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ABSTRACT 

Adaptive optics offer the potential to reduce the high cost and long lead time 

associated with manufacturing mirrors for spaced-based telescopes by allowing lighter 

materials to be substituted. These lighter materials lack the optical performance of 

traditional space-based mirrors. Deformable mirrors could be used to correct for surface 

aberrations in order to improve the optical quality by altering their surface to adjust the 

wavefront. 

Research focused on placing a deformable mirror at the exit pupil of a simulated 

telescope. Experimental work first studied a severely degraded one-meter carbon fiber 

reinforced polymer mirror to establish a baseline. Simulations were conducted to see how 

a notional deformable mirror would be able to negate the optical effects due to a distorted 

mirror in combination with field angle effects.   

Results from the investigation showed that a deformable mirror yielded the 

greatest benefit when applied to a distorted mirror surface. Increasing the actuator count 

on the deformable mirror boosted the root mean square performance across all field 

angles. Increasing the actuator stroke yielded minimal benefits after a certain reduction in 

wavefront had already been achieved. Further research is recommended to focus on using 

a continuous deformable mirror to account for field angle effects.  
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I. INTRODUCTION 

In an age of decreasing budgets and rapidly developing technologies, the United 

States can maintain strategic and operational advantages in space through production of 

cheaper and more capable satellites by innovative means. One such method is the use of 

adaptive optics in spaced-based telescopes.   

A. PURPOSE 

Issues of cost and weight currently face high-resolution electro-optical (EO) 

satellites as remote sensing vehicles attempt to image the Earth in increasing detail. Both 

of these issues are directly related to the primary mirror. A way to reduce both factors is 

by introducing lightweight materials for use as primary mirrors. The principal issue with 

these lighter mirrors is that they lack the optical performance of the monolithic glass 

mirrors currently in use. Placing deformable mirrors (DM) in the optics’ path would 

allow for corrections to the wavefront required by these less-than-perfect lighter mirrors. 

By exploring the possibility of placing a DM in the aft portion of an optical telescope, 

this thesis will examine the associated design considerations and effects on performance. 

To accomplish this, design factors for an optical telescope will first be outlined. A 

baseline for a degraded mirror will be established by taking measurements from a 

damaged carbon fiber reinforced polymer (CFRP) mirror. Finally, a theoretical telescope 

will be modeled with both a perfect primary and distorted mirror for an optical layout that 

has the DM at the exit pupil location. At this location, the DM will attempt to correct the 

wavefront for both aberration and field angle effects.  

B. OVERVIEW 

In addition to the technological challenges of placing large-aperture telescopes in 

space, the Department of Defense (DOD) and the Intelligence Community face cost 

constraints. The National Security Space Strategy seeks to promote a robust space 

capability that is consistent with defense objectives and is affordable to the DOD [1]. 

Currently, heavy, finely polished monolithic mirrors are manufactured over several years 

before being integrated into an EO satellite. The primary mirrors are not only heavy, but 
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also expensive. Additionally, the mirrors require a long lead time to manufacture. The 

aperture of a telescope directly affects parameters such as angular resolution and 

sensitivity [2]. Thus, larger mirrors are desired in order to have increased resolution. 

These larger mirrors not only present cost and weight issues themselves, but also impose 

constraints on the launch vehicle, which must have fairings that can accommodate their 

size. Researchers have been pursuing low-density materials for use as primary mirrors in 

order to negate these undesired effects. However, these lighter materials are more 

susceptible to thermal, vibrational, gravitational, and alignment issues [3]. If these lighter 

materials are to be used they will require a means to correct for their distortions. The use 

of adaptive optics is one such means to correct for these errors.   

This project is part of a much larger investigation involving various 

configurations utilizing adaptive optics to correct for imperfections in the primary mirror 

of space-based telescopes. Previous work examined a woofer-tweeter configuration in 

which actuators were embedded in the primary mirror to make them actively controlled 

for wavefront correction. A piezoelectric DM has also been placed in the optical path of a 

passive primary mirror in another attempt to correct the wavefront. This thesis seeks to 

look at a lightweight passive primary mirror scenario in which a DM is placed at the exit 

pupil to overcome not just wavefront errors caused by the lighter materials, but also 

affects from field angle magnification.   
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II. SPACE-BASED TELESCOPE DESIGN CONSIDERATIONS 

A. ADAPTIVE OPTICS 

Adaptive optics is a system that can improve the optical performance of a 

wavefront by sensing wavefront distortions and correcting them through the use of a 

deformable mirror (DM). A DM is a device which can distort its surface in order to 

compensate for various aberrations by pushing or pulling actuators located behind the 

optical surface [4]. Examples of aberrations include external sources such as atmospheric 

effects and imperfections on the surface of the mirror. Key metrics of a deformable 

mirror include aperture size, actuator stroke length, number of actuators, and response 

time.    

The benefits of applying adaptive optics to spaced-based applications is that the 

heavy, highly-polished mirrors would no longer need to be just that, a high quality piece 

of glass. Instead, different and lighter weight materials, such as a CFRP mirror, could be 

used as substitutes. A mirror made of finely polished glass would be replaced by a mirror 

that has some imperfections that cause distortions to the wavefront but are corrected for 

by a DM.   

B. DESIGN CONSTRAINTS 

The first task in designing an EO telescope is identifying the requirements. These 

factors include the desired target of interest, preferred resolution, expected brightness of 

the target, and wavelengths of interest. The wavelength can encompass a broad spectral 

range from the visible spectrum to the near infrared [5]. Once these parameters have been 

determined, requirements for power, structure, thermal, propulsion, communication, 

guidance, and navigation and control can be calculated. Finally, the satellite must be able 

to fit inside the launch vehicle and meet mass and volume constraints. 
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C. OPTICAL CONSIDERATIONS 

When designing optics for space-based telescopes the natural starting point is the 

optical path. Considerations include the field of view (FOV), the diffraction-limited 

wavelength, the sensitivity, and the image quality [6]. Typically, remote-sensing satellites 

are placed in low earth orbit (LEO). This environment presents thermal swing challenges 

as the vehicle goes in and out of eclipse. As the space vehicle goes in and out of the 

Earth’s shadow materials will expand and contract. 

One of the first parameters determined is the size of the primary mirror. For 

monolithic mirrors, the typical cutoff size is approximately three meters so that the 

satellite is able to fit in the shroud of the launch vehicle [6]. Additionally, the primary 

mirror makes up a significant portion of the weight of the satellite. For example, the 

Hubble Space Telescope (HST) used ultra-low expansion (ULE) glass for its 2.4 meter 

primary mirror. While ULE glass has excellent optical qualities, its high-areal density of 

180 kg/m2 makes it exceptionally heavy [7]. The weight also makes increasing the 

diameter of the primary mirror a challenging structural problem for the spacecraft in 

addition to fitting inside of a launch vehicle. In contrast, the beryllium mirrors on the 

James Webb Space Telescope (JWST) have an areal density of 13 kg/m2. However, these 

mirrors took many more years to build than those of HST and are much more expensive 

than HST’s primary mirror [8]. 

Exposure time is inversely proportional to the area of the aperture in addition to 

the intensity of the incoming light and the sensitivity of the detector. Lenses and/or 

additional mirrors can be used to focus light rays in order to artificially create the effects 

of having a larger aperture. However, lenses only work when looking on axis. Wide field 

of view (WFOV) systems, such as remote-sensing telescopes, require complex lens 

configurations so the system can image off axis. 

The segmented mirror telescope (SMT) located at the Naval Postgraduate School 

(NPS) is a technology demonstrator for a segmented space-based telescope. The field of 

regard (FOR) is the total possible area that could be imaged by the telescope at any given 

moment. The FOV is the area that can be imaged by the focal plane array (FPA). A fast 
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steering mirror is used to move the FOV within the FOR so that the spacecraft does 

not need to physically move to a new target as long as it is within the FOR. This is known 

as field angle steering. The difference between FOR and FOV for SMT is shown in 

Figure 1. 

 
Allen [9] showed on the segmented telescope that as the FOV moves further away from 
being on axis, represented by the central purple circle, effects of field magnification start 
come into play. These magnification effects are denoted by the concentric rings of 
various colors representing specific magnification values as shown in the contours of the 
plat and are a result of path length error.  

Figure 1.  Field of Regard and View for the SMT. Source: [9]. 

D. DESIGN 

Mirror configurations include using one or multiple mirrors to relay light. A 

multi-mirror option is preferable as additional mirrors help correct for increasing orders 

of aberrations. For example, a two-mirror arrangement was used in HST to avoid the 

effects of spherical aberrations and coma. Similarly, JWST used a three-mirror system to 

correct for spherical aberrations, coma, and astigmatism. In a three-mirror system, the  
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first mirror is the primary mirror, the second is the secondary mirror, and the third is the 

tertiary mirror. Figure 2 is a depiction of how one-, two-, and three-mirror systems could 

be configured. 

 
From Feinbert et al. [6], ray trace diagrams for one- (a), two- (b), and three-mirror (c) 
telescope designs with the mirror and FPA locations annotated.  

Figure 2.  Ray Trace Diagrams for a One- (a), Two- (b), and Three-Mirror 
Telescope (c). Adapted from [6]. 

Besides the number of mirrors, the shape of the mirror also plays a role in 

correcting optical aberrations. The shape can be parabolic, ellipsoidal, or hyperbolic. 

Similarly to that of the number of mirrors, the shape of the mirror has the capability to 

correct for some aberrations. For example, consider a two-mirror system in which the 

primary is a paraboloid, the second conic surface will be located so that its foci is 

coincident with that of the primary mirror. The secondary mirror can either be an 

ellipsoid or a hyperboloid. When the secondary mirror is an ellipsoid, it is called a 

Gregorian telescope; when it is a hyperboloid, the term Cassegrain telescope is used. The 

differences in these designs is shown in Figure 3. A three-mirror system would look 

similar.   
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Bely [10] showed how two-mirror conic Gregorian (a) and Cassegrain (b) telescope 
designs differ in relation to the shape of the secondary mirror. Both secondary mirrors are 
able to correct for spherical aberrations and are dominated by coma, but the Gregorian 
has a smaller image surface curve while the Cassegrain has a more compact telescope 
tube length.  

Figure 3.  Two-Mirror Conic Surface Design Options. Source: [10]. 

The general formula for expressing the conic surface of a mirror is given by 

  2 2 22 1 0Rz e z     , (2.1) 

where the eccentricity of the conic is e , R is the radius,   is the running surface radius, 

and z is the size.   

A multi-mirror telescope can be compared to that of a single mirror system 

through what is known as the equivalent focal length, #f . This is often expressed in 

terms of a ratio, and is also known as the focal ratio, the f number, or N ,  

 #
f

f N
D

  ,  (2.2) 

where f is the focal length and D is diameter of the mirror. These values are important in 

mirror fabrication as they relate directly to the required curvature of the mirror. In 

general, the larger the #f , the easier the mirror is to fabricate. This especially holds true 

for large mirrors in which structural supports must be considered. Ideally, the mirror 

should be self-supporting to reduce weight, cost, materials, and complexity. However, the 

FOV and the #f are inversely proportional. Additionally, the larger the #f , the larger the 

given cut-off frequency will be. These larger values necessitate an overall more complex 

optical system.   
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Many of the factors related to the telescope design have competing requirements. 

A value called “Optical Q” is the ratio of the resolution of the optics to that of the pixel 

size on the FPA and can be expressed as 

 
#f

Q
p


 , (2.3) 

where the value p  represents the size of the pixel on the focal plane array and  is 

median wavelength of interest. Optical Q provides the maximum resolution that can be 

afforded by diffraction with the minimum number of pixels. A large value of Q reduces 

the ground sampling distance, but too large of a value increases exposure time, making 

the system more susceptible to the effects of jitter. Too small of a Q reduces resolution 

and can cause the system to cut off before the Nyquist limit. A value of one has 

traditionally been used for remote sensing satellites, as seen in Figure 4.   

 
Auelmann [11] tabulated a variety of key performance values for several factors related 
to the design of a telescope for several of the most well-known remote sensing optical 
satellites.   

Figure 4.  Key Properties for a Selection of Optical Remote Sensing Satellites. 
Source: [11]. 

E. ENVIRONMENTAL CONSIDERATIONS 

The mirror must maintain a fairly constant temperature across its surface in order 

to avoid thermal gradients. These gradients would otherwise distort the curvature of the 

mirror and adversely affect the optical path. This requirement presents a challenge as the 
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vehicle goes in and out of Earth’s eclipse at a periodicity as low as 90 minutes. A CFRP 

mirror has a low thermal expansion coefficient and a low thermal conductivity value. 

These parameters prevent the mirror from deforming appreciably with temperature 

changes. However, when it does experience a change, the mirror quickly adjusts to the 

temperature of its surroundings. The thermal properties and low-density material of  

CFRP make it a prime candidate as an alternative material for the primary mirror.    

Contamination of the mirror is another area of concern. Particles can adhere to the 

mirror surface as a result of the manufacturing process, from outgassing in space, or from 

natural particulates found in orbit. Ionized particles from the space vehicle’s propulsion 

system can also adhere to the mirror’s surface. The contamination does not cling evenly 

to the surface, which causes localized areas of uncleanliness. Besides disrupting the 

wavefront at the concentrated area, fogging of the mirror surface can occur. 

Contamination will also decrease the reflectivity of the mirror, which results in localized 

heating. The heating is a consequence of the absorptivity and emissivity at the 

contamination site no longer being equal to that of the rest of the mirror. This temperature 

difference can cause mirror distortion, which adversely affects the wavefront.  

Lightweight materials help reduce launch costs by reducing mass. However, the 

space vehicle must be able to withstand the high stresses experienced during liftoff in 

addition to those of the space environment. The more rigid a structure is, the greater its 

ability to withstand the launch environment. However, the rigidity of the material also 

negatively affects the ability of the system to correct for low-order optical errors once on 

orbit.      

Preventing stray light from other light sources and thermal emission are additional 

considerations. Baffles help control the amount of unwanted light from reaching the 

sensor. These devices also aid in preventing contamination of optical surfaces in the 

telescope. Contamination will decrease the amount of photons reaching the sensor due to 

the decreased reflectivity in addition to thermal effects.  
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F. OPTICAL SOURCES OF ERROR 

Aberrations can result from errors in the optical path due to the design as well as 

errors induced by thermal effects or gravity. Challenges arise as the system is designed, 

built, and tested in a one-g (Earth surface) environment, but will operate at zero gravity. 

The five primary aberrations are shown in Figure 5. 

 
Bely [10] shows the five primary optical aberrations affecting telescopes. The first one, 
spherical, is a result of light rays not converging at the same location and is the only 
aberration with effects on axis image quality. The remaining aberrations are dominant 
when looking off axis. Coma is a result of off axis light rays not converging at the same 
location. Astigmatism comes from a difference in focus between light in the 
perpendicular direction and that of the on and off axis plane. Field curvature happens 
when the image forms on a curved surface instead of a plane. Distortion is a consequence 
of scaling due to differences in path length caused by field angles.  

Figure 5.  The Five Primary Optical Aberrations. Source: [10]. 

The last four aberrations in Figure 5 are the result of off-axis light. Off-axis light 

is a function of geometry, which is dependent on the path of the incoming light. These 

distortions are known as high-order aberrations. Multi-mirror systems are preferred as 
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they can correct for these higher order aberrations with the addition of each additional 

tertiary mirror. 

Diffraction occurs when light hits the edge of an object and bends around it. This 

causes the light to spread [12]. Dust and particulates in space and in the atmosphere can 

cause light to diffract. Diffraction will cause images of a point source to appear blurred 

and with haloes. It is important that surfaces inside a telescope are as smooth as possible 

in order minimize the amount of diffraction from reflection. Imperfections in the design 

can also cause further diffraction of the light and distortion of the wavefront. This case 

will be seen later in Chapter V in the design of the simulated telescope. 

G. WAVEFRONT ERROR 

Collectively, all sources of error can be combined into what is known as the 

wavefront error. The primary mirror is considered to be the reference surface. The 

difference between the wavefront at the reference surface and that of the wavefront at the 

sensor is called the wavefront error. The magnitude of the error is the root mean square 

(RMS). The RMS can be quantified in terms of nanometers or as fraction of the 

wavelength and is calculated by 

 
2

1

N

iiRMS
N


 

, (2.4) 

where   is the wavefront measured, while N is total number of wavefronts recorded. For 

this report, RMS will be considered in terms of wavelength. “Near-perfect” conditions 

result when the RMS error is less than the wavelength divided by fourteen [10].   

H. FIELD ANGLE MAGNIFICATION 

Field angle affects are a result of the linear approach due to the paraxial optics 

method. This approach relates the angles and heights of a ray traversing through a 

system. It assumes that a plane wave reaches a point all at once for a given time. 

However, this assumption does not hold true due to differences in the path length of the 

light for a wide field of view system. In such a telescope, the FOV is steered across the 

FOR resulting in light reaching the detector at different times. This is of particular 
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importance because the optics in a telescope have a magnifying effect that results from 

the difference in diameter of the primary mirror and that of the DM. Magnification 

dramatically increases the small differences seen at the primary mirror when compared to 

the DM. This means that the edges of the FOV are more prone to error than the center. If 

the magnification is too high, a deformable mirror will not be able to correct for the full 

FOV. Too great of a magnification will saturate the DM’s actuator stroke, preventing 

further correction of the wavefront. The effects of magnification and how it relates to the 

required actuator stroke of a DM will been seen in Chapter IV. 
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III. EXPERIMENTAL SETUP 

A. CFRP CORRECTION 

A one-meter cell-type core structure CFRP mirror was supplied to NPS in 2015. 

The mirror has an aluminum face sheet optimized for the visible spectrum and is shown 

in Figure 6.  

 
A one-meter parabolic aperture carbon fiber reinforced polymer (CFRP) mirror with cell 
type core structure manufactured by Composite Mirror Applications. The mirror was 
developed in collaboration with the Naval Research Laboratory (NRL) and Sandia 
National Laboratories to support the development and manufacturing of large thin-shelled 
mirrors. The mirror is a manufacturing demonstrator that suffers from numerous 
fabrication defects.     

Figure 6.  One-Meter NPS CRP Mirror  

The mirror suffers from several defects that occurred during the manufacturing 

process. These errors include print thru of the core to the mirror surface and surface 

defects at the center of the mirror as well as edge defects. These errors occurred when the 

mirror was removed from the mandrel [13]. All defects are clearly visible in the 

interferometric reading shown in Figure 7. 

 



 14

 
This image is an interferometric measurement of the CFRP mirror before being reflected 
off of the DM. All optical defects are easily visible as annotated. The large number of 
fringes on the surface indicates that the mirror is of very poor optical quality. 

Figure 7.  NPS CFRP One-Meter Mirror Interferometric Measurement 

The poor optical quality of the CFRP mirror can be seen in the optical fringes that 

appear in Figure 7. The fringes are denoted by the black and white stripes seen 

throughout the image. Each subsequent set of fringes is a difference of one wavelength in 

phasing. The number of fringes in an interferometric reading is an indication of how 

focused the image is. The number of fringes should be kept to a minimum. The large 

number of fringes present in the reading indicates the poor optical quality of the mirror. 

The optical layout shown in Figure 8 has light starting at the interferometer and 

reflecting across a series of mirrors before reaching a Boston-492 DM. The quarter wave 

plates polarize the light so that as it reflects off the DM, the light is then redirected at the 

beam splitter to the one-meter CFRP mirror before returning back to the Zygo 

interferometer. The multiple combinations of two- and four-inch mirrors were necessary 

so that the system would have the correct focal length with the DM at the exit pupil.  
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One-meter CFRP optical layout with the Boston 492 DM at the exit pupil location of the 
CFRP mirror. The red line indicates the beam’s path from the interferometer to the CFRP 
mirror while the green line is the return path from the mirror to the interferometer. 

Figure 8.  Experimental Optical Schematic for the CFRP Mirror Correction 

B. DEFORMABLE MIRROR 

A segmented Boston Micromachines 492-SLM deformable mirror consisting of 

492 actuators in a square pattern was used to correct the wavefront of the CFRP mirror. 

The device provides high-resolution control at a 60kHz frame rate. An image of the 

Boston 492 DM is shown in Figure 9 as it appears in the optical schematic from Figure 8.  
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The DM is the small circular mirror annotated in the figure. The DM is encapsulated 
inside an enclosure that is wired bonded to chip attached to the circuit board behind the 
DM. The ribbon cable at the top of the image sends the appropriate voltage to each 
segment of the mirror. The Boston DM used in this experiment had three segments that 
were previously determined to be inoperable: 1, 43, and 61. At these actuator positions, 
the difference in wavefront position was set to zero so that the system would not attempt 
to correct these areas.  

Figure 9.  Boston 492-DM as Shown in the Optical Schematic from Figure 8 

C. WAVEFRONT SENSING 

A Zygo GPI XPHR laser interferometer operating at a wavelength of 632.8nm 

was used to sense the wavefront reflecting off the CFRP mirror. After the interferometer 

took a reading, the data was sent to MetroPro software for analysis. A screenshot from 

the MetroPro software with a measurement from the Boston DM is shown in Figure 10. 
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Screenshot from the MetroPro software displaying a reading 
from the Boston 492-SLM DM. 

Figure 10.  Screenshot from the MetroPro Software 

D. CONTROL 

The Boston DM can be commanded to apply various voltages to different actuator 

segments in order to vary the height of each segment as needed. An integral gain control 

law was established to compare the height of each actuator to that of a desired height. 

The control law attempted to minimize the height difference in each actuator compared to 

that of the desired state. This method constantly integrates the system error and attempts 

to correct the difference through a proportional integral law as shown in the Simulink file 

in Figure 11.   

 
MATLAB Simulink integral gain control model. The desired shape of the mirror is input 
as Rflat while the actually measured data is the wavefront error. The system attempts to 
minimize the difference between these two values, taking into account saturation and a 
time delay. 

Figure 11.  Simulink Integral Gain Controller.  
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The voltage required to achieve the desired state in the control law was 

determined through 

      1 eu k u k k   ,  (3.1) 

where  is the update gain value while   is the phase of the wavefront. The DM was 

commanded to correct for the surface errors of the CFRP mirror in order to minimize the 

wavefront RMS value. The before and after images as displayed by the MetroPro 

Software are shown in Figure 12. 

 
MetroPro screenshots of the CFRP mirror before (a) and after (b) correction by the 
Boston 492-DM. Areas in red indicate high points while blue areas indicate low points. 
Measurements were taken in relation to waves. For this experiment, a wavelength of 
632.8nm was used. The before and after RMS values are located below the wavefront as 
annotated. 

Figure 12.  Before (a) and After (b) CFRP Mirror Correction 
by the Boston 492-DM 

Before correction, the CFRP mirror had a peak to valley of 7.512 waves and a 

RMS value of 1.546 waves. After correction by the DM, the CRP mirror had a peak to 

valley of 4.774 waves and an RMS value of 0.883 waves. While the corrected wavefront 

is still not perfectly flat, the DM was able to reduce the wavefront error by approximately 

half the original value, despite the extremely poor initial optical quality of the mirror. 
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Utilizing a mirror with improved optical quality could result in further progress in 

decreasing the RMS value. Additionally, using a different DM with another surface type 

(such as a continuous DM), or a DM with a greater number of actuators or a DM with 

greater stroke, all additionally have the potential to further improve the RMS value.  

Ideally, Figure 12 should appear as a monochromatic circle without any black 

dots or lines appearing inside the disk. However, black spots are clearly present in the 

figure. These spots represent dropouts in the data due to the interferometer being unable 

to take a measurement. Dropouts due to the mirror fabrication process are seen as large 

black spots while the smaller black regions in a checkerboard pattern are a result of the 

gaps between actuator segments. Mueller [14] previously characterized the dropout due 

to the gaps between segments for the DM by taking an interferometric reading of the DM 

surface. His results appear in Figure 13. 

 
Mueller [14] measured the 2D (a) and 3D (b) surface map for a segmented DM. The gap 
between segments of the DM is clearly visible as the vertical and horizontal lines seen in 
(a) and (b). These lines indicate pixel locations where the interferometer was unable to 
take a measurement.  

Figure 13.  2D (a) and 3D (b) Wavefront of Segmented Boston 492 DM. 
Source: [14]. 

The checkerboard pattern in Figure 13 correlates well to the pattern seen in Figure 

12, suggesting that the DM is the source.  

 



 20

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 21

IV. NOTIONAL TELESCOPE DESIGN AND CORRECTION 

A. TELESCOPE DESIGN  

A notional optical telescope was designed using NPS’ SMT as a starting point to 

evaluate figures of merit for a DM placed at the exit pupil. Because the SMT has an 

extremely complicated telescope design, several modifications were made in order 

decrease the scope. The three-mirror hyperbolic optical layout for the SMT is shown in 

Figure 14. 

 
Allen [9] sketched the optical layout of the SMT. The design was the starting part in 
building a simpler model to test the previously constructed DM models. The blue 
surfaces indicate the position of various mirrors in the system while the gray lines 
represent the light rays reflecting off the various surfaces. 

Figure 14.  Optical Layout of the SMT. Source: [9]. 

The first fold of Figure 14 brings the light rays off axis in order to avoid blocking 

the beam, while the tertiary mirror creates a real exit pupil at the fast steering mirror 
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(FSM). The ideal location for the DM is at the exit pupil: in the SMT design, the FST is 

located at the exit pupil. To place a DM at this point would require the FSM to also be a 

DM. Such a design would not only increase complexity but would require the size of the 

DM to match the diameter of the exit pupil. At the current location of the FSM the exit 

pupil has a diameter of 150mm. A gimbaled FSM of this size is not commercially 

available. Therefore, the FSM was removed from the telescope design and replaced with 

a DM. The simplified design will be limited to looking on axis and will have small field 

angle magnification effects. Additionally, instead of using a segmented primary mirror, a 

passive three-meter monolithic mirror was used in order to more closely resemble the 

remote sensing satellites currently in orbit. Figure 15 shows the ray trace diagram of the 

Zmax model for the simplified design. The model was designed for simulations only and 

is not meant to represent an engineering model. The four colors in the diagram, blue, 

green, red, and yellow represent field angles of 0.0, 0.25, 0.5, and 0.75 degrees, 

respectively. The location of the DM is at the exit pupil, which is where the four colored 

rays converge, as annotated in Figure 15.   

 
This ray trace diagram developed in Zmax for a three-meter hyperbolic telescope features 
multiple field angle aberrations. Blue rays indicate the path of light for on-axis viewing. 
Green rays are 0.25 degrees, red 0.5 degrees, and yellow 0.75 degrees off axis, 
respectively. 

Figure 15.  Zmax Ray Trace Diagram for Notional Telescope 
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Two simulations were conducted utilizing the telescope developed in Figure 15. 

In the first simulation, all mirrors in the telescope had perfect surfaces with no defects. 

The only wavefront aberrations in this system were a result of field angle magnification 

effects, or as result of errors inherent to the design of the telescope. Utilizing a previously 

developed DM model built by Mueller [14], a 100-actuator continuous DM in a 10 x 10 

rectangular configuration was placed into the control law developed in Chapter III.   

In the continuous DM model, Mueller [14] developed the influence function for 

the DM as a cubic form. The influence function is the shape of the mirror surface in 

response to a single actuator being actuated. Each actuator has its own influence function; 

these can collectively be combined into columns to form the influence matrix. This 

matrix is the collective response of the mirror surface in response to multiple actuators 

being actuated. The following Gaussian influence function was used to generate the 

displacement for the mirror’s surface  

  
   2 2

2

2
, exp

c clnb x x y y
W x y

d




        
  

,  (4.1) 

where d is the spacing between actuators and b is the Gaussian index [15].  

The desired mirror shape is ( , )W x y . The desired shape is then associated with a voltage, 

cV , which controls the height of each actuator in relation to a specific actuator number c 

for the coordinate plane. The total number of actuators is R. The desired mirror shape can 

be expressed in the following relationship.  

    
1

, ,
R

c c
c

w x y V W x y


   (4.2) 

The model developed using this method was previously validated by comparing a 

surface map measurement taken by Bifano et al. [16] and associating the model results 

with actual measurements. The results of this comparison are shown in Figure 16. 
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Mueller [14] compared the results for the Bifano et al. [16] surface map measurements 
and the results of the model created by Mueller [14]. 

Figure 16.  Experimental (a) and Model Results (b) of a Continuous DM. 
Source: [14]. 

As seen in Figure 16, the results of the model are in agreement with the measured 

data. A single actuator influencing its neighbors is present in both images in addition to 

the correct pull down depth for the actuator when a voltage is applied. The results from 

Figure 16 were reconstructed in Figure 17 by having a voltage sent to actuator 24 so that 

the surface would be pulled down.   

 
Actuator 24 can be seen altering the surface of its neighbors when actuated. Blue 
indicates a lower region while lighter colors indicate a higher one. On either side of 
actuator 24 the surface edges of its neighbors lift up slightly.  

Figure 17.  3D (a) and 2D (b) Surface Plots of Actuator 24 
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The 2D images in Figure 16 and 17 agree with one another, indicating that the 

model was correctly translated from the previous work. The effect actuator 24 has on its 

neighbors is important as it correctly indicates the coupled nature of the system. When 

correcting for a wavefront, the DM must not only make adjustments for the surface error, 

but also for the deformation of neighboring actuators that cause undesired effects.  

B. FIELD ANGLE CONSIDERATIONS 

In order to study field angle effects, the optical path difference between rays 

needed to be resolved. McComas et al. [17] proposed a method to solve for the field 

angle effects by accounting for the difference in angles as seen at the primary and 

deformable mirror. To do this, he made the following four assumptions: 1) a perfect 

wavefront was entering the telescope; 2) the primary mirror had distortions; 3) the DM 

and primary mirror surfaces were conjugates; and 4) the DM and primary mirror were not 

the same size. Based upon these assumptions, he derived Equation 4.3, 

 
4 4

( , ) cos( ) ( , )cos( )R PM PM DM DMd x y d x y
   
 

  ,   (4.3) 

where R is the wavefront error to be corrected and PMd and DMd are the surface of the 

primary and deformable mirrors. The value   represents the field angle as seen by both 

mirrors. McComas et al. were able to relate the difference in field angles seen by the 

mirrors by relating this angle to a magnification factor M in the following relation 

 DM PMM  .   (4.4) 

The telescope created in Figure 15 for the first two simulations had a 

magnification factor of 30 based upon the size of the primary mirror in relation to the 

width of the rays at the exit pupil. The magnification relationship allows for Equation 4.1 

to be written as 

 
4 4

( , ) cos( ) ( , ) cos( )R PM PM DM PMd x y d x y M
   
 

  .   (4.5) 

From Equation 4.5 it can be seen that as the angle increases, so too does the path 

error, which makes the resulting error more difficult to correct. The magnification effect 

was accounted for in the development of the Zmax telescope model. In addition to 
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increasing certain portions of the wavefront, field angles cause the image to move in 

relation to the FPA.   

From the Before RMS value in Table 1 it can be seen that with each additional 

quarter degree off nadir, the RMS value before correction more than doubled. This is 

significant because the corrected RMS values after did not keep pace with the Before 

RMS values. However, through correction some reduction in the wavefront was achieved 

for all angles. 

Table 1.   Table of Results for Field Angle Only Correction 

 0.0 (deg) 0.25 (deg) 0.5 (deg) 0.75 (deg) 
RMS Before 0.0072 0.0688 0.1373 0.3217 
RMS After 0.0016 0.0161 0.0348 0.0738 

MATLAB RMS results for the notional telescope simulation with perfect mirrors. The 
system suffers only from field magnification effects. Correction was done by a notional 
10x10 continuous DM with a stroke limit of 3 m . RMS value is denoted in waves. 

The Before RMS value at zero degrees for the perfect mirror system should be 

zero according to Equation 4.5; however, this is not the case (as seen in Table 1). The 

nonzero result indicates that the simulated telescope design has some inherent aberrations 

present due to the optical design.    

The second simulation incorporated the measured wavefront from the one-meter 

CFRP mirror from the experiment in Chapter II and translated that surface onto the three-

meter mirror in Figure 15. However, before this could be done, the experimental data 

needed to be fitted to Zernike polynomials to account for the data points that could not be 

measured by the interferometer. 

C. ZERNIKE POLYNOMIALS 

Zernike polynomials are orthogonal to a unit disk that can extend to an infinite 

number. For this study, only third-order polynomials or less were considered. To create a 

wavefront, the polynomials can be summed by matrix inversion in order to fill in the 

missing data, 
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    
1

, ,
M

i i
i

a Z    


 , (4.6) 

where  ,iZ    are the fitted polynomials evaluated at  ,   on the unit disk. ia  

represents the Zernike coefficients, while the number of Zernike fitted polynomials is 

expressed as M.  

A raw image of the CFRP mirror before being fitted to Zernike polynomials is 

shown in Figure 18.   

 
A 2D(a) and 3D(b) image of the CFRP mirror before correction is shown. The dark red 
indicates a portion of the data was dropped due to the interferometer being unable to take 
a measurement. The imperfections in the mirror due to fabrication are clearly seen in  
Figure 19 (a) as the dark red spot near the center in addition to the checkboard pattern 
created by the gaps between segments in the DM. 

Figure 18.  2D (a) and 3D (b) Raw Wavefront Portion of CFRP Mirror 

The data from Figure 18 was then fitted to third order and below Zernike 

polynomials in accordance with Equation 4.6, using a MATLAB script developed by the 

Naval Research Laboratory as part of research previously done at NPS. The results of the 

Zernike fitted data from Figure 18 for the CFRP mirror is shown in Figure 19. 
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2D (a) and 3D (b) images of a portion of the fitted CFRP mirror with the gaps in data 
filled in. Since the telescope has a circular primary mirror, the data was bounded as 
shown in (a) so it would fit the diameter of the notional telescope. 

Figure 19.  2D (a) and 3D (b) Fitted Wavefront Portion of CFRP Mirror 

The Zernike coefficients that created Figure 20 were then placed into the notional 

telescope shown in Figure 15 so that its primary mirror would have a similar wavefront to 

that of the CFRP mirror. The values of the coefficients for the mirror as calculated by the 

Zernike polynomial script are listed in Table 2. 

Table 2.   Table of CFRP Zernike Coefficients 

Zernike Order Coefficient 
1 -1.70 
2 -1.16 
3 0.021 
4 0.422 
5 -0.376 
6 -0.159 
7 0.555 
8 0.640 
9 0.259 
10 -0.012 
11 1.213 
12 0.696 
13 -0.688 

This is the list of Zernike polynomial coefficients generated for a portion of the CFRP 
mirror. These coefficients were generated in MATLAB and then transferred to the Zmax 
model shown in Figure 15 so that its primary mirror would have a similar wavefront. 
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The same four field angles were then applied to the second simulation. The results 

for the second simulation using a distorted mirror that utilized the coefficients from Table 

2 are shown in Table 3. 

Table 3.   Table of Results for Field Angle and Primary Mirror Correction. 

 0.0 (deg) 0.25 (deg) 0.5 (deg) 0.75 (deg) 
RMS Before 0.9865 1.0067 1.0613 1.1283 
RMS After 0.3041 0.3147 0.3322 0.3124 

Before and After correction MATLAB simulation RMS results for a telescope with a 
primary mirror that has a similar wavefront to that of the one-meter CFRP mirror at NPS. 
Correction was done by a simulated 10 x 10 continuous DM. The RMS values are 
denoted in waves using a wavelength of 632.8nm as was done in the experimental work. 

The difference in RMS values between 0.0 and 0.75 degrees is approximately 

0.14 waves for the distorted mirror simulation. In the perfect mirror simulation the 

difference was 0.31 waves. This disparity between simulations indicates that the distorted 

primary mirror surface in the second simulation is the dominant source of the wavefront 

error.   

To evaluate how the number of actuators affects wavefront correction, a 

continuous DM with 361 actuators in a 19 x 19 configuration was constructed using the 

same model previously developed by Mueller [14]. This second model was then placed 

into the same two telescope simulations as was done with the 100 actuator model. For 

both the 100 and 361 actuator models, simulations using the two different primary mirror 

surfaces were run for strokes of 1, 3, and 5 m , respectively. In total, 48 simulations 

were run using combinations of the previously mentioned variables in order to isolate 

how different parameters affect the RMS of the wavefront. The results from these 

simulations are summarized in Table 4. 
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Table 4.   Comparison of 100 versus 361 Actuator DM for Varying Strokes. 

Stroke 
( m ) Actuators 0.0 (deg) 0.25 (deg) 0.5 (deg) 0.75 (deg) 

  
Perfect 
Primary 

Distorted 
Primary 

Perfect 
Primary 

Distorted 
Primary 

Perfect 
Primary 

Distorted 
Primary 

Perfect 
Primary 

Distorted 
Primary 

1 
100 0.0016 0.3315 0.0161 0.3458 0.0348 0.3693 0.0738 0.3368 

361 0.0014 0.3046 0.0145 0.3186 0.0315 0.3416 0.066 0.3083 

3 
100 0.0016 0.3041 0.0161 0.3147 0.0348 0.3322 0.0738 0.3124 

361 0.0014 0.2738 0.0145 0.2834 0.0315 0.2992 0.0666 0.2812 

5 
100 0.0016 0.3041 0.0161 0.3146 0.0348 0.3320 0.0738 0.3124 

361 0.0014 0.2737 0.0145 0.2833 0.0315 0.2991 0.0666 0.2812 

MATLAB RMS values in waves comparing notional continuous DMs of 100 and 361 actuators correcting perfect and distorted primary 
mirrors as a function of field angle magnification and DM actuator stroke length.  
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As seen in Table 4, despite increasing the actuator count by over two hundred 

percent when going from 100 to 361 actuators, the resulting change in the RMS value had 

a negligible effect on the perfect primary mirror for all field angles. The RMS decreased 

only slightly when the mirror’s surface was distorted. This indicates a nonlinear 

relationship between the number of actuators and the resulting RMS values. The same 

diminishing return can be seen in the stroke of each actuator. When going from a stroke 

of 1 to 3 m  there was a significant decrease in RMS; however, from 3 to 5 m  the 

differences were nearly nonexistent with changes only at the tens of thousandths of a 

wave. Additionally, when the primary mirror was perfect, increasing the stroke did little 

to reduce the RMS value any further past a point for each field angle.   

Table 4 data points were converted into a series of plots to better show trends in 

the data for each variable. The different field angles for both the 100 and 361 actuator 

simulations are compared in relation to actuator stroke length in Figure 20.  

 
This chart compares the field angles in relation to the number of actuators and stroke of 
actuators compared to the resulting RMS for the perfect mirror simulation. 

Figure 20.  Perfect Primary Mirror Comparison of Variables 
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A slight improvement in the RMS values for all cases is seen when going from a 

100 to a 361 actuator DM, as seen in Figure 20. However, further improvement was 

minimal in relation to stroke length. When reading Figure 20 from bottom to top, as the 

field angle increases, the number of actuators plays an increasingly significant role in 

decreasing the RMS value when going from 100 to 361. This can clearly be seen when 

comparing 0.0 degrees versus 0.75 degrees. At 0.0 the line appears nearly flat while at 

0.75 degrees the line has a “W” appearance. This indicates that increasing the actuator 

count is best suited for situations involving large field angles. This relationship is due in 

part to the magnification factor. The same variables as compared in Figure 20 are again 

compared in Figure 21 for the distorted mirror scenario. 

 
This chart compares the field angles in relation to the number of actuators and the stroke 
of each actuator compared to the resulting RMS value for the distorted mirror simulation. 

Figure 21.  Distorted Primary Mirror Comparison of Variables 
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A greater decrease in RMS value for each actuator count in relation to an increase 

in stroke length of an actuator is shown in Figure 21. The graph shows that for a distorted 

mirror, a DM with both a higher actuator count and a larger stroke are the key parameters 

to improve when increase wavefront correction. However, the characteristic “W” shape 

that appeared in Figure 20 appears to start taking shape midway through the figure. It is 

interesting to note that, with one exception, the slopes of the lines are fairly consistent 

across all field angles for both the number of actuators and the stroke length. Figure 20 

and 21 are summarized in Figure 22, which compares all simulations, variables, strokes, 

and mirror condition that were shown in Table 4. 

 
This chart simultaneously compares mirror type, field angles, actuator count and stroke 
distance. It is derived from the results shown in Table 4. 

Figure 22.  Bar Chart Comparing Variables to RMS 

The model developed in Figure 15 had a magnification factor of 30. For the 

simulation to use a deformable mirror at a scale in which a microelectromechanical 
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This ray trace diagram developed in Zmax for a three-meter hyperbolic telescope features 
multiple field angle aberrations. Blue rays indicate the path of light for on-axis viewing. 
Green rays are 0.25 degrees, red 0.5 degrees, and yellow 0.75 degrees off axis, 
respectively.  This system is similar to that of Figure 15 with the exception that it has a 
magnification factor of 100 in order to use a MEMs DM. 

Figure 23.  Zmax Ray Trace Diagram for Notional Telescope with a 
Magnification Factor of 100 

The same 48 simulations using the same variables were rerun, with the results 

depicted in Figure 24 and Figure 25. 
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This chart compares the field angles in relation to the number of actuators and stroke of 
actuators compared to the resulting RMS for the perfect mirror simulation at a 
magnification factor of 100. 

Figure 24.  Perfect Primary Mirror Comparison of Variables with a 
Magnification Factor of 100 
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Similarly, the distorted primary mirror scenario is shown in Figure 25.  
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This chart compares the field angles in relation to the number of actuators and the stroke 
of each actuator compared to the resulting RMS value for the distorted mirror simulation 
at a magnification factor of 100. 

Figure 25.  Distorted Primary Mirror Comparison of Variables with a 
Magnification Factor of 100 

Figure 25 has the same trends seen in Figure 21 with the exception that the slopes 

of the lines for the various field angles are no longer the same. These results demonstrate 

that currently available MEMs DMs result in a substantial angular magnification factor 

that inhibits wavefront correction due to the larger field angles. 
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V. FUTURE WORK AND CONCLUSION 

A. CONCLUSION 

This thesis demonstrated how a DM could be used to reduce wavefront errors 

from surface imperfections on a mirror and to reduce field angle magnification effects. 

The simulated DM was able to correct the wavefront RMS value of a perfect primary 

mirror by ~125%, and the wavefront RMS value of a distorted primary mirror by ~100%. 

Wavefront error only slightly increased for higher order field angles. Potential DM limits 

were identified as being connected to the number of actuators on the DM and the stroke 

length of actuation. Both limits depended on the magnitude of the field angles and the 

magnification factor.  

B. SUITABILITY OF MEMS IN THE SPACE ENVIRONMENT 

DMs are designed to operate in a one-g environment. To be suitable for space-

based applications, a device would need to function in zero gravity for sustained periods. 

The device must also withstand effects from the space environment including radiation 

and single event upsets. Further research could be done to characterize how a DM 

behaves differently in the two environments. Suggested studies include looking into the 

effects of operating in a vacuum, exposure to radiation, and error tolerance. 

C. CONTINUOUS FACE SHEET MEMS DEVICE 

In this research, a segmented mirror was used to correct a CFRP mirror. A 

continuous face-sheet mirror offers greater potential for error correction due to its smooth 

surface and ability to phase. Additionally, the gap between actuator segments that caused 

dropouts in data would not be present. A continuous DM would also increase the number 

of photons reaching the focal plane array, allowing for a decreased integration time. 

Experiments in the lab at NPS could be rerun using a continuous DM to compare 

performance of the two mirrors.  



 38

D. OFF AXIS TESTING 

Further research could be performed on the effects related to field angle 

magnification. Experiments could be conducted in the laboratory using an actual DM for 

correction and to compare the experimental and simulation results. Additionally, a wide 

field of view telescope could be modeled such that it has larger field angles for which the 

DM must correct.  
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APPENDIX.  CONTROL SCRIPT 

clc;clear all; close all 
  
K=input('What is the type of Device 1)Continous 2)Segmented 3)TipTilt 
4)Sim Results no primary error 5) Sim with primary error 6)no primary 
361act 7)primary error 361act '); 
tic 
if K==1; 
    load continousIF 
end 
if K==2; 
    load segmentedIF 
end 
if K==3; 
    load tiptiltIF 
end 
if K==4 
    load 100actuator 
    A=input('What is the degree '); 
    if A==0; 
        load phi0 
    end 
    if A==0.25; 
        load phi25 
    end 
    if A==0.5; 
        load phi5 
    end 
    if A==0.75; 
        load phi75 
    end 
end 
  
if K==5 
    load 100actuator 
         
    A=input('What is the degree '); 
    if A==0; 
    load phiA0 
    end 
    if A==0.25; 
    load phiA25 
    end 
    if A==0.5; 
    load phiA5 
    end 
    if A==0.75; 
    load phiA75 
    end 
end 
  
if K==6 
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    load 361actuator 
    A=input('What is the degree '); 
    if A==0; 
    load 361phi0 
    end 
    if A==0.25; 
    load 361phi25 
    end 
    if A==0.5; 
    load 361phi5 
    end 
    if A==0.75; 
    load 361phi75 
    end 
end 
  
if K==7 
    load 361actuator 
     
    A=input('What is the degree '); 
    if A==0; 
    load 361phiA0 
    end 
    if A==0.25; 
    load 361phiA25 
    end 
    if A==0.5; 
    load 361phiA5 
    end 
    if A==0.75; 
    load 361phiA75 
    end 
  
end 
   
if K==1||K==2||K==3 
    c=sqrt(length(IF)); 
    [X,Y]=meshgrid(1:1:c); 
    W = sqrt(X.^2 + Y.^2); 
    Ref=0.25e-6*sin(0.1*W); 
    phi=0.25e-6*sin(0.1*W); 
end  
  
if K==4||K==5||K==6||K==7 
    c=sqrt(length(IF)); 
    %Ref=reshape(phi,113,113); 
end 
 
 if K==1||K==2||K==3||K==4 
     figure() 
     mesh(phi/1e-6); 
     h=colorbar 
     h=colorbar; 
    ylabel(h, 'waves') 
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     xlabel('pixels') 
     ylabel('pixels') 
     zlabel('waves') 
 end 
  
 Ref=reshape(phi',[numel(phi) 1]); 
  
R=size(IF,2); %Number of actuators 
  
Kp = 2;  
  
Rflat=zeros(length(Ref),1); 
  
IF_INV=pinv(IF); 
tf =2;   
[t,~,outputs] = sim('PINV_test',[0,tf]); 
  
simdata=simout.Data; 
  
figure() 
imagesc(reshape(simdata(:,:,1)/1e-6,[c,c])); 
colorbar 
figure() 
B=size(simdata); 
imagesc(reshape(simdata(:,:,B(length(B)))/1e-6,[c,c])); 
colorbar 
xlabel('waves') 
  
RMSbefore=rms(simdata(:,:,1))/632.8e-9 
PVbefore=(max(simdata(:,:,1))-min(simdata(:,:,1)))/632.8e-9 
  
RMSafter=rms(simdata(:,:,B(length(B))))/632.8e-9 
PVafter=(max(simdata(:,:,B(length(B))))-
min(simdata(:,:,B(length(B)))))/632.8e-9 
time=toc; 
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