, the overfitting model may just capture much insignificant information out
of the sample data which are not meaningful for the sample model. In comparison to
the fit models (red line, blue circles) from training data and independent validation
data (green line, green dots) generated from the same sample model, there is high
variance between the estimation of two sample data. Thus the estimating result from
a overfitting model has high variance.
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(a) Underfitting model with high bias and low variance.

(b) Overfitting model with low bias and high variance.

Figure 5.6. The graphical illustration: (a) Underfitting model, (b)
Overfitting models with the analysis of bias of mean and variable. The
comparison is shown by the fitting line of the training dataset (blue circles
and red curve) and the validation dataset (green dots and green curve).
Source: [73].
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Two-way Data Splits
In order to verify whether the models are fit with the proper number of predictor parameters,
the CV needs to be applied. CV is the methodology to verify whether the meta-model fits
with the proper complexity of predictor data by dividing data into different portions for
training the meta-model and testing the error rate of the model. In the two-group method,
all available data are split into two datasets:

• Training Set:
A training set takes the majority of the data. Usually it contains around 70 percent of
available data and it is used to train the regression model for predicting the sample
data. The ratio of retaining data is dependent on the amount of available data. In
the sparse sample data case, the training dataset may need to retain a larger portion
of all the data in order to have sufficient data to train the regression model properly.
Whereas, if the dataset is abundant, the smaller portion of training set data is sufficient
to train the model properly. It leaves out more available data for verification analysis.

• Validation Set:
The validation set is used to estimate the error rate of the trained regression
meta-model that is produced by fitting the independent training set data, which are
generated from the same sample model.

There are two goodness-of-fit measurements applied for evaluating the error rate of the
training meta-model by the training dataset and the validation dataset [74]:

• RSquared Value Validation :
This is similar to the RSquared value measurement introduced in section 5.1.2 for
representing the error between predicting data and observation data. The difference
of RSquared Value Validation, which is denoted as RSquared V alidation, is that the
prediction error is computed from each observation in the validation dataset instead
of from the training dataset. This is the difference between the actual response and the
response predicted by the training dataset model. Thus the properly fit meta-model
that is trained by the training dataset is expected to have a closer error rate as the
model is verified with the independent validation dataset. In contrast, a wrongly fit
model is expected to have a larger error rate in the validation process. It is represented
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as follows:
RSquared V alidation = 1 −

SSEV alidation

SSTV alidation
(5.28)

– Square and sum the prediction error to obtain SSEV alidation.
– Square and sum the differences between the actual responses in the validation
set and their mean. This is the SSTV alidation.

The higher the RSquared Validation Value, the lower the error rate to the predicted
data to the sample data.

• Square Root of the Mean Squared Prediction Error (RMSE) Validation:
The square Root of the Mean Squared prediction Error (RMSE) for the validation
dataset is computed as follows:

RMSE V alidation =

√
SSEV alidation

nV alidation
(5.29)

– For each observation in the validation dataset, compute the prediction error.
This is the difference between the actual response and the response predicted by
the training set model.

– SSE to obtain the SSEV alidation.

– Denote the number of observations in the validation dataset by nV alidation.
In the “Fit Least-Square Crossvalidation” report in jmp, which is applied mostly for
simulation data analysis in this study, the RMSE for the validation and test dataset is
called Root Average Squared Error (RASE).

The models are fit using only the training dataset. In stepwise selection methodology with
CV, the RSquared Value from the training dataset and the RSquaredV alidation Value from
the validation dataset are computed in each modeling step. As the number of predictor
parameters increases in the model, the higher the complexity of the model is, the RMSE
of training dataset decreases monotonically as shown in Figure 5.7a by the blue-dotted
curve. The validation dataset RMSEV alidation Value, however, has monotonic decrements
first in the low model complexity region shown as the green box and then raises as the
model complexity goes too high as shown in the blue box region. The green box region
shows the models are underfitting. The underfitting models have high bias and low variance
estimation.
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(a) Cross-Validation with two-split dataset.

(b) Cross-Validation with three-split dataset.

Figure 5.7. RMSE of training dataset (gray dots) and validation dataset (red
dots) and test dataset (green dots) vs. training model complexity from low
to high. The left green box is the underfitting model while the right blue
box is the overfitting model. Adapted from [75].
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As more predictors are fit in the model, the model fits better with the sample data until
the model complexity reaches the blue box region; the RMSEV alidation Value of validation
data starts rising and the model is overfitting. This is because the training model starts
fitting on the insignificant data that do not represent the general behavior of the sample data.
When the model is verified by the independent validation dataset, the goodness of fit starts
degrading. Overfitting models have low bias but high variance estimating results.

Because neither underfitting or overfitting models is preferable, proper complexity models
are shown within the white region, which the RMSEV alidation Value stops decreasing and
starts increasing in the CV. The least complex acceptable model in the white region is
preferred; i.e., the model that is close to the left boundary of the white region is the well fit
model.

NOLH DoE Extension
For the data splits hold out method, a potential drawback of the data subdivision is that a
portion of precious sample data are spared for validation purposes rather than for training
the meta-model. The data loss from the dataset that has only a small amount of available
data may not be affordable. In order to have as many sample data as possible for sufficient
CV data subdivision, an NOLH DoE extension study is presented by Ang [76]. By rotation
and stacking a two-factor (f=2), five-level (k=5) O5

2 DoE one time (two stacks, n=2) with
row of 0s removed, it generates k × n − (n − 1) DPs and the new set of DPs still keep the
same orthogonal property between each factor as the original O5

2 DoE. The new DPs S1stack

is shown in Table 5.2 as the S1 column DPs stacks with the adjacent S2 DPs in Table 5.1.
With the same operation, S2stack column has 2k − 1 = 10− 1 = 9 DPs by rotating the Table
5.1 DoE and then stacking them with the origin DPs for about twice the number of DoE.

In the NOLH extension operation, the five factors, 257 DPs can operate four times rotation,
five stacking operations (n=5), which extents the original 257 DP to 257 × n − (n − 1)
numbers of DPs. The five-factors NOLH DoE has been extended to 257 × 5 − 4 = 1 281
DPs with the same orthogonality between each factor as shown in Figure 5.8, and the range
of parameters set up is listed in Table 4.1.
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Table 5.1. Two factors S1, S2, five levels O5
2 DoE

S1 S2
-2 1
1 2
0 0
2 -1
-1 -2

Table 5.2. An O5
2 DoE with one stacking operation generates twice as many

DPs with one redundant row of 0s removed.
S1stack S2stack

-2 1
1 2
0 0
2 -1
-1 -2
1 -2
2 1
-1 2
-2 -1
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Figure 5.8. Five factors NOLH DoE extended by four-time rotation, five
stacking (n=5) operations. The number of DPs is extended from 256 to
256× 5− 4 = 1281 DPs. The DoE still maintains the same correlation level
between each factor.
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Three-way Data Splits
Because there is quite a generous number of DPs after DoE extension for this computer
base simulation study, the CV holdout method is proper to apply for fit model with plenty
of observations. The holdout method that splits the dataset into three groups is introduced.
The method splits data for one more test dataset than the two-way data splits method. In
both data splits hold out methods, to mitigate the possible misleading results due to an
unfortunate split, random subsampling is applied for group selection. The components of
the three-way data splits are:

• Training Set: It contains the major portion of the dataset used to train for the
meta-model. In this case, it is 60 percent of the total available sample data in this
study.

• Validation Set: There are 20 percent randomly selected data from the total available
dataset for the validation set. The validation set is applied for verifying the error rate
to the meta-model, which is fit by the training dataset.

• Test Set: Another 20 percent randomly selected dataset from the total available
dataset are for the test set. The test set is an independent dataset that is only used for
testing the RMSE of the selected training model by this independent test dataset. By
comparing the RMSE or RASE value between these three data splits, if the validation
results are quite consistent between each dataset, it indicates the meta-model should
be fit with the proper number of predictor parameters.

Figure 5.9a shows the residual plot of predicted TTD by the model that fit with polynomial
and factorial parameters in degree of two by 1,258 DPs generated from extended NOLH
DoE. Each DP has been executing 100 replications thus, resulting in 1258 × 100=125,800
observations for the CV analysis. As the result, the meta-model is fit by randomly selected
20,230 observations while verified by 6, 797 validation datasets for finding the lowest RASE
of validation.

The meta-model has quite evenly distributed RASE: 0.00894, 0.00900, 0.00886, are
calculated for the Training Set, Validation Set, and Test Set respectively. The result shows
no significant sign of overfitting in this model as the model is fit by the predictors with the
degree of freedom = 15.

However, the two-degree of interaction of predictors model cannot keep residuals normality
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by observing the clear pattern in the residual plot. Thus, the model fit in the order of
parameters interaction terms up to four is shown in Figure 5.9. The residual keeps more
normality than the two-degree interaction terms model. The MSE has degraded from
0.00894 down to 0.00390. The RASEs are 0.00390, 0.00392, and 0.00390 in the training
set, validation set, and test set, respectively. The quite even RASE between the three-split
datasets suggests the meta-model is properly fit by the predictors of degree of freedom =
30. The overall prediction expression of this meta-model is in Appendix C.3.

(a) Model residual: 2 degrees of interaction terms. (b) Model residual: 4 degrees of interaction terms.

Figure 5.9. Residual plot by predicted time to detect of the fit models by 3
splits cross-validation with 1,285 DPs. In (a), the model is fit by the training
dataset with 2 degrees of interaction parameters. In (b) the model is fit by
the training dataset with 4 degrees of interaction parameters.

5.4.2 K-Fold Cross-Validation (CV)
K-Fold CV is a technique that is suited for smaller datasets without discarding holdback data
that may reduce the information for fitting the meta-model. In this type of CV, the data are
partitioned randomly into k different groups and the following procedure is followed [77]:
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1. The whole number of data N are randomly divided into K groups. For i = 1, 2, ..., K,
the ith group, with the number of N

K data, is treated as a holdback dataset for validation,
while the model is fit to the remaining N − N

K observation data for training set. An
RSquaredV alidationi is calculated using ith group as a holdback.

2. After iterating through the K group, the CV RSquared value is set to be the average
of the RSquaredV alidationi for K iterations. It is defined as follows:

CV RSquared =
1
K

K∑
i=1

RSquaredV alidationi (5.30)

3. Apply maximum K-Fold CV RSquared as the stopping rule in stepwise regression
analysis. Maximum K-Fold RSquared considers only the model defined by p-value
entry (Forward selection) or removal (Backward elimination). It does not consider
all possible models.

K-Fold CV is about K times as computationally intensive as holdback CV since it requires
K time iterations of computation to obtain a CV RSquared value of a possible model.
Therefore, for a complicated model with a large number of predictor factors or when the
dataset is large, this method may not be efficient due to the computational complexity.
K-Fold CV generally works well for K between 5 to 20 and 10-Fold is a commonly used
number in the study.

5.4.3 Cross-Validation CV of Logistic Predicting Model of Pd

The same three splits CV operation is applied to the logistic-regression analysis for
predicting Pd by the 125,800 observations which is generated by the extended NOLH
DoE. The whole observation data is randomly split into 60 percent for training dataset, 20
percent for validation dataset and 20 percent for the test dataset. The logistic-regression
model of Pd is fit by with the polynomial and factorial interaction predictor with degrees of
two and four.

Logistic-Regression of Pd with Interaction Predictors to Degree of Two
The measurement of the three splits CV of the logistic model of Pd with two-degree of
interaction predictors is shown in Figure 5.11a. The logistic meta-model is fit by the
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predictors with degree of freedom=14. The RMSEs of the training set, validation set, and
test are 0.1319, 0.1243, and 0.1341 respectively. There is no significant difference in RMSE
value between each split dataset. Thus the CV measurement indicates no strong evidence
of over fitting.

Confusion Matrix of Probability of Detection Pd

To learn more information about how the logistic meta-model predicts Pd by each DP, a
data classification method “ConfusionMatrix” of each dataset is introduced. The confusion
matrix compares the most alike of predicted detection results by Equation 5.20 with the
actual detection result from simulation observations. There are four sets of data classified
by the confusion matrix [78]:

1. True positive: These are the cases in which the correctly predicted result is true (the
target is detected) while the observation data is also true (the target is detected in
actual simulation). The true-positive count is 44699 in Figure 5.10a, which is the
result from the training dataset of the logistic model fit with the interaction parameters
in degree of two.

2. True negative: These are the data in which the correctly predicted result is false (the
target is not detected) while the observation data is also false (no detection in the
simulation). The data count is 19641 in Figure 5.10a.

3. False positives: The prediction is true (predicts the target is detected) on the result
while the observation data is false (no detection in the simulation). It is also known
as a “Type I error.” The Type I error rate is calculated by the false-positive count
divided by the total true-negative count. The Type I error rate of training dataset is
computed as follows and shown in Figure 5.10a:

Type I error rate = 967 ÷ 45666 = 0.0212

4. False negatives: The prediction is false (predicts the target is not detected) while the
from observation data is true (detection happens in the simulation). It is also known
as a “Type II error.” The Type II error rate is calculated by the false-negative count
divided by the total true-positive count. The Type II error rate of training dataset is
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computed as follows and shown in Figure 5.10a:

Type II error rate = 657 ÷ 20298 = 0.0324

The overall Type I error rates of the logistic meta-model, which is fit with two-degree of
interaction predictors, are 0.0212, 0.0171, and 0.0218 from the training set, validation set,
and test set, respectively. The false-positive rate is around 2 percent in three randomly
selected datasets. The type II error rates are 0.0324, 0.0316, and 0.033 from the training
set, validation set, and test set respectively. The false-negative rate of this model is around
3.3 percent, which is shown in Figure 5.10. The type I and II error rates are quite even
among the three data splits; thus, it also indicates no significant evidence of over fitting
model. This logistic meta-model prediction expression is in Appendix C.4.
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(a) Training set of logistic Pd (b) Validation set of logistic Pd

(c) Test set of logistic Pd

Figure 5.10. The confusion table of logistic Probability of Detection Pd
regression model with factorial and polynomial interaction predictors up to
a degree of two. The data is divided as follows: 60 percent for training set,
20 percent for validation set, and 20 percent for test set.

Logistic-Regression of Pd with Interaction Predictors to Degree of Four
As the linear-regression analysis of the hybridmodel, the two degrees of interaction predictor
model has a lack of expressive power to keep the normality of predicted residuals. Therefore,
in logistic-regression analysis of Pd , the four-degree of polynomial and factorial interaction
predictor parameters are applied in meta-model. This logistic meta-model is fit with
predictors with degree of freedom=11. The measurement of CV of this model is shown in
Figure 5.11a. The RMSEs are 0.1270, 0.1300, 0.1263 in training set, validation set, and test
set, respectively. The difference in RMSEs among the three data splits is more even than
the model fit with two-degree of interaction predictors and still no significant difference that
is caused by possible overfitting of the model.
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(a) Cross-Validation(CV) measurements of logistic model of Pd fit by two-degree of
interaction terms.

(b) Cross-Validation(CV) measurements of logistic model of Pd fit by four-degree of
interaction terms.

Figure 5.11. The cross-validation (CV) measurements of logistic model of
Pd. The data is divided as follows: 60 percent for training set, 20 percent
for validation set, and 20 percent for test set. In (a), the model is fit by
two-degree of interaction terms with 14 degrees of freedom of predictors. In
(b), the model is fit by four-degree of interaction terms with 13 degrees of
freedom of predictors.

In confusion matrix analysis, the Type I error rates are 0.0192, 0.0210, and 0.0196 from
training set, validation set, and test set, respectively. The false-positive error rate is about 2
percent through all DPs. The Type II error rates are 0.0283, 0.0273, 0.0238 from Training
set, Validation set and Test set respectively. The false-negative error rate is around 2.7
percent through all the experiments.

The logistic-regression analysis measurement results show that both the two-degree and
four-degree interaction predictors fit model perform quite consistently in RMSE and
prediction error rates from the confusion matrix analysis. It can be concluded that both
models do not have significant signs of overfitting or underfitting. This four-degree of
interaction predictors logistic meta-model prediction expression is provided in Appendix
C.5.
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(a) Training set of logistic Pd. (b) Validation set of logistic Pd.

(c) Test set of logistic Pd.

Figure 5.12. The confusion table of logistic probability of detection Pd
regression model with factorial and polynomial interaction predictors up to
the degree of four. The data is divided into 60 percent of training set, 20
percent of validation set, and 20 percent of test set.

5.4.4 Sensor Model Implementation by the Meta-models
With the Pd predicted by the logistic meta-model and the TTD predicted by the linear
regression meta-model, a two-stage process allows for a complete meta-model structure to
predict the behavior of the hybridmodel. This completemeta-model construction represents
the sensor model in a pure DES architecture while considering high-fidelity physics models
of radar parameters. The two-stage prediction sequence by the meta-models is described as
follows:

1. The "if the detection happens" statement predicted by the logistic Pd model:
The probability of detection Pd of the sensor to the target is computed by the
logistic-regression model "Probability(Detection)." The "if the detection happens"
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statement is determined by the expression as follows:

If detection =



0, Probability(Detection) < RV∼ Uniform [0,1]

1, Probability(Detection) > RV∼ Uniform [0,1]

The statement determines whether a detection happens by this set of DoE. The
determination is decided by the comparison of the predicted Pd with a Uniform[0,1]
RV for a stochastic type of logistic model. If the comparison determines there is no
detection by the DoE, the returned result is "no detection."

2. Predicting TTD when the detection event is true: If the logistic model predicts the
detection is true, then the TTD is predicted by the linear-regression model with the
DoE that has been applied for predicting the Pd in the logistic-regression model.

In this research, the logistic meta-model introduced in Appendix C.5 and the linear
regression meta-model in Appendix C.3 are applied for constructing this new high-fidelity
DES sensor model. The model complexity and execution efficiency of the meta-model is
much better than the baseline hybrid sensor model.

5.5 Meta-Model Predicting Results Verification
To verify that the predicted TTD from the fitting meta-model is statistically no different
from the baseline hybrid sensor model, two statistical verification examinations are applied
on the simulation results from these two models with the same DoE. The examinations
verify how significant the difference is in the mean and variance of the simulation results
between the fitted meta-model and the hybrid sensor model. The simulation is conducted
by a DoE:

• Incident Angle = 1.553◦

• Speed = 442.19 km
• Sweeping integer = 6 s
• prf = 1478 Hz

Both the meta-model and the hybrid model perform this DoE with 100 replications. The
simulation generates the result with 95 and 80 valid TTDs from the meta-model and the
hybrid model respectively.
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The two-sample t-test and the unequal-variance test discussed in the previous two sections
are the verification method to determine whether the fitting meta-model has good predicting
ability to represent the sampling data that is generated by the hybrid model simulation.

However, the validation of the meta-model is verified by examining the mean (first moment)
and variance (second moment) of predicted results. Testing the first moment and second
moment between predicted results and baseline data can indicate how well the meta-model
represents the hybrid model.

5.5.1 Equal-Mean Test: Two-sample t-test
Figure 5.13 shows the result of processing a two-sample t-test on TTD from both the
meta-model and the baseline hybrid sensor models with 100 repetitions in one design point.
The t-Ratio = -1.07458 with the p-value = Prob > |t | = 0.2853. The result retains the null
hypothesis of equal-mean assumption at a 95 percent confidence interval. In other words,
the mean of predicted TTDs is statistically identical to the result from the hybrid sensor
model.

5.5.2 Unequal-Variance Test: O’Brien Unequal-variance Test
The homogeneity of the variance assumption is one of the critical assumptions underlying
most parametric statistical procedures, such as the linear-regression analysis in this study,
and it is important to be able to test this assumption. The O’Brien unequal-variance test
verifies the variance between the sample variance and population variance by the assumption
that [79]:

• The null hypothesis (Ho): this tests that the samples under consideration come from
populations with the same variance.

• The alternative hypothesis (Ha): this tests that the populations have different variances
than the sample variance.

The O’Brien test is designed to test the homogeneity of the variance assumption for several
samples at once and with the versatility for analysis of variance designs, including contrast
analysis and sub-designs analysis. The p-value of this unequal-variance test is less than
0.0001. It rejects the null hypothesis of equal-variance assumption. The test indicates the
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Figure 5.13. t-test of acTTD between the meta-model and the baseline
hybrid sensor model.

variance of sample data, which is predicted TTDs in this study, is statistically different from
the variance of the population data, which is simulation replication data from the hybrid
model. The O’Brien test result is shown in Figure 5.14.

The two-sample t-test has proved that there is no significant evidence to show the mean of
the sample data from predicted TTD is different from the population mean of TTD from
the simulation data. The unequal-variance O’Brien test shows the sample data from the
predicted TTD presents unequal-variance to the population TTD from the simulation data.
The fitting meta-model can be concluded as an unbiased prediction response of TTD with
unequal prediction variable in comparison to the population simulation data. The overall
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Figure 5.14. Equal-variance O’Brien test measurement of TTD between the
meta-model and the hybrid sensor model.

performance of the meta-models do present the hybrid model characteristics in a certain
sense with much more concise structure and with higher executing efficiency.
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CHAPTER 6:
Conclusions and Recommendations

Essentially, all models are wrong, but some are useful.
         
              –George E. P. Box [80]
6.1 Conclusions
Because the model complexity for integrating high-fidelity physics parameters is high, the
simulation efficiency and the model fidelity both have never been satisfied before. A new
pure DES architecture sensor model, which predicts only Pd and TTD for the efficient
dynamic sensor-model simulation, is successfully constructed in this research. The new
sensor model is not only constructed with low model complexity, but also incorporates the
high-fidelity physics model of radar parameters. The sensor model detection algorithm
considers: 1) range, 2) aspect angle, factors between the sensor and the targets, which are
constantly changing in a dynamic sensor-model scenario.

The sensor model constructing architecture is based on a two-stage process. The model
construction paradigm in each stage is distinguished and based on different modeling
approaches. This chapter presents the conclusions of this high-efficiency and high-fidelity
sensor model approach by these two stages:
1) A hybrid architecture of the sensor model that integrates high-fidelity radar equations
into a detection algorithm.
2) The concise form ofmeta-models that represents the hybrid sensormodel’s characteristics
for efficient and simplified sensor model structures through optimized DoE and regression
analysis process.

6.1.1 Hybrid Architecture Sensor Model
This work demonstrates a hybrid structure sensor model that successfully integrates
high-fidelity RRE with dynamic RCS response from targets. Based on a computationally
efficient DES structure with an isolated atemporal RCS model, the hybrid model not only
introduced an angle-varying RCS factor into the dynamic sensor-target scenario, but also
kept the computational complexity of a large complex scenario down to a tractable level.
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A typical desktop PC is capable of executing 250,500 DoE scenario repetitions in a matter
of minutes. In extending the NOLH DoE for generating more observation data for more
flexible and detailed study of the proceeding regression analysis process, the number of
DPs has risen five times, up to 5× 250,500 = 1,252,500. With such a tremendous number
of simulation replications, the execution latency is still controlled to under a minute or
two. This is because the three categories classification structure classifies the data models
that contain different time mechanisms in simulation into associated groups and integrates
each group accordingly into a model. The basic DES-based sensor framework maintains
the simulation accuracy by scheduling and executing the simulation precisely on the event
transition state. This brings no ambiguity to the simulation event scheduling time for
emulating the TS antenna scanning mechanism. The DES sensor framework also optimizes
the simulation execution efficiency by ruling out the events without state transition during
the simulation.

Furthermore, the atemporal model is a newly proposed modeling time mechanism
classification in this research. Such time-independent factors, which can possibly cause
tremendous execution latency during the simulation, have to be processed separately and
a priori. In this research, the RCS of the targets varies according to the aspect angle
to the sensor without a time factor inside. However, the tremendous computational
complexity of generating RCSmakes it impossible to be incorporated into nearly-a-real-time
or prompt-time-varying simulation scenario; doing so would require vast computational
power to shorten the computational latency, such as being computed instantly by powerful
clusters. Such cluster power is not always an available resource for simulation designers
and users. One difficulty when using the cluster for simulations is not only the price of
the hardware investment but also accessibility to the cluster resource during the simulation.
Without stable and high-performance networking for prompt data exchange between the
simulation administration terminal and the clusters, any instead previously cluster supported
architecture cannot be performed efficiently. When the target RCS is computed offline, this
time independent factor can be integrated into the DES framework without noticeable
responding latency and the simulation executive complexity can be kept down to a level
executable by PC.

The contribution and goal of this hybrid sensor structure is to provide an architecture that
allows the highly detailed physics parameters to be integrated and worked coherently and
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efficiently into a high-fidelity simulation scenario [81].

6.1.2 DoE and Regression Analysis
Even with these benefits of a DES-based structure for the hybrid model, the embedded
TS mechanism for emulating the antenna sweeping period is still a key latency for a
comprehensive model. Additionally, the model also needs to include a maximum detectable
range table for the target. These factors still make the model bulky in some sense. This
research utilizes efficient NOLH DoEs that provide a well-filled space of parameters with
significantly fewer design points compared with full factorial design. The 257 DPs DoE by
NOLH design with 100 replications of each DP allows the behavior of the hybrid sensor
model to be revealed comprehensively in the range of interest for the parameters in the
hybrid model.

Finally, a linear regression meta-model is fit from the experimental data executed by the
DoEs for predicting the TTD of the sensor to the target with the predictor parameter in the
range of DoE. A logistic regression analysis is applied for predicting the Pd of the sensor to
the target in a specific DoE. The linear regression fit model showed some heteroscedasticity
in predicted TTDwhen the model is fit by low degree of polynomial and factorial interaction
predictor parameters. With the four degree of interaction predictors, the meta-model has
good normalized distribution in the predicted TTD residual. Multiple model selection and
verification methodologies are applied for attempting to find the proper predictors to fit
the meta-model. The optimum model selection processes that have been considered in the
study are:

1. Fit the models with interaction terms up to degree of four: Due to the obvious
heteroscedasticity, in predicted residual when the models are fit with two degree of
interaction terms of predictors, the four degree predictors terms mitigate substantial
heteroscedasticity and the meta-model has good normalized distribution in the
predicted TTD residual.

2. Dividing data into three datasets for CV: For insuring the meta-models are not
over fitting, the CV process is crucial to verify the models are formed by the proper
predictors. Thanks to the substantial numbers of DoE that can be generated by the
extended NOLH design that is introduced in section 5.4.1, each dataset has sufficient
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observations to verify the model performance. The data are randomly divided into
three sets proportionately as follows:

• Training dataset (60 percent)
• Validation dataset (20 percent)
• Test dataset (20 percent)

3. Stepwise selection : Forming the meta-models by the forwarding "stepwise" model
selection process with the stopping rule of "max validation RSquared." This not only
allows users to choose the models from different steps but also allows the validation
dataset to verify the fitness of the meta-model that is fit by the training dataset.

4. Backward elimination: Once the model is chosen, the backward elimination method
is applied for eliminating the insignificant predictors. The eliminated predictors are
chosen one by one by the p-value threshold=0.05.

By these model selection and verification processes the meta-model for predicting TTD has
RSquared value = 0.993 and the logistic regression model for predicting Pd to the target has
RSquared value = 0.94. The error rate shown by this RSquared value is quite low. This may
cause the attention whether the models are overfitting. There are multiple model selection
and verification methodologies applied for fitting the models with the proper predictors.
There is no quick and simple answer about how to fit a meta-model correctly. However,
after the application of multiple model selection methodologies and the strict CV by two
abundant, independent validation datasets and test datasets, the degree of possible over
fitting models can be mitigated.

The meta-models do present the hybrid model characteristics in a certain sense with much
more concise structure and with higher executing efficiency.

6.2 Recommendations for Future Work
In this research, there is a two-stage approach to complete the model constructing process.
The process of each stage is distinguished and unique. The suggestions for extending future
work are also described into the two major fields.
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6.2.1 Hybrid Architecture Sensor Model
1. Extending the 2D planar Hybrid Sensor into 3D RCS Resolution Sensor Model

The hybrid sensor model that has been studied in this research is a two-dimensional
(2D) planar resolution sensor model. It is a good approach for a 2D search radar
sensor model in the far-field that makes no significant elevation angle change as the
targets close in on the sensor. Nevertheless, the RCS has agile variation along with the
change of the object geometry which is explained intensively in section 2.3.1. As the
target moves close to the sensor in the near-field, the difference of elevation angle to
the target between each antenna scanning period becomes more significant. In Figure
6.1a displays the RCS variation of the F-16 model in elevation angle. Applying the
RCS in different elevation angle into range equation, the Rmax of the target from
top (θ = 0◦) to bottom (θ = 180◦) is shown in Figure 6.1b and the big RCS value
happens at the top and bottom of the target. Therefore, by introducing the elevation
angle factor into the target RCS, the sensor-target simulation scenario will not only
be extended from 2D planar model into 3D simulation resolution scenario, but also
consider possible significant elevation factors into the sensor detection algorithm. In
Figure 6.1c shows the 2D planar sensor with RCS of the target in x− y plane. Thanks
to the flexible and efficient hybrid sensor model architecture, more radar parameters
can be integrated into this framework in order to make the sensor detection algorithm
more thorough. The hybrid sensor model need to be modified as follows:
(a) Generating 3D Resolution RCS of Targets:

RCS is one of the significant factors that can affect the radar model detection
ability, but the RCS of the target, which is classified as atemporalmodel, has high
computational latency for generating high resolution results. If not computed
in advance, the computational latency can be more severe in 3D resolution.
For large aircraft models constructed by high amount of polygons and executed
in real size, a PC can get easily overwhelmed due to the massive execution
complexity. The partial section computation arrangement can be a possible
solution to share the work load on a PC.
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(a) RCS of F-16 in elevation angle (b) Rmax of F-16 in elevation angle

(c) RCS of F-16 in azimuth angle

Figure 6.1. The RCS of F-16 Falcon fighter model which is simulated by
CST Studio software with signal frequency = 8 GHz. In (a), the RCS of
F-16 sweeping by the elevation angle with φ = 0◦. In (c), the RCS of F-16
sweeping by the azimuth angle with θ = 90◦. In (b), the maximum detection
range to the sensor is computed by the target RCS in part(a).
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(b) Applying Double-Precision 3D Geometric Point in Simulation:
The geometric point in the 2D model is defined by Point2D format in Java. In
the 3D resolution scenario, all the entities utilizing the geometric point need to
be updated to double-precision Point3D format in java.

2. Constructing DES Model by Visual Simkit (Viskit)
Viskit is a visual programming tool to create, run and analyze Simkit models. Even
though the ground truth concept of implementing DES by Simkit or Viskit is the
same, the difference is the Viskit constructing models by building entity blocks and
assemble the entities as designing event diagrams. The goal for implementing DES
by Viskit is to assemble the simulation by dragging and dropping the entity blocks
to match the design event graph. This tool can help to reduce implementing syntax
error and the simulation event graphs are clear during the assembling [82].

3. Model visualization using composable X3D
Further modeling and visualization using composable, archival X3D forgoes can
support further understanding and illustration of simple results from complex details.

6.2.2 DoE and Regression Analysis
1. Applying Advanced Regression Analysis Methodologies

The prediction result from meta-model for TTD shows the unequal-variance in
comparison of the simulation result from the hybrid model. There is always some
prediction error betweenmeta-models and hybridmodels, even though there are many
model selection and verificationmethodologies have been applied for attempting to get
the optimum meta-models in the study. Nevertheless, there is no one methodology of
how to choose the best meta-model, especially when dealing with the high complexity
simulation scenarios such as the physic-based sensor model. Therefore, further data
analysis and regression methodologies can be applied in future work to form a better
and more accurate understandings of meta-models of interest.

2. Developing Multiple Entities Simulation Scenarios
There are eight different aircraft models have been built by the hybrid structure sensor
model based on their RCS in 2D resolution. In this study, only the F-16 Falcon fighter
model is used as the baseline model to study the DoE and the regression analysis
methodologies. The meta-model expression of the F-16 Falcon fighter is listed in
the Appendix C. The other seven aircraft hybrid models can also be simplified as
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the meta-models by following the summarized regression analysis methodologies,
which are introduced in the conclusion. With result of the eight meta-models with the
different type of aircraft, a high-fidelity and dynamic sensor-target simulation scenario
with multiple entities can be conducted and be executed efficiently. Following the
hybrid-sensor model architecture and the regression analysis methodologies, which
has been introduced in the study, new target entities or other physically based models
can be introduced into the simulation scenario as further research indicates.

3. Developing Tactical Flight Waypoints Simulation Scenarios
The maximum detection range of the sensor to the targets is highly depending on the
aspect angle from the sensor the targets. Figure 3.12 shows the detection range is
far at front, back and side of aircraft but much shorter at the diagonal angle of the
plan. There are two interesting scenarios can be conduct based on these high-fidelity
models for studying tactical waypoints of the aircraft or the radar site arrangements
of the sensor.
(a) Minimized the detection range from the sensor: Since the aircraft has short

detection range to the radar at diagonal angle, it is possible to find the flight
waypoints that get the most small CPA to the sensor such as zig-zag rout that
keeps the aircraft facing the sensor with the low RCS side for the longest period
of time.

(b) Optimum radar site arrangement: There are more blind angles for a
single-site radar to detect the target during a tactical flight. A multiple radar
sites arrangement is a possible solution for uncovering the blind angles of a
single-site radar. Based on the highly detailed and efficient sensor target models
architecture presented in this research, the performance of a multiple radar site
arrangement can be examined efficiently with high-fidelity.
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APPENDIX A:
X3D Objects Animated by Simulink

Matlab is a powerful tool to compute high-fidelity engineering model and plot the result in
figures. Simulink implements Matlab .m source code into block diagrams and flow charts
to execute the simulation. This project demonstrates how physics equations implemented
in Simulink can animate X3D or VRML models, along with the methods to convert Matlab
.fig format into an X3D object so the Matlab 3D object can be applied into Web-based
animations. The complete project example is available at:

X3D for Advanced Modeling Examples Archive in
http://x3dgraphics.com/examples/X3dForAdvancedModeling/Matlab
The conversion and operation procedure is described as follows:

A.1 Matlab.m Plot to X3D Objects Conversion

Exporting Matlab .fig format into .wrl object
The Matlab function that exports *.fig to *.wrl by vrml.m function is created by Jan Danek
of Humusoft [83]. The function resource is
http://www.mathworks.com/matlabcentral/fileexchange/48242-vrml-h–filename–opts-
/content/vrml.m

The exporting procedure is:

1. Generating a 3D plot *.fig in Matlab.
In this example, a phase array antennamodel created byDr. David Jenn is applied [23]
(a) Copying “TwoD_array_dips_gp_xz_scan_1plot.m” inMatlab current execution

path.
(b) In command line, type “ TwoD_array_dips_gp_xz_scan_1plot” and then the

following plot will be generated. The parametric equations for each axis are
shown in the labels of Figure 2.2a.

2. Copying “vrml.m” in current execution path.In Matlab command line type: vrml(
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gcf, ‘outputFileName.wrl’) and then the exporting acvrml file will be put in Matlab
current path. The converted .vrml object is shown in Figure 2.2c.

Exporting Matlab .fig format to X3D and .xhtml
The exporting function is created by Dirk-Jan Kroon [84] and the function resource is:
http://www.mathworks.com/matlabcentral/fileexchange/32207-matlab-3d-figure-to-3d--x-
html

The exporting procedure is:

1. Copying “figure2xhtml.m” in Matlab current execution path.
2. Generating a Matlab .m figure and then typing in command line : figure2xhtml

(‘outputFileName’)
3. By default, there will be two output files generated at current path.

(a) Exporting X3D object. The “ outputFileName.x3d” object is shown in Figure
2.2b.

(b) Exporting XHTML object. The “ outputFileName.xhtml” object is shown in
Figure 2.2d.

A.2 X3D Object Animated by Simulink
The project remodels the Bouncing Ball example in Matlab VRtool tutorial [85].

The block diagram of the Simulink animation is showing in Figure 2.3 and the parameters
are set up as follows:

1. Initializing Simulink diagrams.
(a) In “Constant” block, the gravity force= 9.8(m/s) is set.
(b) In “Position” block, set up initial position (Z-axis) = 20(m).
(c) In “velocity” block, set up initial velocity=0.
(d) In “fcn” MATLAB Function block, it calculates the force “f”, and X,Y-axis

scaling “a”, and Z-axis translation “b” variation during simulation by the input
variables position “Z” and velocity “v”.

2. Double clicking "VR Sink" the simulation scene will appear as the right plot in Figure
2.3. In the simulation scene, choose "Simulation/Block", a parameter setting window
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will appear as Figure A.1.
(a) In Simulation/Block parameters, the 3D model in *.wrl format can be chosen.
(b) In VRML Tree, check the interested transformation variables to render during

the simulation. In this example, "scale and “translation” are chosen.

Figure A.1. VR sink software: Parameters settings block-diagram panel.

3. Double click "VR Signal Expander" icon as in Figure A.2, a function parameter set
up block is shown as Figure A.2
(a) Output width = 3 indicates there are three parameters of output(X, Y, Z in this

case).
(b) The “Position” variable only goes into Z-axis by setting “Output signal indices

= [3]”.

During the simulation, there are three scopes monitoring the box movement parameters:

1. The Position Scope:
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Figure A.2. VR signal expander software: Simulink icon.

It shows the position change ( z-axis) of box and is shown in the bottom right plot
of Figure 2.3. Since there is the damping function concerned in “fcn”, there is the
attenuation of Z-axis movement.

2. The Velocity Scope:
It shows the velocity change ( z-axis) of box and is shown in the bottom plot of Figure
2.3. Likewise, the attenuation of velocity can be observed.

3. The Force Scope:
It shows the resilient force of box in each bounce and is shown in the bottom right
plot of Figure 2.3.

The animation can also be shown in the local host web browser in *.HTML format at
http://localhost:8123 and the viewpoints can be switched by “Page-up” and “Page-down”.
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Figure A.3. VR signal expander software: Parameters Setting block-diagram
panel.
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APPENDIX B:
Hybrid Sensor Model Simulation Operator Manual

The simulations are constructed on Java platform by the Simkit library. The introduction
of the Simkit library can be found in the website: https://eos.nps.edu/Simkit/ [57].

The hybrid model simulation packages are available at: The Savage model archive.
https://savage.nps.edu/Savage/

B.1 Hybrid 2D Planar Sensor Simulation User Manual

B.1.1 Batch Run Simulation
The hybrid sensor architecture has shown it can integrate the high-fidelity physics-based
radar parameters efficiently into a simulation scenario. With a flexible architecture, the
simulation can adapt to different aircraft objects and different DoEs for extending the
simulation scenarios. The simulation software environment setups are listed as follows:

• Package: "RmaxRCSVaring.run"
• File: "RCS2DSensorBatch.java." This java main file utilizes the entity files in
“RmaxRCSVaring.smd” package and the utility files in “RmaxRCSVaring.util.”

• Variable setting: The instance variables for initializing the simulation are listed as
follows:
1. maxRange: This is the maximum detection range of the sensor. It is denoted

"Ru" in the dissertation. It is in the unit of kilometers.
2. moverInitialDistanceFromSensor: The initial distance between the target to

the sensor. It is in the unit of kilometers.
3. isCoherent: A Boolean variable for determining if the Swerling model is

applied for representing the fluctuation error effect. When the variable is "true",
the Swerling model is enabled and the sensor model is stochastic.

4. maxEndMoveNumber: This is the the number of replications per design point.
• Input file setting:

1. TheRmaxof the target is imported as the file name "RmaxRCSVaringF16_8G.csv"
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by the following code:
String RCSInputFileName = "RmaxRCSVaringF16_8G.csv";

2. TheDoEof the batch simulation is imported as the file name "input_29_intg.csv"
in the following code: String NOHLFile = filePath + "input_29_intg.csv";

• Output file setting: The simulation output is saved as the file name " output.csv" in
the following code:
File outputFile = new File(filePath, "output.csv");
The output file concatenates the input DoE parameters with the output “timeToDetect”
results in each replication. “NoDetection” records 1 if no detection event happens in
the scenario and 0 is recorded otherwise.

• Meta-model implication: The logistic model expression is implemented in the
variable “lin” and Pd prediction is computed by the variable “probDetection.” The
meta-model of predicting TTD is implemented in the variable “metaTimeToDetect”
when the predicted Pd is true.

B.1.2 TheHybridSensorModel SimulationVisualAnimationDemonstration:
• Package: "RmaxRCS2DSensor"
• File: "RCS2DSensorDemo.java." This java main file utilizes the entity files in
“RmaxRCS2DSensor.smd” and “mv3302.smd” package and the utility files in
“RmaxRCS2DSensor.util” package .

• Variable setting:
1. maxRange: Set up the maximum detection range of the sensor.
2. sensorPingPeriod: Set up the sensor antenna sweeping integer.
3. pathList: Set up the waypoints. The waypoints follow the java Point2D format.
4. Speed: Set up for the target moving speed.

By executing this file, a simulation sandbox will appear. Clicking the run button
causes the simulation to be performed with the event log displayed on the right side
of the dialog window.
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B.2 Target Model Radar Cross Section (RCS) and the
Maximum Detection Range to the Sensor Model

There are the lists of eight aircraft and missile models, which have been applied in the
hybrid sensor architecture in this study. The RCS of these 3D models have been calculated
by the CST Studio in the variable of azimuth angle. The 3D models are aligned along
x-axis with front side facing positive x-axis direction. The models are set in x − y plane
with top side facing to positive z-axis. The RCS is computed around the model on x − y

plane which is θ = 90◦ while φ sweeping from 0◦ to 360◦ in spherical coordinate system
with 0.5◦ increment.

The Rmax of the model to the sensor is calculated by the range equation introduced in
Chapter 2.3.1 with the RCS of the target. The polar plot of the Rmax displace the detection
range of the target by the viewed angle of the sensor to the targets. The Rmax is in the unit
of km.

All models are full size as the real aircraft in CST Studio RCS simulation. In this chapter,
the objects are shown in RCS contour plot merging with the object projected figure which
matches to the computational configuration. Also the contour Rmax plots are shown and
the data are applied in the sensor model for detection determination in simulation. The
four different viewpoint plots of the 3D objects are displayed for better understanding of the
objects geometry.

The 3D aircraft models included in this research are purchased from:3Dcadbrower.com.
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B.3 Conventional Military Aircraft

B.3.1 F-16 Falcon Fighter RCS and Rmax

(a) The RCS of F-16 (b) The Rmax of F-16

Figure B.1. The polar plots of a F-16 Falcon fighter in azimuth angle (θ =
90◦). In (a), the RCS of the object computed by CST studio with the signal
frequency = 8GHz. In (b), the Rmax of the sensor to detect the target and
calculated by the range equation with the RCS.
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B.3.2 F-16 Falcon Fighter Model in Different Viewpoints

(a) The front viewpoint of F-16 (b) The side viewpoint of F-16

(c) The bottom viewpoint of F-16 (d) The 45◦ viewpoint of F-16

Figure B.2. Four different viewpoints of the F-16 Falcon fighter model.
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B.3.3 F-18 Hornet Fighter RCS and Rmax

(a) The RCS of F-18 (b) The Rmax of The RCS of F-18

Figure B.3. The polar plots of a F-18 Hornet fighter in azimuth angle
(θ = 90◦). In (a), the RCS of the object computed by CST studio with
the signal frequency = 8GHz. In (b), the Rmax of the sensor to detect the
target and calculated by the range equation with the RCS.

156



B.3.4 F-18 Hornet Fighter Model in Different Viewpoints

(a) The front viewpoint of F-18 (b) The side viewpoint of F-18

(c) The bottom viewpoint of F-18 (d) The 45◦ viewpoint of F-18

Figure B.4. Four different viewpoints of the F-18 Hornet fighter model.
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B.4 Commercial Aircraft

B.4.1 B-737 400 RCS and Rmax

(a) The RCS of B-737 400 (b) The Rmax of The RCS of B-737 400

Figure B.5. The polar plots of a B-737 400 commercial aircraft in azimuth
angle (θ = 90◦). In (a), the RCS of the object computed by CST studio
with the signal frequency = 8GHz. In (b), the Rmax of the sensor to detect
the target and calculated by the range equation with the RCS.
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B.4.2 B-737 400 Model in Different Viewpoints

(a) The front viewpoint of B-737 400 (b) The side viewpoint of B-737 400

(c) The bottom viewpoint of B-737 400 (d) The 45◦ viewpoint of B-737 400

Figure B.6. Four different viewpoints of the B-737 400 commercial flight
model.

159



B.4.3 B-747 400 RCS and Rmax

(a) The RCS of B-747 400 (b) The Rmax of The RCS of B-747 400

Figure B.7. The polar plots of a B-747 400 commercial aircraft in azimuth
angle (θ = 90◦). In (a), the RCS of the object computed by CST studio
with the signal frequency = 8GHz. In (b), the Rmax of the sensor to detect
the target and calculated by the range equation with the RCS.
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B.4.4 B-747 400 Model in Different Viewpoints

(a) The front viewpoint of B-747 400 (b) The side viewpoint of B-747 400

(c) The bottom viewpoint of B-747 400 (d) The 45◦ viewpoint of B-747 400

Figure B.8. Four different viewpoints of the B-747 400 commercial flight
model.
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B.5 Stealth Aircraft

B.5.1 F-35 Lightning Fighter RCS and Rmax

(a) The RCS of F-35 (b) The Rmax of The RCS of F-35

Figure B.9. The polar plots of a F-35 Lightning fighter in azimuth angle
(θ = 90◦). In (a), the RCS of the object computed by CST studio with
the signal frequency = 8GHz. In (b), the Rmax of the sensor to detect the
target and calculated by the range equation with the RCS.
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B.5.2 F-35 Lightning Fighter Model in Different Viewpoints

(a) The front viewpoint of F-35 (b) The side viewpoint of F-35

(c) The bottom viewpoint of F-35 (d) The 45◦ viewpoint of F-35

Figure B.10. Four different viewpoints of the F-35 Lightning fighter model.
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B.5.3 B-2 Spirit Bomber RCS and Rmax

(a) The RCS of B-2 (b) The Rmax of The RCS of B-2

Figure B.11. The polar plots of a B-2 Spirit bomber in azimuth angle
(θ = 90◦). In (a), the RCS of the object computed by CST studio with
the signal frequency = 8GHz. In (b), the Rmax of the sensor to detect the
target and calculated by the range equation with the RCS.
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B.5.4 B-2 Spirit Bomber Model in Different Viewpoints

(a) The front viewpoint of B-2 (b) The side viewpoint of B-2

(c) The bottom viewpoint of B-2 (d) The 45◦ viewpoint of B-2

Figure B.12. Four different viewpoints of the B-2 Spirit bomber model.
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B.6 UAV

B.6.1 MQ-1 Predator UAV RCS and Rmax

(a) The RCS of MQ-1 (b) The Rmax of The RCS of MQ-1

Figure B.13. The polar plots of a MQ-1 Predator UAV in azimuth angle
(θ = 90◦). In (a), the RCS of the object computed by CST studio with
the signal frequency = 8GHz. In (b), the Rmax of the sensor to detect the
target and calculated by the range equation with the RCS.
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B.6.2 MQ-1 Predator UAV Model in Different Viewpoints

(a) The front viewpoint of MQ-1 (b) The side viewpoint of MQ-1

(c) The bottom viewpoint of MQ-1 (d) The 45◦ viewpoint of MQ-1

Figure B.14. Four different viewpoints of the MQ-1 Predator UAV model.
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B.7 Missiles

B.7.1 AA-11 Archer Air-to-Air Missile RCS and Rmax

(a) The RCS of MQ-1 (b) The Rmax of The RCS of MQ-1

Figure B.15. The polar plots of a AA-11 Archer air-to-air missile in azimuth
angle (θ = 90◦). In (a), the RCS of the object computed by CST studio
with the signal frequency = 8GHz. In (b), the Rmax of the sensor to detect
the target and calculated by the range equation with the RCS.
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B.7.2 AA-11 Archer Air-to-Air Missile Model in Different Viewpoints

(a) The front viewpoint of AA-11 (b) The side viewpoint of AA-11

(c) The bottom viewpoint of AA-11 (d) The 45◦ viewpoint of AA-11

Figure B.16. Four different viewpoints of the AA-11 Archer air-to-air missile
model.
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APPENDIX C:
Regression Analysis Meta Models

There are several model selection and verification techniques that have been discussed in
this work. Each model selection method can result in a meta-model with certain difference
than others. These models could be useful for substituting the hybrid sensor model in the
simulation scenarios or can be useful for further regression analysis. There is a list of
the full predicted expression of proper fit meta-models of predicting TTD and the logistic
meta-models for predicting Pd of the sensor. These models are fit with different complexity
of predictors or by different model selection techniques that have been introduced in the
study. Each mathematical meta-model was produced from simulation replication results
using JMP Pro 12.

C.1 TTD Meta-Model Prediction Expression with the
Predictors Interaction Terms to Up to Four Degrees
(D4)

Predicted TT D = y = (−0.335133972101971) + 0.000109504106388287∗

: Name(”Incident Angle(degree)”) + −0.0000930384722884577∗

: Name(”speed(Km/hr)”) + 0.0000684307108072084∗

: Name(”SweepingItg(s)”)+−0.00260890738421434∗ : thetaAz+0.0000010249647684912

∗ : pr f + (: Name(”Incident Angle(degree)”) − 0.349461735240534) ∗ ((

: Name(”SweepingItg(s)”) − 4.53622619566796) ∗ 0.0000364559651439359) + (

: Name(”Incident Angle(degree)”)−0.349461735240534)∗((: thetaAz−4.51469690361972)

∗0.000232733268884828) + (: Name(”Incident Angle(degree)”)

−0.349461735240534) ∗ ((: pr f − 954.780636720455) ∗ −0.0000000614158569719) + (

: Name(”speed(Km/hr)”) − 689.113631341769) ∗ ((: Name(”SweepingItg(s)”)
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−4.53622619566796) ∗ −0.0000017715916845948) + (: Name(”speed(Km/hr)”)

−689.113631341769)∗ ((: thetaAz−4.51469690361972)∗−0.0000003873677926721)+ (

: Name(”speed(Km/hr)”) − 689.113631341769) ∗ ((: pr f − 954.780636720455)∗

−0.0000000186636191686) + (: Name(”SweepingItg(s)”) − 4.53622619566796) ∗ ((

: thetaAz−4.51469690361972)∗0.000386657629526604)+(: Name(”SweepingItg(s)”)

−4.53622619566796) ∗ ((: pr f − 954.780636720455) ∗ 0.0000008795629531869) + (

: thetaAz−4.51469690361972)∗((: pr f−954.780636720455)∗0.0000009787295997473)

+(: Name(”Incident Angle(degree)”)−0.349461735240534)∗((: Name(”SweepingItg(s)”)

−4.53622619566796) ∗ ((: thetaAz − 4.51469690361972)∗

0.0000003866060444694))+(: Name(”Incident Angle(degree)”)−0.349461735240534)∗

((: Name(”SweepingItg(s)”) − 4.53622619566796) ∗ ((: pr f − 954.780636720455)∗

0.0000000888161807738))+(: Name(”Incident Angle(degree)”)−0.349461735240534)∗

((: thetaAz−4.51469690361972)∗((: pr f−954.780636720455)∗0.0000003420567670487)

) + (: Name(”speed(Km/hr)”) − 689.113631341769) ∗ ((: Name(”SweepingItg(s)”)

−4.53622619566796)∗ ((: thetaAz−4.51469690361972)∗−0.000000532438368478))+ (

: Name(”speed(Km/hr)”) − 689.113631341769) ∗ ((: Name(”SweepingItg(s)”)

−4.53622619566796) ∗ ((: pr f − 954.780636720455) ∗ 0.0000000061416000062)) + (

: Name(”speed(Km/hr)”)−689.113631341769) ∗ ((: thetaAz−4.51469690361972) ∗ ((

: pr f − 954.780636720455) ∗ 0.0000000043878706677)) + (: Name(”SweepingItg(s)”)

−4.53622619566796)∗ ((: thetaAz−4.51469690361972)∗ ((: pr f −954.780636720455)∗

−0.0000002539686397348))+(: Name(”Incident Angle(degree)”)−0.349461735240534)

∗((: Name(”SweepingItg(s)”)−4.53622619566796)∗ ((: thetaAz−4.51469690361972)

∗((: pr f−954.780636720455)∗0.0000004124575542816)))+(: Name(”speed(Km/hr)”)
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−689.113631341769)∗ ((: Name(”SweepingItg(s)”)−4.53622619566796)∗ ((: thetaAz

−4.51469690361972) ∗ ((: pr f − 954.780636720455) ∗ −0.00000000407718044))) + (

: Name(”Incident Angle(degree)”) − 0.349461735240534)∗

((: Name(”Incident Angle(degree)”)

−0.349461735240534) ∗ 0.000386865976507422) + (

: Name(”Incident Angle(degree)”) − 0.349461735240534) ∗ ((

: Name(”Incident Angle(degree)”) − 0.349461735240534) ∗ ((

: Name(”Incident Angle(degree)”)−0.349461735240534)∗−0.000004020545329974))+(

: Name(”Incident Angle(degree)”) − 0.349461735240534) ∗ ((

: Name(”Incident Angle(degree)”) − 0.349461735240534) ∗ ((

: Name(”Incident Angle(degree)”) − 0.349461735240534) ∗ ((

: Name(”Incident Angle(degree)”)−0.349461735240534)∗−0.0000035220284762869)))

+(: Name(”speed(Km/hr)”) − 689.113631341769) ∗ ((: Name(”speed(Km/hr)”)

−689.113631341769) ∗ 0.0000000944186840177) + (: Name(”speed(Km/hr)”)

−689.113631341769) ∗ ((: Name(”speed(Km/hr)”) − 689.113631341769) ∗ ((

: Name(”speed(Km/hr)”) − 689.113631341769) ∗ −2.28060205858768e − 10)) + (

: Name(”speed(Km/hr)”) − 689.113631341769) ∗ ((: Name(”speed(Km/hr)”)

−689.113631341769) ∗ ((: Name(”speed(Km/hr)”) − 689.113631341769) ∗ ((

: Name(”speed(Km/hr)”)−689.113631341769)∗3.33032620551949e−13)))+(: thetaAz

−4.51469690361972) ∗ ((: thetaAz − 4.51469690361972) ∗ 0.00939036904391173) + (

: thetaAz − 4.51469690361972) ∗ ((: thetaAz − 4.51469690361972) ∗ ((: thetaAz

−4.51469690361972) ∗ 0.00125308646280733)) + (: thetaAz − 4.51469690361972) ∗ ((

: thetaAz − 4.51469690361972) ∗ ((: thetaAz − 4.51469690361972) ∗ ((: thetaAz
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−4.51469690361972) ∗ −0.00424325293238701)))

C.2 TTD Meta-Model Prediction Expression Fit by The
Predictor Waypoint_X
Predicted TT D = y = 0.132755047311965 + −0.0000818679958353739∗

: Name(”speed(Km/hr)”) + −0.0041921314510958∗

: Name(”thetaAz(Degree)”) + (: W aypointX − 0.607415321994461

) ∗ (: Name(”thetaAz(Degree)”) − 4.51469690361972) ∗ 0.000175155053986711 + (

: Name(”speed(Km/hr)”) − 689.113631341766) ∗ (: Name(”SweepingInterval (s)”)

−4.53622619566797) ∗ −0.0000012486135818654 + (: Name(”speed(Km/hr)”)

−689.113631341766) ∗ (: Name(”pr f (Hz)”) − 954.780636720453)∗

−0.0000000179586873246 + (: W aypointX − 0.607415321994461) ∗ (

: Name(”SweepingInterval (s)”) − 4.53622619566797) ∗ (: Name(”pr f (Hz)”)

−954.780636720453) ∗ 0.0000000951097193237 + (: Name(”speed(Km/hr)”)

−689.113631341766) ∗ (: Name(”SweepingInterval (s)”) − 4.53622619566797) ∗ (

: Name(”pr f (Hz)”) − 954.780636720453) ∗ 0.0000000091934435226 + (

: Name(”speed(Km/hr)”) − 689.113631341766) ∗ (: Name(”pr f (Hz)”)

−954.780636720453) ∗ (: Name(”thetaAz(Degree)”) − 4.51469690361972)∗

0.0000000101162589086 + (: W aypointX − 0.607415321994461) ∗ (

: Name(”SweepingInterval (s)”) − 4.53622619566797) ∗ (: Name(”pr f (Hz)”)

−954.780636720453) ∗ (: Name(”thetaAz(Degree)”) − 4.51469690361972)∗

0.0000001444237033903 + (: Name(”speed(Km/hr)”) − 689.113631341766) ∗ (

: Name(”SweepingInterval (s)”) − 4.53622619566797) ∗ (: Name(”pr f (Hz)”)
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−954.780636720453) ∗ (: Name(”thetaAz(Degree)”) − 4.51469690361972)∗

−0.0000000067851953957 + (: W aypointX − 0.607415321994461) ∗ (: W aypointX

−0.607415321994461)∗0.00013212709789754+(: W aypointX−0.607415321994461)∗(

: W aypointX − 0.607415321994461) ∗ (: W aypointX − 0.607415321994461)∗

−0.0000006358281245164 + (: W aypointX − 0.607415321994461) ∗ (: W aypointX

−0.607415321994461) ∗ (: W aypointX − 0.607415321994461) ∗ (: W aypointX

−0.607415321994461) ∗ −0.0000003832223284612 + (: Name(”speed(Km/hr)”)

−689.113631341766) ∗ (: Name(”speed(Km/hr)”) − 689.113631341766)∗

0.0000000975438480005 + (: Name(”speed(Km/hr)”) − 689.113631341766) ∗ (

: Name(”speed(Km/hr)”) − 689.113631341766) ∗ (: Name(”speed(Km/hr)”)

−689.113631341766) ∗ −0.0000000003982077417 + (: Name(”speed(Km/hr)”)

−689.113631341766) ∗ (: Name(”speed(Km/hr)”) − 689.113631341766) ∗ (

: Name(”speed(Km/hr)”) − 689.113631341766) ∗ (: Name(”speed(Km/hr)”)

−689.113631341766) ∗ 6.75431897182834e − 13 + (: Name(”thetaAz(Degree)”)

−4.51469690361972) ∗ (: Name(”thetaAz(Degree)”) − 4.51469690361972)∗

0.0104815940468138 + (: Name(”thetaAz(Degree)”) − 4.51469690361972) ∗ (

: Name(”thetaAz(Degree)”) − 4.51469690361972) ∗ (: Name(”thetaAz(Degree)”)

−4.51469690361972) ∗ 0.0022672505711434 + (: Name(”thetaAz(Degree)”)

−4.51469690361972) ∗ (: Name(”thetaAz(Degree)”) − 4.51469690361972) ∗ (

: Name(”thetaAz(Degree)”) − 4.51469690361972) ∗ (: Name(”thetaAz(Degree)”)

−4.51469690361972) ∗ −0.0048413478211252
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C.3 TTD Meta-Model Prediction Expression with CV the
Predictors Interaction Terms to Up to Four Degrees
(D4)

Predicted TT D = y = 0.120036628542651

+0.0000983742927557509∗ : Name(”Incident Angle(degree)”)+

−0.0000799496570348101∗ : Name(”speed(Km/hr)”) + −0.000253545583416296∗

: Name(”SweepingItg(s)”) + −0.0000014682311208055

∗ : pr f + −0.000403100130069902

∗ : thetaAz + (: Name(”Incident Angle(degree)”) − 0.236844281196993) ∗ ((

: Name(”speed(Km/hr)”) − 689.031102417577) ∗ 0.000000113281426919) + (

: Name(”Incident Angle(degree)”) − 0.236844281196993) ∗ ((

: Name(”SweepingItg(s)”) − 4.58864175824178) ∗ 0.0000173804822553529) + (

: Name(”speed(Km/hr)”) − 689.031102417577) ∗ ((: Name(”SweepingItg(s)”)

−4.58864175824178) ∗ 0.0000004732888950157) + (: Name(”speed(Km/hr)”)

−689.031102417577) ∗ ((: pr f − 950.415604395603) ∗ 0.0000000042296479775) + (

: Name(”SweepingItg(s)”) − 4.58864175824178) ∗ ((: pr f − 950.415604395603)∗

−0.0000003121969163524) + (: Name(”SweepingItg(s)”) − 4.58864175824178) ∗ ((

: thetaAz − 4.52115750915751) ∗ −0.00010674854891087) + (

: Name(”Incident Angle(degree)”)−0.236844281196993)∗((: Name(”speed(Km/hr)”)

−689.031102417577) ∗ ((: Name(”SweepingItg(s)”) − 4.58864175824178)∗

0.0000000519603323764))+(: Name(”Incident Angle(degree)”)−0.236844281196993)∗

((: Name(”speed(Km/hr)”) − 689.031102417577) ∗ ((: thetaAz − 4.52115750915751)∗

0.0000001766180179292)) + (: Name(”speed(Km/hr)”) − 689.031102417577) ∗ ((
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: Name(”SweepingItg(s)”) − 4.58864175824178) ∗ ((: pr f − 950.415604395603)∗

0.0000000023050224958))+(: Name(”SweepingItg(s)”)−4.58864175824178)∗((: pr f

−950.415604395603)∗((: thetaAz−4.52115750915751)∗−0.0000003518911896593))+(

: Name(”Incident Angle(degree)”)−0.236844281196993)∗((: Name(”speed(Km/hr)”)

−689.031102417577) ∗ ((: Name(”SweepingItg(s)”) − 4.58864175824178) ∗ ((: pr f

−950.415604395603)∗0.0000000003224874102)))+(: Name(”Incident Angle(degree)”)

−0.236844281196993) ∗ ((: Name(”speed(Km/hr)”) − 689.031102417577) ∗ ((

: Name(”SweepingItg(s)”) − 4.58864175824178) ∗ ((: thetaAz − 4.52115750915751)∗

0.000000063925169957))) + (: Name(”speed(Km/hr)”) − 689.031102417577) ∗ ((

: Name(”SweepingItg(s)”) − 4.58864175824178) ∗ ((: pr f − 950.415604395603) ∗ ((

: thetaAz − 4.52115750915751) ∗ 0.0000000015225511188))) + (

: Name(”Incident Angle(degree)”) − 0.236844281196993) ∗ ((

: Name(”Incident Angle(degree)”)−0.236844281196993)∗0.000306793345669167)+ (

: Name(”Incident Angle(degree)”) − 0.236844281196993) ∗ ((

: Name(”Incident Angle(degree)”) − 0.236844281196993) ∗ ((

: Name(”Incident Angle(degree)”)−0.236844281196993)∗−0.0000019714334301779))

+(: Name(”Incident Angle(degree)”) − 0.236844281196993) ∗ ((

: Name(”Incident Angle(degree)”) − 0.236844281196993) ∗ ((

: Name(”Incident Angle(degree)”) − 0.236844281196993) ∗ ((

: Name(”Incident Angle(degree)”)−0.236844281196993)∗−0.0000027142926267193)))

+(: Name(”speed(Km/hr)”) − 689.031102417577) ∗ ((: Name(”speed(Km/hr)”)

−689.031102417577) ∗ 0.0000000946872268113) + (: Name(”speed(Km/hr)”)

−689.031102417577) ∗ ((: Name(”speed(Km/hr)”) − 689.031102417577) ∗ ((
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: Name(”speed(Km/hr)”) − 689.031102417577) ∗ −0.0000000004149640484)) + (

: Name(”speed(Km/hr)”) − 689.031102417577) ∗ ((: Name(”speed(Km/hr)”)

−689.031102417577) ∗ ((: Name(”speed(Km/hr)”) − 689.031102417577) ∗ ((

: Name(”speed(Km/hr)”) − 689.031102417577) ∗ 7.04714557562147e − 13))) + (

: Name(”SweepingItg(s)”) − 4.58864175824178) ∗ ((: Name(”SweepingItg(s)”)

−4.58864175824178) ∗ ((: Name(”SweepingItg(s)”) − 4.58864175824178)∗

0.0000235467186177247)) + (: Name(”SweepingItg(s)”) − 4.58864175824178) ∗ ((

: Name(”SweepingItg(s)”) − 4.58864175824178) ∗ ((: Name(”SweepingItg(s)”)

−4.58864175824178) ∗ ((: Name(”SweepingItg(s)”) − 4.58864175824178)∗

0.0000110131651500396)))+(: pr f−950.415604395603)∗((: pr f−950.415604395603)∗

0.0000000098995110322)+(: pr f−950.415604395603)∗((: pr f−950.415604395603)∗((

: pr f−950.415604395603)∗−8.96320574789512e−12))+(: pr f−950.415604395603)∗((

: pr f −950.415604395603)∗ ((: pr f −950.415604395603)∗ ((: pr f −950.415604395603)

∗ − 3.60832441034479e − 14))) + (: thetaAz − 4.52115750915751) ∗ ((: thetaAz

−4.52115750915751) ∗ 0.000270040481090055)

C.4 Pd Logistic Meta-Model Prediction Expression with
the Predictors InteractionTerms toUp toTwoDegrees
(D2)

logit(Y ) = 5.49290082155754+0.0152221773190791∗ : Name(”Incident Angle(degree)”)+

−0.00287798318177724∗ : Name(”speed(Km/hr)”) + 0.255867723581157∗

: Name(”SweepingItg(s)”) + 0.00280016312058323∗ : pr f + 0.599658190605475∗

: thetaAz + (: Name(”Incident Angle(degree)”) − 0.104020677342242) ∗ (
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: Name(”speed(Km/hr)”) − 699.234986458056) ∗ −0.000102076880645261 + (

: Name(”Incident Angle(degree)”)−0.104020677342242)∗(: pr f −937.285374710625)

∗0.0000500667665823787 + (: Name(”speed(Km/hr)”) − 699.234986458056) ∗ (

: Name(”SweepingItg(s)”) − 4.49523687037571) ∗ −0.000833411712584499 + (

: Name(”speed(Km/hr)”) − 699.234986458056) ∗ (: thetaAz − 4.50015433266254)∗

−0.000530166324573227+(: pr f−937.285374710625)∗(: thetaAz−4.50015433266254)∗

0.000900239016858853+ (: Name(”Incident Angle(degree)”)−0.104020677342242)∗ (

: Name(”Incident Angle(degree)”) − 0.104020677342242) ∗ −0.115718733645825 + (

: Name(”SweepingItg(s)”) − 4.49523687037571) ∗ (: Name(”SweepingItg(s)”)

−4.49523687037571) ∗ −0.0774609407029976 + (: pr f − 937.285374710625) ∗ (: pr f

−937.285374710625) ∗−0.0000044260381675404+ (: thetaAz − 4.50015433266254) ∗ (

: thetaAz − 4.50015433266254) ∗ 0.204106328035467

Probabilit y (NoDetect = 1) =
1

1 + e−logit(Y )

Probabilit y (Detect = 1) =
1

1 + elogit(Y )

C.5 Pd Logistic Meta-Model Prediction Expression with
the Predictors Interaction Terms to Up to Four
Degrees (D4)

logit(Y ) = 6.19138673585242 + −0.00251757832129637∗ : Name(”speed(Km/hr)”)

+0.298714639447719∗ : Name(”SweepingItg(s)”)

+0.00275270585578442∗ : pr f

+0.527282207665547∗ : thetaAz+ : Name(”Incident Angle(degree)”) ∗ ((

: Name(”speed(Km/hr)”) − 700.000626702996) ∗ −0.0000478715317638866)+
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: Name(”Incident Angle(degree)”) ∗ ((: pr f − 937.500363306097)∗

−0.0000481640975487524) + (: Name(”speed(Km/hr)”)

−700.000626702996) ∗ ((

: Name(”SweepingItg(s)”) − 4.50045413260674) ∗ −0.000450167831376932)+

: Name(”Incident Angle(degree)”) ∗ ((: Name(”speed(Km/hr)”)

−700.000626702996)∗

((: Name(”SweepingItg(s)”) − 4.50045413260674) ∗ 0.0000210328374017812))+

: Name(”Incident Angle(degree)”) ∗ (: Name(”Incident Angle(degree)”)∗

−0.136342324810703)+ : Name(”Incident Angle(degree)”) ∗ (

: Name(”Incident Angle(degree)”) ∗ (: Name(”Incident Angle(degree)”)∗

0.000433908416509389))+ : Name(”Incident Angle(degree)”) ∗ (

: Name(”Incident Angle(degree)”)

∗(: Name(”Incident Angle(degree)”) ∗ (

: Name(”Incident Angle(degree)”) ∗ 0.000115447885283602))) + (

: Name(”SweepingItg(s)”) − 4.50045413260674) ∗ ((: Name(”SweepingItg(s)”)

−4.50045413260674) ∗ −0.0534218264810987) + (: pr f − 937.500363306097) ∗ ((: pr f

−937.500363306097) ∗ ((: pr f − 937.500363306097) ∗ ((: pr f − 937.500363306097)∗

−9.38489742883684e − 12)))

In general, once the logit(Y ) is computed, the probability of no detection of the target by
this DoE is calculated by:

Probability(NoDetect=1) =
1

1 + e−logit(Y ) (C.1)
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The probability of detection of the target by this DoE is calculated by:

Probability(NoDetect=0) = 1 − Probability(NoDetect=1) =
1

1 + elogit(Y ) (C.2)
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