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ABSTRACT 

This report provides guidance to implement the Set Based Design (SBD) 

methodology into the Department of Defense (DOD) acquisition framework. Deferring 

requirements and design decisions is the essence of SBD, which in turn defers cost 

commitments, allowing more flexibility to management than traditional design 

methodologies. This reduces the risk for cost and schedule overruns, both of which are 

perennial challenges for the DOD. This report identifies the original SBD principles and 

characteristics based on Toyota Motor Corporation’s Set Based Concurrent Engineering 

Model. Additionally, the team reviewed DOD case studies that implemented SBD. The 

SBD principles, along with the common themes from the case studies, are then analyzed, 

and guidance is presented for implementing SBD into the Navy’s 2-pass/6-gate 

acquisition governance process as dictated by the Secretary of the Navy acquisition 

instructions. Recommendations are provided on the system factors, such as program type 

and tool infrastructure, that provide a good fit for utilizing SBD. The cost and schedule 

differences between SBD and a typical point-based design approach are discussed. 

Finally, this report summarizes the findings and provides program managers and systems 

engineers an implementation method for SBD in DOD acquisition. 
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EXECUTIVE SUMMARY 

Set Based Design (SBD) is a systems engineering methodology that explores 

design combinations via a systematic elimination of infeasible sets until reaching a 

solution. By utilizing concurrent design efforts while deferring detailed requirements 

until they are fully understood, this methodology has the potential to replace the current 

point-based design structure in DOD acquisition, which have been plagued by cost and 

schedule overruns. Scope creep and requirements volatility in point-based design 

implementations often result in major rework, a major contributor to the cost overruns 

and delays in fielding systems to the warfighter. Deferring requirements and design 

decisions is the essence of SBD, which in turn defers cost commitments allowing more 

flexibility to management, reducing the risks for cost and schedule overruns. Although 

there have been efforts to use certain aspects of SBD in acquisition, it has not been 

leveraged to the maximum extent, nor are there any official guidelines or instructions for 

implementing SBD. The objective of this report is to take the major principles and 

characteristics of SBD and provide guidance on integrating these factors into DOD 

acquisitions. Through examination of industry studies and DOD instances of SBD, this 

report presents recommendations for tailoring the acquisition process within governing 

literature. 

Toyota Motor Corporation employs a unique design approach that has been 

dubbed “Set Based Concurrent Engineering,” or SBD. Sobek and his team identified 

three major principles of SBD: mapping the design space, integrating by intersection, and 

establishing feasibility before commitment (Sobek et al. 1999). Within these principles, 

SBD is further broken down into supporting principles to provide a guide for the 

implementation of SBD. Ghosh and Seering also examined Toyota, along with other 

instances of SBD, and published a list of the seven characteristics of set based thinking. 

The characteristics serve as a “how to” guide as well as emphasizing a particular 

organizational structure that enables SBD  (Ghosh and Seering 2014).  
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The characteristics are: 

1. Emphasis on Frequent Low-Fidelity Prototyping 

2. Tolerance for Under-Defined System Specifications 

3. More Efficient Communications among Subsystems 

4. Emphasis on Documenting Lessons Learned 

5. Support for Decentralized Leadership Structure and Distributed, Non-
Collocated Teams 

6. Supplier/Subsystem Exploration of Optimality 

7. Support for Flow-up Knowledge Creation 

This report considers the seven characteristics along with the three principles 

identified above which form the foundation of SBD for the implementation guidance 

being recommended.  

Keeping these principles and characteristics in mind, examples of the use of SBD 

in DOD system acquisition are examined to determine if SBD was beneficial and if SBD 

could be applied to government acquisitions successfully. Each of these systems utilized 

Set Based Design in the design process. Four case studies are reviewed for the SBD 

impacts: the Ship to Shore Connector, the Amphibious Combat Vehicle, the Small 

Surface Combatant, and the Large Displacement Unmanned Underwater Vehicle. An 

additional section in this chapter covers a study conducted by Naval Surface Warfare 

Center Carderock Division, in which the Carderock employees examined the differences 

between point-based design and SBD and their impacts on a ship design, resulting in 

several takeaways. In all cases, design development was not limited to a single solution, 

and by delaying design decisions until realizing and understanding trade-offs, a longer 

period for stakeholder influence and feedback resulted. However, there were some 

drawbacks. In some cases, there were higher initial costs and commitment of resources 

upfront to conduct the SBD analysis than in a point-based design implementation. There 

was also a lack of education and experience in the execution and implementation of SBD. 

Overall, the use of SBD in the case studies has proven beneficial, to include the case 

study takeaways and their use of the three principles and seven characteristics of SBD.  
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The high-level governing document for DOD acquisition is the Operation of the 

Defense Acquisition System or DODI 5000.02. This instruction provides guidance to the 

services for interpretation and implementation of acquisition processes. For the Navy, the 

Secretary of the Navy has signed his own instruction, Department of the Navy 

Implementation and Operation of the Defense Acquisition System and the Joint 

Capabilities Integration and Development System or the SECNAVINST 5000.02E. This 

lays out a system for acquisition within the Navy and Marine Corps, which has a 2-Pass/

6-Gate process for meeting the required goals per Milestones A, B, and C within the 

DODI 5000.02. After analyzing the Navy’s acquisition process, two guiding strategies for 

employing SBD within the current framework emerge. The first scenario is to incorporate 

the use of SBD from pre-Milestone A, or the Material Development Decision, until 

Milestone B. This strategy would result in a Request for Proposal (RFP) to the defense 

industry to complete the detailed design of the system. The second option would be to 

implement SBD from the same origin as the first scenario, but continue the SBD efforts 

until meeting the entrance criteria for Milestone C. This would result in a Technical Data 

Package to enable a production RFP to a defense industry vendor, or to produce Low 

Rate Initial Production items for testing and other Milestone C entrance activities. The 

focus of the implementation is to look for the system design attributes that have the 

largest impact on design instead of narrowing down to the requirements right away. 

Acquisition programs would then take the high-level capabilities and group them based 

on mission or concept of operations. From these groupings, the design further narrows as 

infeasible sets are no longer viable, leaving an initial product baseline at the Critical 

Design Review.  

The report also presents program factors for examination prior to adopting the 

SBD methodology. The team recommends instances when to use SBD based on the 

acquisition model utilized and the capability of the tools in-house to analyze all the sets 

of data to narrow the design. Cost and schedule risk factors are big drivers for the use of 

SBD. The upfront analysis conducted increases cost and schedule requirements early in 

the program life cycle, therefore changes in program development cost and schedule are 



 xx 

necessary if one pursues SBD. Utilizing SBD should minimize rework and thus, lower 

the risk of both cost and schedule overruns.  

This report concludes that the strict construct of DOD acquisition does indeed 

support the SBD principles. Utilizing the lessons learned from Toyota, the derived 

principles and characteristics, and past uses of SBD in the DOD, guidance has been 

provided for consideration when implementing SBD as a systems engineering 

methodology.  

 
 

References 

Ghosh, Sourobh, and Warren Seering. 2014. Set-Based Thinking in the Engineering 
Design Community and Beyond. Buffalo, NY: ASME. 

Sobek, Durward K., Allen C. Ward, and Jeffery K Liker. 1999, Winter. “Toyota’s 
Principles of Set-Based Concurrent Engineering.” Sloan Management Review 
(MIT) 40, no. 2: 67–83.  

 



 1 

I. INTRODUCTION 

A. BACKGROUND 

In the ever-changing fiscal and geopolitical environment, recent defense 

acquisition reform has been aimed to reduce system development time and cost. One 

methodology examined as part of reform efforts is Set Based Design (SBD). Set Based 

Design is a systems engineering methodology that explores design combinations via a 

systematic elimination of infeasible sets until a solution emerges. The purpose of this 

study is to examine SBD and analyze its potential application to defense acquisition to 

grow military technologies and apply them to systems at a rate greater than that of our 

potential adversaries. The practice of SBD has merit both in the civilian and military 

sectors, yet has not been formally incorporated into the Department of Defense (DOD) 

acquisition life cycle. The study establishes recommendations for applying SBD 

methodologies, considering the potential advantages and risks.  

B. PROBLEM STATEMENT 

The United States needs to maintain maritime superiority as near peer threats 

expand their maritime capability. However, according to a 2013 Government 

Accountability Office (GAO) study, “The cost growth of DOD’s 2012 portfolio of 

weapon systems [was] about $411 billion and schedule delays average more than 2 

years” (1). One of the GAO recommended areas of improvement is, “identifying 

significant risks up front and resourcing them” (2013, 12).  

Many weapon system development efforts are experiencing cost growth and 

schedule delays due to requirements volatility. The traditional method of point-based 

design (PBD) selects one alternative for development at the onset of the program (Ghosh 

and Seering 2014). A problem with PBD is that engineers do not fully understand 

requirements at this point and changes to requirements yield rework: “The typical goal 

[of traditional systems engineering] is to get the requirements and specifications nailed 

down as early as possible” (Kennedy et al. 2013, 11). Kennedy continues by describing 

the risk of nailing down requirements too early: “However, tightly specifying 
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requirements early in the project means that some of the critical decisions are made very 

early. If they are made with too little knowledge of what customers really want or what is 

technically possible, then rework is inevitable” (2013, 11). Rework equates to cost 

growth and schedule overruns.  

The SBD methodology is one potential solution to this problem, as it has been 

proven in the commercial market. SBD is a design methodology used to expand the 

design space, including ample design possibilities, while delaying critical design 

decisions until the right time, to narrow the set of designs systematically by identifying 

and eliminating infeasible solutions, while integrating the intersections of feasible 

designs (Sobek et al. 1999). Applying SBD effectively means delaying critical decisions 

until a better understanding of the problem arises, potentially resulting in a timely and 

cost-effective identification of the right solution.  

At this time, no activity has fully incorporated SBD, and there exists no DOD-

wide and no Navy-wide guidance on how program managers can apply it to leverage the 

potential cost savings and schedule benefits through the reduction of rework. The purpose 

of this report is to provide such guidance for the acquisition community.  

C. PROJECT SCOPE 

This report considers how the DOD acquisition process can leverage the SBD 

methodology to deliver more affordable systems to the fleet faster. The research focuses 

on defining SBD and its core principles, as well as the understanding previous 

applications of SBD in both industry and the DOD, to gain insight into appropriate uses 

and implementation processes. Primary source documentation from several DOD 

programs, including the Ship to Shore Connector (SSC), the Amphibious Combat 

Vehicle (ACV), the Small Surface Combatant, and the Large Displacement Unmanned 

Underwater Vehicle (LDUUV), was used to develop case studies to better understand 

how SBD has been used in the past and determine how best to use it in the future. The 

objective, therefore, is to determine how to tailor an acquisition strategy to incorporate 

elements of SBD to manage cost growth and scheduling delays due to changing 
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requirements and the resultant design volatility. Additionally, we will provide guidance 

on what aspects of the acquisition environment would allow for such an approach. 

The project reports on the following: 

1. A description of the evolution of SBD, and its major principles and 
characteristics 

2. An exploration of various implementations of SBD in the civilian and 
military sectors alike 

3. A brief description of the governing documents for DOD acquisition 

4. Identification of system types that make good candidates for the 
application of SBD 

5. Identification of system types for which SBD would not be recommended 

6. Recommended implementation practices and processes, within the 
governing instructions, for the use of SBD into the DOD acquisition life 
cycle 

This project sought to answer the following questions:  

1. What is SBD and how can it benefit defense acquisition? 

2. What factors make a program a good candidate for employing a SBD 
approach in defense acquisition? 

3. What effect does SBD have on overall system costs and risks in support of 
defense acquisition?  Are the potential benefits worth it? 

4. What instructions and processes would have to be tailored or revised to 
facilitate Programs of Record (PORs) to use SBD in their development 
activities?  

 

D. SYSTEMS ENGINEERING PROCESS 

The team employed a tailored waterfall process model in order to explore SBD 

applications in the support of defense acquisition and PORs. Figure 1 shows the roadmap, 

from post problem definition to project report.  
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Figure 1. Capstone Engineering Process. 

1. SBD Analysis   

The team reviewed the SBD literature to define properly the SBD principles and 

characteristics utilized for the study. The history of SBD and the analyses of several case 

studies help determine the capabilities and limitations of SBD to better prepare for its 

introduction into the acquisition life cycle. This section was iterative in nature, based on 

lessons learned from the various case studies. 

2. DOD SBD Case Studies   

The team examined current applications of SBD in DOD acquisition. This process 

analyzed primary source SBD documentation in several defense programs, providing a 

history of the projects and programs, the issues and constraints, how SBD was utilized, 

and the successes or failures of utilizing SBD. By applying what we learned about SBD, 

we developed case studies to identify the potential benefits and programmatic risks of 

applying SBD to the acquisition life cycle. 

3. Implementation of SBD into the Acquisition Life Cycle 

The team studied the SBD principles and lessons learned defined from the 

previous phases and determined where the acquisition life cycle should adapt in order to 
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execute SBD. Feedback from the implementation changed the initial thoughts of the SBD 

Analysis and the principles originally defined. The focus centered on the major system 

engineering functions such as the analysis of alternatives (AoA), System Engineering 

Technical Reviews, and the prototyping test strategy, as found in the Operation of the 

Defense Acquisition System (DODI 5000.02) and Department of the Navy 

Implementation and Operation of the Defense Acquisition System and the Joint 

Capabilities Integration and Development System (SECNAVINST 5000.2E). The team 

formulated a new Defense Acquisition Program model as well as requirements for the 

different technical reviews and decision points along the acquisition life cycle. 

4. Conclusions 

The team explored the findings and summarized the SBD implementation and 

lessons learned from the case studies reviewed. Based on feedback from each stage, the 

team was able to provide guidance for SBD implementation into the acquisition life 

cycle.  
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II. REVIEW OF SET BASED DESIGN 

This chapter explores SBD to set a solid foundation for our analysis. We present a 

brief history of SBD, starting with the origins from Toyota and its concurrent engineering 

concepts. Next, we present the high-level SBD principles and their supporting elements 

as determined by Ward and his coauthors in their 1995 work “The Second Toyota 

Paradox: How Delaying Decisions Can Make Better Cars Faster.”  The decade following 

this work motivated additional research of the subject, one of which was “Set-Based 

Thinking in the Engineering Design Community and Beyond” by Ghosh and Seering in 

2014. Ghosh and Seering reviewed Ward and other authors to provide their 

understanding of SBD methodology, consolidating the three principles presented by 

Ward et al. to two and naming seven characteristics of set-based product development. 

Finally, a look into the Wright brother’s development of the first manned, machine 

powered flight provides a concrete example of the potential cost savings and schedule 

benefits. Based on these works, and others, SBD was studied to provide a better 

understanding of its uses and potential implementation into the DOD acquisition life 

cycle. 

A. HISTORY 

Traditionally, the design approach to naval systems employed the use of Point-

Based Design (PBD) to develop products. The execution of PBD is either employed in 

series or concurrently (Sobek et al. 1999). In serial PBD, a finalized component of the 

design passes to the designers of the next component. In concurrent PBD, designers 

choose an initial best solution approach, then iterate with increasing detail, incorporating 

feedback from other designers until the final design emerges. Figure 2 shows these two 

PBD approaches as practiced in an automobile design domain. The PBD serial 

engineering approach conducts engineering as a series of functions with minimal 

feedback loops. Before moving on to the next step, each previous function must be 

complete. The PBD concurrent engineering approach tries to conduct parallel processing 
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of the functions to obtain feedback earlier. However, both PBD approaches still require 

early design decisions with several stages of iteration on one solution.  

 

Figure 2. Point-Based Design Approaches. Adapted from Sobek et al. (1998, 69). 

In naval systems, this iterative cycle generally initiates after one alternative from 

the AoA phase is chosen and pursued through preliminary design, critical design, 

developmental and operational test, full rate production, sustainment, and disposal, 

depicted as the design spiral shown in Figure 3. The classical design spiral follows the 

PBD serial approach where the satisfied constraints emerge from the consideration of 

each design requirement in sequence (Singer et al. 2009). 
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Figure 3. Classical Design Spiral. Source: Evans (1959, 692). 

Efforts to speed up this iterative cycle to obtain the final design sooner at auto 

manufacturing companies in the United States have mostly focused on organizational 

changes, including the use of cross-functional, often collocated, teams to increase the 

speed and effectiveness of communications (Ward et al. 1995).  

However, as systems have become more complex with an increasing need to 

produce effective designs more efficiently, the traditional approach to design, which 

narrows and fixes a design early, is being reconsidered (Kennedy et al. 2013). The old 

PBD approach leaves little ability to refine specifications later in the systems engineering 

process. Too often changes are being requested late in the design effort, when 
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requirements are better understood (Kennedy et al. 2013). The relative inflexibility of the 

PBD approach results in rework, as designers revert to the early design stages to select a 

new design, which fulfills the developing requirements (Kennedy et al. 2013). The 

alternative to staring over is to accept less effective designs, which is likely due to 

schedule and fiscal constraints; neither option is ideal.  

SBD allows the design discovery for multiple efforts to take place, earlier in the 

design phase, before deciding upon detailed, finalized alternatives. More specifically, 

SBD allows multiple design options to remain viable and allows for feedback and 

influence from stakeholders throughout the design process. In doing so, requirements are 

understood better prior to making finalized decisions, and the final products better fulfill 

stakeholders’ needs (Singer et al. 2009).  

As early as 1995, Toyota Motor Corporation was one of the first to implement 

SBD successfully, resulting in the company becoming a leading competitor in the 

automotive industry (Ward et al. 1995). Toyota’s implementation of SBD took the form 

of what they call Set Based Concurrent Engineering (SBCE). The “Toyota Model” is 

steeped in delayed decisions, ambiguous communication, and the pursuit of an “excessive 

number of prototypes,” which helps Toyota to design better cars “faster and cheaper” 

(Ward et al. 1995, 44). 

The main features of Toyota’s design process, according to Singer et al. (2009) 

include:  

1. Broad sets of design parameters [being] defined to allow concurrent 
design to begin 

2. Sets [being] kept open longer than typical, to more fully define tradeoff 
information 

3. The sets [being] gradually narrowed until a more globally optimum 
solution is revealed and refined  

4. As the sets narrow, the level of detail (or design fidelity) increases  

As demonstrated in Figure 4, each of the design aspects, including the marketing 

concept, styling, product design, components, and manufacturing system design, are kept 
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in work until an option is no longer viable and is eliminated, reducing the number of 

design options (Ward et al. 1995).   

 

Figure 4. Parallel Set Narrowing Process Sketched by Toyota Manager. Source: 
Ward et al. (1995, 49). 

This narrowing ultimately results in the optimum design solution, which most 

accurately reflects the requirements needs of the stakeholders. The chapter lays out 

Toyota’s design process and principles later on. 

By delaying decisions, SBD, in practice, also allows Toyota and other SBD users 

to delay the commitment of costs. In general terms, by locking in the design early on with  

little understanding of the system, difficulty arises in the ability to influence that design 

without negative impacts to cost and schedule. This results in significant schedule delays 

and cost overruns, should the desire or need to make design changes be present. A study 

conducted in 1989, by a U.S. DOD Technology Assessment Team, “show[s] that seventy 

to eighty percent or more of the projected life cycle costs are built in at the planning and 

design stages” (Neel 1991, 11). Figure 5 corroborates the team’s findings by showing 
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how a disproportionate amount of life cycle costs are committed by the design activities 

early on in the development phase of PBD (Singer et al. 2009). What Toyota strives to do 

is make their committed costs more closely match the depicted incurred costs: “SBD 

strives to reduce the Committed Costs to more closely follow the Incurred Costs” (Singer 

et al. 2009, 11). This technique is a risk mitigation for the overall budget. 

 

Figure 5. Depiction Rate of Life-Cycle Cost Commitment vs. Percent of 
Development Complete. Source: Singer et al. (2009, 11). 

Due to the realities of PBD, much of these committed costs are the result of early 

design decisions, made with an insufficient level of understanding. Cost commitments 

and design decisions change, most often, only through the application of additional cost 

and time. It is for these reasons SBD practices and principles are superior to and 

revolutionize the traditional PBD method. 
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In order to more closely match committed costs to incurred costs, Toyota incurs 

additional development costs up front as a result of keeping alternative designs alive, to 

ensure they commit to the best overall design (Sobek et al. 1999). Compared to U.S. auto 

manufacturers, Toyota uses a significantly larger number of designs on the drawing board 

and at any given time they may have, “anywhere from five to twenty different styling 

alternatives” (Sobek et al. 1999, 25). This number of alternatives was excessive, and, 

until Toyota used its SBCE approach, was previously unheard of in the car industry. They 

have proven that the extra upfront engineering investment pays off, as they consistently 

occupy spots in the J.D. Power Top Ten for initial quality and time from program 

initiation to production. On average, Toyota was at the production phase in 27 months, 

versus 29 months at Nissan and 37 months at Chrysler (Ward et al. 1995). This is 

accomplished through the narrowing technique resulting in a robust design, requiring 

very little rework, more closely meeting stakeholders’ requirements. The final products 

proved to be industry successes.  

Toyota’s success with SBD caught the interest of industry and government 

acquisition professionals, so much so that it inspired the Navy to begin considering 

alternatives to the traditional PBD acquisition process. The first use of SBD in Navy 

acquisitions took place in 2007 when Vice Admiral Paul Sullivan, Commander of Naval 

Sea Systems Command (NAVSEA), “agreed to allow the Ship to Shore Connector (SSC) 

Program to begin a government-led preliminary design (PD) and contract design (CD)” 

utilizing SBD (Buckley 2011, 79). In doing so, the SSC Design Team contracted Dr. 

David Singer, University of Michigan, to assist in the implementation. “Dr. Singer had 

conducted extensive research on the use of SBD for ship design” (Buckley et al. 2011, 

80).  

On February 4, 2008, Admiral Paul Sullivan sent a memo to his workforce 

encouraging the application of SBD in the acquisition process of shipbuilding (Singer et 

al. 2009). Following the use of SBD for the SSC, SBD proves to be a feasible alternative 

to traditional PBD acquisition in more recent systems acquisition programs. In the same 

year, the Secretary of the Navy (SECNAV) implemented a “2-Pass/6-Gate” process 

ensuring stakeholders are involved in the acquisition decision process from development 
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of the Initial Capabilities Document (ICD) through design and construction, in other 

words, between AoA and Pre-Preliminary Design which follows Milestone A. 

B. SET BASED DESIGN PRINCIPLES 

According to Dr. Raudberget, of Jönköping University Sweden, SBD or SBCE, as 

he calls it, has a different decision methodology from the traditional PBD. Raudberget 

says, “the SBCE decision process is based on a rejection of the least suitable 

solutions…SBCE carries forward all implementations that cannot yet be eliminated” 

(Raudberget 2010, 687). Through the rejection of the less desirable solutions, the 

designers methodically narrow the remaining set of solutions. This narrowing of 

alternative solution sets results in the best and final solution becoming evident. To do 

this, Sobek, Ward, and Liker suggest three SBD principles based on their research of the 

Toyota Motor development process. These three principles are Map the Design Space, 

Integrate by Intersection, and Establish Feasibility before Commitment (Sobek et al. 

1999). Based on Sobek and his colleagues’ studies of Toyota, they decomposed each 

SBD principle into three supporting elements, resulting in the following list: 

1. Map the Design Space 

a. Define Feasible Regions 

b. Explore Trade-Off by Designing Multiple Alternatives 

c. Communicate Sets of Possibilities 

2. Integrate by Intersection 

a. Look for the Intersection of Feasible Sets 

b. Impose Minimum Constraint 

c. Seek Conceptual Robustness 

3. Establish Feasibility before Commitment 

a. Narrow Sets Gradually while Increasing Detail 

b. Stay within Sets Once Committed 

c. Control by Managing Uncertainty at Process Gates 
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1. Map the Design Space 

The first principle, Map the Design Space, has three elements: Define Feasible 

Regions, Explore Trade-Off by Designing Multiple Alternatives, and Communicate Sets 

of Possibilities (Sobek et al. 1999). Sobek et al. observed distinct differences at Toyota 

versus their U.S. automaker counterparts. Toyota engineers explore and communicate 

numerous alternatives between their engineering divisions to gain a “thorough 

understanding of a set of possibilities” (Sobek et al. 1999, 73). Raudberget describes a set 

as “a palette of different solutions to a specific function or problem and can be seen as a 

family of design proposals” (2010, 687). To determine these sets, the feasible region must 

be defined (Sobek et al. 1999). 

According to Sobek et al. (1999), to Define the Feasible Region, each functional 

department at Toyota determines, in parallel, the design constraints or “what cannot be 

done or should not be done” (73). These constraints are documented in the “engineering 

checklists (or design standards)” maintained by every engineering functional team on the 

project (Sobek et al. 1999, 73). These are not requirements or specifications but 

guidelines based on knowledge and experience of the details of numerous constraints 

such as functionality, reliability, manufacturability, government regulation. The space 

within these constraints is therefore the feasible region. 

Once the feasible region is defined, Sobek et al. (1999) describe how the 

functional teams Explore the Trade-Offs of multiple design alternatives. They state that 

to do this, Toyota and its suppliers simulate and/or prototype system and subsystem 

alternatives. Single data points are much less useful than curves, so as much as possible, 

establishing relationships between parameters, via trade-off curves, enables a successful 

analysis. At Toyota, they value the reassurance of the best-chosen solution more than the 

inefficiency or cost that may have resulted from finding that solution, according to Sobek 

et al. For example, one Toyota exhaust supplier develops approximately 10 to 20 exhaust 

prototypes for each new Toyota car program (in an extreme case the supplier made 50 

prototypes for one new car program). Sobek et al. continue, explaining that the exhaust 

supplier uses an engine supplied by Toyota with the prototype exhaust systems to 

produce trade-off curves for several variables, such as backpressure versus noise 
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reduction. In contrast, at Chrysler, the design team iterates on only the best idea. For 

instance, the Chrysler body-engineering group only considers the most likely design and 

does not begin detailed design until the styling is set. Toyota’s body-engineering team 

develops two, three, or more of some body subsystems to determine the impacts of body 

styling before the final styling is determined (Sobek et al. 1999). 

Communicating Sets of Possibilities is the third element of mapping the design 

space (Sobek et al. 1999). Communicating all sets of possibilities is critical in order to 

determine the best solution for the overall system. The exchange of the sets enables 

discovery of the best global solution, not just the best solution from a single functional 

engineering group’s point of view (Sobek et al. 1999). 

Toyota engineers communicate a variety of different information types and data. 

These communications are explicit and not casual (Sobek et al. 1999). One of the 

standardized forms utilized by Toyota engineers is a design matrix that simply compares 

alternatives on one axis to design criteria on the other, the comparison can either be 

qualitative or quantitative  (Sobek et al. 1999). Table 1 depicts a qualitative comparison 

showing the range of performance or value for a particular function or attribute across 

various alternatives. Other information exchanged beyond discrete alternatives, includes 

lists of ideas, drawings, models, subsystem constraints and interfaces, trade-off curves, 

performance charts, and estimates (Sobek et al. 1999). 

Table 1. Example Alternative Matrix. Adapted from Sobek et al. 
(1999, 76). 

Matrix of Communicating Alternatives     
Alternative Function 1 Function 2 Cost Space Etc. 

X       
Y       
Z       

- Excellent      - Acceptable      - Marginal      - Unacceptable 
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2. Integrate by Intersection 

The second SBD principle is Integrate by Intersection, which contains three 

elements:  Looking for Intersections of Feasible Sets, Imposing Minimum Constraint, and 

Seeking Conceptual Robustness (Sobek et al. 1999). An intersection, defined by Sobek et 

al., is a solution that is satisfactory to all (1999). The purpose of identifying intersections 

is to determine which alternatives are feasible, so they can eliminate the infeasible. To do 

this, Toyota engineers focus on a solution that is best for the whole system. That is, each 

set considers all subsystems in that set, while making trades based on the collection of the 

complete set, not the optimization of each individual subsystem. In other words, it is a 

more holistic approach, and one functional area may give way in the interest of the 

whole. Even if such trades result in degraded performance in a given functional area, it is 

important that the system is maximized overall (Sobek et al. 1999). To do this, Toyota 

developers invoke the principle of “Nemawashi,” which translates into doing the 

“groundwork,” to include meeting and communicating with all stakeholders (Sobek et al. 

1999, 77). Through this stakeholder interaction, they ensure that the developing 

requirements and technology are in fact contributing to a better overall design. The 

engineering efforts for the various attributes are concurrent and the overall solution 

concept is not set in stone; identifying the solutions that occur at the intersections of 

feasible sets is a crucial filter and reaffirms that the best overall system solution emerges 

within the remaining sets under consideration. 

The second element of Imposing Minimum Constraint, as described by Sobek and 

his colleagues (1999), maintains design flexibility to make advantageous adjustments 

during integration as design exploration continues. The balance is to pose “just enough 

constraint” that each of the subsystems operates correctly, but no more, thereby enabling 

final design optimization (78). The practice manifests advantages in multiple places; one 

example is the interaction between the final computer aided design (CAD) drawings and 

the manufacturing die determination. Toyota initially sends CAD data to the 

manufacturing engineering group with no tolerances. The manufacturing group designs 

the dies to the nominal dimensions, stamps out the parts, and rivets them together. They 

identify flaws and determine which dies to modify that will fix the issue, are the least 
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expensive to modify, and will yield the best fit. The final dies and parts are the masters 

and the new reference for the design. From these masters, they update the CAD 

specifications to match the final part dimensions, instead of iterating the dies to meet the 

CAD. 

The third element is Seek Conceptual Robustness, as stated by Sobek et al. 

(1999). A conceptually robust design will perform as intended in the face of final design 

uncertainty; therefore, it has a level independence from the final selected solution by 

other subsystems or functions (Sobek et al. 1999). When achieved, design works 

regardless of what the rest of the team decides to do and can be a great enabler to 

concurrent engineering efforts (Sobek et al. 1999). It also includes seeking a design that 

is tolerant to variations in market conditions (Sobek et al. 1999). Other benefits of 

conceptual robustness, noted by Sobek et al., are that it can collapse development time, 

improves serviceability, and is more easily upgradeable (1999). 

One example of Conceptual Robustness in design is the strategy undertaken by a 

Toyota radiator supplier (Sobek et al. 1999). The supplier started by optimizing the 

cooling core design, then separating the radiator into the cooling core, upper and lower 

tank sections, and ancillary hoses (Sobek et al. 1999). They then redesigned the entire 

production line, in order to produce and finish any size or customized combinations of 

these major subcomponents on the line (Sobek et al. 1999). The result was a production 

line that tolerated variations in market conditions (the needs of their clients) and 

performed well regardless of the final design chosen (Sobek et al. 1999). 

3. Establish Feasibility before Commitment 

The third principle is to Establish Feasibility before Commitment (Sobek et al. 

1999). The first two principles, and according to Sobek et al., Toyota’s SBD approach, 

support the third principle of establishing feasibility before committing (Sobek et al. 

1999). The three elements of this principle deal with Narrowing Sets Gradually while 

Increasing Detail, Staying within Sets Once Committed, and Controlling by Managing 

Uncertainty at Process Gates (Sobek et al. 1999). 
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Narrowing Sets Gradually while Increasing Detail, is fundamental to reducing the 

significant number of sets. Unlike PBD, which focuses on ranking alternatives and 

selecting one alternative for further development, SBD looks to reject the least desirable 

solutions over time, thereby reducing the risk of incorrectly eliminating potentially 

suitable solutions until obtaining greater confidence (Raudberget 2010). As the number of 

sets under consideration narrows, development teams progressively elaborate each 

remaining set to enable better understanding of the relevant differences before 

committing (Sobek et al. 1999). According to Raudberget (2010), scoring and screening 

are methods of narrowing the number of sets; also, adding more constraints to help 

eliminate sets when multiple solutions meet current requirements. 

Staying within Sets Once Committed, bounds the development effort and is 

critical to SBD, according to Sobek et al. (1999). They continue, stating that since 

designers are working concurrently and not fixing specifications, except the upper and 

lower bounds, it is critical that design teams stay within established sets of alternatives. 

Further, one development effort must have confidence that another effort will not jump to 

a solution outside the communicated sets. 

The third element, according to Sobek and his colleagues is Control Uncertainty 

by Managing at Process Gates, intends to reduce uncertainty as needed, when needed 

(1999). They point out that at Toyota, uncertainty includes the size and/or number of sets 

under consideration and the level of detail attained. They observed control for the number 

of sets and level of specificity at design process gates. Further, they described that the 

required knowledge obtained and the number of sets vary according to the nature of the 

subsystem or component being developed. For example, at Toyota, they observed that 

due to the complex nature and long lead of the transmission subassembly, the 

“transmission gate” is much earlier than other subassemblies. As a result, Sobek and his 

associates stated that Toyota selects the transmission design years in advance of the start 

of production (1999). In contrast, they indicated that the exhaust system remains largely 

undetermined when the transmission is fixed. They found that Toyota would allow the 

exhaust system design to slowly narrow, finalizing the design only months before 

beginning production (Sobek et al. 1999). 
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C. SEVEN CHARACTERISTICS OF SET-BASED THINKING 

Using the principles learned from Toyota’s product development and various 

other applications of SBD, Ghosh and Seering developed seven characteristics of set-

based product development in their more contemporary exploration of SBD. They took 

the characteristics and further boiled them down to what they considered the two major 

principles of set-based thinking: considering sets of alternatives concurrently and 

delaying convergent decision making (2014). These principles are no surprise, based on 

previous studies of Toyota, but the characteristics of set-based thinking are helpful to 

understand the application of SBD better and for making recommendations for the 

implementation of SBD into the DOD acquisition life cycle.  

1. Emphasis on Frequent Low-Fidelity Prototyping 

Frequent, low-fidelity prototyping is the idea that producing several design 

prototypes, without much detail, as Toyota has done, significantly improves the overall 

system design. This sentiment is echoed by Ward et al.’s explanation of Toyota’s 

excessive number of prototypes and their contribution to creating more robust designs 

“faster and cheaper” (1995, 44). Admiral Richardson’s sentiment of failing early and 

failing often embodies this notion of frequent low-fidelity prototyping that Ghosh and 

Seering (2014) deem so important to set-based thinking. The number and variety of 

prototypes open the design space vice limiting it, allowing for the design discovery and 

intersections of solutions to come together, as Sobek et al. (1999) described as their 

second principle. They are supported by Ghosh and Seering when they stated, “Notably, 

the proliferation of prototyping throughout the design process is a clear manifestation of 

concurrent development, as multiple prototypes help designers explore multiple concepts 

– which Toyota clearly understood and practiced” (2014, 3). These concepts comprise the 

whole set of possibilities for consideration and grants the design team creative license. 

Another significant aspect of prototyping, as described by Ghosh and Seering 

(2014), is the emphasis of a low-fidelity prototyping process, reducing the cost of each 

prototype, while still allowing progress to continue in the product development process. 

These rapid, low-fidelity prototypes also avoid design fixation. Design fixation is akin to 
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the phenomenon known as “tunnel vision.”  When the designers fixate on a particular 

design, which may not be the best solution, they lose sight of other, better quality 

designs: “Furthermore, recent studies…demonstrate that design fixation can be mitigated 

by generating rapid prototypes. Thus, by mitigating design fixation, designers enable 

themselves to consider a wider range of available options” (Ghosh and Seering 2014, 3). 

The idea of including a “wider range” of options, while eliminating infeasible designs, is 

a major tenet of SBD, as also described by Sobek and his colleagues (1999).  

Sets of designs, as represented through prototypes, help to ensure, not only an 

overall cost savings for the project, in part due to the low-fidelity, but a better solution 

and a more robust design because of the accelerated learning from rapid, early 

prototyping. Admiral Richardson clearly sees the value, hence the need to work these 

processes into DOD acquisition. 

2. Tolerance for Under Defined System Specifications 

Tolerance for Under Defined System Specifications is having comfort with the 

lack of detail communicated prior to design, similar to the ambiguous communications as 

mentioned by Ward et al. and their description of the “Toyota Model” (1995). Contrary to 

the more traditional method of PBD, Ghosh and Seering explain the value of Toyota 

delaying design decisions and “not lock[ing] down specifications as soon as possible,” as 

other Japanese and U.S. automakers have done (2014, 3). Under defined specifications 

allow for flexibility and overall cost savings, as the design can progress, rather than going 

back to the drawing board, a sentiment echoed by Singer et al. (2009). This approach also 

allows the project to stay on schedule because they can continue to make progress as 

there is no need to “start over” while they increase the level of detail for the system 

specification. Design flexibility was present in the development of an airport Ghosh and 

Seering studied. The major lesson learned from the airport case study was that the 

flexibility that was afforded, due to delaying decisions, fostered an environment for 

concurrent design sets, which ultimately “mitigate[d] their exposure to risk from events 

such as shifting requirements or availability of materials” (Ghosh and Seering 2014, 3). 
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By refusing to commit to design specifications early and delaying decision in the product 

development process, flexibility emerges, the design space broadens, and risk lowers. 

3. More Efficient Communication among Subsystems  

 Both reduced time and cost are the advantages of more efficient communication 

among entities working various subsystems. The difference between point based 

communication and set based communication is the increased time it takes to interact 

with all stakeholders, as well as the number of required iterations to successfully 

communicate and settle on a solution. “Ward et al. found support for [these] arguments in 

Toyota’s product development processes, where Toyota and its suppliers were found to 

establish communication with each other less frequently for a shorter total duration of 

time than their U.S. counterparts employing traditional design methods, constant 

communication among collocated engineering teams was a given” (Ghosh and Seering 

2014, 4). Essentially, bi-product of effective SBD employment is more efficient 

communication between engineering teams working various subsystems. Furthermore, 

speaking of the construction field, they state “that the ruling paradigm in the construction 

industry is a traditional, PBD approach featuring long delays in passing designs to 

different agents in the design process” (2014, 4). More efficient communications pave the 

way for a more succinct, rapid development of a system. 

4. Emphasis on Documenting Lessons Learned/Knowledge 

Set based thinking depends heavily upon documenting lessons learned and 

building a vast knowledge base to apply to future design development. The accrued 

technical knowledge, as Ghosh and Seering (2014) call it, allows mapping of the design 

space, a principle formed by Sobek et al. (1999). Additionally, the “lessons learned 

books” from previous years of Toyota body designs, “which, developed over fifteen years 

at that point, provide detailed knowledge of what potential designs can (and cannot) be 

implemented” (Ghosh and Seering 2014, 5). Important emphasis is on the potential 

designs that “cannot be implemented.”  This sentiment shows how documenting lessons 

learned specifically relates to Ward’s idea of narrowing sets (1995), as well as the 

previously quoted Sobek et al. study, which states that SBD is about “determining what 
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cannot be done or should not be done” (1999, 73). If lessons learned are not documented 

and not influencing designs, the lessons will have resurface, which will have a negative 

impact on cost and schedule. That said, documenting lessons learned should improve life 

cycle costs and timeline. Keeping lessons learned and conserving the corporate 

knowledge allows for a more successful implementation of SBD. 

5. Support for Decentralized Leadership Structure and Distributed, Non-
collocated Teams 

The way Toyota does business with its suppliers is a perfect model of a 

decentralized leadership structure in that the suppliers are not provided with requirements 

or specifications, they are allowed to make decisions based on what they perceive the 

needs of Toyota to be (Ghosh and Seering 2014). Suppliers’ autonomy to work 

independently, and in a non-collocated fashion, is one of the advantages of SBD. Ghosh 

and Seering’s proof of the success of a decentralized leadership structure in the software 

development industry provides another example. The “Scrum” methodology requires the 

division of labor into “Scrum Teams.” Though normally collocated, they describe a case 

study “tracking a distributed team of 56 developers across three countries and witness[ed] 

the most productive Java development project to have been documented [up to that point] 

– a testament to set-based product development practices supporting distributed, non-

collocated teams” (Ghosh and Seering 2014, 6). Decentralized leadership and distributed, 

non-collocated teams goes hand in hand with set-based thinking, as it fosters the first 

principle of SBD: “mapping the design space.”  It provides autonomy, which in turn 

promotes creativity to define the feasible region, explore tradeoffs with multiple 

alternatives, and communicate the set of possibilities. 

6. Supplier/Subsystem Exploration of Optimality 

 By partitioning teams and decentralizing the leadership structure, the activities 

developing various subsystems begin to take complete ownership of their piece of the 

system. When individuals take ownership of a subsystem, they are committed to making 

it the most optimal solution as they can. As Ghosh and Seering explain, “[it] provides 

subsystems with greater autonomy in the design process, [encouraging] suppliers and 
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subsystems to take initiative in exploring optimality” (2014, 6). When teams have the 

opportunity to explore optimality, greater growth in technology and “breakthroughs” in 

product development occur (2014). When each team or subsystem works toward a more 

optimal solution, the overall design becomes more optimal. 

7. Supports Flow-Up Knowledge Creation 

Because of the decentralized leadership structure and distributed, non-collocated 

teams, communication flow reverses direction, from top-down to bottom-up, making the 

principles of SBD more applicable. As these teams are developing various sets of 

subsystems and making “breakthroughs” in technology, they communicate these 

advances to the “top,” in this case, Toyota. The communication provided to Toyota 

allows them to “develop its specifications almost two years [later]” rather than providing 

the supplier with hard specifications (Ghosh and Seering 2014, 7). This broadens the 

design space for the suppliers, providing a larger set of possibilities. This style of 

organization, which allows for “flow-up knowledge creation,” cultivates the principles of 

SBD and will most certainly aid in their implementation into the acquisition community. 

D. POTENTIAL COST AND SCHEDULE BENEFITS OF SBD 

Though it is difficult to distinctly state that the employment of SBD results in 

cheaper systems acquisitions for the DOD, there are several ways in which SBD has the 

potential to save money. One of the more significant ways SBD can prove to be more 

affordable is the reduction of rework. Kennedy et al. present the idea of reducing rework 

through the use of SBD (2013). They explain, “rework that occurs late in the product life 

cycle is dramatically more expensive than design work performed early in the cycle” 

(2013, 1). Utilizing SBD principles presented in this chapter will help to eliminate the 

drivers of rework. By studying dozens of companies, they learned that the primary causes 

of rework can be classified into three general categories: 

[1] The development team learns something critical late in the 
development process that invalidates prior assumptions or otherwise 
causes the team to revisit a prior decision [2]. The development team 
makes critical decisions too early in the project, before they have the 
knowledge needed to make a reliable decision [3]. Development team 
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members with one expertise inadvertently make decisions that overly 
constrain those of another expertise. (Kennedy et al. 2013, 4)  

These three categories relate directly to the SBD principles and characteristics 

already covered. The first two categories go hand in hand with Toyota’s practice of 

delaying critical decisions until more is learned, and therefore enabling a more robust 

decision. While more efficient, set based communications, described by Ghosh and 

Seering, would help alleviate the third of these categories. Going along with the three 

causes of rework, Kennedy et al. present three remedies for rework. They include 

accelerated learning, delaying critical decisions until sufficient knowledge is learned, and 

the application of set-based concurrent engineering (2013).  

Kennedy and his coauthors herald the Wright brothers’ development of the first 

airplane as one of the better-documented examples of using set-based practices to prevent 

rework. Their early work in the development of the airplane was more successful, 

quicker, and cost less than the work of other less successful developers like Otto 

Lilienthal, Clement Ader, Hiram Maxim and others (2013). Table 2, extracted from 

Kennedy et al., shows the contrast in timeline and cost between the early airplane 

development activities, for which none, other than the Wright brothers, successfully 

achieved powered manned flight. 

Table 2. Powered Manned Flight Development Cost and Time 
Comparison. Adapted from Kennedy et al. (2013, 6–7). 

 Timeline (years) Cost ($) 
Wright Brothers 4 (22 months of actual work) <$1,000 
Otto Lilienthal 11 No data 
Clement Ader 25 $120,000 
Hiram Maxim ~10 $200,000 
Samuel Langley 16 $70,000 

 

The Wright brothers achieved both the shortest timeline and cheapest overall cost. 

Kennedy et al. attributes this to their “accelerated learning” and set-based practices 

(2013). They changed the approach from a point-based method to a more set-based 
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method, which included more testing of ideas and prototypes up front. The point-based 

method described by Kennedy and coauthors was the “traditional design-build-test cycle” 

(2013, 6). Instead of taking this approach, the Wright brothers aimed to learn more about 

aerodynamics, so they designed and built the first wind tunnel to test various wing 

designs, so that they could learn critical information upfront before building full-scale 

airplanes. “Their focus was on learning first via careful testing of a variety of alternative 

wing designs” (Kennedy et al. 2013, 6). One of the seven characteristics of set-based 

thinking includes low fidelity prototypes, which is exactly what the Wright brothers did 

with their wind tunnel. 

With these observations, Kennedy and his contemporaries describe practices to 

reduce the likelihood and amount of rework. They recommend three set-based practices 

to reduce rework: 

[1] Replace the design-test-build cycle with the test-before-design to 
accelerate learning in the early phases[2]. Specify customer and business 
interests as target ranges, giving the development teams room to explore, 
innovate, and find the most appealing tradeoffs[3]. Leverage set based 
knowledge to communicate the key issues from one area of expertise to 
another. (Kennedy et al. 2013, 16) 

These recommendations have the potential to reduce rework and in turn reduce 

the overall cost and timeline, as seen with the Wright brothers’ success.  

E. REVIEW OF SET BASED DESIGN CONCLUSIONS 

The SBD methodology has been juxtaposed to the traditional PBD strategy, 

analyzed for major principles, and broken down into characteristics. The principles Sobek 

et al. have provided are at the heart of SBD. They explain the importance of considering 

the set of all possible solutions, narrowing the possibilities by defining intersections of 

the feasible, and reducing the number of solutions only as they become infeasible, or not 

desired for some reason. Ghosh and Seering’s characteristics serve as a “how to” guide 

for implementing SBD in any organization. The first four characteristics are helpful when 

defining processes for SBD’s three major principles found in the Toyota studies. The last 

three characteristics focus on an organizational model to facilitate the various processes. 



 27 

Ghosh and Seering provide a helpful, contemporary view of what SBD is and 

complements the principles of SBD that have been developed over the past couple 

decades by Ward, Liker, Sobek, Doerry, and many others. The foundation they have all 

set with respect to the understanding of what SBD is will be invaluable in showing how 

to implement SBD into DOD acquisitions. Ghosh and Seering leave the reader with 

several questions relating to the future works in SBD and determining when SBD is best 

suited. Through the examination of several DOD case studies in the next chapter, the goal 

is to try to answer some of their questions as it applies to DOD acquisitions and to 

provide some recommendations on how to change existing regulations to make it work. 

Kennedy et al. also provide a concrete example of how SBD has the potential to increase 

cost savings and decrease project timeline.  

Figure 6 presents the three principles and seven characteristics visually, while 

showing how each of them either enables each other or depends on one another to work.  
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Figure 6. Principles and Characteristics of SBD. 

The “enablers,” as listed in the characteristics, are what allow the use of the 

principles of SBD, while the “supporting activities” show which of the characteristics 

support the others. These connections show the similarities and dependencies they share 

and to help visualize these during the case study exploration in the next chapter. 
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III. SET BASED DESIGN CASE STUDIES 

In order to understand fully how SBD has fit into naval acquisitions in the past, it 

is useful to review case studies in which the Navy has made an effort to employ SBD 

principles and practices. From these case studies, one can glean lessons to determine 

which aspects or methods of SBD implementation have been successful and those that 

did not work so well. The following case studies include the Ship to Shore Connector 

(SSC), the Amphibious Combat Vehicle (ACV), the Small Surface Combatant, and the 

Large Displacement Unmanned Underwater Vehicle (LDUUV). With the knowledge of 

these projects, the goal is to take away lessons to better shape acquisitions, by 

determining how to implement SBD. 

A. SHIP TO SHORE CONNECTOR 

According to Buckley et al. (2011), the first application of SBD in the Navy was 

the SSC project. He explains that when Vice Admiral Paul Sullivan met with Deputy 

Assistant Secretary of the Navy for Ship Programs and Program Executive Officer for 

Ship Programs, they decided to begin government-led PD and CD. However, they desired 

to complete the schedule in under three years, therefore choosing to use SBD to “speed 

the process for analyzing craft and systems alternatives early in the design and also allow 

consideration of more of these alternatives” (Buckley et al. 2011, 79). They intended to 

speed up the process while maintaining design flexibility through understanding the 

design space, integrating by intersection, and establishing feasibility before commitment. 

The SSC is the next generation Air Cushion Vehicle expected to replace the 

Landing Craft, Air Cushion (LCAC). They reported that at the completion of LCAC 

prototype, 91 craft were delivered to the Navy from 1984 through 2000, and they noted 

that the current LCACs began phasing out of service in 2015. SSC’s requirements are 

similar to the LCAC to “transport equipment, personnel, and cargo from ships located 

over the horizon, through the surf zone, to landing points beyond the high water mark in a 

variety of environmental conditions” (Buckley et al. 2011, 80). They pointed out that if 

weight is overloaded, the craft sacrifices fuel and thus speed. Table 3 is a comparison of 
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specification requirements between the LCAC and SSC, showing service life, load 

capability, speed, sea state, and distance from shore. 

Table 3. LCAC and SSC Capability Comparisons. Adapted from 
Buckley et al. (2011).  

 LCAC SSC 
Service Life 20-year 30-year 
Load Capability 60 tons 74 tons 
Speed 35 knots 35 knots 
Sea State 3 3 
Distance from Shore 15 nautical miles 25 nautical miles 

 

Buckley et al. (2011) explained that the government led team began PD in April 

2008 in hopes of completing it in 12 months. They added that the short timeframe led the 

team to attempt the SBD process. They also indicated that the previous AoA completed 

in November of 2007 was a successful Gate-2 review of the 2-Pass/6-Gate process. (For 

readers unfamiliar with the Navy’s Systems Engineering and Technical Review Process, 

a brief explanation is provided in Chapter IV.)  The SSC Design Integration Team (DIT) 

consisted of the Ship Design Manager, the Deputy Ship Design Manager, and the Design 

Integration Manager. After DIT’s approval of the internal requirements, they entered 

them into the Dynamic Object Oriented Requirements System (DOORS), a commercially 

available requirements traceability application. They noted that the design team used the 

ICD, the AoA Final Report, and the Resources, Requirements Review Board (R3B) to 

bind the requirements. They developed the Capabilities Development Document (CDD) 

at the same time. 

After developing the CDD, Buckley et al. (2011) write that the team would use 

the ICD, AoA, R3B, LCAC specifications, and lessons learned to create the Functional 

Design Document (FDD). This FDD “was the set of operational requirements and 

derived parameters used to initiate the design effort” (Buckley et al. 2011, 83). They 

added the FDD is used to create the Functional Requirements Document (FRD), which 

captures evolving assumptions and requirements for an element in a trade space and 

contains the element-specific requirements. They indicated the FDD and FRD were used 
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to plan for PD as well as to create the draft SSC specification after being mapped to the 

Ship Work Breakdown Structure (SWBS). Once requirements were determined through 

the SWBS the SBD section took place. Figure 7 shows the preliminary design schedule 

with the SBD portion in the plans prior to PD (Buckley et al. 2011). 

 

Figure 7. SSC Preliminary Design Schedule. Source: Buckley et al. (2011, 84). 

During the SBD process, Buckley et al. (2011) reported that the designers 

conducted trade studies and spent the six weeks following integrating the systems into the 

baseline. The team briefed senior leadership the proposed baseline, which they concurred 

on and carried forward into PD. During the SBD process, the team communicated many 

variations of solutions consisting of different levels of performance and requirements for 

different regions of interest. Regions of interest included speed, length, beam of craft, 

load capacity. 



 32 

Split teams covered different regions but continuously interfaced with each other 

on their findings and solutions, in order to eliminate infeasible options. Their design 

solutions would eventually converge, while conducting regression testing at the 

functional level (Buckley et al. 2011). 

Furthermore, Buckley et al. (2011) write that the SBD phase was broken up into 

three steps including trade space setup and characterization, trade space reduction, and 

integration and scoring. They go on to explain that the trade space setup is similar to 

mapping the design space defined in Chapter II. They write that the trade space setup and 

characterization created Trade Space Summaries (TSS) that characterizes the element 

trade spaces, operational requirements, element specific attributes, and Technical Warrant 

Holders interaction results. They added the TSSs also track progress of trade space 

reduction, and improve and approve trade study plans. Buckley et al. explain the TSS for 

each element captured all design options with a thorough review. They added that the 

system engineer for that element A communicates with the system engineers from the 

other elements B, C, D,  and all options from A are applied by the systems engineer from 

B, C, D, etc., and results of implementation are reported. 

According to Buckley et al. (2011), Element Trade Space Analysis and Reduction 

is the next step in the SBD process to determine acceptable intersections of feasible sets. 

They relate this step to the Integrating by Intersection principle described in Chapter II. 

Furthermore, they show use for Designs of Experiments (DOEs) and other statistical 

tools in this process. Furthermore, Buckley et al. added Pugh matrixes to explore trade 

spaces and compare several designs. With these methods, the system engineers of the 

multiple elements could find the most feasible alternative. Then they used A Pareto 

analysis to find the best alternative with the lower cost and risk. 

Finally, engineers completed integration and scoring for the SBD process. 

Buckley et al. (2011) equate this step to the SBD principle Establishing Feasibility before 

Commitment. They emphasize that at this phase the trade space still had 100 million 

potential designs. They explain the design team used brute force method to score and 

integrate the final options and that the team then screened the options for physical 

viability to reduce the alternatives further. After completion, they compared the 
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remaining alternatives for value with Logical Decision (LD) methodology. According to 

Buckley et al., the results of the LD, along with subject matter experts’ judgment, led to 

two final designs: one, an aluminum alloy craft, and the second, a composite craft as SSC 

baselines.  

For this case study, it is well documented that using SBD facilitated a wide 

variety of alternatives for review and that this thoroughly reviewed solution was chosen 

in a much shorter than expected time (Buckley et al. 2011). 

B. AMPHIBIOUS COMBAT VEHICLE 

Another example of SBD in the DOD is the U.S. Marine Corps (USMC) and the 

ACV program. The ACV is a system used to embark Marines from an amphibious ship 

and land them on the shore. Prior to the ACV, the USMC had been using the Amphibious 

Assault Vehicle (AAV) for over 40 years. However, as venerable as the AAV was, it was 

aging and the USMC was making way for the more contemporary Expeditionary Fighting 

Vehicle (EFV), the scheduled replacement for the AAV. Figure 8 is the legacy AAV in 

action. 

 

Figure 8. Amphibious Assault Vehicle. Source: Burrow et al. (n.d., 2). 

Burrow et al. (n.d.) explain the history of how the ACV came about. They claim 

that during the development of the EFV, the POR determined it to be too costly and have 
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excessive technical risk, so they cancelled the program. Concurrently, they noted that the 

USMC was studying the capability gaps of the AAV as compared to the current and 

future concept of operations (CONOPS). They were determined to pursue the new ACV. 

However, in the initial requirements identification stage, they eliminated the need for a 

high water speed (HWS) ACV. Furthermore, Burrow et al. state that the lack of a HWS 

capability was a concern and made senior USMC officials reconsider the program and 

embark on a feasibility study, based on capabilities trades, for a more affordable, HWS 

ACV. They wanted to determine if an acquisition program was beneficial for both cost 

and effectiveness (Burrow et al. n.d.). It is in this exploration of a new ACV that we see 

the use of SBD principles and techniques that the USMC deployed for the AoA.  

An ACV Directorate was appointed to lead the study, which commenced in 2013 

(Burrow et al. n.d.). They aimed to analyze four major areas: requirements, effectiveness, 

trade space, and affordability (Burrow et al. n.d.). The Directorate partitioned his 

workforce into teams to work in parallel using an SBD approach to explore their areas. 

This approach proved to be more effective and less time consuming than the point-based 

approach in which each design would be worked in a linear fashion, “tak[ing] over a year 

to complete, much longer than the [six to nine] months allocated” (Burrow et al. n.d., 3). 

According to Burrow et al. (n.d., 2), the teams set out to study the following: 

1. Determine the feasibility and costs of producing a HWS ACV. 

2. Identify and assess capability trades resulting in HWS ACV procurement 
costs. 

3. Quantify, using modeling and simulation, and qualify, using active duty 
Marines, the operational benefits of a HWS ACV. 

4. Determine the differences in development, procurement, and operations 
and support (O&S) costs between a low water speed (LWS) and a HWS 
ACV. 

5. Identify the capability costs of a HWS ACV, i.e., the capabilities that can 
be provided on a LWS ACV that cannot be provided on a HWS ACV. 

6. Evaluate the opportunity costs of a HWS ACV, i.e., impacts to other 
Marine Corps programs and accounts required to afford the HWS ACV. 
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Another SBD principle, reminiscent of Toyota’s SBCE, is that “definite 

conclusions would not be made until very late in the study during the comparison of the 

alternatives” (Burrow et al. n.d., 3). By delaying decisions until the appropriate time, they 

analyzed the entire trade space, ensuring all possible designs are considered. To provide 

some insight into how many designs they studied, Burrow et al. (n.d.) stated that they ran 

20 thousand different configurations for each of the four capability concepts, totaling 80 

thousand different designs. Figure 9 shows a depiction of a traditional approach to the 

study as compared to the SBD approach. 

 

Figure 9. Traditional Approach vs. Set Based Design. Source: Burrow et al. (2014, 
3). 

The traditional method requires the study of a small number of chosen designs in 

which they employ the systems engineering process all the way to the AoA. This process 

is iterative and time consuming by nature but also restrictive in the design space. The 

SBD model for the study allowed the teams independently to study the entire scope of 

their domain, providing a wider set of solutions. By working independently to explore the 

various sets of designs, the team was able to save time and include a more comprehensive 

set of possibilities. The figure presents what Ghosh and Seering thought was so important 

to successful employment of SBD: “Support for Decentralized Leadership Structure and 
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Distributed, Non-collocated Teams” (n.d., 5). Employing this characteristic effectively by 

the ACV team, allowed them to finish the study in under a year.  

Since this was a feasibility study, not all SBD principles or characteristics were 

completely exhausted, though they did indeed use all three major. The first principle, 

“Map the Design Space,” or “what cannot be done…should not be done,” eliminated the 

LWS region from the feasible design region, as they were specifically interested in an 

ACV with HWS capability (Burrow et al. n.d.). Another example of a Sobek et al. (1999) 

SBD principle is how the team was able to integrate at the intersection of these four areas 

(requirements analysis, effectiveness analysis, trade space analysis, and affordability 

analysis) to determine the final outcome of the study. “The final recommendation for the 

ACV would be based on an intersection of these four analyses” (Burrow et al. n.d., 3). By 

dividing and conquering, the study was able to accomplish the goals more efficiently and 

effectively.  

One major assumption of the study was that the effectiveness analysis only 

depended upon five design components: water speed, personnel capacity, weapon system, 

under-blast protection, and direct fire protection (Burrow et al. n.d.). They categorized 

these design attributes as “big rocks” resulting from the fact they were the largest 

contributors to cost and weight. By doing this, the teams effectively mapped the design 

space, by defining the feasible region. For the trade space analysis, the assumed that only 

HWS alternatives were in consideration, and therefore, only varied the other four 

attributes to make thousands of different design combinations to study (Burrow et al. 

n.d.). Again, this is part of the mapping principle of SBD. On the other hand, the 

effectiveness analysis team studied the operational effectiveness of each individual 

attribute separately, regardless of the overall system configuration (Burrow et al. n.d.). 

This exploration of the effectiveness of each system is another example of dividing and 

conquering through distributed teams, but also invokes the characteristic of exploring the 

optimality. The requirements analysis team studied all additional requirements, while the 

affordability analysis team conducted their study as a separate activity.  

The team integrated by intersection by looking for the intersection of feasible 

attributes, through modeling and simulation, as well as the principle of “Nemawashi.” 
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Much like Toyota using communication with their suppliers and the “Flow-up 

Knowledge Creation” from Ghosh and Seering, the team utilized surveys of 250 Marines 

and held a workshop at Quantico for 24 Marines. They asked them to rank and rate the 

“big rocks” and other tradable capabilities in order of importance and level of criticality. 

The results allowed the team to narrow the feasible design space by applying a risk study 

based on user input.  

The teams also invoked their own principle of “flexibility,” similar to Ghosh and 

Seering’s “Tolerance for Under Defined System Specifications,” to minimize the 

constraints and to control and manage the uncertainty at process gates. “Flexibility is 

defined for the ACV to mean that for a given requirement, the exact value for the 

requirement has not been established with certainty; the design must be able to affordably 

adapt to a specified range for the requirement’s value” (Burrow et al. n.d., 14).  

Configuration modeling was the essential activity to this study. In order to 

compare different design attributes, they defined “capability concepts” as a complete 

vehicle that possessed varying levels of “big rocks,” along with a list of other 

requirements from the requirements study. “For example, a capability concept would 

refer to an ACV that carried 17 troops and weapon system ‘X’, and included under-blast 

protection level ‘C’ and direct fire protection level ‘B’” (Burrow et al. n.d., 5). As stated, 

all capability concepts were HWS capable. These “big rocks” included various 

combinations of troop capacity, weapon system, and under-blast and direct fire protection 

that were feasible, further narrowing of the design space. As previously stated, there were 

approximately 80 thousand possible combinations, which is contrary to the traditional 

approach in which they only analyze up to a few alternatives (Burrow et al. n.d.). They 

did not employ the traditional method in this study, “instead the “cloud” of all feasible 

configurations was used” (Burrow et al. n.d., 5). The trade study ultimately yielded 24 

feasible capability concepts as a result of several simulations. These were established by 

exploring the “big rock” trade-space, while the requirements study identified 

approximately forty additional, tradable requirements, and were analyzed for cost and 

weight (Burrow et al. n.d.).  
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At the conclusion of the study, in January 2014, USMC officials were provided 

with the cost, feasibility, and risk analysis of an ACV acquisition program that provided 

them the ability to make a well-informed and confident decision to pursue the ACV. The 

underlying theme for the study was a set based approach which provided “the ability to 

develop in-depth knowledge of the technical problem and potential solution set, a risk-

based understanding of what was feasible and infeasible, and high confidence cost 

estimates based on technical feasibility and diversity of solutions” (Burrow et al. n.d., 

15). By employing SBD, the teams were able to design a large set of alternatives, expand 

the design space, and provide a solid analysis for the decision makers, resulting in the 

pursuit of the HWS ACV. 

C. SMALL SURFACE COMBATANT 

In 2014, the Navy created a Small Surface Combatant Task Force to assist the 

Secretary of Defense in budget deliberations. The Task Force for the Small Surface 

Combatant had several tasks. First, the team had to establish both the requirements and 

the trade space of the Small Surface Combatant. Then the team had to consider 

alternatives for the design concept: a modified Littoral Combat Ship (LCS) design, an 

existing ship design, and a new ship design. Each concept was to be explored for four 

major facets: top-level requirements, cost, Milestone schedule, and lethality to air, 

surface, and undersea threats (Garner et al. 2015, 1). Figure 10 displays the requirements 

analysis process that the task force utilized.  
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Figure 10. Small Ship Combatant Task Force Process. Source: Garner et al. (2015, 
3). 

The task force conducted multiple parallel efforts to define the mission areas and 

the capability concepts that defined the requirement trade space. Separate groups 

characterized the threat environment, reviewed the potential roles of the SSC, and 

developed the Capability Concept Wheel. All the groups provided continuous feedback in 

order to properly conduct the requirements analysis. Next, a parallel effort analyzed each 

of the three ship design efforts: a modified LCS, a new ship design, or an existing ship 

design. They then analyzed all of these alternatives for feasibility along with cost and 

programmatic concerns. 

Set Based Design was utilized throughout this process taking points from the SBD 

principal concepts, as stated by Garner et al. (2015, 2): 

1. Consider a large number of potential solutions. 

2. Have specialists evaluate sets of solutions from their own perspective. 

3. Intersect the sets to optimize a global solution and establish feasibility 
before commitment. 
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These three principles map closely to Toyota’s original principles for concurrent 

engineering. The first two SBD principles relate directly to Toyota’s “Map the Design 

Space.”  The task force looked to consider a large solution set while also designing 

multiple alternatives through specialists evaluating the solution set each with their own 

perspective. The last principle relates to Toyota’s “Integrate by Intersection” and 

“Establish Feasibility before Commitment.”  The task force found intersections of 

feasible sets and stayed within the sets once committed. 

The first step the team took was to create a Capability Concept Wheel as shown in 

Figure 11. Each wedge of the wheel has several configurations and opens up the trade-

space. Each level in the wedge provided an increased capability. For example, one of the 

wedges on the bottom right is Underway Days. The level closest to the center is for 15 

days, and it increases outwards to 30, 45, and 60 days. This allowed the team to evaluate 

the trade space for the different capabilities. 

 

Figure 11. Capability Concept “Bullseye” Chart. Source: Garner et al. (2015, 2). 
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The task force focused on four mission areas: Air Warfare (AW), Anti-Submarine 

Warfare (ASW), Mine Warfare (MIW), and Surface Warfare (SUW). They considered 

the other elements enabling capabilities. The team utilized the different wedges and 

levels in the wheel to create 192 capability concepts. Each of the concepts provided 

different enabling capabilities for the Small Surface Combatant. Each were then 

examined and then narrowed down to 13. From there, they continued with eight because 

the ASW options were very similar. Table 4 displays the eight capabilities. Columns CC1 

to CC8 list each capability concept. Each concept was mapped to the mission area 

capabilities, and the “X” was utilized to determine if the concept met the mission area 

capabilities. 

Table 4. Capability Concept Mission Area Capabilities. Source: 
Garner et al. (2015, 4). 

 
 

Combat system engineers then modeled all of the concepts, created alternatives 

for each of the capability concepts, and ran them through a detect-control-engage kill 

chain simulation analysis. They estimated Space, Weight, Power, and Cooling (SWAP-

C), costs, and manpower to design three options: a modified LCS design, an existing ship 
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design, and a new ship design. Then they analyzed Feasibility, cost, and for each of the 

designs.  

For the LCS modifications, several excursions were conducted which traded 

enabling capabilities (EC) to preserve primary mission area (PMA) capabilities, traded 

PMA performance to levels that would still provide operational utility, and implemented 

engineering tradeoffs among design features to address SWAP-C and center of gravity 

concerns. This excursion analysis was an important element in helping to explore fully 

the design trade space, as it explored means to increase space, weight, power, or cooling, 

or lower center of gravity to provide additional trade space for capability concept 

exploration (Garner et al. 2015).  

The new ship design utilized Advanced Surface Ship and Submarine Evaluation 

Tool (ASSET) and Rapid Ship Design Environment (RSDE) to create the design space of 

over 15,000 different configurations. The designers placed these configurations into the 

Engineering Resilient Systems (ERS) Trade space Toolkit as shown in Figure 12. They 

implemented five models: Combat Systems calculator, regression models, cost models, 

feasibility element calculator, and a configuration feasibility calculator. Utilizing a Monte 

Carlo simulation, a subset of values emerged that mapped to the Capability Concept and 

the others randomly chosen. From those, the feasibility of each was determined based on 

the risk level for operational success.  
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Figure 12. ERS Trade Space Toolkit Structure. Source: Garner et al. (2015, 7). 

By employing SBD processes, the task force evaluated thousands of design 

alternatives and provided the leadership insight to make acquisition decisions within six 

months. Adhering to the three methods allowed the task force to analyze thousands of 

potential solutions, analyze all the design alternatives in parallel, and find intersections in 

the feasibility to establish the overall operational risk of those solution sets. Specialists, 

such as the combat systems engineers, evaluated from their perspective and the feasibility 

calculator enabled the team to establish feasibility of the solutions before commitment to 

the design. The Secretary of Defense accepted the task force recommendation to build a 

new Small Ship Combatant ship based on an upgrade to the LCS. 

D. THE LARGE DISPLACEMENT UNMANNED UNDERWATER 
VEHICLE1 

The final case study explores an SBD implementation process, which is currently 

in progress for a POR. This analysis will focus more on the steps of implementation and 

the types of tools needed to employ SBD to a developing system. The program of interest 

                                                 
1 A significant portion of the information contained within this chapter is based on personal knowledge 

of one of the authors who has worked within the LDUUV program. 
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is the LDUUV and the programmatic details shared will be kept generic to avoid 

violating Defense distribution and dissemination regulations of technical documentation. 

The LDUUV will provide the Fleet more undersea military capability in terms of 

endurance, operational range and modular payloads. The LDUUV will extend the 

footprint of the warfighter with launch and recovery integration for the Virginia-class and 

the Ohio-class guided missile submarines as well as littoral combat ships. The program, 

established by the Unmanned Maritime Systems Program Office, resides in the Program 

Executive Office (PEO) Littoral Combat Ships. 

In early 2016, the PEO LCS (Milestone Decision Authority) ceased the release of 

the Request for Proposal (RFP) to industry and decided to have the design led by a 

government team at Naval Undersea Warfare Center (NUWC) Newport, in partnership 

with other Warfare Centers and industry as necessary to design and integrate the system. 

They also wanted to use the growing systems engineering methodology of SBD to field a 

more reliable system through highly controlled design techniques, reducing the 

probability of scope creep, rework, and cost and schedule overruns. 

The program was near RFP release, which equates to being between Milestones A 

and B; more specifically, post Gate 4 of the Department of the Navy (DON) 2-Pass/6 

Gate requirements/acquisition process. They sought to implement SBD at this point. The 

CDD was the main tool to map properly the design space, as discussed in detail as one of 

Toyota’s three main principles. These capabilities form the initial LDUUV Capability 

Concept and facilitate further decomposition and mapping efforts for Measures of 

Effectiveness, Measures of Performance, and Key Performance Parameters. The CDD 

was essentially the driver for the LDUUV design space and furthermore the solution sets. 

A “Capability Concept” as referenced above, combines a requirement set with a 

CONOPS. Changing the requirements and/or the CONOPS will produce a different 

capability concept that will lead to a different set of solutions. 

The plan for how to use SBD is currently in flux; program schedule and funding 

limitations have created an increasingly dynamic environment. The high-level process 

remains stable but the inputs and outputs of the plan are not final. For example, they 
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originally planned SBD at different levels of system development. Level one focused on 

achieving a subset of the CDD based on technical and stakeholder prioritization, as well 

as “integrating by intersection” of four major high impact tradable requirements domains: 

Forward Looking Sonar, Synthetic Aperture Sonar, Energy, and Wet versus Dry 

Architecture. Ranges of solutions for the four domains would be paired down through 

more detailed analysis (such as Model Based Systems Engineering) to create a final 

design recommendation for prototyping. The results of the prototype testing influenced 

the future SBD analysis of level two, which included all the CDD requirements, therefore 

creating a larger trade space. Ultimately, in level two, the result of the SBD analysis 

produced a second prototype that finalized the technical data packages for low rate 

production turnover to industry. 

As the scope of the SBD effort became more robust along with the pressures of 

the strict schedule and funding hardships, they realized that to ensure the first prototype is 

complete by the set milestone, SBD will be diverted from influencing the first prototype; 

the first prototype will be an accelerated learning input into the SBD process. This aligns 

with Ghosh and Seering’s Tolerance for Under Defined System Specifications (2014). 

This input informs the design team and decision makers of the refined requirements to 

pursue, but the trade space remains open until further input and analysis is complete. 

As stated earlier, the process for implementing SBD into the LDUUV remains 

somewhat fixed and the execution of this process is still in its infancy, though the finer 

details for the execution of SBD are not determined. Figure 13 is the overall scope of 

steps for using SBD as well as showing the needed resources/ tools to guide the process 

from inception through realization. 
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Figure 13. LDUUV SBD Scope of Steps. Source: Hardro (2016, 2). 

SBD is an intricate process and takes a great deal of commitment and resources to 

initiate; this will be apparent when working through this scope of steps. 

Examining Figure 13, one can see that the implementation process revolves 

around the Assessment Framework (AF). The AF is a framework used by decision 

makers and analysts to integrate their cost and technology models, execute them, and 

visualize the results. This framework enables linkages between not only evaluation 

models, but databases to continue to pull the most relevant and newest technical data 

from. The AF is composed of four distinct modules: Ground Rules & Assumptions, 

Technical Model, Cost Model and the Research Database. The Ground Rules & 

Assumptions module sets the rules for the AF. The module defines the assumptions, 

reasoning, and engineering judgment used to bind the integrated framework. 

The Technical Model is the tool used to evaluate different system or subsystem 

concept performance based on the technical parameters of the components. If considering 

emerging technologies, there needs to be a methodology to capture risk associated with 

certain technology readiness levels. The Cost Model determines life cycle costs of 
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systems or subsystems in terms of cost ranges. The Research Database looks similar in 

format to a Work Breakdown Structure and breaks down systems and subsystems to a 

low enough level to list the performance and technical characteristics. Continuously 

populating this database with new data, it becomes the building blocks for the design 

space with the AF. This data feeds the cost and technical models for further analysis. 

The output of the initial AF run is a set of potential configurations, or the first 

round of solution sets, while a more detailed analysis will start to pare down the solution 

sets further. Each one of these modules requires careful integration to connect, formulate, 

and present the data in views so that the decision makers and stakeholders can make 

informed conclusions. Choosing the correct tools to evaluate the problem, integrating the 

results from different models, and displaying the solutions comprehensively are 

challenging tasks.  

There are other influences to the considerations of the first solution sets and those 

are the outputs of the Requirements Database (RD) analysis and the Fleet Valuations 

(FVs). The RD is the mirror image of the CDD, but each of those capability requirements 

are ranked via input from the Stakeholders into high impact, medium impact, and low 

impact tradable requirements (HITR, MITR, and LITR). This ranking or “binning” of 

requirements puts more focus on the HITR when utilizing the AF. There is an emphasis 

on understanding how the requirements correlate and trade, and therefore accounted for 

in the excursions of the AF. 

The FVs are another major influence into the AF. The valuation is a manner of 

gathering Fleet input and priority into what capabilities are important when running 

LDUUV missions. During the composition of this report, the design team held a one-day 

workshop with given mission scenarios to gather Fleet priority. Figure 14 depicts the 

CCW, a tool used to gather the Fleet input. The CCW is very similar to the Small Surface 

Combatant CCW. Both focus on the major capabilities of their respective systems.  
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Figure 14. Capability Concept Wheel for the LDUUV. Source: Hardro (2016, 5). 

This CCW is still a draft and will evolve as more input is received from the 

NAVSEA O5 (Naval Systems Engineering Directorate) technical community. The wheel 

represents four capability concepts: Communicate, Autonomy & Command and Control 

(C2), Mission, and Core. From there the CCW partitions down into capabilities and then 

to capability increments. For example, within the capability concept “Autonomy  & C2,” 

Adaptive Decision Making and External Interaction are the capabilities. Within the 

capability “External Interaction,” moving from lowest capable to highest (inside to 

outside of circle), Remote Control Operation, Semi-Autonomous Operation, and Fully 

Autonomous Operation are the capability increments. The CCW then garners input from 

the Fleet through these capabilities that should encompass an entire LDUUV unit. The 
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output of the workshop is a hierarchy listing of capabilities in order of importance; this 

information feeds the AF to add another variable to the decision-makers view when 

choosing the best solution. 

After populating the AF data, the designers generate the first set of potential 

configurations through the inputs and relationships built, tools chosen, and components 

integrated. According to Figure 13, LDUUV Scope of Steps, this is the “Baseline 

Analysis” (Hardro 2016, 2). After the initial determination, the design space narrows by 

adding more fidelity to the design by means of constraints, more defined requirements, 

engineering judgment, and cost analyses. They then produce detailed models and analyze 

an integrated logistics support system. This more detailed analysis generates a list of 

feasible configurations and from there, low-fidelity subsystem prototyping, tests, 

experimentation, and further detailed analysis take place to demonstrate a list of viable 

configurations. The result is the elimination of infeasible sets, creating a global solution 

and presenting the well-informed customer with more than enough detail to make a 

decision.  

The LDUUV, being in its infancy stages of the SBD implementation process and 

procedures, continues to adapt to some flux, as can be expected, as much more detail and 

fidelity emerges over the course of the project. Most of the personnel working the SBD 

methodology are new to it, which presents a learning curve in the process, leading to 

even more fluctuation. It is apparent from the other case studies that there is no right way 

to implement SBD. That sort of advantage is beneficial if the team has experience using 

the process. To become more proficient with this methodology, the acquisition corps 

needs to produce guidelines and assumptions for how to execute and leverage the 

process. There is also a need for tools and templates to build certain SBD products such 

as a resource database or a capability concept wheel to provide repeatability and stability, 

as well as support documenting and applying lessons learned across the DOD 

community. The high level SBD Scope of Steps took two months to set up and since its 

inception, the tools utilized for the technical and cost modeling still not finalized. The 

CCW is on its third month of development and is still a draft. Changes to the CCW 

continue as more high-level input arises. The biggest challenge so far is not the 
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engineering behind SBD, but the administrative burdens in front of it, though 

stakeholders approve and progress moves forward on these products and processes. The 

smaller issues are the lack of experience utilizing SBD and the amount of legwork needed 

to initiate the SBD process (i.e., AF). As heard in an undisclosed meeting, VADM 

Johnson, the principal Military Deputy for the Assistant Secretary of the Navy for 

Research, Development, and Acquisition, once said, “don’t cost us out of the business.”  

The administrative and oversight burden has potential to do just that. 

E. NAVAL SURFACE WARFARE CENTER CARDEROCK DIVISION 
POINT BASED DESIGN AND SET BASED DESIGN COMPARISON 

The basis for the following case study is the slide presentation entitled 

“Engineered Resilient Systems for Ship Design and Acquisition” by MacKenna and his 

co-authors (2014). This presentation describes the results of a three-month design 

exercise to compare and contrast the application of PBD and SBD methodologies at 

Naval Surface Warfare Center Carderock Division. 

They divided the employees at Carderock into two separate design teams, a PBD 

team and a SBD team. Both teams were tasked to further develop a provided baseline 

ship design with each to deliver a final ship design using their respective design 

techniques. They evaluated the designs for cost, effectiveness, and risk throughout the 

exercise. The exercise was intended to compare the resulting designs and lessons learned 

of using PBD versus SBD methodologies. During the study, the team introduced two sets 

of requirements changes and a mid-life system upgrade to determine how resilient the 

design process was and how it could adapt to the changes (MacKenna et al. 2014).  

One significant finding from the study as presented by MacKenna and his co-

authors (2014) was SBD’s effect on projected cost. At the beginning of the SBD 

execution, the design space is broad, and as a result, there was a wide range of estimated 

costs, representing the various potential ship design alternatives (2014). As the design 

space narrowed, the range of cost estimates narrowed. Figure 15 depicts this narrowing of 

the predicted cost estimates as percentage of baseline ship design cost estimate versus 

time for both the PBD and SBD designs.  
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Figure 15. Cost as a Percentage of Baseline vs. Time. Source: MacKenna et al. 
(2014, 14). 

The black line indicates the cost estimate for the evolving PBD solution, while the 

dashed red lines are the upper and lower bounds of the cost estimate range for the set of 

possible solutions the SBD team considered. Initially, during the design space mapping, 

SBD did not have established cost estimates as they explored the design space 

(MacKenna et al. 2014). The Requirements Change 1 came about in the middle of March 

2013. At this time, the two teams reduced the estimated cost for their systems to just 

above the ship baseline. Requirements Change 2 arose in early April; this increased the 

projected cost for the PBD to 118 percent of baseline and the SBD range to 111–122 

percent. The change forced rework in the point-based team’s design, while the 

requirements change actually assisted the SBD team to eliminate infeasible solutions and 

helped reduce the design space (MacKenna et al. 2014). At the conclusion of the study, 

the resultant SBD solution was 4 percent cheaper than the PBD solution, at 111 percent 

and 115 percent respectively, of baseline ship cost. 
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Table 5 summarizes the Carderock design teams’ experience applying the two 

methodologies (MacKenna et al. 2014, 16). 

Table 5. PBD and SBD Comparison. Source: MacKenna et al. (2014, 
16). 

Point-Based Design Set-Based Design 
Design decisions largely driven by the 
designer’s preference  

Design decisions were driven by design/
analysis data, with each design decision 
formally documented  

Design Decisions that were made early 
were largely set through the process. 
(ship sizing and system architectures)  

Decision space was open until the end of 
the design process. Subsystem design was 
done before the ship was sized, ship sizing 
was one of the last steps  

Design progressed rapidly, with 
iterations on detailed analysis happening 
early  

Design progressed slowly at first, with 
significantly more work done up front, with 
lower fidelity tools, to reduce the design 
space to a point where more detailed 
analysis could be performed in an 
economical manner  

Requirements change caused significant 
rework  

Requirements changes caused no rework, 
and actually facilitated the set reduction 
process  

As cost requirement decreased during the 
experiment, there was not much 
flexibility to adapt. Without exploration 
of the design space, the point based team 
had to guess how to achieve cost 
reduction  

Set based process provide the team with 
robust information to do MOE versus 
aggressive cost goal tradeoffs 

Resulting design: high performance, 
complex, high risk design with lower 
reliability  

Resulting design: high performance, 
simple, low risk, and higher reliability 

 

The comparison displays some of the key advantages of utilizing SBD. The SBD 

team kept the design space open until the end of the design period. As a result, the SBD 

team adapted quickly to the requirements changes without the significant addition of 

increased cost. Their design was very analysis oriented, using established tools to analyze 

the design space versus the designers’ preference in the PBD design. In the end, the SBD 

was a simpler design with lower cost and risk. 
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F. CASE STUDY CONCLUSIONS 

The case studies presented in this chapter provide insight to how DOD utilized 

SBD. The most important feature is the lack of similarity of the implementation process 

amongst the case studies; the absence of guidelines allows tailoring SBD to the specific 

needs of a program. There are, however, generalities or common themes selected to 

provide structure to the process, therefore presenting an opportunity to leverage these 

factors when making recommendations for acquisition tailoring. First, it is helpful to 

summarize the key attributes of SBD from the advantages and disadvantages standpoint; 

understanding these is paramount for choosing the acquisition strategy. Table 6 is a 

breakdown of some of the key SBD advantages and disadvantages. 

Table 6. Advantages and Disadvantages of SBD. 

 
Advantages   

Establishes system design feasibility before commitment 

Design development is not limited to a single solution 

Enables parallel system level development  with subsystem level development 

Delays decisions on system requirements until trade-offs are further understood while 
continually promoting design discovery 

Flexibility for requirements change  

Concurrent discipline design development can take place by remotely dispersed design 
team 

Enables rapid analysis of competing systems and design alternatives  

Enables low risk and high reliability designs via eliminating infeasible solutions first 

Cost commitments deferred until sufficient design detail permits selection 

Longer period for stakeholder influence and feedback 

Allows for design flexibility, reducing re-work and providing potential cost savings 
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Disadvantages 

Higher initial costs upfront in the design process 

Commitment of resources needed to build Assessment Framework and perform  
integration of SBD tools 

Lack of education and experience from which to draw during execution and 
implementation of SBD. 

No guidelines or assumptions for SBD process and execution 

No instruction or guidelines for integration into DOD acquisition  

 

There are multitudes of advantages, hence the popularity and the push to leverage 

this methodology. This and the previous chapter discuss the first four advantages listed, 

which are the core benefits of SBD. Set Based Design allows design feasibility before 

commitment, does not limit design development to a single solution, condenses overall 

design development time through multiple parallel efforts and, most importantly, 

demonstrates fidelity in system requirements by delaying decisions until more is 

understood about the trade-offs (Byers 2016). These core benefits help enable the Fleet to 

receive rapid reliable delivery of advanced defense systems. 

Other less touted advantages are in the remaining items listed. “Flexibility for 

requirements change” relates to the focus on delaying design decisions until better 

understanding requirements (Gray 2015). The analysis and the shrinking of the design 

space accept requirements changes to help further define the space. SBD allows for a 

greater period for evolving or changing requirements as compared to the point-based 

method; PBD lends itself to costly scope creep due to stress surrounding the requirements 

of the system. This advantage directly feeds “Longer Period for Stakeholder Influence 

and Feedback.”  The postponing of design decisions allows the customer more flexibility 

to adjust requirements over a longer period. With the changing threats, operational 

environments, and advancing technologies, having this luxury is crucial in fielding the 

right system at the right time to meet the evolving need. 
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“Concurrent discipline design development can take place by remotely dispersed 

design team” is true and important because subject-matter experts and/or Integrated 

Project Teams can work remotely through different commands or in different 

geographical locations, which is often the case for a government-led systems integrator. 

The development of subsystems in parallel through SBD principles lessens the need to 

have the complete design team centrally located. A team of core system integrators, as 

well as the System Chief Engineer, will flow the subsystem design spaces into the 

analysis tools to neck down the solution space and provide feedback to the team on 

refinements (Sobek et al. 1999). 

“Enabling rapid analysis of competing systems and design alternatives” is an 

advantage if the right analysis tools are available. This may not yet be the case for a 

majority of systems, though Naval Surface Warfare Center Carderock Division is 

working on a few for ship design practices (Gray 2015). Assuming these tools do exist, 

there is the ability to analyze millions of solution sets to support shrinking the design 

space at a rapid rate. 

“Enabling low risk and high reliability designs via eliminating infeasible solutions 

first” is true because SBD analyses look at and remove infeasible design. Once the 

solution sets narrow enough, modeling and simulation, and prototype testing occur. This 

process naturally creates more robust and lower risk designs because instead of choosing 

a less effective design and refining it through iteration, the solution becomes apparent by 

eliminating surrounding solution sets. 

“Cost commitments deferred until sufficient design detail permits selection” is a 

major advantage this entire process. As the system understanding matures and the 

infeasible solutions eliminated, the commitment of cost delays until the design converges 

to a single design solution.  

The majority of disadvantages relate to the lack of experience and guidance 

regarding the SBD methodology and how to implement SBD applications into the DOD 

acquisition process. There needs to be a standard process to follow for implementation 
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and guidance detailing how best to implement SBD as not only a process but within the 

DOD acquisition framework; standardization is required.  

“Higher initial costs upfront in the design process” and “Commitment of 

resources needed to build Assessment Framework and perform integration of SBD tools” 

are some harsh realities of SBD. Resource sponsors will have to consider the upfront 

costs to define the design space, generate the solution sets, determine feasibility, remove 

infeasible solutions, and converge on a set of more feasible solutions, based on capability 

needs, to prove out viability during prototyping. This will create an initial work bow 

wave to initiate the effort, which also means more resources and funding. The 

information such as costs, design parameters, risk, fleet value and technology maturation, 

needs to be concentrated for various families of systems to perform the analysis. The data 

gathering to support these systems is burdensome and time consuming. The integration of 

the database and analysis tools must occur for the AF, which is an analysis within itself, 

and the proper structuring is crucial because it is the weapon for defining and converging 

the solution sets. 

Prior to proceeding with SBD, decision makers should well understand the 

attributes described herein. Although beneficial, the methodology does have its 

limitations, but the promising news is that some of the concerns are avoidable. The list 

above helps identify the generalities among the case studies for SBD, as defined below. 

Using SBD should be faster. The first three case studies all implemented SBD to 

get to a solution faster mainly due to schedule constraints, for which they succeeded 

utilizing this methodology. The word choice “should” was thoughtfully used because, as 

learned from the LDUUV case study, which is the furthest along in the acquisition 

process, the approval processes and oversight required via the Department of the Navy 

Implementation and Operation of the Defense Acquisition System and the Joint 

Capabilities Integration and Development System (SECNAVINST 5000.2E) caused 

schedule delays. The DOD acquisition process needs to be analyzed and tailored in order 

to take advantage of the positive SBD aspects. 
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Applying SBD methodically shrinks the design space by eliminating infeasible 

solutions in a step-like process. The case studies all went through steps to shrink the 

design space after discarding infeasible alternatives. As more fidelity develops, the 

design the space transforms. Knowing this, should design space reduction milestones be 

set and aligned with the different gates or milestones within the SECNAVINST 5000.2E?  

Some technical documents may permit reductions of the set prior to adding more fidelity. 

There is a balance of procedure, stakeholder input, and maintaining a rapid prototyping 

methodology to consider when addressing this question.  

The system development activity can leverage SBD in different capacities and at 

different times within acquisition framework. The LDUUV and the Ship to Shore 

Connector take place after Milestone A. The other two case studies are feasibility studies 

that occurred prior to Milestone A. Is the SBD methodology better leveraged in a study 

capacity or can it be just as successful implementing it through Milestone B and beyond? 

Should there be a best practice for this? When analyzing the acquisition framework, we 

make recommendations for implementing SBD as well as how to tailor the Gate criteria 

to amplify SBD’s return on investment.  
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IV. TAILORING NAVY ACQUISITION FOR SET BASED DESIGN  

Successful application of SBD in defense acquisition depends on several factors. 

This chapter explore these factors and how they may influence the use of SBD in 

program development efforts. These factors include:  

1. The applicable defense acquisition directive and instructions  

2. Whether the system being developed is hardware or software dominant 
and the acquisition model planned  

3. The SBD tools available to the program,  

4. If additional investment in tools could be required to execute SBD within 
the program,  

5. Programmatic factors, such as the effect of delaying decisions and 
possible ways to communicate in sets  

6. The use of prototyping in SBD 

This chapter reviews potential acquisition scenarios. These scenarios provide two 

examples of how SBD could be used within the applicable Navy’s acquisition 

instructions, and to highlight the process tailoring for future program managers to 

consider, when executing SBD acquisition program. The review begins with a look at 

applicable instructions. 

A. REVIEW OF APPLICABLE DEFENSE ACQUISITION DOCUMENTS 

SBD has been in practice in industry for some time. However, the application of 

SBD methodology in design is new to DOD acquisition programs and projects. Defense 

acquisition policy is set forth in Department of Defense Directive (DODD) entitled The 

Defense Acquisition System (DODD 5000.01) by the Under Secretary of Defense for 

Acquisition, Technology and Logistics (USD(AT&L)). It states “the primary objective of 

Defense acquisition is to acquire quality products that satisfy user needs with measurable 

improvements to mission capability and operational support, in a timely manner, and at a 

fair and reasonable price” (2007, 3). Additionally, it directs acquisition to have flexibility, 

responsiveness, innovation, discipline, and streamlined and effective management. Under 
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innovation, it charges all acquisition professionals to “continuously develop and 

implement initiatives to streamline and improve the Defense Acquisition System” (2007, 

3). USD(AT&L) specifically calls on Milestone Decision Authorities (MDAs) and 

Program Managers (PMs) to “examine and, as appropriate, adopt innovative practices 

(including best commercial practices and electronic business solutions) that reduce cycle 

time and cost, and encourage teamwork” (2007, 3). The study of SBD to improve the 

design processes used in defense acquisition directly supports this directive. 

The incorporation of SBD within acquisition programs will likely require tailoring 

of existing processes and procedures. Operation of the Defense Acquisition System or 

DOD Instruction 5000.02 (DODI 5000.02) implements the DODD 5000.01 across the 

department. Like the DODD 5000.01, the DODI 5000.02 reiterates the authorization for 

MDAs to tailor programs to meet the DODD 5000.01 primary objective. DODI 5000.02 

specifically authorizes MDAs to tailor regulatory and acquisition procedures as long as it 

is consistent with DODD 5000.01 (USD(AT&L) 2015). Therefore, any tailoring of 

processes, reviews, or procedures, to incorporate and take advantage of SBD, is 

authorized for responsible MDAs as they see appropriate. 

B. FACTORS TO CONSIDER BEFORE SELECTING TO USE SBD 

The impact of utilizing the SBD process will differ depending on several factors. 

This section identifies those factors to assist both the program manager and the lead 

systems engineer in determining if the SBD methodology is viable. DODI 5000.02 

outlines six defense acquisition program models that offer baseline examples for defense 

programs. “Acquisition programs should use these models as a starting point in 

structuring a program to acquire a specific product” (USD(AT&L) 2015, 8). Figure 16 

depicts a hardware intensive development program model, which is the typical model for 

most DOD acquisition programs. 
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Figure 16. Defense Acquisition Program Model – Hardware Intensive Program. 
Source: USD (AT&L) (2015, 9). 

The program model contains a typical system life-cycle familiar to any systems 

engineering effort: requirements and product definition analysis, risk reduction, 

development, testing, production, deployment, and sustainment phases punctuated by 

major investment decisions at logical programmatic and contractual decision points 

(USD(AT&L) 2015). Each decision point (Materiel Development Decision (MDD), CDD 

Validation, Development RFP Release Decision, Full Rate Production Decision, 

Milestone A, Milestone B, Milestone C) provides the MDA with the ability to review 

both the programmatic and technical status and risks prior to proceeding to the next 

acquisition phase.  

Table 7 lists the six DODI 5000.02 Defense Program Acquisition Models. The 

first four models are the baseline models, while Models 5 and 6 are hybrid models for 

programs that have hardware and software intensive programs respectively. Each model 

contains the same DOD phases and decision points, but the software models add software 

build options in between decision points.  
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Table 7. Defense Program Acquisition Models. 
Source: USD (AT&L) (2015, 9). 

 

Model 1 Hardware Intensive Program 

Model 2 Defense Unique Software Intensive Program 

Model 3 Incrementally Deployed Software Intensive Program 

Model 4 Accelerated Acquisition Program 

Model 5 Hybrid Program A (Hardware Dominant) 

Model 6 Hybrid Program B (Software Dominant) 

 

Figure 17 depicts the accelerated acquisition program model. In this model, one 

can see that milestones A and B are put together resulting in one preliminary decision 

point before getting to the milestones. 

 

 

Figure 17. Accelerated Acquisition Program Model. Source: USD (AT&L) (2015, 
13). 

 The hardware intensive program model follows the traditional DOD acquisition 

approach and can easily incorporate SBD. The chapter expounds upon this approach 
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later. The accelerated acquisition program focuses on accelerating the program to deliver 

a system on a reduced schedule. The accelerated acquisition program model combines 

Milestones A and B and only has the material development decision point. SBD 

complements both the hardware intensive program model and the accelerated acquisition 

program model. 

 SBD may be an approach for the Accelerated Acquisition Program model 

although the DOD acquisition implementation may require tailoring due to the shortened 

acquisition phases. The Accelerated Acquisition Model reduces the number of decision 

points/Milestones to three: the MDD, a combined Milestone A/B, and Milestone C.  

 The Defense Unique Software Intensive Program and the Incrementally Deployed 

Software Intensive Program are software intensive program models, while Hybrid 

Program B (Software Dominant) is a software dominant hybrid model. Figure 18 shows 

an example of an incrementally deployed software intensive program model. 
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Figure 18. Incrementally Deployed Software Intensive Program. Source: USD 
(AT&L) (2015, 11). 

 This shows how the acquisition cycle breaks down into increments focused on 

software capability. This does not fall in line with the SBD methodology of delaying 

decisions until feasibility is known and instead focuses on an incremental approach that 

builds on the previous version, qualities of PBD. Current software acquisitions focus 

more on the agile development process, which prioritizes efforts in software builds, 

versus delaying cost commitments. According to the Project Management Institute, agile 

software development focuses on quickly producing prototype products to rapidly solicit 

feedback from stakeholders, “for early, measurable (return on investment) ROI through 

defined, iterative delivery of product increments” (2016, 1). Like SBD, these software 

development practices emphasize prototyping. However, agile software development 

progressively elaborates via accelerated PBD increments, not by maturing solution sets as 

described in the SBD principles (Project Management Institute 2016). Perhaps the best 
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strategy for the application of SBD in software activities is to apply SBD principles to 

narrow the design space of the feasible software system performance and functional 

requirements. To aid in the elimination of infeasible alternatives, software prototypes 

should employ agile software fast incremental cadences to obtain rapid feedback from 

stakeholders. Therefore, the use of SBD in software intensive systems is limited. The 

focus of SBD in DOD acquisition should be on hardware intensive systems in which 

requirements ranges and tradeoff curves are easily defined and for which there are more 

defined tools available for analysis among solution sets. 

 When determining whether to employ SBD or not, one must consider how far 

along the system development is and at what point is the program in the acquisition life 

cycle. Programs must ensure that SBD starts early on when design trade space is still 

available. From the case studies reviewed in the previous chapter, all of the programs 

utilized SBD early in program acquisition. The Ship to Shore Connector program utilized 

SBD during preliminary design while the ACV and the Small Surface Combatant utilized 

SBD for an AoA. The LDUUV planned to use SBD through the preliminary design stage 

but the effort has not begun yet. Conducting SBD late in the program life cycle, post 

Critical Design Review (CDR), will not provide as much value since the program is 

already committed to the design, thereby preemptively eliminating the number of feasible 

alternatives before leveraging the benefits of SBD.  

 The complexity and level of integration in the program are also important to 

account for when considering SBD. The Ship to Shore Connector, Small Surface 

Combatant, ACV, and the LDUUV case studies are all programs that deliver the entire 

system, providing full control to the program manager. The system arrives in one piece 

and the program has oversight over all the internal interfaces. SBD might not work as 

well for a single system that is part of a greater system of systems (SoS) with multiple 

programs involved. A complex SoS with multiple interfaces may require locking down 

certain specifications earlier in the acquisition life cycle to ensure proper integration, 

limiting the use of SBD. For example, the Preliminary Design Review typically results 

with drafts of the interface control documents, finalized by the CDR. This narrows the 

trade space, limiting the value SBD may provide. The practical application of SBD will 
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vary among subsystems as well. In Toyota’s approach, designers decide on transmissions 

very early due to the complexity and costs, while they leave open decisions on exhaust 

system designs until the final specification (Ward et al. 1995). 

 Hardware specific programs that are early in the life cycle leverage SBD the best. 

Programs with few complex interfaces or well-defined interfaces are preferred. All of 

these factors maximize the application of the SBD principles to get the full benefit from a 

typical point based design approach.  

C. SBD TOOLS 

Proper SBD analyzes variables to explore trade-offs, review multiple alternatives, 

look for intersections of sets, and narrow the sets in a timely manner to meet design 

schedules. In order to conduct this analysis, proper tools are required to inject and 

analyze these requirements and metrics. Without proper tools to conduct the analysis, the 

trade space cannot be analyzed effectively. Both the Small Surface Combatant and the 

ACV utilized a DOORS database and the Framework for Assessing Cost and Technology 

(FACT) systems engineering toolsets. The teams entered cost and technical parameters 

into these tools, which automate calculations for the various studies (Burrow et al. n.d.). 

NAVSEA has developed several tools to analyze complex design issues, to include the 

Advanced Ship and Submarine Evaluation Tool (ASSET), in order to conduct total ship 

synthesis, and the Leading Edge Architecture for Prototyping Systems (LEAPS), to 

integrate a variety of analysis tools in a common data environment (Kassel 2012). 

NAVSEA continues to improve incrementally both ASSET and LEAPS in order to 

improve their ship synthesis capability. NAVSEA has teamed up with the Office of Naval 

Research (ONR), the DOD High Performance Computers Modernization Office 

(HPCMO), and PEO Ships on the Computational Research and Engineering Acquisition 

Tools and Environments (CREATE) program to take advantage of the modern increases 

in computational power to develop these toolsets (Kassel 2012). For NAVSEA programs 

such as the LDUUV, the investment in these tools enables the program office to conduct 

parallel design efforts to determine the intersections of the design sets. Without tools, the 
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program would not be able to explore fully the design trade space while still meeting the 

program timelines.  

The program needs to make a determination of the ability to tailor the tools for the 

program prior to utilizing a SBD approach. The tools available must be fully capable of 

taking in the various design variables and conducting the proper analysis to narrow the 

design sets. If tool investment is required for SBD, the program must determine the return 

on investment of these tools. A program will likely see greater reduction in cost by 

pursuing a SBD approach vice a PBD approach, as long as the enabling tools are readily 

available and the program can leverage the past investments of other organizations. If the 

use of SBD requires the creation of a tool, the program may not enjoy the cost and 

schedule benefits over a point based design method due to the time and money needed for 

tool development. If the program needs to create or update a tool, the cost and schedule to 

do this might make adopting a SBD approach less cost-effective. 

D. PROGRAMMATIC FACTORS WHEN IMPLEMENTING SBD 

Applying SBD to a program will incur different cost and schedule risks than a 

typical PBD solution. SBD focuses on delaying cost commitments until there is sufficient 

knowledge to make proper decisions. Figure 19 illustrates the effect of SBD on the 

design process. This is a similar figure to the one shown in Chapter II. 
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Figure 19. Impact of SBD on the Design Process. Source: Singer et al. (2009, 8). 

The figure shows the percent of complete development versus the percent of costs 

committed. In a PBD, requirements and design are set early in the program life cycle. 

Program costs are committed as a result of making requirements and design decisions. As 

costs are committed, management influence decreases. In SBD, programs delay 

requirements and design decisions until they are fully understood. By delaying decisions, 

program managers reduce the risk of committing costs to the wrong solution and 

maintain the ability of management to influence the solution longer into the development 

cycle, thereby increasing the ability to adjust to mid-development requirements 

modifications. Set Based Design reduces both cost and schedule risks to the program to 

ensure that they design and deliver the right product (Singer et al. 2009). Program 

managers will still need to understand how implementing SBD will change the cost and 

schedule of a program.  
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To map properly the design space, SBD requires increased resources early in the 

program and carries multiple solutions forward, unlike the traditional PBD approach. A 

major tenet of SBD, SMEs derive multiple sets of designs in parallel, then systematically 

narrow them by identifying solution intersections. In the ACV case study, four teams 

worked in parallel to analyze requirements, effectiveness, trade space, and affordability to 

develop alternatives (Burrow et al. n.d.). The Small Surface Combatant conducted 

multiple parallel efforts to define mission areas, the requirement trade space, and the 

design efforts (Mebane et al. 2011). While the parallel efforts reduced the total schedule 

compared to a linear study, requisite resources increased to support multiple teams.   

To determine if SBD can be employed effectively, time and manpower must be 

allocated  to analyze and search for tools. Funding and time may be necessary to upgrade 

tools, which could delay the start of the SBD process to conduct tool development. 

Fortunately, in the area of ship design, NAVSEA previously invested in the ASSET, 

LEAPS, and CREATE tools. While NAVSEA has the infrastructure in place, the tools 

must be configured to support specific programs, and upgraded as innovative, more 

advanced analysis techniques arise. NAVSEA took advantage of investments from other 

programs funded by ONR and HPCMO. If another Systems Command (SYSCOM) is 

unable to leverage these investments, then it may require significant investment to 

conduct SBD, which a program manager may not have in his or her budget. Cost and 

schedule risks increase if the tool development does not mature quickly enough to 

support the program schedule. 

SBD advocates for multiple prototypes. Prototyping can accelerate knowledge 

gain and reduce technical risk. It also increases the research and development costs 

versus baselines with minimal or no prototyping planned. While the case studies analyzed 

were requirements focused, Toyota is a proponent of prototyping and including suppliers 

in the SBD process. One Toyota exhaust supplier developed approximately 10 to 20 

exhaust prototypes for each new Toyota car design (Ward et al. 1995). This was key in 

supporting the development of requirements and design of the overall system.    

Set Based Design delays design decisions until the feasibility of potential 

solutions is established, enabling trade-off decisions between feasible solutions. Delaying 
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the decision-making until later in the program life cycle means that a majority of the 

decisions happen toward the latter end of the schedule. Though this helps improve 

confidence in the design decisions, there will likely be less slack in the schedule, causing 

problems if issues arise. Additionally, there is a risk to the schedule if one of the parallel 

efforts falls behind, resulting in higher cost and schedule risks for the dependent systems, 

which require interface with the system under development. Often in the DOD, the 

maturity of interfaces is the subject of review at various technical reviews and how 

detailed they appear in the appropriate interface control documents. Delays in design 

decisions may also delay finalizing these documents, causing a cascading delay to 

interfacing systems from finalizing their designs. Efforts should focus on defining 

interface control documents early enough to enable interoperability with dependent 

systems, however define them to be flexible enough to avoid rework once the design is 

finalized (e.g., providing extra discrete signals for growth, adopt robust protocol 

standards). 

Finally, SBD advocates for more efficient communication among the 

stakeholders. There must be a consistent approach and communication plan to ensure all 

stakeholder expectations maintain alignment. Toyota was able to reduce both the 

frequency and duration of communication with their suppliers by employing SBD in 

parallel. However, Toyota was the lead organization and able to be directive to their 

suppliers. Employing SBD in DOD acquisition will require support from all levels of 

DOD organizations involved, though it is unclear if SBD can improve communication 

efficiency within the DOD. The organizational structure of stakeholders in many complex 

DOD systems is more horizontal than the top-down Toyota-to-suppliers model. Most 

technical communication in the DOD is via written specifications. The development of 

sets of detailed specifications for multiple alternatives is not practical. Toyota 

communicates via ranges to define the set of solutions (Sobek et al. 1999). The DOD 

could adopt a similar strategy of increased use of acceptable ranges in order to enable set-

based communications. Additionally, the use of Model Based Systems Engineering 

(MBSE) as a SBD tool facilitates set-based communications. 
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The advancement of MBSE tools could improve future set-based 

communications. Modern MBSE system models consist of interactive databases of 

system requirements, attributes, and relationships (Vitech Corporation 2011). These 

models enable the generation of multiple views of system solutions to facilitate analysis 

(Vitech Corporation 2011). Potential solutions arise through the generation of a set of 

models. The maturation of a set of individual potential architectures would empower 

rigorous trade-off analysis to eliminate less desirable architectures and narrow the 

solution set as advocated in SBD.  

E. THE USE OF PROTOTYPING TO SUPPORT SBD IN ACQUISITION 

Rapid, developmental, operational, low fidelity, high fidelity, competitive:  all 

represent adjectives the DOD uses to define prototyping strategies. The evolution of 

prototyping extends beyond buying down technical risk; it reduces programmatic costs, 

increases pace of development, supports maturing industrial technical competencies, and 

informs decision-making earlier in the acquisition process (Hencke 2014). As stated by 

Borowski, “Prototyping enables better acquisition outcomes by improving the reliability 

of available information” (2012, 1). Prototyping does not need to be a complex pre-

production model; it can come in all forms such as a concept, subsystem, or end item. A 

prototype is a test article, “Paper studies estimate a technology’s capabilities, prototyping 

demonstrates those capabilities through testing. Test articles are designed, constructed, 

and tested to demonstrate the capabilities of some technology or system” (Borowski 

2012, 1). Based on this understanding of prototypes, those used prior to Milestone B 

should be repetitive low-fidelity prototypes with short development timelines to inform 

early design decision-making. In fact, it is now a requirement to prototype prior to 

Milestone B. Per SECNAVINST 5000.2E, which “requires that the acquisition strategy 

(interpreted to mean technology development strategy for the Technology Development 

(TD) phase) for each major defense acquisition program provide for competitive 

prototypes before Milestone B unless the MDA waives the requirement” (2011, 2–17). It 

is important for the program to stay within budget and to use prototypes advantageously, 

in a cost-effective manner, to gain understanding, mature high-risk technologies, and 

determine the intersections of feasible solutions. The SBD methodology supports low-
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fidelity (cheap) prototyping early and often, for a better understanding of the design 

space, while integrating at the intersections of solution spaces in order to narrow the set 

of solutions (Ghosh and Seering 2014).    

As described by Ghosh and Seering, developing low-fidelity prototypes to support 

examination of requirements is one of the seven key characteristics of SBD (2014). SBD 

promotes the use of low-fidelity prototyping, but at some point, more fidelity emerges 

into the test articles to advance the design to a manufacture-able product. 

Figure 20 demonstrates a good comparison between the Technology Readiness 

Levels (TRLs), acquisition framework, and two major classifications of prototypes, 

developmental and operational (Hencke 2014). Low-fidelity prototyping falls in the 

developmental category. TRLs 1–4, or the pre-concept and material solution phases, are 

the most appropriate phases to maximize the usage of low-fidelity prototyping during the 

SBD process. The pre-Milestone A activities align with defining the design space and 

adding fidelity to narrow the solution sets, or trade space, within the domain disciplines. 

Although TRLs 5 and 6 are still considered developmental prototypes, the demarcation 

between low-fidelity and high-fidelity should occur between Milestones A and B, during 

the technology development phase.  

 

Figure 20. Prototyping TRLs within the Acquisition Framework. Source: Hencke 
(2014, 12). 



 73 

For this analysis, assume the PDR occurs prior to Milestone B. The most 

important output of the PDR is the system allocated baseline. According to AcqNotes, the 

allocated baseline is the: 

Definition of the configuration items making up a system, and then how 
system function and performance requirements are allocated across lower 
level configuration items. It includes all functional and interface 
characteristics that are allocated from the top level system or higher-level 
configuration items, derived requirements, interface requirements with 
other configuration items, design constraints, and the verification required 
to demonstrate the traceability and achievement of specified functional, 
performance, and interface characteristics. (AcqNotes 2016)   

There will be little trade space available after the allocated baseline is produced, 

meaning there will be minimal trade space left post-PDR. Therefore, to obtain that level 

of higher fidelity, more robust prototypes must be introduced into the technology 

development phase to either mature the critical technology or mature the system to 

demonstrate affordability. These higher fidelity prototypes will drive the SBD process 

and narrow the trade space to a minimum. These prototypes are the more enhanced, more 

capable developmental prototypes. Developmental Prototyping has a tipping point of 

diminishing returns; it will become uneconomical not to drive the design to the allocated 

product baseline, also known as the build-to specifications, which is the output of the 

CDR (AcqNotes 2016). Not all risk reduces and the detailed design remains on a strict 

schedule. In general, post PDR, one allocated system baseline should be carried forward 

to the begin preforming detailed design and use full-scale prototypes as needed to 

demonstrate in-situ, operational performance. Therefore, prototyping, especially at the 

low-fidelity level, is a key driver for the SBD process pre-Milestone B and will better 

promote trade-offs and the exploration of the design space.  

F. SELECT DEFENSE ACQUISITION STRATEGY SCENARIOS 

Tailoring of processes at the program level is how a POR incorporates and 

maximizes SBD into their program. Each program will likely have unique acquisition 

strategy considerations and applicable SYSCOM processes. Programs tailor the service-

issued instructions as approved by their PM’s cognizant MDA. These service-issued 
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instructions provide additional detail on how to execute the DODI 5000.02 within their 

service. The Navy has issued guidance in the Department of the Navy Implementation 

and Operation of the Defense Acquisition System and the Joint Capabilities Integration 

and Development System (SECNAVINST 5000.2E) instruction, which was signed on 1 

September 2011. The document describes an overview of the Navy’s acquisition 

management process including the 2-Pass/6-Gate DON Requirements and Acquisition 

Governance Process, illustrated in Figure 21.  

 

 

Figure 21. 2-Pass/6-Gate DON Requirements and Acquisition Governance Process. 
Source: ASN(RD&A) (2011, 1–60). 

The SECNAV stated goal of the 2-Pass/6-Gate process is to “ensure alignment 

between Service-generated capability requirements and systems acquisition, while 

improving senior leadership decision-making through better understanding of risks and 

costs throughout a program’s entire development cycle” (2011, 1–51). The 2-Pass/6-Gate 

process applies to all pre-Major Defense Acquisition Programs (MDAPs), all MDAP 

Acquisition Category I (ACAT I) programs, all pre-Major Automated Information 

System (MAIS) programs, all MAIS ACAT IA programs, and ACAT II (2011). The 2-

Pass/6-Gate process has two major phases: Pass 1 and Pass 2. The Chief of Naval 

Operations (CNO) and the Commandant of the Marine Corps (CMC) are the chairpersons 
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for Pass 1 reviews. Their designees lead these reviews via the R3B process. The R3B is 

“the Navy’s 3- and 4-star forum for reviewing and making decisions on Navy 

requirements and resource issues (2011, 5). The SECNAV instruction establishes Pass 1 

as the Navy’s process to determine capability needs and encompasses the first three gates, 

focusing on documenting high-level requirements identified in the Joint Capabilities 

Integration and Development System process (2011). According to SECNAVINST 

5000.2E, Pass 2 is led by the DON component acquisition executive (CAE), the Assistant 

Secretary of the Navy for Research, Development and Acquisition (ASN(RD&A)), and 

includes Gates 4 through the Post-Integrate Baseline Review Gate 6, plus all follow-on 

Gate 6 reviews (2011). The process elicits and documents leadership program direction at 

identified decision points (2011). The difference in leadership between the two Passes is 

significant as it has implications on the level of design executed in Pass 1 versus Pass 2. 

A successful Pass 1 documents the capability need to enable the acquisition process 

executed in Pass 2 (2011). 

The 2-Pass/6-Gate process builds on procedures developed to provide oversight of 

defense acquisition programs, which have traditionally been PBD style programs. Not 

until recently the DOD employed SBD, and to date, only in a handful of cases. That does 

not mean the processes are not effectively tailorable to provide oversight to SBD 

programs as well. To explore potential processes tailoring, consider the following two 

acquisition strategy scenarios. 

1. Scenario 1 

The government performs SBD from MDD until sufficient system requirements 

and system performance definitions are documented in a System Design Specification 

(SDS) as it is referred to in SECNAVINST 5000.2E. This is analogous to the FDD from 

the SSC case study; to inform a RFP to the defense industry to complete the detailed 

design (Mebane et al. 2011). 

2. Scenario 2 

The government performs SBD from MDD through system requirements 

definition, detailed design, and documents the system design in a Technical Data Package 
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(TDP) to enable a production RFP to a defense industry vendor or to produce Low Rate 

Initial Production (LRIP) items for testing and other entrance criteria to a Milestone C 

decision (ASN(RD&A) 2011). 

Each of these SBD acquisition scenarios illustrates potential employment of SBD. 

The two scenarios show that the solution space narrows to different levels of detail, 

depending on the acquisition strategy and the handoff system development at different 

phases. Figure 22 illustrates how the SBD solution space reduces by eliminating the least 

desirable or infeasible solutions as more knowledge develops, resulting in the funneling 

effect which maps the broad design space on the left and then narrows the set of solutions 

as the program executes to the right, ultimately paring down to the final solution. 

 

  

Figure 22. Solution Space Funnel Scenarios. Adapted from ASN(RD&A) (2011, 1–
60). 

G. PASS 1 AND GATE 4 IN A SET BASED DESIGN DEVELOPMENT 

Due to the nature of Pass 1, the two scenarios will have a degree of commonality 

through Gate 3 and on to Gate 4 (first gate in Pass 2). Pass 1 establishes and approves 

high-level capability needs and transitions them to the CAE-led Pass 2 for the TD and 

Engineering & Manufacturing Development (EDM) phases (ASN(RD&A) 2011). To 
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facilitate this transition from Pass 1 to Pass 2, the team recommends specific SBD 

tailoring for Pass 1 and up to Gate 4. It is assumed that the selected scenarios will diverge 

from each other after Milestone A, at Gate 4, as they proceed through the Pass 2 process 

and are discussed in Sections H and I. The following is an examination of the common 

tailoring within the context of SBD, which applies to both scenarios introduced in  

Section F. 

1. Gate 1 and the Materiel Development Decision (MDD) 

Set Based Design influences the content contained within the Gate 1 entrance and 

exit criteria. One entrance criterion for Gate 1 is a completed Service review of the AoA 

Guidance (ASN(RD&A) 2011). If it has been determined that a SBD approach is 

desirable, the AoA Guidance should document it here. In the case of SBD, the Service 

review of the AoA Guidance should identify the boundaries for mapping the design 

space, satisfying the capability need documented in the ICD. The ACV case study 

presented in Chapter III is a good example determining the design space in a defense 

acquisition program. The ACV program identified the “big rocks” (Burrow et al. n.d., 3). 

The AoA Guidance would initiate the SBD process by identifying the “big rocks” as the 

tradable parameters, and more importantly, those that are not tradable to achieve the 

desired end-state. At this point, SBD methodology helps to explore the requirements 

space and evaluate the capability gaps with the Capability Based Assessment (CBA). To 

accomplish this, SBD evaluates Capability Concepts via techniques similar to the 

Capability Concept Bull’s-eye chart and the CCW, described in Chapter III. 

An application of SBD methodology at this stage will inform the MDD. The 

following is a list of the SBD principles presented as a review and a map to the relevant 

applications for this stage (Sobek et al. 1999): 

2. Map the Design Space 

a. Define feasible regions – Determine all feasible concepts that will 

satisfy the capability gap identified in the CBA. 
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b. Explore trade-off by designing multiple alternatives – Identify the “big 

rocks” and their relative importance to enable trade analysis and 

Capability Concept scoring. 

c. Communicate sets of possibilities – Solicit feedback from 

Stakeholders and ultimately the selection of a Capability Concept by 

the MDA at MDD. 

3. Integrate by Intersection 

a. Look for the intersection of feasible sets – Mature the Capability 

Concepts and identify their intersections. 

b. Impose minimum constraint – High-level Capability Concepts only at 

this point. 

c. Seek conceptual robustness – Determine feasible concepts that satisfy 

the capability gap identified in the CBA. 

4. Establish Feasibility before Commitment 

a. Narrow sets gradually while increasing detail – Executed in concert 

with 1b, 1c, 2a, 2c, and 3c. 

b. Stay within sets once committed – Aggressively apply configuration 

control to requirements baselines. Perform analysis to ensure all “big 

rocks” are traced to Measures of Effectiveness that support closing the 

identified Capability Gap.  

c. Control by managing uncertainty at process gates – It is our 

recommendation that the above analysis should be performed to enable 

the selection of a Capability Concept(s) at the MDD. 

The MDD is after Gate 1 and is “a review that is the formal entry point into the 

acquisition process and is mandatory for all programs. A successful MDD may approve 

entry into the acquisition management system” (Defense Acquisition University (DAU) 

2016). Per SECNAVINST 5000.2E pre-ACAT I programs cannot combine the Gate 1 

and MDD events (2011). Two different authorities chair these two events; for Gate 1, it is 

the CNO or CMC as appropriate, while the MDD is chaired by ASN(RD&A) (2011). By 
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prohibiting their combination, the process provides the opportunity to ensure alignment 

between these offices for ACAT 1 programs. 

Gate 1 approves the AoA Guidance. This the logical starting place for the 

application of SBD. The AoA Guidance begins the SBD process to Map the Design 

Space, while the MDD approves the AoA Guidance and thereby documents the directions 

to execute a SBD approach for system development. 

The use of SBD in defense acquisition is new and standard practices are still 

being defined. Therefore, it requires careful thought to inform stakeholders of the method 

of execution. Another tailoring recommendation is the development of the draft Systems 

Engineering Plan (SEP) early in the process. As written in the 2-Pass/6-Gate process, the 

draft SEP is an entry criterion to Gate 3 (ASN(RD&A) 2011). However, given direction 

from the MDD to proceed with a SBD approach, the draft SEP could and should start 

prior to Gate 2, in order to provide a basis for communicating the SBD execution to 

inform stakeholders. 

5. Gate 2 

Progressing further down Pass 1, we examine Gate 2. It is evident that the 

Alternative System Review (ASR), an entrance criterion for Gate 2, should be tailored for 

SBD. According to the Defense Acquisition Guidebook, the ASR facilitates 

communication among end user and defense acquisition stakeholders to enable the 

development of a draft performance specification (DOD 2013). In a PBD approach, once 

the AoA analysis is complete, the ASR serves to review the results and select the 

preferred alternative (DOD 2013). Additionally, this meets the “preferred alternative 

identified,” as a Gate 2 entrance criteria (ASN(RD&A) 2011, 1–61). 

For a program employing SBD, the output of the ASR is the preferred Capability 

Concept if not already determined at MDD. While this is similar to “preferred alternative 

identified,” in the baseline SECNAV instruction, this tailoring provides recognition that 

the possible sets of system configuration alternatives remain in a development and 

evaluation stage (ASN(RD&A) 2011, 1–61). In the methodology discussed above, 

mapping the design space of Capability Concepts and identifying the preferred Capability 
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Concept, if not already been completed, occurs in preparation for the ASR. This decision 

point appears in Figure 23. 

 

 
 

Figure 23. Flow of the Selection of the Capability Concept. 

The ASR should focus on the big rock performance parameters that drive 

operational effectiveness. The output of the ASR is the performance parameters and the 

understanding of their relative importance in order to evaluate the set of possible system 

configuration alternatives. These performance parameters enable the reduction of the 

number of sets to a manageable number. 

The SSC and ACV case studies both utilized SBD methodologies to improve their 

understanding of requirements. In the SSC program, the ICD, AoA, R3B disposition, 

technical data from the legacy system, and other lessons learned formulate the FDD. The 

FDD is a “set of operational requirements and derived parameters used to initiate the 

design effort” (Mebane et al. 2011, 83). In the ACV study, the comparison of the 

requirements occurred via trade-off analyses with the big rocks. Therefore, the output of 

the ASR could enable the development of the FDD Development Plan and a draft FDD 

that elaborates performance needs of the system to meet operational capability gaps 

stated in the ICD. Figure 24 depicts a diagram of the SSC Specification Tree and traces 

these source documents to the FDD. The big rock performance parameters facilitate 

trade-off curve development to reduce the number of sets of feasible system 

configuration alternatives and define the FDD. The draft FDD is refined in parallel with 

the CONOPS and CDD. 

Set of feasible 
Capability Concepts 

Concept 
Selection 

AoA Guidance 
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Figure 24. Ship to Shore Connector (SSC) Requirements to Specification Trace 
Source: Mebane et al. (2011, 83). 

6. Gate 3 

Entrance criteria for Gate 3 also requires tailoring. Currently, the entrance criteria 

includes a completed service review of the CDD and CONOPS, and a draft SDS 

Development Plan (ASN(RD&A) 2011). Keeping with the development of a FDD, the 

FDD Development Plan should describe how the subsystem FRDs would be matured 

(Mebane et al. 2011). In the SSC article, Mebane and his co-authors describe the FRDs as 

“evolving set(s) of assumptions and potential requirements that further defined the 

element trade space and ultimately constrained element-specific requirements” (2011, 

83). Analysis of big rock performance parameters can eliminate the infeasible sets of 

system configuration alternatives, in order to refine the list of assumptions for each 

subsystem and further mature the FRDs. The SBD principles are presented once again 

with example ways the methodologies apply to the development process going into Gate 

3 (Sobek et al. 1999): 
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7. Map the Design Space 

a. Define feasible regions – Determine feasible system configuration 

alternatives that will satisfy the FDD performance, that is the set of 

various subsystem alternatives and begin documenting subsystem 

performance and performance trade-off curves. 

b. Explore trade-off by designing multiple alternatives – Identify derived 

subsystem performance ranges based on the Big Rock Performance 

Parameters trade-off analysis and their impact on system level 

performance to enable trade analysis and subsystem alternative 

scoring. 

c. Communicate sets of possibilities – Solicit feedback from stakeholders 

and document in the FDD and draft FRDs. 

8. Integrate by Intersection 

a. Look for the intersection of feasible sets – Mature the draft FRDs and 

identify the intersections of feasible sets, eliminating infeasible sets. 

b. Impose minimum constraint – Focus on the identification of derived 

subsystem performance parameter ranges to enable future trade-offs. 

c. Seek conceptual robustness – Identify system configuration 

alternatives that are not conceptually robust for possible elimination 

from the set of considered solutions. 

9. Establish Feasibility before Commitment 

a. Narrow sets gradually while increasing detail – Executed in concert 

with 1b, 1c, 2a, 2c, and 3c. 

b. Stay within sets once committed – Maintain traceability of derived 

subsystem performance ranges and functional allocations to Big Rock 

Performance Parameters and the CDD. No new system-level 

performance thresholds, focus is on getting the CDD approved. Any 

new user desires should be identified and prioritized for future 

increments. 
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c. Control by managing uncertainty at process gates – The application of 

these methodologies should result in the final set of FRDs, which are 

the basis of the SDS to be approved at Gate 4. 

10. Gate 4 

The purpose of the Gate 4 review is to approve the SDS and assess program 

affordability (ASN(RD&A) 2011). Major entrance criteria include the approved 

CONOPS, CDD, and SDS signed by the PM, responsible SYSCOM Chief of 

Engineering, and the resource sponsor (ASN(RD&A) 2011).  

The SDS under consideration for approval at Gate 4 consists of the finalized FDD 

and FRDs. To arrive at this, the scope of materiel solution space reduces significantly, 

beginning from sets of Capability Concepts prior to MDD and followed by the selection 

of one Capability Concept at MDD. That concept is investigated by considering sets of 

system configuration alternatives (variations of subsystem configurations to meet mission 

requirements in the final CDD and traced to system level performance documented in the 

FDD). The CDD and CONOPS are approved at Gate 3 (ASN(RD&A) 2011). As the set 

of system configuration alternatives reduces, the FRDs become more concrete. Then, 

based on the work of Mebane and his contemporaries, “the requirements in the FDD and 

FRDs were subsequently mapped to their respective SWBS area to become the draft 

specification for SSC” (2011, 83). The draft specification is the draft SDS and consists of 

the final system-level FDD and subsystem-level FRDs. 

H. ACQUISITION STRATEGY SCENARIO 1 

Scenario 1 – The government performs SBD from MDD until sufficient system 

requirements and system performance definition are documented in a SDS. This allows a 

Gate 5 review to approve a RFP to defense industry to complete the detailed design, 

LRIP, and testing to inform a Milestone C decision. The natural progression of the 

system under development, after the approval of the SDS, is the development of the PD 

(NAVAIR 2015). The PD includes the Allocated Baseline (ABL) and obtains approval at 

Preliminary Design Review (PDR), (NAVAIR 2015). It is important to understand that 

the SDS does not include the complete set of required information and documentation for 
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the PDR Systems Engineering Technical Review (SETR) (NAVAIR 2015). Additionally, 

a combined System Requirements Review (SRR) and System Functional Review (SFR) 

during FDD and FRDs development is prudent to ensure no programmatic elements are 

overlooked and all logistical elements are addressed (NAVAIR 2015). The combination 

of these events is a significant tailoring, however, one that is appropriate given the 

development of the FDD and FRDs accomplishing the system and functional 

requirements derivation that are the focus of the SRR and SFR reviews. The combined 

SRR and SFR represent the control gate to select the preferred subsystem configuration 

of the possible set of feasible subsystem configurations. Figure 25 builds on flow diagram 

introduced in Figure 23 to illustrate these decision points. 

 

 

Figure 25. Flow of the Selection of the Subsystem Configuration through SRR/
SFR. 

The specifications defined in the FDD are allocated to the respective FRDs. A 

draft FRD is therefore the set of possible subsystem configuration design solutions to 

meet the requirements allocated to a particular subsystem. The tradeoff analysis and 

elimination of infeasible alternatives narrows the design space of each of the individual 

FRDs. The FRDs mature as the final subsystem solutions emerge and the final FRDs gain 

approval at the PDR. Figure 26 depicts the decision flow to this point. 

 



 85 

 

Figure 26. Flow of the Selection of the Subsystem Configuration through PDR. 

The completion of SETR-required actions and documentation is required in both 

PBD and SBD efforts. Therefore, there exist programmatic and logistical items that must 

be covered as part of the SETR process; examples include revision of the SEP, Software 

Development Plan, the Program Protection Plan (NAVAIR 2015). These items can 

require significant effort. Typically, they performed through a combination of program 

office and either defense industry, Federally Funded Research and Development Center 

(FFRDC), or government engineering organization activities (DAU 2016). Set Based 

Design targeted the design of the system itself. Many of these programmatic and 

logistical items may be DOD, Service, or SYSCOM specific and will be in addition to 

supporting the SBD execution. One strategy to accomplish tasks outside the SBD 

activities is through a TD contract, delivery order, or appropriate task order to perform 

the ancillary SETR activities in parallel to SBD. 

The TD contract could be an umbrella effort for which the SBD, programmatic, 

and logistical items are all elements. In addition to the FRDs developed via the SBD 

methodology, the TD effort would then complete the other ABL specification 

documentation not covered by the SDS consisting of the FDD and supporting FRDs. The 

TD effort would then support all engineering efforts through PDR. 

If leadership so decides, the ancillary SETR activities could be accomplished via 

a discrete effort outside of the SBD effort. If so, care must be taken when constructing 

Statements of Work (SOWs) to avoid duplication of work. Whether a multiple effort 

strategy or singular umbrella TD approach is selected, it is important to acknowledge and 
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plan for these activities that are necessary for a successful PDR that will be outside of the 

SBD engineering effort. 

Upon completion of a positive PDR, the SBD process shifts its focus from ABL 

development to Product Baseline (PBL) determination. The necessary competitive RFP 

preparations are completed as normal. The SOW in the RFP will reference the ABL 

documents resulting from the SBD activities. For the purposes of this scenario study, it is 

assumed that the SOW requires the use of SBD through the development of the PBL and 

approval of the PBL at CDR. Once awarded, the EDM contract must be baselined. 

Upon completion of the ABL, the design being executed under the EDM contract 

shifts from finalizing the ABL to the application of SBD principles to potential 

component configuration solution sets. The design space of potential PBL solutions must 

be mapped. The feasible region is bounded by the approved ABL. Sets under 

consideration are the various feasible subsystem component configurations that could be 

adopted to meet the requirements specified in the ABL. Then the integration by 

intersection of feasible sets narrows the possible configuration sets (Sobek et al. 1999). 

These repetitive processes narrow the set of possible component configurations and 

solutions until the CDR reviews and approves a PBL.  

I. ACQUISITION STRATEGY SCENARIO 2 

For the second scenario, as described earlier, SBD is performed for a government-

led design, i.e., producing a TDP for a vendor to build to print and support Milestone C. 

The major difference between this scenario and the previous is that government working 

capital organizations and/or FFRDCs execute the development activities, removing the 

RFP for system development. 

The two scenarios’ SBD approaches are identical up through Gate 4. As 

previously discussed, during Gate 3, the SDS development plan is replaced by the FDD 

development plan, which includes how the FRDs mature, which in turn carries over to 

Gate 4. Gate 4 approves the SDS, which for SBD is the collection of the FDD and FRDs 

as the exit criteria for Gate 4. Sobek and his colleagues’ SBD principles (Map the Design 

Space, Integrate by Intersection, and Establish Feasibility before Commitment), need to 
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be exercised to pare down the solution set to one baseline system configuration as 

described in detail in the former scenario. This iteration accompanies the exit criteria of 

Gate 4 and leads to the PDR, which would best occur prior to Gate 5. As discussed, the 

customary outcome of PDR is an established ABL placed under configuration control 

(AcqNotes 2016). Gate 5 is normally the RFP approved for release gate (ASN(RD&A) 

2011). With this being a government-led design, a development RFP is not necessary, but 

that does not mean there is no Gate 5. Instead, Gate 5 aligns with Milestone B to assess 

the program progress and to approve entry into the EMD phase. Additionally, while the 

contracting actions may be significantly reduced by not developing an RFP, and all of the 

associated business clearance to meet government-industry contracting requirements, it 

should be noted that internal Government Task Orders, Funding Documents, and 

Statements of Work or Objectives still need to be developed to authorize and fund work 

to be completed.  

As discussed in Scenario 1, Public Law requires ACAT I programs to complete a 

PDR prior to Milestone B. Other ACATs have the opportunity to hold the PDR before or 

after this milestone, though the PDR should be held as soon as the design maturity 

allows. Holding PDR prior to Milestone B should be the goal, regardless of ACAT, to 

enable better understanding and maturity for the MDA to consider. 

FFRDCs and similar government-sponsored research activities perform systems 

engineering, perform analysis, and often have significant laboratory facilities 

(Department of Homeland Security 2007). The government (more specifically the Navy) 

can utilize the existing Naval Research and Development Establishment (NRDE) for the 

TD phase to prepare for PDR. The NRDE Working Capital Fund model ensures the 

Warfare Centers remain relevant and responsive to the SYSCOMs and PEOs (U.S. Naval 

Research Advisory Committee 2010). According to the Federal Acquisition Regulation 

6.302-3 paragraph (a)(2)(i), there is no requirement for full-and-open competition when 

the provision to “establish or maintain an essential engineering, research, or development 

capability to be provided by an educational or other nonprofit institution or a federally 

funded research and development center” can be applied (Federal Acquisition Regulation 

2016). 
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This exemption eliminates the need to release an RFP when contracting with 

organizations such as those, which make up the NRDE. Therefore, leveraging the 

facilities and workforce within the NRDE to execute the TD phase of the SBD scenario 

can accelerate the acquisition timeline versus Scenario 1. Since the technical 

communities of the NRDE are government organizations, intellectual property rights that 

must be considered when dealing across industry partners is not an issue. This reduces 

barriers to partnering and sharing of capabilities among organizations in the NRDE. The 

14 University Affiliated Research Centers, such as John Hopkins University Applied 

Physics Laboratory, Pennsylvania State University Applied Research Laboratory, 

University of Hawaii at Manoa Applied Research Laboratory, and others are another 

source for technical expertise (AcqNotes 2016). The benefits of a government-led design 

and the NRDE community, make it an efficient, flexible, and cost-effective network, as 

these organizations operate at cost, leverage valuable government investments, and are 

focused on serving the advancement of technology for the betterment of the government 

and society. This research and development network matures technology and helps 

determine solutions. Low-fidelity prototyping efforts, utilizing the NRDE in-house 

capabilities and test facilities to gain knowledge and narrow solution sets, aid in the 

technology maturation. This enables the design and documentation of the ABL prior to 

Gate 5. 

Gate 5 will enter with the approved ABL and will still align with Milestone B per 

the traditional SECNAVINST 5000.02E acquisition framework. The effort to resource 

and complete documentation required to prepare the RFP and select the vendor is 

immense and time consuming (USD(AT&L) 2015). Therefore, in this scenario, the 

removal of the RFP allows for the ability to shift some events to the left for earlier 

execution.  

Like Scenario 1, what occurs between Gate 5 and Gate 6 in terms of the SBD 

application is more trade space exploration and set reduction from PDR to CDR. After 

the successful completion of PDR, the designers commence detailed design. For example, 

the NAVAIR SETR process specifies that at PDR, the breadth of design is still being 

evaluated, validated, and verified, creating an opportunity for continued SBD principles 
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at a lower level in terms of subsystems and components. The CDR approves the PBL, 

which “allows the completion of the design to the component level” (NAVAIR 2015, 

39). The PBL makes up the specifications needed for inclusion in the build-to-print TDP. 

At this point, the opportunity for SBD has diminished as the trade space is closed. Once 

the TDP is developed, the effort moves to preparing for Test Readiness Review, 

Milestone C, LRIP, and ultimately a full rate production decision. 

J. SCENARIO COMPARISON 

Each respective scenario covers the spectrum of the most-likely acquisition 

strategies a program manager may encounter, but is not all-inclusive and every program 

must tailor these recommendations to meet the needs of the program. The objective was 

to demonstrate that SBD can be executed effectively whether through one design team or 

through a vendor handoff. In fact, both scenarios are very similar in expressing how the 

acquisition strategy is tailorable to incorporate the SBD principles and methodology; both 

close their respective solution space after the CDR. The major differences, which will be 

further discussed below, are buried in the process and inherent obstacles of each scenario. 

Scenario 1 creates difficulty for the government to manage SBD performance and 

oversight. It is hard to measure how well SBD performs. It is a methodology that tailors 

specifically to each program. How the vendor chooses to implement it is their 

prerogative. A couple key principles of SBD are delaying design decisions and longer 

periods for stakeholder influence. While the vendor is maturing the design, decisions 

need close management and documentation in the RFP to ensure the stakeholders are the 

focal point of the design decisions, not the vendor, driven by profit potential.  

For Scenario 2, there is no SBD transition between actors, which allows for a 

more integrated design development, especially from the ABL to the PBL. The design 

development is more of a partnership because it is government-to-government. That in 

nature promotes more stakeholder influence and ownership. There is also the ability to 

leverage the capabilities amongst the NRDE community, which are diverse, cost 

effective, and easily accessible.  
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Table 8 summarizes the comparison between the two scenarios. In this table, key 

characteristics of program execution demonstrate the amount of influence each scenario 

has with respect to the characteristic. The government ranks the influence in terms of 

low, moderate, or high. 

Table 8. Scenario Characteristic Comparison Table. 

Characteristics Scenario 1 Scenario 2 
Process Flexibility Moderate High 
Design Control Moderate High 
Resource Accessibility High Moderate 
Stakeholder Influence Moderate High 
Execution Efficiency Moderate High 
Competition Moderate Moderate 
Design Risk  Low High 

 

The first characteristic is Process Flexibility; this refers to the control over the 

SBD process and its implementation. Scenario 1 is moderate because the government 

loses control of the SBD execution once the design is turned over to the vendor. 

However, Scenario 2 the influence is high because the government maintains control of 

the design, which creates a partnership between the program office and the lead systems 

integrator. 

The second characteristic is Design Control; this references the government’s 

ability to influence the design during synthesis. Again, SBD promotes delaying design 

decisions until a better understanding of the system emerges, which creates more 

stakeholder involvement. With Scenario 1, the vendor handoff removes some of that 

influence, therefore scoring a moderate rating. The vendor in turn would be making some 

of those critical design decisions in a vacuum to mature the design; this degrades some of 

the SBD advantage. Scenario 2 scores a high rating because, again, this is government to 

government, creating an environment of partnering. 

The third characteristic is Resource Accessibility; this is the ability to allocate 

resources to execute the program in an efficient manner. Scenario 1 yields a high rating. 
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Vendors have the ability to control staffing levels to handle workload changes. Scenario 2 

has a moderate rating because staff level management in the government can be difficult. 

The government does not have the labor flexibility of industry and could have to reach 

across multiple platforms or organizations to staff projects appropriately.  

The forth characteristic is Stakeholder Influence; this is addressed in the second 

characteristic analysis and is scored similarly between the two cases. The stakeholder 

influence does decrease with a vendor handoff. 

The fifth characteristic is Execution Efficiency; this refers to the program 

efficiency and ultimately the timeframe associated with delivering the product to the 

fleet. Assuming all other programmatic factors are equal (i.e., labor, skills, design tools, 

risks), the opportunity to not have to prepare an RFP and award a contract creates a 

significant amount of time saving. Therefore, Scenario 1 has a moderate ranking with 

Scenario 2 receiving a high ranking because of contact award relief.  

The sixth characteristic is Competition; this refers to utilizing competition within 

the program to lower costs and mature technology. Both Scenario 1 and Scenario 2 

receive a moderate rating but each promotes competition differently. With Scenario 1, the 

competition is during the proposal-soliciting phase. Scenario 2 promotes competition by 

utilizing small contracting vehicles throughout the design cycle to reach industry for 

more specific purposes. An example of this would be vendors competing for the battery 

design of an unmanned vehicle. 

The final characteristic is Design Risk; this refers to the risk endured by the 

government with a deficient design. Scenario 1 has a low rating because the vendor 

assumes the design risk and is under contract to deliver a functioning product. For 

Scenario 2, since the government executes the design, the government assumes more risk. 

Deficiencies will require more funding to correct therefore causing a high rating for this 

particular characteristic. 
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K. IMPLEMENTATION DIFFERENCES FROM TOYOTA 

The SBD Scenarios above provide guidance for implementation of SBD in DOD 

acquisition. These scenarios aim to meet SBD principles while meeting the intent of the 

various acquisition policies. However, there are distinct differences between the 

recommendations and Toyota’s original concurrent engineering practices. The most 

noticeable difference is in the use of prototyping. While both Toyota and DOD focused 

on multiple prototypes, Toyota “developed prototypes of an extraordinary number of 

different designs for subsystems” (Sobek et al. 1998, 48) even through the production 

phase. In the DOD guidance, the team has identified low fidelity prototyping strictly to 

understand the design space and not look at production benefits. In addition, to maximize 

the benefit of SBD, the CDR locks down the design. Toyota, on the other hand, utilizes 

multiple designs even during production.  

While the SBD implementations are similar in nature, Toyota’s implementation 

has two distinct benefits. The first is the relationship with its vendors. Toyota is able to 

take advantage of its relationship with vendors and work with them to expand the design 

space. The vendors participate in the SBD process and work with Toyota in prototyping. 

In the DOD guidance, prototyping feeds design requirements for contracting. The 

winning vendor does not participate in the DOD SBD process but leverages their own 

SBD approach if required in the contract, in order to reach a converged design. The 

second benefit is Toyota’s ability to continue prototyping beyond the CDR and into 

production. Toyota is willing to spend more money on the prototyping to find a 

successful design because they know it will eventually lead to profit via a quicker design 

to production phase   In DOD acquisition, the government cannot afford such lax policies 

with spending. While SBD has seen some benefit as shown in the case studies, it remains 

to be seen if the DOD can reap the same benefits as Toyota. 

L. TAILORING NAVY ACQUISITION FOR SET BASED DESIGN 
SUMMARY 

This chapter introduced the DOD and Navy acquisition frameworks to detail the 

administrative structure and tailoring opportunities afforded within the instructions. 

Defense acquisition directives and instructions, which affect the application of SBD, 
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were identified. SBD is discussed concerning the core Defense Acquisition Program 

Models and how hardware intensive systems lend themselves more to the use of SBD as 

opposed to software intensive systems. The particular tools needed for SBD execution 

and the programmatic impacts of SBD were discussed, including delaying decisions and 

ways to communicate effectively in sets. The role of prototyping in SBD and the use of 

prototyping to gain technical knowledge and narrow the solution space were also 

examined. Following the discussion, two SBD scenarios were presented and analyzed to 

demonstrate how tailoring SBD can maximize its benefits. A comparison of the two 

scenarios follows the analysis to portray the differences of each circumstance. 
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V. CONCLUSION 

A. SUMMARY 

This project examined the potential use of SBD principles and methodologies as a 

part of Defense Acquisition. Since weapon system acquisition has been plagued by time, 

funding, and requirement constraints, the benefits of SBD provide motivation for such a 

study. Further, it sought to provide specific guidance for DOD program managers and 

systems engineers who may choose to employ SBD. This project answered the following 

research questions:  

1. What is SBD and how can it benefit defense acquisition? 

SBD is a system engineering design methodology which is centered around the 

concept of maintaining an expanded design space to include all design possibilities for as 

long as practical, while delaying critical design decisions until sufficient information is 

known to eliminate alternatives that are infeasible (Sobek et al. 1999). The paper 

examined how, according to Sobek and his coauthors, SBD advocates systematically 

narrowing the set of possible designs while imposing minimum constraint (1999). Based 

on the principles set forth in their work, SBD looks for the intersection of the different 

required system functions among the feasible sets, and eliminates those alternatives 

outside these overlapping regions (1999). According to Sobek and his cowriters, the 

principle integrating by intersection contrasts from the PBD methodology, which 

optimizes functions in a compartmentalized fashion and then attempts to bring the 

optimized functions together in an integrated solution at the end, resulting in optimized 

subsystems, but an overall suboptimal system design (1999). By integrating at the 

intersections (vice optimized silo), a better overall system design can be achieved (1999).   

SBD has the potential to benefit defense acquisition programs. However, even 

though Toyota’s use of SBD proved to be highly successful, employing it as part of 

government acquisition is a different process. According to the case study of Naval 

Surface Warfare Center Carderock Division’s three-month design exercise presented by 

Mackenna and his co-authors, which compared and contrasted the application of PBD 
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and SBD, SBD is more flexible when faced with requirements changes during design 

execution (2014). Their results showed how SBD enabled the Carderock SBD team to 

absorb imposed requirements updates more easily than the PBD team who performed 

more design rework and assume additional design risk to maintain schedule (2014). A 

defense acquisition program execution could use SBD to maintain flexibility in the face 

of externally imposed requirements changes. 

Furthermore, through the case study analysis in Chapter III, the following are 

additional benefits of using. SBD establishes system design feasibility before 

commitment where design development is not limited to a single solution. Engineers 

develop parallel system-level designs and delay decisions about system requirements 

until the understanding of trade-offs is sufficient. The method continually promotes 

design discovery while allowing flexibility for requirements change. This method defers 

cost commitment until sufficient design detail permits selection, allowing for a longer 

period for stakeholder influence and feedback.  

2. What factors make a program a good candidate for employing a SBD 
approach in defense acquisition? 

Hardware intensive systems are good candidates for employing SBD. The DODI 

5000.02 lists six different acquisition program models, one of which is hardware 

intensive programs. Hardware intensive systems lead themselves to the development of 

tradeoff curves and surfaces to allow for easier application of tradeoff analyses among 

sets of possible solutions, as advocated in SBD. Therefore, hardware intensive programs 

are good candidates to use SBD. 

Programs using SBD should use the correct tools and prototyping. Set Based 

Design is superior when done with the correct tools, which includes incorporating 

prototyping into the program baseline. Good candidates for the SBD methodology 

include those programs that have either access to or the funding available to develop the 

design analysis tools needed. Programs that seek to utilize SBD should perform sufficient 

planning and budgeting to employ SBD enabling tools such as FACT, LEAPS, and 

ASSET early in the design process. In addition, prototyping should be budgeted into the 
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program prior to establishing the program baseline to support low fidelity prototyping of 

multiple alternatives to facilitate set reduction.  

Set Based Design allows for delaying of system life cycle cost commitment. 

However, the team predicts that additional costs arise early in the design process to 

utilize the analysis tools to create low fidelity prototypes to map and narrow the design 

space. Low fidelity prototyping is a critical enabler for the SBD process pre-Milestone B 

and will better promote trade-offs and the exploration of the design space. Ensuring 

sufficient funding is in place at key times in the acquisition process ensures the proper 

steps to map and reduce design space adequately. 

3. What effect does SBD have on overall system costs and risks in support of 
defense acquisition?  Are the potential benefits worth it? 

Set Based Design focuses on delaying cost commitments until there is sufficient 

knowledge to make proper decisions while mapping and narrowing the design space. 

When delaying cost commitments, management and team members have a longer 

duration of influence, which reduces risks to the program (Singer et al. 2009). Feedback 

flows into the system design, as more information about design requirements become 

apparent and better understood. SBD requires increased funding earlier in the program to 

map properly the design space versus the alternative PBD methodology. Higher upfront 

costs, in order to utilize tools and create multiple low fidelity prototypes to achieve a 

more global solution, are worth it, as the outcome is closer to meeting user requirements 

when delivered to the fleet, resulting in lower overall cost and risk. In theory and in 

practice in the commercial world, SBD is a better alternative for both cost and risk. 

Unfortunately, there is very little literature available on implementation of SBD in DOD 

acquisition. It remains unknown if SBD can bring the same benefits to defense system 

acquisitions as it has to industry. 

4. What instructions and processes would have to be tailored or revised to 
facilitate PORs to use SBD in their development activities?  

 The incorporation of SBD within acquisition programs will likely require tailoring 

of existing DOD processes. However, SBD can be accommodated within the existing 
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instructions without revision. DODI 5000.02 reiterates the authorization for MDAs to 

tailor programs to meet the DODD 5000.01 primary objective (USD(AT&L) 2015). 

Tailoring of processes, reviews, or procedures to incorporate and take advantage of SBD 

design processes is available to the MDA as they see appropriate (USD(AT&L) 2015). 

SECNAVINST 5000.2E describes an overview of the Navy’s acquisition management 

process including the 2-Pass/6-Gate DON Requirements and Acquisition Governance 

Process (2011). The application of this process will need to be tailored to best incorporate 

SBD into the development Navy systems. The two scenarios provided in Chapter IV 

show examples of tailoring the 2-Pass/6-Gate process to employ better SBD within the 

Navy’s acquisition process. 

B. REVIEW OF TAILORED SET BASED DESIGN SCENARIOS  

Using lessons learned from the SBD DOD case studies, attributes and 

commonalities were examined to form guidelines for SBD implementation within the 

SECNAVINST 5000.2E 2-Pass/6-Gate process. Two different acquisition strategy 

scenarios were analyzed, one utilizing an RFP to award the design to a vendor, while the 

other being a government led design effort. Each scenario should implement the SBD 

methodology in a comparable manner with the tailoring of the gate entrance and exit 

criteria to promote SBD characteristics. The SBD process can be partitioned into two 

major phases. The pre-Milestone A phase consists of mapping and defining the 

requirements space. The post-Milestone A phase consists of mapping and defining the 

material space and narrowing the solution sets to the best-valued design. The CDR, or 

product baseline, is the most appropriate place to determine the design space. At this 

point in the acquisition process, continuing to make design changes (leaving trade space 

open), may be costly and inefficient. The differences of each SBD scenario emerge when 

comparing programmatic characteristics such as process flexibility, design control, 

resource accessibility, stakeholder influence, execution efficiency, competition, and 

design risk within the bounds of each acquisition strategy. While utilizing SBD, it is best 

executed within the government led design team construct. There are also notable 

differences with how industry, such as Toyota, leverages SBD versus the government’s 
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ability to execute the methodology. These constraints are inherent of the nature of DOD 

acquisition and Toyota’s profit driven business model.  

C. FURTHER RESEARCH AREAS 

A detailed analysis of applicable SBD processes for potential SBD programs or 

platforms would be useful. Further research should look into the development of targeted 

acquisition strategies for possible programs, followed by the examination of specific 

SETR checklists. Growing and maturing MBSE tools to perform SBD analyses and 

eliminate alternatives is another area that would advance SBD in the world of systems 

engineering. This would enable more fidelity in the specific deliverables applicable to 

SBD. Developing SBD guidelines for more program acquisition models such as the 

accelerated and incrementally deployed models would help future program managers. 

Additionally, further education and training of the government workforce to employ 

existing tools is needed; in parallel, standardization of SBD tools and mechanisms used 

ought to be investigated. 

D. CONCLUSION 

This paper provides the guidelines and assumptions for how to apply the SBD 

methodology within the constructs of the DOD acquisition framework. Resources, risks, 

and programmatic factors are evaluated against the PBD methodology. These 

recommendations are just the first steps for the long-term successful use of SBD within 

the DOD. The initial foundation for applying SBD to DOD acquisition has been built 

with a clear understanding of how to execute its core principles and leverage its key 

characteristics while abiding by the acquisition instructions. The recommendations 

provided in this paper attempt to break the ground of incorporating the SBD methodology 

within the DOD, a mammoth endeavor.  
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