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ABSTRACT 

This thesis explores concepts for a closed-loop optimal control 

implementation of minimum-time attitude maneuvers of spacecraft. The most 

common implementation of optimal control solutions is via open-loop commands. 

However, ignorance of the true system parameters can undermine the open-loop 

optimal control solution. While traditional closed-loop control methods can 

compensate for significant levels of uncertainty, this comes at the cost of 

optimality. 

This work focuses on optimization of eigenaxis maneuvers, but the 

concepts are not limited to this constraint. The study begins with an examination 

of candidate control architectures, weighing the advantages of various closed-

loop feedback architectures. A control architecture consisting of a traditional 

proportional-derivative (or quaternion error) feedback loop and a feed-forward 

control torque signal is deemed to have the best performance and is then 

selected for further study. 

Next, through the analyses of a series of optimal control problems, several 

real-time optimal control algorithms are developed that continuously adapt to 

feedback on the system’s actual states throughout the maneuver. These 

algorithms demonstrate significant performance improvements over conventional 

open-loop implementations, most notably shorter overall maneuver times. The 

results of this work, therefore, provide an algorithmic enhancement of spacecraft 

agility. 
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I. INTRODUCTION, MOTIVATIONS AND OBJECTIVES 

Optimal control solutions are commonly thought of—and therefore 

implemented—in open-loop. The engineer will develop an optimal trajectory of 

the control variable (or variables) in a given problem which, when applied to the 

system or plant whose performance is being optimized, produces the desired 

results. For example, in a spacecraft attitude maneuver problem, torque could be 

considered as the control variable; an optimal torque trajectory applied to the 

spacecraft would produce an optimal reorientation maneuver (i.e., minimum time 

maneuver or minimum effort, etc.). However, as with many engineering 

problems, some amount of uncertainty is always present in the definition of the 

nominal system and its parameters that form the basis of the optimal solution. To 

continue the example of the spacecraft attitude maneuver, the spacecraft 

rotational inertia is a fundamental system parameter that influence the nature of 

the optimal torque trajectory; errors in the inertia estimate will propagate into the 

solution for the torque trajectory, ultimately resulting in the actual spacecraft not 

following the expected attitude trajectory. Other sources of uncertainty, such as 

errors in the actual torque application, external disturbance forces/torques and 

sensor and processing noise, etc., can also negatively impact the practical 

implementation of an optimal control solution. 

Classical control techniques solve the challenge of uncertainty with 

feedback. Feedback control loops measure the state of the system, such as 

attitude or position, and produce a control signal based on those state 

measurements to drive the system to the desired end-state (i.e., to reduce or 

eliminate the error). Closed-loop control methods are used in nearly all control 

systems across all engineering disciplines. Thus, integrating the behavior of 

existing feedback control loops within an optimal control solution presents an 

opportunity to improve the practical performance of optimal control solutions in 

the presence of uncertainty and feedback system dynamics. 
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Another important motivation in developing optimal control solutions 

compatible with feedback relates to solution implementation. Optimal control is 

frequently applied to existing systems, which may not have been designed to 

accommodate alternative control methods. Existing systems can have a variety 

of access points and adjustable parameters through which an optimal control 

solution can potentially be implemented. These access points and parameters 

will vary from system to system depending on the particular design 

implementation of the feedback controller and can affect the overall performance 

of the system. In consideration of this fact, there may be cases in which optimal 

control solutions must be implemented in the presence of closed feedback loops.  

A. GENERAL CONTROL ARCHITECTURES 

The fundamental difference between open-loop and closed-loop control is 

the presence of feedback. In closed-loop control, some aspect of system state is 

measured and incorporated into the actuating signals. Examples of closed-loop 

and open-loop systems are presented in Figures 1–3. The assumed system 

model is based on a double integrator model in which the position trajectory of 

the system can be calculated by integrating the applied torque trajectory and 

then integrating the resulting velocity trajectory. This is explained in more detail in 

equations (1.1), (1.2), and (1.3). 

 

Figure 1.  Example of open-loop control 
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Figure 2.  Example of closed-loop control 

In the open-loop control system of Figure 1, a time varying torque 

trajectory is the control variable. This torque profile is applied to the plant, in this 

case a simple double-integrator model, and the output is a trajectory of system 

states. The states of interest are usually the position and velocity of the system. 

In contrast, the closed-loop system of Figure 2 has a trajectory of 

commanded states as the input variable(s). The difference between the 

commanded state and the actual state is determined and used to compute a 

proportional-derivative (PD) control action. The controller produces a torque 

signal based on the state error and the gains of the PD controller. The details of 

how a PD controller works will be discussed further in the following section. 

Closed-loop control differs from the open-loop implementation in that the 

feedback of the actual, current state of the system is constantly informing the 

torque applied to the plant model. This feedback provides some measure of 

assurance that the system will actually reach the desired end state at some point 

in time, in spite of either internal uncertainties or external disturbances. The 

open-loop control, on the other hand, has no means of correction if the system 

does not reach the desired end state. 

Optimal control solutions can be implemented in either open-loop or 

closed-loop architectures, although they are most commonly implemented in the 

context of open-loop. In either case, the objective of optimal control is to 

determine a control trajectory that achieves the desired end state in an optimal 
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manner. These techniques are commonly used to minimize the maneuver time or 

the energy expended in the maneuver. The majority of this study will focus on 

minimum time maneuvers, which are relevant for agile satellite systems. 

In both open- and closed-loop control approaches for satellite attitude 

control, the plant is modeled as a rigid body, and the classical rotational 

kinematics equations apply. For single degree of freedom systems (and 

spacecraft under the assumption of an eigenaxis constraint), the basic kinematic 

equation is: 

   (1.1) 

In (1.1),  is the time varying torque input;  is the rotational inertia of the 

system; and  is the angular acceleration. The variable  is simply the time 

derivative of angular velocity, ; and  is the time derivative of  , the angular 

position, as shown in (1.2).  

   (1.2) 

Given , or, equivalently, , the position and velocity trajectory of 

the system can be determined through simple integration: 

   (1.3) 

B. THE BASELINE SYSTEM AND CLASSICAL CONTROLS 

The one-dimensional closed-loop control architectures examined in this 

thesis use a proportional-derivative feedback control law. In a PD controller, the 

output torque is a function of the state error, the difference between the 

commanded state(s) and the current, actual state. It is important to note that in 
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models discussed in this thesis, the component dubbed “PD controller” is a 

mathematical model of both the control law as well as the actuator and 

associated components. In real world systems, the control law would exist in a 

microprocessor, but its output could be a voltage, current or other signal directed 

to a motor-controller for a torque-producing actuator such as a reaction wheel, 

CMG, etc. In these simple models, the PD controller encompasses multiple 

components and makes the simplifying assumption that all such components 

operate without error and with perfect dynamics. 

The PD control law produces torque based on the state error, in 

accordance with the following equation [1]: 

   (1.4) 

In (1.4),  and  are the proportional and derivative gains, respectively; 

and  and  are the commanded state trajectories for both position and 

velocity, respectively. A common approach in control engineering is to use an 

input command that follows a step function trajectory. In other words, at the 

starting time of the maneuver, the commanded position will instantly jump to the 

final desired position, and the commanded velocity will, thus, remain at zero. In 

this case, the control law simplifies to the following: 

   (1.5) 

Analytically determining the output state trajectories of a closed-loop 

system in the time domain can be cumbersome, but transforming the system 

equations into the frequency domain, sometimes called the s-domain, using 

Laplace transforms simplifies the problem [1]. A block diagram of a PD control 

loop in the s-domain is shown in Figure 3.  
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Figure 3.  Block diagram of PD controller in the s-domain 

An advantage of viewing a system as a block diagram in the s-domain is 

that it facilitates development of the overall system transfer function. This is 

because convolution in the time domain becomes multiplication and division in 

the s-domain. The overall transfer function is an expression that describes the 

output of the system for any given input in the frequency domain. Having 

developed the block diagram, the overall transfer function of the PD controller 

system can be derived using standard block diagram reduction. 

   (1.6) 

For convenience, the model considered in this study has a nominal 

rotational inertia of . The transfer function of (1.6) is called a quadratic 

transfer function with a constant numerator, and is typical of a second order 

system [1]. The canonical quadratic transfer function has the form shown in (1.7). 
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as the damping ratio. The denominator of a transfer function gives the system’s 
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characteristic equation. The roots of the characteristic equation are called poles; 

the poles determine the speed and shape of a system’s response [1]. Classical 

control techniques focus on manipulating the transfer function in some fashion to 

achieve the desired performance. To develop a baseline classical control system, 

the PD controller’s gains are manipulated to achieve the desired natural 

frequency and damping ratio, which are related to the characteristics of the 

transient response. 

In classical control design, systems are typically built around the response 

to a unit step input for a second order system. Depending on the natural 

frequency and damping ratio, the system response may overshoot the 

commanded position and then oscillate about the final position with exponentially 

decaying magnitude; this is known as an underdamped response. Alternatively, 

the system response may approach the final commanded position monotonically; 

this is known as an overdamped response. A critically damped system will 

approach the final commanded position as quickly as possible with no 

oscillations. Each of these response types have advantages and disadvantages. 

Overdamped systems will take longer to reach the final position, but will do so 

without overshoot; underdamped systems can reach the final position more 

quickly, but in some applications, any amount of overshoot is undesirable. Proper 

controller design, therefore, requires careful system requirements considerations. 

The system studied in this work will be designed to have a 5% overshoot 

and a settling time of 0.9 seconds. The percent overshoot (Mp) and 2% settling 

time (ts) are related to the canonical parameters by the following equations: 

   (1.8) 

   (1.9) 
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Solving (1.8) and (1.9) with for an overshoot of 5% and settling time of 0.9 

sec yields a damping coefficient of  and natural frequency of . 

Given these system characteristic values, the relationship between natural 

frequency, damping ratio and the PD controller transfer function, (1.6) and (1.7), 

and nominal inertia of , the PD controller gains can now be 

determined as 8.89 and k 41.5v pk = = . 

A closed-loop system with these PD controller gains will be the baseline 

system for this study. All optimal control architectures considered herein will be 

based on manipulations of this system.  

Now that the baseline system has been fully defined, the system response 

to a unit step input can be determined. The model simulation results, presented 

in Figure 4 and Figure 5, are produced using an ODE45 propagator in MATLAB.  

 

Figure 4.  Time response of the baseline PD controller system 
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Figure 5.  Total torque trajectory of baseline PD controller system 

C. INTRODUCTION TO OPTIMAL CONTROL 

Optimal control is a system design technique that seeks to determine the 

optimal control trajectory to achieve a particular end state at the lowest “cost.” 

Optimal control takes a completely different approach from classical control 

theory. Unlike classical control theory, which is limited to linear (or linearized), 

and primarily single input / single output systems, optimal control can be applied 

to non-linear, multi-input / multi-output systems by considering the entire system 

dynamics and evaluating the implications of those dynamics to develop an 

optimal control input.  

A good reference on optimal control theory can be found in [2]. While it is 

not the intent of this thesis to delve into a detailed explanation of how any 

general optimal control problem can be solved, many of the conclusions in this 

work are based on sound optimal control analysis. To facilitate a complete 

explanation of the progression of this study from classical closed-loop control 
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techniques to real-time optimal control concepts, a brief summary of the optimal 

control analysis techniques is warranted. 

One of the first steps in setting up an optimal control problem is to define 

the system’s dynamics. This is done in the time domain using the state space 

approach, and defining the system dynamics as a controlled set of first order 

differential equations that are a function of system states and controls: 

   (1.10) 

Naturally, an important step in optimal control is to define what is to be 

optimized. This depends on the goals of the designer and can include minimizing 

the time to reach an end state, minimizing energy consumption, maximizing 

altitude, etc. Whatever the desired goal, it must be articulated mathematically; 

this concept is embedded in the cost functional and its general form is: 

  (1.11) 

In (1.11),  is the state trajectory;  is the control trajectory;  

is the endpoint cost, which is a function of one or more final states or time. 

Functional ( ) ( )( ),F x t u t   is the running cost which is a function of one or more 

states and/or controls; and t0 and tf are the initial and final times, respectively. Not 

all cost functionals will have both an endpoint cost and a running cost; in fact, 

many optimal control problems will only have one or the other.  

Other important parameters in the problem definition are the initial and 

final states and times. Depending on the optimal control problem, these 

parameters may not be specified, but it is important to capture them as best as 

they are known. An initial time is usually taken to be zero, but that need not 

necessarily be the case. Some problems will have a particular end time, but that 

is also not always the case, especially in problems where the final time is the 
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variable being optimized. Additionally, the end state may or may not take the 

form of prescribed points; it may, instead be a function. For example, an orbital 

problem may require that the final position and velocity satisfy mathematically 

defined orbital mechanics relationships. Regardless of whether the desired end 

state consists of a particular point or a locus of points (i.e., a function), the 

mathematical definition of the end state is called the end point function (not to be 

confused with the end point cost, contained in the cost function). 

The final piece of the optimal control problem formulation is the definition 

of any constraints in the problem. Nearly all real-world engineering problems 

have constraints of some sort. These may include limits on the applied forces or 

torques (e.g., the maximum torque capacity of a reaction wheel), attitude 

orientation keep-out zones (e.g., the solar keep-out zone for an optical payload), 

or attitude orientation keep-in zones (e.g., minimum illumination of solar panels), 

etc. 

The complete optimal control problem formulation includes the definition of 

the state vector, the control vector, the cost function, the system dynamics, the 

boundary values and endpoint function and all relevant constraints. A general 

optimal control problem formulation is: 

  (1.12) 
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Solving the optimal control problem yields the trajectory of the controls 

over time that achieves the desired end state and minimizes the cost functional. 

The cost functional may be minimized if the necessary conditions of Pontryagin’s 

principle are satisfied [2]. But before the necessary conditions can be introduced, 

a few more mathematical relationships need to be defined. The first is the 

Hamiltonian: 

   (1.13) 

The Hamiltonian is composed of the running cost and the inner product of 

the costate vector, , with the state space dynamics, . The running cost 

and state space dynamics have already been introduced. The costate vector, or 

covector, is a vector that relates each element of the state vector to the cost, as 

defined in the problem. Each element of the covector has units of cost unit per 

state unit; the covector provides a means of measuring the state vector in a more 

meaningful way than is possible in the typical Euclidian method. In other words, 

the calculation  is only meaningful if all elements of  are in 

the same units; if one element is a measure of distance, another a measure of 

acceleration and another a measure of mass, then this calculation is 

meaningless. The covector enables conversion of the state vector elements into 

common units, specifically units of cost. The costate vector is not known 

beforehand and only becomes defined through the process of solving the optimal 

control problem. In fact, the behavior of the costate vector is what admits an 

optimal control solution. 

The next relationship to be defined is the Endpoint Lagrangian: 

   (1.14) 
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The form of the Endpoint Lagrangian parallels the Hamiltonian. It is 

comprised of the endpoint cost, , and the inner product of  with the 

endpoint function, . Like the costate vector,  is a vector of multipliers 

related to the endpoint function and is not known beforehand. 

The optimal control solution is one which satisfies the system dynamics, 

problem constraints and also the necessary conditions as laid out in Pontryagin’s 

principle. The first condition is the Hamiltonian minimization condition (HMC). 

HMC requires that the Hamiltonian be minimized with respect to the control 

variable over the entire problem time horizon. Depending on the problem, it may 

be as simple as setting the derivative of the Hamiltonian with respect to the 

control equal to zero: 

   (1.15) 

But if the problem involves path constraints, as many do, HMC is only 

satisfied if the Lagrangian of the Hamiltonian in minimized [2]. The Lagrangian of 

the Hamiltonian is defined as 

   (1.16) 

where  is the Hamiltonian,  is the path constraint covector and 

 is the vector of path constraints. Now HMC becomes 

   (1.17) 

where the notation  is defined to mean that  and  satisfy the 

complementarity condition [2], which is defined in equation (1.18).  
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   (1.18) 

 The next necessary condition is the Hamiltonian value condition, which 

simply states 

   (1.19) 

where  is the value of the minimized Hamiltonian at the final time. The 

Hamiltonian value condition provides a value, or boundary condition, for the 

trajectory of the Hamiltonian throughout the problem. 

The next condition that must be satisfied is the Hamiltonian evolution 

equation. The Hamiltonian evolution equation is 

   (1.20) 

The adjoint equations must be determined to find the optimal solution. The 

adjoint equations define the dynamics of the costates. In the presence of path 

constraints, the adjoint equations are defined as 

   (1.21) 

The final condition that must be met is the transversality value condition. 

Like the Hamiltonian value condition, the transversality condition provides 

boundary conditions for the costate trajectory and is given by 
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   (1.22) 

The process of defining and evaluating the necessary conditions forms the 

preliminary analysis necessary to solve an optimal control problem. This analysis 

does not typically provide the solution, but simply provides a new problem which, 

when solved, provides the optimal control solution. The necessary conditions can 

also be used to validate the optimality of a candidate solution to problem (1.12). 

The resulting problem is a Hamiltonian boundary value problem, where the 

additional adjoint equations double the size of the original problem! The original 

problem formulation may not have had enough boundary conditions specified to 

solve the boundary value problem, and when that is the case, the transversality 

conditions provide the missing information. 

Unfortunately, solving differential algebraic boundary value problems can 

be challenging, to say the least. Some success can be had with certain numerical 

approaches, such as a shooting method or collocation method, but these 

approaches are ill suited for some problems and may require a near perfect initial 

guess to determine the solution. 

Pseudospectral optimal control theory is an alternative and more robust 

approach for solving optimal control problems [3]. A numerical instantiation of the 

theory is found in the MATLAB tool, DIDO [2], [4]. Use of DIDO does not relieve 

the operator from evaluating the validity of the solution. The satisfaction of 

necessary conditions should be verified, and the candidate control solution 

should be evaluated to verify that it produces the desired end state without 

violating any applied constraints.  

DIDO is used to solve all optimal control problems in this thesis. As is the 

accepted standard practice [2], each solution will be evaluated using the ODE45 

propagator resident in MATLAB to verify that the candidate control trajectory 

results in the desired end state. Further, the satisfaction of necessary conditions 

will be verified for each solution. 
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D. THESIS OBJECTIVES AND SCOPE 

The first objective of this thesis is to study a variety of closed-loop 

spacecraft attitude control architectures, examining the effectiveness of each with 

respect to optimal control implementation. Spacecraft attitude maneuvers are 

most commonly executed as eigenaxis maneuvers. Because these are 

effectively one-dimensional rotations, the initial control architecture study will 

examine one-dimensional double integrator systems. The second objective of 

this thesis will be to develop a closed-loop optimal control method that 

incorporates the actual system response, modifying the optimal solution in real-

time for one-dimensional rotational systems. The final objective is to translate the 

closed-loop optimal control methods developed for one-dimensional systems to a 

three-dimensional concept that can be applied to spacecraft maneuvers. 

E. THESIS OUTLINE 

This thesis will begin with an introduction to classical control techniques, 

followed by an introduction to optimal control analysis techniques. It will then 

explore the minimum time optimal control implementations in several one-

dimensional closed-loop rotational systems, including an examination of the 

effects of uncertainty on each optimal control implementation. Then, an closed-

loop optimal control solution (i.e., real-time optimal control) will be developed for 

the one-dimensional problem. Finally, the one-dimensional RTOC method will be 

translated to three-dimensions and applied to eigenaxis maneuvers of three-

dimensional rigid bodies. 
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II. EVALUATION OF CANDIDATE ARCHITECTURES FOR 
CLOSED-LOOP OPTIMAL CONTROL 

This chapter explores implementation of optimal control solutions by 

examining several variations of two basic closed-loop control architectures. The 

two basic architectures are referred to as guided control and feed-forward 

control. In the guided control implementation, the optimal position and angular 

velocity trajectories are used as control inputs rather than the step input typically 

used in classical control analysis. In contrast, the feed-forward control 

architecture will apply a separate control torque command, tcmd, directly to the 

rotating body in addition to the contribution of the PD controller feedback arising 

from a step change in the commanded position; this models a direct manipulation 

of the actuator to achieve a specific output torque. Optimal control techniques will 

be applied around each control architecture to determine the minimum time 

solution. The architectures will be compared to each other based on typical 

engineering figures of merit such as the nominal settling time as well as how 

each architecture responds uncertainty in the value of the rotational inertia. 

It should be noted that it has long been established that the minimum time 

solution for single degree of freedom maneuvers consists of applying the 

maximum torque to accelerate and then decelerate to achieve the desired 

maneuver [5]; this is commonly known as “bang-bang” control. While this solution 

is known and is expected to be manifested in the following optimal control 

analysis, differences in implementation of this solution in various closed-loop 

control architectures will be evaluated. Importantly, the traditional “bang-bang” 

solution is commonly implemented in an open-loop manner, but open-loop 

control cannot account for system uncertainties such as variations in system 

rotational moments of inertia. When optimizing the control of existing closed-loop 

systems, different implementations may be required depending on the limitations 

of the existing system, leading to differences in the input signals needed to obtain 

a “bang-bang” input to the plant. 
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A. STATE-GUIDED ARCHITECTURE 

The first method of implementation of optimal control for the double 

integrator is through state guidance. The optimal control problem is setup to find 

the minimum maneuver time using a guided state as the control variable. 

Because the PD controller is based on both a position and velocity commanded 

states, both must be determined. The problem formulation used here requires 

that the commanded position and commanded velocity not be completely 

independent, but instead that the velocity is the time derivative of the position (as 

with normal kinematics). Thus, the control architecture is shown in Figure 6 and 

optimal control problem formulation is as follows: 

Problem Statement — State Guided Control: Perform a minimum 
time rotation of a rigid body with a pre-existing PD controller using 
commanded state guidance. The initial system will be in a position 
of zero radians at zero velocity, and the final state will be at a 
position of one radian and zero velocity.  

This system model is assumed to have a rotational inertia of  and 

the torque actuator is limited to total of  in both the positive or negative 

direction. These system attributes will apply to each control architecture and 

problem formulation in the sequence. 

 

Figure 6.  State-guided optimal control architecture 
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   (1.23) 

The process of solving this first optimal control problem will be presented 

in detail; for brevity, only highlights pertaining to the analysis of the problems 

thereafter will be presented. First, an explanation of the problem formulation is 

offered. The states in this problem include the system angular position, ; the 

angular velocity, ; and the guided or commanded position, ; and there is 

only one control variable, the guided or commanded angular velocity, cmdu ω≡ . 

The fact that the commanded position is a state rather than a control may come 

as a surprise since it is considered a control variable from the perspective of 

classical PD controls. However, as previously mentioned, the trajectory of the 

commanded position is not independent, but is a function of the commanded 

velocity via kinematics; thus, the commanded position is part of the state space 

in this problem formulation.  

The cost functional is simple. In the case of a minimum time problem, the 

parameter to be minimized is time. Thus, the cost functional is simply the final 

time, , with no running cost. The state dynamics, initial and final states are self-

explanatory. The last piece of the problem formulation is the definition of the 
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constraint on the total torque which cannot exceed . Note that this value 

was selected arbitrarily. 

The first step in solving the optimal control problem is to define the 

Hamiltonian: 

  (1.24) 

The next step is to evaluate the Hamiltonian Minimization Condition 

(HMC). Because of the presence of the path constraint on the total torque, HMC 

is satisfied through the minimization of the Lagrangian of the Hamiltonian, given 

by 

 (1.25) 

where  is the path constraint covector for the total torque and  is the total 

torque ( tot p cmd p v cmd vk k k kt θ θ ω ω= − + − ), as defined in the problem formulation, 

equation (1.23). Now, HMC becomes 

   (1.26) 

Evaluating the first portion of HMC yields: 
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   (1.27) 

Evaluating the second portion of HMC, the complementarity condition, 

reveals the following switching structure: 

   (1.28) 

The totality of the HMC, equations (1.27) and (1.28), provides a formula 

for determining the control variable,  , in terms of the other states and 

covectors. The satisfaction of the conditions of equation (1.28) will be checked as 

part of the solution validation process. 

The next step in solving the optimal control problem is to define the 

costate dynamics using the adjoint equation, H
x

λ ∂
− =

∂


  . Because of the presence 

of path constraints, the adjoint equations are based on the Lagrangian of the 

Hamiltonian: 
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The Hamiltonian value condition yields the following: 
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Evaluation of the Hamiltonian evolution equation gives: 

   (1.31) 

The Hamiltonian value condition combined with the Hamiltonian evolution 

equation indicate that the Hamiltonian of the optimal solution will be constant at a 

value of 1= −H  throughout the maneuver. Because of the construct of the cost 

functional and the Hamiltonian, the fact that  1= −H  is common to all minimum 

time problems. 

The transversality condition, ( )f
f

Et
x

λ ∂
=
∂


  , is the final condition to be 

analyzed. Its evaluation yields the following: 

   (1.32) 

In this problem, transversality value condition indicates that the final value 

of the covectors should be equal to what is at this point another unknown 

quantity (i.e., the values of nυ  ). This, clearly, will not be helpful in developing the 

solution, but will provide another means of verifying a potential solution’s 

optimality. 
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The optimal control problem of equation (1.23) was solved using the DIDO 

software. The resulting solution was tested in a verification and validation model, 

which simply consisted of an ODE propagator in MATLAB. The DIDO solution 

results are presented in Figures 7–11. 

 

Figure 7.  State and control trajectories of optimal control solution for 
guided optimal control architecture 
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Figure 8.  Trajectory of applied torque for state-guided optimal control 
architecture 

 

Figure 9.  Hamiltonian trajectory in state-guided optimal control solution 
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Figure 10.  Switching function trajectory in state-guided optimal control 
solution  

 

Figure 11.  Transversality value condition for guided optimal control 
solution 

Figure 7 shows the response of the system when the optimal control 

solution is applied in a guided control architecture; the plot on the right within 

Figure 7 depicts the control, ωcmd, throughout the maneuver. Note that the 
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optimal control solution modulates the control trajectory in order to meet but not 

exceed the maximum torque constraint, as depicted by the plot of total applied 

torque in Figure 8. But note also that the applied torque is not consistent with the 

expected “bang-bang” optimal torque trajectory; it is instead “bang-bang-bang.” 

This third application of maximum torque is necessary to reduce the system’s 

velocity to zero; this is likely due to the undamped nature of the PD controller. 

The presence of this third “bang” may explain why a conventional open-loop 

“bang-bang” solution may not give the correct closed-loop response.  

The satisfaction of the Hamiltonian minimization condition can be verified 

in Figure 10 (i.e., that the control trajectory obeys the switching function). Note 

that the maximum and minimum values of the control, , vary throughout the 

maneuver, as would be expected from the HMC in this problem due to the 

constraint on total torque. The trajectory of total applied torque, which is 

constrained at  illustrates the satisfaction of the HMC more clearly. 

The trajectory of the Hamiltonian is plotted in Figure 9. It is, as shown, 

constant at a value of -1, illustrating the satisfaction of the Hamiltonian value 

condition and the Hamiltonian evolution equation. Finally, Figure 11 plots the final 

state covector values ( ( )n ftλ ) and the endpoint covector values ( nυ ), graphically 

depicting satisfaction of the transversality condition. These results provide 

additional assurance that the solution obtained from DIDO is in fact optimal. 

B. FEED-FORWARD CONTROL ARCHITECTURE 

The second major architecture type being evaluated consists of a feed-

forward torque signal with a closed-loop PD controller. This architecture 

simulates the ability to manipulate the actuator directly. This system is depicted 

in Figure 12. Note that the PD controller is still intact, and it also still has the step 

input of the original control architecture. But a separate torque signal is routed 

around the PD controller directly to the plant; this torque input, , is the control 

variable in the optimization of this architecture. To the best of the author’s 
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knowledge, the optimization of this particular type of architecture has not been 

studied before. 

Problem Statement: Perform a minimum time rotation of a rigid 
body with a pre-existing PD controller using feed-forward control. 
The initial system will be in a position of zero radians at zero 
velocity, and the final state will be at a position of one radian and 
zero velocity.  

 

Figure 12.  Feed-forward optimal control architecture 

   (1.33) 
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In the problem formulation captured in equation (1.33), the commanded 

angular velocity, , is set to zero throughout the maneuver, and is therefore 

omitted in the system dynamics. 

Evaluation of HMC yields the following necessary conditions: 
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Evaluation of the Hamiltonian value condition and the Hamiltonian 

evolution equation yield the typical minimum time problem conditions, specifically 

that the Hamiltonian should be constant at a value of -1. Similar to the guided 

control problem, the transversality value condition in this problem yields the 

following information: 

   (1.36) 

The results of the feed-forward optimal control architecture are presented 

in Figures 13–17. The plot on the left within Figure 13 illustrates the state 

trajectories while Figure 14 illustrates the applied torque throughout the 

maneuver. These results are consistent with the quintessential “bang-bang” 

optimal control for the minimum time double integrator problem. Figure 16 

illustrates how the control architecture accomplishes this; the control variable, the 

feed-forward torque signal t, is modulated in response to the PD feedback torque 

contribution such that the total applied torque is either the maximum positive or 

negative torque as necessary to create the “bang-bang” torque profile at the plant 

input. Note also that the control torque profile relative to the switching function 
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satisfies the HMC; recall that the control constraint is derived from the constraint 

of the total torque limits. 

Finally, it is observed that the feed-forward control architecture 

accomplishes the maneuver in approximately half the time required for the 

guided control architecture (0.26 seconds vs. 0.51 seconds). This is due to the 

fact that in this architecture, the well-known “bang-bang” control can be 

recovered despite the action of the feedback PD controller. 

 

Figure 13.  State and control trajectories of optimal control solution for 
feed-forward architecture 
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Figure 14.  Trajectory of total applied torque in optimal control solution for 
feed-forward architecture 

 

Figure 15.  Hamiltonian for optimal control solution for feed-forward 
architecture 
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Figure 16.  Switching function in optimal control solution for feed-forward 
architecture  

 

Figure 17.  Transversality condition in optimal control solution for feed-
forward architecture 

C. ACCELERATION-GUIDED CONTROL ARCHITECTURE 

The first variation of the basic guided control architecture is to use 

rotational acceleration as the control variable. The position and rate trajectories 
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are determined based on the acceleration trajectory and are then used as the 

state guidance (as in section A). This control architecture and the optimal control 

problem are depicted in Figure 18 and equation (1.37). As the preceding results 

indicate, optimal control solutions can sometimes recommend control trajectories 

with discontinuities, which may be undesirable in some circumstances. For 

example, discontinuities can excite flexible modes in a system, producing 

undesirable motion. Adding an integrator and a new control variable will remove 

the discontinuities and smooth out the guidance trajectories. 

Problem Statement: Perform a minimum time rotation of a rigid 
body with a pre-existing PD controller using rotational acceleration 
as the control. Rotational acceleration will be integrated to form 
position and velocity guidance for the PD controller. The initial 
system state will be in a position of zero radians at zero velocity, 
and the final state will be at a position of one radian and zero 
velocity. 

 

Figure 18.  Acceleration-guided optimal control architecture 
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  (1.37) 

In problem (1.37), an angular acceleration is an appropriately limited 

control variable, so the position and velocity guidance (i.e. ) are now 

state variables. 

Analysis of the HMC in this problem yields the same conditions identified 

in (1.28) and the following additional conditions: 

 
cmdα ωm λ= −   (1.38) 
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  (1.39) 

The Hamiltonian value condition, Hamiltonian evolution equation and 

transversality value conditions are all similar to those found in the previous 
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problems. The results of the acceleration-guided optimal control solution are 

presented in the Figures 19–24. 

 

Figure 19.  Commanded and actual state trajectories in acceleration-
guided optimal control solution 

 

Figure 20.  Control and guidance trajectories in acceleration-guided 
optimal control solution 
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Figure 21.  Costate trajectories in acceleration-guided optimal control 
solution 

 

Figure 22.  Hamiltonian in acceleration-guided optimal control solution 
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Figure 23.  Switching function in acceleration-guided optimal control 
solution 

 

Figure 24.  Transversality condition in acceleration-guided optimal control 
solution 

The results indicate that an acceleration-guided architecture is even 

slower than the state guidance architecture, requiring more time to complete the 

same maneuver. Note that while the control signal and switching function are 
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consistent with the HMC, the applied torque does not remain at its maximums for 

very long. This result is predicted by classical control theory. The position and 

rate controls in this architecture are based on the integrated acceleration signal; 

in classical control terms, this adds another pole to the overall transfer function, 

thus making the system less responsive.  

It must also be noted, however, that this solution is not quite optimal. The 

Hamiltonian value is close to, but not exactly -1 throughout the maneuver, and it 

is not constant. Additionally, the control trajectory seems to move from minimum 

to maximum a little slowly. This is particularly noticeable around 0.35 seconds 

into the maneuver. Note that at that time, the switching function is hovering close 

to zero, the switching boundary line. Examining the range of the switching 

function and the costates indicates that these results are suffering from a scaling 

issue. DIDO is most effective at determining an optimal solution when the 

controls, states and costates are the same order of magnitude, but in this 

case,  is several orders of magnitude smaller than the states or control. 

However, these results do approximate the expected results, namely that using 

acceleration as the control variable slows the response. Addressing the apparent 

scaling issue will be saved for future work. 

D. ACCELERATION FEED-FORWARD CONTROL ARCHITECTURE 

The next control architecture is a variation on the acceleration-based 

control architecture. Like concept described in section C, this architecture uses 

rotational acceleration as the control variable. In the feed-forward architecture the 

rotational acceleration supplies both a position and velocity guidance input as 

well as a computed torque feed-forward input. The feed-forward torque is based 

on the acceleration guidance and the nominal, or estimated, system inertia. It is 

important to distinguish this nominal inertia from the actual system inertia; the 

difference is the uncertainty in the system that will be evaluated in later sections. 

The acceleration feed-forward architecture and the associated optimal control 

problem are presented Figure 25 and equation (1.40). 
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Problem Statement: Perform a minimum time rotation of a rigid 
body with a pre-existing PD controller using rotational acceleration 
as the control. Acceleration will be integrated to form position and 
velocity guidance for the PD controller and also scaled by the 
nominal system inertia to produce a feed-forward torque input. The 
initial system state will be in a position of zero radians at zero 
velocity, and the final state will be at a position of one radian and 
zero velocity. 

 

Figure 25.  Acceleration feed-forward control architecture 

   (1.40) 
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Note that in this problem formulation, the nominal rotational inertia, , is 

distinguished from the actual rotational inertia, . This is a more significant 

distinction for the purposes of analyzing the effects of inertia uncertainty on the 

system performance; from the perspective of the optimal control solution, these 

values are assumed to be equal. 

Evaluation of HMC in this problem yields (1.28) in addition to the following 

switching structure: 
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  (1.41) 

Evaluation of the Hamiltonian value condition, Hamiltonian evolution 

equation and transversality condition all yield similar results as the previous 

problems. The results of the acceleration feed-forward control architecture are 

presented Figures 26–29. 
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Figure 26.  State and control trajectories in acceleration feed-forward 
optimal control solution 

 

Figure 27.  Hamiltonian in acceleration feed-forward optimal control 
solution 
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Figure 28.  Switching function in acceleration feed-forward optimal control 
solution 

 

Figure 29.  Transversality condition in acceleration feed-forward optimal 
control solution 

The response using the acceleration feed-forward control architecture is 

very similar to the previous feed-forward control architecture where the feed-

forward torque was solved directly. This similarity extends even to the behavior of 
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the switching function. An examination the underlying similarities to evaluate the 

mathematical equivalency of the two architectures should be pursued in future 

work. 

E. SUMMARY OF INITIAL CONTROL ARCHITECTURE STUDY 

This chapter presented and evaluated the optimal control solutions to 

several closed-loop control architectures. The results indicate that a feed-forward 

optimal control implementation is most effective for minimum time maneuvers, 

completing a maneuver in nearly half the time compared to state-guided control 

architectures. This result was true for both a torque feed-forward as well as the 

acceleration feed-forward control architectures. 
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III. CONTROL ARCHITECTURE VARIATIONS 

The results so far indicate that the feed-forward architecture of Chapter II 

outperforms the guided control architecture variations in terms of both the 

minimum maneuver time and minimum effort. (See Appendix A for minimum 

effort solutions.) While the optimization of the guided control architectures should 

be credited with reducing the maneuver time (recall that the baseline PD 

controller had a settling time of 0.9 sec), the optimized feed-forward architectures 

are faster still. It is noteworthy that some degree of overshoot is present in the 

system responses in all variations of guided control that is absent in all variations 

of the feed-forward control. The following variations on the guided control 

architecture will examine the effects of changes on the PD controller gains on the 

optimal solution. 

A. ARCHITECTURE VARIATIONS: OPTIMAL KV 

The first variation will evaluate the velocity gain, kv, as a parameter to be 

optimized, to determine if the performance of the guided control architectures can 

be improved by increasing the damping of the PD controller, which would in turn 

reduce the overshoot in a standard PD controller. 

The control architecture in this variation, shown in Figure 30, is essentially 

the same as the original guided control architecture but includes the gain kv as a 

variable parameter. To be clear, kv can be varied to determine the optimal value, 

but remains constant for the duration of any maneuver. This simulates finding the 

optimal setting for kv which will remain fixed thereafter.  
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Figure 30.  Guided control architecture with selectable velocity gain, kv. 

Problem Statement—Guided Control Variation: Optimal kv: Perform 
a minimum time rotation of a rigid body with a pre-existing PD 
controller using commanded state guidance; velocity gain, kv, can 
be varied but will remain constant for the duration of the maneuver. 
The initial system will be in a position of zero radians at zero 
velocity, and the final state will be at a position of one radian and 
zero velocity. 

   (1.42) 
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Analysis of this problem formulation returns to the same pattern as the 

other minimum time problems. The HMC yields a switching structure, the 

Hamiltonian trajectory should be constant at -1 and the final costate values 

should equal the endpoint covector. The switching structure is presented in 

equation (1.43) and plots of the solution results are shown in Figures 31–35. 

   (1.43) 

 

Figure 31.  States and control trajectories for gain optimization solution 
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Figure 32.  Optimal kv and damping ratio 

 

Figure 33.  Trajectory of total torque in optimal kv solution 



 47 

 

Figure 34.  Hamiltonian trajectory of optimal kv solution 

 

Figure 35.  Switching function, control and total torque trajectories of 
optimal kv solution 

The results plotted in Figure 31 show that the maneuver time can be 

reduced by changing the velocity gain, but it still does not reach the performance 

of the feed-forward architecture results. While difficult to discern in Figure 31, 

some overshoot remains; this is evident in the velocity trajectory, which has a 
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negative excursion toward the end to compensate for the overshoot. 

Nevertheless, the change in velocity gain (and consequently the damping ratio) 

did succeed in reducing the overshoot and improving the performance. 

Interestingly, the reduction in overshoot of the optimal solution was 

achieved by reducing the velocity gain and damping ratio, making the system 

more underdamped than it was before. In classical control methods, this would 

result in greater overshoot, more oscillations about the final position and longer 

total maneuver time. This is a very counterintuitive result that could be further 

investigated in future work. 

It should be noted that some of the necessary conditions are not entirely 

met. The Hamiltonian is not as smooth as the Hamiltonian evolution equation 

would require, and because the path covector, , is very close to zero for much 

of the trajectory, the HMC is difficult to verify. Like the acceleration guided 

optimal control architecture solution, this solution quality could be improved by 

proper scaling.  

B. ARCHITECTURE VARIATIONS: HIGH-BANDWIDTH CONTROL 

Another aspect of the system that bears further investigation is the effect 

the control system gains on the optimal control solution. Recall that the 

proportional and derivative gains in the baseline system were designed to 

produce a settling time of 0.9 sec under classical control law, but these gains can 

be modified to achieve a much faster response with a shorter settling time. Such 

a modification would most benefit the optimal control architectures that are based 

on state guidance because with faster response times, the high-bandwidth 

system would follow the state guidance much more closely. 

The maneuver time for the state guidance optimal control architecture was 

approximately 0.5 sec. Given the objective of having a system response that 

more closely follows the state guidance, the gains will be recalculated based on a 

settling time of 0.05 seconds (i.e., 10 times faster). This will achieve a quicker 

“settling” on the moving target embedded in the guided control trajectories due to 
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the higher control bandwidth. Using the equations and procedures detailed when 

describing the baseline system, the new proportional and derivative gains are: 

   (1.44) 

The utility of increasing the gains will be evaluated for both the guided control 

and feed-forward control architectures. 

1. High-bandwidth Guided Optimal Control 

The problem statement, formulations and descriptive equations and 

conditions for the high-bandwidth guided optimal control are all the same as the 

original (low bandwidth) state-guided architecture, so they will not be repeated 

here. The system response with the increased gains is presented in Figures 36 

and 37. 

 

Figure 36.  States and commanded states in optimal control solution for 
high-bandwidth guided control 
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Figure 37.  Switching function in optimal control solution for high-
bandwidth guided control 

The response for the high-bandwidth control system is remarkable in that 

the performance of the feed-forward architecture with the low gains is nearly 

matched simply by increasing the gains of the PD controller; the guided control 

with increased gains completes the maneuver in 0.27 seconds, whereas the 

feed-forward architecture with the lower gains completes the maneuver in 0.26 

seconds. Recall that the guided control architecture with the original, lower gains 

completed the maneuver in 0.5 seconds. A small amount of overshoot in the 

response remains, although it is nearly imperceptible in Figure 36; this may be 

reason that the response does not quite match the response of the feed-forward 

system. Note also that the third “bang” of torque is still present, albeit for a much 

smaller duration. Although increasing the gains has allowed the high-bandwidth 

system to better track the guided inputs, the control loop is much more 

susceptible to noise effects than the lower bandwidth feedback. 

2. High-bandwidth Feed-Forward Optimal Control 

The response of the guided control architecture was dramatically 

improved when the gains were increased. Because the feed-forward architecture 
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essentially bypasses the controller feedback to produce the maximum torque in a 

bang-bang trajectory, the responsiveness of the controller which is determined by 

the gains should not be a factor in the overall system response. To verify this 

hypothesis, the high-bandwidth optimal control problem is solved. This problem 

formulation and analysis, matches the original feed-forward problem so they will 

not be represented here. The results are illustrated in Figures 38 and 39. 

 

Figure 38.  State and control trajectory of high-bandwidth feed-forward 
optimal control 
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Figure 39.  Switching function of high-bandwidth feed-forward optimal 
control 

The feed-forward solution completes the maneuver in 0.26 seconds; this is 

the same maneuver time as the first feed-forward solution with the lower gains. 

Note also that the control torque is modulated to affect the same “bang-bang” 

torque profile as in the first feed-forward solution, and that Figure 39 illustrates 

that the necessary condition is satisfied. 

The extreme values of the control torque produced in this solution are an 

artificiality of the model and warrants some explanation. Recall that the feed-

forward architecture retains the step input as a commanded position guidance. 

With the increased gains, the torque signal produced by the PD controller alone 

would be very high, on the order of 105 Nm. Because the total applied torque 

constraint of ± 60 Nm is still in effect, the optimal control solution modulates the 

control torque such that the when combined with the feedback torque from the 

PD controller, the total torque does not exceed this constraint. This was also true 

of the first feed-forward architecture, but the effect was much smaller due to the 

smaller feedback gains. 
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3. High-bandwidth Acceleration Feed-Forward Control 

The next step to explore the performance of the architecture with the 

increased gains is to apply the same increased gains to the acceleration feed-

forward control architecture. Recall that in this architecture, rotational 

acceleration is the control variable. Based on the rotation acceleration guidance, 

the position and velocity state guidance is provided to the PD controller; also, a 

feed-forward torque signal is produced based on the product of the rotational 

acceleration and the nominal rotational inertia. Recall that in the hybrid 

architecture with the original lower gains, the performance matched the feed-

forward architecture, with a maneuver time of 0.26 seconds. The performance in 

this architecture with the increased gains is expected to be similar. The model, 

problem formulation and necessary conditions are the same for this architecture 

as they were for the original hybrid architecture, so they will not be recapitulated 

here. The results of this problem are presented in Figures 40 and 41. 

 

Figure 40.  State and control trajectories in optimal control solution for 
high-bandwidth acceleration feed-forward architecture 



 54 

 

Figure 41.  Switching function in optimal control solution for high-
bandwidth acceleration feed-forward architecture 

The state trajectories match the command states exactly; they are plotted 

over each other in Figure 40 to highlight this fact. Note also that the maneuver 

time in this case, like the feed-forward architecture previously discussed, 

completes the maneuver in 0.26 seconds and is not improved with the increased 

gains. 

C. SUMMARY 

This chapter explored the implication of manipulating the PD controller 

gains in achieving an optimal minimum time maneuver for several control 

architectures. The results indicate that the control bandwidth of an architecture 

with a feed-forward control input does not affect its performance. Conversely, if 

the optimal control implementation is limited to state guidance, increasing the 

control bandwidth of the feedback loop enables the system to more closely follow 

the optimal state trajectory, and reduces maneuver time. This, however, comes 

at the cost of increased susceptibility to noise in the feedback loops. 
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IV. IMPACTS OF UNCERTAINTY ON ONE-DIMENSIONAL 
CLOSED-LOOP OPTIMAL CONTROL 

The primary purpose of implementing optimal control with feedback is to 

correct for the uncertainties that will invariably occur in real world systems. The 

uncertainty evaluated in this study consists of uniformly distributed ±10% 

uncertainty in the rotational inertia; this degree of uncertainty is typical in real 

astronautical systems. Variations in the actual rotational inertia of the system will 

result in variations of the settling time for a given maneuver. The settling time is 

defined as the time required for the system to reach and stay within 2% of the 

commanded or final position. (Note that this definition of settling time, a typical 

figure of merit in control design, differs from the maneuver time predicted by the 

optimal control solution which corresponds to reaching the exact desired end 

state.)  

The data presented in this chapter result from the verification and 

validation (V&V) of the optimal control solutions developed and discussed in the 

previous chapters of this thesis. For each control architecture, the V&V is 

executed with a simple ODE45 propagator based on the control variable 

trajectory from the optimal control solution and the system dynamics. For 

illustrative purposes, selected results of V&V analyses for both the guided 

optimal control and feed-forward optimal control architectures are presented in 

Figures 42 and 43. As predicted in the optimal control solution, the feed-forward 

position trajectory has minimal overshoot; the overshoot that does exist in these 

plots is due to the variation of the actual inertia. Note also the comparatively 

large overshoot of the trajectories in the guided optimal control systems; this is 

nearly 50% overshoot, much greater than even the baseline system response, 

which had only a 5% overshoot. In spite of the large overshoot, the nominal 

settling time of guided optimal control solution is half of that of the baseline 

system. It must be noted that in a real world application, a 50% overshoot may 
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not be acceptable due to other constraints or considerations, regardless of the 

settling time. 

 

Figure 42.  Feed-forward optimal control with inertia uncertainty  
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Figure 43.  State-guided optimal control with inertia uncertainty 

The overall impact of the inertia uncertainty is evaluated using a Monte 

Carlo analysis. Monte Carlo analysis is particularly useful in analyzing the 

behavior of systems with multiple sources of variation, such as noisy signals or 

design uncertainties. In a Monte Carlo analysis, a simulation is repeated 

numerous times allowing each source of noise or uncertainty to vary individually 

according to its own probability function to determine the impact of all sources of 

uncertainty on the overall performance of the system. Strictly speaking, because 

there is only one source of uncertainty, a Monte Carlo analysis is not necessary 

in this case, but this analytical approach can be applied as more sources of 

variation and uncertainty are incorporated in future work. 

A. ANALYSIS OF UNCERTAINTY RESULTS 

The results of a Monte Carlo analysis of the impact of a uniformly 

distributed variation of rotational inertia in each optimal control architecture are 
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presented in Appendix B. These plots are combined scatter plot and histograms; 

the scatter plot contains a data point on the inertia and settling time axes for each 

simulation and the histograms illustrate the probability distribution of the data. In 

addition to better illustrating the results, this structure also facilitates confirmation 

that the selected inertia values were drawn from a uniform distribution. 

The results of the simulations with inertia variation show the impacts that 

uncertainty can have on the system response. Note that the feed-forward 

architecture and acceleration feed-forward architecture both have similar 

distributions of settling time, and are both, generally, better performing than the 

guided control architecture. Interestingly, while the mean, mode, and median 

settling time of the feed-forward and acceleration feed-forward architecture 

responses were all better than those of the guided control architectures—nearly 

half of the time of the guided control architecture settling time—there were also 

some outlier settling times that were actually worse than the worst response of 

the guided control architecture. Unlike the distribution of settling times in the 

guided control architecture, the distribution of the outliers in the feed-forward and 

hybrid results is fairly uniform and does not appear to be part of a larger trend. 

This may simply be an artifact of the numerical approximations used in the 

ODE45 propagator and should be investigated further. 

Another interesting observation from the simulations is that when the 

gains of the PD controller are increased, the performance of the guided control 

architecture improves dramatically. Indeed, in terms of setting times, the 

performance of all three architectures is nearly the same, with only hundredths of 

seconds separating them (less than 1%). Further, with the increased gains, the 

inertia uncertainty has virtually no impact on settling time for any of the 

architectures. (A few “outliers” exist in the guided control architecture response, 

but again these results differ from the mean by only hundredths of seconds.) 

The variation of control effort with inertia across the architectures is also 

interesting. (Control effort is defined using the traditional quadratic cost metric; 

see Appendix A for further discussion of control effort.) In each case, the control 
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effort required varies linearly with inertia. While this result is intuitive at some 

level in that it requires more work to displace a larger object than a smaller 

object, it is also intuitive to expect that the incorporation of the optimal control 

methods with feedback designed for a particular inertia would result in the need 

for additional feedback torque (i.e., control effort) when applied to off-nominal 

inertias. As an example, in the feed-forward architecture, in the nominal system 

response should precisely achieve the desired end state based on the feed-

forward torque signal alone; any off-nominal cases would have that same torque 

application but would also require feedback torque to compensate for the actual 

(off-nominal) state after the application of the feed-forward torque. It seems 

intuitive that this would have resulted in a parabolic or v-shaped distribution of 

control effort, with the minimum at an inertia of . That this effect does 

not appear in the data bears further investigation. An example distribution is 

extracted from Appendix B and presented in Figure 44. 

 

Figure 44.  Impact of uncertainty on optimal acceleration feed-forward 
architecture 

Another interesting observation is that that the acceleration feed-forward 

architecture does not have better performance in terms of settling time compared 
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to the feed-forward architecture, which was not expected. Because the 

acceleration feed-forward architecture uses both feed-forward and guided state 

control, a sort of “belt and suspenders” approach, this was expected to provide 

better feedback compensation for the off-nominal trajectories resulting from off-

nominal inertias. The optimal state trajectories contained in the state guidance is 

for the nominal inertia; a different inertia would have a different optimal trajectory. 

In retrospect, attempting to guide the system to follow a sub-optimal trajectory 

should not be expected to achieve optimal results. However, note that while this 

is the case for internal variations and uncertainties, acceleration feed-forward 

control would likely improve performance in the presence of external 

disturbances. In that case, the inclusion of state guidance would allow deviation 

from the optimal trajectory to be more quickly detected and corrected and would 

likely result in improved overall system performance. 

B. CONCLUSION OF CLOSED-LOOP OPTIMAL CONTROL 
ARCHITECTURE STUDY  

So far, this study has evaluated several closed-loop implementations of 

optimal control architectures, highlighting some advantages and disadvantages 

amongst the variants. Closing the control loop is an approach that enables 

compensating for system uncertainties; such effects were simulated using 

variation of inertia as the source of uncertainty. The well known “bang-bang” 

control was manifest in some of the architectures that incorporated a feed 

forward torque, but the architectures that were based entirely on state guidance 

required a “bang-bang-bang” control profile.  

The performance differences across the architectures were interesting. 

With the initial, lower PD gains, the feed forward architectures completed the 

maneuver in half of the time as the state guidance architectures. But, if the 

system’s PD gains can be manipulated, the performance of the feed forward 

architecture can be matched with state guidance control architectures. The 

increased PD gains provide the additional advantage of dramatically reducing 
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performance variance due to inertia uncertainty, a feature of high-bandwidth 

control. 

The results and insights gained in this study will spawn several avenues of 

future work. One aspect that bears further study is the underlying relationship 

between the feed forward optimal control architecture and the acceleration feed-

forward optimal control architecture. That the performance could be replicated in 

two different architectures indicates that there may be some fundamental control 

relationship that could be further exploited. Additionally, and more broadly, the 

concepts developed for the one-dimensional double integrator system can now 

be applied to three-dimensional rotating bodies. 
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V. A REAL-TIME OPTIMAL CONTROLLER FOR ONE-
DIMENSIONAL ROTATIONAL MANEUVERS 

The previous exploration of closed-loop optimal control architectures 

demonstrated that the feed-forward architecture and its variants achieve the best 

performance in terms of executing minimum time maneuvers. In light of this 

finding, the feed-forward architecture and optimal control solution will be further 

developed. If an analytical solution to the feed-forward control torque can be 

found, this solution could easily be transitioned to a real-time implementation in 

which the feed-forward torque is continuously modified and updated in response 

to current feedback measurements to achieve the minimum time maneuver in the 

presence of system uncertainties, external disturbances and other non-idealities. 

A.  ANALYSIS OF THE FEED-FORWARD CONTROL TORQUE 

In this section, an expression for the feed-forward control torque is 

developed. Recall that the PD controller produces a feedback torque based on 

the difference between the commanded states and the actual states (i.e., the 

state error). 

In the feed-forward architecture, the total torque applied to the plant is the 

sum of the feed-forward control torque, ( )ctrl tt , and the PD controller feedback 

torque. The total torque is described by the following equation: 

  (1.45) 

The commanded position, , is a step function: 

 , (1.46) 

where 
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and the scalar  is the magnitude of the commanded position. Note also that 

the angular rate is the time derivative of position. 

  (1.47) 

With the preceding substitutions, total torque is given by the following 

equation: 

  (1.48) 

The classical analysis technique of Laplace Transforms, as described in 

Chen [1] will be helpful in further analyzing this problem. Taking the Laplace 

Transform of the total torque equation, (1.48), yields the following: 

  (1.49) 

To solve for the feed-forward control torque, ( )ctrl st , the system’s position 

response in the frequency domain, , may be substituted into (1.49). A 

complete expression of the system response consists of both the response due 

to control inputs as well as the response due to the system initial conditions, 

known as the zero-state response and the zero-input response, respectively [1]. 
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An advantage of working in the Laplace domain is that the total system response 

is simply the sum of the various responses: 

  (1.50) 

To facilitate the development of the zero state response, , a more 

detailed block diagram of the closed-loop feed-forward architecture is presented 

in Figure 45. 

 

Figure 45.  Detailed block diagram of closed-loop feed-forward optimal 
control architecture 

This control architecture has two control inputs, the control torque, , 

and commanded position, . In a fashion similar to the expression of the 

overall system response, the expression of the zero state response is the sum of 

the response to each of the control inputs individually. This expression is 

determined by finding the transfer function due to each input while setting the 

other input to zero. Using this idea and the typical block diagram manipulation 

techniques yields the following equation for the zero state response: 
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  (1.51) 

An analysis of the total torque equation will enable developing the zero 

input response. 
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  (1.52) 

Setting both inputs to zero and taking the Laplace transform yields the 

following: 

  (1.53) 

Thus, the total system response can be described by the following 

equation: 

 (1.54) 
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Substituting the system response, , into the equation for the total 

torque, , and conducting a significant number of partial fraction reductions 

yields the following expression for the control torque: 

 (1.55) 

Equation (1.55) for the feed-forward control torque is given in terms of the 

total torque. Fortunately, the previous optimal control analysis provides some 

insight into what the total torque function should be for an optimal maneuver. In 

the optimal maneuver, the total torque profile (in the time domain) is the “bang-

bang” profile, as depicted in the Figure 46. More specifically, the initial torque 

application is at the maximum torque limit for some amount of time; after the 

proper interval, torque is applied at the maximum negative torque limit until the 

maneuver is complete at which point the torque is reduced to zero. 
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Figure 46.  Example of optimal total torque trajectory 

In the example shown in Figure 45, the maximum torque limits are 

±60Nm, the switch time, , is 0.5 seconds and the maneuver is completion 

time, , is 1.0 sec. Note that in this example, the switch time is exactly halfway 

through the maneuver. While this would be expected for a maneuver that starts 

from rest (i.e. ), if the initial conditions were different, the duration of each 

torque interval would be modified accordingly. Examples of such a situation will 

be given in a future section when the kinematics of the bang-bang maneuver are 

described. 

A general form of the optimal total torque, , profile is defined 

mathematically in the following equation: 
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  (1.56) 

Taking the Laplace transform of (1.56) yields the following: 

  (1.57) 

Substituting (1.57) into (1.55) yields the following: 

 (1.58) 

Taking the inverse Laplace transform of (1.58) yields: 

  (1.59) 

Equation (1.59) describes the control torque trajectory for the optimal 

minimum time maneuver for use with closed-loop feed-forward architecture. The 

only unknowns remaining in this equation are the switch time and the final 

maneuver time. But the bang-bang nature of the maneuver simplifies calculation 

of these remaining unknown variables. By dividing the maneuver into two 

separate constant acceleration phases, the kinematic equations of constant 
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acceleration motion can be used to calculate the switch and final times. Figure 47 

illustrates this concept. 

 

Figure 47.  Example of state trajectories in minimum time maneuver 

The calculation of the points of interest for the bang-bang maneuver, 

namely the switch time and final time, is accomplished with the following basic 

kinematic equations. Note that this process is predicated on the assumption that 

the initial and final conditions are known and that the acceleration is constant at 

the maximum value (in each phase). 

  (1.60) 

  (1.61) 
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  (1.62) 

  (1.63) 

The position that coincides with the switch time, , can be solved by 

examining both phases of the maneuver (refer to Figure 46 for an illustration): 

 Phase 1:  (1.64) 

 Phase 2:  (1.65) 

Rearranging both (1.64) and (1.65) to solve for  and setting them equal 

to each other leads to the following equation for : 

  (1.66) 

Having solved for , the rest of the calculations fall out as follows: 

  (1.67) 

  (1.68) 

  (1.69) 
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B. ANALYTICAL SOLUTION TO MINIMUM TIME FEED-FORWARD 
MANEUVER 

The preceding section developed an analytical solution for the optimal 

feed-forward control torque to achieve a minimum time maneuver. This solution 

will now be compared to the control torque trajectory determined numerically, as 

discussed and presented in the previous chapter.  

Recall that the rotational inertia is taken to be 1 kgm2, the maximum 

torque is 60 Nm. The initial conditions are , ; and the final conditions 

are , . Figure 48 illustrates the comparison. 

 

Figure 48.  Comparison of analytical and numerical solution for control 
torque trajectory 

Figure 48 clearly shows that the analytical solution developed in section B 

is correct. The added benefit of the analytical solution over the numerical solution 
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is that the control torque trajectory is precisely defined at any arbitrary time, t, 

throughout the maneuver. Consequently, the total torque profile is a more crisp 

bang-bang. This results in the ability to execute a more precise maneuver. 

C. TRANSITIONING TO REAL-TIME OPTIMAL CONTROL 

Transitioning the analytical solution developed in section A to a real time 

optimal control solution will require several adaptations. These adjustments 

include accommodating all maneuvers types (e.g., forward motion, reverse 

motion, and non-rest-to-rest maneuvers) and modifying the control torque 

equation for a shifting time reference. 

1. Variations on the Bang-Bang Profile 

The minimum time problem discussed to this point has consisted of a 

particular set of boundary conditions leading to a particular bang-bang maneuver 

solution. The problem assumed forward motion (from  to ) from an 

initial rest condition to a final rest condition (i.e., , ). For such a 

problem, the minimum time maneuver consists of the application of maximum 

positive torque for some duration of time followed by an application of maximum 

negative torque for some other duration of time. As previously mentioned, 

starting from a non-rest condition would simply modify the durations of the 

positive and negative torque applications, without affecting the general torque 

profile of positive followed by negative maximum torque applications.  

It is conceivable that the initial conditions are such that only a single 

torque application is necessary (a single-bang maneuver). More interestingly, it is 

conceivable that the initial velocity is so great that, even with application of 

maximum negative torque, the system would overshoot the commanded final 

position. In such an over-speed situation, the optimal total torque application is 

still a bang-bang profile, however the signs are reversed and the optimal bang-

bang trajectory would consist of maximum negative torque application followed 

by maximum positive torque. Such a sequence is illustrated in Figure 49. In a 
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similar way, the combination of initial conditions will dictate the total torque profile 

for maneuvers in the reverse direction. 

 

Figure 49.  Example of an over-speed maneuver in the positive direction 

As Athans and Falb demonstrated [5], the variety of conditions (e.g., 

forward, reverse, forward over-speed and reverse over-speed) is best illustrated 

in the normalized state plane (normalized in that the final conditions are at the 

origin of the state plane).1 Examine Figure 50; this is a plot of trajectories of 

optimal maneuvers from various initial conditions. System states in quadrants III 

and IV are forward maneuvers; system states in quadrants I and II are reverse 

maneuvers. The dotted red lines are state trajectories resulting from the 

application of maximum negative torque and the dotted blue lines are state 

trajectories resulting from the application of maximum positive torque. Assuming 

that the desired final conditions are at the origin, the solid red line is the collection 

of states from which the system can be driven to the final conditions with a single 

                                            
1 The use of the state plane to illustrate this point is inspired by the work of Athans and Falb’s 

real-time optimal control method [5]. The inclusion of an underlying PD controller distinguishes 
the results of this thesis from their work, but because the optimal total torque trajectories at the 
plant input are the same, the kinematic effects are also the same. 
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application of maximum negative torque; and the solid blue line is the collection 

of states from which the system can be driven to the final conditions with a single 

application of maximum positive torque [5]. If the system states, initial or 

otherwise, of a forward maneuver are above the solid red line, it is in an over-

speed condition and will overshoot the final position; if the system states of a 

reverse maneuver are below the solid blue line, then it is also in an over-speed 

condition, but in the other direction.  

 

Figure 50.  Sample trajectories of optimal maneuvers in the state plane, 
based on Athans and Falb [3] 

As Figure 50 illustrates,  can be used to determine whether or not an 

over-speed condition exists. When stepping through the kinematic calculations 

for a forward maneuver, if the value of  is less than the current value of  , 

then the system is rotating too fast for maximum deceleration to stop at the 

commanded final position. When such a condition exists, a new set of switch and 

final times should be calculated based on the over-speed bang-bang maneuver. 

The new equations are developed in the same fashion as (1.66) through (1.69); 

they are presented in (1.70) through (1.73) without derivation. 
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  (1.70) 

  (1.71) 

  (1.72) 

  (1.73) 

A similar test can be applied to reverse maneuvers, except that in this 

case the over-speed condition is indicated if the value of  is greater than the 

value of . 

Strictly speaking, a second category of optimal maneuver does exist. It is 

certainly conceivable that the system’s initial states are such that only a single 

“bang” of torque is necessary to drive the system to the commanded final 

conditions. This is the case if the states are on the solid red or blue lines in 

Figure 50. However, the developed kinematic calculations already address this 

situation. If the system states reside in this locus of points that need only a single 

application of torque, then the kinematic equations will indicate a switch time that 

is immediate or in the past and direct the system to implement the second and 

final phase of a “bang-bang” maneuver (i.e., only a single application of either 

positive or negative maximum torque). Therefore, the treatment of this scenario 

separately is not necessary for implementation. 

2. Adjusting to the Times 

Implementation of the analytical feed-forward control torque formula as a 

real-time optimal control will entail the recalculation of the optimal maneuver 

parameters on regular intervals. But, because the maneuver is already 

underway, the evaluation of the equations presented thus far will have to be 
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adjusted for the current clock time. In other words, the control torque equations 

discussed to this point assume that time starts at zero, but that will not be the 

case once the maneuver is initiated. The adjustment for clock time is made 

through the substitution of real-time variables: 

 

( )
( )

*

*

*

update

sw sw update

f f update

update update

update update

t t t

t t t

t t t
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θ θ
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= −

= −

=

=

 (1.74) 

Substituting the real-time variables into the control torque equation yields 

the following: 

  (1.75) 

3. Incorporating Dead-Zone 

Real systems cannot apply infinitesimally small amounts of torque nor can 

they apply any amount of torque for an infinitesimally short duration of time. A 

dead-band is implemented in real systems to accommodate these limitations and 

prevent chattering of actuators when the system is sufficiently close to the 

desired end states. Even in mathematical models, dead-bands are useful, not 

only to incorporate another element of realism, but also to prevent numerical 

excursions near the end state. In the case of the RTOC system developed here, 

a dead-band is implemented to prevent recalculation of maneuver parameters 

that would execute an excessively short bang-bang maneuver. But, since the 
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dead-band only applies to the feed-forward control torque, it does not prevent the 

continued operation of the PD controller.  

This last point illustrates a significant advantage of this RTOC method 

over others. A real-world implementation of similar RTOC systems, such as that 

described by Athans and Falb [5], must include a dead-band for the reasons 

already described. When combined with the dead-band, most maneuvers will not 

end by reaching the commanded end state, due to the uncertainties in the 

system inertia. Instead, the system will come very close to the final position with 

some very small, but non-zero, velocity and will slowly coast past the 

commanded end position; then, when the limits of the dead-band are exceeded, 

a short application of maximum torque will send the system slowly drifting past 

the commanded position in the other direction. This appears in the state plane as 

a limit cycle in which the system circles the commanded end-state. In contrast, 

when the PD controller-based RTOC system developed here is within the RTOC 

dead-band and no longer executing bang-bang maneuvers, the PD controller will 

continue to regulate the state error to zero.  

A dead-band is implemented in this RTOC system to prevent recalculation 

of the maneuver parameters once the system states are sufficiently close to the 

commanded states. The results presented in this thesis are based on a dead 

band of  and . The choice of these parameters is up to 

the designer. Although not implemented in the controller developed in this thesis, 

the designer should also consider applying a dead-band, or tolerance, to the 

over-shoot decision variable, sww . Some scenarios resulting in minor overshoot 

as indicated by the value of sww  may achieve sufficient end-state precision more 

quickly than if an over-shoot maneuver sequence were initiated. 

The RTOC algorithm with PD inner loop is summarized as follows: 

1. Check Update Time Interval (this is the frequency that the 
maneuver parameters and  are recalculated, specified by the 
designer) 
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2. Check Dead-Band 

3. Initiate calculation of maneuver parameters: 

a. Determine maneuver direction (forward or reverse) 
b. Calculate switch and final times 
c. Check for over-speed condition; if over-speed, recalculate 

switch and final times 
4. Update ; account for direction of maneuver and over-speed 

condition 

D. A NOTE ON MODELING THE RTOC CONTROLLER 

The RTOC system described in this thesis is modeled in MATLAB using a 

fixed step ODE4 solver. Fixed step solvers are typically less accurate and take 

longer to execute than variable step solvers, and are not normally preferred for 

developing numerical solutions. However, variable step solvers achieve their 

faster run times by attempting relatively large step sizes, comparing errors and 

re-calculating as necessary to reduce their error; consequently, they tend to 

“jump around” in time in the course of their computation. Because this RTOC 

algorithm involves computing and implementing the optimal control torque based 

on progressing system states, it is imperative that the calculations occur 

sequentially; thus, a fixed step solver is preferred for implementing this system. 

Indeed, attempting to model this RTOC controller with a variable step solver 

simply failed to produce accurate results. 

E. RESULTS AND ANALYSIS OF THE RTOC CONTROLLER 

The first simulation of the RTOC controller, presented in Figures 51–56, is 

for the nominal case (i.e., actual rotational inertia is equal to the nominal inertia). 

Again, this is a forward maneuver (from  to ) from an initial rest 

condition to a final rest condition (i.e. , ). These results were 

obtained using a 0.0001 sec step size with MATLAB’s ODE4 solver. 
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Figure 51.  Time response of the nominal system (i.e., no inertia 
uncertainty) using RTOC controller 

 

Figure 52.  Response of nominal system (i.e., no inertia uncertainty) in the 
state plane 
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Figure 53.  Total torque trajectory of nominal system with RTOC control 

 

Figure 54.  Feed-forward control torque trajectory of nominal system 
under RTOC control 
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Figure 55.  Switch and final time throughout maneuver of nominal system 
under RTOC control  

 

Figure 56.  RTOC algorithm condition flags during maneuver of nominal 
system  

Figure 53 contains a brief application of a positive maximum torque at the 

end of the maneuver. This is a result of the numerical error of the ODE4 fixed 

step solver. Due to the numerical error, the RTOC algorithm determined that the 
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system was in a slight over-speed condition; consequently, it implemented the 

forward maneuver over-speed controls, which would entail maximum negative 

torque followed by an application of maximum positive torque. The over-speed 

condition is imperceptible in the state trajectories. This phenomenon is also 

captured in the other plots. 

In Figure 55, the Switch and Final times are constant through most of the 

maneuver; but at 0.13 sec the RTOC algorithm detected a slight over-speed 

condition due to numerical error of the ODE4 solver. When the over-speed 

condition is detected, new switch and final times are computed for an over-speed 

maneuver. The time span between the switch and final time during the over-

speed maneuver indicate the degree of the over-speed condition (i.e., very 

small). 

Figure 56 plots a series of algorithm flags to illustrate the internal workings 

of the algorithm throughout the maneuver; they are only plotted when the system 

is outside of the RTOC dead-band. This indicates that the over-speed condition 

was determined at time 0.13 sec. The flag values have the following meanings: 

Fwd-Rev: +1 for Forward Maneuver, -1 for Reverse Maneuver; Over-Speed: +1 

for Nominal, -1 for Over-Speed; Bang-Bang Sequence: +1 if positive max torque 

followed by negative max torque; -1 for negative max torque followed by positive 

max torque. 

F. RTOC CONTROLLER PERFORMANCE IN THE PRESENCE OF 
INERTIA UNCERTAINTY 

The numerical error and resulting over-speed condition notwithstanding, 

the behavior of the nominal system with the RTOC controller matches the 

behavior of the nominal system with open-loop optimal control torque. But it is 

much more interesting to see how the RTOC controller deals with uncertainties. 

Figures 57–62 present the results of the system with an actual inertia that is 

150% greater than nominal; this is an excessive amount of uncertainty but is an 

excellent illustration of the power of this RTOC controller. 
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Figure 57.  State trajectories of system with 50% inertia uncertainty using 
RTOC controller  

 

Figure 58.  Total torque trajectory of system with 50% inertia uncertainty 
using RTOC controller  
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Figure 59.  Control torque trajectory of system with 50% inertia 
uncertainty using RTOC controller 

 

Figure 60.  Maneuver of system with 50% inertia uncertainty using RTOC 
controller in the state plane 



 86 

 

Figure 61.  Switch and final time computations for system with 50% inertia 
uncertainty using RTOC controller 

 

Figure 62.  Condition flags throughout maneuver of system with 50% 
inertia uncertainty using RTOC controller 

In the simulation, the actual inertia is 150% of the nominal inertia. With this 

degree of uncertainty, the system experiences an over-speed condition twice, 

most evident in velocity state excursions below 0 rad/sec in Figure 57. Even with 
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these uncertainties, the system settles within 1% of the final position in 0.445 

sec. 

Because the nominal inertia is a factor in calculating the control torque, 

the total torque plotted in Figure 58 slightly exceeds the limit of +/- 60 Nm. 

However, since the RTOC algorithm regularly samples the current states and 

recalculates the control torque trajectory, the total torque only reaches the 

extreme values of +63.51 and -63.46 Nm. 

The state trajectory plotted in Figure 60 illustrates the over-speed 

conditions that the system experiences. The detail shown in the sub-plot on the 

right illustrates the behavior of the system within the dead-band. Observe that 

although the RTOC algorithm will not execute a new bang-bang maneuver to 

continue to drive the system to the commanded final states, the PD controller 

does continue to drive the system to the final states. 

The dramatic shifts in switch times plotted in Figure 61 at approximately 

0.18, 0.42 and 0.55 seconds all correlate to changes in the bang-bang sequence, 

either due to a change in the direction of the maneuver (i.e., overshooting the 

commanded final position) or to shifting to an over-speed condition. 

G. COMPARISON TO OPEN-LOOP OPTIMAL CONTROL SOLUTION 

For the purpose of comparison, the results of a system with an actual 

inertia of 150% of nominal but using a static optimal control solution will now be 

presented. In this scenario, the feed-forward control torque trajectory is 

computed at the beginning of the maneuver based on the initial conditions and 

nominal inertia, and remains unchanged throughout the maneuver (i.e., is not 

updated with any state or system feedback). The results of open-loop feed-

forward optimal control simulation are presented in Figures 63–66. 
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Figure 63.  State trajectories of system with 50% inertia uncertainty using 
static feed-forward optimal control  

 

Figure 64.  Maneuver of system with 50% inertia uncertainty using static 
feed-forward optimal control  
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Figure 65.  Total torque trajectory of system with 50% inertia uncertainty 
using static feed-forward optimal control 

 

Figure 66.  Control torque trajectory of system with 50% inertia 
uncertainty using static feed-forward optimal control 

This system reaches and remains within 1% of the final position after 

1.002 seconds. While the system is well short of the final commanded states 

when the feed-forward control torque expires, the PD controller continues to drive 
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the system to the commanded final states. The long settle time following 

completion of the control torque input is due to the low bandwidth of the PD 

controller. 

The total torque profile plotted in Figure 65 is clearly not the optimal bang-

bang profile. The maximum torque limit of 60 Nm is well exceeded, reaching a 

maximum value greater than 80 Nm. The control torque profile plotted in Figure 

66 is exactly correct—for a different system. Unfortunately, because this 

system’s actual inertia is 50% greater than the nominal inertia which factors into 

the computation of this torque profile, this torque trajectory is completely 

incorrect, resulting in a comparatively long maneuver time. 

H. FURTHER ANALYSIS OF THE RTOC CONTROLLER 

The comparison of the performance differences between the RTOC 

system and the open-loop optimal control system for a plant with 50% inertia 

uncertainty is stark. The RTOC system completes the maneuver, using a 1% 

settling metric, in 0.445 seconds, while the open-loop system required 1.002 

seconds to settle at the same position. Another important advantage of the 

RTOC system is that the total torque excursion beyond the nominal limit is much 

smaller at a max of 63.51 Nm compared to the static feed-forward method which 

exceed 80 Nm. This would allow a designer to reduce the saturation margin and 

employ more of the system’s torque capability without risking saturation. 

Alternatively, employment of a saturation mechanism preventing the torque 

application from actually exceeding 60 Nm may produce even longer settling 

times in the static feed-forward controller whereas such a limit would have 

minimal impact on the performance of the RTOC controller.  

I. SUMMARY 

The closed-loop real-time optimal control system with an integrated PD 

controller developed in this thesis has a variety of advantages, chiefly improved 

maneuver time performance. While the static optimal control solution integrated 
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with the closed-loop PD controller also reaches the final end state, the presence 

of inertia error may have significant impacts on the performance of this system. 

In contrast, the RTOC controller senses the off-nominal state trajectory and 

actively adjusts to achieve a more time optimal maneuver. To be sure, the inertia 

error is built into the RTOC controller logic (i.e., the nominal inertia is a factor in 

the optimal control torque formula), and it is not able to achieve an optimal 

maneuver for the off-nominal system, but the performance is dramatically better 

than the alternative static optimal control trajectory. 

An unexpected advantage is that the RTOC controller remains closer to 

the torque limit, minimizing the torque envelope violations. This aspect allows the 

designer to reduce the control margins that would have otherwise been imposed, 

enabling the RTOC controller to more efficiently utilize actual system capability. 

The techniques applied in the development of this one-dimensional RTOC 

controller can be employed in a broad range of control applications for space 

systems. As such, the concepts developed here will be expanded for multi-

dimensional systems in the next chapter. 



 92 

THIS PAGE INTENTIONALLY LEFT BLANK 



 93 

VI. DEVELOPMENT OF REAL-TIME OPTIMAL CONTROL  
METHODS FOR EIGENAXIS MANEUVERS 

A. INTRODUCTION 

The previous chapter illustrated the benefit of a real-time optimal controller 

(RTOC) in a single degree of freedom system (SDOF). This chapter will describe 

the translation of the developed concept to a system with three degrees of 

rotational freedom (3DOF), such as a spacecraft. The maneuver performed by 

the SDOF system is analogous to an eigenaxis maneuver for a 3DOF system, in 

which the system rotates about a fixed axis during the transition from one 

orientation to another. The RTOC controller will be extended to accommodate 

these types of maneuvers. 

An eigenaxis maneuver is a maneuver in which the rigid body rotates 

about a single axis, specifically the eigenaxis, to reach a new attitude. An 

eigenaxis rotation in three dimensional rotational space may intuitively seem to 

be analogous to a straight line displacement in three dimensional Euclidean 

space, but three dimensional rotational space is not simply connected; 

consequently, not only is an eigenaxis rotation not necessarily the shortest 

displacement from one orientation to another, the eigenaxis maneuver has been 

demonstrated to not be the fastest maneuver from one orientation to another [6]. 

But the fact that rotational space is not simply connected means that the optimal 

reorientation trajectory is not readily apparent or formulaically computed. Instead, 

the optimal trajectory must be determined using optimal control methods and 

algorithms for each individual maneuver. Because the optimal maneuver often 

follows a trajectory that is not easily anticipated, the prospect of off-eigenaxis 

maneuvers leaves operators and engineers anxious about potential attitude 

constraint violations (such as pointing an optical sensor at the sun, etc.). While 

these constraints can easily be incorporated into the maneuver optimization and 

modern processing power is more than capable of running embedded 
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optimization software, the fact remains that eigenaxis maneuvers are preferred 

and are nearly ubiquitous in the current space industry. 

B. OVERVIEW OF ROTATIONAL MOTION IN THREE DIMENSIONS 

Rotational motion in three dimensions is governed by the conservation of 

angular momentum. The change of angular momentum, H


, of a rigid body in the 

inertial reference frame is equal to the externally applied torques. Conservation 

of momentum applies regardless of what reference frame used to describe the 

orientation of the system, but when using the body-fixed reference frame, a cross 

product term emerges, in accordance with the transport theorem [7]. The 

dynamics of a rigid body’s attitude are described in (1.76), where  is the 

angular momentum in the body reference frame and  is the angular velocity of 

the body frame with respect to the inertial reference frame. 

   (1.76) 

Noting that the angular momentum of the rigid body is equal to the product 

of system’s inertia, J , and angular rate, , and incorporating an additional 

control torque, , equation (1.76), becomes 

   (1.77) 

1. Momentum Exchange Devices 

Spacecraft attitude slewing commonly employs a momentum exchange 

device to produce control torque, . Common momentum exchange devices 

include reaction wheels and control moment gyros. These are systems that 

possess some sort of angular momentum within themselves. Thus, the total 

system angular momentum is equal to the sum of the spacecraft’s momentum, 

, and the momentum stored in the momentum exchange device, . Because 

the conservation of momentum must be maintained, the rotation rate of the 
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spacecraft can be modified through angular momentum exchange between the 

spacecraft and the aptly named momentum exchange device. As articulated by 

Wie [7], the attitude dynamic equation results from substituting the total angular 

momentum into equation (1.76) and incorporating the same substitutions applied 

to equation (1.77) ; the result is shown in equation (1.78). 

   (1.78) 

The control torque, , referenced in equation (1.77) can thus be set equal 

to the sum ; hence, control torques are produced by commanding 

changes in the momentum exchange device’s angular momentum vector.  

2. Zero-Net Bias Control 

The vector cross product that arises in the dynamics equation is known as 

the gyroscopic torque. The direction of this torque is orthogonal to the axis of 

rotation. A common control technique is to incorporate a counter-gyroscopic 

torque to cancel out this motion. In that case, the control torque can be viewed to 

have two components: a torque component to effect the desired acceleration and 

a counter-gyroscopic torque component whose purpose is to ensure the system 

does not accelerate in the  direction. This method has the obvious 

drawback of expending energy and torque capacity solely to maintain alignment 

with the eigenaxis; counter-gyroscopic torque does not produce motion but 

instead prevents off-eigenaxis motion.  

Many satellites in low earth orbit are operated as zero-net bias systems. 

Momentum exchange devices are actually systems of multiple rotating 

components, such as reaction wheels or control moment gyros. As such, the 

angular momentum of the whole system is equal to the sum of the angular 

momentum of each individual rotating component. A zero-biased system is one 

in which the rotating elements are arranged and balanced in such a way that the 

sum of their angular momentum vectors is equal to zero in the quiescent state. 
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Therefore, when the spacecraft is not rotating, the total angular momentum is 

also zero. 

 

0
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The advantage of a zero-net bias control system is that during maneuvers, 

the angular momentum of the momentum exchange device and the angular 

momentum of the spacecraft  are swapped for one another. Conservation of 

angular momentum means that the angular momentum of the spacecraft is equal 

and opposite the angular momentum of the momentum exchange device. 
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Naturally, when equation (1.80) is substituted into the dynamics equation, 

the gyroscopic term goes to zero ( ). 

The ability to achieve zero bias is predicated on having four or more 

actuators, which is the case in most momentum control arrays. It also requires 

nearly constant momentum management, ensuring that momentum does not 

accumulate in any one direction in response to external disturbance torques 

(such as atmospheric drag, gravity gradient, etc.). 

3. Attitude Kinematics 

The attitude or orientation of a rotational system can be mathematically 

described in various ways, but the most commonly used is the quaternion [7]. 

The quaternion is a four-element vector defined in (1.81). According the Euler’s 

rotation theorem, any rotation or sequence of rotations of a rigid body can be 
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described by a single rotation by an angle  about a specific axis, ; these are 

known as the eigen angle and eigenaxis. A quaternion is defined in these terms 

to describe a system’s attitude with respect to some reference attitude [7]. 

   (1.81) 

The quaternion kinematic equations are given as [7]: 

   (1.82) 

Together, equations (1.77) and (1.82) describe the complete rotational 

dynamics of a rigid body in response to applied torques. 

C. OPTIMAL EIGENAXIS CONTROL ARCHITECTURE 

Similar to the SDOF RTOC controller, the control architecture for the 

3DOF system will consist of a closed-loop that produces feedback torques 

proportional to the attitude and velocity error and a feed-forward torque signal to 

produce the nominally optimal total torque trajectory necessary to complete the 

maneuver in the minimum time. The analog to the PD controller used in SDOF 

systems is the quaternion error feedback controller for 3DOF systems, as 

described by Wie [7]. Like the PD controller, the quaternion error feedback 
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controller produces a torque signal that is proportional to the error between the 

commanded and actual attitude, as determined by the quaternion error, and the 

error between the commanded and actual rotational rate. The control architecture 

for this system is shown in Figure 67. 

 

Figure 67.  Feed-forward optimal control architecture with quaternion error 
feedback 

Similar to the SDOF system, the total torque applied to the body of this 

3DOF system is the sum of the feed-forward torque and the quaternion error 

feedback torque. External disturbance torques, , considered to be zero. The 

total torque is described by (1.83).  

   (1.83) 

1. Quaternion Error Feedback Controllers 

Similar to the PD controller, the quaternion error feedback controller 

applies gains, K  and C , to the quaternion and angular rate errors. The 

quaternion error is not simply the difference between the commanded and actual 

quaternion, but is instead computed according to equation (1.84), where is the 

commanded quaternion and is the measured quaternion. 
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   (1.84) 

Considering the definition of a quaternion from equation (1.81), the full 

error quaternion, , can be written as follows: 

   (1.85) 

where is the eigen angle and  are the components of the eigenaxis 

describing the rotation from the current attitude to the commanded attitude. Note 

that the quaternion error vector, , used for feedback torque calculation in 

equation (1.83) is only the first three terms of the full error quaternion, , from 

(1.84) and (1.85). 

The control methodology developed in this paper is momentum exchange 

device agnostic, and the detailed interaction of the device with the spacecraft will 

be largely ignored. Instead, a black box approach will be taken in which the 

control torques are simply produced without explanation as to their source. 

2. Relative Alignment of Torque Vector and Eigenaxis 

With the exception of rotation about one of the principle axes, rotating an 

asymmetrical rigid body about a particular axis, , typically requires application 

of torque on a different axis, . This fact is illustrated by Karpenko, King and 

Ross [8] with the following derivation. In the inertial reference frame (or in the 

body referenced frame for zero-net bias control systems), the gyroscopic terms 
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(i.e., the cross products) in equations (1.76) and (1.77) are not applicable, so 

(1.77) becomes: 

   (1.86) 

Rewriting equation (1.86) in terms of magnitudes and unit vectors yields: 

   (1.87) 

where  and  are the magnitudes of the acceleration and torque, respectively; 

and  and  are the unit vectors of the acceleration and torque directions, 

respectively. Noting that  is the inertia tensor modifying or operating on , 

equation (1.87) highlights the fact that  and  are not necessarily equal. The 

equation for  is given in equation (1.88). 

   (1.88) 

The relative alignment of the eigenaxis vector and the torque vector will be 

an important concept in the development of the subject RTOC controllers, but it 

is also an important concept in the selection of gains in the quaternion error 

feedback controller. Wie [7] developed the theorem that quaternion error 

feedback controller is globally asymptotically stable so long as the matrix  is 

positive definite and points out that because physical inertia tensors are always 

positive definite, a convenient selection of gains is  and , where  

and  are scalars properly chosen for the desired control performance. Finally, 

Wie suggests, without explanation, that a quaternion error control torque 

composed of the suggested gains and an additional counter-gyroscopic torque 

term will produce motion about the eigenaxis, as measured from the initial 

attitude (i.e., at ), for a rest to rest maneuver; Wie’s suggested form of 

quaternion error feedback torque is shown in equation (1.89). In Wie’s 

formulation, commanded velocity is always zero [7]. 
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   (1.89) 

3. Quaternion Error Feedback Gain Selection 

A closer examination of Wie’s quaternion error feedback torque, with the 

help of substituting definitions and concepts already introduced, will be instructive 

in developing the RTOC controllers. Equation (1.89) is rewritten in a modified but 

equivalent form for rest-to-rest maneuver (i.e.,  and ) in 

equation (1.90). 

   (1.90) 

This formulation of the quaternion error feedback torque illustrates why the 

gain choices recommended by Wie are not only satisfactory, but necessary to 

accomplish an eigenaxis maneuver. The initial torque, before any motion has 

begun, is due only to the quaternion error feedback term; when written in the 

form shown in (1.90), the direction of that torque is explicit: it is in the  direction, 

due to the presence of the  quantity [as described in (1.87)]. As the 

maneuver progresses, the rotation of the body, and therefore the angular 

velocity, is in the  direction. Because the velocity error component of the 

feedback torque also contains the  quantity, this feedback torque is also 

produced in the  direction.  

Finally, note that the counter-gyroscopic torque ( ) is orthogonal to 

both  and . When the quaternion error feedback torque formula suggested by 

Wie is substituted in the rigid body kinematics equation [equation (1.77)] as the 

control torque,  , the gyroscopic terms cancel out. Thus, for a system with using 

the Wie’s suggested quaternion error feedback control [equation (1.89)], the net 

torque is indeed in the  direction as required (assuming zero external torques). 

It must be noted, however, that in order to cancel out the gyroscopic torque, 

some portion of the actuator capability must be reserved, thereby reducing the 

overall effectiveness of the actuator system. 
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4. Quaternion Error Feedback System Parameters 

The gains used in this thesis are based on the work of Fields, Kocis, 

Williams and Karpenko and their development of a hardware-in-the-loop control 

moment gyro (CMG) simulator [9]. The control system in their work was a 

traditional quaternion error feedback controller, as described in equation (1.89). 

Use of these parameters, both for the system inertia as well as the controller 

gains, allows a straightforward performance comparison and also ensures that 

this study incorporates realistic system characteristics. 

The system inertia tensor used in this study is 

 2

3.7 0 0
0 4.0 0 kg m
0 0 7.0

J
 
 = ⋅ 
  

  (1.91) 

This inertia tensor is actually a rotated version of the inertia used in [9]; 

their model contained non-zero products of inertia, indicating that the system’s 

principle inertia axes were not exactly aligned with the body frame. This 

misalignment is not unusual in real systems, but most calculations and analyses 

are simpler if the inertia tensor is diagonal.  

The controller employed in [9] was a quaternion error feedback controller 

with the following gains: 

   (1.92) 

That hardware-in-the-loop model was based on a system with four CMG’s 

in a tetrahedral configuration each with a maximum torque limit of . For 

the purposes of this study, the system is assumed to have a cube-shaped torque 

envelope with limits at in the x, y, and z directions. This is a simplifying 

assumption that does not represent the torque envelope available in [9], but as 

previously discussed, the details of the momentum exchange device are not the 
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main focus of this study. Note, however, that the methodology described here is 

not limited to cube-shaped torque envelopes. 

D. TRANSLATING ONE-DIMENSIONAL RTOC METHOD TO THREE 
DIMENSIONAL ROTATIONS 

As previously stated, the eigenaxis maneuver in three dimensions is 

analogous to the rotation of a body with a single degree of rotational freedom. To 

that end, correlating the parameters between the two control methods will 

facilitate development of a path toward RTOC methods in three dimensions. Two 

of the most important parameters in the SDOF system are the system states,  

and , describing the position and velocity of the body. In three-dimensional 

rotational space, the equivalent states are the quaternion, , and the angular 

rate or velocity, . Mapping the quaternion directly to  is certainly possible, but 

not as straight forward as one would like. However, there is a direct mapping 

between the quaternion error and the one-dimensional position error, ; 

indeed, is a component of quaternion error [see equation (1.85)].  

Mapping the three-dimensional angular rate, , to the one-dimensional 

velocity, , is more straightforward. However, it is important to bear in mind the 

dual purposes served by knowledge of the body’s velocity. In the one-

dimensional RTOC controller, the velocity was used not only to achieve the 

commanded velocity, but also to calculate the switch and final time of the bang-

bang control. If the body’s velocity is perfectly aligned with the eigenaxis, the 

relevant quantity is simply the magnitude of the angular rate vector; this quantity 

can be used to calculate the switch and final times of a bang-bang maneuver in 

exactly the same way as in the one-dimensional case. However, there may be 

cases where the velocity may not be perfectly aligned with eigenaxis, for 

example if there is some residual off-axis velocity at the beginning of a 

maneuver. In that case the quantity that would be used to determine the switch 

and final times would be the portion of the velocity that is aligned with the 

eigenaxis; the remainder of the angular rate would be treated as a disturbance to 
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be zeroed out by the feedback. The significance of this distinction will be more 

apparent in the development of the final version of the 3DOF RTOC controller. 

For now it is sufficient to point out that the angular velocity vector, as with any 

vector, can be written as the sum of two components: a component along the 

eigenaxis, and the off-axis component. This is defined mathematically with the 

vector dot product, as shown in equation (1.93). 

   (1.93) 

There are several important quantities in the one-dimensional RTOC 

controller that still need to be mapped to the three-dimensional control problem. 

These are the maximum torque and the rotational inertia, which will be used to 

define the acceleration about the eigenaxis. The question of maximum torque is 

much more interesting in the three-dimensional problem. In one-dimension, the 

maximum torque is simply the stated (or allocated) limit of the motor or actuator. 

However, in the three-dimensional problem, the magnitude of torque that can be 

applied in a given direction is the two-norm of the torque vector and may vary 

based with the direction of the eigenaxis. For example, in this problem, the torque 

limit is defined by a cube-shaped envelope. This means that the maximum torque 

that could be applied about the x-axis (or any one of the principle axes) is 

[ ]
2

1.55, 0, 0 1.55Nm± = , whereas the magnitude of torque that could be applied 

at one of the diagonals would be much larger, [ ]
2

1.55, 1.55, 1.55 2.68Nm± ± ± = . 

Clearly, fully employing the capacity of a system is a fundamental principle in 

optimal control, so this must be incorporated into the RTOC algorithm.  

For any given maneuver, the maximum torque would be that which 

corresponds to the largest vector aligned with  [see equation (1.87)] without 

exceeding the torque envelope. For a cube, this torque vector can be computed 

with a simple algorithm. First, determine the largest component of , regardless 

of sign; then determine the scaling factor that would make that component equal 
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to the torque limit, ; finally, multiply the full  vector by that scaling 

factor. This algorithm is presented in equation (1.94). 

   (1.94) 

Note that the simplicity of this algorithm is due to the simplicity of the 

assumed torque envelope. A more complex torque envelope would necessitate a 

different algorithm, although the principles would be the same. 

Computing the equivalent rotational inertia in the three-dimensional 

problem is fairly straightforward, and is in fact revealed in equation (1.87). The 

effective inertia about eigenaxis is . However, recall that in the one-

dimensional RTOC controller, the inertia was used to compute the angular 

acceleration. In the three dimensional problem, the magnitude of the acceleration 

about the eigenaxis can be computed directly without the intermediate step of 

compute the effective inertia by rearranging equation (1.87); this is shown in 

equation (1.95). 

   (1.95) 

All of the major factors in the one-dimensional RTOC controller have now 

been mapped to the three-dimensional problem. The remaining steps are to 

confirm that the optimal feed-forward control compliments the quaternion error 

feedback torque to produce a bang-bang control about the eigenaxis and then to 

develop an analytical solution for the feed-forward torque, as was done with the 

development of the one-dimensional RTOC controller.  



 106 

E. MINIMUM TIME EIGENAXIS MANEUVERS 

As with the RTOC solution developed for the single degree of freedom 

system, the first step is to determine what the optimal control signal should be for 

a general eigenaxis maneuver, assuming open-loop implementation. This initial 

step will illustrate what the torque trajectories would be for an open-loop 

rotational system, informing the expectations for the optimal solution for a closed-

loop system. The optimal control problem formulation is shown in equation  

(1.96). Note, in particular, that the control torque must contain the torque 

necessary to execute the maneuver as well as the torque necessary to counter 

any gyroscopic motion. 
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   (1.96) 

The dynamics of the model in (1.96) are simply the dynamics of a three 

dimensional rotational system, as described in equations (1.77) and (1.82). The 

external torque is zero, and has been dropped from the dynamics all together. 

Two constraints are placed on this optimization problem; specifically, the control 

torque is limited to the cubic envelope previously described and the maneuver 

must be about the given eigenaxis. The final equation in the problem formulation 

mathematically defines the eigenaxis maneuver constraint, ensuring that the 
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motion of the body is aligned with the error quaternion, which is defined in part by 

the eigenaxis. The resulting optimal control analysis is presented in the following 

sections. 

1. The Hamiltonian 

   (1.97) 

2. Evaluation of the Hamiltonian Minimization Condition 

Because there are path constraints in this problem, the Hamiltonian 

minimization condition is only satisfied if the Lagrangian of the Hamiltonian is 

minimized. The Lagrangian of the Hamiltonian is defined as 

   (1.98) 

where  is the Hamiltonian [equation (1.97)],  is the path constraint 

covector and  is the vector of path constraints. In this problem, if the 

eigenaxis constraint is broken out into three constraints along each of the body 

frame axes, there are a total of six path constraints. To facilitate the development 

of the Lagrangian of the Hamiltonian, the path constraints are written more 

explicitly in equation (1.99).  
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 (1.99) 

where  and  are the torque limits along each of the 

axes. Finally, the Lagrangian of the Hamiltonian, , for this problem is given in 

equation (1.100). 

   (1.100) 

The next step is to minimize the Lagrangian of the Hamiltonian with 

respect to the control. Specifically, the Hamiltonian minimization condition (HMC) 

can be written as  

   (1.101) 
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where the notation  is defined to mean that  and  satisfy the 

complementarity condition, which is defined in equation (1.102).  

  

   (1.102) 

Solving the HMC problem with respect to each of the control variables 

reveals a switching structure that is similar to that seen in the SDOF optimization 

problems. 

   (1.103) 

  (1.104) 

   (1.105) 

Observe that (1.103) to (1.105) suggest that the solution may be a three-

dimensional bang-bang control. 
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3. Adjoint Equations 

The adjoint equations define the dynamics of the state covector, . Again, 

because of the path constraints, the adjoint equations are slightly modified and 

take the form shown in equation (1.106). 

   (1.106) 

The adjoint equations for this problem are shown in (1.107). 

 (1.107) 

Note that the complementarity condition adds following definitions of the 

last three control covectors: 
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   (1.108) 

4. Evaluation of the Hamiltonian Value Condition 

The Hamiltonian value condition (HVC) provides the value of the 

minimized Hamiltonian of the optimal solution at the final time. HVC is defined in 

equation (1.109) where  signifies the minimized Hamiltonian and  is the 

endpoint Lagrangian, which is defined in equation (1.110). 

   (1.109) 

with 

   (1.110) 

The endpoint Lagrangian in this problem is shown in equation 

   (1.111) 

As with all minimum time optimization problems, the HVC simply yields 

   (1.112) 

5. Evaluation of the Hamiltonian Evolution Equation 

The Hamiltonian must also satisfy the Hamiltonian evolution equation, 

which simply specifies that the time rate of change of the minimized Hamiltonian 

will equal the time rate of change of the Hamiltonian (i.e., ). But 

examination of the Hamiltonian in this problem [equation (1.97)] shows that it is 

not explicitly a function of time. Therefore, the Hamiltonian evolution equation in 
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this problem reveals that the Hamiltonian of the optimal solution should be 

constant with respect to time. 

   (1.113) 

6. Evaluation of the Transversality Condition 

Similar to the Hamiltonian value condition, the transversality condition 

specifies the value of the state covector, , at the final time. The transversality 

condition is defined in equation (1.114).  

   (1.114) 

A cursory inspection of the endpoint Lagrangian [equation (1.111)] shows 

that the transversality condition in this problem is simply 

   (1.115) 

Initially a condition that equates one unknown with another unknown may 

seem useless, but that is not so. While this condition cannot be used to 

determine the optimal control trajectory in this problem, it can be used to validate 

that a numerical solution is in fact optimal. 

7. Time Optimal Solution to Open-Loop Eigenaxis Maneuver 
Problem 

The problem definition for an optimal eigenaxis maneuver was coded into 

the DIDO optimal control software and yielded the results shown in Figures 68–

74 for an N=64 node analysis. 
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Figure 68.  Quaternion trajectory of minimum time eigenaxis maneuver 

 

Figure 69.  Angular rate trajectory in minimum time eigenaxis maneuver 
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Figure 70.  Torque trajectory in minimum time eigenaxis maneuver 

 

Figure 71.  Hamiltonian trajectory in minimum time eigenaxis maneuver 
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Figure 72.  Switching functions in minimum time eigenaxis maneuver 

 

Figure 73.  State covector trajectories in minimum time eigenaxis 
maneuver 
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Figure 74.  Transversality condition satisfaction in minimum time 
eigenaxis maneuver 

The numerical solution indeed appears to be the time optimal eigenaxis 

solution. The control torque trajectories comply with the complementarity 

condition (compare Figure 70 with Figure 72). Observe that the component of the 

control torque in the z-direction appears to be the limiting factor; it is at either 

+1.55 Nm or -1.55 Nm throughout the maneuver. The Hamiltonian is 

approximately constant at a value of -1 throughout the maneuver (see Figure 71), 

demonstrating that the Hamiltonian Value Condition and Hamiltonian evolution 

equation are both satisfied. Finally, Figure 74 illustrates that the transversality 

condition is also satisfied by this solution. 

Referring back to Figure 70, it is observed that the torque trajectory is not 

constant in all directions throughout the maneuver. A closer analysis of the 

control torque trajectory is instructive. Recall that in this simple eigenaxis 

maneuver problem, the control torque is composed of both the torque necessary 

to execute the maneuver’s motion as well as the torque necessary to counter or 

prevent the gyroscopic motion. The torque necessary to prevent the gyroscopic 

motion is equal to the cross product in the rotational kinematics equation (i.e. 

). This torque can be reconstructed based on the state trajectory from the 
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optimal control solution; subtracting that torque from the total control torque will 

reveal the torque trajectory that produces the motion of the spacecraft. These 

results are presented in Figures 75–77. 

 

Figure 75.  Reconstructed gyroscopic control torques 

 

Figure 76.  Reconstructed control torque in  direction 



 119 

 

Figure 77.  Three Dimensional Plot of Control Torque from DIDO Solution 

The three dimensional plot in Figure 77 shows the trajectory of the control 

torque throughout the maneuver. In this spatial plot, time moves along the 

trajectory, starting at the top of the plot and ending at the bottom. The total 

control torque changes direction and magnitude throughout the maneuver in 

response to the growing gyroscopic torque, which is a function of velocity. 

However, the direction of the control torque in the v̂  direction, shown in red, is 

constant through the maneuver, appearing to produce the “bang-bang” control 

pattern seen in the single degree of freedom optimal control. 

The additional analyses shown in Figures 75 through 77 seem to confirm 

the expected response. The optimal control torque is composed of both the 

gyroscopic torque as well as torque aligned in the  direction producing the 

actual motion. The torque along  appears to follow the bang-bang pattern seen 
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in the SDOF optimal control solution, indicating that the RTOC methods 

developed in SDOF might be able to be transferred to the three dimensional 

problem. However, future analysis will reveal that these conclusions are flawed in 

a critical way, which was not immediately obvious by examining the numerical 

solution to the optimal control problem. 

F. MINIMUM TIME EIGENAXIS MANEUVER WITH QUATERNION ERROR 
FEEDBACK AND FEED-FORWARD CONTROL TORQUE 

The next step is to determine the solution for the optimal eigenaxis 

maneuver with a closed-loop control system, incorporating the quaternion error 

feedback loop and the feed-forward control torque. The optimal control problem 

formulation for a closed-loop system is surprisingly similar to the open-loop 

eigenaxis problem, with the addition of the quaternion error feedback torques in 

the dynamics of the velocity states and the expansion of the torque constraint to 

include both the quaternion error feedback torque as well as the control torque. 

This problem formulation is presented in equation (1.116), followed by the 

optimal control analysis. In this problem formulation, the counter gyroscopic 

torque is included in the feed-forward control torque, [ ]1 2 3, , Tu τττ  = . 
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 (1.116) 



 122 

1. The Hamiltonian 

 (1.117) 

2. Evaluation of the Hamiltonian Minimization Condition 

Because this problem formulation contains path constraints, the 

Hamiltonian minimization condition is satisfied through the minimization of the 

Lagrangian of the Hamiltonian. 

   (1.118) 

where 

 (1.119) 
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The Hamiltonian Minimization Condition is given by  

   (1.120) 

Evaluating equation (1.120) reveals the following switching structure for 

the control toque. 

   (1.121) 

As with the previous problem,  will take arbitrary values. 

3. The Adjoint Equations 

Like the Hamiltonian minimization condition, the adjoint equations must 

also be defined in based on the Lagrangian of the Hamiltonian due to the 

presence of path constraints. 

   (1.122) 
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 (1.123) 

Again,  will take arbitrary values. 

4. Evaluation of the Hamiltonian Value Condition 

Evaluation of the Hamiltonian value condition for this problem reveals the 

same result as with the open-loop eigenaxis maneuver optimization. 
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   (1.124) 

5. Evaluation of the Hamiltonian Evolution Equation 

The Hamiltonian evolution equation in this problem formulation yields the 

same result as in the open-loop eigenaxis maneuver optimization. 

   (1.125) 

6. Evaluation of the Transversality Condition 

Evaluation of the transversality condition in this problem, again, yields the 

same result as in the open-loop eigenaxis maneuver optimization. 

   (1.126) 

7. Numerical Solution and Analysis 

A N=100 node numerical solution to this problem formulation is presented 

in Figures 78–86.  
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Figure 78.  Quaternion trajectory for closed-loop eigenaxis solution 

 

Figure 79.  Rate trajectories for closed-loop eigenaxis solution 
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Figure 80.  Total torque trajectories for closed-loop eigenaxis solution 

 

Figure 81.  Spatial plot of the total torque trajectory for the closed-loop 
eigenaxis solution 
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Figure 82.  Feed-forward control torque trajectories for closed-loop 
eigenaxis solution 

 

Figure 83.  Hamiltonian Trajectory for Closed-Loop Eigenaxis Solution 
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Figure 84.  Costate Trajectories for Closed-Loop Eigenaxis Solution 

 

Figure 85.  Path Covector Trajectories for Closed-Loop Eigenaxis 
Solution 
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Figure 86.  Transversality Value Condition Validation for Closed-Loop 
Eigenaxis Solution 

These plots indicate that the necessary conditions for optimality have 

been met. The transversality value condition is met, as shown in Figure 86. The 

feed-forward control torque trajectories comply with the path constraint 

trajectories, demonstrating satisfaction of the complementarity condition. The 

Hamiltonian trajectory shown in Figure 83 only approximately satisfies the 

Hamiltonian value condition and the Hamiltonian evolution equation. A 

Hamiltonian that is more exactly constant at a value of -1 would be preferable; a 

comparison of the costate trajectories and the state trajectories indicates that this 

problem is suffering from a scaling challenge. But, the solution presented is 

sufficiently accurate to provide a great deal of information for the development of 

a real-time optimal eigenaxis controller. 

Some additional analysis of these results will be instructive. Figure 87 

contains a plot of the reconstructed gyroscopic torque; this torque is computed 

based on the solution’s angular rates (i.e. ). Recall that the 

gyroscopic torque is incorporated into the feed-forward control torque. Figure 88 

is a plot of the total torque in the  direction and Figure 89 is a separate plot of 
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its magnitude; this torque is computed by subtracting the gyroscopic torque from 

the sum of the quaternion error feedback torque and the feed-forward control 

torque.  

 

Figure 87.  Gyroscopic torque for feed-forward solution 

 

Figure 88.  Torque in the  direction from the feed-forward solution 
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Figure 89.  Magnitude of torque in the  direction from the feed-forward 
solution 

One of the most interesting insights revealed by this solution is the impact 

of the gyroscopic torque on the overall total torque trajectory and the torque in 

the  direction in particular. The torque envelope constrains the total torque, 

which is the sum of both the quaternion error feedback and the feed-forward 

control torque. The open-loop solution demonstrated that the optimal solution for 

an eigenaxis maneuver is achieved when the torque in the direction is 

maximized throughout the maneuver. Thus, the total torque can be written as 

follows: 

   (1.127) 

where  is the quaternion error feedback torque;  is the feed forward 

control torque;  is the maximum torque in the  direction; and  is the 

counter gyroscopic torque. 

Figures 80, 81 and 88 show that the z-component is dominant in the  

torque, but the x- and y-components are dominant in the gyroscopic torques. As 



 133 

the maneuver progresses, and the body gains velocity, the gyroscopic torque 

increases. The minor increase in the z-component of the gyroscopic torque 

results in a corresponding decrease in . The reduction in torque is most 

apparent in Figure 88. But, approximately 1.6 seconds into the maneuver, the 

growing x-component of the gyroscopic torque becomes the dominant 

component of the total torque. From start to approximately 1.6 seconds, the z-

component of total torque is at its maximum (1.55 Nm); but at 1.6 seconds, the x-

component is maxed at 1.55 Nm and the z-component begins to decrease 

dramatically. This decrease in the z-component of the total torque is due to the 

fact that the gyroscopic torque is continuing to increase as the body continues to 

accelerate about the eigenaxis. Because the counter gyroscopic torque must be 

maintained to sustain the eigenaxis motion, the only way to contain total torque 

within the torque envelope is to reduce the torque in the  direction. This is most 

apparent in Figure 88, the plot of the magnitude of torque in the  direction. After 

the switch at 2.27 seconds, the limiting component becomes the y-component. 

The y-component is saturated at -1.55 Nm until approximately 3.4 seconds when 

the gyroscopic torque has been sufficiently reduced to return the z-component to 

dominance. This variation is also apparent in the angular velocity trajectories 

shown in Figure 79; the slope of these curves is fairly constant at the beginning 

and toward the end of the maneuver, but the rate of change of the angular 

velocity is clearly not constant near the middle of the maneuver. 

Even more intriguing than the fact that the torque in the  direction varies 

in response to the variation of the gyroscopic torque is the asymmetry of the 

variation. Examine Figure 89. The difference between the shapes of the torque 

trajectory on either side of the switch at 2.27 seconds is dramatic. More 

remarkable still, the magnitude of torque in the  direction at 3.44 seconds is 

2.07 Nm, greater than 1.97 Nm, which would be predicted by the torque 

envelope. This is possible because only the total torque is limited to the 

envelope; in this case, the direction of the gyroscopic torque shifts the direction 
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of the total torque vector and allows greater torque to be produced in the  

direction.  

8. Implications for a Real-Time Optimal Controller 

The natural consequence of the asymmetry of the torque in the  direction 

is that the acceleration is also asymmetric. Consequently, even for this rest-to-

rest maneuver, the switch from acceleration torque to deceleration torque is not 

in the middle of the maneuver. In this case, the total maneuver is complete in 

4.77 seconds, but the switch occurs at 2.27 seconds, slightly earlier than the half-

way mark. Recall that the core of the one-dimensional RTOC controller was a 

kinematic algorithm that calculated the maneuver switch and final times based on 

constant acceleration. This algorithm will not work if the acceleration along the 

eigenaxis is not constant. 

G. A FLAWED REAL-TIME OPTIMAL EIGENAXIS CONTROLLER 

The significance of the  variation on a potential RTOC controller was 

not initially obvious. Indeed, due to an oversight in the analysis, the variation was 

not initially detected at all.2 But this mistake proved to be very instructive and is 

worth presenting.  

1. Introduction to the Eigenaxis RTOC Algorithm 

The algorithm for this RTOC controller is very similar to the algorithm in 

the SDOF optimal control algorithm with a couple modest modifications 

necessary for implementation in three-dimensions. One modification accounts for 

the variation of the maximum torque as a function of the eigenaxis. This RTOC 

algorithm employs the same method of computing the switch and final maneuver 

times, based on extracted from the quaternion, the magnitude of velocity 

                                            
2 An early version of the closed-loop eigenaxis optimization analysis incorrectly defined the 

total torque constraint, essentially neglecting the gyroscopic torque. Without the need to modify 
 in response to increasing , the optimal solution included a constant  on either side of 

the switch. Of course, the total torque exceeded the torque envelope at certain points, but these 
minor breeches were not detected until much later, after erroneous conclusions had been drawn. 
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along the eigenaxis and the maximum acceleration possible about the eigenaxis. 

There is, however, one significant modification. The analysis leading up to the 

SDOF RTOC controller included the development of an analytical solution to the 

feed-forward torque using Laplace transforms and other linear control 

techniques. Any hopes of a simple conversion of that formula to a three-

dimensional formula were likely dashed on the rocks of mathematical reality 

during the discussion of the three dimensional rotational kinematics.  

But there is a deceptively simple solution to this problem. The 

nonlinearities of Euler’s rotational kinematic equations, the quaternion definition 

and quaternion error feedback formula preclude the use of Laplace transforms as 

a method of control analysis. However, knowledge of the optimal control 

trajectory (i.e., the bang-bang total torque) enables the use of a state space 

model of the system and a standard ordinary differential equation propagator to 

develop the feed-forward control torque trajectory. In other words, the feedback 

torque can be computed numerically using a sample-and-propagate technique, 

allowing the computation of feed-forward torque based on predicted system 

states. 

Because the trajectory of the total torque vector is known, from the optimal 

control solution analysis, and the current quaternion and angular rate vector are 

known, the complete quaternion and angular rate trajectories can be predicted 

simply by propagating the quaternion and angular rate dynamics with an ODE 

propagator. This is analogous (but with zero error) to the use of a state estimator 

to compute unmeasured states [7]. A related implementation of sample-and-

propagate optimal control trajectory generation is also described in [10]. The 

quaternion and angular rate dynamics are given by: 
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  (1.128) 

Further, the fact that an eigenaxis maneuver is essentially a one-

dimensional rotation in the plane defined by the eigenaxis vector allows a further 

simplification of this ODE propagation estimator. The commanded position is 

known, and the current position is known, therefore,  is known. Because the 

gyroscopic motion is zeroed, the dynamics of the system simplify to (1.86). This 

knowledge can be used to construct the euler angle and angular rate trajectories 

in the following simple state space model. 

   (1.129) 

In (1.129)  is the Euler angle, used in the quaternion error feedback, 

and  is the magnitude of the angular velocity in the eigenaxis direction. It is 

helpful to note that because the eigenaxis by definition has a magnitude of 1,   

can be calculated by 

   (1.130) 

which also means  

   (1.131) 

Once the states trajectories are calculated in (1.129), the quaternion error 

feedback and control torque trajectories can be computed with the simple 

formulas given in (1.132). 
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 (1.132) 

 
Alternatively, and even more simply, the quaternion error feedback torque 

or system states could be measured directly and the control torque could be 

computed in real time. The particular implementation would depend on the 

existing system architecture, processing power and sampling frequency.  

The simplicity of this solution stems from the fact that the RTOC controller 

can measure the quaternion error feedback torque directly in real-time and 

modulate the feed-forward control torque accordingly. While this is fairly 

straightforward, some complications remain. 

The feed-forward control torque contains the gyroscopic torque; thus the 

control torque formula can be written as  

   (1.133) 

where  is the portion of the control torque in the  direction.  is a scalar 

quantity that scales  such that the total torque vector, , is maximized within 

the available torque envelope. Solving for is the principle challenge. 

Equation (1.133) contains several known quantities; because the system’s 

states can be measured in real time, the quaternion error torque and the 

gyroscopic torque terms are known. The direction of  is known, but its 

magnitude is not. Neither the exact direction nor the magnitude of the total 

torque, , is known, but what is known is that at least one of the components 

(i.e., the x-, y- or z-components of total torque vector) will be at the torque limit. 

Equation (1.133) can be solved by populating each of the components of 

with the properly signed torque limit and creating a vector of scalar variables 
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in place of . Each of these scalar variables is the value that maximizes  in 

its respective direction. The correct value of  is the minimum of these 

variables. See the example in Equation (1.134); this example is based on the 

state of the system at  in the closed-loop eigenaxis solution 

presented in Figures 78–89. 

 

 (1.134) 

In this example a, b and c are the candidate scalar’s that must be 

evaluated. They are evaluated on a per component basis (i.e., scalar a is 

evaluated along the x-component, etc.). This can be accomplished by solving 
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each of the three equations individually; or, a, b and c can be treated as 

components of a vector, and the a-b-c vector can be determined with standard 

linear algebra techniques if  is converted to a diagonal square matrix by 

multiplying by the identity matrix, I , as was done in (1.134). 

Note that  is set equal to the component of the a-b-c matrix with the 

smallest magnitude, but the sign of that component must be retained; this is the 

meaning of .  

One nuance in the eigenaxis RTOC algorithm is worth mentioning. The 

switch and final times are computed in the same manner as the one-dimensional 

RTOC controller using , which is computed from the fourth component of the 

error quaternion [equation (1.85)]. Arccosine is a dual-valued function but the 

positive value is preferentially chosen in this algorithm; this sign ambiguity is 

complimented by the sign of the eigenaxis vector, which is also computed from 

the error quaternion. As such,  is always positive and  is always zero; 

hence, from the perspective of the maneuver time algorithm, all maneuvers are 

reverse maneuvers, regardless of the direction of rotation. 

2. The Eigenaxis Algorithm 

The eigenaxis algorithm is summarized in the following steps. References 

to the relevant calculations are included.  

1. Check the Update Time Interval and Dead-Band 

2. Compute error quaternion,  [equation (1.84)] 

3. Compute  [equation (1.88)] 

4. Compute  and  [equations (1.85) and (1.93)] 

5. Compute  [algorithm (1.94) and equation (1.95)] 

6. Compute  based on ,  and   

7. Check for Overspeed Condition; re-compute if necessary  
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8. Determine torque direction based on maneuver phase (i.e., 
acceleration or deceleration) 

9. Compute Feed-Forward control torque (equation (1.133)) 
 
 

3. Results from a Flawed Eigenaxis RTOC Controller Maneuver 

The results of a maneuver conducted with a flawed RTOC controller are 

presented in Figures 90–95; this is the same maneuver analyzed in the 

preceding optimal control analyses. Recall that the flaw in this algorithm is the 

assumption that the magnitude of the torque in the v̂  direction is constant 

throughout the maneuver, which it is not. 

 

Figure 90.  Quaternion trajectory with flawed RTOC controller  
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Figure 91.  Angular rate trajectory with flawed RTOC controller 

 

Figure 92.  Total torque trajectory by component with flawed RTOC 
controller 
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Figure 93.  Spatial plot of total torque trajectory with flawed RTOC 
controller 

 

Figure 94.  Magnitude of torque applied in the  direction during 
maneuver with flawed RTOC controller 
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Figure 95.  Switch and final times computed during maneuver with flawed 
RTOC controller 

Figure 94 shows the magnitude of torque applied in the  direction 

throughout the maneuver. It has more switches than the torque plots (see Figure 

92), but that is due to the change in the eigenaxis direction as a consequence of 

the overshoot. The switch at 4.4 seconds corresponds to the attitude crossing the 

commanded quaternion; at that time, the sign of the eigenaxis changes, and 

consequently, so does the sign of  (see the discussion of the sign of errorθ  at the 

end of section G.1). This plot is produced by computing the dot product of total 

torque with  at each increment throughout the maneuver. 

4. Analysis of the Results from Flawed Eigenaxis RTOC 
Controller 

Given that the implemented maneuver is intended to be a minimum time 

maneuver, the most relevant parameter to check is the final maneuver time. The 

flawed RTOC controller completed the maneuver in 5.14 seconds. Yet, the 

numerical solution produced with DIDO took only 4.77 seconds. Clearly there is a 

discrepancy. A review of the state trajectories indicates that overshoot occurred. 
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However, given that this simulation is a maneuver of the nominal system with no 

uncertainties or disturbances, overshoot should not have occurred.  

The problem, of course, is the variation of torque in the  direction though 

out the maneuver. The results plotted in Figures 90–95 illustrate the challenge in 

high fidelity. Figure 92 is particularly interesting because it depicts the trajectory 

of each of the components of total torque on the same plot. In this plot, it is clear 

that the total torque vector is touching the maximum torque envelope throughout 

the maneuver; but it is equally clear that the limiting component changes 

throughout the maneuver. It is interesting to compare this plot with Figure 94, the 

plot of the magnitude of torque in the  direction and Figure 95, the plot of switch 

and final times. The magnitude of torque along  decreases only mildly through 

most of the first half of the maneuver; a very subtle corresponding increase in 

switch and final time also occurs at this time. During this time, the x-component 

of total torque has been growing dramatically in response to the gyroscopic 

torque, and just as the switch occurs, the x-component becomes the limiting 

component (see Figure 92). But, immediately following the switch, the y-

component is now the limiting factor in the total torque vector, and the magnitude 

of torque along  is severely limited due to the cubic torque envelope. This 

unanticipated limitation in torque results in the system not decelerating as quickly 

as expected and creates an over-speed condition.  

The trajectory of the switch and final times following the switch is 

interesting. The limited deceleration torque results in dramatic increases in the 

switch and final times. Once the gyroscopic torque has been reduced sufficiently 

such that the z-component is once again the limiting factor, the magnitude of 

torque along  is restored to approximately 2Nm; indeed, at that point, torque 

along  exceeds the torque envelope in the  direction, outpacing the expected 

torque. There is a corresponding reduction in the switch and final times, but this 

is not enough to recover from the over-speed condition, which ultimately leads to 

the overshoot of the targeted position. 
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5. Alternative RTOC Approaches 

The root of the flaw in the preceding RTOC controller is the improper 

accounting of the variation of the acceleration about the eigenaxis and the 

resulting miscalculation of switch and final times. There are several potential 

remedies to resolve this issue. One alternative would be to incorporate optimal 

control solution software such as DIDO in a closed-loop to constantly update the 

feed-forward control torque, essentially performing the function of a real time 

optimal controller. But, this approach could demand a significant computational 

burden.  

Another approach would be to develop a new method of computing the 

switch and final time. The  and  vectors form a plane; the intersection of 

that plane with the torque envelope defines the potential trajectory of total torque, 

and, correspondingly, the trajectory of torque along . While some new approach 

that exploits this fact is conceivable, it is beyond the scope of this thesis. 

Fortunately, many spacecraft operate in a manner that precludes such 

complicated alternatives. Spacecraft that employ zero-net bias control systems 

do not produce a significant gyroscopic disturbance and therefore would not 

require counter gyroscopic torque to achieve eigenaxis maneuvers. As such, the 

torque along  would be fairly constant for these systems, and the current 

method of computing switch and final maneuver times will be accurate and 

practically implementable. 

H. MINIMUM TIME EIGENAXIS MANEUVER OF ZERO-NET BIAS 
CONTROL SYSTEM WITH QUATERNION ERROR FEEDBACK 

Before embarking on the development of an RTOC eigenaxis controller for 

zero-net biased control system, it is prudent to conduct a new optimal control 

analysis. While the solution may seem obvious based on the analysis of other 

control systems, minor changes in an optimal control problem formulation can 

produce unanticipated and sometimes significant changes in the optimal control 

solution. The problem formulation is presented in equation (1.135). It is 
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remarkably similar to the previous closed-loop optimal control problem, except 

that there are no gyroscopic terms in the angular rate dynamics. 

   (1.135) 

1. The Hamiltonian 

The Hamiltonian for this problem is given in (1.136) 
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   (1.136) 

2. Evaluation of the Hamiltonian Minimization Condition 

Due to the path constraints, the Hamiltonian minimization condition is 

satisfied when the Lagrangian of the Hamiltonian is minimized with respect to the 

control variable. The Lagrangian of the Hamiltonian is given in the following 

equation. 

   (1.137) 

where the path constraints are given by 

 (1.138) 
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The Hamiltonian minimization condition is now given by 

   (1.139) 

Evaluation of the Hamiltonian minimization condition reveals the following 

switching structure. 

   (1.140) 

As before, because , the path multipliers  take 

arbitrary values. 

3. Adjoint Equations 

The adjoint equations are given in (1.141). 
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 (1.141) 

4. Evaluation of the Hamiltonian Value Condition 

As with the previous problems, as a minimum time problem, the 

Hamiltonian value condition is given by 

   (1.142) 

5. Evaluation of the Hamiltonian Evolution Equation 

The Hamiltonian evolution equation in this problem formulation yields the 

same result as in the previous optimizations. 

   (1.143) 
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6. Evaluation of the Transversality Condition 

Evaluation of the transversality condition in this problem, again, yields the 

same result as in the previous optimizations. 

   (1.144) 

7. DIDO Solution and Analysis 

 The numerical solution to the zero-net bias optimal control problem is 

presented in Figures 96–104. 

 

Figure 96.  Quaternion trajectory of a maneuver with a zero-net bias 
system 
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Figure 97.  Angular rate trajectories of a maneuver with a zero-net bias 
system 

 

Figure 98.  Feed-forward control torque trajectories of a maneuver with a 
zero-net bias system 
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Figure 99.  Total torque trajectory of a maneuver with a zero-net bias 
system 

 

Figure 100.  Spatial plot of total torque trajectory of a maneuver with a 
zero-net bias system 
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Figure 101.  Hamiltonian trajectory of a maneuver with a zero-net bias 
system 

 

Figure 102.  Switching structures of a maneuver with a zero-net bias 
system 
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Figure 103.  Costate trajectories of a maneuver with a zero-net bias system 

 

Figure 104.  Transversality condition satisfaction of a maneuver with a 
zero-net bias system 

The results of the numerical solution confirm that in a zero-net bias control 

system, the optimal total torque trajectory follows a more traditional bang-bang 

pattern. The total torque is aligned along  throughout the maneuver, due to the 

absence of the gyroscopic torque. The control torque is modulated to compliment 
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the quaternion error feedback torque to produce the bang-bang control. At 4.67 

seconds, the optimal maneuver time is just slightly faster than the optimal 

maneuver time for a system gyroscopic torque, reflecting a real cost of the 

gyroscopic torque on system performance. 

I. RTOC CONTROLLER FOR ZERO-NET BIAS CONTROLLER SYSTEMS 
WITH QUATERNION ERROR FEEDBACK 

The flawed RTOC control algorithm can be modified to be effective for 

systems with zero-net bias control systems. But, before making the adjustments 

indicated by the preceding optimal control analysis, one last complication will be 

introduced. Although not explicitly stated, the previous method for calculating the 

magnitude of torque in the  direction is predicated on the assumption that the 

quaternion error feedback torque is also in the  direction [see equation (1.133)]. 

For maneuvers that start with the system at rest, or with an initial velocity that is 

already parallel to the eigenaxis, this will be true; but, if the initial velocity is not in 

the eigenaxis direction, the velocity error portion of the feedback torque will not 

be in the  direction. In such a case, the previous method for computing feed-

forward control torque produces undesirable results.  

1. New RTOC Algorithm 

A new method for computing the feedback torque is now developed. This 

new method reflects the simpler bang-bang control necessary for zero-net bias 

systems and includes a remedy for the complication of off-axis velocity. 

First, the off-axis quaternion error feedback torque must be 

mathematically defined. The component of quaternion error feedback torque due 

to velocity error3 can be written as 

  (1.145) 

                                            
3 Up to this point, some liberty has been taken with the definition of the quaternion error 

feedback torque in that the commanded velocity, , has been omitted; this treatment is also 
employed by Wie [7]. However, a more complete definition should include  allowing for the 
possibility that a non-zero velocity state is desired. 
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As with any vector,  can also be written as the sum of the component 

aligned with  and the component not aligned with . 

   (1.146) 

where  is the component of quaternion error feedback torque 

that is not aligned in the  direction. 

The off-axis feedback torque is necessary to zero out motion that is not in 

the eigenaxis direction, but, unlike the gyroscopic torque, it is not critical to the 

maneuver that it be produced precisely as defined by the quaternion error 

feedback equation. In other words, the counter-gyroscopic torque must be 

exactly equal in magnitude and opposite in direction to the gyroscopic torque to 

satisfy an eigenaxis constraint; in contrast, the direction of the off-axis feedback 

torque must be accurate, but the magnitude need not be exact. This fact enables 

a simpler approach to computing the feed-forward torque than is necessary in the 

systems with gyroscopic torque. In this algorithm, the total torque will be 

calculated based on the sum of , the maximum torque in the  direction 

allowed by the torque envelope, and , the off-axis feedback torque. This vector 

sum must also be scaled to ensure that it does not exceed the torque envelope. 

This algorithm is presented in (1.147), where  is the scalar limit of the torque 

envelope (1.55 Nm in these examples) and  is the full quaternion error 

feedback torque. 

   (1.147) 
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As with the one-dimensional RTOC controller, the variable  is used as a sign 

variable to ensure that the total torque is directed commensurately with the given 

phase of the maneuver (i.e., accelerating or decelerating). 

With the minor change of equation (1.147) incorporated into the RTOC 

controller, it is now ready for testing. All other steps for computing the control 

torque previously described are still applicable. 

2. RTOC Controller in Closed-Loop Zero-Net Bias System, 
Example 1: Rest-to-Rest Maneuver 

Figures 105–108 contain plots of the results of the RTOC controller in a 

zero-net bias system performing the same rest-to-rest maneuver that the 

previous discussions have addressed. 

 

Figure 105.  Quaternion trajectory of closed-loop RTOC controller in zero-
net bias system 
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Figure 106.  Angular rate trajectories of closed-loop RTOC controller in 
zero-net bias system 

 

Figure 107.  Total torque trajectory of closed-loop RTOC controller in zero-
net bias system 
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Figure 108.  Spatial plot of total torque trajectory of closed-loop RTOC 
controller in zero-net bias system 

The results plotted in Figures 105–108 indicate that the RTOC controller is 

effective in a zero-net bias control system. The state trajectories plotted in 

Figures 105 and 106 follow the expected patterns, without the overshoot 

observed in the previous RTOC results (discussed in section G). The maneuver 

is completed in 4.70 seconds, on par with the numerical solution of 4.67 seconds. 

The total torque is maximized, touching the boundary of the torque envelope, 

throughout the maneuver. Similar to the one-dimensional RTOC simulations, this 

simulation suffers from the numerical accumulation of error common in fixed step 

differential equation propagators; this is the cause for the brief torque application 

at the very end of the maneuver most notable in Figure 107. 

3. RTOC Controller in Closed-Loop Zero-Net Bias System, 
Example 2: Off-Axis Initial Velocity 

Figures 109—112 illustrate the performance of the RTOC controller when 

the initial velocity not aligned with the eigenaxis.  
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Figure 109.  Quaternion trajectory of RTOC controller with zero-net bias 
system and off-axis initial velocity 

 

Figure 110.  Angular rate trajectories of RTOC controller with zero-net bias 
system and off-axis initial velocity 
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Figure 111.  Total torque trajectory of RTOC controller with zero-net bias 
system and off-axis initial velocity 

 

Figure 112.  Spatial plot of total torque of RTOC controller with zero-net 
bias system and off-axis initial velocity 

The results plotted in Figures 109–112 demonstrate that the RTOC 

controller can compensate for off-axis angular velocity and still produce a 

maneuver very closely resembling an optimal eigenaxis maneuver. The streak of 
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total torque trajectory across the top of the spatial total torque plot, Figure 112, 

correlates to the portion of the maneuver with off-axis velocity. (Illustrating this 

effect is the purpose of the peculiar point of view chosen in Figure 112.) But, 

within 0.5 seconds, the off-axis velocity has largely been zeroed out, and the 

maneuver resumes a more typical bang-bang control sequence. After the 

elimination of off-axis velocity, the state trajectories plotted in Figures 109 and 

110 follow the expected trajectory for a bang-bang maneuver. Moreover, Figures 

111 and 112 indicate that the total torque does follow the prescribed bang-bang 

profile. Thus, the RTOC controller can accommodate some off-eigenaxis velocity. 

This aspect can be useful when switching direction of motion without stopping, as 

in a dog-leg maneuver 

J. SUMMARY 

The results presented in this chapter show that it is possible to translate 

the real-time optimal control methods developed for one-dimensional rotational 

maneuvers to three-dimensional eigenaxis maneuvers for zero-net biased control 

systems using a closed-loop feed-forward control architecture. The underlying 

principles that govern the one-dimensional RTOC controller are applied in the 

eigenaxis controller, specifically that the optimal control torque signal is updated 

based on feedback from the system states. However, these control torque 

updates are accomplished differently in the eigenaxis RTOC controller than in the 

one-dimensional RTOC controller. Because the dynamics of three-dimensional 

rotations are non-linear, the control torque is updated by sampling the current 

system states and numerically predicting the future states in order to predict the 

feedback torque rather than developing an analytical solution for control torque. 

Knowledge of the optimal total torque profile, which is also updated based on 

system response feedback, enables prediction of future states simply by 

numerically propagating the system dynamics. The control torque is modulated in 

response to the predicted feedback torque to produce the optimal total torque 

application at the plant.  



 163 

There is no fundamental reason that the same methodology could not be 

applied to control systems that do not have zero-net bias. However, the key 

ingredient is knowledge of the optimal total torque profile throughout the 

maneuver, and the simple bang-bang torque profile algorithm employed in the 

one-dimensional RTOC controller and the eigenaxis RTOC controller for zero-net 

bias systems may not be accurate in systems with significant gyroscopic torque, 

unless an appropriate margin is retained to null the effect. 
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VII. CONCLUSIONS 

The primary goal of this thesis was to address optimal control 

implementation in the presence of feedback loops for the double integrator 

problem. The most effective implementation was determined to be through a 

feed-forward signal that is modulated in response to the feedback signal 

produced by the underlying, pre-existing, feedback system. When combined with 

the PD controller, a feed-forward control torque to produce a total torque that 

follows the expected “bang-bang” optimal torque trajectory can be computed 

analytically. In the case of three-dimensional eigenaxis rotations, the feed-

forward torque is produced through the direct measurement or prediction of the 

quaternion error feedback. 

The employment of a numerical solution and lack of an analytical solution 

for the eigenaxis maneuver may seem to be inferior to the one-dimensional 

solution, but it is in fact a more powerful approach and illustrates the broader 

application of this methodology. Many systems involve non-linear dynamics 

which cannot be solved analytically. However, the results of this thesis have 

demonstrated that in spite of those nonlinearities, there are multiple paths to 

producing an optimal total control trajectory in the presence of typically ignored 

feedback signals. The developed approach allows adjustment through the course 

of the maneuver to compensate for unanticipated control action. The examples 

examined in this thesis introduced unanticipated control action through the 

introduction of rotational inertia error which caused unexpected state changes. In 

this scenario, the optimal total torque trajectory was recalculated to improve 

maneuver performance; the control torque signal was adjusted in real time based 

on the feedback signals to conform to the correct (but unanticipated) optimal total 

torque trajectory. 

An alternative example would be a minimum time optimal maneuver of a 

CMG actuated spacecraft using feed-forward CMG gimbal angles as the control. 

Such an architecture would be very similar to those considered in this thesis with 
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the addition of a CMG steering law that translates torque commands to CMG 

gimbal commands; the feed-forward control signal, rather than being a torque 

command, would be gimbal rate commands that when combined with the 

steering law’s feedback gimbal commands achieve the desired overall gimbal 

trajectory. The designer could develop an optimal trajectory for the CMG gimbals 

to achieve the minimum time maneuver. But due to the underlying mathematics 

of most CMG steering laws, small uncertainties can produce large, unanticipated 

feedback gimbal angles, particularly as the gimbals approach singular states. If 

the closed-loop optimal control implementation approach developed in this paper 

were employed, the feed-forward gimbal angle trajectory could be adjusted in 

real time, allowing the control system to follow the optimal gimbal angle 

trajectories in spite of the unanticipated feedback gimbal commands. Such an 

implementation is a straightforward extension of the concepts herein and is 

recommended for future work. 

This thesis also proposes two RTOC controllers, one for one-dimensional 

rotations and another for three-dimensional eigenaxis maneuvers for use with 

systems under zero-net bias. These controllers demonstrate the ability to adjust 

the duration and sequence of bang-bang total torque trajectory in response to 

system errors and uncertainties. They demonstrate improved performance over 

preconceived, static optimal control torque solutions, both in terms of maneuver 

time as well as compliance with torque limits. The additional computational 

burden is minor and is well within the capability of modern space systems. 
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APPENDIX A. MINIMUM EFFORT SOLUTIONS 

In this appendix, the two basic control architectures of Chapter 2, the state 

guidance and feed-forward, are evaluated to minimize the control effort 

necessary to accomplish the same rest-to-rest maneuver. Because the amount 

of control effort required in any control configuration varies based on the amount 

of time allowed for the maneuver, the minimum effort maneuvers are required to 

be completed in one second. Additionally, control effort will be defined using the 

traditional quadratic cost, the integration of squared applied torque over time; this 

is mathematically defined in the cost function in equation (1.148). This definition 

of control effort does not equate to the traditional definitions of work, power or 

energy. Therefore, its units will be referred to as “units of effort.” 

A. MINIMUM EFFORT GUIDED CONTROL 

The problem formulation for the minimum effort control problem in the 

state-guided control architecture presented in equation (1.148), and the problem 

statement is as follows: 

Problem Statement—Minimum Effort w/ State Guidance: Perform a 
minimum effort rotation of a rigid body with a pre-existing PD 
controller using state guidance as the control. The initial system 
state will be in a position of zero radians at zero velocity, and the 
final state will be at a position of one radian and zero velocity. See 
Figure 6 for control system diagram. 
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   (1.148) 

This problem formulation differs from the previous formulations in several 

important ways. First, the final time is definitively set to 1 sec; second, the cost 

function is significantly different. Another difference is that no path constraints are 

placed on the problem. The same system is being optimized and it is still only 

capable of producing  of torque. But as a minimum effort problem, this is 

unlikely to be a limiting factor. If the solution did attempt greater amounts of 

torque, then a problem formulation with the torque constraints included would be 

analyzed. 

Without the path constraints, the HMC simplifies to that described in 

equation (1.15). Evaluating the HMC yields the following: 

 1 cmd
cmd p v p cmd

v e v

k k k
k J k

θω
λλω θ ω θ

 
= + − − − 

 
  (1.149) 
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Rather than providing a switching function, the Hamiltonian minimization 

condition in the minimum effort problem yields an expression solvable for the 

optimal control variable trajectory, . This and the transversality condition, 

which follows the same pattern as the previous problems, are the most significant 

conditions and will be evaluated with the solution results, which are presented in 

Figures 113–116. 

 

Figure 113.  State and control trajectories in minimum effort optimization of 
state-guided architecture 
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Figure 114.  Total torque trajectory in minimum effort optimization of state-
guided architecture 

 

Figure 115.  Control trajectory in minimum effort optimization of state-
guided architecture 
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Figure 116.  Transversality condition in minimum effort optimization of 
state-guided architecture 

Figure 115 contains a plot of both control trajectory offered in the DIDO 

solution as well as the control trajectory based on the preceding analysis (1.149) 

of the Hamiltonian minimization condition. In other words, Figure 115 contains 

both the DIDO control trajectory and a control trajectory reconstructed with the 

values of each of the states and costates that comprise the formula for the 

optimal control found in equation (1.149). The fact that the two plots are 

consistent corroborates the optimality of the DIDO solution. Satisfaction of the 

transversality condition, shown in Figure 116, provides further confidence that 

this solution is optimal. 

This maneuver required 25.0 units of effort; that is dramatically lower than 

the cost of the baseline system with PD control, which requires 48.5 units of 

effort. The reduction in energy has, however, come at the cost of an increased 

transfer time. 
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B. MINIMUM EFFORT FEED-FORWARD CONTROL 

The problem formulation for the minimum effort control problem in the 

feed-forward control architecture presented in equation (1.150) and the problem 

statement is as follows: 

Problem Statement—Min. Effort w/ Feed-Forward Control: Perform 
a minimum effort rotation of a rigid body with a pre-existing PD 
controller using feed-forward torque control. The initial system state 
will be in a position of zero radians at zero velocity, and the final 
state will be at a position of one radian and zero velocity. See 
Figure 12 for control system diagram.  

   (1.150) 

Analyis of this problem formulation follows a similar pattern as the 

previous minimum effort problem. Like the problem in section A, this formulation 

also neglects the total torque constraint. Analysis of the HMC yields the following: 

 p cmd p v
e

k k k
J
ωλτ θ θ ω= − + + −   (1.151) 
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Again, the HMC yields a formula for the optimal trajectory of the control 

variable. The solution results are presented in the Figures 117–120. 

 

Figure 117.  State and control trajectories in minimum effort optimization of 
feed-forward architecture 

 

Figure 118.  Control torque and total torque trajectories in minimum effort 
optimization of feed-forward architecture 
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Figure 119.  Control trajectory in minimum effort optimization of feed-
forward architecture 

 

Figure 120.  Transversality condition in minimum effort optimization of 
feed-forward architecture 

Figure 119 contains a plot of the control torque contained in the DIDO 

solution as well as the reconstructed control torque trajectory based on the 

analysis of the Hamiltonian minimization condition (1.151). The two plots align 
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perfectly indicating that the HMC has been satisfied in this solution. These results 

are also noteworthy in that the trajectory of total applied torque is the same 

solution to the open-loop minimum effort maneuver, which follows the same 

characteristic as the minimum time solution for the feed-forward control 

architecture, namely that in the later case a bang-bang solution was recovered 

using the feed-forward control architecture. 

The total “effort” required for this maneuver with the feed-forward 

architecture is 8.1 units of effort, which is lower than the optimal solution for the 

guided-control architecture and much lower than the baseline system with PD 

control. 

C. SUMMARY 

A comparison of the minimum effort optimization of a feed-forward control 

architecture and the state-guided architecture indicates that the feed-forward 

architecture is superior. That control architecture is able to complete a one radian 

rotation with less than one third of the control effort required in a state-guided 

architecture. 
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APPENDIX  B.  IMPACTS OF INERTIA UNCERTAINTY 

The plots contained in this appendix are combination scatter-histogram 

plots presenting the data of numerous (10,000) simulations each illustrating the 

impact of inertia uncertainty on the control architectures studied in Chapter 2. 

The central plot is a scatter plot of settling time or control effort (depending on the 

plot) versus the actual inertia for each simulation, and the bars along the x and y 

axes are histograms depicting the relative number of occurrences of each data 

point. The data contained in this analyzed and discussed in Chapter 4. 

A. BASELINE SYSTEM (CLASSICAL CONTROLS) 

Figure 121 depicts the variation of settling time in response to variations in 

the actual system inertia of the baseline system with a standard PD controller 

with a step input command. The settling time of the nominal system is 0.93 

seconds. Figure 122 illustrates the impact of inertia uncertainty on the control 

effort required in a system with the baseline PD controller and no optimization. 

The nominal control effort is 48.5 units of effort. 

 

Figure 121.  Impact of uncertainty on settling time in baseline system 



 178 

 

Figure 122.  Impact of uncertainty on control effort in baseline system  

B. GUIDED OPTIMAL CONTROL ARCHITECTURE 

The settling time of the nominal system using optimal state-guidance is 

0.47 seconds and requires 808.5 units of effort. 

 

Figure 123.  Impact of uncertainty on optimal state-guided architecture 
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Figure 124.  Impact of uncertainty on optimal state-guided architecture 

C. FEED-FORWARD OPTIMAL CONTROL ARCHITECTURE 

The settling time of the optimal feed-forward control with nominal inertia is 

0.23 sec and requires 420.5 units of effort. 

 

Figure 125.  Impact of uncertainty on optimal feed-forward architecture 
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Figure 126.  Impact of uncertainty on optimal feed-forward architecture 

D. ACCELERATION FEED-FORWARD OPTIMAL CONTROL 
ARCHITECTURE 

The settling time of the nominal acceleration feed-forward optimal control 

system is 0.23 sec and requires 450.7 units of effort. 

 

Figure 127.  Impact of uncertainty on optimal acceleration feed-forward 
architecture 



 181 

 

Figure 128.  Impact of uncertainty on optimal acceleration feed-forward 
architecture 

E. HIGH-BANDWIDTH GUIDED CONTROL ARCHITECTURE 

The settling time of the nominal system with high-bandwidth state-guided 

control is 0.231 sec and requires 480.1 units of effort. 

 

Figure 129.  Impact of uncertainty on high-bandwidth state-guided 
architecture 
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Figure 130.  Impact of uncertainty on high-bandwidth state guided 
architecture 

F. FEED-FORWARD ARCHITECTURE WITH INCREASED PD GAINS 

The settling time of the nominal system with a high-bandwidth feed-

forward control architecture is 0.231 seconds and requires 456.1 units of effort. 

 

Figure 131.  Impact of uncertainty on high-bandwidth feed-forward 
architecture 
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Figure 132.  Impact of uncertainty on high-bandwidth feed-forward 
architecture 

G. ACCELERATION GUIDED OPTIMAL CONTROL WITH INCREASED PD 
GAINS 

The nominal system with high control bandwidth and acceleration guided 

control has a settling time of 0.231 seconds and requires 472.8 units of effort. 

 

Figure 133.  Acceleration Guidance: Settling Time Variation 
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Figure 134.  Acceleration Guidance: Control Effort Variation 
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