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A Model for Microcontroller Functionality Upset 
 Induced by External Pulsed Electromagnetic Irradiation 

David Dietz1 and Timothy Clarke2

1TechFlow Scientific, 2155 Louisiana Blvd NE, Suite 4200, Albuquerque, NM 87110, USA 
and 

2AFRL/RDHE, 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA  

0. Abstract
We present a model that provides predictions for the occurrence of disruptive deviations 
of signal line activity in—and consequent malfunction of—a microcontroller (µC) 
subjected to external irradiation by a narrowband electromagnetic (EM) pulse. In our 
model, the state of a µC is completely specified by giving, for each of its relevant signal 
lines, the signal pulse train (SPT) time history on the line during any fixed but arbitrary 
time window of interest. The occurrence of such disruptive deviations is observed 
experimentally to behave stochastically in at least some EM pulse frequency regimes—
for example, in the radio frequency (RF) regime—and our model provides predictions for 
the probability of such disruptions based upon all relevant characteristics of the EM pulse 
and of the µC SPT’s. In the present paper we focus our attention on signals traversing a 
single µC signal line.  

I. Introduction 
In this paper, we are interested in the following situation.  Initially, an electromagnetic 

(EM) pulse impinges upon a microcontroller (µC) in which at least one signal line is active, 

this activity resulting from (1) a single software application executing on the µC or from 

(2) other dynamic actions of the µC—“system tasks”—e.g., system clock pulse 

generation, program counter increment, instruction fetch, or the hardware-implemented 

portion of interrupt handling.  This pulse electromagnetically couples to the µC at one or 

more of its spatial locations (e.g., at µC control or data lines or at register or memory 

structures or at power distribution system components). This coupling quantitatively 

depends upon the hardware details of the µC and may cause sufficient deviations of the 

normal time-dependent signal pulse trains (SPT’s) on some of the signal lines, during 

some fixed but arbitrary finite time window [0, TE) of interest, to disrupt proper µC 

functionality (i.e., proper software application task or system task execution) sometime 

during that window. We term this disruption µC “upset ”. This upset is observed 

experimentally to occur stochastically in the radio frequency (RF) regime—and we 
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present here a signal-centric model that provides predictions of the probability, Pupset, of 

such upset based upon all relevant characteristics of the EM pulse and of the µC SPT’s. 

There has been significant research into the effects of RF signals at the device level 

(Richardson 1979, Firestone 2004, Estep 2010, 2011, Estep et al 2011), as well as at the 

circuit and chip level (Laurin et al 1995, Liu & Ho 1995). More recently the 2001-2006 RF 

Effects MURI (Granatstein 2007) provided significant advances in understanding and 

predicting RF effects (Firestone et al 2006, Hemmady et al 2005, Yang & Kollman 2006, 

Wang et al 2006). Building on this work to develop a system-level model for RF effects 

on a full digital system such as a PC is daunting, in part because of the vast number of 

transistors that make up a modern CPU or memory module, but also because a PC 

consists of multiple printed circuit boards each containing many integrated circuits, 

discrete components and interconnects. These boards are connected together, housed 

in a metal box and connected to various peripheral devices. For these reasons a 

microcontroller, being a simple but complete computer on a single chip and thus 

representing an intermediate level of complexity between an individual CMOS device and 

a complete digital system, is an ideal device to use as a test-bed in attempting to 

understand and predict RF effects on digital electronic systems (Taylor 2011, Clarke et al 

2011, Clarke et al 2012, Henderson et al 2012). Earlier research on quantifying the 

immunity of microcontrollers to ESD pulses (voltage spikes) (Vick & Habiger 1997, 

Wendsche et al 1999) indicated that the susceptibility varied with the particular instruction 

(or micro-instruction) being executed when the ESD pulse was applied. This suggested 

that carefully timed pulses relative to clock signals could yield useful information about 

the underlying mechanisms of RF interference, and provided much of the motivation for 

the current work. 

The remainder of this paper proceeds as follows. In Section II we present the conceptual 

structure upon which our model rests, discussing the elements of a completely specified 

bridge between the application/system tasks executing on the µC and the resulting normal 

SPT’s (i.e., those in the absence of an externally impingent EM pulse) on the µC lines 

corresponding to the execution of those tasks. We also discuss non-normal SPT’s (i.e., 

Approved for public release: distribution unlimited.



3 

those in the presence of an externally impingent EM pulse) on the µC lines resulting from 

the normal SPT’s via exposure of the µC to an EM pulse. In addition, we discuss the 

approximations that we make in our treatment.  In Section III, we consider the interaction 

between an idealized, normal SPT, πN, being carried on a single signal line, and a single 

EM pulse, πEM, carefully characterizing for our purposes both of these entities as well as 

their interaction itself. This leads in Section IV, to an expression for the probability of a 

πEM-induced disruptive deviation of πN.  Sections III and IV are concerned with only a 

single signal line. Those results may be extended to an arbitrary finite number, L, of signal 

lines carrying an L-tuple of SPT’s interacting with one and the same EM pulse, but we 

defer our consideration of multi-signal-lines to a subsequent paper. Finally, since in 

practice it will be rarely known with certainty which particular SPT of those possible is on 

the line during [0, TE), we consider, in Section V, random (stochastic) mixes of possible 

SPT’s on a single signal line. In Section VI we conclude.  

II. Conceptual Overview
In this section we discuss the conceptual structure of our model as well as the modeling 

approximations that we make. The goal here is to build a conceptual bridge between the 

executing application/system tasks and the SPT’s resulting therefrom, both in the normal 

and non-normal cases. We understand that some of the theoretical entities we construct 

may not be presently readily obtainable but there is nevertheless some merit in laying 

down the logical structure of our model.  

II.1 µC Tasks

As indicated in the Introduction, we are interested in the upset of a µC when a it is 

executing a (single) software application concurrently with system tasks during some time 

interval [0, TE) of interest. For us, an application is a finite set of assembly language (AL) 

instructions, together with the specification of the order of execution of—i.e., of the time 

sequence of—those AL instructions.  In general, a given application in fact comprises 

many possible AL instruction execution sequences, which sequences we term 

realizations, as a consequence of the possibility of branching.  An application having no 

possibility of branching (including no possibility of interrupts) has only one realization. We 
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consider an interrupt request signal and the subsequent hardware-implemented interrupt 

handling response thereto to be system tasks but, in contrast, we consider the execution 

of the stored-in-memory interrupt servicing AL instructions themselves to be part of 

application execution. More generally, we use the term “system task” to refer to a µC 

action that requires no AL instructions in order to execute (i.e., is implemented in 

hardware) and we use the term “application task” to refer to a µC action that does require 

AL instructions in order to execute.  

To facilitate further discussion, we introduce some constructs that we will subsequently 

employ to describe µC tasks. To begin, we label each software application that may 

execute on the µC by its own “application label”, generically a, and denote by A the finite

set of all application labels arising from all those µC applications, so that a ∈ A.  (The null

application, i.e., no application actively executing, is denoted by the unique label a = 0.)

We denote by ra
1, ra

2, …, ra
Na, N a ≥ 1 if a ≠ 0, the finite number of all possible realizations

of application a, where each ra
j is a finite sequence—

ra
j  = <ιaj, 1, ιaj, 2, …, ιaj, Na

j >, N a
j  ≥ 1 if a ≠ 0—in the set I = {ι1, …, ιNI}, NI ≥ 1, of all assembly

language instructions available to the µC; and we write (when a ≠ 0) R a =

{ra
1, ra

2, …, ra
Na} ⊆ UN

NA

=
mLa

1

Ix[0, TE
) 

IN (and we set R 0 = ∅). Here Nm
A
a
L
x
I[0, TE) is the maximum 

number of AL instructions executable in [0, TE), namely Nm
A
a
L
x
I[0, TE) ≤  [[TE/τc,1/2]] + 1,  where

τc > 0 is the system clock period with τc,1/2 = τc/2 and where [[•]] denotes the greatest 

integer function, with τc,1/2 being the lower limit of our time scale resolution. Now each 

instruction ιaj, l executes on the µC during some time interval [(τa
j, l)0, (τa

j, l)f) for which (τa
j,

l)f − (τa
j, l)0 is, under normal execution, an integral multiple of τc,1/2. Because some AL 
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instructions require more clock periods to fully execute than do other AL instructions, it is 

necessary for our purposes to append, to each AL instruction in the ra
j sequence, the initial 

and final time instants of the time interval in which the instruction executes.  We thus 

specify a finite sequence of instructions executing during [0, TE) as the finite sequence of 

ordered pairs [ra
j ]

# = < <ιaj, l, [(τa
j, l)0, (τa

j, l)f)> > l
N
=

a
j
1
  where ιaj, l ∈ I and [(τa

j, l)0, (τa
j, l)f) ⊆ [0,

TE); and we write as well R#
a = {[ra

1]#, [ra
2]#, …, [ra

Na]#} ⊆

UN

NA

=
mLa

1

Ix [I x [0, TE)]N (and R#
0 = ∅). Note that (τa

j, l)f − (τa
j, l)0 = n a

j, lτc,1/2 where n a
j, l ∈

{1, 2, …, Nm
A
a
L
x
I-CYC }, with Nm

A
a
L
x
I-CYC being the maximum number of clock ½-cycles required 

by any AL instruction (e.g., Nm
A
a
L
x
I-CYC = 1, 2, 4, 8, 16, 24, depending upon the particular 

µC).  

Next, we write the finite set of all system tasks as Θ = {θ0, θ1, …, θNΘ
}, NΘ ≥ 1 (with θ0 

denoting the null system task, i.e., no system task executing), and any sequence of 

system tasks from Θ as sk = <θk, 1, θk, 2, …, θk, N s
k >, 

 
Ns

k ≥ 1; further, we write

S = {s1, …, sNS}, NS  ≥ 1, for the finite set of all such sequences, with S ⊆  UN
NS

=
mTa

1
x[0, TE) 

ΘN,

where Nm
S
a
T
x[0, TE) is the maximum number of system tasks executable in [0, TE). (Note 

that it is not in general true that Nm
S
a
T
x
 [0, TE) ≤  [[TE/τc,1/2]] + 1 since several system tasks 

may execute simultaneously during any given clock ½-cycle.)  As in the case of AL 

instructions, each system task θk, m executes on the µC during some time interval 

[(τs
 k, m)0, (τs

 k, m)f) for which (τs
 k, m)f − (τs

 k, m)0 is, under normal execution, an integral multiple 

of τc,1/2 (or is taken by us to be so since τc,1/2 is the lower limit of our time scale resolution); 

further, since interrupts in general occur irregularly in time, it is necessary for our purposes 

to append, to each system task θk, m in the sk sequence, the initial and final time instants

of the time interval in which it executes. We thus specify a finite sequence of system tasks 
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executing during [0, TE) as the finite sequence of ordered pairs [sk]
# = < <θk, m, [(τs

 k, m)0, (τs
 

k, m)f)> > m
N
=

a
k
1
  where θk, m ∈ Θ and [(τs

 k, m)0, (τs
 k, m)f) ⊆

[0, TE); and we write as well S # = {[s1]
#, [s2]

#, …, [sNS]#} ⊆ UN

NS

=
mTa

1
x[0, TE)

 [Θ x [0, TE)]N. Note

that (τs
 k, m)f − (τs

 k, m)0 = ns
 k, mτc,1/2, where {1, 2, …, Nm

S
a
T
x
-CYC} with Nm

S
a
T
x
-CYC being the maximum 

number of clock ½-cycles required by any individual system task (typically 

ns
 k, m = 1).  Further, in addition to possible overlap in time of system tasks, i.e., 

[(τs
 k, m)0, (τs

 k, m)f) ∩ [(τs
 k, m′)0, (τs

 k, m′)f) ≠ ∅ for some m, m′ ∈ {1, …, N s
k } with m  ≠ m′, it is also

possible that an AL instruction and a system task may execute simultaneously at the ½-

cycle time scale (e.g., in the case of a pre-fetch capability in some µC′s) so that [(τa
j, l)0, 

(τa
j, l)f) ∩ [(τs

 k, m)0, (τs
 k, m)f) ≠ ∅ for some l = 1, …, N a

j  and m = 1, …, Ns
k.

We observe that the system task sequence fundamentally differs from the AL instruction 

sequence in that the latter is “quasi-deterministic” in time while the former—if it contains 

interrupts—may be irregular in time. That is, in the absence of interrupts, the AL 

instruction execution sequence timing is predictable for any given application realization 

while, on the other hand—for either the active or quiescent state of any executing 

realization of some application—the interrupt sequence timing is in general not 

predictable since, for example, external interrupts are activated by conditions appearing 

irregularly on devices external to the µC (which devices are monitored by the µC’s input 

pins). This renders as non-deterministically predictable the particular realization, ra, of an 

application a, that is actually executed in [0, TE) in any particular instance of the execution

of a, since ra itself comprises the interrupt-servicing AL instructions; hence the inference

from any particular ra instruction stream of the induced SPT’s on the µC signal lines as a 
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result of the execution of a also suffers from this unpredictability. For us, the statement

that application a is executing during [0, TE) is tantamount to the statement that a

particular realization of a, say ra
j* ∈ R a, is executing during [0, TE).  However, to analyze

the µC SPT behavior during execution of a, we must resort to analyzing some statistical

mix of ra ′s that are possibly executing during that [0, TE), hence some statistical mix of 

SPT’s that are possibly executing during that [0, TE).   We address this state-of-affairs in 

Section V where we discuss random (i.e., stochastic) collections of SPT’s.       

As per the above considerations, we may indicate any possible application-a/system task

combination executing on the µC during [0, TE) by the pair <[ra]#, [s]# > ∈ R#
a x S #.

There is however an additional factor that must be taken into account: the time-dependent 

data (numbers) occupying the various µC registers and memory locations. These values, 

being represented by binary 0’s and 1’s, determine which data signal lines are low and 

which are high at any particular instant, i.e., the SPT’s on these data lines.  These values 

arise from user inputs to the application, or from inputs to the application by the 

aforementioned external devices connected to the µC, or as values computed via 

arithmetic manipulations by the application. In principle these data may be represented 

by a time sequence of the data contained in each register and memory location used by 

the application. If we label the registers used by realization ra
j of 

application a as ℜ = {ρ1, ρ2, …, ρNρ(raj)
}, Nρ(ra

j) ≥ 1 if a ≠ 0, and if we label the memory

locations used by application a as M = {µ1, µ2, …, µNµ(raj)
}, Nµ(ra

j) ≥ 1 if a ≠ 0, then we may

represent the data history as < <dρ
p
(nτc,1/2)>p

N
=
ρ (

1
raj), <dµ

q
(nτc,1/2)> q

N
=
µ (

1
raj )>n

NC

=

Y 

0

C [0, TE
)
 where

dρ
p
(nτc,1/2) is the value of the data in register ρp at time nτc,1/2 (the beginning of ½-cycle n),

Approved for public release: distribution unlimited.
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and similarly for dµ
q
(nτc,1/2), and NCYC[0, TE) =  [[TE/τc,1/2]].  Alternatively, we may represent

the data histories of the registers and memory locations in a fashion that mimics the 

representation method that we used for [ra]# and [s]#. To this end we note that since, for

any given register, ρp, there are only a finite number of instants at which the data value in 

that register actually changes, say at instants 0 < τ
ρ
1
p < … < τNρp

< TE  (with τ
ρ
0
p = 0 and

τNρp+1= TE) then we may write the time history of the data in register ρp as the sequence 

< <dρ
p
(τ
ρ
u
p
−1), [τ

ρ
u
p
−1, τ

ρ
u
p)> >

u

N

=
ρ
1
p+1 where dρ

p
(τ
ρ
u
p) ≠ dρ

p
(τ
ρ
u
p
−1) and if 

t, t ′ ∈ [τ
ρ
u
p
−1, τ

ρ
u
p) then dρ

p
(t) = dρ

p
(t ′). We then write

d #
ℜ(ra

j) = <<<dρ
p
(τ
ρ
u
p
−1), [τ

ρ
u
p
−1, τ

ρ
u
p)>>

u

N

=
ρ
1
p+1> p

N
=
ρ (

1
raj) for the histories of all the registers employed

by ra
j.  Analogously, for the memory locations employed by ra

j  we write d #
M(ra

j) =

<<<dµ
q
(τ
µ
v
q
−1), [τ

µ
v
q
−1, τ

µ
v
q)>>

v

N

=
µ
1
q+1> q

N
=
µ (

1
raj); and we then write d #

ℜ, M(ra
j) = <d #

ℜ(ra
j), d #

M(ra
j)>.

Finally, we denote the set of all possible data histories of the form dℜ, M(ra
j) as D#

raj
 so that

d #
ℜ, M(ra

j) ∈ D#
raj

 .

We may now indicate any possible application-a/system task combination executing on

the µC during [0, TE) by the triple Ta = <[ra]#, [s]#, d #
ℜ, M(ra)> ∈ R#

a x S # x D#
ra , which triple

specifies collectively an AL instruction stream, a system task stream, and streams of all 

applicable register and memory location contents, with all of these streams having timing 

information precisely specified. Since the three components of Ta are each precisely 

specified then the SPT’s resulting therefrom on all µC signal and data lines are then in 

principle also precisely inferable. This conversion from Ta to the resulting induced SPT’s 
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is the bridge to which we have alluded previously. However, since having such precise 

knowledge is not realistic—because, for example, of the randomness in the timing of the 

interrupts of [s]# as well as the randomness in d #
ℜ, M(ra) of the values and timing of the 

data sent to the µC by external devices connected to it. Nevertheless, in order to proceed 

we will assume initially that a (precisely specified as above) Ta is given so that its 

associated resulting SPT’s on all signal lines are known precisely as well (although we 

will not provide a prescription for the explicit SPT’s so resulting). For our purposes it is 

sufficient to know that such a bridge—between a precisely described Ta and its 

associated induced SPT’s—exists. We remind the reader that we will address, in Section 

V, this uncertainty as to which Ta  is actually executing during any particular execution run 

of application a ∈ A.  

II.2 µC SPT’s 

We are now prepared to describe the normal µC execution of task Ta as well as the 

disruption of the execution of Ta by an EM pulse. In light of our aforementioned focus, we 

will do so from a signal-centric point of view. Consider then an application/system task Ta 

active during [0, TE). In what follows we will also be interested in some non-void “local” 

time sub-window [T0, Tf ) ⊆ [0, TE) that will designate the total time extent of πEM.  From 

our signal-centric point of view, the task Ta may be represented via a µC state that is 

completely specified by giving, for each relevant signal line of the µC, the SPT time history 

on the line during [0, TE) (say referenced to the line midpoint for definiteness) hence also 

during [T0, Tf ). That is, if there are L such signal lines, labeled by l = 1, …, L, then the µC 

state for the time window [0, TE) is given by a finite sequence <πl>l
L
= 1 where, for normal 

µC functionality, πl  ≡ πl (Ta): [0, TE) → [Vπ , low, Vπ , high] is a continuous function giving the 
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SPT time-history for signal line l, with Vπ , low representing “line low”, Vπ , high representing 

“line high”, and the interval (Vπ , low, Vπ , high) accommodating periods of line transition from 

low to high or vice-versa (and the range of πl (Ta) has been idealized). For non-normal µC 

functionality, the range of continuous function πl  ≡ 

πl (Ta; πEM) on domain [0, TE) may extend beyond [Vπ , low, Vπ , high] but is still bounded. In 

general, it is sufficient to consider these SPT’s—both normal and non-normal—as 

members of the Cartesian product X L
B([0, TE)) ≡ Xl

L
= 1 CB([0, TE)), where CB([0, TE)) is the

set of (real-valued) continuous functions on [0, TE) that are uniformly bounded there by B 

> 0 (i.e., [∀f ∈ CB([0, TE))][f ∞ ≤ B]), with the specific value of B being unimportant here 

except that B > max {Vπ , low , Vπ , high } (using “>” rather than “=” for the condition on B in 

order to accommodate non-normal SPT’s). Actually, since there are (almost certainly) 

<πl>l
L
= 1 ∈ X L

B([0, TE)) that, for physical reasons, never occur either as normal or as non-

normal µC states, we then denote by ΠL([0, TE)) ⊂≠ X L
B([0, TE)) the set of all <πl>l

L
= 1 ∈

X L
B([0, TE)) that may in fact occur as µC states (either normal or non-normal).  We point

out that a state <πl (Ta)>l
L
= 1 for normal µC functionality corresponding to given task Ta is 

in general not unique: Actually, because small but nonzero timing and amplitude 

variations in SPT’s are allowed by design without impacting normal µC functionality, each 

πl (Ta), l = 1,…, L, should be replaced with an “equivalence class” of such πl (Ta)′s and, 

likewise, <πl (Ta)>l
L

= 1 should be replaced with an equivalence class, say Cl L
normal[Ta], of

such <πl (Ta)>l
L
= 1′s where, when <πl (Ta)>l

L
= 1 ≠ <π ′l(Ta)>l

L
= 1, then <πl (Ta)>l

L
= 1 ~ <π ′l(Ta)>l

L
= 1 

iff they both correspond to the successful µC execution of task Ta. (Also, since the 

members of any given normal class differ only by intended “micro” design tolerances and 

not by any “macro” differences [e.g., totally differing line signal levels in any given clock 
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½-period], we could assume that Cl L
normal[Ta] ∩ Cl L

normal[Ta ′ ] = ∅ when Ta ≠ Ta ′  to support

the use of the term equivalence class; for then ~ is a bona fide equivalence relation on 

the set Ua ∈ A Cl L
normal[Ta].)  We will, however, avoid equivalence classes for the most

part in our main development in Section III; rather, with any given task Ta executing 

normally we will associate a unique, idealized (as per Section III) state representative of 

its equivalence class Cl L
normal[Ta], namely,

<πN
l  (Ta)>l

L
=1. 

Consider next the non-normal states that may occur when the µC is subject to an external 

EM pulse πEM.  To that end, for µC task Ta represented in normal execution by idealized 

state <πN
l (Ta)>l

L
= 1, let <πl (Ta ;πEM)>l

L
= 1 ∈ ΠL([0, TE)) represent any possible µC state

achievable when the µC is subjected to external EM pulse πEM.  In general, the 

<πl (Ta ;πEM)>′s differ from <πN
l (Ta)> in that the former engender timing and amplitude 

variations of the latter.  In contrast to the normal case, there are no compelling natural 

equivalence classes for the non-normal states <πl (Ta ;πEM)>l
L
= 1. Now if state 

<πl (Ta ;πEM)>l
L
= 1 ∉ ClL,  normal [Ta] then this state is said to be deviant with respect to (wrt)

task Ta and written for emphasis as <π D
l (Ta ;πEM)>l

L
= 1; further, this deviant state is termed, 

in addition, disruptive wrt task Ta if it corresponds to mal-execution of that task; and it is 

termed non-disruptive wrt task Ta otherwise. In this connection, there might be deviant 

states that—despite not being elements of Cl L
normal[Ta]—nevertheless do not correspond

to mal-execution of task Ta and are thus not disruptive. To capture the above 
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considerations in our formulation, we define the following subsets of 

ΠL([0,TE))\Cl L
normal[Ta]:

 Π D
L(Ta ;  [0,TE); πEM)  

≡ {<πl (Ta ;πEM)>l
L
= 1 ∈ ΠL([0, TE))\Cl L

normal[Ta]<πl (Ta ;πEM)>l
L
= 1 is a deviant state wrt task Ta},

Π D
L
, ND(Ta ;  [0,TE); πEM) 

≡ {<π D
l (Ta ;πEM)>l

L
= 1 ∈ Π D

L(Ta ;  [0,TE); πEM)<π D
l (Ta ;πEM)>l

L
= 1 is a non-disruptively deviant

state wrt task Ta},      

Π D
L
, D(Ta ;  [0,TE); πEM) 

≡ {<π D
l (Ta ;πEM)>l

L
= 1 ∈ Π D

L(Ta ;  [0,TE); πEM)<π D
l (Ta ;πEM)>l

L
= 1 is disruptively deviant state wrt

task Ta}, 

for which Π D
L(Ta ;  [0,TE); πEM) is the disjoint union 

         Π D
L(Ta ;  [0,TE); πEM) = Π D

L
, ND(Ta ;  [0,TE); πEM) ∪ Π D

L
, D(Ta ;  [0,TE); πEM). 

Also, we denote by ΠL(Ta ;  [0, TE)) the disjoint union 

ΠL(Ta ;  [0, TE)) = Cl L
normal[Ta] ∪ Π D

L
, ND(Ta ;  [0, TE); πEM) ∪ Π D

L
, D(Ta ;  [0, TE)πEM).

II.3 Probability of µC Upset, Pupset

We may now more carefully state in terms of µC states (i.e., collections of SPT’s on the 

µC lines) what we mean by µC upset probability for a given Ta. Consider then the following 

thought experiment.  A fixed µC is executing a known, fixed Ta—hence known <πN
l (Ta)>l

L
= 

1—and is irradiated by a fixed πEM acting over fixed time interval [T0, Tf ) ⊆ 

Approved for public release: distribution unlimited.



13 

[0, TE), with T0 being some fixed instant after Ta initiation (and with the EM pulse being 

strong enough to potentially cause µC upset but not so strong as to cause µC damage); 

in this case we also write πEM[T0, Tf ].  Repeated trials of this procedure are conducted and 

the outcome state <πl (Ta ;πEM[T0, Tf ])>l
L
= 1 ∈ ΠL(Ta ;  [0, TE)) is observed and classified as

to which of the three disjoint subsets of ΠL(Ta ;  [0, TE)) it belongs. According to our 

comments in the Introduction, we take this outcome to be probabilistic (our EM pulse 

being presumed to be in a frequency regime in which this is so) so that the resulting state 

<πl (Ta ;πEM[T0, Tf ])>l
L
= 1  and the subset to which it belongs varies from trial to trial.  This 

probabilistic experiment then has outcome set 

Ω ≡ {Cl L
normal[Ta], Π D

L
, ND(Ta ;  [0, TE); πEM[T0, Tf ]), Π

D
L
, D(Ta ;  [0, TE); πEM[T0, Tf ])}

and we seek to theoretically determine the value of Prob(Π D
L
, D(Ta ;  [0, TE); πEM[T0, Tf ])), 

i.e., the fraction of all trials in which <πl (Ta ;πEM[T0, Tf ])>l
L
= 1  is disruptively deviant; this

number will then be declared to be equal to Pupset for task Ta subject to πEM[T0, Tf ]: 

Pupset(Ta;πEM[T0, Tf ]) ≡ Prob(Π D
L
, D(Ta ;  [0, TE); πEM[T0, Tf ])).

We may also think of Pupset(Ta ;πEM[T0, Tf ]) as (being the same as) the probability of the 

disruptive deviation of idealized, normal SPT <πN
l (Ta)>l

L
= 1) subject to πEM[T0, Tf ]: 

Pupset(Ta ;πEM[T0, Tf ]) ≡ ProbD, D
(<πN

l (Ta)>l
L
= 1; πEM[T0, Tf ]).

In order then to theoretically determine Prob(Π D
L
, D(Ta ;  [0, TE); πEM[T0, Tf ])), we construct 

a model in which we provide, for each possible idealized, normal SPT <πN
l (Ta)>l

L
= 1, the 

EM-pulse-dependent probability of a disruptive deviation of <πN
l (Ta)>l

L
= 1 by any given EM 

pulse πEM. Note that our probability assignment will be a function of only <πN
l (Ta)>l

L
= 1 and 

Approved for public release: distribution unlimited.



14 

not depend upon the  resulting state <πl (Ta ;πEM)>l
L
= 1. This approach frees us from the 

extremely challenging (and indeed probably currently unachievable) burden of precisely 

determining and specifying any particular EM-induced deviant state (disruptive or not): 

we need only possess <πN
l (Ta)>l

L
=1 (which, if required in detail, is in principle specifiable—

but in practice at best arduously so—for Ta from knowledge of the µC design). 

We will proceed by initially reducing consideration of the full collection <πN
l (Ta)>l

L
= 1 of 

SPT’s on all L (“important”) µC signal lines to consideration of a single such signal line. 

We say that <πN
l (Ta)>l

L
= 1 suffers a disruptive deviation (i.e., that execution of Ta is upset) 

iff there is at least one l = 1, …, L  such that πN
l (Ta) suffers a disruptive deviation (i.e., 

corresponds to mal-execution of Ta) and we then address the determination of the 

probability ProbD, D
(πN

l (Ta); πEM) that any single SPT πN
l (Ta) suffers a disruptive deviation

induced by πEM. Of course, one can then infer the probability disruptive deviation of 

<πN
l (Ta)>l

L
= 1 by πEM, i.e., ProbD, D

(<πN
l (Ta)>l

L
= 1; πEM), from

ProbD, D
(<πN

l (Ta)>l
L

= 1; πEM) = 1 − {Prob([πN
1 (Ta) does not suffer disruptive deviation

  via πEM]  &  [πN
2 (Ta) does not suffer disruptive deviation via πEM] … & … [πN

L (Ta) does 

     not suffer disruptive deviation via πEM])} 

(which in general is equal to 1 − ∏ l
L
= 1 [1 − ProbD, D

(<πN
l (Ta)>l

L
= 1; πEM)] only when the

individual single line SPT upsets are independent); but, because of the need to make 

mathematically precise the notional arguments just presented, as well as to discuss 

subtleties that arise, we defer the computation of such ProbD, D
(<πN

l (Ta)>l
L
= 1; πEM) to a

subsequent paper. Thus the model in this paper provides the probability of disruptive 
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deviation of any particular idealized, normal SPT, πN
l (Ta), as induced by any EM pulse, 

πEM, acting over time interval [T0, Tf ) ⊆ [0, TE).  

As a final point in this section, we remind the reader that we have earlier briefly discussed 

the uncertainty associated with knowing which Ta is actually executing when it is stated 

that “application a is executing” and have alluded to treating that stochastically (in Section

V).  That stochasticity is, however, completely different from that discussed in the previous 

paragraph in which the actually executing Ta is taken to be fully known but in which the 

upset of πN
l (Ta) is stochastic.  

III. SPT (πN) and EM Pulse (πEM) Specification and Interaction

As indicated in the previous section, we are interested in determining 

ProbD, D
(πN

l (Ta); πEM) when Ta is presumed known, hence (<πN
l (Ta)>l

L
= 1 being known as

well. We will, however, more generally, determine ProbD, D
(πN; πEM) for every possible

idealized, normal SPT πN in [0, TE). Since for l = 1, 2, …, L, πN
l (Ta) is one of these πN ′s 

then ProbD, D
(πN

l (Ta); πEM) will follow from our more general results.  To this end, we

carefully specify in this section our idealized SPT’s, πN, and our EM pulses, πEM, as well 

as characterize the overlap in time between them.  We consider a µC with a fundamental 

clock period of τc > 0 and denote τc,1/2 ≡ τc/2; the latter specifies our basic time scale. We 

thus consider the global time interval [0, TE) to be partitioned into N ≥ 1 basic time 

segments of length τc,1/2 according to 

[0, TE) = Un
N

=
−
0
1 [nτc,1/2, (n + 1) τc,1/2),                                   (1)

where we stipulate without practical consequence that TE is an exact multiple of τc,1/2; i.e., 

TE = Nτc,1/2. We will specify our SPT, πN, in terms of the partition’s basic time segments. 
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III.1. Individual SPT Elements  

We consider any idealized SPT, πN in [0, TE), to be constructible—in a graph of signal 

magnitude vs. time—as a concatenation of shortly-to-be-specified basic elements. Our 

basic elements are of two distinct classes, which two classes we term as “primitive SPT 

elements” and as “½-period-segmented SPT elements”. There are four differing 

elements—”types”—in the former class and eight differing element types in the latter class 

and in this section we precisely specify all these. 

Consider firstly the primitive SPT elements. They are of the following types: (A) signal-

high, having constant value −∞ < Vπ , high < ∞ during some positive length time interval 

(where Vπ , high is frequently taken to be positive); (B) signal-low, having constant value −∞ 

< Vπ , low < Vπ , high during some positive length time interval (where Vπ , low is frequently be 

taken to be zero); (C) signal-low-to-high-transition, a straight line from termination of a 

signal-low element to commencement—at some positive time beyond that termination—

of the very next-in-time signal-high element, and with that straight line having finite, 

positive slope [(Vπ , high − Vπ , low)/2)]/ατc,1/2, with α > 0; and (D) signal-high-to-low-transition, 

a straight line from termination of a signal-high element to commencement—at some 

positive time beyond that termination—of the very next-in-time signal-low element, and 

with that straight line having finite, negative slope 

−[(Vπ , high − Vπ , low)/2)]/βτc,1/2, with β > 0.  In practice, it usually occurs that α, β << 1; less 

stringently we stipulate only that 0 < α + β < 1 (so that 0 < α < 1 and 0 < β < 1). Examples 

of primitive SPT elements are illustrated in the SPT of Fig. 1. Note that primitive SPT 

elements of Types A and B may (partially) occupy more than a single basic time segment 

while elements of Type C and D always (partially) occupy more than a single basic time 

segment.  

Consider next the ½-period-segmented SPT elements. Now in general, the portion of any 

SPT occurring during any single basic time segment [nτc,1/2, (n + 1)τc,1/2) is constructible 

by concatenation of portions of several of the above primitive SPT element types.  We 

illustrate in Fig. 2 all eight possibilities (types) for the structure of an SPT during (without 

loss of generality) the zeroth basic time segment (n = 0  in Eq. (1)); and we refer to these 
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eight as “½-period-segmented SPT elements”.  As an example of the constructability of 

a ½-period-segmented SPT element from primitive SPT elements, note that the ½-period-

segmented SPT element of Type-4 may be regarded as the concatenation of a primitive 

element of Type-A with half of each of primitive elements of Type-C and Type-D.   

The reason we have introduced both primitive elements and ½-period-segmented 

elements is as follows. While the latter are more natural for describing an SPT in time, it 

nevertheless seems to us that the former are more natural for assigning disruptive 

deviation probabilities. Our ultimate method of assigning disruptive deviation probabilities 

to single ½-period-segmented SPT elements (and therefrom to an N-element SPT) will 

be to first assign disruptive deviation probabilities to basic (see Section IV.2.1) primitive 

SPT elements and therefrom compute the disruptive deviation probabilities for the ½-

period-segmented SPT elements (Section IV.2).  However, in what follows we will also 

initially take the simpler approach of assigning disruptive deviation probabilities directly 

to the ½-period-segmented SPT elements themselves (Section IV.1).      

To proceed, we label the eight ½-period-segmented SPT elements in Fig. 2 by sj , 

j = 1,…,  8, as indicated specifically in that figure.  In fact, each such sj  is a mapping from 

[0, τc,1/2) into [Vπ , low, Vπ , high]. Explicitly, denoting ∆Vπ  ≡ Vπ , high − Vπ , low  > 0 and 

Vπ , mid ≡ (Vπ , high + Vπ , low)/2 we have the following: 

 s1(t) = Vπ , high   t ∈ [0, τc,1/2)        (2) 

   (∆Vπ /ατc) t + Vπ , mid     if t ∈ [0, ατc,1/2)        

  s2(t) =           (3)    
 Vπ , high   if t ∈ [ατc,1/2, τc,1/2) ,     

 Vπ , high        if t ∈ [0, (1 − β)τc,1/2)    
  s3(t) =      (4)    

  − (∆Vπ /βτc) t + (∆Vπ /2β) + Vπ , mid     if t ∈ [(1 − β)τc,1/2, τc,1/2), 
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 (∆Vπ /ατc) t + Vπ , mid   if t ∈ [0, ατc,1/2) 

    s4(t) =  Vπ , high      if t ∈ [ατc,1/2, (1 − β)τc,1/2)   (5) 

 − (∆Vπ /βτc) t + (∆Vπ /2β) + Vπ , mid  if t ∈ [(1 − β)τc,1/2, τc,1/2), 

 s5(t) ≡ Vπ , low  t ∈ [0, τc,1/2)        (6) 

 − (∆Vπ /βτc) t + Vπ , mid    if t ∈ [0, βτc,1/2)      

  s6(t) =           (7)    
 Vπ , low     if t ∈ [βτc,1/2, τc,1/2) , 

 Vπ , low   if t ∈ [0, (1 − α)τc,1/2)    

 s7(t) =      (8)    
 (∆Vπ /ατc) t − (∆Vπ /2α) + Vπ , mid       if t ∈ [(1 − α)τc,1/2, τc,1/2), 

  − (∆Vπ /βτc) t + Vπ , mid          if t ∈ [0, βτc,1/2) 

 s8(t) =       Vπ , low  if t ∈ [βτc,1/2, (1 − α)τc,1/2)    (9) 

 (∆Vπ /ατc) t − (∆Vπ /2α) + Vπ , mid    if t ∈ [(1 − α)τc,1/2, τc,1/2). 

It is convenient to extend the domain of each of these ½-period-segmented SPT elements 

to all of [0, TE); we take 

 sj (t)   if t ∈ [0, τc,1/2)      

 sj
0(t) ≡           ( j = 1,…, 8)   (10) 

        0     if t ∈ [0, TE) \ [0, τc,1/2) 

and refer to these as well (with no confusion generally resulting from doing so) as 
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½-period-segmented SPT elements. (The possibility that Vπ , low or Vπ , high may have value 

zero is purely coincidental in relation to the possible value 0 taken on by sj
0(t) in 

[0, TE) \ [0, τc,1/2).)  Further, to describe the SPT in basic time segments other than the 

zeroth one, we define, for n = 1,…, N − 1 and t ∈ [0, TE), the nth-time-segment ½-period-

segmented SPT elements 

 sj
0(t − nτc,1/2)   if t ∈ [nτc,1/2, (n + 1) τc,1/2)   

 sj
n(t) ≡    ( j = 1,…, 8)      (11) 

        0             if t ∈ [0, TE) \ [nτc,1/2, (n + 1)τc,1/2); 

and, for each n = 0,…, N − 1, we denote the set of all such ½-period-segmented SPT 

elements as  

S1
n ≡ {sj

n }j
8
= 1 .  (12) 

III.2. Consecutive ½-Period-Segmented SPT Elements: Arbitrary Idealized SPT’s 
We now use the individual ½-period-segmented SPT elements of the previous subsection 

to construct an arbitrary N-element SPT having domain [0, TE) partitioned into basic time 

segments as per Eq. (1), with this N-element SPT consisting of a sequence of N 

consecutive-in-time single SPT elements, where the nth such single element (n = 0,…, N 

− 1) of the sequence belongs to S1
n of Eq. (12). In Fig. 3, we show an 8-element SPT 

(which, incidentally consists of all eight ½-period-segmented SPT element types). In 

general, any such consecutive-N-element SPT can be written as a sum, over n = 0,…, N 

− 1, of individual SPT elements from the S1
n ′s; to wit, as a sum ∑ n

N
=
−
0
1 sj

n
n
 where sj

n
n
∈ S1

n

with jn ∈ {1, …, 8}.  On the other hand, it is not the case that every sum of this form is an 

SPT: While in any given basic time segment (indexed by n) each of the eight ½-period-

segmented elements (sj
n
n
 for jn = 1,…, 8) is possible, nevertheless the possible pairs, <sj

n
n ,

sj
n
n
+
+ 
1
1>, of ½-period-segmented elements occurring in consecutive time segments are 

constrained by the requirement that the SPT be a continuous function in [nτc,1/2, (n + 

2)τc,1/2) and differentiable at t = (n + 1)τc,1/2 (but clearly need not be differentiable in all of

[nτc,1/2, (n + 2)τc,1/2)). The required differentiability at t = (n + 1)τc,1/2 serves to exclude any 
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pair whose sum is continuous yet does not occur as part of any SPT, e.g., type-2 following 

type-3, or type-2 following type-4, or type-4 following type-3.  It is straightforward to verify 

(from Fig. 2, for example) that given any n = 0,…, N − 1 and any sj
n
n
∈ S1

n ( jn ∈ {1, …, 8})

there are then precisely two members of S1
n + 1 for which the “two-element” SPT 

[sj
n
n  + sj

n
n
+
+ 
1
1] \ [nτc,1/2, (n + 2)τc,1/2) is admissible in the above sense.  For example, if jn = 1 

then we must have jn + 1 ∈{1, 3}.  Furthermore, this relationship is independent of n: if 

n′ ≠ n and jn′ = 1 then jn′ + 1 ∈ {1, 3}; and this n-independence holds as well for 

jn = 2,…, 8. Thus, in general, for each j = 1, …, 8 we may write ( j)1
+ and ( j)2

+ for those two

indices for which—and only for which—the “two-element” SPT’s 

[sj
0 + s(

1
j)1
+] \ [0, 2τc,1/2) and [sj

0 + s(
1
j)2
+ ] \ [0, 2τc,1/2) are admissible (hence so are

[sj
n
n  + s(j

n
n
+
)1
+
1] \ [nτc,1/2, (n + 2)τc,1/2) and [sj

n
n  + s(j

n
n
+
)2
+
1] \ [nτc,1/2, (n + 2)τc,1/2) admissible for all 

n = 0, …, N − 1).  We also write 

J+ ≡ { < j, j+>  j = 1,…, 8 and  j+= ( j)1
+ or j+= ( j)2

+}.   (13) 

We may now characterize all idealized, “normally executing” N-element SPT’s in [0, TE) 

as the members of the set 

Π N
N [0, TE] ≡ { πNπN = ∑ n

N
=
−
0
1 sj

n
n
  with (∀n = 0, …, N − 1)(<  jn, jn + 1 > ∈ J+)}        (14)

where 

πN: Un
N

=
−
0
1 [nτc,1/2, (n + 1)τc,1/2) → [Vπ , low, Vπ , high].      (15) 

The members of Π N
N [0, TE] may each have one of only eight possible individual ½-period-

segmented SPT elements occupying [0, τc,1/2) and for each of these eight there are two 

possible individual ½-period-segmented SPT elements occupying each of 

[nτc,1/2, (n + 1)τc,1/2), n = 1,…, N − 1; hence #(Π N
N) = 8 • 2 N − 1 = 2N + 2. Further, since each

πN∈Π N
N [0, TE] is completely characterized by its associated sequence 
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< j0, j1,…, jN − 1> (when α, β, Vπ , low, and Vπ , high, are fixed) then, when necessary, we will 

denote that SPT by πN [ j0, j1,…, jN − 1].   

III.3. EM Pulses 

An EM pulse, πEM, will be taken to be a rectangular-envelope-modulated monochromatic 

sinusoidal wave of frequency ω > 0, having amplitude VEM > 0 during time interval [T0, Tf ) 

⊆ [0, TE) (with Tf  ≥ T0) and amplitude zero during [0, TE) \ [T0, Tf ). Explicitly, 

  VEM sin[ω(t − T0)]       if t ∈ [T0, Tf ) 
 πEM(t) ≡        (16)    

 0      if t ∈ [0, TE) \ [T0, Tf ),    

where we stipulate without practical consequence that Tf  − T0 is an integral multiple of π/ω 

so that πEM is continuous at both T0  and Tf  (we attribute no significance to whether such 

multiple is odd or even).   We will also make use of the upper-half envelope of πEM, 

namely, 

 VEM     if t ∈ [T0, Tf )       
π+

EM(t) ≡      (17)     
          0       if t ∈ [0, TE) \ [T0, Tf ).        

Further, when necessary, we will write both πEM and π+
EM more explicitly as, respectively, 

πEM[T0, Tf , VEM, ω] and π+
EM[T0, Tf , VEM]. 

III.4. Overlap in Time of πN and πEM 

Given π+
EM[T0, Tf , VEM], we will be interested, for use in the remainder of the paper, in 

characterizing the temporal overlap of π+
EM[T0, Tf , VEM], when Tf  > T0, and any πN ∈ 

Π N
N [0, TE], which overlap we indicate symbolically also as πN ∩ πEM; i.e., πN ∩ πEM ≡ 

[T0, Tf ). To this end, we define   
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 nmin[T0, Tf ] ≡ min{ n ∈ {0, …, N − 1}  [nτc,1/2, (n + 1) τc,1/2) ∩  [T0, Tf ) ≠ ∅ }    (18) 

and 

 nmax[T0, Tf ] ≡ max{ n ∈ {0, …, N − 1}  [nτc,1/2, (n + 1) τc,1/2) ∩  [T0, Tf ) ≠ ∅ }      (19) 

where, of course, N − 1 ≥ nmax ≥ nmin ≥ 0. Then 

  [T0, Tf ) = { [nminτc,1/2, (nmin+ 1)τc,1/2) ∩  [T0, Tf ) } 

∪  Un 
n
 = 
=
n 
n

m 
m

i 
a
n     
x
+
−
1
1

 [nτc,1/2, (n + 1) τc,1/2)     (20) 

 ∪  { [nmaxτc,1/2, (nmax+ 1)τc,1/2) ∩  [T0, Tf ) }, 

since [nτc,1/2, (n + 1)τc,1/2) ∩ [T0, Tf ) = [nτc,1/2, (n + 1)τc,1/2) for n = nmin + 1,…, nmax − 1.  

However, in general, [nminτc,1/2, (nmin+ 1)τc,1/2) ∩ [T0, Tf ) ⊂≠ [T0, Tf ) and 

[nmaxτc,1/2, (nmax+ 1)τc,1/2) ∩ [T0, Tf ) ⊂≠ [T0, Tf ).  In other words, the overlap in time of 

π+
EM[T0, Tf , VEM] and any πN ∈ Π N

N [0, TE] is specified by the collection of nmax − nmin − 1 

“complete” time segments contained inside the middle (“big union”) term in Eq. (20) 

together with the two generally “partial” time sub-segments given by the first and last 

terms in that equation.  Our interest in so specifying this overlap derives from the 

circumstance that in the next section we will ascribe EM-pulse disruption probabilities to 

each of the eight possible ½-period-segmented SPT elements and therefrom infer an EM-

pulse disruption probability for any entire N-element SPT (i.e., any πN ∈ Π N
N [0, TE]) 

constructed from those ½-period-segmented SPT elements. Each such ½-period-

segmented SPT element of course temporally “occupies” a complete basic time segment; 

but, because of the possibility that the leading and trailing ends of πN ∩ πEM each only 

partially occupy a basic time segment, we must in addition ascribe EM-pulse disruption 

probabilities to all possible partial ½-period-segmented SPT elements formable from any 

of the eight complete ½-period-segmented SPT elements. In this connection, it will also 

be useful to denote 

πN ∩ πEM  ≡ [nminτc,1/2, (nmax+ 1)τc,1/2),        (21) 

Approved for public release: distribution unlimited.



23 

this quantity being the minimal extension of the interval [T0, Tf ) to a union of an integer 

number of complete basic time segments, where the interval [T0, Tf ) = πN ∩ πEM is not in 

general such a union but rather properly contained inside πN ∩ πEM .        

IV. Probability of a πEM-Induced Disruptive Deviation of πN

In this section we formulate our expression for the probability of a πEM-induced disruptive 

deviation of any single signal line carrying any of the possible SPT’s, πN ∈ 

Π N
N [0, TE]. We firstly consider disruptive deviation probability assignments to each of the 

individual ½-period-segmented SPT elements sj
n and do so from two points of view: (1) 

direct assignment to each of the eight ½-period-segmented SPT elements and (2) indirect 

assignment to each of the eight ½-period-segmented SPT elements via direct assignment 

of disruptive deviation probabilities to each of the four primitive SPT elements. We then 

consider, secondly, disruption probability assignment to a single, arbitrary N-element SPT 

built from the sj
n′s. The connection between these two entities is this: Given an SPT 

composed of a specified set of ½-period-segmented SPT elements then we say that the 

SPT suffers a disruptive deviation iff at least one of its elements suffers a disruptive 

deviation. Thirdly, we consider (in Section V) the disruptive deviation probability 

assignment to a single signal line in case the actual SPT on the line—being an SPT from 

the collection, Π N
N, of all possible N-element SPT’s that may be carried on the line—is 

known only stochastically. 

IV.1. Individual ½-Period-Segmented SPT Elements: Direct Probability Assignment 

IV.1.1. Full Overlap of πEM and sj
n

Consider firstly any EM pulse πEM[0, Tf , VEM, ω] such that [T0, Tf ) ∩ [0,τc,1/2) = [0,τc,1/2), so 

that [T0, Tf ) ⊇ [0,τc,1/2) (and Tf  ≥ τc,1/2), and further consider ½-period-segmented SPT 

elements sj
0 ∈ S1

0,  j = 1,…, 8.  In this case we denote by pj
0
, full[VEM, ω] ∈ [0, 1] the

probability that element sj
0 suffers a disruptive deviation induced by πEM. (We have 

suppressed the implicit dependence of pj
0
, full upon τc,1/2 , Vπ , low, Vπ , high, α, and β.)  Note 
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that we are considering this probability to be independent of Tf  as long as Tf  ≥ τc,1/2: The 

differences in the probabilities of πEM–induced disruptive deviations of multi-segment 

SPT′s for differing such πEM ′s—the πEM ′s differences arising from the differences in their 

Tf ′s (when all of their Tf ′s are strictly greater than τc,1/2)—will be manifested in our model 

in the ½-period-segmented SPT elements beyond n = 0.  

Next, for each n = 1,…, N − 1, consider any EM pulse πEM[T0, Tf , VEM, ω] such that 

[T0, Tf ) ∩ [nτc,1/2, (n  + 1)τc,1/2) = [nτc,1/2, (n  + 1)τc,1/2), so that [T0, Tf ) ⊇ 

[nτc,1/2, (n + 1)τc,1/2) (and T0 ≤ nτc,1/2 and Tf  ≥ (n  + 1)τc,1/2), and further consider ½-period-

segmented SPT elements sj
n ∈ Sn

0, j = 1,…, 8. In this case, we denote by pj
n
, full[VEM, ω] the

probability that element sj
n suffers a disruptive deviation induced by πEM where, once 

again, we are considering this probability to be independent of T0 and Tf  as long as T0 ≤ 

nτc,1/2 and Tf  ≥ (n + 1)τc,1/2: The differences in the probabilities of πEM disruptions of multi-

segment SPT′s for differing such πEM ′s will be manifested in our model in the ½-period-

segmented SPT elements previous to and subsequent to the nth. Further, we assume that 

         pj
n
, full[VEM, ω] = pj

0
, full[VEM, ω],        j = 1,…, 8; n = 1,…, N − 1;             (22) 

i.e., for each one of the eight ½-period-segmented elements, its probability of suffering a

disruptive deviation is independent of where that element occurs in the N-element SPT, 

as long as the element is completely encompassed by πEM, this probability depending 

rather only upon which one of the possible eight the element actually is. We term this 

property “modularity”; it appears to us to be a necessary assumption if we are to model 

the upset of all members of the collection of all possible SPT’s in [0, TE) without treating 

each such member as an individual having no commonality with any other member of the 

collection with respect to response to an EM excitation.    

IV.1.2. Partial Overlap of πEM and sj
n

Suppose next, contrary to the first paragraph of Section IV.1.1, that πEM[T0, Tf , VEM, ω] is 

such that [T0, Tf ) ∩ [0,τc,1/2) ⊂≠  [0,τc,1/2) and [T0, Tf ) ∩ [0, τc,1/2) ≠ ∅, with 
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γ
0(T0, Tf ) ≡ Length {[T0, Tf ) ∩ [0, τc,1/2)}/τc,1/2;      (23) 

note 0 < γ0(T0, Tf ) < 1. In this case, we assume that the probability that element sj
0 suffers

a disruptive deviation induced by πEM is given by 

pj
0
, partial [VEM, ω; T0, Tf ] ≡ G(γ0(T0, Tf ), pj

0
, full[VEM, ω]) pj

0
, full[VEM, ω],      (24) 

where G : [0, 1]2 → [0, 1] is some yet-to-be-specified function of γ0 and pj
0
, full that is non-

decreasing in γ0 for each possible fixed pj
0
, full ∈ [0, 1] and which further satisfies

   (∀pj
0
, full ∈ [0, 1])(G(0, pj

0
, full) = 0 and G(1, pj

0
, full) = 1).        (25) 

This non-decreasing behavior of G  in γ0 seems reasonable to us but may in fact not obtain

in reality; nevertheless, we adopt this behavior in our present model until experiment 

dictates otherwise.  Note that Eq. (24) stipulates that—as far as the interval dependency 

of G  is concerned—it is only the length of the interval [T0, Tf ) ∩ [0, τc,1/2) that determines 

pj
0
, partial and not the specific location of this interval inside of [0, τc,1/2). (We will modify this 

assumption later on, in Section IV.2—for the present it will suffice for our purpose.)  Also 

note that the only dependency of G upon j is via pj
0
, full—the functional form of G  is the 

same for each j = 1, ..., 8 (i.e., G does not carry a subscript “j ”).  Further, the inclusion of 

values 0 and 1 for γ0, in addition to those allowed values of γ0 specified immediately

following Eq. (23), will allow us to incorporate the limiting cases of [T0, Tf ) ∩ [0, τc,1/2) = ∅ 

and [T0, Tf ) ∩ [0, τc,1/2) = [0, τc,1/2), which cases we will employ shortly in explicitly 

determining G . 

Similarly, for each n = 1,…, N − 1, consider any EM pulse πEM[T0, Tf , VEM, ω] such that [T0, 

Tf ) ∩ [nτc,1/2, (n  + 1)τc,1/2) ⊂≠ [nτc,1/2, (n  + 1)τc,1/2) and [T0, Tf ) ∩ [nτc,1/2, (n  + 1)τc,1/2) ≠ ∅, 

with 

γ
n(T0, Tf ) ≡ Length {[T0, Tf ) ∩ [nτc,1/2, (n + 1)τc,1/2) }/τc,1/2;   (26) 

and 
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0 < γn(T0, Tf ) < 1    (n = 1,…, N − 1).          (27) 

Then we assume that the probability that element sj
n suffers a disruptive deviation induced 

by πEM is given by       

pj
n
, partial [VEM, ω; T0, Tf ]  ≡ G(γn(T0, Tf ), pj

n
, full[VEM, ω]) pj

n
, full[VEM, ω])

(28) 
= G(γn(T0, Tf ), pj

0
, full[VEM, ω]) pj

0
, full[VEM, ω]

where we have used here one and the same function G for all n = 1,…, N − 1, that function 

also being the one that we used for n = 0.  We emphasize that we have thus taken the 

functional form of G to be independent of both j and n.  Also, as in the n = 0 case, we 

allow in addition γn = 0, 1 .

We now address the determination of the function G. For the purpose of this discussion, 

we will suppress the subscript “j ” and superscript “n” on pj
n
, full and pj

n
, partial , as well as the 

subscript “n” on γn(T0, Tf ), and also suppress all their arguments; we merely write pfull ,

ppartial , and γ for these, with n and j understood to be fixed but arbitrary in their allowed 

ranges. Also, for proper non-void subinterval I = [T0, Tf ) ∩ [nτc,1/2, (n + 1)τc,1/2) of basic 

time segment [nτc,1/2, (n + 1)τc,1/2)—with the former being a subinterval whose ppartial  is 

that of interest and whose length-fraction is γ, and with the latter having disruption 

probability pfull  when fully encompassed by πEM—we write  

 p
partial

(γ, p
full

) = G(γ, p
full

) p
full

.                                          (29)

(Recall, as indicated earlier, that two different subintervals inside the same basic time 

segment [so that both of these subintervals are referenced to the same pfull ] and having 

the same γ also have the same ppartial (γ, pfull).)  Further, for I ~ = [nτc,1/2, (n +1)τc,1/2) \ I, with

I ~ having length-fraction 1 − γ, we take its p
partial

 as

p
partial

(1 − γ, p
full

) = G(1 − γ, p
full

) p
full

,  (30) 
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despite the fact that I ~ may sometimes not be an interval but rather the union of two 

intervals—we still assign a ppartial  to I ~ based solely upon its total length. This is in keeping

with our implied basic assumption that ppartial  for a (measurable) subset of a given basic 

time segment (with the latter’s pfull  hence also given) depends solely upon the length of 

that subset—and nothing else.  

To proceed with the determination of G, consider a random experiment in which 

½-period-segmented SPT element sj
n—which element when fully encompassed by 

πEM[T0, Tf ] (suppressing VEM and ω here as well) exhibits upset probability pfull —is in fact 

irradiated by EM pulse πEM[T0, Tf ] having [T0, Tf ) = [nmaxτc,1/2, (nmax+ 1)τc,1/2).  With some 

specified I of interest as per above and, in particular, having length fraction γ, one 

observes and records the subset—I or I ~—during which a disruptive deviation of the SPT 

element sj
n first takes place, making allowance as well for the additional possibility that no 

disruptive deviation of the SPT element sj
n takes place at all—which outcome is signified 

by N (i.e., no disruptive deviation).  For this experiment, the outcome set is 

Ω ≡ {I, I ~, N } with probability measure (on 2Ω—the power set of Ω) specified by P({I }) =

pI,  P({I ~}) =  pI~ , and P({N }) = 1 − (pI + pI~).  Now in terms of the quantities ppartial  and

pfull  above we must have 

pI + (1 − pI) pI~  =  p
full

 = pI~  + (1 − pI~)pI                                 (31a)

pI = p
partial

(γ, p
full

)   and    pI~  = p
partial

(1 − γ, p
full

).     (31b) 

The first equality in Eq. (31a) reflects the following: The fraction of experimental trials in 

which a disruption takes place in sj
n—namely pfull—is equal to the fraction of trials in which 

the outcome is I—namely pI—plus the fraction of trials in which the outcome is not I but 

is I ~—namely (1 − pI) pI~ ; further, as expressed by the second equality in Eq. (31a), this

sum is invariant under the interchange of I and I ~.  We will use this reasoning again in 

the sequel.  Continuing, we use Eqs. (29) and (30) in conjunction with Eqs. (31) to find 
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G(γ, p
full

) + G(1 − γ, p
full

) − p
full

 G(γ, p
full

)G(1 − γ, p
full

) = 1.  (32) 

Abbreviating p ≡ pfull , we thus seek solutions G : [0, 1]2 → [0, 1] of

 G(γ, p) + G(1 − γ, p) − p G(γ, p)G(1 − γ, p)  = 1       (33) 

for all γ, p ∈ [0, 1], subject to the conditions of Eq. (25), namely, 

      (∀p ∈ [0, 1])(G(0, p) = 0 and G(1, p) = 1).        (34)     

Note that Eq. (33) demands that 

 pG2(½, p) − 2G(½, p) + 1 = 0      (35) 

for all p ∈ [0, 1] and that this equation has one and only one of its solutions for G  having 

value in [0,1], namely the solution     

[1 − (1 − p)1/2] /p       if p ∈ (0, 1]
g

½
(p) ≡      (36) 

    ½       if p = 0. 

We now exhibit a solution to Eqs. (33) + (34). (This solution is not unique—this will 

become evident shortly.)   We have 

[1 − (1 − p)δ] /p       if p ∈ (0, 1)  &  δ ∈ [0, 1]

 δ          if p = 0  &  δ ∈ [0, 1] 
   G(δ, p) =       (37) 

 0  if p = 1  &  δ = 0 

 1    if p = 1  &  δ ∈ (0, 1] 

where we substitute δ = γ or δ = 1 − γ as applicable. (Eq. (37) may be written more 

succinctly but for clarity we have chosen not to do so.) Using Eq. (34) along with the 

observation that (∂G/∂δ)(δ, p) > 0 for p ∈ (0, 1) and δ ∈ [0, 1], we see that indeed G(δ, p) 
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∈ [0, 1] in [0, 1]2.  Further, G(δ, p) is continuous in [0, 1]2\{<0, 1>} in each of its variables 

(we use the notation 〈 , 〉 for ordered pair) since for all δ ∈ [0, 1] we have 

limp→0+ {[1 − (1 − p)δ] /p} = δ = G(δ, 0) and

 0   if  δ = 0 
limp→1− {[1 − (1 − p)δ] /p} =    =  G(δ, 1)    (38) 

 1   if  δ ∈ (0, 1] 

while, on the other hand, limδ→0+ G(δ, 1) = 1 ≠ G(0, 1). The expression for ppartial  resulting

via Eq. (29) from G given in Eq. (37), this former equation now being properly and 

completely rewritten (in view of Eq. (22), hence Eq. (28)) as  

pj
n
, partial(γn(T0, Tf ), pj

n
, full) = G(γn(T0, Tf ), pj

0
, full) pj

0
, full ,    (39) 

is 
1 − (1 − pj

0
, full)

γn  if pj
0
, full ∈ [0, 1)  &  γn ∈ [0, 1]  

pj
n
, partial(γn(T0, Tf ), pj

n
, full) =  0        if pj

0
, full = 1  &  γn = 0        (40)  

  1  if pj
0
, full = 1  &  γn ∈ (0, 1]     

for j = 1,…, 8 and n = 0,…, N − 1. 

We now comment on our choice of solution G(δ, p) for p = 0 and p = 1.  Our choice of 

solution G(δ, p) for p = 0 was guided by the mathematical considerations of preserving (a) 

the continuity of G in p at p = 0 for each δ ∈ [0, 1] as well as ensuring (b) the continuity of 

G(δ, 0) in [0, 1], and was reinforced by the circumstance that this choice causes no 

conceptual difficulties: it maintains ppartial (γ, pfull) = 0 for all γ ∈ [0, 1] when pfull = 0.  Indeed,

there are other choices for the solution G(δ, 0) which also cause no conceptual difficulties 

in the above sense and which maintain the continuity in (b) above  but which destroy the 

continuity in (a) above. An example of this (and there are many others) follows by setting 

G(δ, 0) = Hα (δ) where, for any fixed α ∈ [0, ½), Hα  is the continuous function in [0, 1] 

given by  
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         0         if  δ ∈ [0, α)            

       Hα (δ) =       (δ − α)/(1 − 2α)         if δ ∈ [α,1 − α]              (41)    

    1    if  δ ∈ (1 − α, 1].    
Of course the solution to Eqs. (33) + (34) given by modifying the second line of Eq. (37) 

to G(δ, 0) = Hα (δ) lacks the continuity of G in p at p = 0 for all δ ∈ [0, ½) ∪ (½, 1]. In any 

case, our actual choice of G(δ, p) for p = 0 is the simplest one, hence (for us) the most 

natural.  

Our choice of solution G(δ, p) for p = 1 was also guided by the consideration of preserving 

the continuity of G in p at p = 1 for each δ ∈ [0, 1],  but this choice necessarily leaves G(δ, 

1) discontinuous at δ = 0 (see Eq. (38)).  More seriously, this choice for G(δ, 1) implies

that ppartial (γ, pfull) = pfull  for all γ ∈ (0, 1] when pfull = 1; but it is not at all clear that this state-

of-affairs is not physically valid, as follows. We observe that governing Eq. (33), which is 

based upon the eminently reasonable Eq. (31a), becomes, when p = 1 (= pfull ),  

 G(γ, 1) + G(1 − γ, 1) − G(γ, 1)G(1 − γ, 1) = 1.                             (42) 

If we now set x = G(γ, 1) and y = G(1 − γ, 1) and consider the function f(x, y) = x + y − xy 

for 〈x, y〉 ∈ [0, 1] 2, it is straightforward  to see that 0 ≤ f(x, y) ≤ 1 and that  f(x, y) = 1 iff 〈x, 

y〉 ∈ ({1} x [0,1]) ∪ ([0,1] x {1}).  In other words, to satisfy Eq. (42) we must have, for any 

γ, either G(γ, 1) = 1 & G(1 − γ, 1) ∈ [0, 1] ,  or G(1 − γ, 1) = 1 and G(γ, 1) ∈ [0, 1] ; i.e., 

either  ppartial (γ, 1) = G(γ, 1) • 1 = 1 & ppartial (1 − γ, 1) = G(1 − γ, 1) • 1 ∈ [0, 1] , or  ppartial (1 − 

γ, 1) = 1 & ppartial (γ, 1) ∈ [0, 1]—there is no way to satisfy Eq. (42) with both ppartial (γ, 1) 

and ppartial (1 − γ, 1) being less than 1.  So, if we accept that G(γ, 1) is non-decreasing in 

γ—as assumed following Eq. (24)—then we must have G(γ, 1) = 1 for γ ∈ [½, 1]. 

Alternatively, we observe from Eq. (34) that we must have G(0, 1) = 0 and 
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G(1, 1) = 1, and from Eq. (36) that we must have G(½, 1) = 1, so the requirement that 

G(γ, p) be nondecreasing in γ for all p ∈ [0, 1] then dictates that G(γ, 1) = 1 for γ ∈ [½, 1]. 

So at least for γ ∈ [½, 1] it must hold that ppartial (γ, pfull) = G(γ, pfull) pfull = G(γ, 1)•1 = 1.

We have just seen that G(δ, 1) = 1 for δ ∈ [½, 1].  We next consider δ ∈ (0, ½).  For such 

δ we have chosen G(δ, 1) = 1 as well, which choice implies the above behavior as well 

for γ ∈ (0, ½), namely ppartial (γ, pfull) = 1. This behavior is perhaps now—in light of the

previous argument for γ ∈ [½, 1]—at least plausible. It is nevertheless worthwhile to 

explore the alternatives to our choice of G(δ, 1). We categorize the possibilities as follows: 

either G(• ,1) is not continuous in(0, 1] or G(• ,1) is continuous in (0, 1]. In the first case, 

one such family of solutions for G(δ, 1) is given by setting G(δ, 1) = Jα (δ) where, for any 

fixed α ∈ [0, ½), Jα  is the function given by 

 0   if  δ ∈ [0, α) 
 Jα (δ) =               (43) 

 1   if  δ ∈ [α, 1] 

and therefore 
 0   if  γ ∈ [0, α) 

pJα
partial

(γ, 1) =    (44) 

 1   if  γ ∈ [α, 1]. 

This solution  pJα
partial

(γ, 1) exhibits a threshold behavior : If γ < α then pJα
partial (γ, 1) = 0 while

if γ ≥ α then pJα
partial (γ, 1) = pfull.  The validity or non-validity of this behavior—and

consequent appropriateness of this solution—may easily be determined experimentally. 

In the second case, in which G(• ,1) is continuous in (0, 1], it turns out that in fact the only 

solution for G(• ,1) is the one we have already chosen in Eq. (37). We now demonstrate 

this claim; namely: 

 Let G(δ, 1) satisfy Eq. (42) with G(0 ,1) = 0 and G(1 ,1) = 1 and let G(• ,1) be 

 non-decreasing in [0, 1] and continuous in (0, 1];  further, let G(δ, 1) = 1 for       (*) 
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       δ ∈ [½, 1]. Then G(δ, 1) = 1 for δ ∈ (0,1]. 

To prove this result (*) we first make explicit a natural extension of Eq. (29) from basic 

time segments to any subinterval of a basic time segment, to wit: 

          If B ≡ [nτc,1/2, (n +1)τc,1/2) is any basic time segment having associated 

          probability pfull ≡ pfull(B) and if intervals J ′ and J are such that J ′ ⊆ J ⊆ B, 

          with γ′ = Length {J ′}/τc,1/2 and γ = Length {J }/τc,1/2 and pfull[γ] ≡ ppartial (γ, pfull(B)), 

          then we take 

                                          ppartial (γ′, pfull(B)) = ppartial (γ′/γ, pfull[γ])                                    (45) 

          since the argument γ′ inside the ppartial on the LHS of Eq. (45) refers to a 

          sub-interval of B of length γ′τc,1/2 and the argument γ′/γ inside the ppartial  

          on the RHS of Eq. (45) refers to a subinterval of B of length (γ′/γ)•γτc,1/2 = 

         γ′τc,1/2 as well. Further, we take 

   ppartial (γ′/γ, pfull[γ]) = G(γ′/γ, pfull[γ])pfull[γ].                     (46) 

The proof of (*) is now as follows. Let ∆ ≡ { δ ∈ (0, ½]  G(δ, 1) = 1 }; then ½ ∈ ∆ and, 

denoting δ* ≡ inf ∆, then δ* ∈ [0, ½].  Now (δ*, ½] ⊆ ∆
(†)

: If not then 

(∃δ# ∈ (δ*, ½])(G(δ#, 1) < 1)
(††)

 so that (∀δ ∈ ∆)(δ# < δ)
(†††)

 [for if not (†††) then 

(∃δ ∈ ∆)(δ# ≥ δ) so that G(δ#, 1) ≥ G(δ, 1) = 1, a contradiction of (††)]; hence, by (†††), δ# 

is a lower bound for ∆ and therefore δ* ≥ δ# > 0, a contradiction of δ# > δ* in (††). Now if 

δ* = 0 then we are done since in that case we have by (†) that ∆ ⊆ (0, ½], hence ∆ = (0, 

½]. So suppose that δ* > 0.  Since G(• ,1) is continuous in (0, 1]  then G(δ*, 1) = limδ→(δ* )+ 

G(δ, 1) = 1, since (∀δ > δ*)(G(δ, 1) = 1 by (†);  so ppartial (δ*, pfull) = G(δ*, 1) pfull = 

1•1 = 1.  Denote pfull[δ*] ≡ ppartial (δ*, pfull) so that pfull[δ*] = 1. Now δ*/2 > 0 and 

   G(δ*/2, 1) = G(δ*/2, 1) • 1 = G(δ*/2, pfull) pfull = ppartial (δ*/2, pfull) = ppartial ((δ*/2)/δ*, pfull[δ*]) 
  (47) 
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        = ppartial (1/2, pfull[δ*]) = G(½, pfull[δ*])pfull[δ*] = G(½, 1) • 1 = G(½, 1) = 1         

since ½ ∈ ∆, where the fourth equality in Eq. (47) follows from Eq. (45) with γ′ = δ*/2 and 

γ = δ* while the fifth equality in Eq. (47) follows from Eq. (46).  Now from Eq. (47) we see 

that δ*/2 ∈ ∆; but since δ*/2 < δ* then δ* ≠ inf ∆, a contradiction. So it is not true that 

δ* > 0 and we are done.♦ 

Finally, another more global example of an alternative solution to Eqs. (33) + (34), along 

the lines of the discontinuous solution G(δ, 1) presented in Eq. (43), is: 

 0  if   δ ∈ [0, ½) 

      G(δ, p)  =       g½(p)     if   δ = ½    (p ∈ [0, 1]).   (48) 

 1  if   δ ∈ (½, 1] 

Using G(δ, p) we have, for all pfull  ∈ [0, 1], 

 0       if   γ ∈ [0, ½) 

p*
partial

(γ, p
full

) = g
½

( p
full

) p
full

   if   γ = ½         (49) 

p
full

 if   γ ∈ (½, 1]. 

The question arises as to where the basic pj
n
, full[VEM, ω]′s are to come from: At this point 

they must be obtained externally to our model. They may be obtained experimentally or 

predicted via additional modeling which has to date not yet been accomplished. However, 

once these pj
n
, full[VEM, ω]′s are available, then the pj

n
, partial[VEM, ω]′s may be computed via 

Eq. (40).   

IV.2. Individual ½-Period-Segmented SPT Elements: Indirect Probability Assignment 

As mentioned previously in Section III.1, we feel that the primitive SPT elements are the 

natural entities to which disruptive deviation probabilities should be assigned; disruptive 

deviation probabilities for the ½-period-segmented SPT elements may then be computed 

from these. In this section we present this approach. An additional benefit of this approach 

is that it allows us to overcome the objection (alluded to parenthetically following Eq. (25)) 

that the formulation of Eqs. (24) and (28) for p
partial

(and its elaboration in Eq. (39)) fails to
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take into account that the ½-period-segmented SPT elements sj
n have—except for j =1, 

5—internal structure (Eqs. (2) – (9)) and therefore 

pj
n
, partial  should be based not merely upon a single γn for the entire time segment but rather 

upon as many γn′s for the segment as there are segment features. For example, s4
n should 

use three γn′s—one each for the rising, constant, and falling time sub-segments—to 

compute its pj
n
, partial in accordance with whether the partial overlap of πEM[T0, Tf , VEM, ω] 

with s4
n occurs during the rising portion, the constant portion, or the falling portion of that 

segment or, more generally, during some combination of two or three of these. We 

present these enhanced results as well. 

The reader may, upon first reading of this paper, skip the details in the present section 

and safely move on to Section IV.3; for all that is necessary to proceed thereto is that 

each ½-period-segmented SPT element have a πEM-dependent disruptive deviation 

probability assigned to it and that has been already been accomplished via Eqs. (22) and 

(40). 

IV.2.1. ½-Period-Segmented SPT Elements from Primitive SPT Elements 

In this section, we derive expressions for the ½-period-segmented SPT elements in terms 

of the primitive SPT elements.  It is sufficient to consider in detail only the zeroth ½-period-

segmented SPT elements sj
0 ; results for sj

n , n = 1,…, N − 1, then follow immediately from 

Eqs. (11) and (22).   

Consider firstly the four basic primitive SPT element types (A, B C, D), which we label by 

σν, ν = A, B, C, D, and which are given specifically by 

                                          σA(t) = Vπ , high            t ∈ [0, τc,1/2)                                        (50) 

                                          σB(t) = Vπ , low             t ∈ [0, τc,1/2)                                        (51) 

                               σC(t) = (∆Vπ /ατc) t + Vπ , mid              t ∈ [−ατc,1/2, ατc,1/2)                  (52) 

                               σD(t) =  − (∆Vπ /βτc) t  + Vπ , mid         t ∈ [−βτc,1/2, βτc,1/2).                  (53) 

Approved for public release: distribution unlimited.



35 

 

A glance at Fig. 2 depicting the sj
0 ′s reveals that each sj

0  consists of portions of—but not 

the entirety of (except in the cases of s1
0  and s5

0 )—several σν′s. These portions, which we 

refer to as partial primitive SPT elements, are as follows:  

                                                    σA+ ≡  σA
 \ [ατc,1/2, τc,1/2)                                              (54) 

σA− ≡  σA
 \ [0, (1 − β)τc,1/2)                                            (55)  

                                               σA± ≡  σA
 \ [ατc,1/2,  (1 − β)τc,1/2)                                       (56)  

                                                    σB+ ≡  σB
 \ [βτc,1/2, τc,1/2)                                              (57) 

σB− ≡  σB
 \ [0, (1 − α)τc,1/2)                                            (58)  

                                               σB± ≡  σB
 \ [βτc,1/2,  (1 − α)τc,1/2)                                       (59)  

                                                        σC+ ≡ σC
 \ [0, ατc,1/2)                                                (60) 

                                                      σ̂C− ≡ σC
 \ [−ατc,1/2, 0)                                                (61) 

                                                       σD+ ≡ σD
 \ [0, βτc,1/2)                                                 (62) 

                                                     σ̂D− ≡ σD
 \ [−βτc,1/2, 0);                                                (63) 

further, it is not σ̂C− and σ̂D− that are directly needed but rather their time translates 

                                σC−(t) = σ̂C− (t − τc,1/2)          t ∈ [(1 − α)τc,1/2, τc,1/2)                         (64) 

and 

                                σD−(t) = σ̂D− (t − τc,1/2)          t ∈ [(1 − β)τc,1/2, τc,1/2).                        (65) 

We denote by σµ, µ ∈ {A+, A−, A±, B+, B−, B±, C+, C−, D+, D−} ≡ M , any of the various 

partial primitive SPT elements indicated in Eqs. (54) – (65) (but not in Eqs. (61) and (63)) 

and, further, by Iµ the respective restriction interval associated with σµ (e.g., I C− = [(1 − 

α)τc,1/2, τc,1/2)).  We have written the σµ′s in the above as restrictions to subintervals of the 

full domains of definition of the basic primitive SPT elements in order to emphasize that 

the disruptive deviation probabilities to be assigned, in the next subsection, to the σµ′s for 

µ ∈ M  are in fact ppartial (γ, pfull)′s in the sense of the previous subsection, where pfull is that 

of the “parent” basic primitive SPT element σν(µ) of σµ (e.g., σA is the parent of each of 
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σA+, σA−, and σA± so that if µ = A+, A− or A± then ν(µ) = A) and γ is the relative fractional 

length given by 

                                   γ = γ~µ ≡ Length{Iµ} /Length{“parent” σν(µ)}.                                 (66) 

In this connection, we also observe that if we denote σ*C(t) ≡ σC(t − τc,1/2) for t ∈ 

[(1 − α)τc,1/2, (1 + α)τc,1/2), and σ*D(t) ≡ σD(t − τc,1/2) for t ∈ [(1 − β)τc,1/2, (1 + β)τc,1/2), then in 

terms of these time translates we have 

           σC−  = σ*C \ [(1 − α)τc,1/2, τc,1/2)          and       σD−  =  σ*D \ [(1 − β)τc,1/2, τc,1/2).         (67)             

This observation will be relevant in assigning, in the next subsection, disruptive deviation 

probabilities to σC−  and σD− , for we will continue to assume for primitive SPT elements 

(both full and partial)—as we have previously assumed for ½-period-segmented SPT 

elements (see Eq. (22))—the property of time translation invariance (or what we have 

previously termed “modularity”) of disruption probabilities. 

We denote by σµ
0 the extension of σµ to [0, τc,1/2), i.e.,  

                                                    σµ(t)     if t ∈ Iµ                                          
                                   σµ

0(t) ≡                                                     (µ ∈ M )                      (68) 
                                                     0         if t ∈ [0, TE) \ Iµ. 

Since σA and σB in their entirety are required to construct ½-period-segmented SPT 

elements s1
0  and s5

0 , we also allow the index µ to take on values A and B (but not C or 

D), with IA = [0, τc,1/2) = IB; and we write M + ≡ M  ∪ {A, B}. Thus the specification 

µ ∈ M  in Eq. (68) is to be replaced by µ ∈ M +.  Note that σA
0 = σA and σB

0 = σB. 

At this stage, all ½-period-segmented SPT elements in [0, τc,1/2) may be constructed as 

sums of the (full or partial) primitive SPT elements of Eq. (68) (with µ ∈ M +).  To wit, for 

all t ∈ [0, τc,1/2) we have: 

            s1
0 = σA

0            s2
0 = σC

0
+ + σA

0
+           s3

0 = σA
0
− + σD

0
−           s4

0 = σC
0
+ + σA

0
± + σD

0
− 

                                                                                                                                     (69) 
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            s5
0 = σB

0           s6
0 =  σD

0
+ + σB

0
+          s7

0 = σB
0
− + σC

0
−            s8

0 = σD
0
+ + σB

0
± + σC

0
− . 

We  denote, for j = 1, …, 8,  

                         M
+

j
0 ≡ {µ ∈ M +

σµ
0 occurs in the sum for sj

0}                            (70) 

so, for example, M
+

j
0 = { A±, C+, D−}; also 

                                              sj
0 = ∑µ∈M+

j
0  σµ

0.                                                     (71) 

IV.2.2. Primitive SPT Element Disruptive Deviation Probabilities  

We next compute disruptive deviation probabilities for the partial primitive SPT elements 

based upon disruptive deviation probabilities for the basic primitive SPT elements. 

To begin, we denote by pν, full[VEM, ω], ν = A, B, C, D, the probability that basic SPT element 

σν suffers a disruptive deviation when it, or a time translate of it, occurs as part of an N-

element SPT and when, in addition, it is fully encompassed by some 

πEM[T0, Tf , VEM, ω].  As previously assumed for ½-period-segmented SPT elements, we 

again assume modularity for these basic primitive SPT elements: The probability of a 

disruptive deviation of each one of the four basic SPT  primitive elements is independent 

of where that primitive element occurs in the N-element SPT, as long as that primitive 

element is completely encompassed by πEM.  And once again, the 

pν, full [VEM, ω]′s must be obtained externally and made available to our model; but note 

that  

          p
A, full

[VEM, ω] = p
1
0
, full[VEM, ω]            and            p

B, full
[VEM, ω] = p

5
0
, full

[VEM, ω].    (72) 

Also, consistently with our previous notational convention, we denote for convenience  p
A
0
, 

full
[VEM, ω] ≡ p

A, full
[VEM, ω] and p

B
0
, full

[VEM, ω] ≡ p
B, full

[VEM, ω]. 

In addition to the four probabilities pν, full[VEM, ω] above, we also need expressions for the 

disruptive deviation probabilities, pµ
0
 [VEM, ω], of the σµ

0 , µ ∈ M . Consider first µ = A+: Since 

the parent of σA+ is σA then from Eq. (66) we have γ~A+ = 1 − α, thus, using Eq. (40), 
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  p
A
0
+
[VEM, ω] = ppartial (1 − α, p

A
0
, full) = 1 − (1 − p

A
0
, full)

1 − α   for p
A
0
, full ∈ [0, 1]  &  α ∈ (0, 1)   

                                                                                  (73)   

(where we have taken into account that α = 0, 1 is precluded by our initial definition [in 

Section III.1] of the type-C SPT primitive element). Similarly, we have γ~A− = 1 − β and 

  

 p
A
0
−[VEM, ω] =  ppartial (1 − β, p

A
0
, full) = 1 − (1 − p

A
0
, full)

1 − β   for p
A
0
, full ∈ [0, 1]  &  β ∈ (0, 1) 

                                          (74) 

(also where β = 0, 1 was precluded earlier).  Next we have γ~A± = 1 − (α + β) and 

                    p
A
0
±[VEM, ω] = ppartial

(1 − (α + β), p
A
0
, full) = 1 − (1 − p

A
0
, full)

1 − (α + β)    

                      for p
A
0
, full ∈ [0, 1]  &  α + β ∈ (0, 1)                                                        (75) 

(since α + β = 0, 1 has also been precluded previously). The expressions for p
B
0
+
[VEM, ω], 

p
B
0
−[VEM, ω], and p

B
0
±[VEM, ω] follow directly from those for  p

A
0
+
[VEM, ω], p

A
0
−[VEM, ω], and 

p
A
0
±[VEM, ω], respectively, via the replacement everywhere in the latter three expressions 

of pA, full by pB, full as well as the interchange everywhere of α and β since γ~B+ = 1 − β, γ~B− 

= 1 − α, and γ~B± = 1 − (α + β).  Finally, since γ~C+ = ½ = γ~C−, with the parents of σC+ and σC− 

being σC or time translate σ*C respectively; and γ~D+ = ½ = γ~D−, with parents of σD+ and σD− 

being σD or σ*D respectively; then we have from Eq. (40) that  

                                 pC
0
+
[VEM, ω] = pC

0
−[VEM, ω] = 1 − (1 − pC, full)

1/2 if pC, full  ∈ [0, 1],  
(76)                                                                                                 

                                p
D
0
+
[VEM, ω] = p

D
0
−[VEM, ω] = 1 − (1 − p

D, full)
1/2 if p

D, full  ∈ [0, 1]. 

The computation of the disruptive deviation probabilities for the partial primitive SPT 

elements is now complete.  

IV.2.3. ½-Period-Segmented SPT Disruptive Deviation Probabilities: Full Overlap 

           of πEM and sj
n 
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We now compute the disruptive deviation probabilities, pj
0
, full[VEM, ω],  j = 1, …, 8, for the  

½-period-segmented SPT elements, sj
0, using the disruptive deviation probabilities 

pµ
0[VEM, ω], µ ∈ M +, of the primitive SPT elements σµ

0, µ ∈ M +, under the condition, as in 

Section IV.1.1, that there is full overlap of πEM and sj
0. We suppress the argument 

[VEM, ω] of pµ
0. Using Eq. (69) along with reasoning analogous to that presented directly 

following Eqs. (31) we find 

                                                            p1
0
, full = p

A
0
, full

                                                     (77) 

                                                  p2
0
, full =  p

C
0
+
+ (1 − p

C
0
+
) p

A
0
+
                                           (78) 

                                                  p3
0
, full = p

A
0
− + (1 − p

A
0
−) pD

0
−                                           (79) 

                                p4
0
, full = pC

0
++ (1 − pC

0
+) pA

0
± + (1 − pC

0
+)(1 − p

A
0
±) pD

0
−                         (80) 

                                                          p5
0
, full = pB

0
, full                                                       (81) 

                                                 p6
0
, full = p

D
0
+
 + (1 − p

D
0
+
) p

B
0
+
                                            (82) 

                                                p7
0
, full = p

B
0
− + (1 − p

B
0
−) pC

0
−                                             (83) 

                               p8
0
, full = p

D
0
+
 + (1 − p

D
0
+
) p

B
0
± + (1 − p

D
0
+
)(1 − p

B
0
±)pC

0
−                          (84) 

 
 
IV.2.4. ½-Period-Segmented SPT Disruptive Deviation Probabilities: Partial 

           Overlap of πEM  and sj
n 

Finally, we compute the disruptive deviation probabilities, pj
0
, partial [VEM, ω], j = 1, …, 8, for 

the ½-period-segmented SPT elements sj
0, using the disruptive deviation probabilities, 

pµ
0[VEM, ω], µ ∈ M +, of the primitive SPT elements σµ

0, µ ∈ M +, under the condition, as in 

Section IV.1.2, that there is partial overlap of πEM[T0, Tf , VEM, ω] and sj
0.  We first define 

(see Eq. (23)), for µ ∈ M ,  

                                   γ0, µ(T0, Tf ) ≡ Length {[T0, Tf ) ∩ Iµ}/Length {Iµ}.                           (85) 
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Then—still using the assumption that p
partial

 depends only upon γ (however, see below)—

we have 

p1
0
, partial  =  p

partial
(γ0, A, p

A
0
, full

)     (86) 

p2
0
, partial  =  p

partial
(γ0, C+, pC

0
+
) + [1 − p

partial
(γ0, C+, pC

0
+
)] p

partial
(γ0, A+, pA

0
+
)    (87) 

p3
0
, partial  =  p

partial
(γ0, A−, pA

0
−
) + [1 − p

partial
(γ0, A−, pA

0
−
)] p

partial
(γ0, D−, pD

0
−
)      (88) 

p4
0
, partial  =  p

partial
(γ0, C+, pC

0
+
) + [1 − p

partial
(γ0, C+, pC

0
+
)] p

partial
(γ0, A±, pA

0
±) 

(89) 
+ [1 − p

partial
(γ0, C+, pC

0
+
)] [1 − p

partial
 (γ0, A±, pA

0
±)] ppartial

(γ0, D−, pD
0
−)

p5
0
, partial  =  p

partial
(γ0, B, p

B
0
, full

)     (90) 

p6
0
, partial  =  p

partial
(γ0, D+, pD

0
+
) + [1 − p

partial
(γ0, D+, pD

0
+
)] p

partial
(γ0, B+, pB

0
+
)      (91) 

p7
0
, partial  = p

partial
(γ0, B−, pB

0
−
) + [1 − p

partial
(γ0, B−, pB

0
−
)] p

partial
(γ0, C−, pC

0
−
)  (92) 

p8
0
, partial  =  p

partial
(γ0, D+, pD

0
+
) + [1 − p

partial
(γ0, D+, pD

0
+
)] p

partial
(γ0, B±, pB

0
±)

(93) 
+ [1 − p

partial
(γ0, D+, pD

0
+
)] [1 − p

partial
 (γ0, B±, pB

0
±)] ppartial

(γ0, C−, pC
0
−).

In summary, we have computed, for j = 1, …, 8, both pj
0
, full[VEM, ω]—via Eqs. (77) through 

(84)—and pj
0
, partial [VEM, ω; {γ0, µ(T0, Tf )}µ∈M+

j
0 ]—via Eqs. (86) through (93)—from basic

primitive SPT elements σν, ν = A, B, C, D, with the aid of the intermediary partial primitive 

SPT element disruptive deviation probabilities pµ
0
 [VEM, ω], µ ∈ M .  

The assumption that ppartial (γ0, µ, pµ
0
, full) depends only upon its two listed arguments may

be simplistic in principle in case µ = C+, C−, D+, D− since—on the one hand—it is 

reasonable to conjecture that the (notationally suppressed) voltage dependencies of the 

various p
partial

′s (as well as of the various p
full
′s) are functions of the ratio VEM /Vsignal pulse
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and—on the other hand—it is the case that the partial primitive SPT elements associated 

with the above four µ′s do not have constant-in-time signal voltage levels. Indeed, for 

each of these four partial primitive SPT elements, the Vsignal pulse voltage range 

encompassed during any sub-intervals thereof depends not only upon the length γ0, µ(T0, 

Tf ) of the sub-interval but also upon the position of that sub-interval within the element. 

Since differing such intervals may be completely characterized, hence distinguished, by 

giving—in addition to their length—also the location of the interval’s center point, say τ0, 

µ(T0, Tf ) ≡ Midpoint of {[T0, Tf ) ∩ Iµ}, then τ0, µ may augment the argument list of ppartial (γ0, 

µ, pµ
0
, full) to yield p#

partial (γ0, µ, pµ
0
, full) and thus provide an “anchor” to specify interval-location- 

dependent quantities, e.g., VEM /Vsignal pulse at τ0, µ, upon which p#
partial  may be declared to 

depend in some model; of course this dependence must further be specified. Eqs. (87) – 

(89) and (91) – (93) may then be modified by replacing, on their RHS′s, ppartial (γ0, µ, pµ
0
, full), 

µ = C+, C−, D+, D−, with p#
partial (γ0, µ, pµ

0
, full).  We will not pursue this refinement further in 

this paper and take Eqs. (86) – (93) as they stand as our model for pj
0
, partial [VEM, ω], j = 1, 

…, 8. 

IV.3. Arbitrary N-element SPT  
In the previous sections we have shown how to build an N-segment SPT from ½-period-

segmented SPT elements and, further, how to assign (in two ways) disruptive deviation 

probabilities to these elements. We now combine these two to compute the disruptive 

deviation probability for the entire idealized, normal, N-segment SPT πN. To this end, and 

with notation as in Section III, fix πEM[T0, Tf , VEM, ω] and consider any 

πN [ j0, j1,…, jN − 1] ∈ Π N
N [0, TE], with jn ∈ {1,…,8} for n = 0,…, N − 1, and write 

πN = ∑ n
N

=
−
0
1 sj

n
n
 with (∀n = 0, …, N − 1)(<  jn, jn + 1 > ∈ J+) as in Eq. (14).  Now consider the 

following conceptual random experiment: At t = 0, irradiate with πEM a single signal line 

carrying πN and observe the first time segment in which a disruptive deviation of the 

SPT—via disruptive deviation of its ½-period-segmented SPT element in that time 
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segment—takes place (which disruptive deviation can be identified by the mal-execution 

of the µC task, Ta, that is executing and to which πN belongs).  In this situation, it is not all 

of πN that is of interest but rather πN \ πN ∩ πEM . The possible outcomes of the random 

experiment can be given by the members of the set    

                     Ω
N
[T0, Tf ) ≡ { nmin[T0, Tf ], nmin+ 1,…, nmax− 1, nmax[T0, Tf ], nmax+ 1},              (94)    

with the outcome “n” representing the situation, when n ≤ nmax, that the first time segment 

in which a disruptive deviation of the SPT takes place is n and with the outcome “nmax+ 

1” representing the situation in which no disruptive deviation takes place in any time 

segment occurring during [T0, Tf ). The set of events associated with ΩN
[T0, Tf ) is of course 

taken to be 2ΩN
[T0, Tf )

 (the power set of ΩN
[T0, Tf )).  We now specify a probability measure, 

denoted P N
[T0, Tf ), on (ΩN

[T0, Tf ), 2Ω N
[T0, Tf )

). First we take, for n = nmin,…, nmax, 

                    P N
[T0, Tf )({n}) =  pj

n
n
[VEM, ω; T0, Tf ] •∏q

n
=
−
n
1

min
(1 − pj

q
q
 [VEM, ω; T0, Tf ])              (95) 

where 

                                                       pj
r
, full[VEM, ω]                if r = nmin+ 1,…, nmax− 1                                           

             pj
r [VEM, ω; T0, Tf ] =                                                                                           (96) 

                                                 pj
r
, partial[VEM, ω; T0, Tf ]         if r = nmin  or nmax 

and possibly pj
r
, partial[VEM, ω; T0, Tf ] = pj

r
, full[VEM, ω] when r = nmin  or nmax; clearly,  

0 ≤ P N
[T0, Tf )({n}) ≤ 1. Note that pj

r
, partial may be that from either of the two alternative 

formulations given in Section IV.2. It is straightforward to show that 

                                ∑ q 
n
=
m
n 
a
m 
x
i n    

  P N
[T0, Tf )({n}) = 1 − ∏q 

n
=
m
n 
a
m 
x
i n    

  (1 − pj
q
q
) ≤ 1                            (97) 

and we therefore have 

                                         P N
[T0, Tf ) ({nmax+ 1}) = ∏  q 

n
=
m
n 
a
m 
x
i n    

  (1 − pj
q
q
),                                 (98) 
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as expected. Since {{n}} n 
n
=
m
n 
a
m 
x
i n 

+1
 is a partition of Ω

N
[T0, Tf ) we may then extend P N

[T0, Tf ) to all

of 2ΩN
[T0, Tf )

by P N
[T0, Tf )(A) = ∑ n ∈ A P N

[T0, Tf )({n}) for A ∈ 2Ω N
[T0, Tf )

; then P N
[T0, Tf ), being manifestly 

countably additive, is thus a probability measure. Our probability space for observing the 

occurrence of a disruptive deviation induced by πEM[T0, Tf , VEM, ω] upon a single signal 

line carrying a specific but arbitrary πN[ j0, j1,…, jN − 1] \ π
N ∩ πEM  ∈ 

Π N
N [0, TE] \ πN ∩ πEM is then (ΩN

[T0, Tf ), 2Ω N
[T0, Tf )

, PN
[T0, Tf )), where we have denoted by 

Π N
N [0, TE] \ πN ∩ πEM   the set 

  Π N
N [0, TE]\ πN ∩ πEM  ≡ {πN \  πN ∩ πEM πN ∈ Π N

N [0, TE]}.           (99) 

The event “SPT πN suffers a disruptive deviation” is ED, D = Ω
N
[T0, Tf ) \ { nmax+ 1} with, 

according to Eq. (98), 

P N
[T0, Tf ) (ED, D) = 1 − ∏  q 

n
=
m
n 
a
m 
x
i n    

  (1 − pj
q
q
 [VEM, ω; T0, Tf ]) ≤ 1.   (100) 

This is our desired final expression for the probability P N
[T0, Tf ) (ED, D) that SPT πN suffers a 

disruptive deviation when subject to πEM. 

It is interesting to observe that the result given in Eq. (100) can be obtained in an 

alternative fashion using an (nmax − nmin + 1)-factor product space formulation in which a 

factor in the product appears for each of the (nmax − nmin + 1) ½-period-segmented 

elements of the SPT πN restricted to πN ∩ πEM  and in which the two possible outcomes 

achievable for each individual ½-period-segmented element—a disruptive deviation of 

that element occurs or no disruptive deviation of that element occurs—are taken to be 

independent between elements. That is, if for n = nmin,…, nmax we take On = {d, ~d}, where 

d is the outcome for sj
n
n
 that sj

n
n
  suffers a disruptive deviation, with Pn({d}) = pj

n
n
, and

Pn({~d}) = 1 − pj
n
n
, and set
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                                                       O
 N
[T0, Tf ) ≡ X n 

n
=
m
n 
a
m 
x
i n    

  On                                              (101) 

and 

                            P
 N
[T0, Tf )(Xn 

n
=
m
n 
a
m 
x
i n    

  An) = X n
n
=
m
n 
a
m 
x
i n    

  Pn(An)    for   An ∈ 2On,                      (102) 

then in this setting the event “SPT πN does not suffer a disruptive deviation” is given by 

E~(D, D) ≡ {<~d, ~d, …, ~d>} ∈ 2ON
[T0, Tf )

 with probability P N
[T0, Tf )(E~(D, D)) = ∏q 

n
=
m
n 
a
m 
x
i n  

(1 − pj
q
q
), 

which probability is consistent with the result in Eq. (100). More generally, the event {n} 

in the first formulation corresponds to the event of the second formulation given by 

      E(D, D), n ≡ {<~d,…, ~ d, d, o,…, o > ∈ O
 N
[T0, Tf )~d occurs in the first n − 1 entries 

                 & o  ∈ {d, ~d}} 

                  = (Xq
n

=
−
n
1

min
 {~d}) x {d} x (X  q

N
= n + 1 Oq);                                                        (103) 

hence,      

          P N
[T0, Tf )(E(D, D), n) = (∏q

n
=
−
n
1

min
 [1 − pj

q
q
]) • pj

n
n
 • (∏  q

N
= n + 1 1) = P N

[T0, Tf )({n}),              (104) 

where the final equality follows from Eq. (95).  

The reason we have not used this second, product space formulation is because many 

of the outcomes in O
 N
[T0, Tf ) are not appropriate for our physical context. For example, an 

outcome in O
 N
[T0, Tf ) of the type <d, ~d, …,~d>—in which a “no disruptive deviation” outcome 

must be observed for every individual ½-period-segmented SPT element subsequent to 

the first, with each such subsequent element following an individual element (the first 

element) for which a “yes disruptive deviation” outcome has  occurred—may not be an 

observable outcome at all since the SPT may cease to exist after its first element is 

affected; further, the product formulation in general ascribes a positive probability to such 

outcomes (similarly to Eq. (104)). In order to avoid considering such perhaps 

unobservable outcomes, we have chosen our outcomes to be of the type given in our first 

formulation, namely {n}, in which observation of elements temporally beyond the first 

affected one is not required. 
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V. A Random Collection of SPT’s 
In the above, we formulated a probabilistic model for the disruptive deviation of an 

arbitrary but fixed πN ∈ Π N
N [0, TE]  that is being carried on a given signal line when that 

line is exposed to EM disturbance πEM[T0, Tf , VEM, ω]. However, as discussed in the 

Introduction to this paper, in order to determine the probability of upset by πEM of a µC 

executing a particular application task a ∈ A , we must resort to analyzing a stochastic

mix of µC tasks Ta = <[ra]#, [s]#, d #
ℜ, M(ra)> ∈ R#

a x S # x D#
ra , i.e., to analyzing—for each of

the µC signal lines—a stochastic mix of πN ′s on that signal line. Since in this paper we 

have been considering only a single such signal line, then we must therefore consider 

analyzing a stochastic mix of πN ′s on that signal line. Thus we next want to allow the 

possibility that the specific SPT on that line during πEM—that SPT being any one of the 

possibilities πN 
\ πN ∩ πEM  ∈ Π N

N [0, TE] \ πN ∩ πEM —is determined stochastically (for 

example, each of the possibilities for πN 
\ πN ∩ πEM  on the line is equally likely.)  We may 

easily write the expression for the disruptive deviation probability in this case as a 

superposition of the SPT results in the previous Section IV.3. 

To that end, we first abbreviate the notations for πN \ πN ∩ πEM and 

Π N
N [0, TE] \ πN ∩ πEM to πN 

\ and Π N
N [0, TE] \  respectively. Next, we index the members 

πN 
\ of Π N

N [0, TE] 
\, writing πN,s 

\, s = 1, …, #(Π N
N [0, TE] 

\) ≡ S for them, where 

#(Π N
N [0, TE] \) = 2nmax− nmin + 3.  We then assign probabilities P̂Π N

N
\(πN, s 

\), s = 1, …, S, 

such that 

∑ s
S

= 1 P̂Π N
N

\(πN, s 
\) = 1.          (105) 

This assignment reflects our knowledge of the probabilities of occurrence of the various 

possible πN 
\’s on the signal line, which knowledge results from a random experiment 

conducted on the line in the absence of any EM disturbances and for which the outcome 
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set is Π N
N [0, TE] 

\ or, alternatively, from some model of the relative frequencies of 

occurrence of all possible πN 
\’s on the signal line. For example, equal probabilities for all 

of the πN 
\’s yields P̂Π N

N
\(πN,s 

\) = 1/S, s = 1, …, S. Next, the outcome set for a different  

random experiment—an experiment to determine the probability of disruptive deviation 

on the stochastically populated line—is simply ΩΠ N
N

\ ≡ {D, ~D}, where “D” is the outcome 

that the signal line suffers a disruptive deviation (as opposed to the previously used 

outcome “d” to signify that a single ½-period-segmented SPT element suffers a disruptive 

deviation). Finally, we assign a probability, PΠ N
N

\({D}), to {D}.  Using Eq. (100) 

to express P N
[T0, Tf )(ED, D) for any N-element SPT, with this symbol augmented in notation 

by a  subscript “s” to indicate any particular SPT πN,s 
\ to which it refers (i.e., we write 

P
N, s

[T0, Tf )(ED, D)), we then take 

                                   PΠ N
N

\({D}) = ∑ s
S

= 1 [PN, s
[T0, Tf )(ED, D) •  P̂Π N

N
\(πN,s 

\)] ≤ 1                     (106) 

(and of course PΠ N
N

\({~D}) = 1 − PΠ N
N

\({D})).  

This is our desired final expression for the probability PΠ N
N

\({D}) of disruptive deviation of 

an SPT on the signal line in the stochastic mix case.  

VI. Conclusion 
We have presented a model that provides predictions of the occurrence of disruptive 

deviations of signal line activity in a µC executing an application task when the µC is 

subjected to external irradiation by an EM pulse impinging upon it, modeling this situation 

from a signal-centric point of view. We have specified the set of all possible idealized, 

normal, N-element SPT’s that may be carried on any signal line of the µC and have 

described as well the interaction of any such SPT with a rectangular-envelope-modulated 

monochromatic sinusoidal pulse influencing the SPT. This interaction may result in a 
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disruptive deviation of any SPT on the line present during the EM pulse time window and, 

consequently, in disruption of µC task execution—an “upset”. Upsets occur stochastically 

and we have provided expressions for the probability of such upsets, both for any 

specified possible SPT on a single signal line as well as for stochastic collections of such 

SPT’s on that single line. (Results for collections of such signal lines [with a complete µC 

being a very large such collection] will be presented in a subsequent paper.) The 

disruptive deviation probability for an N-element SPT is given in terms of disruptive 

deviation probabilities for each of its N elements; these element disruptive deviation 

probabilities are not calculated in the model but rather must be provided externally, either 

by being obtained experimentally or via additional modeling performed beyond the 

present model and which has to date not yet been accomplished. Further, the disruption 

probability associated with any temporal sub-interval of any ½-period-segmented SPT 

element, which subinterval is also completely overlapped by the EM pulse time window, 

is taken most simply to be a function of the length of that sub-interval as well as of the 

disruptive deviation probability of the complete ½-period-segmented SPT element in 

which it resides. At a more detailed level, the sub-interval’s disruption probability takes 

into account not only its length but also the particular structure of the host ½-period-

segmented SPT element itself.     
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Figure 1. Examples of primitive SPT elements. 
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Figure 2. The eight ½-period-segmented SPT element types (n = 0). 
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Figure 3. An eight-segment SPT constructed from ½-period-segmented SPT elements. 
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