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ABSTRACT 

The use of inertial-measurement units (IMUs) for personal navigation is 

investigated in this thesis. IMUs lack a position-finding algorithm that optimally blends 

sensor data to achieve high accuracy in a GPS-denied environment. In this research, 

software and a methodology for tracking position using body-mounted IMUs, building on 

a gait-phase detection algorithm and quaternion-based complementary filter developed at 

the Naval Postgraduate School, is developed. The performance of a consumer-grade 

nine-degrees-of-freedom IMU is characterized and alternative sensor placements 

evaluated to determine optimal mounting location or locations. Measurements were fused 

from gyroscope, accelerometer, and magnetometer sensors to create a single, virtual 

IMU. In addition, measurements from a distributed system of IMUs, as well as multiple 

co-located IMUs, were averaged to find performance enhancements. Software was 

developed to streamline and integrate position solutions into a larger network of 

capabilities. Results show that the foot is the optimal mounting location, and other 

placements degrade performance. Averaging measurements from multiple IMUs at one 

location improves performance but with diminishing returns as the number of IMUs 

increase. We recommend that multiple IMUs be printed on the same MEMS circuit board 

to achieve accuracy by fusing the measurements of co-located sensors. 
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I. INTRODUCTION 

The work accomplished by a series of Naval Postgraduate School researchers is 

continued in this thesis. In addition, the enhanced position finding techniques developed 

for this report have already found a real-world application; they will be used as a 

technology demonstrator to locate dismounted infantry soldiers in a Global Positioning 

System (GPS) denied environment. The true number of alternate applications is only 

limited by imagination. 

A. IMPORTANCE OF POSITION 

Position knowledge—or more specifically, accurate, precise, and timely position 

data—is essential to safe and efficient navigation in the increasingly congested air, land, 

and sea environments of today. Recent technological leaps in position accuracy have 

made guidance and navigation technologies commonplace and irreplaceable. To improve 

aircraft routing and de-confliction, the aerospace industry has begun replacing legacy 

air-traffic-control radar systems with aircraft-reported latitude, longitude, and altitude [1]. 

On land, smartphone-equipped drivers avoid traffic jams in real time, using 

downloadable software for guidance and route planning. The majority of these 

applications depend on the integrity of GPS signals, which the military has utilized in 

many vital ways—for example, to place a position-of-interest onto a military 

grid-reference system to call airstrikes on enemy combatants. GPS signals are physically 

limited and cannot penetrate many locations where position knowledge is critical to 

mission success. 

1. How GPS Works 

GPS consists of L-band signals sent from satellites 20,200 km above the Earth’s 

surface [2]. By the time these signals reach users, they are very weak, attenuated to as 

low as −158.5 dBW [3]. A GPS receiver may be unable to acquire position data if the 

signal is blocked by man-made or natural obstructions such as the hull of ships, buildings, 

or canyons, or is lost in radio frequency interference that creates a GPS-denied 

environment. Four to six satellite signals are required to obtain a position fix [4]. For high 
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accuracy, an unobstructed path from satellite to user, with a clean signal and optimal 

satellite positioning, defined as a wide spread of satellites across the sky to produce a low 

geometric dilution of precision, is ideal [5]. In problematic environments, GPS 

performance can plummet from high accuracy (e.g., estimating location within 2.5 m 

with 95% confidence) to abysmal accuracy (results within 2,000 m). In practice, a 

receiver typically swings from high accuracy to no position fix, quickly skipping through 

the lower quality estimations. This sudden lack of service may result in confusion, 

reduced efficiency, and degraded situational awareness for the military user, undermining 

the probability of mission success.  

2. Benefits of IMUs 

Inertial-measurement units (IMUs) are devices that contain an assortment of force 

feeling sensors such as gyroscopes, accelerometers, and magnetometers. The chief 

benefit of IMUs is their very high dependability, but they do not come near the accuracy 

of GPS in determining position. While GPS accuracy remains steady over time, IMU 

accuracy degrades because dead reckoning is used to determine location. IMU sensors 

that detect movement, such as accelerometers and gyroscopes, are subject to many 

sources of error that corrupt measurements, and errors may bleed between instruments, 

e.g., from gyroscope to accelerometer, causing the total errors from different sensors to 

multiply together and accumulate over time. Without an outside source to correct position 

errors, IMU performance may degrade to unusable levels. Nevertheless, IMUs have the 

advantage of providing position information during those times GPS cannot. A person or 

system using an IMU as a position reference can enter a building, ship, canyon, jammed 

area, or any other GPS-denied or degraded environment without fearing a sudden loss of 

location data. 

3. Improving IMU Performance 

To boost the accuracy of IMUs, special processing algorithms for both real-time 

use and post-data collection are developed. Noisy and seemingly inaccurate data is 

digitally filtered to amplify desirable signals and attenuate others. Other software detects 

each footstep of a walking IMU user, categorizing data according to stance or swing 
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phase and enhancing measurements from specific sensor types (e.g., gyroscopes). 

Previous testing suggested that one type of sensor may perform better than others in a 

given gait-phase of walking. For example, a gyroscope may provide a better estimation of 

swing-phase measurements than an accelerometer; therefore, gyroscope data is amplified 

during the swing phase while the accelerometer is de-emphasized. In this way, position 

accuracy is significantly improved by accepting only the best data available at a given 

time.  

Data selection is optimized by detecting the user’s walking phase to reveal 

sensor-error biases in the stance phase. This knowledge is used to make corrections in the 

swing phase. In effect, what was once a debilitating negative (i.e., error bias) can now be 

identified and eliminated. Through this process, the user’s final position, as well as his or 

her exact route of travel, can be estimated with surprising accuracy [6]. Three key 

advances in personal navigation are investigated: the use of software filtering to reduce 

the negative effects of sensor errors; improvement in performance owing to the optimal 

distribution, mounting, and selection of sensor types; and the combination of multiple 

co-located IMUs to enhance accuracy in a fused system. The overall purpose is to 

investigate the IMU as an alternative that may reduce or replace reliance on GPS. 

B. RETICLE 

This project contributes to a larger, multifaceted effort known as “Reticle.” 

Reticle is a network-centric warfare system developed at the Naval Postgraduate School 

(NPS) as a complete proof-of-concept for offloading the geometry-of-fires problem from 

the ground soldier to a networked system by means of a robust, lightweight, low-cost, 

easy-to-use solution. Reticle connects users through a network [7], determines their 

rifle’s orientation [8], and accurately reports each user’s position without the aid of GPS. 

The latter objective, that of freeing positional systems from GPS, is explored in this 

thesis. 

1. The Geometry-of-Fires Problem 

Riflemen expend considerable effort in preventing accidental casualties by 

de-conflicting weapons employment among individuals within a unit and between units. 
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Currently, it is every soldier’s responsibility to visually confirm there are no friendly 

forces within range of their weapons. This requires constant situational awareness and is 

manageable with a clear line-of-sight; however, the risk of friendly fire increases when a 

group of soldiers enter a disorientating environment, e.g., inside a building or ship, where 

bullets may penetrate a thin wall, striking friendlies. Ensuring proper geometry-of-fires is 

essential to completing an infantry mission safely but is complicated in its execution [8].  

2. Reticle Subprojects 

Reticle also contains other subprojects that have been completed or are near 

completion by NPS students such as a battlefield-communications solution that 

automatically notifies a teammate or commander when a soldier fires and provides the 

weapon’s orientation to indicate the direction of the enemy. Historically, soldiers have 

used radio to notify the commander when hostile forces are encountered. Delays in 

notification, which may postpone the arrival of reinforcements and redirect focus from 

the firefight, endanger troops and reduce the chances of mission success [9]. Another 

Reticle project improves position-finding techniques by adding special logic to determine 

the stance of a soldier. This posture-detection algorithm supplements existing algorithms 

for walking and standing by detecting kneeling and prone positions as well. Posture 

detection increases the suitability of IMU-based navigation by eliminating system errors 

in a much wider range of posture modes [10]. If a soldier lies prone for hours, for 

example, currently available inertial sensors steadily drift in error by several thousand 

meters, and the reported position diverges from the true location, rendering the system 

useless. With posture-detection logic, this drifting is prevented and the reported position 

remains steady, allowing soldiers and commanders to be confident of its accuracy. 

Although this project is primarily focused on improving personal navigation, 

projects like Reticle exemplify what can be accomplished by achieving this objective. An 

accurate inertial position finding technology has the capability to increase the combat 

effectiveness of ground soldiers by answering vital needs identified by warfighters. With 

the continuing rapid advances in the performance of low-cost inertial sensors and 

continual miniaturization of electronic systems, it can be expected that the 
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geometry-of-fires problem will be solved, freeing riflemen to focus more on their 

mission.  

C. PREVIOUS WORK 

In this thesis, work completed in 2010 by James Calusdian that created a personal 

navigation system (PNS) is built upon. In his doctoral research at NPS, Calusdian created 

a gait-phase detection algorithm in conjunction with custom processing functions that 

determine user position. These algorithms rely on measurements derived from a single 

IMU mounted atop the user’s foot, that is, on the instep. Gyroscope measurements were 

relied upon heavily during the swing phase of walking, while accelerometer and 

magnetometer measurements were strongly weighted in the stance phase. Calusdian’s 

PNS proved quite accurate, yielding an error of only 1.0 m after 400 m of walking. This 

is especially impressive considering that the IMU tested was manufactured in 2006; 

modern IMUs are considerably more accurate [11]. 

The PNS achieved a relatively high level of accuracy by significantly reducing 

IMU errors through an error-reduction method known as zero-velocity updates (ZUPT). 

With this technique, the foot-mounted IMU recalibrates every time the foot strikes the 

ground. The error biases identified by this software recalibration are then removed from 

the previous swing-phase measurement, resulting in significantly improved position 

accuracy.  

Another set of functions was created by Calusdian to work synergistically with 

the ZUPT and calculate user position. The overarching algorithm to complete this task is 

a quaternion-based complementary filter derived from an earlier NPS-produced factored 

quaternion algorithm (FQA), which was modified in the course of this research to 

improve robustness. The FQA computes pitch and roll from accelerometer measurements 

and heading from magnetometers. Distance traveled is found by integrating gyroscope 

measurements. This strategy proved to work well [11]. 
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D. THESIS OBJECTIVE  

The objectives of this thesis are fourfold:  

1. To determine whether the performance of modern, low-cost IMUs has 

improved in the decade since the original PNS testing was completed. This is 

found by repeating Calusdian’s experimental procedures and comparing 

results.  

2. To determine whether distributing different sensor types by attaching them at 

different body locations improves performance; for example, by mounting a 

gyroscope on the foot and an accelerometer and magnetometer on the lower 

back.  

3. To determine whether averaging multiple co-located sensor modules improves 

performance.  

4. To integrate filtered position data from the sensor modules into the 

purpose-built Reticle software-analysis tool developed in this research.  
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II. BACKGROUND 

Key developments in the history of navigation are presented in this chapter. In the 

past 100 years, the field of navigation has made radical advances. Historically, reliable 

marine navigation for commerce and war was the primary motivation for improvement, 

and significant advances were few and far between. Not until the 18th century did the 

ingredients for a technological revolution come together. 

A. A BRIEF HISTORY OF POSITION FINDING 

Volumes have been written about minor inventions having major impacts. From 

accurate timepieces for determining longitude at sea to a laser to determine orientation, 

each application of a new position-finding technology created a sea change within the 

realm of navigation.  

1. Longitude 

 Accurate position information has been highly coveted for hundreds of years. 

The most concentrated effort to advance navigation occurred after four British warships 

sailed onto rocks near the Isles of Scilly and sank, killing 2,000. Seeking to avoid other 

navigational disasters, Parliament passed the Longitude Act of 1714, which offered 

£20,000 ($4.8 million in today’s U.S. dollars [12]) for a simple and accurate method of 

determining longitude.  

In that era, captains at sea used a sextant to get a bearing on a celestial body and 

used the measurement to calculate latitude, but this solved only the north-south half of 

the problem. Longitude remained elusive. Captains typically had proprietary formulas for 

calculating their east-west positions, which resulted in a dangerous amount of 

overconfidence as they were usually based on constantly changing variables that might 

include tossing logs overboard to gauge speed, using a magnetic compass and sandglass, 

and interpreting currents and winds. These techniques steered thousands of sailors to a 

watery grave, so most oceangoing captains kept to heavily traveled routes, reaching their 

destination by cruising to the target latitude and then turning east or west as required. The 
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routes attracted pirates and were inefficient, since a constant latitude on a sphere is longer 

than a great-circle route [13]. 

2. The Harrison Sea Clock 

The solution to longitude came from the English clockmaker John Harrison, who 

presented his first sea clock to Parliament in 1730 and refined the design over 40 years. 

Accurate to within one second a month, Harrison’s sea clocks were a tremendous 

improvement over contemporary timepieces, the best of which drifted 30 minutes per 

month. To determine longitude, the Harrison clock was synchronized with an 

authoritative land clock—typically at the Greenwich or Paris observatories. Once 

underway, the captain compared local noon (the sun’s highest point) to the time on the 

sea clock. Since the earth rotates 15° every hour, he subtracted the time from 12:00 and 

multiplied the decimal difference by 15 to find the degree of longitudinal change. 

Clock-derived longitude was combined with sextant-derived latitude to determine 

coordinates [13]. 

Knowing latitude and longitude was sufficient for travel by sea and land, but with 

the invention of aircraft, more than just position was needed since a pilot must also know 

attitude.  

3. Early Mechanical Spinning Gyroscopes 

In 1944, the final years of World War II, German scientists made use of two 

mechanical spinning gyroscopes to stabilize the pitch and heading of a V-2 rocket along 

with an accelerometer to determine velocity. Large spinning gyroscopes had been in use 

for several years to steady ships per the conservation of angular momentum, but the 

addition of an accelerometer was revolutionary because it enabled distances to be 

measured. Although rudimentary by today’s standards, the accelerometer on the V-2 was 

effective in determining the speed of the rocket. Calculations were performed prior to 

launch to determine an engine cutoff speed that would enable the rocket to glide directly 

to the target, and the result was programmed into the V-2’s onboard analog computer. 

This surprisingly accurate missile struck within 6 km of a programmed target 50% of the 

time when launched from a distance of a few hundred kilometers [14].  
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Another German application of spinning gyroscopes was the V-1 flying “buzz” 

bomb, which used a rudimentary autopilot consisting of two mechanical gyroscopes spun 

up with compressed air to control pitch and yaw. An anemometer on the nose determined 

whether the bomb had traveled the set distance; if so, it dove steeply, typically landing 

within 11 km of the target. This level of accuracy is rough but was capable of terrorizing 

civilians in a metropolis such as London. Guidance systems from unexploded V-1s were 

recovered, reverse engineered, and used as a template for the American LTV-N-2 Loon 

rocket. A Loon guidance system is housed at NPS, as seen in Figure 1.  

 

 

Figure 1.  LTV-N-2 Loon Rocket Guidance System 
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After the war, Operation Paperclip brought German guidance technology to the 

U.S. by importing scientists such as Wernher von Braun to integrate German innovations 

into the U.S. arsenal [15]. Mechanical gyroscopes eventually became quite reliable and 

accurate, and their application transitioned from stabilizing airborne platforms to being 

packaged into an IMU with accelerometers as a navigation aid. These IMUs, commonly 

called inertial-navigation systems (INS), provided true heading and position estimates 

more accurately than ever before. Despite delivering such a useful capability, mechanical 

IMUs had several drawbacks. The spinning gyroscopes were large and heavy, typically 

around 23 kg (50 lb) and required alignment times around 30 minutes—undesirable for 

use in fighter aircraft, which have limited space, fly best when light, and must scramble 

start and launch on short notice. A shorter alignment can be accomplished with a 

stored-heading alignment but lacks the performance seen in the full performance 

gyrocompass alignment. Any replacement for the mechanical gyroscope had to be lighter, 

equally reliable, require short alignment times, and match or exceed accuracy. The 

solution was the laser-light gyroscope.  

4. Laser-Light Gyroscopes 

Modern inertial-navigation systems were developed in the 1980s with aerospace 

applications of the ring-laser gyroscope (RLG). This non-spinning, gimbal-less 

gyroscope can be implemented as a “strap-down” system [16]; unlike a spinning 

gyroscope of fixed orientation with respect to earth, a laser-light gyroscope can be bolted 

to an aircraft’s airframe and move with it. The gyroscope no longer needed to be fixed to 

an earth-centered inertial (ECI) reference but is now oriented to the variable movement of 

the aircraft itself as it maneuvers. The INS converts measurements to a local fixed 

reference frame such as earth-centered, earth-fixed (ECEF) through onboard computers. 

The difference between gimballed gyroscopes and RLGs is not limited to initial frames of 

reference, and their technologies for detecting rotation are vastly different [17]. 

RLGs operate by determining a frequency difference between 

counter-propagating laser-light beams, splitting the laser beam and sending the split light 

in opposite directions around a triangular or square closed path (or “ring”) of 
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low-expansion glass. Mirrors at each corner redirect the laser to another mirror until the 

light reaches the starting point and light waves are allowed to interfere with each other in 

front of a sensor. When the RLG is stationary, both split beams have the exact same 

frequency. As it rotates, the frequency of the laser light increases or decreases depending 

on the direction of rotation. If the direction of the gyroscope’s physical rotation is the 

same as the laser’s, the light frequency increases, if opposite, the frequency decreases. 

This causes a beat frequency, a slight frequency difference that causes destructive 

interference and a fringe pattern of light. The beat frequency is proportional to the rate of 

rotation, and the direction of the interference fringe pattern correlates to the direction of 

rotation. This process is precise. As a strap-down system, RLGs can directly measure 

own-ship angular rates. Modern medium-grade RLGs tend to drift 0.5–1.0 nautical miles 

per hour, weigh 10–50 pounds, and usually cost more than $50,000. The widespread 

adoption of RLGs is currently limited by their high cost, which reflects stringent 

manufacturing specifications and the need for a high voltage power source to produce the 

laser [18], [19].  

A slightly less expensive and newer gyroscope called the fiber-optic gyroscope 

(FOG) also uses laser light to determine angular rate. Like the RLG, the FOG measures 

the phase shift of a counter-rotating laser beam but contains up to 5,000 m of optical 

fiber, in contrast to an RLG’s path length of centimeters, theoretically enabling better 

measurement resolution. The FOG’s development occurred after the RLG, and its 

technology was not sufficiently reliable for INS applications until the late 1990s. They 

are still maturing, with smaller size and cheaper manufacturing costs incentivizing their 

development [20].  

Laser-light gyroscopes may be coupled with accelerometers to produce a 

dead-reckoning solution for navigation, but over a few hours, even the best INS tends to 

drift by a few kilometers. This increase of position error over time is a persistent problem 

with INS technology. When first used in aircraft, before GPS was available, special 

procedures were followed to offset cumulative error, but as these fix-taking methods 

depended on variables such as pilot technique and low altitude flyover of a reference 

point, they were not accurate. Because this method only updated position and did not 
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reduce drift-rate errors, multiple fix-taking attempts were required for each flight 

depending on the mission. Soon after the adoption of RLGs, another development 

emerged to fill INS performance gaps. This new space-based system revolutionized 

navigation by providing extremely accurate position updates. 

5. GPS  

The most visible 20th-century improvement in navigation technology is GPS, 

based on the “navigation system using timing and ranging” (NAVSTAR) program of the 

late 1970s. The system was made available for public use through a 1983 U.S. 

presidential directive. By the early 1990s, GPS satellites in orbit provided worldwide 

coverage, and in 2000, a feature known as selective availability, which purposely 

degrades the unencrypted L1 civilian signal to a position error of about 100 m, was 

turned off, again by presidential directive [21].  

GPS position measurements are more accurate than INS and do not drift over 

time. Federal Aviation Administration studies in 2014 showed a Rayleigh distributed 

horizontal error of less than 3.351 m 95% of the time, as averaged from 28 sites 

worldwide. Most measurements from this report showed errors of less than 2.0 m, 

indicating the user could generally expect even better performance [22]. 

The robustness and accuracy of the GPS constellation is continuously improved 

as new satellites with better technology replace legacy platforms that have exhausted 

their life cycle. Upgrades include broadcast capability for additional unencrypted GPS 

signals to supplement the existing 1575 MHz L1 signal. These new signals—including 

the 1227 MHz L2C, 1176 MHz L5, and an improved version of L1 called L1C—offer 

greater redundancy and accuracy, which is achieved by transmitting multiple signal 

frequencies at higher effective powers with improved signal structures. Future civilian 

receivers are expected to achieve sub-meter accuracy when the current civilian L1 signal 

is processed with at least two other signals (e.g., L2C and L5) through a technique called 

trilaning [23]. If the past is any indication of the future, the entire world will welcome the 

benefit of improved GPS position accuracy and reliability. 
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Despite efforts to improve GPS through increased effective signal power, 

modernized code structures, and additional frequencies, GPS remains limited by the 

physics of radio waves. Obtaining a reliable position depends on the device’s ability to 

receive unobstructed line-of-sight signals from at least four satellites orbiting at an 

altitude of 20,200 km in space, and there will always be countless scenarios in which a 

GPS receiver is blocked and rendered useless. Receivers require that GPS satellite signals 

have a specific carrier-to-noise ratio (C/N0), or equivalently a signal-to-noise ratio (SNR), 

in order for the receiver to obtain the position. Severe signal attenuation can occur under 

roofs, in urban canyons beside large buildings, under dense foliage, under water, or in 

tunnels. Alternatively, a GPS signal may not be attenuated, but the noise floor may be 

raised through intentional or unintentional GPS jamming; such radio-frequency 

interference can degrade the SNR such that the GPS signal is completely masked by 

artificial noise. Due to these problems in signal continuity, GPS cannot be relied upon as 

the sole navigational reference for a military personal navigation system (PNS).  

Although GPS is low-cost, light, and accurate, the fact that it can so easily be 

disrupted requires an additional positioning source. This problem is partly solved by 

synergistically blending GPS signals with INS measurements using a Kalman filter. 

Many air- and land-navigation systems incorporate a proprietary, blended-solution 

Kalman filter. Unfortunately, a laser-light INS is not practical in a man-portable 

navigational system because it is cumbersome, heavy, and expensive where a tiny, 

passive, low-cost solution is needed. 

6. MEMS 

The invention of micro-electromechanical systems (MEMS) has enabled the size 

of IMUs to be significantly reduced. MEMS miniaturization is accomplished by 

manufacturing the electronic and mechanical components on the same wafer. Like their 

larger cousins, MEMS measure physical phenomena but in a much smaller package, 

usually ranging from 1.0 mm to 0.001 mm. A key benefit of MEMS technology is that 

components can be manufactured very inexpensively [24]. One of the first 

implementations of MEMS technology was made in 1991, when an accelerometer was 
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integrated into a crash-detection system to sense vehicle collisions and trigger airbag 

detonation [25]. Other sensor types added to MEMS chips include the triaxial 

gyroscope—where three sensors of the same type are mounted orthogonally, allowing 

measurements along all three axes (e.g., X, Y, and Z). A triaxial gyroscope combined with 

a triaxial accelerometer allows six-degrees-of-freedom (6-DOF) measurements, 

specifically of linear acceleration and angular velocity. In this research, we utilize a 

nine-degrees-of-freedom (9-DOF) IMU, which adds a triaxial magnetometer to measure 

magnetic fields. Modern manufacturing methods have led to MEMS IMUs, which are 

much smaller and cheaper than RLG- and FOG-based systems but with comparatively 

poor accuracy—at least an order of magnitude inferior to non-MEMS counterparts. 

A chief benefit of MEMS-based IMUs is low cost. Prices plummeted with the 

worldwide adoption of smartphones, beginning with the Apple iPhone of 2007, which 

included a MEMS accelerometer. As consumers demanded more, manufacturing ramped 

up, production was streamlined, yield rates increased, and unit cost fell. In 2010, Apple 

added a MEMS gyroscope to the iPhone 4 to improve gaming performance, and most 

smartphones now have at least a 6-DOF sensing capability [26]. At the present time, a 

MEMS-based 6-DOF IMU can be purchased for under ten dollars [27]. Unfortunately, 

IMU performance has not increased as dramatically as prices have decreased, and PNS 

applications require performance-enhancing filtering techniques to deliver adequate 

accuracy. 

B. IMU CHARACTERISTICS 

IMUs are sensors that detect linear acceleration, rotational velocity (i.e., turning), 

and (depending on the model) magnetic orientation. Several companies combine 

MEMS-based accelerometers, gyroscopes, and magnetometers onto one integrated circuit 

(IC) board, currently available to consumers for $10 to $3,000 [27], [28]. There is a 

moderate correlation between the price of a sensor module and its advertised performance 

specifications. A few companies bundle software with their IMUs to provide a graphical 

user interface (GUI) for settings, calibration, and data-recording. Some products include 

onboard (i.e., Kalman) filtering for the IMU to create an attitude heading and reference 
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system (AHRS) [29]. One company offers a proprietary datalink to connect and 

synchronize several distributed sensors and telemeter their measurements to a waiting 

application [30]. As with most technologies, the price of raw sensor components has 

dropped over time as performance has improved.  

MEMS IMUs are essentially a miniaturized version of conventional sensor units. 

Most MEMS accelerometers are piezoelectric, acting as a transducer by converting a 

physical force exerted on a mass into an electric signal. The signal is produced by the 

piezoelectric material that suspends the mass, which proportionally reacts to the 

experienced linear acceleration [31]. Many MEMS gyroscopes convert angular velocity 

into an electrical signal through a similar transducer concept. Rotation causes physical 

displacement of a vibrating structure such as a tuning fork, creating an electrical signal 

correlated to a rate of rotation. Departing conceptually from these technologies, MEMS 

magnetometers determine a magnetic orientation by measuring changes in resistivity in a 

thin ferrous element whose resistance changes with the magnitude of a magnetic field 

perpendicular to the direction of current [32].  

These sensors applications represent only a fraction of the MEMS technologies 

now found in the marketplace. As new methods and improvements evolve, IMU price 

reduction is expected to continue, accompanied by a steady rise in performance. 

Companies that create IMUs and AHRSs periodically survey the status of MEMS sensor 

technology. When improvements reach the price threshold for a targeted market, they 

create a new IMU with updated MEMS hardware and filtering software to increase 

performance and reduce cost. Overall, the consumer benefits greatly from intense market 

competition. 

C. IMU/ SENSORS USED IN THIS RESEARCH 

MEMS-based sensor modules were acquired from YOST Labs (formerly part of 

YEI Technology). Sold at $255, the YEI 3-Space Data-Logging v2.0 AHRS is a 

sensor-fused module combining a triaxial accelerometer, gyroscope, and magnetometer 

onto one integrated circuit (IC). As shown in Figure 2, the module is about the size of 
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two universal-serial-bus (USB) flash drives placed side by side, measuring 35 mm × 60 

mm × 15mm (1.4 in × 2.4 in × 0.6 in) and weighing 28 grams (0.98 oz). 

 

 

Figure 2.  YEI 3-Space Data-Logging v2.0 AHRS 

The sensor module uses triaxial sensors and detects acceleration (via 

accelerometer), rotational velocity (via gyroscope), and magnetic orientation (via 

magnetometer) with respect to three dimensions. The module also provides a user option 

to send raw sensor data through a YEI proprietary onboard Kalman filter, resulting in 

smoother, more accurate outputs. The 3-Space module does not require a connected 

power source during operation, owing to a built-in rechargeable lithium battery with three 

hours of useful life. For all experiments, data were recorded in the included two gigabyte 

(GB) micro-secure-digital (microSD) card. Data from each test was recorded in a text file 

(TXT) and transferred to computer through a supplied micro-USB to USB cable. 

Additional tests were recorded to a file without overwriting previous recordings. The 

data-logging 3-Space module paired well with the investigations conducted for this 
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thesis. The only substantial problem with this sensor module was the laborious 

post-processing required to synchronize data from multiple simultaneously recorded 

sensors. A wireless version of the 3-Space module was available but lacked onboard data 

logging and simultaneous reception from multiple sensor modules; therefore, the 

data-logging variety was used exclusively. 

This research did not seek to create a Kalman filter for an IMU, as this was 

available through YEI technology. Apart from sensor characterization tests, raw sensor 

data were not recorded, and proprietary YEI Kalman filter output was saved onto the 

microSD card.  

The accelerometer integrated by YEI technology into the 3-Space module was the 

MMA8451Q digital accelerometer manufactured by NXP semiconductor. This triaxial 

MEMS accelerometer senses linear accelerations of ±2 g, ±4 g, or ±8 g, depending on the 

selected setting. The ±2 g setting provides 4096 counts/g, and the ±4 g setting, 2048 

counts/g [33]. This indicates higher precision in the measurement. It was originally 

assumed that the highest precision outputs offered by the ±2 g setting would give superior 

performance, but this proved false. Problems with sensor saturation emerged when the 

force encountered went above 4 g; therefore, the ±8 g setting with 1024 counts/g was 

used, resulting in a resolution of roughly 0.00096 g or ~1cm/s2. Though this setting does 

not have the highest resolution, it offers more than adequate performance. 

The unit “g” represents g-force, which is defined as 9.8065 m/s2 and does not 

change with location [34]. In Monterey, California the local g-force is equal to 9.7991 

m/s2 [35]. Therefore, the local g-force is: 9.7991/9.80665 = 0.99923g. 

The MEMS gyroscope used in the 3-Space module was the Maxim Integrated 

MAX21000, described by the manufacturer as an ultra-accurate, low-power, 3-axis, 

digital-output gyroscope [36].  Like the accelerometer, the gyroscope featured a triaxial 

configuration, allowing the measurement of rotational velocity around three axes. The 

gyroscope had several degrees-per-second (DPS) settings to choose from in the 3-Space 

configuration file, ranging from 250 DPS to 2,000 DPS. Note that the abbreviation 

“DPS” is used extensively for gyroscope specifications in place of the abbreviation “°/s” 
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or “deg/s.” In this report, those three abbreviations all represent a unit of degrees per 

second. Testing revealed that any setting less than 2,000 DPS resulted in inaccurate data, 

owing to sensor saturation, which occurred when a foot-mounted sensor module was 

walked down a straight, long hallway. Saturation was easily identified in gyroscope 

magnitude data by a plateauing effect in the measurements, in which the maximum value 

was restricted to the corresponding gyroscope setting (e.g., 250 DPS). If only the 

step-plot was monitored, saturation was not nearly as recognizable because the overall 

shape of the test run remained the same. The distance between each footstep that 

exceeded the DPS setting was reduced because of the angular-rate cutoff, which had the 

effect of reducing total distance traveled without affecting the direction of travel. When 

each step was integrated, the resulting distance estimate was incorrect, though the shape 

of the plot matched the user’s traveled route. For example, if the straight, long fifth-floor 

hallway of the engineering building was walked with a sensor module on the foot, the 

processing algorithms estimated the path length at 135.0 m instead of the true 228.0 m. 

The plot was straight, but the scale was reduced. These saturation problems were 

prevented by selecting the gyroscope’s highest measurement setting of 2,000 DPS, which 

yielded a resolution of 15 digits/DPS as given in the supplied YEI technology data sheet. 

This is equivalent to a resolution of 0.06  DPS about each axis [36]. Gyroscope 

performance is more important than accelerometer or magnetometer for personal 

navigation, and this phenomenon is explained in the next section. 

The MEMS magnetometer used in the 3-Space module was the Honeywell 

temperature-compensated HMC5983 three-axis digital compass IC [37]; in this thesis, 

“magnetometer” is synonymous with “compass”. The magnetometer was designed for 

use in a low-field magnetic environment, such as that typically seen in personal 

navigation applications. YEI lists the 3-Space module as having a 1° to 2° heading 

accuracy with its HMC118X magnetoresistive sensors. As with the accelerometer, lower 

maximum sensor settings result in higher-precision readings. To find a balance between 

resolution and range, multiple tests were completed to find the lowest magnetometer 

setting that could be used without causing sensor saturation. These tests were performed 

in a long fifth floor corridor inside the engineering building, because it was assumed that 
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this environment, including electrical wires passing current within the walls, would 

provide a suitable peak magnetic value. The lowest available setting, 1.9 Gauss, was 

determined suitable, as it did not saturate the magnetometer. The resulting digital 

resolution at that setting was 1.22 mili-Gauss per least significant bit over a range of 

−2048 to 2047 bits [37]. The integration of a magnetometer for the PNS is regarded as a 

stopgap solution to provide heading measurements until such time as MEMS gyroscope 

heading accuracy is improved, as discussed in detail later. 

D. GYROSCOPE ERROR SOURCES 

IMUs are subject to errors from several sources. For the accelerometer and 

gyroscope, these errors may initially appear small but accumulate over time, growing 

somewhat linearly into large position and heading errors. Better performance comes at a 

price, however, as a medium-grade INS can cost almost $100,000. Compromises were 

made for each sensor type’s price versus performance versus size and weight. A $70,000 

INS that weighs 40 lb (18 kg) may be well suited for a B-52 bomber but unrealistic for 

each Marine in a fire team to carry on his or her back; thus, it makes sense to direct 

limited funds toward sensors that provide a good ratio of cost to performance and 

suitability. To maximize cost versus benefit, research was conducted to identify the 

largest source of errors in MEMS IMUs; Berman found the dominant source of IMU 

errors to originate from the gyroscope [38]. 

Gyroscope errors can be classified by type, with each type capable of degrading 

accuracy more than any other kind of IMU sensor, e.g., the accelerometer. Since a 

complementary filter relies mostly on the gyroscope to calculate position changes during 

the swing phase, it is important to identify and take steps to mitigate these major error 

types [11]. In descending order of prevalence, they are error bias stability, scale-factor 

error, including non-linearity and asymmetry, and angular random walk (ARW) 

As a whole, those three sources of gyroscope error were found to be larger 

contributors to IMU degradation than any type of accelerometer error. Unfortunately, a 

magnetometer was not evaluated in his study. Unlike gyroscopes, a magnetometer’s 

heading error remains stable with time. Gyroscope error bias stability, where most of the 
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error occurs within the first 100 seconds of operation, was found to produce an angular 

error almost five times larger in magnitude than scale factor error and nearly 14 times 

larger than ARW [38]. The next few paragraphs define these error types. 

1. Error Bias Stability 

Error bias stability is defined as a fluctuating amount of error in relation to the 

true value over time. Instead of holding a constant bias, flicker noise causes the error bias 

to randomly wander within a bounded area. For example, if the gyroscope was stationary 

and measurements were taken, it should yield a measurement of 0 deg/s. Since there is a 

fluctuating error bias, it may read 0.2 deg/s a moment after power on, increase to 0.4 

deg/s a few seconds later, and then slowly taper off to 0.1 deg/s as time exceeds 100 s. 

The velocity measurements are integrated once to output an angle in degrees, so the 

fluctuating error bias causes an unsteady increase in the amount of angular error built up 

over time [39].  

Flicker noise is the cause of error bias stability issues and is dominant at low 

frequencies where the power of its degrading effects can be modeled as 1/ ,f  where f  is 

frequency. Error bias stability is different than ARW because the dominant error source 

for the former is flicker noise at low frequencies, and the dominant error source for the 

latter is high frequency white noise. Error bias stability can be modeled as a bias random 

walk (BRW) for times of less than 100 seconds, 

 
BS(° / hr)

BRW(° / hr ) =
t(hr)

  (2.1) 

where BS is defined as bias stability, and time t is usually listed in hours and can be 

found in the manufacturers specifications [39]. Units of seconds may be more appropriate 

considering this model’s applicability is limited to about 100 s, but manufacturer 

specifications use hours, so it was decided to use the same units throughout. 

2. Scale-Factor Error (Non-Linearity and Asymmetry) 

Scale-factor error is an error that arises when the measurement output is not 

proportional to the input force. For example, if a gyroscope rotated at a linearly 
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increasing velocity (i.e., acceleration), then the slope of the measurement outputs do not 

match the slope of the input force. Scale-factor can have both a linear and non-linear 

component as well as an asymmetry such that the shape and slope of the measurement is 

different depending on the direction of rotation. These assortment of errors are grouped 

into the term scale-factor error, which occur due to manufacturing tolerances, aging of 

the sensors, and imperfections with the signal amplifiers [40]. 

3. Angular Random Walk 

Angular random walk is a gyroscope angular rate error caused by 

thermo-mechanically created high-frequency white noise [41]. When discussing inertial 

sensors, another word for noise is “drift.” In other words, the gyroscope measurements 

appear to drift from the true value. The purpose of an ARW specification is to use them 

to find the standard deviation, or spread, of noise-induced random error as it grows 

proportionally with the square root of time. Some manufacturers list this error as a noise 

density in units of °/s/√Hz, which can be converted from power spectral density (PSD) to 

ARW with [41] 

 

2
1 °

ARW(° / hr ) = PSD
Hz60 hr

  
  
   

. (2.2) 

For the KVH 1775 FOG gyroscope, whose ARW is listed as 0.012°/√hr, after two 

hours, the one sigma standard deviation of the orientation error is 2hr ×0.012° = 0.017°  

[39]. Compare this ARW specification and resultant orientation error to the 3-Space 

sensor’s less precise ARW specification of 0.45°/√hr and a subsequently poorer 

one-sigma standard deviation orientation error of 2hr ×0.45° = 0.636° . Working with 

higher-quality sensors, where higher quality is defined as having a low noise level (i.e., 

ARW), we are more likely to observe consistent and better gyroscope performance. 

Better performance from the sensor enables the creation of a more accurate orientation 

solution. 
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4. Other Gyroscope Errors 

Gyroscopes are also susceptible to other types of error, including those induced 

by a faulty calibration process. Calibration error usually results in imperfect angular-rate 

estimates, whose error magnitude is proportional to the true angular velocity. Scale-factor 

non-linearity error may accompany calibration error. As a realistic example, a gyroscope 

might turn with an angular rate of 100°/s but incorrectly report it as 102°/s or turn at 

200°/s but, owing to bias error, report 204°/s. Integrated over time, calibration error 

results in degraded orientation accuracy. Since currently available MEMS gyroscopes do 

not offer good accuracy, performing the best possible calibration is essential in creating a 

usable device for personal navigation [39]. 

The 3-Space sensors used in this research were calibrated using the YEI 3-Space 

Sensor Suite v3.0r7. A screenshot of the software interface is presented in Figure 3.  

 

 

Figure 3.  YEI 3-Space Sensor Software Suite v3.0r7 
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Note the direction of the axes protruding from the 3-Space sensor as the X, Y, and 

Z-axis convention with respect to the sensor module was consistent through all testing. 

Calibration is performed by connecting a sensor module to the computer via the USB 

port, placing the module on a stationary surface, and clicking “Calibrate Gyros.” 

Calibration is near instantaneous, a vast improvement on navigation-grade laser-light 

gyroscopes, which typically take four minutes or longer to align.  

Temperature issues can also cause gyroscope errors. Manufacturers typically list 

gyroscope temperature sensitivity in units of percent per degree Celsius (%/°C). This type 

of scaling factor changes with temperature. MEMS sensors exhibit a non-linear 

relationship between sensor error bias and temperature. To counter this, most 

manufacturers use previously collected temperature versus error data along with an 

onboard temperature sensor to cancel out temperature errors [39]. The 3-Space sensor 

module employed had an internal temperature-correction capability to compensate the 

data as temperatures changed [42]. The author attempted to control the negative effects of 

temperature by performing most testing after sunset on an athletic track, resulting in a 

temperature range of 13° to 20°C (55° to 68°F) during testing. Since the 3-Space 

module’s black plastic housing never noticeably heated when operating, no effort was 

made to examine the temperature effects of current draw; the internal sensor temperature 

was assumed to remain stable and close to ambient. The software-run temperature 

corrections and the operator’s ability to calibrate sensors at or near ambient temperature 

were expected to reduce any overall effects related to temperature. While sensors for 

personal navigation should work wherever humans can go, whether desert or arctic 

tundra, for a proof of concept, controlling conditions is considered acceptable. 

5. Gyroscopes in IMUs  

The main benefits of a MEMS gyroscope IMU over a RLG or FOG is they are 

less expensive, smaller, lighter, and consume less energy. The drawback is that MEMS 

IMUs are significantly less accurate. Specifications and error rates for gyroscopes across 

a range of currently available IMU sensor modules are shown in Table 1.   
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Table 1.   Gyroscope Performance of Competing IMUs 

 

KVH 1775 

(FOG gyro) 

[43] 

MicroStrain 

3DM-GX1 

(MEMS 

gyro) [44] 

MicroStrain 

3DM-GX4-25 

(MEMS 

gyro) [28] 

XSENS 

MTw 

(MEMS 

gyro) [45] 

YEI 3-Space 

Sensor v2.0 

(MEMS 

gyro) [36] 

IMU Size 

(mm) 

88.9 

diameter × 

73.7 height 

65 × 90 × 25 
36.0 × 24.4 × 

11.1 

34.5 × 57.8 

× 14.5 
35 × 60 × 15  

IMU Weight 
700 g  

(1.54 lb or 

24.7 oz) 

75 g  

(2.6 oz) 

16.5 g  

(0.58 oz) 

27 g  

(0.95 oz) 

28 g  

(0.98 oz) 

Bias Stability 0.05°/hr 70°/hr 10°/hr 20°/hr 4°/hr 

Scale Factor 

Non-Linearity 
0.005% 0.7% 0.02% 0.1% 0.2% 

Angular 

Random 

Walk 
0.012°/√hr 3.5°/√hr 0.3°/√hr 3°/√hr 0.45°/√hr 

Year 

Introduced 
2014 2006 2014 2012 2014 

Cost < $20,000 ~ $3,000 ~ $3,000 ~ $1,000 ~ $250 

 

For two of the listed IMUs, angular random walk is derived from a PSD 

specification of 0.005°/s/√Hz provided by MicroStrain 3DM-GX4-25 [28] and a PSD 

specification of 0.05°/s/√Hz provided by XSENS MTw [45]. Conversion from PSD to 

ARW is accomplished with Equation 2.2 [41].  

The first IMU examined in Table 1, the KVH 1775 IMU, offers substantially 

better gyroscope performance than rival units but at a considerably higher price, 

reflecting the presence of a miniaturized FOG integrated into an IMU with MEMS 

accelerometers and magnetometers. Due to its price and bulk, the KVH 1775 is not well 

suited to man-portable applications but is included here as an example of a potential 

high-end performance solution; although, it might be more fairly compared with other 

FOG-based IMUs, not MEMS.  
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Next, the MicroStrain 3DM-GX1 is the IMU used in [11] and provides an early 

example (2006) of a commercial MEMS IMU assembled from individual sensors. Before 

its availability, researchers had to spend considerable effort in assembling custom IMUs 

from raw components. The 3DM-GX1’s fourth-generation successor, the 3DM-GX4-25, 

offers far superior performance for the same cost.  

The XSENS MTw IMU wirelessly streams synchronized measurement data to a 

computer for recording, allowing multiple sensor modules to be fused together for 

enhanced post processing regardless of their mounted location on the body.  

The YEI 3-Space Data-Logging v2.0 AHRS sensor module was selected for use 

in this research as offering the best tradeoff of cost and performance. The ability to record 

data onto a microSD card made it possible to conduct testing without any wiring 

obstructions, and the performance specifications were quite good for the cost, offering 

better specifications in some areas than more expensive IMUs.  

For this research, David Arch, marketing and project manager for Honeywell 

Aerospace, suggested that a gyroscope error bias stability of less than 0.1°/hr might be 

required to track a soldier in the field [46]. The problem of gyroscope bias stability is 

illustrated in a simple scenario: if an IMU is motionless for a long time, with noise 

removed, its gyroscope error is less than 0.1°/hr. So if a stationary gyroscope initially had 

a heading of 30.0°, and assuming no other errors were present, after an hour the heading 

could be 30.1° [47]. The FOG of the KVH 1775 IMU meets the gyroscope error bias 

stability threshold with an error of only 0.05°/hr, a level no currently available MEMS 

IMU can achieve [43]; but, as noted, the KVH 1775 is not man-portable. In the future, a 

low-cost MEMS gyroscope will likely break the 0.1°/hr threshold. Until then, other 

sensor types such as magnetometers can be used as a stop-gap solution for heading 

measurements. Unfortunately, position estimates must still rely on the gyroscopes, and 

special measurement-filtering techniques are required to make personal navigation 

possible.  
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E. HIGH-ACCURACY POSITION USING LOW-ACCURACY SENSORS 

In developing a practical PNS from MEMS IMUs, the optimal mounting location 

for the gyroscope, accelerometer, and magnetometer is a chief concern. Special 

processing software written for [11] was adapted in this research to work with the YEI 

3-Space sensor module, and additional software was created to allow the incorporation of 

multiple sensors distributed throughout the body (e.g., at the shin or chest) as well as 

redundant mountings at the same location.  

1. MEMS IMU Size Comparison 

The contrast between the $255 YEI 3-Space Data-Logging v2.0 sensor module 

used for experimentation and the $3,000 MicroStrain 3DM-GX1 used by [11] nearly a 

decade prior is a good example of the evolution of performance, miniaturization, and 

affordability over time. A size comparison of these sensor modules and the 

fourth-generation MicroStrain 3DM-GX4-25 sensor module is shown in Figure 4. The 

3DM-GX4-25 is smaller than the YEI product due to lack of an onboard battery and 

memory card and is also significantly more expensive. 

 

 

Figure 4.  IMU Form Comparison From Left to Right: YEI 3-Space Module, 

3DM-GX1 (first generation), and 3DM-GX4-25 (fourth generation) 
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2. Personal Navigation System 

In the past 15 years, several reports have been published concerning the 

application of MEMS IMUs in man-portable navigation systems. Almost every 

investigator presents original techniques to accomplish this task. All used a combination 

of gyroscopes, accelerometers, and, to a lesser degree, magnetometers. The main focus of 

these reports is filtering; nearly all investigators use some form of an optimal estimator 

(i.e., a Kalman filter) to achieve best performance.  

In this thesis, we depart from the Kalman-filter solution, building on a filter 

developed by NPS researchers over the past decade and continuing the research of [11], 

where a PNS that is executed with MATLAB code during post processing, is described  

as 

Accelerations induced by natural walking motion will be processed to 

derive an updated position of the user. The strapdown navigation 

algorithm will be adapted for this application. It will utilize an 

adaptive-gain quaternion-based complementary filter that was specifically 

tailored for the PNS. Furthermore, the strapdown algorithm incorporated 

the concept of zero-velocity updates and a custom gait-phase detection 

algorithm to determine the instances of the foot swing and stance periods. 

[11]  

Some of Calusdian’s experiments were repeated with the modern YEI 3-Space 

IMU, with custom tuning of the PNS software required to extract the best possible 

measurements. In this research, we explore the performance advantages of fusing 

multiple sensors and processing the averaged measurements through the PNS, taking the 

code created for [11] and modifying it to allow integration into the Reticle analysis GUI 

created by the author. The Reticle GUI’s home screen is shown in Figure 5. 
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Figure 5.  Reticle GUI Home Screen. Adapted from [48]. 

The Reticle GUI simplifies and streamlines the processes required to import data, 

run the PNS algorithm, and invoke functions as needed. It also incorporates other Reticle 

projects into the PNS such as the posture-detection algorithm created by [10]. 

3. Zero-Velocity Updates 

At the heart of the PNS are gait-phase detection and zero-velocity updates. The 

human gait cycle consists of the swinging motion made by a person’s legs between 

footsteps and subsequent footfalls. The swing phase begins when the IMU-mounted foot 

leaves the ground and swings in front of the walker and ends when the heel of the same 

foot strikes the ground. The forces within the swing phase, such as the impulse of a heel 

strike, are sensed by an IMU strapped to the top of the foot or mounted on the shin, waist, 

or chest.  
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The stance phase is defined as occurring when the IMU-bearing foot is planted on 

the ground, which occurs between footsteps and when standing. This phase, which is 

assumed to have virtually no velocity, accounts for around 60% of the walking gait cycle. 

Without question, movement occurs as the heel rolls to the ball of the foot or the person 

pivots on heel or ball to change direction, but the magnitudes are small enough to be 

assumed zero and still allow the ZUPT to be effective. In this thesis, the “near-zero” 

stance-phase descriptor is simplified to zero, with the qualification implied. As defined 

for this research, the job of the ZUPT algorithm is to identify velocity-error biases in the 

gyroscopes and eliminate them from previous swing-phase measurements. To accurately 

identify error biases in the field, a Time-Space-Position Information (TSPI) truth source 

is required to enable comparison between an IMU’s error-laden measurements and those 

of the actual velocities experienced. Since it is unrealistic to arrange such a setup, a 

simpler solution is needed. This solution weighs heavily on the assumption that the only 

part of a person’s gait cycle in which velocity can be known for sure is the stance phase, 

where foot velocity is assumed zero. This belief is essential, because the grounded, 

stationary foot acts a stance-phase pseudo truth source. 

MEMS sensors have bias and drift errors that cause them to falsely report 

non-zero rates though the IMU is stationary. The ZUPT algorithm used in the PNS uses 

this falsely reported gyroscope data to identify and eliminate navigation-frame IMU 

velocity errors in the gyroscopes that were persistent during the previous swing phase. 

Each iteration of the PNS algorithm begins with navigation-frame acceleration 

measurements. These measurements are represented through  

 ( ) ( ) , [0, ]m aa t a t t T     (2.3) 

which illustrates how the true acceleration ( )aa t  can be accompanied by an error bias ,  

resulting in a falsely reported acceleration ( )ma t . If no adjustments are made and the 

reported acceleration ( )ma t  is integrated over a person’s total gait cycle [0, ],t T  

producing a calculated velocity ( ),cv t  then the resulting position error grows, making it 

appear that the individual is moving at a different rate than reality. To eliminate error and 
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find the true velocity ( ),av t  the error bias term   must be found. This bias term is 

determined by identifying the foot’s reported velocity when stationary, which is signified 

by time .T  When the bias term is subtracted from (2.3), this results in 

 
( )

( ) ( ) , [0, ]c
a c

v T
v t v t t t T

T
   .  (2.4) 

Processing (2.4) results in a software recalibration, which is completed with each step 

and markedly reduces position error [11]. 

In [11], gyroscope data was found to work better than accelerometer data for 

gait-phase detection. The algorithm detects the zero-velocity stance phase when the 

combined gyroscope rate falls below an experimentally determined threshold. 

Zero-velocity stance-phase detection has been an area of focus for several researchers; 

specifically which sensor or combination of sensors should be used and which type of 

algorithm should be incorporated to detect the zero-velocity stance phase. Fourati uses 

both gyroscope and accelerometer data for gait-phase detection, claiming the 

combination of these sensors more accurately determines the stationary foot, which 

allows a more precise application of the ZUPT algorithm [49]. His gait-phase detection is 

accomplished by finding the variance of the squared norms from five to ten samples of 

data. If the variance is below the experimental threshold, the detector reports stance; if 

above, swing. By contrast, Swedish researchers find gyroscope data alone to be better 

than both accelerometer data or combined gyroscope and accelerometer data for 

zero-velocity detection [50]. Another approach was taken by the MapCraft team, who 

developed a computational- and energy-efficient method to find user position within a 

preloaded map using only accelerometers and magnetometers [51]. The team used a 

map-matching technique employing conditional random fields to determine location 

within a surveyed building. The disadvantage of this technique is apparent: there are few 

scenarios in which surveying a building beforehand is practical. Another group used 

subtractive clustering to determine zero velocity based on sensor-data patterns instead of 

the conventional magnitudes. This increases the robustness of the gait phase, allowing the 

user to walk across uneven terrain such as hills [52]. Several other methods have been 

proposed, but most appear to focus on a single sensor type such as gyroscope or 
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accelerometer to determine zero velocity. A few researchers use a combination of the 

typical two- or three-sensor types available on an IMU (e.g., gyroscope, accelerometer, 

and magnetometer) to detect when the foot is in stance phase. The wide variety of 

zero-velocity detection methods, along with their unique performance characteristics, 

suggests that a diverse set of personal navigation systems require an equally diverse 

repertoire of ways to determine a stance phase. The selection of gyroscopes, 

accelerometers, and magnetometers available, and their performance, is the driving force 

in the choice of zero-velocity detection method for a given application.  

Some researchers have achieved very good results by mounting a sonar device on 

both shoes to constrain heading error in addition to using stance phase zero-velocity 

updates [53]. Such a transmitting sensor is not battlefield compatible because the 

transmitted signal may alert the enemy to the presence of equipped soldiers, destroying 

the element of surprise, and any transmission introduces a vulnerability by which the 

adversary may develop countermeasures to disrupt or disable the capability. 

One promising investigation is the incorporation of multiple IMUs to reduce 

sensor errors. One team used a range constraining foot-to-foot maximum value to more 

effectively fuse two sensors, one on each foot, into a Kalman filter. This coupling of 

sensors as well as bounding their measurement to a realistic value provides a more 

accurate solution than can be achieved otherwise [54].  

Another team looked at three filtering approaches. The first consists of using a 

virtual IMU, where multiple IMUs have their raw outputs mapped to a common reference 

frame before all measurements are processed through one large Kalman filter. The 

second is a stacked filter that combines all the raw IMU outputs into a Kalman filter, as in 

the virtual-IMU approach but additional relative information between IMUs is included 

to provide better updates. The third is a federated filter that processes each IMU’s raw 

sensor data through its own Kalman filter, then sends the filtered data to one large master 

filter, which in turn sends the doubly processed data back to the individual filters for 

further processing. The researchers found that the federated setup does not improve 

accuracy, whereas the virtual IMU and stacked approaches show modest improvements. 
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In addition, the researchers found a slight increase in accuracy for each additional IMU 

above the baseline of two [55]. 

Finally, a third team that co-located three identical IMUs into a sensor array was 

able to reduce the bias-drift error from 35°/hr per sensor to a synergistic output of 

0.53°/hr after combining the three IMUs into one virtual IMU, with two levels of filtering 

[56].  

None of this research uses a complementary filter comparable to that developed in 

[11] and employed in this thesis; most rely on a Kalman-filter type of optimal estimator. 
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III. EXPERIMENTS 

A discussion of six topics and test setups with corresponding results is contained 

in this chapter. In the first section, the noise performance of the 3-Space sensor module is 

characterized. The complementary filter, which calculates the user’s position from IMU 

measurements, is discussed in the second, and the tuning process used to optimize the 

performance of the complementary filter with the 3-Space IMU is detailed in the third. 

These topics largely repeat the tests in [11] in order to compare a relatively modern IMU 

manufactured in 2014 with one from 2006. 

The relatively unexplored question of optimal sensor placement and strategies in 

sensor distribution, fusion, and processing are investigated in the remaining sections. YEI 

3-Space Data-Logging v2.0 sensor modules were used for all tests. 

A. THE CHARACTERIZATION OF SENSOR ERRORS 

 To characterize the 3-Space IMU’s errors, static runs were performed and 

analyzed. Each module’s was configured to output raw measurements for the 3-Space 

modules triaxial gyroscopes, accelerometers, and magnetometers. A Kalman-filtered 

output was not used because it was thought that doing so might obscure true error values. 

1. Test Setup 

Sample frequency sf  was set to automatic, which allowed individual 3-Space 

sensors modules to dynamically determine the sample rate used during testing. The 

sample rate tended to remain at approximately 63 Hz in both the static and walking tests, 

although at times it momentarily dropped to approximately 25 Hz. Although higher 

sampling frequencies were found to provide better results in [11], any rate over 50 Hz 

was subjectively deemed adequate for the PNS’s trapezoidal integration method. To 

analyze this assumption further, the shortest duration of a walking event signified by ct  

was found to be a heel strike, which only lasted around 0.1 s (i.e., 10 Hz) [11]; therefore, 

the minimum sample rate sf  as defined by the Nyquist sampling theorem, 2s cf t , 



 34 

yields 20 Hzsf  . Experience shows that sampling physical systems considerably higher 

than the Nyquist rate may allow more detailed analysis and help with deficiency findings 

and resolution. With this in mind, a 63 Hz real-world sample rate proved adequate for the 

walking applications in this thesis. Brief experiments were also conducted while running, 

and the 63 Hz sample frequency proved adequate in this case as well. 

To start sensor characterizations, four of the 3-Space sensors modules were placed 

atop several layers of packing foam to insulate the IMUs from vibration. This 

configuration was then set on a wooden desk in the fifth-floor controls laboratory, 

positioned as far as possible from ferrous or magnetic materials. The sensors were spaced 

about a half meter apart to avoid magnetic cross-contamination, which might otherwise 

have been generated by current flowing through each IMU’s circuitry. Before data 

recording began, all sensors received a fresh calibration using the 3-Space 

sphere-calibration wizard for the accelerometers and magnetometers. Though there is no 

distinct notification by the software when calibration is complete, the 3-Space sensor 

suite manual suggests obtaining an estimated density level of 30–50 [29]. The density 

level corresponds to the coverage of the accelerometer and magnetometer’s orientation 

experienced during calibration. In the case of the 3-Space Sensor Suite, a better 

calibration is associated with a lower density number.  

To calibrate, the IMU was held in the tester’s hand, which was twisted and rotated 

for a few minutes, orienting the IMU in as many directions as possible. The more an IMU 

was rotated about all axes, the lower the calibration density went, while sensor 

performance was expected to increase. For test purposes, calibration was considered 

complete when the estimated sampling density reached a value of 12, as shown in Figure 

6. After sphere calibration, gyroscope calibration was performed by laying the IMU on a 

flat, stationary surface, then selecting the “Calibrate Gyros” button on the 3-Space Sensor 

Suite GUI. Another calibration method, the gradient-descent calibration wizard, is 

available in the 3-Space sensor suite, but early experimentation found it laborious and 

without noticeable improvement over the simpler sphere-calibration wizard used 

exclusively in this research. 
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Figure 6.  Sphere Calibration Wizard before (Left) and after (Right) 

Accelerometer and Magnetometer Calibration 

To begin static testing, the sensors were turned on and allowed to run 

uninterrupted for 1 hour, 40 minutes. This period was chosen because it was 

approximately the same amount of time [11] used for sensor characterization tests. Four 

static tests were attempted before a satisfactory test setup was achieved. It was originally 

thought that long duration static tests were better, so the sensors were left to run 

overnight. Unfortunately, each IMU only contained about three hours of useful battery 

life. Two of the sensors failed to save collected data before powering off. This difficulty 

was avoided by limiting data collection to 1 hour, 40 minutes, with a secondary 

justification that it would allow direct comparison to [11]’s static tests. Satisfactory 

results were achieved by doing so. 

To begin analysis, sensor data were imported into MATLAB. Sample data 

collected from one of the properly saved three-hour tests were used with an 

author-created MATLAB GUI program designed to import 3-Space sensor data TXT 

files and convert them into an HDF5-format-based MATLAB (MAT) file [57]. This tool 

worked well with ten minutes of sample data. In attempting to process three hours of test 
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data, however, the program halted after using all 16 GB of onboard random-access 

memory (RAM). To address the memory issue, a more memory-efficient import script 

was developed by adapting code from [10]. Creating code to import 3-Space sensor data 

presented a challenge because the sensor module wrote data to a TXT file that contained 

multiple data capture formats and used inconsistent methods to separate variables; data 

formats might be in a date/time or numerical arrangement, while variable separation was 

signified by a space in some columns and a comma in others. Besides providing efficient 

code to import data, the author reduced recording time from three hours to just over 1 

hour, 35 minutes to match [11]. The complete code, entitled “IMPORT LARGE YEI 

3-SPACE TEXT FILES INTO MATLAB,” is provided in Appendix A. 

A second set of tools was created to produce a PSD of each sensor’s raw output 

from the static run. The PSD is used as a visual aid to convert the output of a motionless 

sensor from the time to the frequency domain. This exposes characteristics of the signal 

that would otherwise remain hidden [58]. The PSD reveals power created at specific 

frequency components of a signal. For an IMU feeling no force, the PSD uncovers noise 

power. Noise power increases due to the random error components of thermal, shot, and 

flicker noise [59]. The integral of the PSD is the sensor’s noise power. Noise power is the 

source from which angular random walk specifications are derived and can be useful 

because they indicate a sensor’s noise performance. A lower ARW number suggests a 

lower standard deviation from measurement data error. Higher-quality sensors are 

expected to provide a noise-power output level below that seen with a lower-quality 

sensor. When two sensor modules of different quality are compared, the better sensor will 

list a smaller ARW specification on its datasheet. 

2. PSD of Sensor Outputs 

The PSDs were created using MATLAB’s version of the Welch power 

spectral-density estimate function pwelch( ), which implements Welch’s time averaging 

using a short-periodogram method [60]. The Welch method uses an efficient fast Fourier 

transformation (FFT) to identify those frequencies that hold more power than others [61]. 

To display plot trends that are more visually apparent, the FFT’s windowing parameter 
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was adjusted with the MATLAB function triang( ) and set to execute 500 samples for 

each section. The Welch function computes many small FFTs along the user-specified 

sliding window size and averages the magnitude-square value for each. This prevents 

noisy measurements from obscuring data trends and small power spikes and smooths the 

plots, rendering them more visually intelligible. The pwelch( ) function proved ideal in 

facilitating noise-performance comparisons among sensors of the same type. 

To demonstrate how a sensor’s noise PSD should appear, a MATLAB simulation 

was performed with randomly generated, uncorrelated values between zero and 0.006 as 

created by the rand( ) function. The latter value was chosen to reasonably mimic noise 

generated from a stationary gyroscope. The resulting large set of random data was then 

processed with the pwelch( ) function using MATLAB default values except for a 

sampling frequency sf  setting of 63 Hz. This value is familiar as the sample frequency of 

the 3-Space module when the sampling interval was set to automatic. The resulting PSD, 

presented as the upper plot in Figure 7, is very noisy.  

In an attempt to smooth the PSD for easier interpretation, the original raw data 

were reprocessed through pwelch( ), but this time the time-function parameters were 

adjusted from the MATLAB defaults to new empirically found settings. The smoothed 

PSD is displayed as the bottom plot in Figure 7. Note that the dc (i.e., 0 Hz) power 

component of the smoothened PSD at the bottom of the figure bleeds slightly into higher 

frequencies. This bleed-over is an artifact produced by the function parameters used for 

pwelch( ). This should be remembered later when explaining large power components in 

the lower frequencies (i.e., less than 2.0 Hz) of subsequent PSDs. To aid in comparing 

PSDs, the mean ,  standard deviation ,  number of samples, and sample frequency sf  

of the MATLAB-generated data were calculated and displayed in Figures 7–13.  
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Figure 7.  Simulated PSD of Randomly Generated Noise (Top), and Same Data 
Processed using Welch PSD (Bottom) 

Given the baseline PSD containing MATLAB-generated random data, additional 

PSDs were derived from real sensor measurements and presented, starting with the 

gyroscope. Of all sensor types, the gyroscope alone should sense zero forces while 

stationary on a foam pad. This is different than an accelerometer, which always feels the 

force of Earth’s gravity, or the magnetometer, which always senses a magnetic field. 

The first experimentally derived PSD of gyroscope data is provided in Figure 8. 

The data underlying the PSD were taken from a single 3-Space module designated as 

Sensor 1. There are three lines of data because each sensor type in a 3-Space sensor 

module is triaxially configured—that is, contains three identical, orthogonally arranged 

gyroscopes to measure forces in three axes. In the interest of reducing clutter, the mean 
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and standard deviation from each of the three gyroscopes within a triaxial configuration 

are combined. 

 

 

Figure 8.  PSD of Sensor 1’s Raw Triaxial Gyroscope Outputs 

For most frequencies, all three gyroscopes from Sensor 1 display noise levels near 

−70 dB. With the noise-power level identified, the 3-Space module, released in 2014, is 

compared with the MicroStrain 3DM-GX1, released in 2006. Using reported information 

from [11], we have the noise of the MicroStrain 3DM-GX1 as −65 dB. This indicates the 

older IMU’s noise performance is 5.0 dB worse than the current unit. That is, the 

gyroscope within a contemporary AHRS IMU that sells for ~$250 had −5 dB better noise 

performance than an AHRS IMU that sold for ~$3,000 almost a decade before. The 

real-world effect of this performance differential should be reflected by the 3-Space 
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sensor having a lower ARW (i.e., standard deviation) than that of the MicroStrain 

3DM-GX1. This prediction agrees with the ARW specifications in Table 1, where the 

ARW for the MicroStrain 3DM-GX1 sensor is listed as 3.5°/√hr and 0.45°/√hr for the 

YEI 3-Space Sensor v2.0. 

The noise performance of Sensor 1 is better than the older sensor’s but with 

noticeable power spikes above the noise floor. These divergences consisted of a large dc 

power contribution and smaller power spikes close to 9 Hz and 30 Hz. Note that if the 

default values with regard to the pwelch( ) function were used for the parameters 

“window,” “nooverlap,” and “nfft,” then the plot would correctly show the dc noise bias 

at 0 Hz instead of the additional power displayed near 1 Hz. The dc component is 

reasonably explained as a result of characteristically white data, a shared issue with the 

simulated data at the bottom of Figure 7; however, the power spikes at 9 Hz and 30 Hz 

are not explained. No power spikes were anticipated above the noise floor because the 

data were taken from stationary gyroscopes; the PSD is expected to show a near-constant 

power level throughout the frequency band. The presence of power at multiple 

frequencies is interpreted as evidence of infiltration by another power source, possibly 

resonance picked up during the test run from the many other operations within the 

five-story building or from the half-dozen personnel who walk in and out of the 

laboratory closing doors behind them, triggering reverberations that are felt in nearby 

walls and make their way to the floor, up the table legs, through the foam, and into the 

IMU. The resulting oscillatory energy might consist of 9 Hz and 30 Hz components, 

since that is where most of the power spike energy is plotted. 

The mean and standard deviation of Sensor 1’s gyroscope output is displayed in 

Figure 8.  Before processing data through the pwelch( ) function, raw data from Sensor 

1’s triaxial arrangement of gyroscopes were combined to find the resultant mean power 

level and standard deviation. The gyroscopes can display negative numbers, so the 

non-zero mean might indicate a gyroscope bias error in the raw output. A non-zero mean 

was purposefully created for the earlier simulation shown in Figure 7, as random numbers 

were distributed between zero and 0.006. Rather than create an individual PSD plot for 

every 3-Space module, the author plotted all gyroscope data from the four sensor 
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modules onto the same PSD to provide a better example of power-frequency trends. The 

data from the compiled PSDs are exhibited in Figure 9.  This compilation contains the 

data from a total of 12 gyroscopes, extracted from the four sets of triaxial gyroscopes. 

The IMUs recorded data simultaneously, and all were placed on the same foam pads. As 

the data shown in Figure 9 demonstrates, noise levels differed slightly among the 

individual gyroscope sensors within the same 3-Space module and as compared to other 

IMUs (i.e., sensors 2, 3, and 4). The data shows that the 9-Hz power spike was not 

relegated to Sensor 1 but affected all sensors. Additional power spikes were more 

recognizable and clustered near 12 Hz, 14 Hz, 19 Hz, 22 Hz, 27 Hz, and 30 Hz. Again, 

pwelch( ) appears to move some power toward 1 Hz, but the unadjusted noise plots show 

that power was actually a dc component. 

 

 

Figure 9.  PSD of All Four IMUs’ Raw Triaxial Gyroscope Outputs 
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The similarities among discrete gyroscopes may reflect the fact that they recorded 

data at the same time and under the same conditions. The differences among sensors as to 

mean and standard deviation suggest that the magnitudes of their error biases were 

different. The variety of noise performances among identical sensors exemplifies the 

difficulties within the world of MEMS manufacturing. 

A characterization of the accelerometer PSD was also performed, as presented in 

Figures 10 and 11. It was found that the effects of gravity could not be removed, creating 

significant power below 7 Hz for one axis of the triaxial accelerometer. It is assumed that 

this accelerometer was oriented to measure the gravity vector, but it appears that the other 

accelerometers measured a small gravity component as well. The combined mean was 

also skewed by gravity. It should be noted that the displayed statistics from each sensor 

within the triaxial accelerometer were combined to reduce clutter.  

 

 

Figure 10.  PSD of Sensor 1’s Raw Triaxial Accelerometer Outputs 
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Combining all 12 accelerometers from the four IMUs onto one plot reveals data 

trends as displayed in Figure 11. Performance among the four sensors was very similar, 

with power spikes occurring at the same frequencies as seen with the gyros. Again, the 

likely explanation is that some outside source stimulated both the linear acceleration and 

angular velocity-measuring devices at the same frequency. 

 

 

Figure 11.  PSD of All Four IMUs’ Raw Triaxial Accelerometer Outputs 

Next, the PSD of the magnetometers was found. The PSD for Sensor 1’s three 

magnetometer outputs is shown in Figure 12, and a PSD plot containing all 12 

magnetometer outputs in Figure 13. These outputs are nearly indistinguishable. Unlike 

the gyroscope and accelerometer measurements, there were no power spikes, indicating a 

near-constant magnetic force. The linear and rotational forces, which resonated through 
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the accelerometers and gyroscopes, were not felt by the magnetometers. Like the 

previous PSDs, the displayed statistics from each triaxial sensor were combined to reduce 

clutter. 

Figure 12.  PSD of Sensor 1’s Raw Triaxial Magnetometer Outputs 

In Figure 12 and Figure 13, the magnetometer data settles down to about –71 dB 

as frequency increases. This noise level is slightly less and significantly more consistent 

than the accelerometer and gyroscope data. The reasons behind this reduced noise are 

unknown. Perhaps the phenomenon that caused power spikes in the gyroscope and 

accelerometer PSD plots did not contain a pulsating magnetic field, but a near constant 

one. 
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Figure 13.  PSD of All Four IMUs’ Raw Triaxial Magnetometer Outputs 

3. Histogram of Sensors 

To characterize sensor bias, a histogram for Sensor 1 was completed using the 

same static-run data as the noise PSDs. Because the other three sensors had 

characteristics similar to those of Sensor 1, they were not plotted. If Sensor 1 showed no 

bias error, a histogram containing the static-run measurements from its three gyroscopes 

would have a zero-centered mean; however, as indicated by the three different colors 

representing the triaxial gyroscope data in Figure 14, Sensor 1 did display bias error, the 

magnitude of which varied among gyroscopes. For unknown reasons, Gyroscope 1 had 

the largest bias error within Sensor 1. This undesirable bias could not be explained out as 

the rate of Earth’s rotation, which is much smaller in magnitude at only 0.0042 deg/s. The 

bias error also illustrates the need for a ZUPT algorithm, which can remove Gyroscope 
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1’s bias error. The corresponding histogram for each gyroscope is characterized by a 

Gaussian distribution, which may indicate a wide variety of error sources whose standard 

deviation is the ARW. Overlapping data on the left set of histograms in Figure 14 are 

represented by third color not seen in the legend. 

 

 

Figure 14.  Histogram of Sensor 1’s Raw Triaxial Gyroscope Outputs  

Sensor 1’s accelerometers also had a near-Gaussian distribution, as displayed in 

Figure 15. While it appears that all three of Sensor 1’s accelerometers were plotted, the 

histogram actually shows only two. The X-axis accelerometer, which felt most of the 

gravitational force, is not shown, because the scale of the resulting plot made each 

histogram indistinguishably small. The appearance of different color intensities signifies 

data overlap. As noted, all the accelerometers appear to sense a small gravity component, 

despite orienting the Y-Z plane perpendicular to the gravity vector. For the data shown in 
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Figure 15, the Y-axis accelerometer data are on the right, and the Z-axis accelerometer 

data are on the left. Overlapping data in Figure 15 is represented by a third color not seen 

in legend. 

Figure 15.  Histogram with Two of Sensor 1’s Raw Accelerometer Outputs 

As with the two previous sensor types examined, a histogram was made of all 

three magnetometer measurements from Sensor 1’s static run, as presented in Figure 16. 

Like the accelerometers, each magnetometer had a different mean magnitude, so it was 

impossible to display them clearly on the same histogram; therefore, only the Z- and 

Y-axis sensors are shown, which appear to have a Gaussian distribution like the other 

sensor types. For some reason, the data distribution of the Z-axis magnetometer (left) is a 

mirror image of the Y-axis magnetometer (right). This symmetry, as well as a much lower 
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spread of data than seen in the other sensor types, may indicate more consistent 

measurements, or perhaps magnetometer noise is lower than gyroscope and 

accelerometer. Another possibility resides in the power spikes seen at multiple 

frequencies in the gyroscope and accelerometer PSDs. The power in several of these 

frequencies may have been a source of noise, increasing the standard deviation and data 

spread on their histograms. The magnetometer was not affected by power spikes in its 

PSD, so noise levels were reduced, resulting in a lower standard deviation and data 

spread in the histogram. 

Figure 16.  Histogram with Two of Sensor 1’s Magnetometer Outputs 
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B. THE COMPLEMENTARY FILTER 

The quaternion-based complementary filter employed in this research processes 

measurement data from multiple sensor types into a blended solution. This filter was split 

into two parts: the factored quaternion algorithm (FQA), used for the stance phase of 

walking, and angular-rate measurements, used for the swing phase. The FQA uses 

accelerometers to determine pitch and roll, while the magnetometer detects yaw. The 

complementary filter synergistically combines the FQA with angular-rate data to output a 

quaternion estimate, which is better than the FQA alone [11].  

1. Reference Frames 

Before discussing the complementary filter, it is important to provide the 

reference frames used by the PNS. Since the dynamics of human movement are very low 

relative to air- and spacecraft, a flat-earth model may be used with a low-cost IMU 

without significant loss of accuracy. Such a model assumes the Earth’s radius to be 

infinite, therefore, flat and free of any Coriolis effect due to rotation. These assumptions 

enable a human-mounted IMU to describe orientation in terms of roll, pitch, and heading 

with respect to a local coordinate system [62]. In the PNS, the local coordinate system is 

north–east–down (NED). This system is fixed to the Earth’s surface, with its starting 

point typically given as the location where the IMU starts recording. For this research, the 

IMU’s X, Y, and Z axes correspond to north, east, and down, respectively. 

The term “reference frame” is often used in discussing a local coordinate system, 

but this is incorrect. A reference frame is a tool used to describe motion. When walking, 

inertial forces, that is to say, linear and angular forces, are felt depending on the walker’s 

movement with respect to the earth’s surface. A coordinate system is then needed to 

determine where he or she is located terrestrially at a given time. Simply put, a coordinate 

system details where exactly an individual’s position is within a reference frame. 

A body frame is the frame whose orientation is fixed with respect to the sensor 

module. It places the center of the IMU coordinate system at its centroid. The 3-Space 

module body frame consists of X-, Y-, and Z-axes whose orientations remains fixed to the 

IMU as it rotates. The 3-Space sensor module body axes in Figure 3 are arbitrarily 
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configured. The X-axis extends from the top of the sensor module, the Y-axis extends 

from the left side when the module’s buttons are facing the user, and the Z-axis exits the 

bottom where the micro-USB plug attaches to the IMU. Since all forces are perceived by 

the IMU with respect to its body frame, these measured forces are translated to a 

common, local, NED coordinate system to provide usable location information. 

2. Factored Quaternion Algorithm: Stance Phase 

The FQA uses measurements from the 3-Space module’s triaxial accelerometers 

and magnetometers, which provide roll, pitch, and heading (yaw) information in the 

stance phase. Per design, the gyroscope was left out of FQA calculations since the FQA 

was configured to work with angular position measurements (i.e., degrees) as opposed to 

angular rates (i.e., deg/s).  

As a quaternion-based system, the FQA offers robust performance and prevents 

“gimbal lock,” a disruption that occurs when one or more Euler angles reach an attitude 

of 90°. At this inclination, the mathematics of electronic gyroscopes break down and can 

result in a singularity, resulting in disruptions to software code with divide-by-zero 

events. Quaternions avoid singularities altogether and provide good internal orientation. 

A quaternion is a made up of a scalar 
0q  and a vector q  

 
0 0 1 2 3q q q iq jq kq     q  (3.1) 

where the scalar components of a quaternion are 
0 1 2 3, , ,q q q q . 

Although this complex vector does not suffer from the singularities seen with 

Euler angles, quaternion measurements are difficult to intuitively follow. To compensate, 

the FQA computes quaternions for the benefit of the PNS and performs additional 

processing to complete Euler-angle transformations for the sake of intelligibility. 

The FQA used in this research consists of three separate quaternions, each 

corresponding with a rotation about the X-, Y-, or Z-axis. The result is that the 

components in the body frame of the sensor can be converted to a flat-earth model 
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navigation frame. This combined output provides values for roll, pitch, and heading in the 

form of a composite quaternion 

 YawRoll Pitchq q q q .  (3.2) 

The accelerometers provide measurement data for the roll and pitch quaternions, while 

the magnetometer provides data for the heading (yaw) quaternion [11]. Quaternions 

cannot simply be multiplied together; they are non-commutative, and order is important. 

Several quaternion-specific formulas are given in [63]. 

a. Accelerometer Quaternion: Roll and Pitch 

Since the accelerometer measures roll and pitch primarily in the stance phase, the 

complementary filter assumes that gravity is the only force measured. The 3-Space 

module’s accelerometer-output units are expressed in units of g-force, where the norm of 

the gravity vector ba  was assumed to equal one. As stated previously, the local g-force 

in Monterey, California is equal to 9.7991 m/s2 [35]; therefore, the norm of the g-force 

vector is 9.7991/9.80665 = 0.99923g. For the purpose of detecting pitch and roll, a 

difference of 0.08% between the SI value and the local value was deemed negligible. The 

individual components of the gravity vector are, , ,b b b b

x y za a a a    . The superscript b  is 

used to signify that measurements were taken in the sensors body frame [11]. 

The roll and pitch quaternions were computed from accelerometer measurements. 

Roll is represented by  , and the roll quaternion is constructed as 

 

cos
2

sin
2

0

0

Rollq





 
 
 
 


 
 
 
  

, (3.3) 

where  

 sin
cos

b

ya





   (3.4) 
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and 

 cos
cos

b

za





  . (3.5) 

Pitch is represented by  , and the pitch quaternion is configured as 

 

cos
2

0

sin
2

0

Pitchq





 
 
 
 


 
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 
  

, (3.6) 

 
where 

 sin b

xa   (3.7) 

and 

 
2cos 1 sin   . (3.8) 

b. Magnetometer Quaternion: Heading (Yaw) 

The FQA relies on magnetometer readings to determine heading in a navigational 

frame. Determination of heading through other sensor technologies, such as 

accelerometer or gyroscope, is impractical under current MEMS IMU accuracy levels; 

this magnetometer strategy provides a stopgap. When low-cost, small form-factor 

gyroscopes reduce their error bias-stability performance specification by at least a 

magnitude, the magnetometer may be replaced [46].  

Magnetometers are not ideal as a heading reference, because ferrous materials and 

currents in wires may distort the local magnetic field, degrading accuracy. Unfortunately, 

MEMS gyroscopes such as those on low-cost IMUs are not nearly accurate enough to use 

as a heading source. To meet PNS performance demands, a magnetometer is currently 

required.  

Heading is determined by feeding magnetometer measurements into a yaw 

quaternion. With the yaw angle represented by   and the roll and pitch quaternions 
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represented by ,x yN N    it is possible to determine the horizontal components of the 

magnetic vector. The magnetic measurement vector is signified by ,x yM M    while 

the heading equation is [11] 

 

cos
2

0

0

sin
2

Yawq





 
 
 
 


 
 
 
  

, (3.9) 

where 
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sin

x y x

y x y
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M M N





    
           

. (3.10) 

Previous work found the FQA best suited to processing data in the stance phase 

[11]. This conclusion was reaffirmed through testing, in which an observation was made 

that the swing-phase accuracy of the PNS improved when the FQA was significantly 

de-weighted. Accurate gait-phase detection also enabled optimal FQA performance. To 

achieve fast detections and high accuracy, a balance was needed between allowing the 

system to detect changes in gait phase quickly and minimizing false detections. 

3. Angular Rate Measurements: Swing Phase 

Positional changes of an IMU-equipped user were primarily found by integrating 

navigation-frame accelerations. Testing showed the most limiting sensor for the PNS was 

the gyroscope. Due to poor results when using dead reckoning with MEMS IMUs, the 

need for a PNS with error-eliminating algorithms was evident. 

During the swing phase, attitude was found with the dynamic rate quaternion 
dq  

(i.e., the gyroscope quaternion) using [11] 

 
1

( ) ( ) ( )
2

d dq t q t    (3.11) 
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where ( )  is the skew-symmetric matrix containing body-frame angular rate 

measurements , , and xb yb zb   . The angular rate measurements were extracted from the 

three gyroscopes about their axes using the skew-symmetric matrix 

 

 

0

0
( )

0

0

xb yb zb

xb zb yb

yb zb xb

zb yb xb
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 


  
 
 

  

. (3.12) 

Though the gyroscope was most actively used during the swing phase, the key to 

PNS performance and keeping gyroscope error in check is found in the stance phase. The 

PNS treats gyroscope measurements during the stance phase as an error bias. Since there 

should be a near-zero velocity of the standing foot, any angular movement measured by 

the gyroscope is assumed erroneous. The ZUPT algorithm identifies falsely reported 

angular-rate values and uses them to eliminate error biases from the immediately 

previous swing-phase measurements. That is, the error biases from a single stance phase 

are subtracted from a single previous swing phase, and the gyroscope is effectively 

recalibrated every time the instrumented foot hits ground. 

4. Gait-Phase Detection 

Gait-phase detection is used by the PNS to determine the proper gain needed to 

achieve optimum performance and accuracy. An angular rate threshold was empirically 

found and set at a value that allowed the PNS to determine if the user was in a stance or 

swing phase. This angular rate threshold can be considered a low-pass filter; if below the 

threshold, the FQA is allowed to pass, if above, the FQA is attenuated but still present. 

An example is provided in Figure 17, where the angular rate threshold was set to 0.35 

deg/s (0.0061 rad/s). The red line at 0.35 deg/s indicates a swing-phase detection, while 

stance-phase detection is signified when the red line is at 0.0 deg/s. The periodic blue line 

represents raw angular-rate data. 
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Figure 17.  Combined Angular Rate, Sensor 3, Lap 9, Three Footsteps of 

Gait-Phase Detection, Data Not Squared, SNR Low  

The data from three right footsteps are presented in Figure 17. The blue 

angular-rate line during the swing phase is mostly 1–5 deg/s, and during the stance phase 

there is an undesirable, non-zero amount of movement picked up by the gyroscopes. 

Though the right foot of the user was in stance phase, the assumed angular rate of zero 

was not observed in practice. Instead, a pseudo-error bias was present, owing to the 

continuous rotation of the foot during walking that added to actual sensor bias as well as 

a form of pseudo-noise error derived from the minute movements in a planted foot 

coupled with real sensor noise. The PNS is able to acquire good position accuracy by 

listening to specific sensor types in a gait phase. The FQA determines roll, pitch, and 

heading using the accelerometer and magnetometer in the stance phase, while the 

dynamic rate quaternion sources data from gyroscopes in the swing phase. The data in 

Figure 17 show a less than desirable difference between the useful swing- and 

stance-phase measurements. Since the PNS assumes the stance-phase angular rate 

2 2

xy x y   
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quantities as zero, any non-zero output is viewed as noise. With a signal averaging near 

2.0 deg/s in the swing phase and 0.5 deg/s in the stance phase, the SNR was much lower 

than desired, at 
10SNR=10log (2/0.5)=6 dB . This made it difficult to find a suitable 

angular-rate threshold value, resulting in sub-optimal gait-phase detections. 

An improved gait-phase detection method was sought to increase PNS 

performance. The original angular-rate threshold calculation used for gait-phase 

transition logic was 

 
2 2

xy x y    , (3.13)  

where 
x  is the gyroscope’s X-direction body-frame measurement and 

y  is the 

Y-direction measurement [11]. This formula creates a two-dimensional (2D) vector and 

was originally chosen in [11] because the inclusion of Z-direction gyroscope data was 

found to slightly degrade performance. The 2D vector relies on the IMU being mounted 

such that the gyroscope’s measurement plane is aligned to the foot-swinging plane, where 

the most angular movement occurs. Another shortcoming of the 2D formula is the output 

does nothing to reduce noisy measurements in the stance phase or increase the signal in 

the swing phase. This research improves the original formula by making it exponential 

and incorporating the third Z-axis gyroscope body-frame measurement 
z , adding 

greater signal strength and reducing noise. This updated version is used in gait-phase 

detection only. The exponential formula is 

 
2 2 2

xyz x y z       (3.14) 

where the exponential formula was tested with the same data used in Figure 17, the 

results used in Figure 18, which illustrates a dramatic improvement, creating a sharp 

boundary between the swing and stance phases made possible by the exponential formula 

amplifying the signal while attenuating the noise.  Equation (3.14) is effective only 

because the combined gyroscope output during the swing phase was typically greater 

than a value of one; therefore, the signal increased with the squared term. Conversely, 

since the stance-phase noise measurements were mostly less than one, noise was 

significantly attenuated by the squared term. The result was a new SNR of about 30 dB, 
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compared to the previous SNR of 6 dB, where Equation (3.13) is used. The higher SNR 

allows for more robust gait-phase detection by reducing the PNS’s sensitivity to the 

user-selected threshold value. The added stability enables a user to find an optimal 

gait-phase detection setting easily, ensuring best possible PNS performance.  

 

 

Figure 18.  Squared Combined Angular Rate, Sensor 3, Lap 9, Three Footsteps of 

Gait-Phase Detection, Data Squared, SNR High 

Initially, it was hypothesized that the best complementary-filter performance 

would be achieved when the gait-phase logic immediately picked up a phase change from 

stance to swing or swing to stance. In practice, this is mostly true but with a few 

conditions. The gait-phase detection logic has a user setting that controls how quickly the 

gait-phase changes when faced with measurement data breaking the threshold. The logic 

was arranged to declare a change in gait phase if a consecutive number of measurements 

2 2 2

xyz x y z     
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fell above or below the threshold setting. False alarms were found much more damaging 

to performance than slow detections. The exponential formula (3.14) has the advantage of 

creating precise boundaries between phases, as demonstrated in Figure 18.  In the swing 

phase, the angular-rate magnitude very quickly drops below the selected threshold as the 

walker transitions to stance phase. The original (3.13) results in a slower transition 

between phases, which makes it harder to select an optimal angular-rate threshold. The 

PNS performance is also very sensitive to the selected threshold value. A small change in 

this value can result in an extreme difference in results. In contrast, the 

exponential-formula threshold value could be set within a wide range of values, such as 

6–30 deg/s (0.1–0.5 rad/s), and show very little difference in the returned PNS position.  

This characteristic adds much needed robustness to the PNS. 

C. TUNING 

Optimal performance of the complementary filter was achieved by tuning it using 

real-life data. To do so, various parameters were altered, with the gain parameter k being 

most important. Adaptive gain was chosen over constant gain because it is demonstrated 

in [11] to offer superior performance in the PNS. 

Within the PNS, and subsequently the complementary filter, the FQA and 

dynamic rate quaternions run simultaneously. Since the complementary filter is adaptive, 

there are effectively two gains, 
sk and ,dk  which are mutually exclusive and used in the 

stance and swing phases respectively. The gain dynamically changes the FQA’s 

weighting based on the current angular-rate measurement’s relationship to a selected 

threshold value. The concurrent nature of these static and dynamic quaternion operations 

allow a blended-filter approach, enabling smoother transitions between sensors. 

1. Athletic Track: Walking Only 

The complementary filter was tuned using data collected from the second test 

event. In this test, the user circled an athletic track with a 3-Space module mounted on the 

right foot. This test did not incorporate running or alternative postures (e.g., kneeling or 

prone). Insights from a preliminary investigation to determine optimal sensor settings, 
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equipment, and test setup were implemented, such as fashioning a rigid mounting bracket 

and calibrating sensors in the field. 

a. Test Setup 

To limit extraneous influences and simplify tuning, variables were tightly 

controlled. A rubber-surfaced athletic track was selected as the test location, as shown in 

Figure 19. A measuring wheel was used to find the true circumference of one complete 

lap around the track. The measuring wheel was rolled along the white line that divides the 

inside lane from the next lane over, resulting in a measurement of 404.6 m. Both straight 

legs were 100.0 m, while each semicircular turn added a little over 102.0 m to the 

distance. All walking tests occurred at the same track, the user followed the same white 

line in the same direction using identical start and finish points. 

 

 

Figure 19.  Athletic Track Used for Testing. Adapted from [64]. 

N 
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Considerable thought was given to the mounting of the 3-Space module. The 

preliminary investigation used stretchy rubber brackets supplied by the manufacturer, 

which attached to an elastic belt by means of Velcro straps, permitting undesirable sensor 

movement during walking. While later analysis provided reassuring evidence that the 

PNS was largely unaffected to adverse conditions such as jostling, it was an obstruction 

in tuning of the complementary filter and characterizing a performance baseline. Further 

testing addressed these concerns by designing and manufacturing custom mounting 

brackets. 

b. The PNS Bracket 

A stable, rigid bracket was created for testing purposes, using computer-aided 

design to 3D print a rigid plastic bracket in 2×1 and 2×2 versions, which carry a 

maximum of two or four IMUs respectively. These can be seen in Figures 20–23. In this 

paper, the naming convention of brackets are defined as the leading number “2” 

corresponding to the number of columns of IMUs, and the trailing number “1” or “2” 

corresponding to the number of rows of IMUs. The rapid prototyping capabilities offered 

by a 3D printer proved to be beneficial, allowing design evolution to occur within a few 

hours. Besides adding stability, the brackets also simplified the co-location of multiple 

IMUs.  

For testing the mounting of multiple 3-Space modules at the same location, we 

predicted that maintaining a constant orientation among the units would simplify their 

data averaging into a fused output. We also assumed that the IMUs would more likely 

experience near identical forces if they shared the same rigid bracket. Finally, mounting 

multiple co-located sensors in one bracket was predicted to assist in a rigorous 

comparison of performance discrepancies among alternative sensor combinations. The 

2×1 brackets are displayed in Figures 20 and 21.  
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Figure 20.  2×1 Sensor Brackets, Left-Foot Bracket (Left) and Right-Foot Bracket 

(Right) 

Brackets were laced to the shoe at the lower instep, just above the intersection of 

the arch and ball of the foot, as displayed in Figure 21.  While the modules may appear to 

pop out easily, they are tightly secured by the bracket’s sidewalls. Only one sensor 

module came loose in 20 laps of testing. 

 

 

Figure 21.  Right-Foot 2×1 Bracket Holding Two IMUs 

The first test setup incorporated two 2×1 brackets, each holding two 3-Space 

modules as shown in Figure 20.  For all foot-based testing, sensor modules 1 and 2 were 
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mounted on the left foot and modules 3 and 4 on the right. This was done to enable 

proper comparison between test runs, simplify comparison of the performance 

differences among individual sensors on the same foot, and ascertain the benefits of 

averaging co-located sensors. 

The second test setup used a 2×2 bracket to co-locate four sensors, as shown in 

Figure 22, allowing a near-identical force environment in which sensors were compared 

directly and two to four sensors were fused into a single averaged output. 

 

 

Figure 22.  2×2 Sensor Bracket Holding Four IMUs in Fixed Relationship 

The 2×2 bracket was placed on the right foot and, like the 2×1 version, secured by 

shoelaces as shown in Figure 23. Throughout all test events, only one test run was 

aborted because the bracket came unhooked. No damage was observed to any 

component.  

Despite being rigid, there may have been some flexure in this and any of the other 

brackets. This may have contributed to each IMU feeling a slightly different force and 

subsequently needing slightly different PNS settings, which will be discussed later, to 

achieve best performance. In addition, each IMU was in a different physical location and 

could have had small discrepancies in the experienced forces. More than likely, these and 

several other small contributing factors cause discrepancies between individual IMUs as 

well as their mounted locations. 
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Figure 23.  2×2 Bracket Mounted with Four IMUs on Right Foot 

c. Consistent Movement 

Great care was taken to maintain uniform test conditions and execution among 

test runs. The user carried a tally counter to track right footsteps and for consistent 

cadence, walked in synchronization with a smartphone metronome application, such that 

at every beep, the right heel struck the ground. To set walking speed, a comfortable pace 

was found and the metronome beat adjusted to match. This resulted in a setting of 55 

beats per minute (BPM), which constitutes a step frequency of 1.83 Hz when considering 

both feet. It was noted that [11] used a step frequency of about 1.65 Hz (49.5 BPM), but 

it was considered unlikely that detectable performance differences could be attributed to 

such a small discrepancy. Step frequency is the combined total number of steps taken 

within a given period by both feet, not just the right foot. A normal step frequency for the 

tester’s age group is 2.0 Hz [65]. The difference in step frequency may reflect the tester’s 

above-average height or the attempts of other researchers to control their walking. 

d. Calibration 

The first three walked laps used a pair of 2×1 brackets containing sensor modules 

1 and 2 on the left foot and modules 3 and 4 on the right. Before the start of the first lap, a 
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complete field calibration was performed on each IMU using the sphere-calibration 

wizard from the 3-Space sensor suite to calibrate the accelerometer and magnetometer. 

This was accomplished by connecting the 3-Space sensor module to a laptop computer 

through a USB to micro-USB cable and running the program. Then, the gyroscope was 

calibrated by using a separate software function within the suite. Previous familiarization 

trials had revealed the 3-Space sensor module’s sensitivity to magnetic fields created by 

nearby electronics. When a laptop computer was within 0.5 m of a 3-Space module, the 

magnetic field emanating from the computer’s circuitry was powerful enough to distort 

sensor calibration, resulting in poor PNS performance. Care was taken to maintain at 

least 1.5 m between the sensor and computer running the calibration software, a distance 

that eliminated interference from the laptop’s magnetic field. Calibration of the 

accelerometers and magnetometers were considered complete when the estimated density 

level reached 12, the same value attained previously with PSD characterizations. After 

the accelerometers and magnetometers were calibrated, the 3-Space module was gently 

placed flat on a concrete surface for gyroscope calibration. Ferrous material in the 

concrete, such as rebar or other magnetic interference, was not expected to affect 

gyroscope calibration because gyroscopes are not nearly as sensitive to magnetic fields as 

magnetometers are. Afterward, all settings were committed and saved to the 3-Space 

sensor module’s non-volatile memory. These calibration steps were repeated for all four 

sensors, taking about 15 minutes total.  

e. Track Testing 

The first round of testing consisted of six individual laps, each with two different 

sensor configurations. Laps 1–3 tested the 2×1 brackets, while Laps 4–6 tested the 2×2 

bracket configuration. The IMUs were set to begin recording data with the press of a 

physical button on the 3-Space module and stop with the press of the other button. Each 

start-and-stop interval created a separate file, so that each lap’s measurements were 

recorded in a discrete TXT data file on the sensor module. These files were later used for 

post-processing and data analysis. 
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Before the fourth lap, all four modules received a quick gyroscope calibration and 

were placed on the right foot in the 2×2 bracket, as demonstrated in Figure 23. This 

configuration is in contrast to Lap 1 where two sensor modules were mounted on each 

foot using the 2×1 brackets. Three laps with the 2×2 configuration were then completed. 

Before the sixth and final lap of the first evening’s testing, the sensors were adjusted so 

that a USB cable could be attached to the end of the IMUs while they were already 

inserted in the bracket to allow for recalibration of the gyroscopes. This new arrangement 

was accomplished by rotating the topmost sensors, 1 and 2, by 180° so that their 

micro-USB ports were unobstructed. This measure was taken on the hypothesis that jerk 

forces encountered when snapping the sensor modules into the bracket might corrupt a 

previous gyroscope alignment. Later analysis proved this to be an overly cautious 

precaution; the sensors were much more resilient than expected. 

2. PNS Settings Explained 

Collected sensor data were processed through the PNS algorithm using default 

values originally optimized in [11] for the MicroStrain 3DM-GX1, as shown in Table 2.   

Table 2.   PNS Settings, Optimized for MicroStrain 3DM-GX1. Source: [11]. 

Mounting Location: 

Right Foot 
Value 

Gait-Phase Detection 

Angular-Rate 

Threshold (deg/s) 
0.35 

Samples Above/Below 

Threshold Required to 

Change Gait Phase 
5 

Samples to Save 20 

Complementary Filter 

Angular-Rate 

Threshold (deg/s) 

0.35 

sk  1.0 

dk  0.00075 
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The first value given in Table 2 is the gait-phase detection angular-rate threshold 

value, measured in degrees per second. This threshold was used by the 

gait-phase-detection algorithm to determine whether the user was in a stance phase (if 

below) or swing phase (if above). 

The second parameter signifies the consecutive samples above or below the 

threshold required to change the gait phase. This value adds a hysteresis used to prevent 

momentary, false gait-phase changes caused by large-magnitude angular-rate error 

spikes. False gait-phase detections degrade PNS performance by incorrectly weighting 

each sensor type. An example illustrating how this value increases the robustness of the 

system is presented in Figure 18. Note that there appears to be a delayed reaction in the 

system’s detection of a gait-phase change. If the setting is set to a value of 5.0, the 

gait-phase detection logic requires five consecutive samples of data above or below the 

angular-rate threshold before it agrees to change the gait phase; a number of factors are 

used to determine the best value for this parameter. Setting an angular-rate threshold too 

small (e.g., 0.1 deg/s) was shown to result in false detections; the logic mistakenly 

registered a swing phase though the tester was in stance phase. Conversely, a problem 

can occur when setting the threshold too large, the algorithm does not detect a stance 

phase event. Accuracy is degraded in each of these scenarios because the gain values 

change for each sensor type based on gait phase. Having a threshold value that triggers 

false alarms or misses events reduces the accuracy of the PNS because the wrong gain 

value is processed with the measured data.  

The third parameter value in Table 2 is the “Samples to Save Setting.” This 

parameter acts as a buffer; its value determines the number of previously reported 

velocity measurements to use. 

The fourth parameter value signifies the complementary filter’s angular-rate 

threshold, which is similar to the gait-phase detection threshold. The difference is that 

this value determines the adaptive-gain boundary threshold. In testing, improved 

performance was achieved when able to change both angular rate thresholds 

independently as needed to boost PNS performance. 



 67 

The gain values 
sk  and 

dk  are, respectively, the static and dynamic gains. Static 

gain is used when angular-rate measurements falls below the complementary filter’s 

angular-rate threshold setting; this indicates the foot was in the stance phase. Dynamic 

gain is used only when angular-rate output is above the threshold setting, which indicates 

the foot was in the swing phase. 

As stated earlier, the purpose of the two gains is to incorporate adaptive weighting 

with the FQA. Conditional weighting is used to detect attitude and heading from 

accelerometer and magnetometer measurements. If the gain shows a high value such as

1k  , the accelerometer and magnetometer measurements have equal say with respect to 

the gyroscope in the complementary filter. If the gain is set very low, such as 0.01k  , 

then the weighting of the accelerometer and magnetometer are significantly attenuated 

compared to the gyroscope. This weighting reduction allows the gyroscope to become the 

dominant source of information for the complementary filter. 

3. PNS Performance when Walking 

A set of 3-Space foot-mounted measurement data was processed through the PNS 

using gain settings found to work best with the MicroStrain 3DM-GX1 [11]. These 

post-processed data were then plotted in Figure 24, displaying suboptimal results. The 

trial began at point (0, 0), and the user walked the same counterclockwise path for every 

run. Each blue dot represents the right foot’s placement when a stance phase is detected. 

Note that the start and end points do not match, though the tester ended the lap in the 

same location as starting. The step-plot demonstrates the need to custom tune each IMU, 

an undesirable but not surprising requirement. The main problem illustrated by Figure 

24’s step-plot is the PNS’s inability to accurately detect turns using the original settings. 

The end result was a large misalignment error of 22.63 m between the starting and ending 

points. Custom tuned PNS settings are required to achieve adequate performance. 
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Figure 24.  Step-Plot of 3-Space Sensor Using MicroStrain 3DM-GX1 PNS 
Settings; Sensor 3, Lap 6 

After many attempts to improve step-plot performance by adjusting each setting, 

optimal values for Sensor 3’s sixth lap were found. These are provided in Table 3.   

Table 3.   PNS Algorithm Values, Optimized for 3-Space Sensor 

Mounting Location: 

Right Foot 
Value 

Gait-Phase Detection 

Angular-Rate 

Threshold (deg/s) 
0.35 

Samples Above/Below 

Threshold Required to 

Change Gait Phase 
3 

Samples to Save 15 

Complementary Filter 

Angular-Rate 

Threshold (deg/s) 

0.101 

sk  1.0 

dk  0.01175 

End 

Sensor 3 Error: 

Lap 6 = 22.63 m  
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 With these new settings, the PNS was able to process Sensor 3’s lap-six 

measurements and achieve a much-improved outcome, as shown in Figure 25. This time, 

the PNS performed well at detecting turns, thereby reducing the alignment error of the 

traversed path. Despite improved performance, there remained an error of 5.41 m. The 

resulting step-plot suggests the user reached the original starting location, but proceeded 

another 5.41 m. In reality, he stopped precisely at the starting location. The reason for 

this overlap error is assumed to be inaccuracies in the sensors themselves. Despite this 

modest error, the gait-phase detection algorithm properly detected all 266 steps made by 

the right foot. The total distance traveled is shown as 396.0 m, not the actual distance of 

404.6 m that was previously measured.  

 

 

Figure 25.  Step-Plot of 3-Space Sensor using Optimized PNS Settings; Sensor 3, 

Lap 6 

The total-distance-traveled error is described as a scaling error, hypothetically 

attributable to the mounting of the IMUs at the top of the foot, not the bottom. The leg 

rotates about the ball-and-socket joint at the hip. The velocity at each point increases as 

distance from the hip grows. The result of this increased moment arm is that the forces 

Sensor 3 Error: 

Lap 6 = 5.41 m  

 

Overlap 
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detected during the swing phase by the IMU will be smaller in magnitude above the foot 

than below. The lesser-magnitude velocity from the top of the foot was integrated, 

resulting in a shorter distance than truth.  

a. Multiple Laps Using Same IMU 

One problem encountered was performance inconsistency between laps. The 

complementary filter may be optimally tuned for a specific sensor and test lap, but the 

same sensor under nearly identical conditions tends to require retuning. An example of 

the need for custom tuning is presented in Figure 26, which only displays Sensor 3 PNS 

outputs but uses tuning values optimized for Lap 6, on Laps 4 and 5 as well. Note the 

significant variation among traversed paths, as well as the general noise of the data. 

These variations occurred despite efforts to keep as many variables as possible constant: 

same path, temperature, step frequency, 2×2 mounting bracket, etc. One possibility for 

the path variations may be that the gyroscope was recalibrated just before Laps 4 and 6. 

Another potential reason is that commercially available IMUs offer limited performance. 

 

 

Figure 26.  Sensor 3’s Step-Plots for Laps 4–6 using 2×2 Bracket and Settings 

Optimized for Lap 6 

Sensor 3 Errors: 

Lap 4 = 1.47 m  
Lap 5 = 2.91 m  

Lap 6 = 5.41 m  
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Using a gyroscope as an example of sensor quality, we find they all have several 

dominant sources of error, including gyroscope bias instability, scale-factor non-linearity, 

and angular random walk. These errors combine to contribute to inconsistent and 

inaccurate position solutions. Tuning the PNS greatly reduces these negative 

characteristics, but the step-plots presented in this thesis demonstrate that the PNS can 

only do so much. Even with strict control of variables, where all laps are traversed at 

exactly the same pace and along the same path, the resultant step-plots still displayed 

variations. 

Further analysis indicated that small changes in how each IMU was mounted to 

the foot could cause large performance differences; these differences can be seen in in 

Figure 27. A small change in the physical environment, such as placing Sensor 3 in a 2×1 

bracket, seemed to make a large difference in estimated starting and stopping locations 

and overall path.  

 

 

Figure 27.  Sensor 3’s Step-Plots for Laps 1–3 Using 2×1 Bracket and Settings 

Optimized for Lap 6; Gains Not Tuned for Each Lap 

Sensor 3 Errors: 

Lap 1 = 21.13 m  

Lap 2 = 15.75 m  

Lap 3 = 16.97 m  
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In Figure 27, Sensor 3’s gyroscope only received an initial calibration, it was not 

recalibrated between laps, and performance for Laps 1–3 is noticeably degraded 

compared to Laps 4–6 in Figure 26. The takeaway from these results is that seemingly 

insignificant variations in the test setup may create large variation in PNS performance. 

 

b. Multiple IMUs from the Same Lap 

To compare multiple IMUs in the same lap, all four sensor modules from Lap 6 

were analyzed. Since they experienced near-identical conditions, with all modules 

mounted on the same 2×2 bracket, their performance was expected to be very close. The 

complementary filter settings for Sensor 3 were optimized for the sixth lap, and the other 

sensor modules were processed with those same settings. Afterward, the sensors were 

processed through the PNS and plotted as shown in Figure 28.  

 

 

Figure 28.  All Four Sensors Step-Plots for Lap 6 Using 2×2 Bracket and Settings 

Optimized for Sensor 3’s Lap 6; Gains Not Tuned for Each Sensor 

Lap 6 Errors: 

Sensor 1 = 23.28 m  

Sensor 2 = 6.35 m  

Sensor 3 = 5.41 m  

Sensor 4 = 10.15 m  
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Interestingly, when compared with the previous section, there were fewer 

performance variations from one IMU on multiple test runs than from multiple IMUs on 

a single test run. These results amplify the point that the best way to reduce PNS error is 

to tune the complementary filter for each IMU, and then for each test run. Since this is 

not practical in any reasonable real-time implementation of the PNS, the next alternative 

is to fine tune the complementary filter for each specific sensor—Sensor 1 with different 

settings from Sensor 2, and so forth. Unfortunately, until low-cost IMU technology is 

considerably improved, extra care is required to achieve acceptable performance in a 

real-time PNS by ensuring each sensor module is properly tuned before operation. 

The PNS provides a reasonably good position solution when used in conjunction 

with a low-cost IMU but only after custom complementary filter tuning has been applied. 

PNS performance is subject to substantial variations among IMUs and the conditions in 

which they operate. It is cumbersome to retune the PNS for every test event and likely 

impossible in real-time. It is, therefore, concluded that a single, low-cost, currently 

available, consumer-grade AHRS IMU cannot provide the measurement quality needed 

for acceptable position accuracy. 

c. Temperature Sensitivity  

To ensure robust data collection, additional laps were performed a week after 

those in the previous section. Like the others, these were conducted in the evening, but 

this time the ambient temperature was 5°C (9°F) lower at 13°C (55°F). The IMUs were 

exposed to the open air longer than before, allowing more acclimation to ambient 

conditions before calibration was performed.  

For unknown reasons, IMU performance was significantly better than in previous 

testing. A possible explanation is the lower ambient temperature and a longer delay prior 

to calibration. Temperature correlates with sensor noise; therefore, a lower temperature 

may result in reduced sensor noise (i.e., lower ARW). In addition, exposing the IMUs to 

the ambient temperature for ~20 minutes before calibration might have reduced the total 

impact of non-linear errors caused by temperature changes after calibration. 
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The step-plot in Figure 29 shows all three laps of measurements taken from 

Sensor 3, encased in the 2×1 bracket and mounted to the right foot. Complementary-filter 

tuning revealed that for Sensor 3 to enable the PNS to create step-plots in the shape of the 

athletic track, the static gain 
sk  must be set to a value of 1.0 and the dynamic gain 

dk  

should be 0.091.  

 

 

Figure 29.  Sensor 3’s Step-Plots for Laps 7–9; Gains Tuned for Each Lap 

 

To further demonstrate the performance-altering effects of custom complementary 

filter tuning, gains that had been optimized for Sensor 4 were used to process Sensor 3’s 

data. The corresponding degraded PNS step-plot is presented in Figure 30. At first 

glance, error values may appear to be very close to the optimally tuned step-plot in Figure 

29, but data used to generate Figure 30 produced a plot with an elongated track and a 

rougher overall path.  

Despite being an identical IMU compared to Sensor 3, Sensor 4 still had 

performance differences. Perhaps, even though effort was made to maintain consistent 

calibration methodology between each IMU, small differences were large enough to 

Sensor 3 Errors: 

Lap 7 = 3.92 m  

Lap 8 = 7.88 m  

Lap 9 = 4.39 m  
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change overall performance. Another possibility is the fact that each sensor within an 

IMU does not have the exact same performance as demonstrated by their PSD. 

 

 

Figure 30.  Sensor 3’s Step-Plots for Laps 7–9; Gains Tuned for Sensor 4’s, Lap 2 

 

The PNS settings used to process Sensors 3 and 4 are displayed in Table 4.   Note 

that the gait-phase detection threshold and complementary-filter thresholds are the same. 

This is because sensor performance from that round of testing was more robust. The 

values of 0.35 deg/s were found optimal, but a wide span of values from 0.1–0.5 deg/s 

worked nearly as well.  

 

 

 

 

 

 

Sensor 3 Errors: 

Lap 7 = 10.25 m   

Lap 8 = 4.02 m   
Lap 9 = 1.40 m   
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Table 4.   PNS Settings Optimized for Sensors 3 and 4 in Laps 7–9 

Mounting Location: 

Right Foot 

Value 

Sensor 3 

Value 

Sensor 4 

Gait-Phase Detection 

Angular-Rate 

Threshold (deg/s) 
0.35 0.35 

Samples Above/Below 

Threshold Required 

to Change Gait Phase 
5 5 

Samples to Save 20 20 

Complementary 

Filter Angular-Rate 

Threshold (deg/s) 

0.35 0.35 

sk  1.0 1.0 

dk  0.091 0.01175 

 

Sensor 4 was found to perform better than Sensor 3, as evident by the more 

accurate step-plot data displayed in Figure 31. Sensor 4 was tuned to work best in the 

eighth lap as illustrated by the small error value of 1.82 m, while the two other laps did 

almost as well. This step-plot appears to be smoother for two of the three laps and more 

accurate than the data extracted from previous testing.  

 

 

Figure 31.  Sensor 4’s Step-Plots for Laps 7–9; Calibration Occurred at Lower 

Temperature; Settings Optimized for Lap 8 

Sensor 4 Errors: 

Lap 7 = 6.97 m  

Lap 8 = 1.82 m  

Lap 9 = 5.61 m  
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D. PLACEMENT 

The results of placing IMUs at different locations on the body are investigated in 

this section. Each body location studied had its corresponding IMU and PNS 

performance analyzed. A total of eight 3-Space modules were strapped to a single user: 

two on each foot, one on each shin, one on the lower-back, and one on the chest. The 

manufacturer-provided mounting straps were elastic and the sensor mounts were blue, 

stretchy rubber. The distribution of sensors on the user is displayed in Figure 32.  

Each mounting location tested was selected according to a specific rationale. The 

foot sensors were used as a performance baseline because their data can used with the 

complementary filter with optimal gain settings as discussed previously. Two IMUs were 

placed on each foot to provide a feel for the variation in sensor performance when 

mounting location is held constant. A module was mounted on each shin to evaluate its 

potential use with [10]’s posture-finding algorithm. The lower back was tested under the 

hypothesis that an IMU will see better performance when insulated from acceleration and 

jerk forces, like those experienced with the foot. The lower back was chosen after 

correspondence with a biomechanics expert who confirmed the small of the back as the 

most stable location, with the least movement [66]. The chest was chosen primarily to 

allow [10]’s posture-finding algorithm to work, though it was predicted that PNS 

performance would be suboptimal. The bending and turning of the chest independently of 

walking direction was expected to degrade PNS accuracy. The head was briefly 

considered but ruled out as an acceptable location because people turn their heads 

frequently, and the user would potentially have to wear a cumbersome bracket, maybe 

even a helmet, to operate the PNS. 
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Figure 32.  Distributed IMU Mounting Arrangement; Two per Foot, One per Shin, 

One on Lower Back, and One on Chest, for Eight Total 

Placing an IMU on the foot was originally motivated by an educated guess, which 

predicted that location would be optimal for gait-phase detection since it experienced the 

largest forces, owing to its location at the extremity of the body’s longest moment arm, 

which rotates about the hip. A long moment arm produces a large angular-rate SNR to 

allow proper gait phase detection between the swing and stance phases, enabling the 

complementary filter to quickly and accurately identify footsteps and integrate them into 

position estimates. For this thesis, “signal” corresponds to the amplitude of the angular 

velocity experienced by the 3-Space module during the swing phase, and the “noise” is 

the angular velocity experienced during the stance phase. These usages depend on the 

presumption that there is no angular rate during the stance phase, which for the purposes 

of this thesis is assumed to be true.  

Another motivation for multiple IMU mounting locations was the concern that a 

foot-mounted module’s performance might be diminished by impulse forces when the 

heel struck ground; as a result IMU performance might be improved by moving the 

3-Space module to a less dynamic place on the body. In this section, the effects of an 
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IMU’s placement on different parts of the body were investigated in order to test the 

assumptions regarding the different mounting locations.  

This particular set of testing did not employ the 3D printed brackets created for 

this research, and testing took place during the day. Lower control of variables such as 

weather, brackets, and step cadence was not expected to degrade outcomes because only 

relative performance of different mounting locations was of interest as opposed to the 

absolute performance and accuracy of the PNS system. 

1. The Shin 

The shins are an attractive choice for IMU placement because they are exposed to 

angular forces like those of the feet but with less jerking and rolling. A smooth but 

distorted step-plot was created using data collected from a shin-mounted IMU, as shown 

in Figure 33. In this test, the 3-Space sensor module was mounted to the tester’s left shin, 

held firmly by a stretchy rubber bracket and wrapped in elastic Velcro as shown in Figure 

32.  

A multiplication factor of 1.094 was used to properly scale up the step-plot, 

because the PNS calculated the total distance walked as only 370.0 m instead of the 

actual distance of 404.6 m. The multiplication factor brought the total distance traveled to 

within 0.5 m of true. Scaling each mounting location to negate path compression was 

needed to normalize the data and effectively compare performance at different locations.  

Compared to the foot, the shin’s path-compression error was most likely due to 

the shortened lever arm from the hip, which reduced perceived forces.  
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Figure 33.  Left-Shin Mounted IMU’s Step-Plot 

The complementary filter settings for the shin-mounted module were adjusted 

until optimal parameter values were found. “Optimal” is used to describe settings that 

achieve a step-plot with characteristics including a smooth path in the shape of an athletic 

track and a minimal error value. “Error value” represents the difference between the 

estimated starting and stopping locations, not to be confused with total-distance traveled 

or scaling (i.e., path-compression) errors. There was no accurate TSPI truth source (e.g., 

GPS) mounted on the user during testing, so errors could not be calculated with every 

measurement.  

The optimal shin settings are listed in Table 5. The specific 3-Space module used 

for shin testing was not one of the sensors used in other parts of this research, that is, not 

Sensors 1–4. The selection of the left shin sensor for analysis was arbitrary—there is no 

reason to favor left over right. 

 

 

 

Shin 

Left Shin Errors: 

Lap 10 = 16.88 m  
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Table 5.   Optimal Settings for Left-Shin Mounted IMU, Lap 10 

Mounting Location: 

Shin 
Value 

Gait-Phase Detection 

Angular-Rate 

Threshold (deg/s) 
1.0 

Samples Above/Below 

Threshold Required to 

Change Gait Phase 
5 

Samples to Save 20 

Complementary Filter 

Angular-Rate 

Threshold (deg/s) 

1.0 

sk  1.0 

dk  0.005 

Multiplied by Scale 

Factor 
1.094 

 

Two parameters of note are depicted in Table 5. The first is the gait-phase 

detection angular-rate parameter, which was set to 1.0 deg/s. This is quite a bit higher 

than the 0.35 deg/s setting, which was optimized for foot-mounted sensor modules. This 

implies the angular-rate measurements remained high, even in stance phase, which makes 

sense because, while the foot may be planted on the ground, the shin rotates about the 

ankle with a lever arm several centimeters above it and a non-zero angular rate of 

rotation. The second parameter setting of note, is the reduced weighting of the dynamic 

gain for the FQA, where 0.005.dk   This is similar to the gains found to work well with 

foot-mounted IMUs. This low gain is a sign that the gyroscope was the dominant sensor 

used for position calculations during the swing phase. The output position values were 

multiplied by a scale factor to normalize the shin step-plot with the foot-mounted 

step-plots. 

To further illustrate the point of increased noise in a shin-mounted stance phase, 

an angular-rate length plot is provided in Figure 34. Unlike data derived from foot sensor 
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modules, shin-mounted angular-rate measurements make it difficult for the gait-phase 

detection algorithm to operate correctly because of excessive noise near or above a value 

of one. This prevents the use of the SNR-boosting exponential Equation (3.14), where 

angular rate values less than one are attenuated and values greater than one are amplified. 

Instead, Equation (3.13) was found to work best for the shin, performing a square root of 

the sum-of-squares operation using only X- and Y-axis gyroscope measurements to 

compute the angular-rate magnitude. The resulting SNR was about 8 dB. Compare that to 

an SNR of 30.0 dB for a foot mounted IMU accompanied by the exponential formula 

(3.14). 

 

 

Figure 34.  Combined Angular-Rate Length for Left Shin-Mounted IMU, Lap 10 

2. The Lower Back 

The lower back was assumed the best place to mount a sensor if it is true that 

dynamics degrade performance. The lower back is the inflection point about which most 
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movements occur; football coaches, for example, teach defensive players to focus on the 

ball carrier’s hips (i.e., lower back) to estimate true path of travel. The biomechanics 

expert previously cited, suggested the T11 or T12 vertebral bodies specifically [66]. 

To characterize the performance of an IMU mounted on the lower back, the 2×1 

bracket was used, secured by an elastic band around the user’s waist. Sensors 1 and 2 

were carried on the lower back for Laps 7 and 9. At the same time, Sensors 3 and 4 were 

mounted in a 2×1 bracket on the right foot. After processing Lap 9’s lower-back data 

from through the PNS, a step-plot was created, as shown in Figure 35.  

 

 

Figure 35.  Lower-Back Mounted Step-Plot for Sensor 2, Lap 9; Scale Factor 

12.137; Each Footstep (Left and Right) was Detected 

Compared with the foot and shin locations, the first thing apparent with the 

lower-back data is the detection of twice as many footsteps. Since each blue dot 

represents a stance-phase detection (i.e., footstep), the data in Figure 35 clearly displays 

each step. The reason for both left and right footstep detection is the IMU placement. 

Foot swing and impulse forces are conducted up the leg, to the IMU strongly enough to 

identify gait-phases as well as measure forces. The complementary filter was not tuned to 

Lower-Back 

Sensor 2 Errors: 

Lap 9 = 7.11 m  
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work with data from both feet, and it took considerable effort to find settings that would 

produce an acceptable output (see Table 6).   

Table 6.   Optimal Settings for Lower Back Mounted Sensor 2, Lap 9 

Mounting Location: 

Lower Back 
Value  

Gait-Phase Detection 

Angular-Rate 

Threshold (deg/s) 
0.5 

Samples Above/Below 

Threshold Required to 

Change Gait Phase 
5 

Samples to Save 20 

Complementary Filter 

Angular-Rate 

Threshold (deg/s) 

0.5 

sk  1.0 

dk  0.8 

Multiplied by Scale 

Factor 
12.137 

 

Since the lower back endures nowhere near as much of an angular rate as a foot or 

shin, it was much more difficult to coax the gait-phase detection algorithm into 

effectively working. Fortunately, there were measureable differences between the swing 

and stance phases. The adaptive filter was adjusted so that the FQA remained a dominant 

source of data for both phases, as proven by 1.0sk   and 0.8dk   in Table 6. Like the 

step-plots from the shin-mounted sensor, Figure 35’s step-plot for the lower back was 

scaled down. Unlike the shin’s step-plot, however, the scaling reduction from lower-back 

measurements is dramatic, resulting in a total distance traveled of only about 10% of the 

track’s true circumference. This scaling issue is rectified by incorporating a 

multiplication scale factor of 12.137 to the position data.  
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Another problem encountered with the lower-back mounted IMU is the small 

signal magnitude measured during the swing phases, which, when coupled with high 

noise in the stance phase results in a lower SNR as shown by the gyroscopes angular rate 

length in Figure 36. In this case, “noise” is the actual movement picked up by the IMU 

during the stance phase. Since the PNS assumes velocity during the stance phase to be 

zero, any non-zero measurement makes it more difficult for gait-phase detection logic to 

work correctly.  

 

 

Figure 36.  Combined Angular Rate Length for Lower-Back Mounted Sensor 2, 

Lap 9 

As with the shins, Equation (3.13), which finds the norm of the X- and Y-axis was 

employed because Equation (3.14) worked poorly with lower-back data. Lower-back 

measurements, whose stance-phase measurements were typically near or above a 

magnitude of one resulted in an amplification of stance-phase noise instead of 

attenuation, as with the shins.  
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The gait-phase detection and measured gyroscope magnitude in Figure 36 

demonstrates a low SNR of around 6 dB; therefore, mounting a gyroscope on the lower 

back for gait-phase detection is not optimal but can be done if desired. Despite the low 

SNR, the step-plot yields a reasonably shaped athletic track and, when scaled properly, 

has a moderate error of 7.11 m between starting and stopping points. 

3. The Chest

Moving away from the feet, the last location selected to characterize IMU 

performance was the chest. Much like the lower back, the chest detected each foot strike 

during walking, and also has the disadvantage of being more dynamic due to the natural 

rotation and bending of the torso during walking. Despite the difficulty of gait-phase 

detection and very active movement of the chest, the PNS functioned, albeit poorly, and 

might only be considered in applications requiring high accessibility to the IMU. 

Of the locations tested, the chest gave worst performance. Requiring the old 

angular-rate formula (3.14), the chest produced a gait-phase SNR around 4 dB. This  was 

less than the lower back’s, and the chest’s twisting and bending degraded it even more. 

To improve gait-phase detection, the weighting of the FQA was kept at a high level near 

0.8 during the swing phase. This suggests the gyroscopes offered little enhancement to 

the PNS in swing phase as compared to the performance of the foot or shin. The step-plot 

of chest data shown in Figure 37 illustrates the reduced performance of the PNS at this 

location; note the noisy and jagged estimated path. A large-scale factor multiplier of 

18.824 was required to achieve an accurate path length. After eliminating path 

compression, the error was lower than anticipated, 2.77 m, but without a nicely shaped 

path, this value means little and moreover may fluctuate significantly among test runs. 
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Figure 37.  Chest Mounted Step-Plot for Sensor 2, Lap 8; Scale Factor 18.824; 

Each Footstep (Left and Right) was Detected 

To achieve an adequately track shaped output, almost every setting was adjusted 

as shown in Table 7. 

Table 7.   Optimal Settings for Chest Mounted Sensor 2, Lap 8 

Mounting Location: 

Chest 
Value 

Gait-Phase Detection 

Angular-Rate 

Threshold (deg/s) 
0.253 

Samples Above/Below 

Threshold Required to 

Change Gait Phase 
3 

Samples to Save 20 

Complementary Filter 

Angular-Rate 

Threshold (deg/s) 

0.253 

sk  1.0 

dk  0.8 

Multiplied by Scale 

Factor 
18.824 

Chest 

Sensor 2 Errors: 

Lap 8 = 2.77 m  
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The gait-phase detection algorithm was barely capable of distinguishing between 

the stance and swing phases. In tuning the complementary filter for the chest, it was 

difficult to find a satisfactory angular-rate threshold value because changing this 

parameter by a thousandth of a degree-per-second resulted in missed steps or false 

detections. A gait-phase detection plot using data from the same test time as previous 

gait-phase detection plots is presented in Figure 38. The measured angular-rate data is 

low in magnitude compared with similar plots from the lower back, shins, and feet. 

 

 

Figure 38.  Combined Angular-Rate Length for Chest-Mounted Sensor 3, Lap 8 

4. Conclusion 

The best place to mount a single IMU is the foot, owing to the high SNR of 

gyroscope measurements, which allows optimal gait-phase detection performance. The 

shin is second best but suffers from substantial movement during the stance phase owing 

to rotation about the ankle, making it more difficult to accurately detect gait-phase 
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changes. The lower back is third best, because it offers a stable platform but yields a 

lower gait-phase SNR as compared to the shin and foot. The worst performer is the chest. 

Less stable than the lower back, the chest has the lowest SNR of all tested locations, 

making gait-phase detection a challenge.  

A clear trend emerges: as the IMU is mounted further away from the foot, PNS 

performance declines. The measured angular velocity during the swing phase is 

subsequently reduced, and the undesirable non-zero measurements during the stance 

phase are increased, resulting in scaling problems, gait-phase detection failures, and false 

alarms. By extrapolation, the ultimate mounting site for an IMU would be beneath the 

shoe. Since the sole is where the foot meets the ground, it experiences the greatest 

possible forces needed to calculate distance traveled. Mounting a sensor module on the 

instep resulted in consistent measurements of around 396–400 m. If the IMU were 

mounted to underside of a shoe (e.g., heel of a boot), after several runs the average path 

length might be very near the true track circumference of 404.6 m. If this location is 

deemed undesirable and the top of the foot is preferred, a small scaling factor of 1.02 may 

be used to multiply position output to account for the 10.0 cm or so distance between the 

top and bottom of the foot. 

With respect to forces experience during human movement, the previously held 

assumption that higher accelerations and jerk forces degrade IMU performance was 

found to be false. Sensors within an IMU may slightly degrade due to the more intense 

dynamics of the foot, but compared to the sources of error seen in alternative mounting 

locations, these forces are insignificant. It is possible that these impulse forces may 

reduce the lifespan of an IMU, but testing to determine that potential reduction is outside 

the scope of this thesis. 

E. DISTRIBUTED SENSORS 

The advantages and disadvantages of distributing unlike sensor types over a 

person’s body, then fusing their measurements together into one virtual IMU before 

running data through the PNS algorithms are investigated in this section. The sensor 

types investigated in this research—gyroscopes, accelerometers, and magnetometers—
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are conveniently included in the 3-Space module, and the knowledge gained from the 

characterization of IMU performance in this research can aid in the creation of a 

distributed system of sensors. “Distributed” is used to describe the spreading of different 

types of sensors over the body with the intention of improving PNS performance. For 

example, gyroscope data may come from a sensor module on the foot while 

accelerometer and magnetometer measurements derive from the lower back. The notion 

behind this investigation was that different types of sensors might perform better in 

different operating environments—for example, if the gyroscope works best on the foot 

and accelerometers and magnetometers work better on the lower back, separating these 

sensors will yield an overall improvement in PNS performance.  The actual sensors 

within a 3-Space module were not separated for this experiment—they remained 

together. To achieve distribution, multiple 3-Space modules were used, but only the 

desired sensor data were read (e.g., the gyroscope at the foot and magnetometer at the 

lower back). In this way, it was possible to fuse the distributed sensor measurements 

taken from multiple IMUs into a single virtual IMU. 

The results of sensor-performance characterization in this research suggested two 

ideal mounting locations for a distributed system. The first was the foot, which provides 

the best gyroscope performance by enabling superior gait-phase detection with high SNR 

and few scaling problems. Right-foot mounting was selected as a standard for 

convenience (see Figure 21) in view of the right-dominance of most users including the 

tester. 

It was hypothesized that the optimal location to mount an accelerometer or 

magnetometer would be the lower back because of its stability and low-dynamics. The 

IMU was secured onto the lower-back using the 2×1 mount and elastic bands as exhibited 

in Figure 39. Though research showed that the IMU performs best when mounted on the 

foot, it was conjectured that most of these benefits were due to the improved gait-phase 

detection and dynamic measurements, both made by the gyroscope, and that perhaps the 

jerk forces experienced by the accelerometer and magnetometer during a heal striking the 

ground degraded their performance. Improving the pitch and roll estimates made by the 
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accelerometer, as well as the heading estimates from the magnetometer, might boost 

FQA, and overall PNS performance, resulting in higher position accuracy. 

Chest mounting was ruled out for its instability and poor gait-phase detection, and 

the feet were preferred over the shins because of their superior gait-phase detection and 

low dynamics in the stance phase, which are needed to provide the best ZUPTs. For these 

reasons, distributed testing in this research focuses solely on sensors mounted on the right 

foot or lower back.  

 

 

Figure 39.  2×1 Bracket Holding Sensors 1 and 2 on Lower Back 

1. Selection of Reference Frame: Body or NED 

It was assumed that for a distributed system to work, all sensors require their data 

to be transformed into an NED reference frame, also called a navigation frame. This is 

because sensors distributed over the body measure forces with respect to themselves; they 

do not know the orientation of other sensors and therefore cannot translate forces into a 

coherent picture. If a force is registered entirely in the X-axis on a lower-back mounted 

sensor, then this force may align with a foot-mounted sensor’s Y-axis direction one 

moment and with the Z-axis another, causing a disparity in measurements. It was 

assumed that when this mismatched data was combined, the PNS would output gibberish 

instead of, for example, providing a step-plot in the shape of a track. Tests proved this 
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assumption somewhat inaccurate. Body-frame gyroscope data from one foot-mounted 

sensor can be appended to NED accelerometer and magnetometer data from a sensor on 

the lower back and have exactly the same performance as if the gyroscope had been 

transformed to NED. The reason may be due to unlike sensor types measuring different 

types of forces (e.g., angular velocity versus linear acceleration) or the way the 

complementary filter processes these forces. The dynamic branch uses the angular rate to 

determine distance traveled, while the static branch uses linear acceleration primarily to 

determine pitch and roll. The main source of this acceleration is gravity. To detect 

position, the dynamic branch relies not so much on orientation as it does angular-rate 

forces. Further investigation demonstrated a need for accelerometer data to be converted 

to a local NED coordinate system before combining it with other sensor types (i.e., 

gyroscope or magnetometer).  

A MATLAB GUI was created to simplify repeated transformations to NED, as 

seen in Figure 40.  

 

 

Figure 40.  GUI to Convert Body Frame Data to NED Coordinate System 
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Surprisingly, converting the gyroscope and/or magnetometer to a NED coordinate 

system or leaving them in a body-referenced frame returned similar PNS performance. 

Overall, the best PNS performance was achieved when all sensor types were converted to 

a NED coordinate system before combining measurements into a single data file; 

therefore, further distributed test measurements were converted to a NED coordinate 

system before combining data from multiple sensors. 

2. Optimal Mounting Locations for Gyroscope, Accelerometer, and 

Magnetometer 

The next step was to determine the optimal mounting locations for the gyroscope, 

accelerometer, and magnetometer. The initial assumptions that predicted the foot as 

optimal for the gyroscope were borne out in testing. The accelerometer and 

magnetometer were assumed to achieve their best performance when mounted on the 

lower back since their job is to determine roll, pitch, and heading with the FQA. 

Before plotting distributed-sensor data, a baseline plot was created from the 

foot-mounted Sensor 3. These data are displayed in Figure 41.  

 

 

Figure 41.  Step-Plot Displaying Baseline Reference using Sensor 3’s 

Foot-Mounted Measurements from Lap 9; Scale Factor 1.01 

Foot Mounted 

Sensor Error: 

Lap 9 = 1.42 m  
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The position output was multiplied by a value of 1.01 to increase the total 

distance traveled from 401.6 to 404.6 m, the circumference of the track. Subsequent 

step-plots were also scaled to produce a total traveled distance within 0.5 m of the 

circumference. Normalization of step-plots is performed in this section to allow for 

comparison regardless of sensor mounting location. 

a. Gyroscope Mounted on Foot, Accelerometer/Magnetometer on Lower 

Back 

The first test analyzed sensor data using the assumed optimal configuration, 

where gyroscope measurements were derived from a foot-mounted sensor, while 

accelerometer and magnetometer measurements came from the lower back. The resultant 

plot, as presented in Figure 42, shows significant scaling errors.  

 

 

Figure 42.  Step-Plot with Unadjusted Scale and Direction, Lap 9; Foot-Mounted 

Gyroscope, Accelerometer/Magnetometer Back; Scale Factor 0.0 

The scaling errors were very similar to that found and discussed previously. In 

addition, for some unknown reason, the direction of the plot is rotated clockwise by 

several degrees. It is unknown why the rotation occurred, but later plots show the 
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placement of the magnetometer does not influence performance. It is not thought that an 

orientation change was the cause either. This is because before combining measurements 

from multiple IMUs mounted on different body parts in a single virtual IMU, each sensor 

has its measurements converted to the navigation frame. Despite these issues, the general 

shape of the plot is recognizable as the track where the test took place. The gyroscope 

data in Figure 42 is derived from a foot-mounted Sensor 3, while the accelerometer and 

magnetometer data is from a lower-back-mounted Sensor 2. 

To adjust the scale of the step-plot in Figure 42, a multiplication factor was 

empirically found.  

 

 

Figure 43.  Step-Plot with Scale Adjusted, Lap 9; Foot-Mounted Gyroscope, 

Accelerometer/Magnetometer Lower Back; Scale Factor 7.9 

Distributed 

Sensor Error:  

Lap 9 = 7.57 m  
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For this particular test, the output position is multiplied by 7.9, and the resulting 

total distance traveled was then calculated to be 404.31 m, which is very close to the true 

one-lap circumference of 404.6 m. The resultant error indicates the difference between 

the starting and ending location is 7.57 m. The properly scaled step-plot for this test run is 

presented in Figure 43.  The overall size and shape match the test track. Like the 

shrunken step-plot in Figure 42, there is a significant heading error in the fully scaled 

Figure 43.  

For visual comparison, the high-performing baseline step-plot, which contains 

only foot data from Sensor 3 on the same lap (i.e., Lap 9), was overlaid with the current 

distributed sensor step-plot from Figure 43; the result is shown in Figure 44.  

 

 

Figure 44.  Two Step-Plots: Foot-Mounted IMU versus Distributed IMU with 

Gyroscope on Foot and Accelerometer/Magnetometer on Lower Back 

Error:  
Foot Sensors = 1.42 m  

Gyro-Foot & Accel/Mag-Back = 7.57 m  
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Now the differences become clear, indicating that foot-mounting the gyroscope 

and back-mounting the accelerometer and magnetometer sensor do not improve PNS 

performance. Rather, this distribution slightly degrades performance, even after 

implementing a scaling factor and tuning gains optimized for each body location. Small 

performance differences between sensors do not account for the degradation. Moreover, 

quite a bit more work is required to synchronize the sensors, which further discredits this 

arrangement. Time-synchronization techniques used to align data are discussed later. 

b. Accelerometer on Foot, Gyroscope/Magnetometer on Lower Back 

The plot data presented in Figure 45 sources accelerometer data from the foot, 

while gyroscope and magnetometer data come from the lower back.  

 

 

Figure 45.  Step-Plot with Foot-Mounted Accelerometer, Gyroscope and 

Magnetometer from Lower Back; Lap 9, Scale Factor −2.54 

A scaling factor of −2.54 is required to correct the scaling and orientation of the 

plot. For reasons unknown, if the scaling multiplier is not negative, the resulting plot is 

flipped and reversed. Because the gyroscope was mounted on the lower back, the 

Distributed 

Sensor Error:  

Lap 9 = 19.83 m  
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gait-phase detection algorithm uses a lower SNR to accurately determine stance- versus 

swing-phase, and all footsteps (both left and right) are detected. The accelerometer data 

in Figure 45 is derived from a foot-mounted Sensor 3, while the gyroscope and 

magnetometer data is from a lower-back-mounted Sensor 2. 

The performance of this particular sensor distribution is compared to foot-only 

data from the baseline step-plot and is shown in Figure 46. Lap 9’s distributed 

arrangement performed worse than Sensors 3’s foot-only measurements. Deriving all 

sensor data from the lower back, whose data is shown in Figure 35, we get better 

performance than the distributed setup. Lower-back-only data had a 7.11-m error, 

significantly more accurate than the 19.83-m error of this distributed sensor setup. Once 

again, the best performance was achieved by processing foot-only IMU data. 

 

 

Figure 46.  Two Step-Plots: Foot-Mounted IMU versus Distributed IMU with 

Accelerometer on Foot and Gyroscope/Magnetometer on Lower Back 

Error:  

Foot Sensors = 1.42 m  

Accel-Foot & Gyro/Mag-Back = 19.83 m  
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c. Magnetometer on Foot, Gyroscope/Accelerometer on Lower Back 

Magnetometer measurements recorded on a foot-mounted IMU are analyzed and 

the result with three arrangements of gyroscope and accelerometer mounting locations 

are paired in this subsection. This was done to consolidate the poorest-performing 

distributed arrangements into one section. All data was taken from Lap 9. 

The first two distributed setups alternated the gyroscope and accelerometer 

locations. All three were bad performers. In the initial setup, gyroscope data came from 

the right foot and accelerometer data from the lower back. The second setup was 

opposite: gyroscope data from the lower back and accelerometer data from the right foot. 

The third setup provided the best results, with magnetometer data from the right foot and 

gyroscope and accelerometer data from the lower back. However, compared to previous 

tests the results were poor. 

It quickly became apparent that separating gyroscope and accelerometer sensors 

results in extremely poor performance, as exemplified by their step-plots’ not resembling 

an oval track. The data appeared to be randomly scattered throughout their own 

step-plots, which are excluded from this thesis.  

The only combination in which the PNS was able to produce a step-plot that 

resembled an oval track, however crudely, was when the gyroscope and accelerometer 

were mounted to the lower back and the magnetometer was mounted on the foot. This 

data is represented by red triangles in Figure 47. Complementary filter settings were set 

to Table 6 values, which had previously been found to work well with the lower back. 

The scaling of the resulting step-plot was similar to lower-back gyroscope or 

accelerometer measurements. Despite the reduced performance, every step taken by 

either foot was properly detected. 
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Figure 47.  Two Step-Plots: Foot-Mounted IMU versus Distributed IMU with 

Magnetometer on Foot and Gyroscope/Accelerometer on Lower Back 

Placing the gyroscope and accelerometer in the same lower-back location, with 

the magnetometer on the foot, we got better performance than when the gyroscope and 

accelerometer were split up. This setup shows exactly the same performance and 

step-plot output as when processing only Sensor 2’s measurements taken from the lower 

back (see Figure 35).   

Since the PNS performance was found to be exactly the same as with the lower 

back when mounting the magnetometer on the foot, changes in performance based on 

magnetometer location were negligible. Most operating environments would benefit from 

sourcing magnetometer-heading measurements from the same sensor module as the 

gyroscope and accelerometer. An exception may be when the gyroscope and 

accelerometer mounting locations bring the magnetometer physically closer to magnetic 

interference from ferrous materials or current flowing through wires. If separation of the 

magnetometer from the rest of the sensor is required, note that the magnetometer is less 

sensitive to time misalignments than the other two sensors; synchronizing time with this 

arrangement is not as important as it would be if the gyroscope and accelerometer 

measurements came from different IMUs. 

Error:  
Foot Sensors = 1.42 m  

Mag-Foot & Gyro/Accel-Back = 6.56 m  
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d. Gyroscope/Accelerometer on Foot, Magnetometer on Lower Back 

Two optimal distributed configurations of sensor types were found. Both occur 

when the gyroscope and accelerometer data are sourced from the foot. The origin of 

magnetometer data makes no difference in resulting accuracy, as illustrated by the data in 

Figure 48. This enables the user to use a preferred mounting location for the 

magnetometer without sacrificing performance. No difference was seen whether the 

complementary filter used the foot settings in Table 4 or lower-back settings in Table 6. 

The foot clearly emerges as the optimal location to mount a sensor module. There 

was no added benefit to performance by mounting the magnetometer on the lower back 

while the gyroscope and accelerometer measurements were on the foot. The best possible 

scenario is to measure gyroscope, accelerometer, and magnetometer data from the same 

foot mounted IMU. This reduces complexity by allowing the user to omit manually 

synchronizing the magnetometer measurements with the gyroscope and accelerometer 

measurements, because all data will have already been synchronized within the IMU. 

 

 

Figure 48.  Two Step-Plots: Foot-Mounted IMU versus Distributed IMU with 

Gyroscope/Accelerometer on Foot and Magnetometer on Lower Back 

Error:  

Foot Sensors Only = 1.42 m  

Gyro/Accel-Foot & Mag-Back = 1.42 m  



 102 

e. Average Multiple Sensors Together Before Combining 

Since there was a large performance difference between distributing sensors over 

the body versus using a single foot mounted IMU, it was assumed that there would be 

little benefit in doubling up the number of distributed sensors—in other words, the 

performance degradation caused by a poor mounting location would not be mitigated by 

adding additional IMUs to the same location. To test this assumption, two sensors from 

each location (the foot and lower back) had their measurements averaged together. 

Averaging was possible because the sensors could be mounted together in a 2×1 bracket. 

The arrangement for the lower-back-mounted Sensors 1 and 2, is shown in Figure 49, and 

the foot-mounted Sensors 3 and 4 in Figure 50.  

 

 

Figure 49.  2×1 Module Bracket with Sensors 1 and 2, Mounted on Lower Back 

 

Figure 50.  2×1 Bracket with Sensors 3 and 4, Mounted on Right Foot 
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Each set of two co-located sensors were averaged together using techniques 

discussed later. The first attempt at averaging two sensors resulted in performance similar 

to that of a single sensor, as revealed in Figure 51; thus, there is no benefit to averaging 

two sensors if the mounting location is poor.  

This particular setup sourced Lap 9’s gyroscope data form the foot, while 

accelerometer and magnetometer data was taken from the lower back. A scale factor of 

7.9 was required to normalize the size of the plot. 

 

 

Figure 51.  Averaging Two Distributed Sets of IMUs in Poor Mounting Locations 

versus One IMU in Same Locations 

The same comparison was made with a slight configuration change: two sets of 

accelerometers were mounted to the right foot and two sets containing both gyroscopes 

and magnetometers were attached to the lower back. The data were then averaged as 

Error:  
One Sensor Gyro-Foot & Accel/Mag-Back = 7.57 m  

Two Sensors Averaged Gyro-Foot & Accel/Mag-Back = 6.63 m  
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before and is provided in Figure 52. Like Figure 51, there was no significant performance 

improvement obtained by averaging two distributed sets of two, co-located sensors in a 

poor location when compared to a single set. 

The data was again taken from Lap 9, but two slightly different scale factors were 

required to normalize the plot sizes. The averaged two distributed sensors required a scale 

factor of –2.54, while the single distributed sensor needed –2.32. 

 

 

Figure 52.  Averaging Two Distributed Sets of IMUs in Poor Mounting Locations 

versus One IMU in Same Locations 

Since there was no performance difference between magnetometer measurements 

from the foot or lower back, no need was seen to average the two sets of magnetometer 

measurements together. Averaging the measurements from sets of two, three, and four 

co-located IMUs is addressed later. 

f. Conclusion: The Foot is the Best Location for All Sensor Types 

Mounting both the gyroscope and accelerometer on the foot offers significantly 

better performance than mounting them on the lower back. For the magnetometer, 

Error:  

One Sensor Accel-Foot & Gyro/Mag-Back = 19.87 m  

Two Sensor Averaged Accel-Foot & Gyro/Mag-Back = 19.18 m  
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mounting on the foot or lower back yields identical performances. When low-cost, 

compact IMUs improve their raw specifications by at least a magnitude, the necessity of 

using a magnetometer for heading measurements will be eliminated, but further 

complexities will likely arise, such as the need to perform an initial gyroscope alignment 

after applying power. This alignment will take a few minutes to complete, because the 

gyroscope is refining its alignment by detecting the spin axis of the earth and 

subsequently, true north. Over time, the true heading error would steadily increase based 

on the specifications of the unit. 

Averaging two co-located sensors of the same type does not improve performance 

enough to compensate for a suboptimal mounting location. In other words, if there is a 

requirement to mount an accelerometer or gyroscope to the lower back or chest, placing 

additional sensors at the same location does not overcome the performance degradation 

expected. 

F. AVERAGING OF MULTIPLE FOOT-MOUNTED SENSORS 

The benefits of mounting multiple sensors on the same foot are investigated. The 

2×2 sensor bracket, which holds four sensor modules in a constant mutual orientation (or 

orthogonal redundancy), was configured on the foot as demonstrated in Figure 23. This 

redundant configuration is an attempt to execute a concept originating with [56], which 

calls for manufacturers to create an array of four gyroscopes printed on the same MEMS 

board within millimeters of one another. Research in the topic of MEMS IMUs suggests 

that the low yield rates (~3%) of sensor manufacturers prevent them from manufacturing 

this four-in-one design, despite substantial performance benefits [67]. 

The outputs of the 3-Space modules were averaged together in groups of two, 

three, and four before processing the measurements through the PNS. Averaging multiple 

sensor modules into a virtual IMU (VIMU) was found to offer a modest performance 

increase of 37.7% [55]. This research also finds that using the least-squares method to 

combine multiple sensors offered only 2.4% better performance than averaging them 

together, and a more complicated adaptive Kalman filter offers only 4.4% better 

performance than averaging. It was decided that using the least-squares and Kalman-filter 
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methods of combining multiple sensor measurements into one output does not overcome 

the sharp increase in project complexity and computational demand required; the minor 

performance boosts provided are not worth the substantial effort required to employ 

them. As a result, multiple sensors were only averaged together.  

The sensor measurements in this section are all derived from the same test lap 

(i.e., Lap 4) to eliminate extraneous variables. The sensors were arranged within the 2×2 

bracket as exhibited in Figure 53 and mounted on the right foot as shown in Figure 23. 

 

 

Figure 53.  Orientation of Sensors 1–4 

1. Sample-Rate Inconsistencies 

Before the sensor measurements were combined, great care was taken to ensure 

the recorded outputs were truly aligned. Though each sensor’s clock was synchronized to 

the same laptop computer and calibrated minutes before testing, their times were not well 

aligned. The plotted angular rates from all four sensors, which use the exponential 

formula (3.14), are shown in Figure 54. Note that the same physical force felt by two of 

the four sensors is separated by almost 40 samples despite time synchronization of each 
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through software. In reality, those forces occurred simultaneously. To complicate matters 

further, despite trimming each data file to align beginning-of-lap data, the sampling rates 

for each sensor were still unique enough to cause the sensors to drift out of 

synchronization. 

 

 

Figure 54.  Misaligned Angular-Rate Length Data of Four Time-Aligned IMUs 

To properly time-align the four data sets, 26 post-processing corrections were 

manually applied to correctly align the four sensors’ measurements. This was a lengthy 

process, even though the data were from one test lap that only took five minutes to 

complete. Aligning all four of the sensors, as demonstrated by the data in Figure 55, was 

accomplished by laboriously monitoring the alignment of angular-rate length peaks. 

When it was noticed that a specific sensor’s angular-rate length peak was out of 

synchronization, segments of data, usually one or two samples’ worth, were removed 

from the offending sensor to maintain alignment. Since the data sets from each IMU 
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contained over 19,300 samples, the removal of 26 samples to achieve alignment was 

considered acceptable. Without doing so, characterizing the benefits of averaging 

multiple sensors together was impossible. 

 

 

Figure 55.  Same Angular Rate Length Data as in Figure 54, Except 

Measurements Manually Aligned 

Further investigation of IMU alignment problems revealed that the units did not 

consistently sample at the expected rate. Based on system documentation, when the 

3-Space sensor module’s capture interval is set to automatic, it is expected that each 

sensor chooses the sampling frequency that offers the highest sample rate that can be 

consistently maintained [42]. To examine sample-rate inconsistencies for the four 

sensors, data from the one-hour, forty-minute PSD runs were used, as plotted in Figure 

56. The two dark horizontal lines demonstrate that the vast majority of sample 

frequencies for the four IMUs were 61.5 Hz or 63.3 Hz. Sensors 2 and 4 dropped their 
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sample rates to 45 Hz and 25 Hz, respectively, on a consistent but unpredictable basis, 

whereas 1 and 3 did not. This sudden drop in sampling frequency persisted when settings 

were adjusted to 50 Hz as well as when set to the IMU’s largest allowable sample-rate 

settings of 240 Hz. The sample rates switched between 215 Hz and 240 Hz about as often 

as with lower sample frequencies. Due to the inaccuracies of each IMU’s onboard clock, 

it is impossible to utilize time as an effective method to eliminate data misalignment 

caused by sample rate changes between sensors. 

These results indicate that to achieve accurate runs of the PNS using multiple 

IMUs in real time, a robust method to account for sampling rate variations and ensure 

data synchronization is needed. Without such an ability, the benefits of using multiple 

sensors are lost and performance degrades to a level worse than that of a single IMU. 

 

 

Figure 56.  IMU Sample Frequencies Displaying Inconsistencies Despite Identical 

Settings 
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For the Reticle system and other applications, the synchronization of data through 

a wireless connection is considered unsuitable because each sensor must emit and receive 

radio frequency (RF) signals to process the data. One of the main advantages of IMUs in 

the field is that they are passive. By contrast, a device that emits RF energy in a war zone 

puts the operator at risk of detection. When multiple IMUs communicate through an RF 

data-link, their transmissions may be intercepted and warn the enemy of the user’s 

encroachment. The user is also vulnerable to communication jamming through 

unintentional or intentional destructive interference from an RF noise source, rendering 

the PNS useless.  (Note that some applications require an RF signal sent by other users in 

the form of a datalink. This is different from relying on an RF signal for proper PNS 

operation and is acceptable.) 

Nevertheless, there are other ways to perform synchronization. One is to purchase 

hardware with a more accurate clock and stable sampling rates. Another is to install a 

wired synchronization system. Since averaging multiple IMUs at the same location 

requires close mutual proximity, wiring them together may be trivial. 

2. Averaging Two Sensors 

After receiving proper alignment, two 3-Space sensor modules were averaged to 

determine if there were advantages over a single sensor module. The four IMUs were 

arranged in sets of two, and a few different pairings were tested to determine consistency 

of performance and the amount of complementary-filter tuning required. Each 

combination was averaged using a GUI built for the purpose, as depicted in Figure 57. 

The GUI executes an algorithm that averages the parameters from one 3-Space module 

with the corresponding columns and rows of another. For example, if Sensors 1 and 2 are 

loaded, the logic takes the data from [1, 1] of Sensor 1 and averages it together with the 

data from [1, 1] of Sensor 2. As noted previously, this algorithm is only effective when 

each IMU has its data sufficiently aligned with the other IMUs. Otherwise, performance 

is degraded, not improved. 
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Figure 57.  GUI to Fuse and Average Multiple Sensors into One Output 

The first sensor modules averaged together were Sensors 3 and 4. Afterward, the 

only adjustment made to complementary filter settings was in the dynamic-gain value, 

whose optimal setting was revealed to be 0.01dk  . This is a modest change compared to 

the individually tuned (i.e., not combined) Sensor 3 and 4 settings, which had values of 

0.01175 and 0.091, respectively.  

The combined and averaged measurements were processed through the PNS. The 

resulting step-plot, displayed in Figure 58, is a comparison of the two-sensor module 

averaged performance with that of a single IMU. The single IMU had a step-plot error of 

3.83 m (i.e., 0.95% error) while the two-IMU average had a lower error of 2.49 m (i.e., 

0.6% error). 

Combining two sensor modules and averaging their data slightly improves the 

overall shape and smoothness of the step-plot. Note that 200 m into the test, the step-plot 

path representing an individual sensor shows a sudden position error. The two-IMU 
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averaged sensor path does not have this error. This is due to the inherent benefit achieved 

by averaging two sensors together; the amplitudes of large errors are reduced. 

 

 

Figure 58.  Step-Plot Comparing Single Sensor versus Two Averaged Sensors 

3. Averaging Three Sensors 

Sensors 2, 3, and 4 were combined and averaged, providing a noticeable 

improvement in accuracy greater than that seen with a two-IMU average, as displayed in 

Figure 59. With a third sensor module added, the error between the starting and stopping 

locations was reduced to 0.40 m (i.e., 0.1% error). To achieve such a small error, the 

dynamic gain 
dk  was manually changed to 0.02. Overall smoothness and perceived 

accuracy are improved with the combination of three IMUs. 

A third sensor increases the amount of space needed to be reserved on top of the 

foot since the 2×2 bracket is employed, as well as an accompanied increase in weight. 

The 3-Space IMUs are small, but when three of them are place together, their physical 

dimensions are no longer negligible to the same degree that having one or two IMUs was. 

 

Sudden 

Position Error 

Error:  

1 Sensor = 3.83 m  

2 Sensors Avg = 2.49 m  
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Figure 59.  Step-Plot Comparing One Sensor versus Three Averaged Sensors 

4. Averaging Four Sensors 

Averaging four IMUs together required a dynamic gain 
dk  change to 0.04, which 

suggests the addition of Sensor 4 to the combined average precipitates a more significant 

adjustment to 
dk  than did previous combinations. The resulting plot is presented in 

Figure 60.  

Error increased to a value of 1.56 m (i.e., 0.4% error), worse than the 0.40 m error 

of three IMUs, which suggests there are disadvantages of averaging multiple sensors 

together. The system as a whole achieves better accuracy only if each additional sensor 

equals or exceeds the performance of the others. Compared to averaging IMUs together, 

special optimal estimation techniques, such as Kalman filtering, may more effectively 

reduce the negative impacts of a sensor module with large errors. This is because when 

averaging IMUs together, every sensor has an equal weighting, but optimal estimators 

adjust each measurement’s weight dynamically based on its perceived merit. 

 

Error:  
1 Sensor = 3.83 m  

3 Sensors Avg = 0.40 m  
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Figure 60.  Step-Plot Comparing One Sensor versus Four Averaged Sensors 

5. Comparison of Additional Averaged Sensors 

Data from the previous step-plots are presented in Figures 61–63 to illustrate the 

benefits of combining different numbers of IMUs. It appears that the greatest accuracy 

and smoothness improvements occur when going from a single IMU to two averaged 

IMUs.  

The plotted data from a single sensor has a noisier path than the averaged data 

sets. The random variations typically seen in a single IMU seem to be attenuated by 

averaging more sensors. Since error from an individual IMU appears random, combining 

two IMUs will most likely not increase error but attenuate it. The largest magnitude of 

error for a single measurement, by definition, is reduced when averaging it with a lower 

error-magnitude value. Assuming that each IMU has exactly the same specifications, if 

we increase the number of IMUs in the averaging pool of data, the magnitude of errors is 

reduced. This is why printing several identical sensors onto the same MEMS device is so 

promising.  

 

Error:  
1 Sensor = 3.83 m  

4 Sensors Avg = 1.56 m  
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Figure 61.  Step-Plot Comparing Increasing Numbers of Averaged Sensors 

The plot shown in Figure 62 contains the same data as Figure 61, except the style 

is altered to better illustrate the performance differences when averaging multiple IMUs.  

 

 

Figure 62.  Line-plot Comparing Increasing Numbers of Averaged Sensors 

Lap 4 Errors: 

1 Sensor  = 3.83 m  

2 Sensors = 2.49 m  

3 Sensors = 0.40 m  

4 Sensors = 1.56 m  

Lap 4 Errors: 

1 Sensor  = 3.83 m (0.95%)  

2 Sensors = 2.49 m (0.6%) 

3 Sensors = 0.40 m (0.1%) 

4 Sensors = 1.56 m (0.4%) 
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The most significant benefit occurs in going from a single IMU to two averaged 

IMUs. A smaller difference is observed in adding a third sensor module, while adding a 

fourth makes little difference to the end result. This type of diminishing return is 

expected because as the number of IMUs averaged together increases, an individual 

sensor’s ability to improve or degrade performance decreases. 

A zoomed-in step-plot is displayed in Figure 63. As in Figure 62, connecting lines 

are used in place of markers to make it easier to understand. The light-green box located 

at [0, 0] containing the words “Start/Finish” is where the tester started and ended the test 

run. The data lines initially appear about 0.7 m to the right of [0, 0] when the right foot 

impacts the ground during the first step of the lap.  

 

 

Figure 63.  Zoomed-in Step-Plot: Start Versus End Position of Increasing 

Averaged Sensors; Same Data as Figures 61 and 62 

The plot in Figure 63 shows that the overall accuracy of the PNS was good. With 

a single IMU, an error value near 1% was experienced, while the best accuracy was 

achieved when three IMUs were averaged together, which had an error of only 0.1%. Of 

course, without a truth source providing accurate TSPI, a comparison of the position 

Lap 4 Errors: 

1 Sensor  = 3.83 m (0.95%)   

2 Sensors = 2.49 m (0.6%) 

3 Sensors = 0.40 m (0.1%) 

4 Sensors = 1.56 m (0.4%) 
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estimates made by the PNS and the true path cannot be made with a high degree of 

confidence. That is why an athletic track with a known shape and length was used in 

testing as a way to effectively compare multiple IMU arrangements with one another. For 

the case discussed in this section, a knowledge of relative performance is more 

advantageous than absolute. 

The specific complementary filter settings used to achieve the best accuracy with 

averaged IMUs are presented in Table 8. Every parameter except dynamic gain 
dk  is 

identical; this is mainly because all measurements were derived from foot-mounted 

sensors. The chosen dynamic-gain value was used to align the step-plot ending locations 

with respect to the starting location. Changing that value did not adjust the scaling of the 

step-plot but adjusted heading accuracies. 

Table 8.   Settings Used to Optimize Performance from Averaged Sensors 

Mounting Location: 

Right Foot 

1 Sensor 

(Sensor 3) 

2 Sensors 

 (Sensor 3 & 

4) 

3 Sensors 

 (Sensors 2, 

3, 4) 

4 Sensors 

 (Sensor 1, 2, 

3, 4) 

Gait-Phase Detection 

Angular-Rate Threshold 

(deg/s) 
0.35 0.35 0.35 0.35 

Samples Above/Below 

Threshold Required to 

Change Gait-Phase 
5 5 5 5 

Samples to Save 20 20 20 20 

Complementary Filter 

Angular-Rate Threshold 

(deg/s) 

0.35 0.35 0.35 0.35 

sk  1.0 1.0 1.0 1.0 

dk  0.026 0.01 0.02 0.04 
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6. Conclusion: More Sensors Enable Better Performance 

Incorporating multiple, co-located IMUs provides a significant improvement in 

overall PNS accuracy and reduces the sensitivity of the complementary filter to minor 

setting adjustments. The largest improvement occurs when progressing from one IMU to 

two. Averaging more than two IMUs together increases accuracy but with diminishing 

returns as the number of sensors increase.  

To achieve the highest-possible performance improvement, it is recommended 

that two co-located IMUs be mounted on the same foot, secured so as to lock their 

orientations with respect to one another. Averaging additional sensors is beneficial but 

presents drawbacks such as greater weight, cost, and complexity for a diminishing gain in 

performance. 

 



 119 

IV. CONCLUSION 

In this chapter, the experimental outcomes are summarized. There were some 

unexpected results, most notably that distributing sensors over the body does not improve 

PNS performance. Other key findings are as follows: 

 The optimal mounting location of a MEMS IMU for a PNS is the foot.  

 Mounting every type of sensor (i.e., Gyroscope, Accelerometer, and 

Magnetometer) on the foot gives best results.  

 Sensors distributed throughout the body degrades performance. 

 Averaging together multiple, co-located IMUs improves performance.  

 Robust accuracy is predicted to be 10–20 years away, assuming the current 

rate of development. 

A. OPTIMAL MOUNTING LOCATION: THE FOOT 

The foot, shin, lower back, and chest were investigated as mounting locations; the 

foot provides best performance.  

1. Advantages  

The greatest forces during walking are exerted at the feet. A foot-mounted IMU 

allows the gyroscope to take measurements with a high SNR, which provides superb 

gait-phase detection, effective ZUPTs, and best accuracy. Testing refutes the hypothesis 

that IMU performance unacceptably degrades under the impact forces of a footstep. Any 

performance degradation pales in comparison to the inferior performance of alternative 

mounting locations. 

2. Disadvantages 

Mounting an IMU to the foot results in small scaling errors. The lower-instep 

position (i.e., top of foot) typically yields consistently calculated total-path lengths of 396 

to 400 m, rather than the true value of 404.6 m. This scaling error is rectified by 
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multiplying the position output by a value of 1.02. The need for a multiplication factor 

might be eliminated entirely by mounting the IMU beneath the foot, perhaps in the heel 

of a boot. This would increase the distance of the sensors from the hip, increasing 

experienced forces and enabling a more accurate position change estimate for each stride. 

Mounting all sensor types on the foot is ideal. PNS performance decreased as the 

mounting location moved away from the foot because the PNS requires gait-phase 

detection to determine a stance phase, in which the IMU is assumed perfectly still, to 

allow the use of ZUPTs to eliminate gyroscope errors. As the mounting location moves 

away from the foot, gait-phase detection and subsequent ZUPT accuracy degrades. For 

optimal performance from a single 9-DOF IMU, foot mounting is strongly recommended.  

B. DISTRIBUTED SYSTEM OF IMUS NOT ADVISED 

Distributing different types of sensors to non-foot locations does not enhance 

performance, it degrades it. Taking accelerometer and magnetometer data from the lower 

back and gyroscope from the foot, for example, yields worse performance than seen from 

a single, combined sensor module on the foot.  

Several additional observations were made. PNS performance is not influenced by 

the location of the magnetometer. Identical performance is found by mounting the 

gyroscope and accelerometer on the foot while the magnetometer was switched between 

the lower back and foot. As long as the gyroscope and accelerometer are mounted at the 

same location—ideally, the foot—the magnetometer may be attached to the lower back 

or foot without a difference in performance. In addition, PNS performance is poor when 

the mounting locations of the gyroscope and accelerometer are split up, satisfactory when 

they are mounted together, and best when they are on the foot. 

Finally, considerable effort was given to aligning measurements from different 

IMUs. Though the IMUs were identical in design, had the same sample rate settings, and 

were time synchronized just before testing, their sample-rate characteristics showed 

variation, each having a different timing jitter. Tests began with precise alignment but 

ended in some degree of deviation. If corrective manual alignment of measurements had 

not been performed, the data would have yielded distorted outputs in processing. 
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To achieve the best possible performance from a PNS, it is recommended that 

only IMU data from the foot be processed. Moreover, splitting mounting locations of the 

gyroscope and accelerometer results in worse performance than housing them in a single 

IMU. 

C. AVERAGING MULTIPLE, CO-LOCATED IMUS IMPROVES 

PERFORMANCE  

Combining and averaging co-located sensor modules improves PNS performance. 

The largest improvement occurs when going from a single IMU to two; averaging more 

than two offers some improvement but with diminishing returns.  

Synchronizing multiple co-located IMUs requires a painstaking two-step process 

of software and manual alignment of measured forces during testing. The first is a rough 

software alignment that synchronized IMUs in time. The second is accomplished by 

going into the raw data and manually performing a fine alignment by visually 

synchronizing experienced forces. This onerous procedure is unacceptable in the field; 

therefore, it would be desirable to have an automatic, real-time method which can 

effectively combine sensor data without the use of an RF datalink. A possible solution 

would be to manufacture MEMS IMUs with multiple identical sensors on the same 

module. This would allow measurement sets to be synchronized and provide the benefits 

of averaging multiple co-located IMUs. 

D. DEVELOPMENT FORECAST 

In this research, a low-cost 3-Space sensor module provided performance similar 

to, if not better, than that of a considerably more expensive IMU manufactured ten years 

prior. Typical position errors were less than 1% of the total distance traveled. 

Nevertheless, there is much room for improvement. To achieve adequate performance, 

significant time was spent tuning the complementary filter in post-processing, and every 

IMU required custom tuning. A less intensive customization was required for the same 

IMU on different test runs. The 3-Space module’s large variability between test laps 

could be reduced by using an IMU with better specifications, specifically in terms of 

gyroscope-bias stability and ARW. 
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APPENDIX A:  PARTIAL DATA ANALYSIS 

The following MATLAB algorithms are a small subset of all data processing 

programs. A method to import and convert data into a MATLAB file type from the YEI 

TXT files is provided. In addition, the algorithms used to create PSD plots and 

histograms of sensor noise are shown. 

A. IMPORT LARGE YEI 3-SPACE TEXT FILES INTO MATLAB 

Cole Johnson Naval Postgraduate School Monterey, CA 2/03/2016 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 

close all 

clc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

tic 

% This code was originally written by Adam Foushee and adapted by Cole Johnson 

nameOfFile= 'EnterFilename_NoExtension'; 

Sensor1=importdata([nameOfFile,'.txt']); 

Sensor1.textdata=Sensor1.textdata(2:end,:);   %Gets rid of header lines 

 

for aa=1:length(Sensor1.textdata(:,2)) 

    first1=Sensor1.textdata(aa,1); 

    second1 = Sensor1.textdata(aa,2); 

    third1=Sensor1.textdata(aa,3); 

    forth1=Sensor1.textdata(aa,4); 

    fifth1=Sensor1.textdata(aa,5); 

    hour1=first1{1}(10:11); 

    minute1=first1{1}(13:14); 

    sec1=first1{1}(16:24); 

    hour11(aa)=str2num(hour1); 

    minute11(aa)=str2num(minute1); 

    sec11(aa)=str2num(sec1); 

    time11(aa)=hour11(aa)*3600+minute11(aa)*60+sec11(aa); 

    gyrox1 = first1{1}((end-7):end); 

    gyroy1 = second1{1}(:,:); 

    gyroz1 = third1{1}(1:8); 

    accel1x=third1{1}((end-7):end); 

    accel1y=forth1{1}(1:end); 

    accel1z=fifth1{1}(1:8); 

    compx1=fifth1{1}((end-7):end); 

    gyrox11(aa)=str2num(gyrox1); 

    gyroy11(aa)=str2num(gyroy1); 
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    gyroz11(aa)=str2num(gyroz1); 

    accelx11(aa)=str2num(accel1x); % x-acceleration 

    accely11(aa)=str2num(accel1y); % y-acceleration 

    accelz11(aa)=str2num(accel1z); % z-acceleration 

    compx11(aa)=str2num(compx1);   % x-Magnetometer reading 

end 

compy11=Sensor1.data(:,1); % y-Magnetometer reading 

compz11=Sensor1.data(:,2); % z-Magnetometer reading 

 

% Places Variables into Structure 

% Note: clear command used due to early problems with MATLAB running out of RAM 

clearvars -except gyrox11 gyroy11 gyroz11 accelx11 accely11 accelz11 compx11 compy11 compz11 time11 length_comp 

Sensor1.compx = compx11'; 

clear compx11 

Sensor1.compy = compy11; 

clear compy11 

Sensor1.compz = compz11; 

clear compz11 

clear length_comp 

Sensor1.gyrox =  gyrox11'; 

clear gyrox11 

Sensor1.gyroy =  gyroy11'; 

clear gyroy11 

Sensor1.gyroz =  gyroz11'; 

clear gyroz11 

Sensor1.accelx = accelx11'; 

clear accelx11 

Sensor1.accely = accely11'; 

clear accely11 

Sensor1.accelz = accelz11'; 

clear accelz11 

Sensor1.time = time11'; 

clear time11 

 

% Change 'Sensor_'(first column below) to filename you want it saved to 

save('Sensor_','Sensor1') 

 

toc 

B. PSD OF ONE SENSOR 

 

Cole Johnson Naval Postgraduate School Monterey, CA 2/13/2016 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 

close all 
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clc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

1. Running of One Sensor 

load('Sensor1_KFmode_Rawdata') 

sensor_num = 'Sensor 1 - ';%Enter Sensor number you want to appear on title 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

2. PSDs of Sensors 

cut_beg = 500; % Number of Samples to cut 

cut_end = 500; 

% Sample Frequency 

Sensor1.time = Sensor1.time(cut_beg :end-cut_end); 

fs = 1/mean(diff(Sensor1.time)); %Average Sample Frequency (F_s) 

3. Gyro: PSD 

Sensor1.gyrox = Sensor1.gyrox(cut_beg :end-cut_end); 

Sensor1.gyroy = Sensor1.gyroy(cut_beg :end-cut_end); 

Sensor1.gyroz = Sensor1.gyroz(cut_beg :end-cut_end); 

figure('Name','Power Spectral Density - Gyro') 

pwelch(Sensor1.gyrox,triang(500),250,1024,fs) % Use [] to set parameters to default value 

title([sensor_num,'PSD of Gyro X-axis']) 

hold on 

pwelch(Sensor1.gyroy,triang(500),250,1024,fs) 

title([sensor_num,'PSD of Gyro XY-axis']) 

pwelch(Sensor1.gyroz,triang(500),250,1024,fs) 

title([sensor_num,'PSD of Gyro XYZ-axis']) 

%Statistics - Gyro 

mean_gyro = mean([Sensor1.gyrox Sensor1.gyroy Sensor1.gyroz]); 

std_gyro = std([Sensor1.gyrox Sensor1.gyroy Sensor1.gyroz]); 

mean_gyro_all = mean(mean_gyro); 

std_gyro_all = mean(std_gyro); 

samples_gyro = length(Sensor1.gyrox); 

% Number of Samples 

total_time = (Sensor1.time(end) - Sensor1.time(1))/(60*60); % Time in hours 

total_time_hr = floor(total_time); %Just the num of hrs 

total_time_min = round((total_time - total_time_hr)*60); 

% Annotations 

annotation('textbox',[.15 .8 .1 .1] , 'string', ['\mu = ' num2str(mean_gyro_all,'%0.6f') '   '; '\sigma = ' num2str(std_gyro_all,'%0.6f') '']) 

annotation('textbox',[.55 .75 .33 .15] , 'string', ['Number Samples = ' num2str(samples_gyro,'%0.0f') ' ' 'Total Time = ' 

num2str(total_time_hr,'%0.0f') 'hr ' num2str(total_time_min,'%0.0f') 'min          ' 'f_{s} = ' num2str(round(fs), '%0.0f') 'Hz']) 
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hold off 

ylim([-75 -25]) 

4. Accelerometer: PSD 

Sensor1.accelx = Sensor1.accelx(cut_beg :end-cut_end); 

Sensor1.accely = Sensor1.accely(cut_beg :end-cut_end); 

Sensor1.accelz = Sensor1.accelz(cut_beg :end-cut_end); 

% Plot PSD 

figure('Name','Power Spectral Density - Accelerometer') 

pwelch(Sensor1.accelx,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Accelerometer X-axis']) 

hold on 

pwelch(Sensor1.accely,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Accelerometer XY-axis']) 

pwelch(Sensor1.accelz,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Accelerometer XYZ-axis']) 

%Statistics - Accelerometer 

mean_accel = mean([Sensor1.accelx Sensor1.accely Sensor1.accelz]); 

std_accel = std([Sensor1.gyrox Sensor1.gyroy Sensor1.gyroz]); 

mean_accel_all = mean(mean_accel); 

std_accel_all = mean(std_accel); 

samples_accel = length(Sensor1.accelx); 

% Annotations 

annotation('textbox',[.15 .8 .1 .1] , 'string', ['\mu = ' num2str(mean_accel_all,'%0.6f') '   '; '\sigma = ' num2str(std_accel_all,'%0.6f') '']) 

annotation('textbox',[.55 .75 .33 .15] , 'string', ['Number Samples = ' num2str(samples_accel,'%0.0f') ' ' 'Total Time = ' 

num2str(total_time_hr,'%0.0f') 'hr ' num2str(total_time_min,'%0.0f') 'min          ' 'f_{s} = ' num2str(round(fs), '%0.0f') 'Hz']) 

hold off 

5. Magnetometer: PSD 

Sensor1.compx = Sensor1.compx(cut_beg :end-cut_end); 

Sensor1.compy = Sensor1.compy(cut_beg :end-cut_end); 

Sensor1.compz = Sensor1.compz(cut_beg :end-cut_end); 

% Plot PSD 

figure('Name','Power Spectral Density - Magnetometer') 

pwelch(Sensor1.compx,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Magnetometer X-axis']) 

hold on 

pwelch(Sensor1.compy,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Magnetometer XY-axis']) 

pwelch(Sensor1.compz,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Magnetometer XYZ-axis']) 

%Statistics - Magnetometer 

mean_comp = mean([Sensor1.compx Sensor1.compy Sensor1.compz]); 
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std_comp = std([Sensor1.compx Sensor1.compy Sensor1.compz]); 

mean_comp_all = mean(mean_comp); 

std_comp_all = mean(std_comp); 

samples_comp = length(Sensor1.compx); 

% Annotations 

annotation('textbox',[.15 .8 .1 .1] , 'string', ['\mu = ' num2str(mean_comp_all,'%0.4f') '   '; '\sigma = ' num2str(std_comp_all,'%0.4f') '']) 

annotation('textbox',[.55 .75 .33 .15] , 'string', ['Number Samples = ' num2str(samples_comp,'%0.0f') '     ' 'Total Time = ' 

num2str(total_time_hr,'%0.0f') 'hr ' num2str(total_time_min,'%0.0f') 'min          ' 'f_{s} = ' num2str(round(fs), '%0.0f') 'Hz']) 

hold off 

 

C. PSDS OF ALL SENSORS 

Cole Johnson Naval Postgraduate School Monterey, CA 2/13/2016 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 

close all 

clc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

1. Run All Data 

sensor_num = 'All 4 Sensors - ';%Enter Sensor number you want to appear on title 

2. Cut Data 

cut_beg = 500; % Number of Samples to cut 

cut_end = 500; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for i=1:4 

if i==1 

    load('Sensor1_KFmode_Rawdata') 

elseif i==2 

    load('Sensor2_KFmode_Rawdata') 

elseif i==3 

    load('Sensor3_KFmode_Rawdata') 

elseif i==4 

    load('Sensor4_KFmode_Rawdata') 

end 

3. PSDs of Sensors 

Sensor1.time = Sensor1.time(cut_beg :end-cut_end); 

fs = 1/mean(diff(Sensor1.time)); %Average Sample Frequency (F_s) 
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4. Gyro: PSD 

Sensor1.gyrox = Sensor1.gyrox(cut_beg :end-cut_end); 

Sensor1.gyroy = Sensor1.gyroy(cut_beg :end-cut_end); 

Sensor1.gyroz = Sensor1.gyroz(cut_beg :end-cut_end); 

figure(1) 

pwelch(Sensor1.gyrox,triang(500),250,1024,fs) % Use [] to set parameters to default value 

title([sensor_num,'PSD of Gyro X-axis']) 

hold on 

pwelch(Sensor1.gyroy,triang(500),250,1024,fs) 

title([sensor_num,'PSD of Gyro XY-axis']) 

pwelch(Sensor1.gyroz,triang(500),250,1024,fs) 

title([sensor_num,'PSD of Gyro XYZ-axis']) 

%Statistics - Gyro 

mean_gyro = mean([Sensor1.gyrox Sensor1.gyroy Sensor1.gyroz]); 

std_gyro = std([Sensor1.gyrox Sensor1.gyroy Sensor1.gyroz]); 

mean_gyro_all = mean(mean_gyro); 

std_gyro_all = mean(std_gyro); 

samples_gyro = length(Sensor1.gyrox); 

% Number of Samples 

total_time = (Sensor1.time(end) - Sensor1.time(1))/(60*60); % Time in hours 

total_time_hr = floor(total_time); %Just the num of hrs 

total_time_min = round((total_time - total_time_hr)*60); 

% Annotations 

annotation('textbox',[.15 .8 .1 .1] , 'string', ['\mu = ' num2str(mean_gyro_all,'%0.6f') '   '; '\sigma = ' num2str(std_gyro_all,'%0.6f') '']) 

annotation('textbox',[.55 .75 .33 .15] , 'string', ['Number Samples = ' num2str(samples_gyro,'%0.0f') ' ' 'Total Time = ' 

num2str(total_time_hr,'%0.0f') 'hr ' num2str(total_time_min,'%0.0f') 'min          ' 'f_{s} = ' num2str(round(fs), '%0.0f') 'Hz']) 

end 

hold off 

ylim([-75 -25]) 

5. Accelerometer: PSD 

for i=1:4 

if i==1 

    load('Sensor1_KFmode_Rawdata') 

elseif i==2 

    load('Sensor2_KFmode_Rawdata') 

elseif i==3 

    load('Sensor3_KFmode_Rawdata') 

elseif i==4 

    load('Sensor4_KFmode_Rawdata') 

end 

Sensor1.time = Sensor1.time(cut_beg :end-cut_end); 

fs = 1/mean(diff(Sensor1.time)); %Average Sample Frequency (F_s) 



 129 

% Cut off ends to remove effects of button pressing (record on, record off) 

Sensor1.accelx = Sensor1.accelx(cut_beg :end-cut_end); 

Sensor1.accely = Sensor1.accely(cut_beg :end-cut_end); 

Sensor1.accelz = Sensor1.accelz(cut_beg :end-cut_end); 

% Plot PSD 

figure(2) 

pwelch(Sensor1.accelx,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Accelerometer X-axis']) 

hold on 

pwelch(Sensor1.accely,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Accelerometer XY-axis']) 

pwelch(Sensor1.accelz,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Accelerometer XYZ-axis']) 

%Statistics - Accelerometer 

mean_accel = mean([Sensor1.accelx Sensor1.accely Sensor1.accelz]); 

std_accel = std([Sensor1.gyrox Sensor1.gyroy Sensor1.gyroz]); 

mean_accel_all = mean(mean_accel); 

std_accel_all = mean(std_accel); 

samples_accel = length(Sensor1.accelx); 

% Annotations 

annotation('textbox',[.15 .8 .1 .1] , 'string', ['\mu = ' num2str(mean_accel_all,'%0.6f') '   '; '\sigma = ' num2str(std_accel_all,'%0.6f') '']) 

annotation('textbox',[.55 .75 .33 .15] , 'string', ['Number Samples = ' num2str(samples_accel,'%0.0f') ' ' 'Total Time = ' 

num2str(total_time_hr,'%0.0f') 'hr ' num2str(total_time_min,'%0.0f') 'min          ' 'f_{s} = ' num2str(round(fs), '%0.0f') 'Hz']) 

end 

hold off 

6. Magnetometer: PSD 

for i=1:4 

if i==1 

    load('Sensor1_KFmode_Rawdata') 

elseif i==2 

    load('Sensor2_KFmode_Rawdata') 

elseif i==3 

    load('Sensor3_KFmode_Rawdata') 

elseif i==4 

    load('Sensor4_KFmode_Rawdata') 

end 

Sensor1.time = Sensor1.time(cut_beg :end-cut_end); 

fs = 1/mean(diff(Sensor1.time)); %Average Sample Frequency (F_s) 

% Cut off ends to remove effects of button pressing (record on, record off) 

Sensor1.compx = Sensor1.compx(cut_beg :end-cut_end); 

Sensor1.compy = Sensor1.compy(cut_beg :end-cut_end); 

Sensor1.compz = Sensor1.compz(cut_beg :end-cut_end); 

% Plot PSD 

figure(3) 
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pwelch(Sensor1.compx,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Magnetometer X-axis']) 

hold on 

pwelch(Sensor1.compy,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Magnetometer XY-axis']) 

pwelch(Sensor1.compz,triang(500),250,1024,fs) 

title([sensor_num, 'PSD of Magnetometer XYZ-axis']) 

%Statistics - Magnetometer 

mean_comp = mean([Sensor1.compx Sensor1.compy Sensor1.compz]); 

std_comp = std([Sensor1.compx Sensor1.compy Sensor1.compz]); 

mean_comp_all = mean(mean_comp); 

std_comp_all = mean(std_comp); 

samples_comp = length(Sensor1.compx); 

% Annotations 

annotation('textbox',[.15 .8 .1 .1] , 'string', ['\mu = ' num2str(mean_comp_all,'%0.4f') '   '; '\sigma = ' num2str(std_comp_all,'%0.4f') '']) 

annotation('textbox',[.55 .75 .33 .15] , 'string', ['Number Samples = ' num2str(samples_comp,'%0.0f') '     ' 'Total Time = ' 

num2str(total_time_hr,'%0.0f') 'hr ' num2str(total_time_min,'%0.0f') 'min          ' 'f_{s} = ' num2str(round(fs), '%0.0f') 'Hz']) 

end 

hold off 

 

D. HISTOGRAM PLOT OF SENSOR 

1. Plot Noise Histogram of One Sensor 

Cole Johnson Naval Postgraduate School Monterey, CA 2/13/2016 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 

close all 

clc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

2. Run One Sensor 

load('Sensor1_KFmode_Rawdata') 

sensor_num = 'Sensor 1 - ';%Enter Sensor number you want to appear on title 

3. Cut Data 

cut_beg = 500; 

cut_end = 500; 

4. Histogram 
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noise_histogram_func(Sensor1.gyrox, Sensor1.gyroy, Sensor1.gyroz, Sensor1.accelx, Sensor1.accely, Sensor1.accelz, 

Sensor1.compx, Sensor1.compy, Sensor1.compz, cut_beg, cut_end, sensor_num) 

E. HISTOGRAM FUNCTION 

1. Sensor Noise Characteristics - Histogram 

Cole Johnson Naval Postgraduate School Monterey , CA 2/13/2016 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [] = noise_histogram_func(gyrox, gyroy, gyroz, accelx, accely, accelz,compx, compy, compz, cut_beg, cut_end, sensor_num) 

2. Histogram for Sensor 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

gyrox = gyrox(cut_beg :end-cut_end); 

gyroy = gyroy(cut_beg :end-cut_end); 

gyroz = gyroz(cut_beg :end-cut_end); 

accelx = accelx(cut_beg :end-cut_end); 

accely = accely(cut_beg :end-cut_end); 

accelz = accelz(cut_beg :end-cut_end); 

compx = compx(cut_beg :end-cut_end); 

compy = compy(cut_beg :end-cut_end); 

compz = compz(cut_beg :end-cut_end); 

3. Gyro 

Find Statistics of Data 
mean_gx = mean(gyrox) 

mean_gy = mean(gyroy) 

mean_gz = mean(gyroz) 

mean_g = mean([mean_gx mean_gy mean_gz]) 

std_gx = std(gyrox) 

std_gy = std(gyroy) 

std_gz = std(gyroz) 

std_g = mean([std_gx std_gy std_gz]) 

 

% Histogram Settings 

bwidth = .0011; 

blimits = [-7e-3 7e-3]; 

 

% Histogram 

figure('Name','Histogram of Sensor Data - Gyro') 

h1 = histogram(gyrox,'BinWidth',bwidth,'BinLimits', blimits) 

hold on 

h2 = histogram(gyroy,'BinWidth',bwidth,'BinLimits', blimits) 
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h3 = histogram(gyroz,'BinWidth',bwidth, 'BinLimits', blimits) 

title([sensor_num,'Histogram of Gyro XYZ-axis']) 

xlabel('Degrees Per Second') 

ylabel('Probability') 

legend('Gyro 1', 'Gyro 2', 'Gyro 3') 

 

hold off 

 

% Histogram of Norm 

bwidth = 0.0011; 

gyro_all = [gyrox; gyroy; gyroz]; 

figure('Name', 'Combined Histogram of Sensor Data - Gyro') 

h = histogram(gyro_all,'BinLimits',blimits,'BinWidth',bwidth) 

title([sensor_num,'Histogram of Gyro - Combined']) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

4. Accelerometer 

mean_ax = mean(accelx) 

mean_ay = mean(accely) 

mean_az = mean(accelz) 

norm_a = norm([mean_ax mean_ay mean_az]) 

std_ax = std(accelx) 

std_ay = std(accely) 

std_az = std(accelz) 

std_a = mean([std_ax std_ay std_az]) 

 

% Histogram Settings 

bwidth = .001; 

blimits = [-3e-2 3e-2]; 

 

% Histogram 

figure('Name','Histogram of Sensor Data - Accelerometer') 

h1a = histogram(accelx,'BinWidth',bwidth,'BinLimits', blimits) 

 

hold on 

h2a = histogram(accely,'BinWidth',bwidth,'BinLimits', blimits) 

h3a = histogram(accelz,'BinWidth',bwidth, 'BinLimits', blimits) 

title([sensor_num,'Histogram of Accelerometer YZ-axis']) 

xlim([0 0.03]) 

xlabel('g-force') 

ylabel('Probability') 

legend([h2a h3a],{'Accel 2','Accel 3'}) 

hold off 

 

hold off 
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% Combined Histogram 

bwidth = 0.001; 

accel_all = [accelx; accely; accelz]; 

figure('Name', 'Combined Histogram of Sensor Data - Accelerometer') 

ha = histogram(accel_all,'BinLimits',blimits,'BinWidth',bwidth) 

title([sensor_num,'Histogram of Accelerometer - Combined']) 

xlim([0 0.03]) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

5. Magnetometer 

mean_cx = mean(compx) 

mean_cy = mean(compy) 

mean_cz = mean(compz) 

norm_c = norm([mean_cx mean_cy mean_cz]) 

std_cx = std(compx) 

std_cy = std(compy) 

std_cz = std(compz) 

std_c = mean([std_cx std_cy std_cz]); %standard deviation of data 

 

 

% Histogram Settings 

bwidth = .00115; 

blimits = [-3e-1 3e-1]; 

blimits = [.145 .245]; 

% Histogram 

figure('Name','Histogram of Sensor Data - Magnetometer') 

h1c = histogram(compx,'BinWidth',bwidth,'BinLimits', blimits) 

 

hold on 

h2c = histogram(compy,'BinWidth',bwidth,'BinLimits', blimits) 

h3c = histogram(compz,'BinWidth',bwidth, 'BinLimits', blimits) 

title([sensor_num,'Histogram of Magnetometer YZ-axis']) 

xlabel('Gauss') 

ylabel('Probability') 

legend([h2c h3c],{'Magnetometer 2','Magnetometer 3'}) 

 

hold off 

% Histogram of Norm 

bwidth = 0.0004; 

comp_all = [compx; compy; compz]; 

figure('Name', 'Combined Histogram of Sensor Data - Magnetometer') 

hc = histogram(comp_all,'BinLimits',blimits,'BinWidth',bwidth) 

title([sensor_num,'Histogram of Magnetometer - Combined']) 

end 
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APPENDIX B:  DATA COLLECTION 
 

Three separate data collection test events took place and are listed in Table 9. 

Table 9.   Data Collection Events 

Date of 

Test 

Lap 

Name 

Bracket 

Used 

Number 

of Steps 

Sensor 1 

Location 

Sensor 2 

Location 

Sensor 3 

Location 

Sensor 4 

Location 

16 Feb. 

2016 
Lap 1 2×1 280 LF LF RF RF 

16 Feb. 

2016 
Lap 2 2×1 269 LF LF RF RF 

16 Feb. 

2016 
Lap 3 2×1 267 LF LF RF RF 

16 Feb. 

2016 
Lap 4 2×2 266 RF RF RF RF 

16 Feb. 

2016 
Lap 5 2×2 269 RF RF RF RF 

16 Feb. 

2016 
Lap 6 

2×2 

Inverted 

Orientation 

266 RF RF RF RF 

22 Feb. 

2016 
Lap 7 2×1 269 LB LB RF RF 

22 Feb. 

2016 
Lap 8 2×1 260 Chest Chest RF RF 

22 Feb. 

2016 
Lap 9 2×1 256 LB LB RF RF 

11 Sept. 

2015 
Lap 10 

Blue 

Rubber 
N/A LF LF RF RF 

11 Sept. 

2015 
Lap 11 

Blue 

Rubber 
N/A LF LF RF RF 

11 Sept. 

2015 
Lap 12 

Blue 

Rubber 
N/A LF LF RF RF 

11 Sept. 

2015 
Lap 13 

Blue 

Rubber 
N/A LF LF RF RF 

11 Sept. 

2015 
Lap 14 

Blue 

Rubber 
N/A LF LF RF RF 

11 Sept. 

2015 
Lap 15 

Blue 

Rubber 
N/A LF LF RF RF 

*LF = Left Foot; RF = Right Foot; LB = Lower-Back. 
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