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1.0 SUMMARY

A primary aspect involved in the navigation of a wide variety of vehicles, such as ground vehicles
and aircraft, is the use of inertial measurement units. The purpose of the inertial measurement
unit is to provide an internal measure of the linear acceleration and angular velocity of the vehicle
in order to be used by a navigation system in the dead-reckoning of the vehicle’s position and
attitude. Due to the nature of sensors, the measurement of the linear acceleration and angular
velocity are corrupted by several error sources, such as bias and noise, amongst others. Another
key element involved in the navigation of vehicles is the use of external aiding via more conventional
sensors, such as range-finders and star cameras. The purpose of these sensors is to aid navigation
by providing measurements relative to the external environment in which the vehicle is operating.
In order to assess the coupled impact of these sensors, along with their inherent uncertainties, on
the navigation accuracy for an arbitrary vehicle, a simulation and analysis tool is developed that
can model several inertial measurement unit mechanizations, model several sensors for the purpose
of external aiding, simulate the error sources encountered in the acquisition of measurement data,
emulate the navigation software, and perform a range of analyses via Monte Carlo simulation and
linear covariance analysis. The developed tool is applied to a ground vehicle navigation scenario in
order to assess the performance of different sensors and provide conclusions as to when each sensor
should be used to achieve the best navigation performance.

2.0 INTRODUCTION

Inertial measurement unit (IMU) technology is used to drive a dominant element of navigation
systems on vehicles ranging from submarines to ground vehicles, missiles, and spacecraft. The
purpose of the IMU is to provide an internal measure of the changes in the linear and angular
motions of the vehicle due to non-gravitational stimuli by using triads of single-axis accelerometers
to measure the linear motion and gyros to measure the angular motion via measurement of the
angular velocity. In doing so, the position, velocity, and attitude of the vehicle can be predicted
from a prescribed starting condition along with a representation of the confidence in the prediction,
i.e. an associated uncertainty.

Traditionally, IMU-based navigation is mechanized in one of two ways: gimbaled/gyro-stabilized
or strapdown. In gimbaled mechanizations, the triad of accelerometers is placed on a “stable table”
at the center of set of interconnected gimbals or at the center of a fluidic stabilization system. In
the strapdown mechanization, the triad of accelerometers and gyros is fixed (strapped down) to
the body of the vehicle, and there is no stable table. The different mechanizations effectively alter
the way in which the triad orientation is handled: for gimbaled systems, mechanical tracking is
used, whereas computational tracking is used for strapdown systems. Common to every system,
the outputs of the single-axis sensors that make up the accelerometer and gyroscope are used in
conjunction with the navigation system software to dead-reckon (i.e. using only the IMU) the state
(position, velocity, and attitude) of the vehicle.

Another core element of vehicular navigation is the use of external sensor data, in conjunction
with the IMU data, to improve knowledge of the position, velocity, and attitude of the vehicle. Data
acquired from range finders, star trackers, and line-of-sight sensors, amongst others, can be used
to provide refinements in the uncertainty with which the state of the vehicle can be determined.

Using the IMU to predict the position, velocity, and attitude of a vehicle inherently leads to
uncertainty in the aforementioned localization variables. Even in the case where perfect initial
conditions are known (i.e. there is no uncertainty in the position, velocity, and attitude), errors in
the IMU parameterization will flow into the translational and rotational states, causing a growth
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in the uncertainty on the prediction of the position, velocity, and attitude through a degradation
of the associated confidence in these predictions. Using the external sensor data can mitigate this
growth of uncertainty by adding information about the vehicle’s state.

Employing external measurement data increases the system complexity and cost by introduc-
ing additional system components; however, if the system complexity growth is accompanied by
improved performance of the navigation system, then operation of the vehicle can be considerably
improved. This can lead to more reliable operation of autonomous or remotely operated vehicles
and it can lead to more robust fault and failure monitoring for human operated vehicles. The trade
between increased complexity and improved performance needs to be thoroughly analyzed and
understood in order to assess whether or not a suite of external measurement senors is efficacious.

Analysis of IMU-driven, externally aided navigation systems can be accomplished in several
ways. One of the most flexible approaches is to use techniques from Monte Carlo simulation and
particle filtering. This approach allows for the utilization of highly complex systems in a black
box configuration with minimal intrusion into the governing equations; however, this can be quite
computationally complex and require significant computing resources. An alternative is to use
linear covariance analysis to predict the mean and covariance that result from the implementation
of a certain combination of an IMU and other external sensors. This method accounts for the errors
in all of the parameters, but does require linearization to be performed in order to determine the
resulting uncertainties. The benefit of linear covariance analysis over Monte Carlo analysis is that
linear covariance analysis is computationally efficient and can be performed on many configurations
of the internal/external sensor combinations very expediently.

In order to quantify the uncertainties involved with a specific navigation system that is com-
prised of internal and external sensors, SAIMUN (Simulation and Analysis of IMU-based Naviga-
tion) was developed. This tool utilizes a known truth trajectory, IMU parameterization of interest,
prescribed suite of external aiding sensors, and initial conditions to calculate performance criteria.
The tool makes use of Monte Carlo analysis and linear covariance analysis to propagate the posi-
tion, velocity, and attitude uncertainty forward in time. Monte Carlo analysis is used to investigate
the uncertainties for IMU-only navigation systems and to baseline performance in this case. Linear
covariance analysis is used to compare to Monte Carlo analysis for IMU-only navigation and to
perform externally aided navigation analysis as well.

SAIMUN was developed to consider two different IMU mechanizations: strapdown and space
stabilized. The strapdown IMU mechanization relies on microelectromechanical systems (MEMS)
technology for the accelerometer and gyroscope triads. The triads are stationary with respect to
the IMU case; thus, the attitude is dead-reckoned numerically using the gyroscope data to provide
the vehicle attitude. The space stabilized IMU mechanization relies on a mechanical platform to
track an inertial reference frame. Additionally, SAIMUN was developed to consider three types
of external measurements: range/range-rate measurements, stellar line-of-sight measurements, and
bearing angles measurements. The objective of the tool is to provide an analysis of the feasible
navigation accuracy given some combination of IMU and external sensors.

The remainder of this report is organized as follows. Section 3.1 provides an overview of the
simulation environment that was developed. Section 3.2 details the modeling of the error sources
which contribute to the IMU corruption and provides the overall models for the measured IMU
outputs that are used in the strapdown and space stabilized implementations. Following is a
detailed development of the dynamical models used for the two IMU configurations in Section 3.4.
Section 3.5 describes the Monte Carlo analysis technique and its usefulness in validating other
uncertainty analysis techniques. Section 3.6 outlines the three sensors used for external aiding
including application and their dynamical models. The theory and method of implementation of
the linear covariance analysis is presented in Section 3.7. Section 4.0 presents the results of a ground
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vehicle navigation simulation in which two IMUs are considered and compared using the developed
tool. Section 5.0 concludes the report with a discussion as to how the developed tool is used to
select an appropriate IMU for the ground vehicle navigation simulation as well as a discussion on
other capabilities that SAIMUN offers.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 SAIMUN Overview

In order to analyze the effect of inertial measurement unit and external sensor performance on
navigation systems, SAIMUN was developed. SAIMUN utilizes Monte Carlo sampling and linear
covariance analysis to propagate the initial position, velocity, and attitude uncertainty forward
in time, while accounting for the injection of uncertainty into the position, velocity, and attitude
due to error corruption present in the IMU. Updates to the uncertainty are also considered when
incorporating external sensor data using linear covariance analysis.

The effect of the following IMU error sources on the position, velocity, and attitude uncer-
tainty is quantified in SAIMUN: startup bias, bias instability, random walk, scale factor error, axes
misalignment, axes nonorthogonality, and quantization effects. The modeling of these IMU error
parameters is outlined in Section 3.2. The location of the IMU with respect to the center of mass
(CM) and the IMU timestep, which is the time between successive measurements of the acceleration
and angular velocity provided by the IMU, are also specified. Finally, the mechanization type for
the IMU, which can be

• strapdown or

• space stabilized

is given. The IMU mechanizations are further described in Section 3.4.
In addition to information about the IMU configuration and error sources, the tool also requires

a tabulated true trajectory, which is provided as an input to SAIMUN to ensure that the tool can be
applied to any vehicle, ranging from ground vehicles to aquatic vehicles, air vehicles, and spacecraft.
The tabulated truth trajectory consists of the following information:

• inertial position vector of the CM of the vehicle,

• inertial velocity vector of the CM of the vehicle,

• inertial acceleration vector of the CM of the vehicle,

• attitude of the vehicle body frame, expressed as a quaternion and defined as a 3-2-1 rotation
from the inertial frame,

• angular velocity of the vehicle body frame expressed in the vehicle body frame,

• angular acceleration of the vehicle body frame expressed in the vehicle body frame, and

• seconds elapsed since the beginning of the trajectory.

An initial epoch, which corresponds to the start of the tabulated truth trajectory and is specified
as a Julian Date, is also provided to link the truth trajectory to a known reference time.

SAIMUN is also integrated with the ability to process measurements from external sources. For
each sensor the following information is required:

3
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• measurement frequency,

• measurement error parameters given as a covariance matrix,

• sensor position and attitude with respect to the IMU, and

• latency associated with each measurement.

The analysis and initial distribution inputs required are:

• Number of Monte Carlo sample trajectories. This parameter is a trade between computational
effort required and the accuracy of the results.

• Covariance of the initial position, velocity, and attitude of the vehicle, corresponding to the
initial epoch.

SAIMUN then implements linear covariance and/or Monte Carlo analysis to propagate the initial
uncertainty forward in time, while potentially accounting for the presence of external sensor data,
and outputs the following plots:

• position standard deviation over time,

• velocity standard deviation over time, and

• attitude standard deviation over time.

3.2 IMU Modeling

The acceleration and angular velocity measured by an IMU are corrupted by a variety of error
sources. SAIMUN accounts for the most dominant sources of error by specifying a probability
density function (pdf) for the error parameters to define each error source. The pdfs implemented
in SAIMUN are

• the Dirac distribution, which is used to represent a constant parameter specified solely by the
mean,

• the normal distribution, which represents a Gaussian distributed parameter that is solely
defined by a mean and variance (or standard deviation), and

• the uniform distribution, which represents a parameter that is equiprobable between lower
and upper bounds.

These distributions are graphically represented in Fig. (1).
The IMU model accounting for error sources is given for the accelerometers and gyroscopes as

am,k = aQ,k

(
(I +Na +Ma) (I + Sa)

(
T IMU
i aing,k + ba,0 + ba,k +wa,k

))
(1a)

ωm,k = ωQ,k

(
(I +Ng +Mg) (I + Sg)

(
ωIMU

p/i,k + bg,0 + bg,k +wg,k

))
, (1b)

where

aing,k is the true non-gravitational inertial acceleration experienced by the IMU expressed in
the inertial frame at tk,
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Figure 1. Three Distributions Implemented for Error Parameters in SAIMUN

ωIMU

p/i,k is the true angular velocity of the IMU platform with respect to the inertial frame,
expressed in the IMU frame at tk,

T IMU
i is the rotation matrix representing the rotation from the inertial to the IMU frame,

b0,k is the startup bias of the accelerometers,

ba,k is the bias of the accelerometer at tk, which changes due to bias instability,

wa,k is the thermo-mechanical zero-mean white noise present in the accelerometers,

Sa is the scale factor error matrix of the accelerometers,

Ma is the axes misalignment matrix of the accelerometers,

Na is the axes nonorthogonality matrix of the accelerometers, and

aQ,k is the quantization effect caused by analog-to-digital conversion.

and similarly for the gyroscopes. For simplicity, let aing,k be ak and ωIMU

p/i,k be ωk. The error sources
are applied in the following order:

1. Walking bias and thermomechanical noise are applied first because they affect the sensor
(accelerometer or gyroscope) regardless of how the sensor is mounted with respect to the
defined IMU frame,

2. A scale factor error is applied next to account for errant voltages, circuitry, etc. in converting
the sensor output to a value that can be quantized,

3. Axes nonorthogonality and misalignment errors are applied next to account for the mounting
error between the sensors and the defined IMU frame,

4. Quantization error is applied last to emulate the Analog to Digital Conversion necessary for
quantizing the sensor signal.

The mean of the startup bias of the sensor is included in the walking bias as it is assumed known
from sensor testing.

The sources of error used by this model affect the gyroscopes identically and thus their presen-
tation is omitted.
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3.2.1 Startup Bias. The startup bias affecting the accelerometers, ba,0, is the average output of
the accelerometers while they are not undergoing any acceleration [1]. For practical applications,
the startup bias is quantified by accounting for and removing the accelerometer output due to
gravity while the IMU remains motionless. Figure (2) shows an example of the startup bias of an
accelerometer undergoing no acceleration. SAIMUN assumes that the statistics of the startup bias

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

2
·10−2

Time [s]

A
cc
el
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Figure 2. Accelerometer Output Corrupted by Startup Bias

are well known and can be approximated by one of the three supported error-parameter pdfs. The
startup bias is then realized from the error-parameter pdf during virtual IMU initialization.

3.2.2 Bias Instability. The bias of an accelerometer tends to drift slowly over time and is
known as a walking bias [1]. The walking bias affecting the accelerometers at tk, ba,k, is the change
in the bias after the IMU was powered on. This effect is modeled by a first-order random walk
model, which causes a linear increase in the variance of the accelerometer bias with time. The
discrete first-order random walk model is given by

ba,k = ba,k−1 +wBI,k , (2)

where wBI,k is a zero-mean white noise process of standard deviation σBI. The initial standard
deviation in the walking bias is zero, and the standard deviation at a later time, t∗BI, is specified
as σ∗

BI. Utilizing the zero initial condition and applying Eq. (2) recursively from t0 to tk yields the
walking bias at tk as

ba,k =

tk/∆t∑
i=1

wBI,k , (3)

where ∆t is the timestep of the IMU. Noting that the variance of the summation of n independent
random variables denoted by Xi is equivalent to the sum of the variances of n independent random
variables, i.e.

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var [Xi] ;

this yields

Var [ba,k] =

tk/∆t∑
i=1

Var [wBI,k] =
tk
∆t
σ2

BI , (4)
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when applied to Eq. (3). Evaluating Eq. (4) at the boundary condition gives

t∗k
∆t
σ2

BI = σ
∗
BI

2 . (5)

The standard deviation of the zero-mean white noise process driving the random walk model, σBI,
can now be found by manipulating Eq. (5) as

σBI =

√
∆t

t∗k
σ∗

BI . (6)

Figure (3) shows an example accelerometer undergoing a random walk due to bias instability.
SAIMUN inputs the boundary conditions σ∗

BI and t∗BI, the IMU timestep, ∆t, and the desired error-
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Figure 3. Accelerometer Output Corrupted by Bias Instability

parameter pdf-type for wk and calculates the standard deviation of the underlying noise process
driving the random walk model according to Eqs. (2)–(6). Each step in the random walk model is
realized independently for each IMU.

3.2.3 Velocity Random Walk. When thermo-mechanical zero-mean white noise, wa,k, present
in the accelerometers is integrated, a random walk is produced in the velocity state, and the
standard deviation of the velocity grows proportionally to the square-root of time [1]. The variance
of the white noise present in the accelerometers is described by the Velocity Random Walk (VRW)
specification. The standard deviation of the zero-mean white noise is given as a function of the
VRW specification as

σVRW =
VRWspec√

∆t
.

Example accelerometer output corrupted by zero-mean white-noise is shown in Fig. (4). SAIMUN in-
puts the VRW specification and IMU timestep to calculate the standard deviation of the white noise
process underlying the velocity random walk. This zero-mean white noise process is realized inde-
pendently at each tk for the virtual IMU.

3.2.4 Scale Factor Error. Errors in analog-to-digital converters and other circuitry can induce
scale factor errors in the accelerometers, denoted by Sa. For instance, errors may be incurred due
to reference voltage errors caused by a variety of sources, including, among other things, tempera-
ture fluctuations and calibration errors. For illustration purposes, consider a simple example of a
generic scale factor error, s, and assume that the nominal reference voltage for the analog-to-digital

7
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Figure 4. Accelerometer Output Corrupted by Thermo-Mechanical Zero-Mean White
Noise

converter is Vnom = 5 V, while the actual reference voltage provided to the analog-to-digital con-
verter is Vact = 5.02 V. The scale factor error of the signal being converted by the analog-to-digital
converter is then given by

s =
Vnom − Vact

Vact
=

5 V− 5.02 V

5.02 V
= −0.003984 = −0.3984% .

Denoting the scale factor errors for each axis of the accelerometer triad by sx, sy, and sz, the total
accelerometer scale factor error may be expressed as

Sa =

sx 0 0
0 sy 0
0 0 sz

 .

SAIMUN inputs an error-parameter pdf for sx, sy, sz and realizes these parameters for the virtual
IMU from this pdf.

3.2.5 Axes Misalignment Error. Errors in the manufacturing process and mounting of an
IMU can lead to axes misalignment errors, denoted by Ma. That is, the actual sensor axes are
offset from the IMU case frame by a set of small rotations. This is readily seen by considering the
term I +Ma in Eq. (1a), which is of the form of a rotation matrix for small angles. Therefore,
the actual sensed outputs of the IMU are not aligned perfectly with the modeled case frame of the
IMU. The accelerometer misalignment errors are represented within Ma by mx, my, and mz, with
each term corresponding to its respective sensor axis. The misalignment errors are expressed in
matrix form as

Ma =

 0 mz −my

−mz 0 mx

my −mx 0

 .

SAIMUN inputs an error-parameter pdf for mx, my, mz and realizes these parameters for the
virtual IMU from this pdf.

3.2.6 Axes Nonorthogonality Error. Errors in the manufacturing process of an IMU can
lead to axes nonorthogonality errors, denoted by Na. If the sensor had no nonorthogonality errors,
each axis of the sensor triad would be at perfect right angles to the other two axes. Therefore,
the nonorthogonality errors account for small deviations from perfectly orthogonal axes and allow
for the modeling of sensor outputs that effectively measure small overlaps between the individual

8

Approved for public release; distribution is unlimited.



axes. The accelerometer axes nonorthogonality errors are represented within Na by nx, ny, and
nz, with each term corresponding to its respective sensor axis. The nonorthogonality errors can be
expressed in matrix form as

Na =

 0 nz ny

nz 0 nx

ny nx 0

 .

SAIMUN inputs an error-parameter pdf for nx, ny, nz and realizes these parameters for the virtual
IMU from this pdf.

Example output of an accelerometer triad undergoing 1 m/s acceleration in the z direction with
scale factor, axes misalignment, and axes nonorthogonality errors is shown in Fig. (5).
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Figure 5. Three-Axis Accelerometer Output Corrupted by Scale Factor, Misalignment,
and Nonorthogonality Errors

3.2.7 Quantization Error. Quantization error arises in IMUs due to the limitations of analog-
to-digital signal conversion and is modeled such that the acceleration and angular velocity mea-
surements are affected as

aQ,k(ak) = round

(
2n−1

amax
ak

)
amax

2n−1
,

where n is the bitrate of the analog to digital converter, and amax is the maximum value able to
be quantized by the analog to digital converter. It is noted that the quantization error is applied
after all of the other errors have been applied, such that the output of the quantization error is
the measured acceleration of Eq. (1a). Values of the bitrate and maximum value are both input
into SAIMUN. The quantization error in angular velocity is calculated similarly. Figure (6) shows
a quantized signal from an IMU with thermo-mechanical noise present.
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Figure 6. Accelerometer Output Corrupted by Quantization Error

3.3 IMU Inversion

In order to perform dead-reckoning navigation, the sensor errors must be removed from the non-
gravitational acceleration and angular velocity. An expression for how these quantities are corrupted
by the sensor are given by Eqs. (1). Solving this equation for the uncorrupted measurements requires
an “inversion.” The measured non-gravitational acceleration and angular velocity are modeled using
Eqs. (1). For some vector v = [vx vy vz]

T , define the matrices [vr], [v×], and [v∗] to be

[vr] =

 vx 0 0
0 vy 0
0 0 vz

 , [v×] =

 0 vz −vy
−vz 0 vx
vy −vx 0

 , and [v∗] =

 0 vz vy
vz 0 vx
vy vx 0

 .

After omitting the effects due to quantization, the errors in the acceleration and angular velocity
can be expressed as

am,k = (I +Na +Ma) (I + Sa) (ak + ba,k +wa,k) , (7)

where ak = T IMU
i aik is used for compactness. Equation (7) may be solved for ak in terms of the

measured acceleration and the error sources to yield

ak = (I + Sa)
−1 (I +Na +Ma)

−1 am,k − ba,k −wa,k .

Noting that (I +Ma +Na) (I + Sa) ≈ I + Λa, applying the matrix inversion lemma, and sim-
plifying the resulting expression, it follows that the true non-gravitational acceleration written in
terms of the measured non-gravitational acceleration as

ak = am,k + [am,k×]ma − [am,k∗]na − [am,kr]sa − ba,k −wa,k , (8)

from which one may obtain an estimate of the true non-gravitational acceleration as âk = E {ak},
which gives

âk = am,k + [am,k×]m̂a − [am,k∗]n̂a − [am,kr]ŝa − b̂a,k − ŵa,k . (9)

If all of the error sources are zero-mean, it follows from Eq. (9) that

âk = am,k .

Parallel results hold for expressing the true angular velocity in terms of the measured angular
velocity. That is, following the same process used in arriving at Eqs. (8) and (9), it can be shown
that the true and estimated angular velocities can be expressed as

ωk = ωm,k + [ωm,k×]mg − [ωm,k∗]ng − [ωm,kr]sg − bg,k −wg,k

ω̂k = ωm,k + [ωm,k×]m̂g − [ωm,k∗]n̂g − [ωm,kr]ŝg − b̂g,k − ŵg,k

10
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where all of the error sources are now for the gyro instead of the accelerometer. As with the
accelerometer, if all of the error sources are zero-mean, it follows that

ω̂k = ωm,k .

Define the non-gravitational acceleration and angular velocity deviations to be the difference in
the truth from the estimate as

δak = ak − âk
δωk = ωk − ω̂k .

Taking the difference between true and estimated expressions yields

δak = [am,k×]δma − [am,k∗]δna − [am,kr]δsa − δba,k − δωa,k

δωk = [ωm,k×]δmg − [ωm,k∗]δng − [ωm,kr]δsg − δbg,k − δωg,k ,

where the deviations in the error parameters are defined similarly to acceleration and angular
velocity.

3.4 IMU Mechanizations

Traditionally, IMU-based navigation is mechanized in one of two ways: gimbaled/gyro-stabilized or
strapdown. In the gimbaled mechanization, the triad of accelerometers is placed on a “stable table”
at the center of set of interconnected gimbals. This enables the stable table, through the use of
feedback tracking using the gyros, to track a predetermined attitude such that the accelerometers
measure a certain, desirable resultant linear motion. Typically, the stable table is configured to
track a north-east-down coordinate system, in which case the accelerometers measure the linear
motion in these directions, or it is configured to track the inertial coordinate system (i.e. to remain
fixed in space as the vehicle maneuvers).

The most basic of gimbal-based mechanizations employs three interconnected gimbal rings,
such as is found on the Minuteman III intercontinental ballistic missile (see Fig. (7(a))). While
this configuration provides the ability to actively control the orientation of the stable table through
motors mounted on the gimbals, the use of three gimbals sometimes leads to gimbal lock and
prevents the stable table from tracking all possible attitudes that may be required.

More advanced configurations of the stable table mounting design can be used to replace the
original gimbaled system. This is accomplished by using four or more gimbals or by using a fluid
stabilization system, which has the stable table floating in the center of a sphere filled with pressur-
ized fluid. Whereas the attitude of the stable table is controlled using torquers and manipulation
of the gimbals in the original design, the attitude of the stable table in the fluidic design is con-
trolled via nozzle actuators which avoids any possible complications due to gimbal lock. One such
implementation of the fluidic system is the Advanced Inertial Reference Sphere (AIRS) that was
developed for the LGM-118A Peacekeeper (see Fig. (7(b))).

In the strapdown mechanization, the triads of accelerometers and gyros are fixed (strapped
down) to the body of the vehicle, and there is no stable table. This means that where the stable
table was used to mechanically track the inertial frame in order to track a predetermined attitude
and sense accelerations in this rotating frame, the gyro outputs are now used to numerically track
the orientation of the IMU (called the case frame) with respect to the inertial frame. To avoid any
singularities present in three-parameter attitude representations such as Euler angles, the attitude
quaternion is used and can be propagated forward in time using the sensed angular velocity from

11
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(a) Minuteman III IMU (b) Peacekeeper IMU

Figure 7. Examples of Stable Table IMU Mechanizations [2]

the IMU. Additionally, the accelerations are now sensed in the case frame, and these must be
transformed using the case-to-inertial attitude in order to predict the translational position and
velocity of the vehicle.

Two inertial navigation system mechanizations are presented here: a strapdown system and
a passively commanded inertially stable space stabilized gimbaled system. For each of the afore-
mentioned mechanizations, the governing equations for the position, velocity, and attitude of the
IMU are presented, and a set of discretized equations are developed. The discretized equations
governing the position, velocity, and attitude of the IMU then are representative of the software
and hardware that would be used in each inertial navigation mechanization.

In the following sections, the following remains consistent:

r position
v velocity
q̄ attitude expressed as a quaternion
a acceleration
ω angular velocity
ω̄ angular velocity expressed as a true quaternion
T b
a rotation matrix from frame a to frame b

IMU inertial measurement unit
CM center-of-mass of the vehicle

p platform frame of the IMU
b body frame of the vehicle
s sensor case frame
i Earth-Centered Inertial frame
f Earth-Centered Earth-Fixed
g due to gravity

ng not due to gravity
m measured

and a subscript given in the form a/b denotes a with respect to b. For brevity, only the governing
equations and the resulting discretized update equations are given in the following sections.
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3.4.1 Strapdown Mechanization. The translational and rotational states of a strapdown IMU
aboard a vehicle are governed by [3, 4]

ṙiIMU(t) = v
i
IMU(t)

v̇iIMU(t) = a
i
g(r

i
IMU(t) + T

i
b (t)r

b
CM/IMU

) + T i
b (t)a

b
ng(t)

˙̄qbi (t) =
1

2
ω̄b
b/i(t)⊗ q̄

b
i (t) ,

For notational ease, let

riIMU(t) → r(t) , viIMU(t) → v(t) , aig(·) → g(·) ,
T i
b (t) → T T (t) , abng(t) → a(t) , q̄bi (t) → q̄(t) ,

ωb
b/i(t) → ω(t) , rp

CM/IMU
→ d , and riIMU(t) + T

i
b (t)r

b
CM/IMU

→ s(t) .

With these substitutions, the equations of motion may be written succinctly as

ṙ(t) = v(t)

v̇(t) = g(s(t)) + T T (t)a(t)

˙̄q(t) =
1

2
ω̄(t)⊗ q̄(t) .

The discrete-time dead-reckoning equations for the position, velocity, and attitude of a vehicle
with a strapdown IMU are given by:

rk = rk−1 + vk−1∆tk +
1

2
gk−1∆t2k +

1

2
T T
k−1ak∆t2k (10a)

− 1

6

(
Gk−1T

T
k−1[d×] + T T

k−1 [ak×]
)
ωk∆t3k

vk = vk−1 + gk−1∆tk + T
T
k−1ak∆tk −

1

2

(
Gk−1T

T
k−1[d×] + T T

k−1 [ak×]
)
ωk∆t2k (10b)

q̄k = q̄(ωk∆tk)⊗ q̄k−1 , (10c)

where gk−1 and Gk−1 are the two-body gravitational acceleration experienced at the CM (not the
IMU) and the associated Jacobian evaluated at the estimated position of the CM at time tk−1.

3.4.2 Space Stabilized Mechanization. The space stabilized mechanization tracks an Earth-
centered, inertially non-rotating coordinate frame. This reference frame is realized by a gyro-
stabilized platform with triaxial control. Except for torques applied as compensation to account
for anisoelastic effects, thermal and acceleration sensitivity, etc., the gyroscopes are uncommanded
and the system is “free-floating.”

Noting that the specific force is actually measured in the IMU platform frame, the transla-
tional equations governing the dynamical evolution of the position and attitude of the IMU can be
expressed as a set of first-order differential equations given by

ṙiIMU(t) = v
i
IMU(t)

v̇iIMU(t) = g
i(riIMU(t)) + T

i
p(t)f

p(t)

˙̄qpi (t) =
1

2
ω̄p
p/i(t)⊗ q̄

p
i (t)
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For notational simplicity, let riIMU(t) → r, viIMU(t) → v, ωp
p/i(t) → ω(t), q̄pi (t) → q̄(t), T i

p(t) =

T T (t), and fp(t) = f(t), such that the governing equations become

ṙ(t) = v(t)

v̇(t) = g(r(t)) + T T (t)f(t)

˙̄q(t) =
1

2
ω̄(t)⊗ q̄(t) .

Discretization and integration yield the following discrete-time propagation equations:

rk = rk−1 + vk−1∆tk +
1

2

(
T T
k−1fk + gk−1

)
∆t2k (11a)

vk = vk−1 +
(
T T
k−1ak + gk−1

)
∆tk (11b)

q̄k = q̄(ωk∆tk)⊗ q̄k−1 . (11c)

3.5 Monte Carlo Analysis

In general, either of the mechanizations of the IMU can be represented by a nonlinear dynamical
system. If the expressions for position, velocity, and attitude are collected into a state vector, x,
the general nonlinear dynamical system representing the forward evolution of the state for either
of the IMU systems may be expressed as

xk = f(xk−1,ak,ωk, tk) , (12)

where ak and ωk represent the true vehicle non-gravitational acceleration and angular velocity,
respectively. For the mechanizations presented in Section 3.4, f(·) represents one of Eqs. (10) or
Eqs. (11). Functionally, the relationship between the true and measured IMU outputs is given by

am,k = a(φk, tk) and ωm,k = ω(ψk, tk) , (13)

where φk and ψk represent the IMU model parameters, which also have governing evolutionary
equations as

φk = g(φk, tk) and ψk = h(ψk, tk) . (14)

In the preceding discussions, many possibilities for the forms of g, h, φ, and ψ have been given. For
example, for the simple additive model where the true IMU outputs are corrupted by a constant
bias b and a white-noise sequence w, Eqs. (13) become

am,k = ak + ba +wa,k and ωm,k = ωk + bg +wg,k ,

and the parameters of the IMU error model are

φk =

[
ba
wa,k

]
and ψk =

[
bg
wg,k

]
,

with the governing equations φk = φk−1 and ψk = ψk−1 (note that the white noise sequence does
not require a formal time-wise evolution owing to the properties of white noise).

Given the description of the IMU-based dynamical system via Eq. (12), the dynamical descrip-
tion of the IMU model parameters via Eq. (14), and a statistical description of the IMU model
parameters that appear in Eq. (13), the objective is to determine a statistical description of the
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position, velocity, and attitude of the IMU at some later time. While there is no tractable exact
solution for predicting these statistics, in general, several approaches exist for approximating the
statistics. One method is the Monte Carlo process. The Monte Carlo process effectively performs
a large number of simulations of the dynamical system, with each simulation drawing new sam-
ples from every statistical distribution involved in the system. As such, the accuracy of a Monte
Carlo process is limited by the number of simulations considered, which is, in turn, limited by
the computational time allotted. On the other hand, the Monte Carlo process provides a very
flexible environment that is capable of handling a wide variety of dynamical systems and statistical
distributions.

To illustrate the Monte Carlo process, consider the two dimensional transformation from polar
to Cartesian coordinates, i.e. [

x
y

]
= r

[
cos θ
sin θ

]
.

Given a distribution on w = [r θ], it is desired to determine distribution characteristics on
z = [x y]. First, assume that r and θ are independent and Gaussian with mean and covariance

mw =

[
1 [m]

60 [deg]

]
and Pw =

[
(0.02 [m])2 0

0 (30 [deg])2

]
.

Therefore, the polar to Cartesian conversion may be written as

z = f(w) ,

where w is the input and z is the associated output. The Monte Carlo simulation process is
started by drawing a number of samples from the input vector, where the sampling is performed
with respect to the probability density function which governs the characteristics of the input.
Once the samples are drawn, the nonlinear mapping function, f , is applied to each input sample
to generate a set of output samples.

For the coordinate conversion problem, the Monte Carlo simulation is initialized by drawing
1× 105 realizations of the random vector w from the distribution

p(w;mw,Pw) = |2πPw|−1/2 exp

{
−1

2
(w −mw)

T P−1
w (w −mw)

}
.

The set of samples drawn is shown in Fig. (8(a)). The nonlinear transformation is applied to each
sample in the input space and the resulting set of Cartesian coordinates is shown in Fig. (8(b)). It
is clear that the output space is not capable of being described by a Gaussian distribution; however,
the Monte Carlo simulation technique can still be used to compute an accurate approximation of
the mean and covariance via

mz =
1

N

N∑
i=1

zi and Pz =
1

N

N∑
i=1

(zi −mz)(zi −mz)
T , (15)

where

zi = f(wi)

and wi is the ith Monte Carlo sample. The contours representing the Gaussian distribution com-
puted from the preceding mean and covariance equations are shown on top of the set of output-space

15

Approved for public release; distribution is unlimited.



0.7 0.8 0.9 1 1.1 1.2 1.3

−50

0

50

100

150

200

r [m]

θ
[d
eg
]

(a) Input Space Monte Carlo Samples

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x [m]

y
[m

]

(b) Mapped Samples in the Output Space

Figure 8. Input and Output Samples from the Monte Carlo Simulation

Monte Carlo samples in Fig. (9(a)). Moreover, a linearization approach can be used to map the
input mean and covariance into an approximate output mean and covariance. The comparison
between the linear mean and covariance and the Monte Carlo mean and covariance is shown in
Fig. (9(b)), wherein it is seen that the two differ a great deal. The only characteristic that is
mostly captured by the linearization process is the orientation of the covariance matrix. The cen-
tering (i.e. the mean of the distribution) is not captured accurately, and the size of the mapped
covariance matrix is not captured accurately.
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(b) Comparison between Linearization and Monte Carlo

Figure 9. Distribution Contours Obtained by the Mean and Covariance from the
Monte Carlo Simulation and Linearization

To further demonstrate the power of Monte Carlo simulation, consider a modification of the
preceding problem. In this case, it is still assumed that the radial and angular input coordinates
are independent, but now the radial direction is taken to be Gaussian distributed and the angular
direction is taken to be uniformly distributed. The mean and covariance are taken to be the same
as before so that the input space has the same first and second central moments as in the preceding
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example. The probability density function for the input is now given by

p(w;mr, Pr,mθ, Pθ) = |2πPr|−1/2 exp

{
−(wr −mr)

2

2Pr

}
· 1

2
√
3Pθ

=
1

2
√
6πPrPθ

exp

{
−(wr −mr)

2

2Pr

}
,

where mθ −
√
3Pθ ≤ θ ≤ mθ +

√
3Pθ, such that [mθ −

√
3Pθ , mθ +

√
3Pθ] is the support set of the

uniform angular distribution. From the original specifications for the transformation problem, the
means and covariances required to evaluate the input-space distribution are

mr = 1 [m] , mθ = 60 [deg] , Pr = (0.02 [m])2 , and Pθ = (30 [deg])2 .

As before, the Monte Carlo simulation is initialized by drawing 1× 105 realizations of the random
vector w from the distribution p(w;mr, Pr,mθ, Pθ), and each sample is mapped into the output
space via the nonlinear transformation. These samples are shown in Figs. (10(a)) and (10(b)),
respectively. The mean and covariance is again computed from the Monte Carlo samples and
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Figure 10. Input and Output Samples from the Monte Carlo Simulation (modified
problem)

shown along with the output-space samples in Fig. (11(a)). Finally, a linearization approach is
used to map the input-space mean and covariance into an output-space mean and covariance.
The comparison between the Monte Carlo mean and covariance and the linearization mean and
covariance is shown in Fig. (11(b)).

While it is clear that the linearization process once again fails to capture the true mean and
covariance, it is noted that the linearized mean and covariance depicted in Fig. (11(b)) are identical
to the ones depicted in Fig. (9(b)). At the same time, however, the Monte Carlo means and
covariances differ between these two simulations. This occurs because the Monte Carlo simulation
has and uses knowledge of the entire distribution on both the input and output spaces whereas a
linearization procedure works with only the first and second central moments of the distribution.
Therefore if two input distributions have the same mean and covariance, and are subjected to the
same nonlinear transformation, the linearized solutions will always have the same output mean and
covariance.
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(b) Comparison between linearization and Monte Carlo

Figure 11. Distribution Contours Obtained by the Mean and Covariance from the
Monte Carlo Simulation and Linearization (modified problem)

It is also worth noting that the Monte Carlo simulation enables analysis extending beyond the
computation of the mean and covariance. For instance, higher-order statistical moments may be
computed in a similar fashion to the mean and covariance, best case and worst case performance
can be analyzed through analysis of the dispersions away from a predefined truth, or the radial
distance encapsulating a given percentage of the sample points can be computed.

The problem of analyzing the performance of IMU-based navigation systems is characterized
by complex, nonlinear functions where the input space is described by the IMU error sources,
which may have fairly arbitrary statistical descriptions. Monte Carlo analysis naturally handles
the characteristics of this problem and enables a more rich data analysis suite than is found in
typical linearization-based analysis.

3.6 External Aiding

In this section, models for three different external sensors available within SAIMUN are described.
The sensors presented are

1. range/range-rate,

2. stellar line-of-sight, and

3. bearing angles.

For each sensor considered, the measurement model is described for each of the previously described
IMU mechanizations. Additionally, to facilitate data processing, the measurement Jacobian for each
configuration is described.

3.6.1 Range/Range-Rate Measurements. The range ρ, by definition is the difference mag-
nitude between two position vectors. For this case, the two position vectors will be the vehicle’s
position in a given frame rs, and the position vector of a transmission receiving ground station rg
in the same frame. rg is assumed to be known.
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Strapdown The range measurement, zρ, is modeled as the range between an onboard sensor and
a known reference position that is corrupted by additive, zero-mean, white measurement noise; the
corresponding model is

zρ =
√

(ris/g)
T (ris/g) + vρ ,

where vρ is the measurement noise and rs/g is the true position of the range sensor with respect to
the known ground station, which is given by

ris/g = riIMU + T i
br

b
s/IMU

− T i
fr

f
g .

A reference measurement may be determined by evaluating the measurement model at a reference
state, leading to ẑρ. The deviation between the true and reference measurements is then considered
as

δzρ = zρ − ẑρ .

This deviation is then linearized using a first-order Taylor series expansion, and the result may be
expressed as

δzρ =Hρ,rδr
i
IMU +Hρ,θδθ + vρ ,

where δriIMU is the error between the true and reference IMU positions and δθ is the attitude error,
which is defined to be twice the vector part of the quaternion error. This illustrates that the
range sensor measurement model has sensitivity associated with the position of the IMU and the
attitude. This means that direct updates can be obtained for these states when considering range
measurements from a known ground station.

Similar to the range measurement, the range-rate measurement produces a measurement of the
range-rate between an onboard sensor and a known ground station. This is represented by zρ̇,
where

zρ̇ =
(ris/g)

T (vis/g)√
(ris/g)

T (ris/g)
+ vρ̇ ,

where vρ̇ is zero mean, white, range-rate measurement noise, rs/g is the position between the sensor
and the ground station, and the velocity of the range-rate sensor with respect to the ground station
are

vis/g = viIMU + T i
b [ω

b
b/i×]rbs/IMU

− T i
f [ω

f
f/i×]rfg .

As with the range measurement, a reference measurement may be determined by evaluating the
measurement model at a reference state, leading to ẑρ̇. The deviation between the true and reference
measurements is then considered as

δzρ̇ = zρ̇ − ẑρ̇ .

This deviation is then linearized using a first-order Taylor series expansion, and the result may be
expressed as

δzρ̇ =Hρ̇,rδr
i
IMU +Hρ̇,vδv

i
IMU +Hρ̇,θδθ +Hρ̇,bgδbg +Hρ̇,mgδmg +Hρ̇,ngδng +Hρ̇,sgδsg + vρ̇ ,

where δviIMU is the error between the true and reference IMU velocities, δbg is the gyro bias error,
δmg is the gyro misalignment error, δng is the gyro nonorthogonality error, and δsg is the gyro
scale factor error. Thus, the range-rate measurement has sensitivity associated with the position
of the IMU, the velocity of the IMU, the attitude of the vehicle, and the gyro parameters.
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Space Stabilized The range measurement for the space stabilized case is nearly the same as for
the strapdown case; therefore, the model can be written as

zρ =
√
(ris/g)

T (ris/g) + vρ ,

where vρ is zero-mean, white, measurement noise. The term rs/g still represents the position of the
range sensor with respect to the known ground station, but is slightly changed from the strapdown
case, such that is it now given by

ris/g = riIMU + T i
pT

p
b r

b
s/IMU

− T i
fr

f
g

A reference measurement may be determined by evaluating the measurement model at a reference
state, leading to ẑρ. The deviation between the true and reference measurements is then considered
as

δzρ = zρ − ẑρ .

This deviation is then linearized using a first-order Taylor series expansion, and the result may be
expressed as

δzρ =Hρ,rδr
i
IMU +Hρ,θδθ + vρ .

It is important to note that the attitude error, δθ, which is still defined to be twice the vector part
of the quaternion error, now defines the attitude error of the platform, as opposed to of the body.

As with the space stabilized range measurement, the range-rate measurement model is largely
unchanged by the IMU mechanization; therefore, the model may be written as

zρ̇ =
(ris/g)

T (vis/g)√
(ris/g)

T (ris/g)
+ vρ̇ ,

where vρ̇ is zero mean, white, range-rate measurement noise, and the position and velocity relative
to the ground station are

ris/g = riIMU + T i
pT

p
b r

b
s/IMU

− T i
fr

f
g

vis/g = viIMU +
(
T i
p[ω

p
p/i×]T p

b + T i
pT

p
b [ω

b
b/p×]

)
rbs/imu − T i

f [ω
f
f/i×]rfg .

The deviation between the true and reference measurements is then considered as

δzρ = zρ̇ − ẑρ̇ ,

where ẑρ̇ is the reference measurement. This deviation is then linearized using a first-order Taylor
series expansion, and the result may be expressed as

δzρ̇ =Hρ̇,rδr
i
IMU +Hρ̇,vδv

i
IMU +Hρ̇,θδθ +Hρ̇,bgδbg +Hρ̇,mgδmg +Hρ̇,ngδng +Hρ̇,sgδsg + vρ̇ .

As with the range measurement for the space stabilized IMU mechanization, the attitude error,
δθ, represents the platform attitude error. It should also be noted that the exact terms appearing
in the preceding first-order expansion are, in general, different than those found for the strapdown
range-rate measurement.
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Data Processing When considering both range and range-rate measurements, the combined
measurement and reference measurement are

zρ,ρ̇ =

[
zρ
zρ̇

]
and ẑρ,ρ̇ =

[
ẑρ
ẑρ̇

]
.

In order to process these measurements, it is required to determine the Jacobian of the combined
measurement. The Jacobian for the combined measurements is simply given by the concatenation
of the individual Jacobians, or

Hρ,ρ̇ =

[
Hρ,r 03×3 Hρ,θ 03×3 03×3 03×3 03×3 03×12

Hρ̇,r Hρ̇,v Hρ̇,θ Hρ̇,b Hρ̇,m Hρ̇,n Hρ̇,s 03×9

]
.

3.6.2 Stellar Line-of-Sight Measurements. Star tracking measurement systems utilize a
camera and the knowledge provided by star field databases to assist in attitude determination. For
simplicity, the measurements considered here are unit vectors to each star in the star camera field
of view. However, this solution suffers from the fact that the covariance matrix of a unit vector, as
well as the addition used in the additive update, are not well defined. Two alternative approaches,
focal plane angles (FPA) and quaternion estimation (QUEST), avoid such issues, and should be
considered for future investigation.

Strapdown The model of the star camera measurement is given as

zsc = T
sc
b T

b
i T

i
sru

sr
s/sc + v

sc
sc

where T sc
b is the rotation matrix relating the body and star camera reference frames, T b

i is the
rotation matrix relating the inertial and body frames, T i

sr is the rotation matrix relating the stellar
reference and inertial frames, vscsc is zero-mean, white, measurement noise, and usr

s/sc is the unit
vector representation of the line-of-sight to a reference star, which can be expressed in terms of
right ascension (αsr) and declination (δsr) as

usr
s/sc =

cos δsr cosαsr

cos δsr sinαsr

sin δsr

 .

Similarly, the reference star camera measurement can be written as

ẑscsc = T
sc
b T̂

b
i T

i
sru

sr
s/sc .

The deviation of the star camera measurement, which is the difference between the true and refer-
ence measurements, can be expressed, after a first-order Taylor series expansion, as

δzscsc = T
sc
b

[
T̂ b
i T

i
sru

sr
s/sc×

]
δθ + vscsc ,

where δθ is the attitude error, and it is noted that this represents the attitude error for the body-
fixed reference frame.
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Space Stabilized The space stabilized mechanization model is nearly identical to the strapdown
mechanization model, except that an extra rotation must be introduced to account for the ap-
pearance of the platform frame. Thus, the measurement generated by the star camera is modeled
as

zscsc = T
sc
b T

b
pT

p
i T

i
sru

sr
s/sc + v

sc
sc ,

and the reference measurement is found via

ẑscsc = T
sc
b T

b
p T̂

p
i T

i
sru

sr
s/sc .

As with the strapdown case, the difference between the measurement and reference measurement is
defined to be a measurement deviation, δzscsc , and this deviation is expanded in a first-order Taylor
series to yield

δzscsc = T
sc
b T

b
p

[
T̂ p
i T

i
sru

sr
s/sc×

]
δθ + vscsc ,

where δθ is the attitude error, and it is noted that this represents the attitude error for the
platform-fixed reference frame.

Data Processing In order to process stellar line-of-sight measurements, it is required to deter-
mine the Jacobian of the measurement. The Jacobian for the line-of-sight measurements takes on
the same form, independent of the IMU mechanization, such that it can be written as

Hsc =
[
03×6 Hθ 03×24

]
,

where

Hθ = T
sc
b

[
T̂ b
i T

i
sru

sr
s/sc×

]
for the strapdown IMU mechanization and

Hθ = T
sc
b T

b
p

[
T̂ p
i T

i
sru

sr
s/sc×

]
for the space stabilized IMU mechanization.

3.6.3 Bearing Angles Measurements. A coordinate system is defined such that the y axis
points along the “nose” of the vehicle, the z axis points “up,” and the x axis, which completes the
triad, points “right.”. The bearing angles measurements are measurements of the line-of-sight to a
destination target, where the angles are taken to be the elevation and azimuth angles. The relative
position of the destination target with respect to the bearing angles sensor is denoted by ρt/s (or
simply ρ, for ease of exposition), where the destination target is assumed to be known in the fixed
frame. The elevation angle is measured on the interval [−π/2, π/2) and is calculated as

zε = sin−1(ρz/|ρ|) + vε ,

where ρz is the z-component in ρ and vε is zero-mean, white, measurement noise. Care should
be taken to avoid singularities as the target is approached when |ρ| = 0. If so, then zε = 0. The
azimuth angle is measured on the interval [0, 2π] and is found via

zα = atan2(ρy, ρx) + vα ,
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where atan2 is the two-argument arc-tangent function, ρx and ρy are the x and y components of
the relative position, ρ, and vα is zero-mean, white, measurement noise.

Reference measurements can be determined by evaluating the elevation and azimuth angle
models at a reference state. These reference measurements are then used to define measurement
deviations as the difference between the measurement and its reference. A first-order Taylor series
expansion for the deviations in the elevation and azimuth angles yields

δzε =
∂ε

∂ρ
δρ+ vε and δzα =

∂α

∂ρ
δρ+ vα ,

where (∂ε/∂ρ) and (∂α/∂ρ) are simple derivatives of the trigonometric functions and δρ is the error
in the relative position vector with respect to the reference. Depending on the IMU mechanization,
this error changes form.

Strapdown For the non-gimbaled mechanization, the relative position vector, in inertial coordi-
nates, to the destination target from the sensor is given by

ρit/s = T
i
fr

f
t − (riIMU + T i

br
b
s/IMU

) ,

which can be used to determine the error in the relative position as

δρit/s = −δriIMU + T̂ i
b [r

b
s/IMU

×]δθ ,

where δθ is the attitude error, which is the error of the body-fixed frame.

Space Stabilized With a gimbaled, space stabilized, platform, the relative position vector of
the destination target with respect to the sensor requires the added transformation between the
platform and the body frame. The result is given by

ρit/s = T
i
fr

f
t − (riIMU + T i

pT
p
b r

b
s/IMU

) .

Evaluating a reference relative position vector, determining the error, and performing a first-order
Taylor series expansion yields

δρit/s = −δriIMU + T̂ i
p[T

p
b r

b
s/IMU

×]δθ

where δθ is the attitude error, which is the error of the platform-fixed frame.

Data Processing In order to process the bearing, it is required to determine the Jacobian of the
measurement, which takes on the same form, independent of the IMU mechanization, such that it
can be written as

Hε,α =

[
Hε,r 01×3 Hε,θ 01×24

Hα,r 01×3 Hα,θ 01×24

]
,

where

Hε,r = −(∂ε/∂ρ) and Hα,r = −(∂α/∂ρ)

for both of the IMU mechanizations,

Hε,θ = (∂ε/∂ρ)T̂ i
b [r

b
s/IMU

×] and Hα,r = (∂α/∂ρ)T̂ i
b [r

b
s/IMU

×]

for the strapdown IMU mechanization, and

Hε,θ = (∂ε/∂ρ)T̂ i
p[T

p
b r

b
s/IMU

×] and Hα,r = (∂α/∂ρ)T̂ i
p[T

p
b r

b
s/IMU

×]

for the space stabilized IMU mechanization.
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3.7 Linear Covariance Analysis

Recall from Section 3.5 that either of the mechanizations of the IMU can be represented by a
nonlinear dynamical system; provided that the position, velocity, and attitude are collected into a
state vector, x, the general nonlinear dynamical system representing the forward evolution of the
state for either of the IMU systems is given by

xk = f(xk−1,ak,ωk, tk) , (16)

where ak and ωk represent the true vehicle non-gravitational acceleration and angular velocity,
respectively. For the mechanizations presented in Section 3.4, f(·) represents one of Eqs. (10) or
Eqs. (11). In addition, the true vehicle non-gravitational acceleration and angular velocity are
each corrupted by a set of errors (φk for the non-gravitational acceleration and ψk for the angular
velocity) to produce the measurements of the non-gravitational acceleration and angular velocity,
which is functionally represented by Eq. (13). These parameters can also evolve in time, as dictated
by Eqs. (14).

Given the dynamical systems models along with a representation of the statistics of the quanti-
ties involved, it is possible to investigate the evolution of the uncertainty for the position, velocity,
and attitude of the vehicle. As discussed in Section 3.5, one method for investigating this uncer-
tainty evolution is through the use of Monte Carlo simulation. The Monte Carlo method, while
highly flexible, requires significant computational resources. An alternative method, which has the
advantage of being less computationally demanding, is to use a Kalman filtering-based approach.

The particular Kalman filtering-based approach used here is known as linear covariance analysis.
In linear covariance analysis, the nonlinear systems describing the evolution of the IMU-driven
systems are linearized about a reference truth trajectory. This has the immense advantage of
decoupling the uncertainty propagation from any state propagation method, which means that
only the covariance needs to be propagated in order to determine the uncertainty of the position,
velocity, and attitude of the vehicle. In order to incorporate the uncertainties present in the
IMU error sources, an augmented state vector, xaug, is defined to be the standard state vector,
x, concatenated with all of the accelerometer and gyroscope error parameters except those that
are characterized as white-noise sequences. All of the white-noise error parameters are collected
together as the vector waug. With these definitions, a new nonlinear dynamical system can be
constructed for the augmented state vector, which is given by

xaug,k = faug(xaug,k−1,waug,k−1) . (17)

where xaug,k and xaug,k−1 are the (augmented) state at times tk and tk−1 respectively.
This dynamical system describes the evolution of the position, velocity, and attitude of the

vehicle, as well as the non-white-noise error parameters associated with the IMU. The nonlinear
equation in Eq. (17) is then linearized about some reference truth, x∗

k, similar to how the extended
Kalman filter is linearized about the current state estimate. The resulting linearized dynamical
system is used to construct the covariance propagation equation

Pk = Fk−1Pk−1F
T
k−1 +Mk−1Qk−1M

T
k−1 , (18)

where Pk represents the covariance at time tk. In Eq. (18), Fk−1 is the tangent linear dynamics
evaluated along the reference state and nominal IMUmodel parameters,Mk−1 is the Jacobian of the
state with respect to the white-noise sequence parameters, and Qk−1 is the process noise covariance
matrix that represents the statistics of the white-noise sequence. This covariance, represented by
Eq. (18), represents the covariance of the full augmented state vector; to investigate and analyze
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the uncertainties characterizing the position, velocity, and attitude of the vehicle, the corresponding
elements can be extracted.

The linear covariance approach can also be used to investigate the effects of acquiring external
sensor data, such as that from a GPS sensor, an altimeter, a range sensor, or a magnetometer,
among others. External data is generally employed to reduce the uncertainty that is present in the
prediction of the translational and rotational states of a vehicle. By combining external data with
IMU data, lower uncertainties can be obtained; however, this means relying on data regarding the
external environment, which can lead to sensitivities in data quality and reliability. The external
data are, in general, taken to be of the form

zk = h(xaug,k) + vk ,

where vk represents the measurement noise of the sensor at time tk, which is taken to be zero mean
with covariance Rk. When presented with this external measurement data, the linear covariance
method updates the covariance through a blending of the a priori state information and the newly
acquired external measurement data via

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KRkK
T ,

where Kk is the Kalman gain, which is given by

Kk = P−
k H

T
k

(
HkP

−
k H

T
k +Rk

)−1
.

Whereas the nonlinear dynamics function, faug(·), and the tangent linear dynamics matrix, Fk−1,
are key in the propagation stage of the linear covariance method, the nonlinear measurement
function, h(·) and its associated tangent linear matrix, Hk, are critical for the update stage of the
linear covariance method.

4.0 RESULTS AND DISCUSSION

4.1 Trajectory Simulation

In order to provide the trajectory input to SAIMUN that is outlined in Section 3.1, a ground
vehicle was used to log acceleration and angular velocity data using a VectorNav VN-1001 IMU.
The VN-100 logged data at 40 Hz during a trajectory that took approximately 41 minutes to
complete. A smoother was implemented to decrease the effect of noise on the recorded acceleration
and angular velocity data. The smoothed acceleration and angular velocity data were dead-reckoned
from a known starting condition to provide the true trajectory for SAIMUN to use. The dead-
reckoned trajectory is not perfectly representative of the trajectory followed by the vehicle; however,
for the purposes of applying SAIMUN and analyzing IMU-based navigation performance, the dead-
reckoned trajectory is taken to be the true trajectory.

4.2 IMU Selection

To demonstrate the utility of SAIMUN, two inertial measurement units are compared: the Lord
Microstrain 3DM-GX3-152 and the Analog Devices ADIS164883. Both IMUs utilize MEMS sensors

1http://www.vectornav.com/Downloads/Support/PB-12-0002.pdf, accessed 04/21/2014
2http://files.microstrain.com/3DM-GX3-15-Inertial-Measurement-Unit.pdf, accessed 04/21/2014
3http://www.analog.com/static/imported-files/data sheets/ADIS16488.pdf, accessed 04/21/2014
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to provide triaxial accelerometers, gyroscopes, magnetometers, and a pressure sensor. The IMUs
are implemented to provide dead-reckoning navigation of a ground vehicle trajectory.

For this analysis, only the accelerometer and gyroscopic information is of interest. Table 1 shows
the pertinent specifications for both of the chosen IMUs. These IMUs are interesting to compare
due to the differences between the random walk and bias instability specifications. Table 1 shows
that the ADIS16488 has a higher random walk specification and thus more white noise present
in the signal. The 3DM-GX3-15, on the other hand, has a higher bias instability specification.
The higher bias instability and lower random walk specifications of the 3DM-GX3-15 compared to
the ADIS16488 imply that the position and attitude uncertainty associated with the 3DM-GX3-15
will grow more slowly than the ADIS16488 initially. Eventually, the position, velocity, and atti-
tude uncertainty associated with the 3DM-GX3-15 will grow larger and surpass their counterparts
associated with the ADIS16488 as time increases.

Table 1. IMU Specifications for the ADIS16488 and 3DM-GX3-15

Specification 3DM-GX3-15 ADIS16488

A
cc
el
er
om

et
er
s

Analog-to-Digital Converter Bitrate 16 32

Range ±156.96 m
s ±176.58 m

s

Scale Factor Error U(−500, 500) ppm U(−5000, 5000) ppm

Axes Nonorthogonality Error U(−103, 103) arcsec U(−126, 126) arcsec

Axes Misalignment Error U(−103, 103) arcsec U(−3600, 3600) arcsec

Velocity Random Walk 0.0007848m/s√
hr

0.029 m/s√
hr

Bias Instability 0.0003924 m
s 0.000981 m

s

Bias Instability Time 100 s 100 s

Startup Bias U(−0.0196, 0.0196) m
s U(−0.016, 0.016) m

s

G
y
ro
sc
op

es

Analog-to-Digital Converter Bitrate 16 32

Range ±600 deg
s ±450 deg

s

Scale Factor Error U(−500, 500) ppm U(−100, 100) ppm

Axes Nonorthogonality Error U(−103, 103) arcsec U(−180, 180) arcsec

Axes Misalignment Error U(−103, 103) arcsec U(−3600, 3600) arcsec

Angular Random Walk 0.03 deg√
hr

0.3 deg√
hr

Bias Instability 18 deg
hr 6.25deg

hr

Bias Instability Time 100 s 100 s

Startup Bias U(−0.25, 0.25) deg
s U(−0.2, 0.2) deg

s

4.3 Performance Metrics

In order to assess the performance of an IMU for a given trajectory the standard deviation in the
position, velocity, and attitude is utilized as the performance metric. Because the ADIS16488 and
the 3DM-GX3-15 are both relatively low-end IMUs, two cases are considered: Case 1 analyzes only
the first 500 seconds of the entire 41 minute trajectory while Case 2 analyzes the entire 41 minute
trajectory.
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Figure 12. Position Standard Deviation as a Function of Time for the ADIS16488 and
the 3DM-GX3-15 IMUs: Case 1

4.3.1 Standard Deviation in Position and Attitude. In order to quantify uncertainty in
the position, velocity, and attitude states, the standard deviation, or square root of the second-
central moment, is calculated and plotted as a function time based on the Monte Carlo samples
or the linear covariance estimate. The position and attitude standard deviations computed for the
ADIS16488 and 3DM-GX3-15 IMUs can be found in Figs. (12) and (13) respectively for the Case
1 trajectory with velocity omitted for brevity. Due to the similarity between the strapdown and
space stabilized metrics, only the strapdown results are presented. As was stated in Section 4.2,
the ADIS under-performs against the 3DM at the beginning of the run, but this switches within
the Case 1 bounds. Through the rest of the run, the ADIS continues to outperform the 3DM. The
Case 2 plots are omitted for the IMU comparison for conciseness; after the 500 second mark, the
two IMUs continue to diverge.

To test the validity of linear covariance analysis, the standard deviation of the position, velocity,
and attitude for the strapdown mechanization are plotted against the same metric computed via
Monte Carlo simulation. The results for Case 2 are shown in Figs. (14)–(16). With the exception
of the z component of the velocity in Fig. (15), the linear covariance and Monte Carlo analyses
match very closely. The standard deviations observed from Case 1 are so nearly identical, the plots
were not included.

Similarly to the strapdown mechanization, the space stabilized results from linear covariance
and Monte Carlo match quite closely with the exception of the velocity z component. When
scrutinized, the deviation of linear covariance from Monte Carlo is smaller when the space stabilized
mechanization is implemented. This is to be expected due to the nature of the dynamics. Newtonian
mechanics produce the simplest result when the acceleration components occur naturally in the
inertial frame which is the intent of a space stabilized mechanization. Conversely, the accelerations
obtained via a strapdown mechanization must be converted from the body to the estimated inertial
frame.
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Figure 13. Attitude Standard Deviation as a Function of Time for the ADIS16488 and
the 3DM-GX3-15 IMUs: Case 1
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Figure 14. Position Standard Deviation for the ADIS16488 in a Strapdown Mecha-
nization: Case 2
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Figure 15. Velocity Standard Deviation for the ADIS16488 in a Strapdown Mecha-
nization: Case 2

0 400 800 1,200 1,600 2,000 2,400
0

5

10

σ
θ 1

[d
eg
] MC

LC

0 400 800 1,200 1,600 2,000 2,400
0

5

10

σ
θ 2

[d
eg
]

0 400 800 1,200 1,600 2,000 2,400
0

5

10

Time [s]

σ
θ 3

[d
eg
]

Figure 16. Attitude Standard Deviation for the ADIS16488 in a Strapdown Mecha-
nization: Case 2
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Figure 17. Position Standard Deviation for the ADIS16488 in a Space Stabilized
Mechanization: Case 2
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Figure 18. Velocity Standard Deviation for the ADIS16488 in a Space Stabilized
Mechanization: Case 2
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Figure 19. Attitude Standard Deviation for the ADIS16488 in a Space Stabilized
Mechanization: Case 2

Table 2. External Aiding Configuration

Sensor Start Time (s) Finish Time (s) Meas. Spacing (s) Sensor Noise

Range/Range-Rate 0 150 10 0.1 m-m/s
Stellar Line-of-Sight 400 600 10 20 arcsec
Bearing Angles 800 1000 0.1 20 arcsec

4.3.2 Standard Deviation with External Aiding. The effects of the three external sensors
(range/range-rate, stellar line-of-sight, and bearing angles) on the standard deviation growth for
the space stabilized mechanization are presented in Figs. (20)–(22). The sensors are run according
to the values given in Table 2. The figures show the ADIS with varying levels of external aiding:
unaided, range/range-rate and stellar line-of-sight, and stellar-line-of-sight and bearing angles. It
should be noted that the noise associated with each of the sensors is assumed to be zero-mean
white noise.

Based on the standard deviation growth pattern, although the late stage bearing angles sig-
nificantly reduce translational uncertainty, initial range/range-rate measurements are much more
beneficial.

As a demonstration of the flexibility of the tool, Figs. (23)–(25) depict a hypothetical case study
attempting to determine a combination of sensors that produces standard deviation growth similar
to a “tactical” grade IMU. Shown is an unaided fictional tactical IMU (achieved by reducing error
sources in the ADIS IMU), an unaided ADIS, and an aided ADIS. Based on this analysis, a user
could determine that the use of the three presented external sensors could ensure the uncertainty
growth associated with an ADIS IMU would be comparable to the tactical IMU. A user could then
confidently assume that the purchase of a costly high-grade IMU would be unnecessary provided
that the external sensor data is available via the additional sensors. These results are easily obtain-
able with minimal computational effort. Had a case study of this sort been attempted in a Monte
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Figure 20. Position Standard Deviation from the ADIS16488 in a space stabilized
mechanization with and without external aiding. EA1 utilizes range/range-rate and
stellar line-of-sight measurements, while EA2 utilizes stellar line-of-sight and bearing
angles.
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ẋ
[m

/s
] Unaided

EA1
EA2

0 100 200 300 400 500 600 700 800 900 1,000
0

100

200

σ
ẏ
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Figure 21. Velocity Standard Deviation from the ADIS16488 in a space stabilized
mechanization with and without external aiding. EA1 utilizes range/range-rate and
stellar line-of-sight measurements, while EA2 utilizes stellar line-of-sight and bearing
angles.
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Figure 22. Attitude Standard Deviation from the ADIS16488 in a space stabilized
mechanization with and without external aiding. EA1 utilizes range/range-rate and
stellar line-of-sight measurements, while EA2 utilizes stellar line-of-sight and bearing
angles.

Carlo simulation (with external aiding utilities), this process would have required a much larger
computational burden.
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Figure 23. Position standard deviations resulting from an unaided tactical IMU and
the ADIS16488 IMU with and without external aiding in a space stabilized mecha-
nization. All three sensors listed in Table 2 are utilized.
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Figure 24. Velocity standard deviations resulting from an unaided tactical IMU and
the ADIS16488 IMU with and without external aiding in a space stabilized mecha-
nization. All three sensors listed in Table 2 are utilized.
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Figure 25. Attitude standard deviations resulting from an unaided tactical IMU and
the ADIS16488 IMU with and without external aiding in a space stabilized mecha-
nization. All three sensors listed in Table 2 are utilized.
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5.0 CONCLUSIONS

Before choosing an IMU and external sensors to be implemented in a navigation system, SAIMUN
can be used to analyze the performance of the full sensor suite along a given trajectory or trajec-
tories. When comparing the Lord MicroStrain 3DM-GX3-15 and the Analog Devices ADIS16488
IMUs in the navigation of an example vehicle trajectory, the lower random walk specification of
the 3DM-GX3-15 causes its associated uncertainty to grow at a slower rate during the beginning
of the trajectory; however, the higher bias instability of the 3DM-GX3-15 causes its associated
uncertainties to grow faster and overtake the uncertainties associated with the ADIS16488. For
these IMUs, 425-500 seconds is observed to be the approximate window in which the performance
of the IMUs is most similar, as quantified by the standard deviations. Before this window, the
3DM-GX3-15 provides a more accurate navigation solution. After this window, the ADIS16488
provides a more accurate navigation solution. SAIMUN allows this trade study to be performed
before purchasing or testing any hardware and will allow for larger trade spaces to be investigated
virtually, obtaining, building, or testing any physical IMUs.

SAIMUN enables both gimbal- and strapdown-based navigation systems to be analyzed virtually
in the developed simulation environment. An IMU error parameterization and a trajectory are
defined in the simulation environment along with a variety of external sensors, including their own
error parameterizations. To provide validity of the unaided linear covariance analysis, both linear
covariance and Monte Carlo analyses can be run in the same simulation. With linear covariance
analysis verified via Monte Carlo analysis, the external aiding sensors can be added to the simulation
and Monte Carlo can be removed.

Currently, SAIMUN is capable of rendering navigation solutions for gimbal- and strapdown-
based navigation systems, while considering IMU error sources due to startup bias, bias instabil-
ity, thermo-mechanical zero-mean white noise, scale factor errors, axes misalignment errors, axes
nonorthogonality errors, and quantization effects caused by analog-to-digital conversion. Where
appropriate, SAIMUN allows for a selection from multiple probabilistic representations of the IMU
error sources, such as Dirac, Gaussian, and uniform distributions. The structure of SAIMUN sup-
ports future extensions, such as additional IMU mechanizations, IMU parameter errors, error source
distributions, and sensors. On the analysis side of SAIMUN, this is also true; that is, analyses ex-
tending beyond those presented in this report can be incorporated. The simulation and analysis
environment is designed to be modular such that these modifications are straightforward to imple-
ment within SAIMUN.

Multiple possibilities for external aiding are incorporated into SAIMUN, such as range/range-
rate measurements, stellar line-of-sight measurements, and bearing angles measurements. SAIMUN fa-
cilitates analysis that combines both IMU and external aiding data to investigate the possible nav-
igation accuracy of aided or unaided navigation solutions. In this way, SAIMUN can be used to
determine if a lower cost IMU can be paired with a set of external sensors to achieve similar or
better performance as a higher cost IMU. It is shown that combining all three external sensors with
a MEMS IMU can, for the trajectory investigated, lead to similar navigation accuracies as would
be achieved with a fictitious tactical grade IMU.
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AIRS Advanced Inertial Reference Sphere

CM Center of Mass

EKF Extended Kalman Filter

FPA Focal Plane Angles

IMU Inertial Measurement Unit

MEMS MicroElectricalMechanical Systems

ng non-gravitational

pdf Probability Density Function

QUEST Quaternion Estimation

SAIMUN Simulation and Analysis of IMU-based Navigation

VRW Velocity Random Walk
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