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ABSTRACT 

Observational and modeling studies are conducted to explore the 

changing physical environment of the western Arctic Ocean and its significance to 

upper-ocean hydrography and acoustic energy propagation. In-situ observations of 

temperature and salinity were made as part of the Canada Basin Acoustic 

Propagation Experiment (CANAPE) pilot study in summer 2015. Sound-speed 

fluctuations due to internal waves and spice were analyzed to describe spatio-temporal 

variability. Internal-wave frequency spectra show a spectral slope lower than the 

Garrett-Munk (GM) model, and the energy level is 4% of the standard GM value. 

Frequency spectra of spice show a form similar to the internal-wave spectra but with a 

steeper spectral slope. Several global climate models were evaluated against historical 

and recent hydrographic observations and found to inadequately represent key 

upper-ocean hydrographic features. The Regional Arctic System Model (RASM) 

was used to investigate sensitivity of the simulated upper ocean to various configurations 

and showed that sub-grid scale brine rejection parameterization, appropriately tuned 

surface momentum coupling, and increased vertical and horizontal resolution 

improved model simulation. In both observational and model data sets, a near-surface 

sound channel is present, the significance and variability of which warrant further in-

situ investigations and model improvements. 
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I. INTRODUCTION 

A. MOTIVATION 

The global climate system is undergoing a rapid transformation due to 

anthropogenic factors. According to the Intergovernmental Panel on Climate Change 

(IPCC) ample evidence shows that a number of climate indicators are experiencing 

significant change (IPCC 2013). Since the 1850s, the average global surface temperature 

has increased by about 1oC. Between 1971 and 2010 the world’s oceans have stored an  

additional 17 x 1022 J of heat content which has contributed to a sea level rise of  0.19 m 

(IPCC 2013). Due to feedbacks associated with sea ice and snow cover, in particular 

those related to surface albedo, changes in the net radiation balance produces a larger 

change in temperature in the polar regions. As a result of this so-called polar 

amplification, the increase in surface air temperature in the Arctic region has been almost 

twice the increase as observed at mid-latitudes, and even more than twice as much in 

some locations. Since the 1990s, the ice sheets of Greenland and Antarctica have lost  

tens of gigatons of mass per year, and the area covered by snow in the  

Northern Hemisphere has decreased by as much as 11.7 percent per decade in the last 

sixty years (IPCC 2013).   

1. Arctic Sea Ice 

The most immediate and obvious change in the Arctic has been the dramatic loss 

of sea ice cover and volume. Sea ice is defined as ocean water that has frozen; glaciers, 

ice sheets, and other land-based sources of ice are governed by other processes and are 

not considered sea ice. The thickness and extent of Arctic sea ice varies seasonally due to 

atmospheric and oceanic forcing. In general, sea ice is thickest during the winter. 

However, a multi-year trend has emerged. Limited observations from submarines and 

satellites show that the thickness of Arctic sea ice has decreased by an average of 1.8 m 

between 1979 and 2000 (e.g., Wadhams and Davis 2000; Kwok and Rothrock 2009). 

Since observations from satellite have been available starting in 1979, Arctic sea ice 

extent, defined as the ocean area with ice concentration greater than or equal to 15%, has 
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typically reached a maximum in March of about 14 to 16 million square kilometers and a 

minimum of about 6 million square kilometers in September, though much less in recent 

years (NSIDC 2016). Since 1979 the Arctic summer minimum ice extent has decreased 

by 13.3% per decade; a record minimum extent of only 3.6 million square kilometers was 

reached in 2012 (Stroeve et al. 2012; IPCC 2013; NSIDC 2016). Since the late 1990s, sea 

ice extent has repeatedly reached record minima with the latest record minimum in 2012 

and the second lowest all-time extent recorded in 2016. The September minimum sea-ice 

extent for every year in the past decade has been more than 2 standard deviations below 

the 1981–2010 mean (NSIDC 2016). Figure 1.1 shows the decline in September sea ice 

concentration since 1980.  

 
Sea ice concentrations are from September 15, 1980, 2002, 2007, 2012, and 2015 as 
measured by SSM/I  

Figure 1.1. Arctic Sea Ice Concentrations. Adapted from Cryosphere Today 2016. 

Another striking change has been the reduction in sea-ice age. When sea ice is 

first formed, it is considered “first-year” ice. First-year ice that survives the following 
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summer becomes second-year, and so on. Most of the oldest ice accumulates along the 

north coast of Canada and Greenland, but multi-year ice can be found throughout the 

central Arctic. Recently, the amount of wintertime multi-year ice has declined, and first-

year ice now comprises roughly 70% of the Arctic ice pack, up from only 50% in the 

1980s (Figure 1.2; Perovich et al. 2015).  

 
A time series of ice age in March from 1985 to 2015 (top), and maps of sea ice age in 
March 1985 (bottom left) and March 2015 (bottom right).  

Figure 1.2. Ice Age from 1985 to 2015. Source: Perovich et al. 2015. 
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First-year ice, due to its lower strength and thickness, is more sensitive to changes 

in atmospheric and oceanic forcing, and also has different acoustic and mechanical 

properties. A younger, thinner Arctic ice cover will have profound consequences for both 

physical change, and human activities such as ice-breaking and underwater acoustics. 

2. Human Activity in the Arctic 

As the sea ice retreats, the Arctic Ocean becomes much more accessible to human 

activity, both commercial and military. Maritime transits, extraction of natural resources, 

recreational activities, and local communities are all transforming as a response to 

climate change with global political and military consequences. As the extent of Arctic 

retreats north, a larger fraction of ocean becomes open water. The Joint World 

Meteorological Organization-Intergovernmental Oceanographic Commission Technical 

Commission for Oceanography and Marine Meteorology (JCOMM), defines “open 

water” as ocean with sea-ice concentrations below 10% (JCOMM 2016). Figure 1.3 

depicts the anticipated Arctic transit routes as described by the Navy’s Task Force 

Climate Change (TFCC). Wintertime transit through the Arctic will always be blocked by 

sea ice, but the recent summertime minimum ice extents have been low enough to allow 

limited transit through the Northern Sea Route (NSR) and the Northwest Passage (NWP) 

in recent years (TFCC 2014). According to the Northern Sea Route Information Office 

(NSRIO), ice conditions have been sufficiently open since 2012 to permit an average of 

39 ships per year to transit the NSR (NSRIO 2016). The NSR passes through Russian 

territorial waters, and Russia has claimed navigational jurisdiction over this route 

(Ostreng 2012). Since 2012, about 20–30 ships per year have been able to transit the 

NWP, 66% of which were not icebreakers (Department of Environment and Natural 

Resources 2016)  However, because the NWP transits many straits and narrow passages, 

which are often inhibited by ice, regular commercial transit remains difficult (Arctic 

Council 2009). Remarkably, though, a commercial cruise line has already completed one 

transit of the NWP, and is planning to take over a thousand more adventure tourists 

through this route again next year (Crystal Cruises 2016). Although the Trans-Polar 

Route (TPR) is not yet open, it is projected to be navigable as soon as 2025 (TFCC 

2014). The TPR, once reliably navigable, would offer a distance savings of 41% over the 
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traditional routes between East Asia and Europe via the Straits of Malacca and the Suez 

Canal (Humpert and Raspotnik 2012). The Arctic routes are not only shorter in distance, 

but also avoid the highly congested regions of the South China and Arabian Seas. These 

regions are also under constant threat of terrorism, piracy, and other anthropogenic 

threats. Alternative routes are understandably attractive to commercial investors. 

(Humpert and Raspotnik 2012).   

 

Figure 1.3. Anticipated Arctic Transit Routes with Consensus-Projected 
Sea Ice Extent Minima. Source: Task Force Climate Change 2014. 

Whether for recreation, scientific research, or economic gain, any Arctic traveler 

will be faced with significant hazards throughout the year. Winter will always bring 

darkness, extreme cold, and sea ice every year. The timing of freeze-up will depend 

strongly on local weather conditions, which remain a challenge to predict in this 
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observationally data-poor region of the globe. Similarly, spring melt is often interrupted 

by cold snaps, making the start of the navigable season a challenge to predict as well. 

These so-called “shoulder seasons” will present a serious risk to those who wish to 

maximize their time in the Arctic (TFCC 2014). To mitigate this risk, governments must 

be prepared to respond to emergencies, both human and environmental, in the harsh and 

remote Arctic. 

Currently, there are several different agreements, treaties, and other sources of 

authority that influence international activities in the Arctic. Some of these authorities 

overlap or conflict, leaving some uncertainty (Berkman and Young 2009; Koivurova and 

Molenaar 2009). A report by the United States Geological Survey (USGS) estimated that 

substantial reserves of fossil fuels are present in the Arctic region. That estimate includes 

90 billion barrels of oil, 44 billion barrels of liquid natural gas, and 1669 trillion cubic 

feet of natural gas (USGS 2008). It is safe to assume that economic interests in the region 

will only grow. Also, as cold-water species of fish move north (Sigler 2009; Logerwell 

2008), the global fishing economy is also making plans for the future. As a result of these 

economic interests, a land-grab of sorts has begun in the Arctic. The United Nations 

Convention on the Law of the Sea (UNCLOS) spells out the process by which nations 

ratifying the treaty may claim an Economic Exclusion Zone (EEZ), a region where use of 

seabed activities is authorized only for the nation claiming it (United Nations 2016). The 

EEZ may be extended to the edge of a continental shelf; current and potential disputes 

over which are depicted in Figure 1.4. 
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Figure 1.4. Maritime Jurisdiction and Boundaries in the Arctic Region. 
Source: IBRU, Durham University 2016. 
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3. U.S. Arctic Strategy 

In addition to the risk of conflict over competing territorial claims, an increased 

human presence in the Arctic results in an increased risk of humanitarian and 

environmental disasters (Executive Intelligence Review 2016, National Intelligence 

Council 2016). The United States must, therefore, consider its responsibilities with 

respect to the Arctic. The U.S.’s foundational strategic document, the National Security 

Strategy, states that the “United States is an Arctic Nation with broad and fundamental 

interests in the Arctic region” (White House 2010). In 2015, the National Security 

Strategy was updated to include the U.S.’s commitment to combatting climate change 

and working with the international community to prevent conflict in the Arctic (White 

House 2015). The subsequent National Strategy for the Arctic Region, released in 2013, 

lists three lines of effort: 

• Advance United States Security Interests 

• Pursue Responsible Arctic Region Stewardship 

• Strengthen International Cooperation 

The Strategy further listed guiding principles for these efforts: 

• Safeguard Peace and Stability 

• Make Decisions Using the Best Available Information 

• Pursue Innovative Arrangements 

• Consult and Coordinate with Alaska Natives (White House 2013) 

Along with the Implementation Plan for the National Strategy for the Arctic 

Region (White House 2014), the National Strategy for the Arctic Region addresses broad 

national goals. In 2013, the Office of the Secretary of Defense (OSD) issued its 

Department of Defense (DOD) Arctic Strategy, which defines the desired end-state in the 

Arctic as “a secure and stable region where U.S. national interests are safeguarded, the 

U.S. homeland is protected, and nations work cooperatively to address challenges” (OSD 

2013). These goals are supported by ensuring security, supporting safety, promoting 

defense cooperation, and preparing to “respond to a wide range of challenges and 

contingencies” (OSD 2013). Presently and in the near future, the Navy’s physical 

presence and operational requirements are met by the use of submarines, whose safety 
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and mission sets require a thorough understanding of the physical and acoustical ocean 

environment. To support the U.S.’s national goals and operating forces, the DOD “will 

leverage work done by the scientific and academic communities and seek opportunities to 

contribute to the observation and modeling of the atmosphere, ocean, and sea ice 

conditions … to enhance military environmental forecasting capabilities” (OSD 2013).   

The Navy’s Task Force Climate Change (TFCC) was created in 2009 (four years 

before the National Strategy for the Arctic Region had been written) with the explicit 

purpose of “recommending policy, strategy, roadmaps, force structure, and investments 

for the Navy regarding the Arctic and Climate Change” (Department of the Navy 2009). 

The U.S. Navy Arctic Roadmap, issued in 2009 and updated in 2014, states that although 

the threat of armed conflict in the Arctic is currently low, the U.S. does have important 

security responsibilities. One of these responsibilities is to improve domain awareness in 

the Arctic region; a task the Navy hopes to achieve with the help of public and private 

sector partners (TFCC 2014). Part of this domain awareness includes ability to predict the 

Arctic physical environment, especially sea ice extent, ice and snow thickness, ice-sea-air 

interaction physics, and other processes in the ocean. The Navy encourages research into 

and development of comprehensive Arctic System Models (TFCC 2014).   

B. RESEARCH GOALS 

To support the U.S. and DOD strategies and objectives for the Arctic, the research 

conducted for this dissertation focused on observing and modeling the physical 

oceanography of the upper Arctic Ocean with an emphasis on the implications of climate 

change on acoustic operations in the western Arctic. There are two major research goals 

with several supporting science questions: 

1. To characterize the present Arctic Ocean hydrography and resulting 
sound-speed structure 

• What is the current mean state of the Arctic sound speed field? 

• How does the current sound speed field compare to that of previous 
decades?  

• What small-scale variations are present in the sound speed field and what 
causes them? 
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2. To evaluate and guide improved model representation of Arctic 
Ocean hydrography and sound-speed structure. 

• How well do models represent the past and current hydrography and 
sound speed field? 

• What model physics, parameterizations, and configurations allow 
improved representation of hydrography and sound speed field? 

• Are climate models suitable for making projections of future hydrography, 
especially with respect to heat content, feedbacks, and the mean sound-
speed field? 

C. STRUCTURE OF THIS DISSERTATION 

Following an introduction to the geography and oceanography of the region of 

study, the research completed for this dissertation will be presented in the form of two 

research journal articles that have been submitted for peer-review and publication. The 

first paper, “Observations of the Upper Ocean Thermohaline Structure and Variations in 

the Canada Basin, Summer 2015” (DiMaggio et al. 2016a) addresses the first research 

question by discussing the observational work that set out to explore current acoustic 

conditions in the Canada Basin. The second paper, “Evaluation and Sensitivity of Climate 

Model Skill at Representing Upper Arctic Ocean Hydrography” (DiMaggio et al. 2016b) 

investigates the second research question by directly examining global climate models 

and the Regional Arctic System Model (RASM). The final chapter of this dissertation 

will tie together results from these two studies to offer some conclusions and 

recommendations for acoustic operations and future research.   

D. ARCTIC PHYSICAL OCEANOGRAPHY AND ACOUSTICS 

1. Physical Oceanography of the Arctic 

a. Water masses and circulation 

The Arctic Ocean is different from other oceans in that it is both mediterranean, 

surrounded on all sides by land with limited physical connections to the Atlantic and 

Pacific (Figure 1.5), and it undergoes an extreme seasonal cycle of solar radiative forcing. 

The properties of this ocean are dictated by the influence of the Pacific and Atlantic 
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oceans, sea ice, precipitation, winds, solar and infrared radiation, and the seasonal land 

hydrology (e.g., river runoff).   

 
The dashed black line indicates the approximate location of the cross section depicted in 
Figure 1.7 

Figure 1.5. Annotated  Map of Arctic Bathymetry and Topography Region. 
Adapted from Jakobsson et al. 2012. 

The surface mixed layer varies seasonally under the influence of atmospheric 

forcing and seasonally varying sea ice growth and melt. During the winter months, the 

surface mixed layer is maintained at approximately 30 to 40 m by negative buoyancy 

fluxes caused by negative heat fluxes from the atmosphere and positive salt fluxes from 

ice formation. At the onset of the melt season, the influx of low-salinity water from 
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melting sea ice and increased river runoff causes the mixed layer to shoal rapidly to less 

than 20 m. A strong summer pycnocline is setup between the new summer mixed layer 

and the remnant mixed layer from the previous winter, significantly limiting vertical 

mixing (Toole et al. 2010). The circulation of surface waters is driven primarily by wind 

forcing, and modulated by sea-ice drift. A climatological high-pressure cell above the 

Beaufort Sea creates an anti-cyclonic gyre in the sea-ice circulation, commonly referred 

to as the Beaufort Gyre. The northernmost branch of the Beaufort Gyre feeds the 

Transpolar Drift, which transports sea ice and surface waters from the East Siberian and 

Laptev Seas toward Fram Strait (Rudels 2001). 

Beneath the mixed layer lie water masses that originated in either the Pacific or 

Atlantic Oceans. Warm and salty Atlantic water enters the Arctic Ocean via the Fram 

Strait and the Barents Sea (Figure 1.6). Cooling at the surface increases the density of 

Atlantic water, which submerges below the fresher and more buoyant surface mixed 

layer. This Atlantic Layer, also sometimes called Arctic Intermediate Water, is relatively 

warm (> 0 oC) and salty (> 34.5 psu), and can be found throughout the central Arctic 

basin (Steele et al. 1998; Rudels et al. 2004; Rudels 2012). The Atlantic water generally 

circulates as a boundary current, guided by the bathymetry of continental slope. This 

boundary current gets split off due to bathymetric features, and as yet not well-

understood processes (e.g., mesoscale eddies) distribute this water throughout the deep 

basins (Rudels 2001). In the eastern Arctic Ocean, a strong temperature and salinity 

gradient exists between the surface waters and the Atlantic Layer. In the western Arctic, 

however, waters originating in the Pacific Ocean complicate the vertical water-mass 

structure. 
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Red arrows indicate relatively warm Atlantic waters which lie at intermediate depths in 
the Arctic Ocean; blue arrows indicate relatively cool surface and Pacific waters 

Figure 1.6. Schematic Diagram of General Oceanic Circulation in and Around 
the Arctic Ocean. Source: WHOI 2014. 

b. Hydrography of the Canada Basin 

The Canada Basin is the deep basin of the western Arctic Ocean adjacent to the 

Alaskan coast. Thanks largely to the observational record collected by the Ice-Tethered 

Profile (ITP) program of the Woods Hole Oceanography Institute (WHOI 2016), and the 

ship-based observations compiled in the Polar Science Center Hydrographic Climatology 

(Steele et al. 2001), the hydrography of the Canada Basin is fairly well known. Water 

from the Pacific enters the Arctic via the narrow and shallow Bering Strait. Once it 

reaches the Canada Basin, this water is cooler and fresher than the Atlantic Layer, but is 

saltier than the surface mixed layer. The result is a layering of the water masses (Figure 

1.7). 
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The approximate location of this cross section is depicted in Figure 1.5. Features are not 
drawn to scale; the near-surface depths are exaggerated. The Lomonosov Ridge divides 
the Arctic into two basins, the Canadian Basin in the west, and the Eurasian Basin in the 
east. The shallowest layer is the surface mixed layer, which extends from the surface to 
approximately 50m. Below this lie the Pacific waters and the Atlantic Layer. The Atlantic 
Layer reaches to a shallower depth in the east, where it enters the Arctic via the Fram 
Strait. 

Figure 1.7. Schematic Representation of the General Layers in the Arctic Ocean 
in Cross Section from the Bering Strait to the Fram Strait. Adapted 

from DiMaggio 2012. 

The Pacific waters are modified over the Bering and Chukchi shelves by 

seasonally varying atmospheric and sea-ice conditions, resulting in two distinct water 

masses that Coachman and Barnes (1961) named the Pacific summer water (PSW) and 

Pacific winter water (PWW). PSW has a temperature of approximately -1.0 oC (Steele et 

al. 2004) and salinities ranging between 31 psu and 33 psu (Shimada et al. 2006; Steele et 

al. 2004). PWW is cooler (near freezing) and has salinity above 33 psu; therefore, it is 

situated below PSW (Coachman and Barnes 1961). The net result of these layered water 

masses is a highly stratified upper ocean, with strong density gradients, especially at the 

base of the mixed layer and the top of the Atlantic Layer. 

There has been a measurable change to the hydrography of the Canada Basin in 

recent years. A near-surface temperature maximum (NSTM) has been observed between 

the surface mixed layer and the PSW, and has been expanding in lateral extent and heat 

content in recent years due to increased solar radiation absorption through decreased ice 

cover (Jackson et al. 2010, Jackson et al. 2011, Steele et al. 2011, Gallaher et al. 2016). 
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Timmermans et al. (2014) found that the PSW has increased in heat content and 

freshwater content in recent years, which likely results in increased vertical heat fluxes. 

Many local and advective processes govern the properties of, and therefore the changes 

to, the NSTM and PSW. Surface heat fluxes from the atmosphere, sea ice, and solar 

insolation dictate the properties of the NSTM, both directly and indirectly through 

turbulent mixing (Steele et al. 2011). These processes also affect the source water for the 

PSW, as do the advective processes of lateral eddy flux, boundary currents, shelf-basin 

exchange, and general circulation (Pickart et al. 2005, Spall et al. 2008, Watanabe et al. 

2009, Maslowski et al. 2014, Timmermans et al. 2014). Each of these processes is the 

focus of active research in the Arctic region, in both observational and modeling studies. 

Understanding these processes, associated feedbacks, and how to incorporate them in 

coupled climate models will be critical to making projections of future climate states.  

c. Internal Waves 

In an ocean layered with water masses of different densities, there is the potential 

for internal gravity waves. In deep basins internal waves are ubiquitous, and generally 

follow the Garrett-Munk (GM) model spectra (Garrett and Munk 1971), and the internal 

wave field energy in the Arctic is an order of magnitude or more below that found at 

lower latitudes (Levine et al. 1985, Levine et al. 1987). A seasonal cycle exists in the 

Canada Basin internal wave field, with a maximum energy in the summer when sea ice 

coverage is at a minimum (Dosser and Rainville 2016). As the sea ice retreats, increased 

momentum fluxes from the atmosphere have increased the internal wave energy levels 

and variability in the Canada Basin (Dosser and Rainville 2016); however, there has been 

no associated rise in internal wave mixing, possibly due to increased stratification 

(Guthrie et al. 2013). Internal waves provide an avenue for wind energy to penetrate 

through the water column, inducing diapycnal mixing and water mass modification 

(Munk and Wunsch 1998). In the Arctic, a changing internal wave field could have an 

impact on the stratification and distribution of heat content; a more energetic internal 

wave field could allow for the heat of the PSW to reach the surface, and would have 

significant impacts to acoustic propagation. 
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d.   Global and regional modeling 

There is a large multinational effort using computer simulations to better 

understand how and why the Arctic is changing, and how the Arctic influences and is 

influenced by the global climate system. These modeling efforts span various temporal 

and spatial scales. Presently there are no models that can resolve important processes at 

all relevant scales. Small-scale processes, such as turbulent mixing which acts on scales 

on the order of one meter and one minute (McPhee 2008), and the large-scale dynamics 

of basin- to global-scale feedbacks and forcings, such as greenhouse gases and 

meridional overturning circulation, are not resolved at the same time in models. 

Therefore, models are generally designed to represent a limited range of scales. Global 

climate models (GCM), and Earth system models (ESM), focus on large spatial scales 

and can often be run for long time scales in order to investigate such processes as climate 

change. The length of simulation and spatial scale comes at a high computational cost, 

and most GCMs and ESMs run at relatively coarse resolution. The Community Climate 

System Model (CCSM), for example, uses a relatively coarse resolution of 1o in both 

ocean and atmospheric components. This means that CCSM grid points are roughly 111 

km apart (Stevens et al. 2012). Similarly, the model used by the Max Plank Institute for 

Meteorology has an atmospheric component grid spaced at 1.8o (~ 200 km) and an 

oceanic component grid spaced at 1.5o (~ 167 km) (Stevens et al. 2012). However, 

models with much higher resolutions, but lower than 10 km, will still misrepresent or 

even completely exclude mesoscale processes such as eddies, buoyancy-driven coastal 

and boundary currents, sea-ice drift, sea-ice thickness distribution, sea-ice concentration, 

sea-ice deformation, and air-sea-ice interactions (DuVivier and Cassano 2013; Maslowski 

et al. 2008; Maslowski et al. 2012).  

Upper Arctic Ocean hydrography, in particular, has been insufficiently 

represented in current global and Arctic regional models. Many models tend to produce a 

continuously stratified upper layer, rather than the layered water masses observed in the 

western Arctic, which suggests that missing model physics may be related to vertical 

mixing or shelf-basin exchanges (Holloway et al. 2007). Deficiencies may be present in 

not just the ocean model, but also in the sea ice and atmospheric models or in how they 
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are coupled. Poor resolution in both time and space may be underrepresenting the 

significance of small-scale processes.   

This dissertation aims to identify the existing model limitations and provide 

guidance on what model improvements can be made in representing upper Arctic Ocean 

hydrography in order to enhance our understanding of the important processes that create 

and maintain the thermohaline structure, as well as the fate of this structure under climate 

change.  

2. Underwater Propagation of Sound in the Arctic Ocean 

a. Basics of sound propagation 

Because seawater attenuates electromagnetic energy rapidly, yet permits acoustic 

energy to propagate to very long distances, sound is the primary long-range method for 

naval forces to navigate, communicate, and observe in the undersea environment. The 

propagation of sound in water is controlled by the speed of sound in water and how that 

sound speed changes in space and time, as well as the surface and bottom boundary 

conditions. Sound speed (c) in seawater depends primarily on temperature (T), salinity 

(S), and pressure, or depth (z) since pressure increases linearly with depth. An increase in 

T, S, or z will increase c. Across operationally relevant ranges, the largest variability in c 

is in depth, so c is primarily a function of z. The solutions to the acoustic wave equation 

in seawater result in two models of visualizing sound propagation: ray theory and normal 

mode theory. In ray theory, the propagation of acoustic energy is said to travel along 

paths that curve according to the varying sound-speed properties of seawater. As sound 

propagates from a source, a vertically varying c will cause sound rays to refract, or bend, 

according to Snell’s Law: 

   1.1 

where  represents the angle of the sound ray with respect to the horizontal. The result 

of Snell’s Law is that sound refracts away from higher sound speed, or that sound bends 

towards low sound speed regions. If a sound-speed minimum exists, some rays will 

oscillate about that minimum, creating a channel in which sound may propagate for long 
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distances without interacting with the surface or bottom (Figure 1.8). Surface and bottom 

interactions will result in energy loss due to the conversion of sound energy into heat 

through absorption, or the scattering of sound energy out of the ray path (Kuperman 

2001). In cases where sound is trapped in a sound channel, normal mode theory is 

helpful. Normal mode theory arises from the fact that solutions to the acoustic wave 

equations of a bound system can be broken into a vertically varying component, and a 

radially varying component. The vertical solutions define distinct “modes” of alternating 

high- and low-intensity sound regions, much like modes of vibrations on a taut string or 

modes of probability of locating a quantum particle in a bound state (Figure 1.8). 

 
The presence of a sound-speed minimum creates a sound channel about which sound rays 
will oscillate. The first three normal modes of trapped sound energy are also depicted. 

Figure 1.8. Schematic Diagram of a Generic Deep-Ocean Temperature 
Profile (T(z)) and Resulting Sound Speed Profile (c(z)).   

The sound-speed structure, however, does not remain constant in time and space, 

so we must update this model of sound propagation. Coherent acoustic transmissions, 

especially those used in communication and undersea warfare, are subject to acoustic 

variability, which is induced by perturbations of the sound-speed field at various scales. 

Mesoscale eddies (Cornuelle et al. 1995; Wolfson and Tappert 2000), internal tides 

(Dushaw et al. 1995, Dushaw et al. 2011), random internal waves (Colosi 2016), and 

spicy thermohaline structure (Dzieciuch et al. 2004) will all cause distortions to the 

transmitted sound signal, often necessitating a stochastic approach to making predictions.  
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b. The Arctic acoustic environment 

The hydrography of the Arctic Ocean results in a sound-speed structure that is not 

found in other deep-ocean basins. As temperature and salinity increase from the surface 

to the core of the Atlantic Layer (~500m), sound speed also increases rapidly (Figure 

1.9). Below this depth, pressure effects begin to dominate and sound speed continues to 

increase, despite temperature decreasing slightly. Therefore, the resulting full-depth 

sound-speed profile is monotonically increasing, creating a sound channel with axis near 

the surface supporting strong first and second modes of propagation (Kutschale 1961). 

Acoustic energy is therefore repeatedly refracted upwards and reflected off the sea ice, 

and so the ice-ocean interface plays a significant role in the attenuation of sound. The 

acoustical properties of sea ice, and sea ice’s effects on underwater acoustic propagation 

are complex and not yet fully understood (e.g. Yew and Weng 1987; Rajan 1993, 

Alexander et al. 2013), yet the net result is that high frequency signals are greatly 

attenuated by sea ice and only low frequency (below 30 Hz) propagate to long distances 

(Kutschale 1961; Buck and Greene 1964, Mikhalevsky 2001).   

 
Ocean. Included are modal structure, ray traces, and profiles of salinity, temperature, and 
sound speed.  

Figure 1.9. Typical Acoustic Conditions in the Arctic. Source: Mikhalevsky 
2001. 
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As Arctic sea ice becomes younger and thinner and as the summer ice extent 

becomes smaller, acoustic propagation conditions are likely changing. Previous studies 

were mainly concerned with long-range propagation of low frequencies under pack ice 

(Kutschale 1961, Marsh and Mellen 1962, DiNapoli and Mellen 1985, Mikhalevsky et al. 

1999). As the mean state of Arctic hydrography is evolving, the results of these long-

range propagation experiments may no longer be valid. Also, the scattering of sound by 

sea ice is dependent on the thickness, age, and roughness of the ice, all of which are 

changing. Several recent and current research efforts are aimed at updating our 

knowledge of the Arctic acoustic environment, including the Transarctic Acoustic 

Propagation experiment (Mikhalevsky et al. 1999), the Arctic Climate Observations using 

Underwater Sound experiment (Gavrilov and Mikhalevsky 2002; Gavrilov and 

Mikhalevsky 2006), the Thin-ice Arctic Acoustic Window experiment and the Canada 

Basin Acoustic Propagation Experiment. Much of this work is being done to understand 

how the changing sea-ice conditions and overall warming of the Arctic Ocean are 

affecting acoustic propagation on seasonal to interannual timescales.   

There are several key issues associated with Arctic acoustics that should be 

investigated. First, the mean sound speed field, its fluctuations, and the main physical 

processes driving them are still not well understood, especially on seasonal and 

interannual time scales. In particular, the increasing temperature of the Pacific Summer 

Water has the potential to create a sound speed maximum at that depth, possibly 

changing the acoustic modal structure and limiting the attenuating affects of sea ice 

reflection. Second, the relative contributions of eddies, internal waves, and spice 

variability to the sound speed fluctuation field, and their dependence depth and season are 

not well understood. Third, the space and time scales of the sound speed fluctuations 

need to be well understood in order to adequately model these processes, either 

stochastically or deterministically. Finally, the affects of these ocean fluctuations on 

sound propagation should be explored. How do these fluctuations affect different acoustic 

frequencies; are there optimal frequencies for different applications?  For coherent 

signals, in what cases would one expect unsaturated, partially saturated or fully saturated 

signal propagation?  This dissertation supports these research efforts by focusing on 
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smaller spatial and temporal scales, especially the acoustical implications of internal 

waves and spice, as well as evaluating and improving the modeling of ocean hydrography 

and sound-speed structure. 
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II. OBSERVATIONS OF THERMOHALINE SOUND-SPEED 
STRUCTURE INDUCED BY INTERNAL WAVES AND SPICE IN 

THE SUMMER 2015 CANADA BASIN MARGINAL ICE ZONE 

This chapter was submitted to Elementa: Science of the Anthropocene for publication. 
Except for the figure numbering, the formatting has been retained as submitted. As the 
main author of the work, I made the major contributions to the research and writing. Co-
authors include J. Colosi1, P. Worcester2, M. Dzieciuch2, J. Joseph1, and Annalise 
Pearson1.  
 

A. INTRODUCTION 

In the past few decades there have been substantial changes in the Arctic region 

including a rapid decline in summer sea ice extent (Stroeve et al. 2012), as well as 

changes in ocean freshwater content (Rabe et al. 2014) and ocean heat content (Lique and 

Steele 2013). These changes have attracted not just scientific interest, but also the 

attention of commercial organizations, governments, and militaries. Under the sea there 

are many potential activities that would rely on sound, including communication, 

acoustic tomography, seismic exploration, and sonar. Each of these applications requires 

a good understanding of the structure and variability of the ocean acoustic conditions, 

conditions which appear to be in a state of transition.  

The Canada Basin Acoustic Propagation Experiment (CANAPE) is just such an 

effort to assess present ocean acoustic conditions with a focus on physical oceanographic 

processes that impact sound propagation on time scales from minutes to months. 

CANAPE consists of a yearlong experiment in the Canada Basin of the Arctic Ocean 

during 2016–2017 as well as a month-long pilot study conducted during the summer of 

2015. The purpose of the pilot study was to test equipment, observe transmission loss for 

designing the main experiment acoustic array, and to quantify oceanographic and 

acoustic variability. This paper describes the observations of thermohaline structure and 

                                                 
1Department of Oceanography, Naval Postgraduate School 
2Scripps Institution of Oceanography, University of California, San Diego 
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variability collected during the CANAPE pilot study, which was carried out in the 

Beaufort Sea close to the continental slope off Alaska (Figure 2.1). Due to the short 

duration, the focus of the pilot was on internal waves and spice.   

 
Left panel: sea ice concentration for 30 July 2015, with the approximate region of study 
outlined in blue. Right panel: expanded view of the region of study with observation 
locations indicated. Bathymetry shading is in meters, with 500 m depth contours overlaid. 

Figure 2.1. Region of the CANAPE Pilot Study. Adapted from University of 
Illinois 2016.  

The Canada Basin is a deep-water basin north of Alaska and west of the Canadian 

Arctic Archipelago. To the west of the Canada Basin lies the broad and relatively shallow 

Chukchi Shelf, which provides input of relatively warm Pacific waters into the Canada 

Basin. Prevailing winds drive the anticyclonic Beaufort Gyre, which transports sea ice 

and upper ocean water masses from the central Arctic Ocean in a clockwise direction 

around the basin. Between 1983 and 2014 sea ice concentration in the Beaufort Sea has 

decreased at a rate up to 15 % per decade, and the annual duration of open water has 

increased as much as three weeks (Galley et al. 2016). Of significant acoustical 

consequence, these changes have resulted in the emergence of a large-scale summer 

marginal ice zone (MIZ) in the Canada Basin, thus changing the dominant processes 
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governing acoustic/ice interactions, air/sea interactions, and changing thermohaline 

sound-speed structure. 

Changes in the sound speed structure in the upper few hundred meters of the 

ocean have been striking. Below the surface waters around 100 m depth, a temperature 

maximum has emerged that appears to be increasing in intensity and lateral extent 

(Jackson et al. 2010; Steele et al. 2011). One consequence of this feature is a new 

subsurface acoustic duct that can allow long-range acoustic propagation with little energy 

loss. These waters are of Pacific origin and fill the upper to intermediate depths of the 

Canada Basin. Coachman and Barnes (1961) named these layers Pacific summer water 

(PSW) and Pacific winter water (PWW). PSW is characterized as having a temperature 

maximum greater than -1.0oC (Steele et al. 2004) with salinities of 31–33 psu (Shimada 

et al. 2001; Steele et al. 2004). Timmermans et al. (2014) have shown that the PSW has 

increased in heat content and freshwater content in recent years, with potential impacts to 

stratification and vertical heat fluxes. Below PSW is the PWW that is generally found 

below 150 m and can be identified by a temperature minimum and salinities greater than 

33 psu (Coachman and Barnes, 1961). PWW is believed to be formed by ice formation 

on the Chukchi Shelf during winter months (Pisareva et al. 2015).  Although this 

water mass seems to be fairly consistent in its properties, Steele et al. (1998) found that 

its lateral extent may be variable in time. Below the PWW a strong halocline and 

thermocline marks the transition to water of Atlantic origin, simply called Atlantic Water 

(AW), which is characterized as warm (T > 0 oC) and salty (S > 34.5 psu; Rudels et al. 

2004). The cumulative effect of these layered water masses is a highly stratified upper 

ocean, with strong density gradients and high buoyancy frequencies, especially at the 

transitions between water masses. Changes in these water masses on time scales from 

interannual to buoyancy period are of fundamental interest to a broad spectrum of Arctic 

scientists, including acousticians. 

Deep-water sound propagation can be used for many practical applications 

including remote sensing, navigation, and communication. Of fundamental importance 

are the features of the water masses (e.g., the sound channel) and their inherent variability 

due to ocean processes (Colosi 2016), This variability may be caused by eddies 
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(Cornuelle et al. 1985; Wolfson and Tappert 2000), internal tides (Dushaw et al. 1995; 

Dushaw et al. 2011), internal waves (Colosi 2016; Flatté et al. 1979), and spicy 

thermohaline structure (Colosi et al. 2013; Dzieciuch et al. 2004). Ocean variability 

translates into acoustic variability, and for any given acoustic system there is a complex 

relationship between signal stability and randomization and the space/time scales of the 

ocean (Colosi 2016). To make progress on this problem requires both deterministic and 

stochastic ocean models that can then be interfaced with acoustic models. An important 

example of a stochastic model is the Garrett-Munk internal wave spectrum (Garrett and 

Munk 1971). The goal of this study is to examine two processes that can be considered 

stochastic, internal waves and spice, and to quantify their space/time scales and 

contributions to sound-speed variations in the MIZ. 

The organization of this paper is as follows. Section B describes the CANAPE 

experiment and the observations. Frequency spectra of internal waves and sound speed 

variability are presented in Section C, while vertical scales of variability are addressed in 

Section D. Section E concludes with a summary and discussion. 

B. THE EXPERIMENT 

In the summer of 2015, field program was carried out in the southern Beaufort 

Sea to study long-range acoustic propagation and ambient noise in the deep basin. The 

fieldwork, carried out on the R/V Sikuliaq, was conducted as a pilot study for the Canada 

Basin Acoustic Propagation Experiment (CANAPE) to be done in 2016 and 2017 in the 

same region. As part of the 2015 pilot study, ocean features such as eddies, internal tides, 

random internal waves, and spicy thermohaline structure were observed as part of the  

time-evolving and spatially-variable ocean sound-speed field. Using these detailed 

mooring data, acoustic transmission data could then be interpreted. This experiment is 

similar to those conducted by Colosi et al. (2012) and Colosi et al. (2013). 

1. Observations 

In the CANAPE pilot study, a 60-hydrophone vertical acoustic receiver array 

termed the Distributed Vertical Line Array (DVLA) was instrumented with 24 Sea-Bird 

Electronics models SBE 37-SMP and SBE 37-SM MicroCAT conductivity, temperature, 
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depth (CTD) instruments and two Teledyne RDI ADCPs. This mooring collected 

acoustic and oceanographic data from 30 July through 16 August 2015. The DVLA was 

located at 73o 10.6691’N, 154o 06.0565’W, and the water depth was 3853 m. The CTD 

instrumentation on the DVLA (Table 2.1) were densely arranged in the depth range 

between 85 and 550m and made measurements every 30 seconds. The pumped 

instruments in the upper part of the water column provided the highest quality data. 

These observations were used to track isopycnal vertical displacements that we denote by 

the symbol . Vertical displacements perturb the background ocean sound-speed 

field according to the relation  

      (2.1) 

where the potential sound speed gradient, , is the important quantity due to the 

adiabaticity of most ocean processes, including internal waves (Colosi 2016; Flatte et al. 

1979). Variations in T and S along isopycnals, called spice, create fluctuations in the 

sound speed, since density-compensating anomalies in T and S are reinforcing in sound 

speed (Dzieciuch et al. 2004).  

In addition to the CTD sensors, two ADCPs were included on the DVLA mooring 

(Table 2.1). These were both placed at approximately 630 m, one looking up and the 

other looking down, giving an observation depth range of roughly 100 to 900 m. The 

ADCPs resolved horizontal currents induced by eddies, inertial waves, and internal tides. 

Because of the weakness of the internal wave field, the ADCP observations were too 

noisy to be useful and therefore will not be analyzed here. 
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Table 2.1.  Oceanographic Instrumentation for the DVLA Mooring with 
Approximate Depth of Each Instrument 

Depth (m) Instrument1 

82 SBE 37-SMP  
102 SBE 37-SMP 
111 SBE 37-SMP 
120 SBE 37-SMP 
129 SBE 37-SMP 
138 SBE 37-SMP 
147 SBE 37-SMP 
156 SBE 37-SMP 
165 SBE 37-SMP 
175 SBE 37-SMP 
183 SBE 37-SMP 
192 SBE 37-SMP 
210 SBE 37-SMP 
228 SBE 37-SMP 
247 SBE 37-SMP 
265 SBE 37-SMP 
292 SBE 37-SMP 
320 SBE 37-SMP 
347 SBE 37-SMP 
381 SBE 37-SM 
418 SBE 37-SM 
452 SBE 37-SM 
489 SBE 37-SM 
525 SBE 37-SM 
628 Teledyne RDI 75 

kHz ADCP upward 
looking2 

641 Teledyne RDI 150 
kHz ADCP 

downward looking2 

 

1The primary instruments are Sea-Bird Electronics models SBE37-SM and SBE37-SMP (pumped) 
MicroCAT CTD instruments. The SBE instruments sampled the ocean at 30 sec intervals.   
2The Teledyne RDI 75 kHz ADCP was deployed in the up looking direction and the Teledyne RDI 150 
kHz ADCP was deployed in the down looking direction. 

 

Depth time series of potential density referenced to the 300 dbar level and 

potential temperature are displayed in Figure 2.2, showing the variability observed over 

the whole two weeks of the experiment. A striking feature of this display is the large 
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mooring “pull-down’’ event between 01 and 03 August that is likely due to a strong eddy 

moving over the mooring.1 Another eddy event of a different nature is seen towards the 

end of the observation period. Because this study is not concerned with eddies, the 

analysis focuses on the time period 04–15 August (yearday 216 to 228).  

 

Potential density in kg/m3 (top) and temperature in degrees Celsius (middle and bottom) 
as a function of depth (m) and time (yearday), measured at the DVLA mooring. Lines of 
constant potential density (isopycnals) are overlaid in black. The bottom panel shows an 
expanded view of the area highlighted in the middle panel.  

Figure 2.2. Depth-Time Series of Potential Density and Temperature.  

                                                 
1 The eddy is clearly seen in the ADCP observations with currents of +/- 20 cm/s, and is located in the 

Atlantic layer. 
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Figure 2.3 shows mean profiles over this shortened timeframe for several 

quantities of oceanographic and acoustical interest, including T, S, sound speed, potential 

sound speed gradient, potential density, and buoyancy frequency. These mean profiles 

were derived from the moored observations and three shipboard CTD casts taken within 

75 km of the DVLA. In the upper 600 m there are four distinct water masses. The upper 

40 m is characterized by low salinity with values less than 30 psu, and a temperature near 

-1oC. Below this surface layer is the PSW, a thin layer (about 30 m thick) with salinities 

between 30 and 32 psu and relatively warm temperatures between 0 and 1oC. Between 

100 and 200 m the PWW is cooler with temperatures below -1oC and salinities between 

32 and 33 psu. Below 200 m a thermocline and halocline separate the Pacific-origin 

waters from Atlantic-origin waters, the core of which is found below 300 m. The Atlantic 

Water (AW) has a much higher temperature (> 0 oC) than the overlying Pacific waters, 

but its high salinity of about 34.8 psu results in a relatively high density. These water 

masses are highly stratified, with buoyancy frequencies of around 15 cycles per hour 

(cph) in the upper 100 m and 7 cph at 250 m. These depths correspond to the upper limit 

of PSW and lower limit of PWW.   



 31 

 

Values derived from the DVLA are show with circles. Average profiles derived from 3 
CTD casts made in the vicinity of the DVLA are shown with dashed lines. Analysis 
methods used to produce these figures are adapted from Colosi et al. (2013, 2014). 

Figure 2.3.  Mean Profiles of Temperature, Salinity, Sound Speed, Buoyancy 
Frequency, Potential Density, and Potential Sound Speed Gradient.  
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Relevant to ocean acoustics is the vertical structure of the mean sound speed and 

potential sound speed gradient profiles. With regards to sound speed, the expected 

upward refracting surface duct formed by the thermocline is seen, but quite unexpectedly 

there is a local minimum in sound speed at roughly 120-m depth forming a weak sub-

surface acoustic duct extending roughly from 75-m to 225-m depth. Sound energy 

trapped in this duct would experience limited loss because it does not be interact with the 

ocean surface. Furthermore, the potential sound speed gradient in this subsurface duct is 

quite small, meaning that internal-wave-induced sound speed fluctuations are diminished 

(eq. 2.1). Thus, there is the potential for unprecedented long range, stable propagation in 

the Arctic.  

It is worth pointing out that the shallowest instrument on the DVLA was at 85 m 

and cannot observe the surface layer or the core of the PSW. Therefore, the temporal 

variability discussed in this paper will be restricted to PWW, AW, and the pycnocline 

between them.  

At these low temperatures, density is determined primarily by salinity, so 

relatively large changes in temperature can be dynamically compensated by very small 

changes in salinity. This fact is evidenced by variations in temperature along the first 

isopycnal overlaid on the temperature time series in Figure 2.2 (bottom), especially above 

200 m. These variations in isopycnal temperature have significance for spicy sound-speed 

variability, as density-compensating changes in temperature and salinity are reinforcing 

in sound speed. When plotted on a T-S diagram, the isopycnal sound-speed variability is 

readily apparent (Figure 2.4). Temperature variations in the salinity range above 33.5 psu 

lay roughly along the density contours, but result in a change in sound speed of up to 5 

m/s at the DVLA (Figure 2.4, left panel) and 25 m/s across the 8 CTDs (Figure 2.4, right 

panel). The highest variability is associated with Pacific Summer Water. 
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The color of each data point indicates the depth of the observation. The dashed lines are 
contours of constant potential density measured in kg/m3; the dot-dashed lines are 
contours of constant sound measured in m/s; and the solid line is the freezing temperature 
as a function of salinity. The average CTD temperature and salinity is plotted as black 
squares for comparison on the left panel. 

 

Figure 2.4.  Potential Temperature Plotted as a Function of Salinity as Measured 
by the DVLA Mooring (left) and Ship CTDs (right). 

2. Displacement and Spice Analysis 

The methods used to analyze isopycnal displacement and spicy sound-speed 

variability are similar to those used in Colosi et al. (2012, 2013). The description of 

methods presented here will be terse. The reader is encouraged to review Colosi et al. 

(2012) for a more thorough discussion. 

From the moored CTD observations, potential density referenced to the 300 

decibar (dbar) level (Talley et al. 2011) was computed as a function of instrument depth, 

, and time; we denote this quantity as . Instrument depth here is a 

function of time due to mooring motion. The depths of 45 isopycnals, , between 

1026.90 and 1029.36 kg/m3 were tracked using depth-linear interpolation, and the 

specific isopycnals were chosen to give roughly 10-m vertical separation  (Figure 2.5). 

The advantages and limitations of this technique are discussed in Colosi et al. (2012), and 

uncertainties associated with this calculation are discussed below. There are several 



 34 

noteworthy aspects of the isopycnal depth time series shown in Figure 2.5. First are the 

energetic deep eddy pull-down event early in the record and the appearance of another 

weaker near surface eddy at the end of the record. The increased high frequency 

variability at depths below 350 m is an artifact of the non-pumped moored CTD 

instruments on that section that have a lower sensitivity to changing salinity. The small-

amplitude displacement variability is on a super-inertial time scale and falls in the realm 

of internal waves. A spectral analysis of this variability will be presented in Section C. 

 

Isopycnals are roughly separated by 10-m on average. Analysis methods used to produce 
these figures are adapted from Colosi et al. (2013, 2014). 

Figure 2.5.  Depth of 45 Tracked Isopycnals as a Function of Time in the Upper 
550 m at the DVLA Mooring. 

To address the issue of spice, for each isopycnal, potential temperature, ,

 and salinity, , were computed using depth-linear interpolation. The 

along isopycnal temperature and salinity were then used at the mean isopycnal depth to 
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compute sound speed, . This sound speed field holds the mean profile plus spicy 

fluctuations. Sound speed variability caused by the fluctuations in isopycnal vertical 

displacements, like those caused by internal waves, will be discussed later. To verify the 

validity of this linear interpolation scheme, the errors in isopycnal tracking were 

determined by recomputing potential density from the interpolated potential temperature, 

, and salinity, . The root mean square (RMS) differences between 

the recomputed and original densities and associated depth errors are listed in Table 2.2, 

columns 5 and 6 (also Figure 2.6). The errors from using linear interpolation are much 

smaller than those found in the Philippine Sea (Colosi et al. 2013) and New Jersey 

Continental Shelf (Colosi et al. 2012) experiments. This is likely due to the relatively 

quiescent nature of the Beaufort Sea when compared to the more dynamically active 

regions of those studies. The largest errors in isopycnal tracking are found between 200 

and 400 m deep (Figure 2.6.)  Thermohaline staircases of order 1 m in vertical height 

created by double diffusion are often found in this depth range (Padman and Dillon 1987; 

Timmermans et al. 2008) and may explain the enhanced error in linear interpolation. 
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Table 2.2.  Observed Isopycnal Statistics for Tracked Isopycnals1

(kg/m3) (m) (oC) (psu) (x10-6  kg/m3) 
(x10-4  m) 

(x10-5 oC) (x10-7 psu) (x10-4 m/s) 

1027.058 91.8 -0.90 31.87 168 113 219 56 504 

1027.324 112.4 -1.22 32.19 30 29 121 25 282 

1027.507 132.7 -1.32 32.41 5 7 29 6 67 

1027.673 152.1 -1.39 32.61 2 2 19 4 43 

1027.829 172.1 -1.45 32.8 2 2 18 4 43 

1028.010 191.7 -1.48 33.02 20 16 18 4 42 

1028.296 212.0 -1.36 33.38 36 25 32 7 74 

1028.594 231.7 -1.17 33.76 197 134 103 27 239 

1028.872 251.4 -0.80 34.13 272 245 38 14 86 

1029.031 271.3 -0.43 34.35 298 479 5 3 11 

1029.136 292.5 -0.11 34.50 132 345 4 3 9 

1029.186 311.4 0.09 34.58 105 367 3 2 6 

1029.235 331.6 0.29 34.66 142 676 2 1 3 

1029.276 351.4 0.48 34.72 57 372 3 2 6 

1029.296 370.8 0.59 34.76 50 497 5 4 12 

1029.311 391.6 0.67 34.78 11 172 6 4 12 

1029.320 412.0 0.71 34.80 8 152 6 4 13 

1029.329 431.4 0.75 34.81 3 81 2 2 5 

1029.339 452.2 0.76 34.83 1 22 1 1 3 

1029.345 471.8 0.74 34.83 3 88 1 1 2 

1029.350 492.0 0.72 34.84 2 65 1 1 2 

1Selected isopycnal densities are listed in the first column, and the second, third, and fourth columns list 
the mean isopycnal depth, potential temperature, and salinity. The fifth and six columns list the RMS 
errors in isopycnal density and depth tracking (see text for discussion). The seventh, eight, and ninth 
columns list the RMS spicy sound speed variations along the selected isopycnals for temperature, 
salinity, and sound speed. These last three statistics only include contributions from frequencies between 
the Coriolis frequency, f, and a typical value of buoyancy frequency, N. For brevity, only every other 
isopycnal is displayed here. 



 37 

 
Analysis methods used to produce these figures are adapted from 
Colosi et al. (2013, 2014). 

 

Figure 2.6.  Root Mean Square Error in Tracking Isopycnal Density (left) and 
Depth (right). 

The time-mean sound speed profile was subtracted from the sound speed field, 

, to give the spicy sound speed fluctuations (Figure 2.7). Variations of over 1 m/

s were observed in the upper 250 m, with the strongest variations in the upper 150 m. The 

advection pattern of the passive spicy features past the mooring is complicated showing 

both large and small-scale variability. The spice is seen to weaken considerably below 

250 m, which coincides with the local maximum in buoyancy frequency.   



 38 

 

Spicy isopycnal sound speed anomalies, measured in m/s, are plotted as a function of 
depth and time, as measured at the DVLA mooring.  

Figure 2.7. Depth-Time Series of Spicy Isopycnal Sound Speed Anomalies.  

C. FREQUENCY SPECTRA AND ANALYSIS OF VARIANCE 

In this section, frequency spectra of displacement and spice variability will be 

analyzed as a function of depth. Spectral shape and depth inhomogeneity of internal wave 

and spice induced sound speed fluctuations play a major role in acoustic scattering theory 

(Colosi 2016). For internal waves the GM spectrum has played a major role in bringing 

together theory and observation for many mid-latitude experiments, but the acoustics 

community lacks a similar canonical model for spice  
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1. Internal Waves 

The time series of isopycnal displacements were filtered with a 4-pole 

Butterworth digital filter prior to spectral analysis to remove signals with frequencies 

over 20 cph. The full record length of just over 17 days was reduced to 12.4 days to 

remove data from the mooring pull-down event and to produce a record length of 24 

cycles of the M2 tides. After applying a Hanning window, power spectral density (PSD) 

estimates were computed for each tracked isopycnal, denoted by , where 

 is the mean depth of the isopycnal, . Figure 2.8 shows the depth-averaged 

PSD estimates for displacements in three depth bands: shallow (100-200 m), mid (200-

400 m), and deep (400-500 m). There is decreased energy just below the inertial 

frequency, followed by increasing low frequency energy associated with the eddy field 

(spectral gap). At the highest frequencies energy drops off rapidly above the buoyancy 

frequency cutoff (mostly due to the filter). A spectral peak exists near the inertial 

frequency. This peak is associated with the nearby M2 and S2 internal tides evident in the 

horizontal current spectra (not shown). In the continuum band between roughly 3 to 40 

cycles per day (cpd), a power law shape is seen with spectral slopes of  

for the depth band of 100–200m, for 200–400m, and for 

400–500m. The deepest spectra show noise problems at high frequency due to the non-

pumped sensors. However, in general the observed spectra have a much flatter shape that 

the GM spectrum, which goes as frequency to the minus two power. Levine et al. (1987) 

observed internal wave spectra in the Beaufort Sea under pack ice with slope closer to -1.   
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The three depth bands are 100–200 m (red), 200–400 m (blue), and 400–500 m (green.) 
The Coriolis frequency, f, and typical buoyancy frequency, N, are indicated with solid 
vertical lines. Power-law fits (dashed lines) to the random internal wave band of 
frequencies give the exponents listed. For comparison, the thick black line depicts the 
GM spectrum at standard energy. Analysis methods used to produce these figures are 
adapted from Colosi et al. (2013, 2014). 

Figure 2.8.  Frequency Spectra of Displacement Averaged in Three 
Depth Bands. 

The strength of internal wave displacement fluctuations depends on depth; in 

particular, it depends on the stratification, . Here we will use RMS displacement to 

quantify the isopycnal depth fluctuations (Figure 2.9). Vertical covariances and spectra 

will be discussed in Section D. The RMS displacement in the internal wave band is seen 

to be between 1 and 3 m, increasing with depth. This result is consistent with the 

Wentzel-Kramers-Brilloiun (WKB) depth scaling relation  (Munk 

1981) using a reference internal wave displacement m,  cph, and the 



 41 

mean from the mooring (see Figure 2.3.)  The observed internal wave reference 

displacement is roughly 20% of the standard GM level of  m. The effectiveness 

of the WKB relation implies that there is a rich internal wave vertical spectrum, and that 

the field is not dominated by a few low order modes. The one eddy event at the end of the 

record contributes a significant amount of variability to the total RMS displacement. 

(Note our analysis does not include the large eddy event at the beginning of the record.) 

 

  

The total RMS displacement is plotted in green, RMS displacement in the internal wave 
frequency band (f to N) is drawn in blue, and the WKB estimate using a reference 
internal wave displacement ξ0 of 1.5 m is drawn in black. Analysis methods used to 
produce these figures are adapted from Colosi et al. (2013, 2014). 

Figure 2.9.  RMS Displacement of Isopycnals Versus Depth. Sound Speed 
Variability and Spice 
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2. Spice 

The mean sound speed profile shown in Figure 2.3 is continuously perturbed by 

isopycnal displacement as well as spicy sound-speed variability. Vertical isopycnal 

displacements cause sound-speed perturbations by vertically advecting the background 

sound speed structure. Using Eq. 2.1, the RMS sound speed perturbations can be 

approximated by multiplying the potential sound speed gradient (Figure 2.3, bottom left) 

by the RMS displacement of isopycnals (Figure 2.9). The total and internal-wave band 

RMS sound speed fluctuation from spice are computed from the observations in Figure 

2.7, and the result is shown in Figure 2.10. Spice is indeed seen to drop off markedly 

below 250-m depth. Spice is expected to be the larger contributor to sound speed 

variability from the surface to 200-m depth, while internal waves provide the larger 

contribution below 200 m. Both the internal wave and spice sound speed fluctuations are 

small compared to mid-latitude observations (Colosi et al. 2012; Colosi et al. 2013). 

These variations are all small compared to the differences observed between CTD 

locations. Plotted in black in Figure 2.10, the RMS differences between the eight CTDs 

are roughly an order of magnitude larger than the temporal variations observed at the 

mooring, and the largest variations are found in the upper 100 m. The ship CTD RMS is 

clearly large because it includes the energetic eddy field in addition to spice and internal 

waves. 
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Total sound-speed fluctuations are plotted in green, fluctuations due to spice in the 
internal wave band are plotted in red, and fluctuations due to internal wave displacements 
are plotted in blue. The RMS sound speed variation among CTD locations is plotted in 
black. Note the sound speed axis is a logarithmic scale. Analysis methods used to 
produce these figures are adapted from Colosi et al. (2013, 2014). 

Figure 2.10.  Root Mean Square Sound Speed Fluctuations Versus Depth.   

 Spectra of spice sound-speed fluctuations were computed using the same 

methodology as the displacement spectra, and the depth-averaged results are shown in 

Figure 2.11. These spectra do not show a peak near the inertial/semi-diurnal frequencies. 

Power-law fits in the frequency band between 3 and 40 cpd result in exponents of -1.4 ± 

0.21 for 100 - 200 m, -1.5 ± 0.23 for 200 - 400 m, and -1.1 ± 0.27 for 400 - 500 m. These 

results are similar to what was found in the Philippine Sea and New Jersey shelf 

experiments (Colosi et al. 2012; Colosi et al. 2013), including the decrease in spectral 

energy with depth, but in these mid-latitude cases the spectral slopes were larger. The 
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relative similarity of the spice spectral slopes to the internal wave slopes is an indication 

that internal wave currents are a source of spice advection. The higher slopes in the 

shallower depth band indicate front-like features, which have a slope of -2 (Ferrari and 

Rudnick 2000), and the spectra flatten with depth to be more noise-like, though these 

deep variations are likely at the threshold of our measuring ability, especially with the 

non-pumped instruments. 

 

The three depth bands are 100–200 m (red), 200–400 m (blue), and 400–500 m (green). 
Power law fits to the spectra in the frequency range of 3 to 40 cpd are shown (dash). The 
Coriolis frequency, f, and a typical buoyancy frequency, N, are indicated for reference. 
Analysis methods used to produce these figures are adapted from Colosi et al. (2013, 
2014). 

Figure 2.11. Frequency Spectra of Sound Speed Fluctuations along Isopycnals 
(Spice) Averaged Over Three Depth Bands. 
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D. VERTICAL SCALES OF VARIABILITY  

The vertical spatial variability of internal waves and spice is now addressed. For 

internal waves both correlation functions and WKB stretched vertical wave number 

spectra are presented. For spice there is no method for handling the depth non-

stationarity, and so only correlation functions are analyzed. 

1. Internal Waves   

Figure 2.12 shows the internal-wave displacement depth-covariance matrix 

normalized by the individual variances at each depth, as well as the depth-averaged 

correlation function. To remove depth non-stationarity, the displacement observations are 

WKB stretched and normalized using a reference buoyancy frequency of 3 cph and a 

reference displacement of m (see Figure 2.9). Displacement correlation 

decreases rapidly with depth lag, with a typical scale of tens of meters, indicating that the 

vertical mode structure of the internal wave field is rich in high modes. The slight 

increase in correlation lengths near 250 m indicates that the halocline just above the AW 

is perturbed without significantly changing shape; i.e., the halocline as a whole is lifted or 

depressed. 

The GM spectrum is of the form where is the modal bandwidth 

parameter, typically 3 for mid-latitude deep ocean conditions (Munk 1981). The vertical 

wavenumber spectrum can be computed directly from the WKB scaled displacements 

(Figure 2.13). The spectrum shows some deviations from the GM form with a modal 

bandwidth factor, j*, close to 6 but with a steeper slope.  
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Figure 2.12. Normalized Covariance Matrix for the Internal Wave 
Displacements (Top), and  Depth-Averaged Correlation Function as a 

Function of WKB Depth Lag (Bottom). 
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WKB stretched displacement vertical wavenumber spectrum, and the GM spectrum with 

. 

Figure 2.13.  Vertical Wavenumber Spectrum.  

2. Spice 

The covariance analysis discussed in the previous paragraph is applied to the 

spicy sound speed structure, but no WKB depth scaling is applied. The normalized spice 

covariance matrix and average correlation function are shown in Figure 2.14. Spice is 

seen to decorrelate in depth somewhat more rapidly than the internal waves, a result of 

the common front-like structure of spice (Ferrari and Rudnick 2000; Dzieciuch et al. 

2004). The larger correlation lengths seen at the deeper depths are likely not significant 

because spice is so weak in these areas. 
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Figure 2.14.  Normalized Covariance Matrix for Spicy Sound Speed Fluctuations 
(Top), and Average Correlation Function as a Function of Depth Lag (Bottom). 

E. SUMMARY AND CONCLUSIONS 

In this work the temporal and vertical scales of sound-speed fluctuations caused 

by internal waves and spicy thermohaline structure in the southern Beaufort Sea during 

the summer of 2015 have been quantified by tracking the vertical displacement of 

isopycnals and fluctuations of temperature and salinity along them. Large variations in 

temperature, especially in the upper 150 m, were observed that produce strong spicy 

isopycnal sound-speed anomalies. The spectral shapes of isopycnal displacements were 

flatter than predicted by GM theory, with power law slopes of -1.0 to -1.4. An internal 

wave reference displacement of 1.5 m was observed, which is roughly 20% of the GM 

level. Analysis of the vertical structure of internal waves showed a modal bandwidth 

parameter, j*, value of 6 to 10 as opposed to the typical value of 3 for mid-latitudes. Spicy 

sound speed variability is also low, but accounts for significant sound speed variations in 
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the upper 200 m. A noteworthy feature of the vertical structure of spice is that spice 

features appear to be strongest near the surface and slump downwards in time (Figure 

2.7). In the marginal ice zone, these spice features could be generated locally at the 

surface by episodic wind forcing events, or they may be advected from upstream, neither 

of which can be determined from this data set.   

Although horizontal sampling by ship-borne CTDs was limited, a sound-speed 

minimum consistently appears in the PWW layer. Therefore, it is likely that some 

acoustic energy could become trapped in this sub-surface sound channel and suffer less 

attenuation due to surface scattering and absorption by sea ice. However, strong 

differences are found in the thermohaline and sound-speed structures between CTDs 

spaced less than 100 km apart, and significant temporal variability was observed in this 

depth range. These strong variations in vertical and horizontal sound-speed structure will 

have significant impacts on acoustic applications, especially in the realm of 

communications and sensor performance predictions. The results of this oceanographic 

analysis will be used to analyze and understand the acoustic data collected during the 

same experiment.  
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III. EVALUATION AND SENSITIVITY OF CLIMATE MODEL 
SKILL AT REPRESENTING UPPER ARCTIC OCEAN 

HYDROGRAPHY 

This chapter was submitted to the Journal of Climate for publication. Except for the 
figure numbering, the formatting has been retained as submitted. As the main author of 
the work, I made the major contributions to the research and writing. Co-authors include 
W. Maslowski1, R. Osinski2, A. Roberts1, and J. Clement Kinney1.  

 
INTRODUCTION 

Arctic sea ice has undergone significant change in recent years. Since 1979 

through 2016 the September minimum ice extent has decreased by about 13.3% per 

decade and reached a record minimum of 3.41 million square kilometers in 2012, almost 

half of the 1979–2000 average (National Snow and Ice Data Center 2016). Winter sea ice 

thickness decreased by 1.75 m between 1980 and 2008 (Kwok and Rothrock 2009), and 

satellite-derived sea ice volume decreased at a rate of around a thousand cubic kilometers 

per year from 1996 to 2008 (Kwok and Cunningham 2008). Model based estimates of sea 

ice volume have decreased at a rate of around three thousand cubic kilometers per decade 

since 1979, with a much steeper decline of over eleven thousand cubic kilometers per 

decade from the mid-1990s (Schweiger et al. 2011, Maslowski et al. 2012). Atmospheric 

heating may account for less than 50% of the sea ice loss (Francis et al. 2005, Deser and 

Teng 2008, Tseng 2010). Therefore, the role of oceanic forcing in the recent sea ice 

decline may be significant, especially since ocean heat content has significantly risen 

globally since 1979 (Intergovernmental Panel on Climate Change (IPCC) 2013).   

The upper Arctic Ocean is characterized by strong vertical gradients of 

temperature and salinity. This leads to highly stratified layers and a complex vertical 

thermohaline structure. Surface waters in the central Arctic Ocean are quite fresh 

compared to those at lower latitudes, and their properties undergo strong seasonal 
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variability under the influence of sea-ice growth and melt, river run-off, solar and 

longwave radiation (clouds), and seasonally varying atmospheric and oceanic advection 

(Rudels et al. 1996). At intermediate depth lies the Atlantic Water (AW), which can be 

found throughout the central Arctic basin with temperatures above 0oC and salinities 

above 34.5 psu (Steele et al. 1998, Rudels et al. 2004, Rudels 2012). In the Eurasian 

Basin, the AW is separated from the surface waters by a strong halocline and 

thermocline. In the central Canada Basin, however, intruding Pacific waters fill the 

depths between the surface waters and the AW. Figure 3.1 (from Jackson et al. 2010) 

displays the hydrography of the Canada Basin. There are two major layers of Pacific 

water in the Canada Basin which Coachman and Barnes (1961) named Pacific summer 

water (PSW) and Pacific winter water (PWW). PSW is characterized as having a 

temperature maximum greater than -1.0oC with salinities of 31–33 psu (Shimada et al. 

2001, Steele et al. 2004). Timmermans et al. (2014) have shown that the PSW has 

increased in heat content and freshwater content in recent years, with potential impacts to 

stratification and vertical heat fluxes. Below PSW is the PWW that is generally found 

below 150 m and can be identified by a temperature minimum and salinities greater than 

33 psu (Coachman and Barnes 1961). PWW is believed to originate from ice formation 

on the Chukchi Shelf, especially leads and polynyas common in the region during winter 

months (Pisareva et al. 2015).  Although this water mass seems to be fairly consistent in 

its properties, Steele et al. (1998) found that its lateral extent may be variable in time. The 

cumulative effect of these layered water masses is a highly stratified upper ocean, with 

strong density gradients and high Brunt-Väisällä frequencies, especially at the transitions 

between water masses. Changes in these water masses on time scales from seasonal to 

multi-decadal period are of fundamental interest to a broad spectrum of arctic and climate 

scientists. 
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“Note the depth axis is log scale. In summer, there are up to three temperature maximums 
(the near-surface temperature maximum (NSTM), Pacific Summer Water (PSW), and 
Atlantic water), two temperature minimums (the remnant of the previous winter’s surface 
mixed layer and Pacific Winter Water (PWW)), and three haloclines (the summer 
halocline, the winter halocline, and the lower halocline). The strongest stratification is 
associated with the NSTM. Profiles are from a station located at 75oN, 150oW, occupied 
on 29 August 2006.” (Source: Jackson et al. 2010) 

 

Figure 3.1. Water Mass Structure of the Canada Basin as Characterized by (a) 
Temperature, (b) Salinity, and (c) Brunt-Väisälä Frequency Profiles. Source: 

Jackson et al. 2010) 

In order to explore the changes in hydrography and the potential role of ocean 

heat content in the decline of sea ice and to make reasonable projections of future climate 

states, climate models must adequately represent ocean hydrography. As pointed out by 

Holloway et al. (2007), there is a deficiency in many Arctic regional models that tend to 

produce continuously stratified upper layers rather than the more complex hydrography 

observed. Several advancements have been made in regional modeling since then, 

including the implementation of subgrid-scale brine rejection parameterization (Nguyen 
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et al. 2009, Jin et al. 2012), improved representation of sea-ice physics (Roberts et al. 

2016), and increased horizontal resolution (Maslowski et al. 2012). The goal of this study 

is to objectively compare the skill of both global and regional climate models and to 

identify the model developments that lead to improved representation of upper ocean 

thermohaline structure in the central Canada Basin.   

B. MODEL DESCRIPTIONS 

1. Climate Models 

Four Earth-system and global climate models (ESMs and GCMs, hereafter simply 

CMs), and one regional climate model, the Regional Arctic System Model (RASM), have 

been selected for inter-comparison and evaluation with observations. These models are 

the NCAR Community Earth System Model – Large Ensemble2 (CESM-LE; Kay et al. 

2015), the NOAA Geophysical Fluid Dynamics Laboratory Climate Model version 3 

(GFDL-CM3; Griffies et al. 2011), the Met Office Hadley Centre Global Environmental 

Model version 2 – Carbon Cycle (HadGEM2-CC; Bellouin et al. 2011), and the Max 

Plank Institute for Meteorology Earth System Model – medium resolution (MPI-ESM-

MR; Jungclaus et al. 2006). GFDL-CM3, HadGEM2-CC, and MPI-CC were chosen 

because they were included as part of the Coupled Model Intercomparison Project Phase 

5 (CMIP5; Taylor et al. 2012) and were identified by Massonnet et al. (2012) as the 

CMIP5 models with the most reasonable sea ice extent. Although CESM-LE was not 

included in CMIP5 or the Massonnet et al. (2012) analysis, a previous version, CESM 

version 1, was. There are no significant differences in the ocean and sea ice components 

of CESM version 1 and CESM-LE. A brief summary of the four climate models used in 

this paper is included in Table 3.1. Only results from the historical experiments are used 

in this analysis for the purpose of model evaluation. No output from those models beyond 

2005 (i.e., the end of historical simulations) are considered. 

                                                 
2 Ensemble member number one is used in this comparison.  A single ensemble member is preferred 

over the ensemble mean, as the mean would smooth out variability and structure. 
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Table 3.1. Earth System and Global Climate Models Compared in this Study. 

Model Name Institution  Main 
reference 

Atmosphere 
component name 

and resolution 

Ocean  
component name 

and resolution 

Sea Ice 
component name 

CESM-LE 
National Center for 

Atmospheric 
Research  

Kay et al. 
2015 

CAM5 
30 levels at ~1o 

POP2   
60 levels at ~1o CICE4 

GFDL-CM3 
NOAA Geophysical 

Fluid Dynamics 
Laboratory 

Griffies et al. 
2011 

Included   
48 levels at 200 km 

MOM4.1  
50 levels at 1o SIS 

HadGEM2-CC Met Office Hadley 
Center 

Martin et al. 
2011 

HadGAM2  
60 levels at ~1.6o 

Included    
40 levels at 1.875o Included 

MPI-ESM-MR 
Max Plank 

Institute for 
Meteorology 

Jungclaus et 
al. 2006 

ECHAM6   
 95 levels at 1.8o 

MPIOM  
40 levels at 1.5o Included 

 

2. Regional Arctic System Model Experiments 

The model experiments conducted with the Regional Arctic System Model 

(RASM) for this dissertation are similar to those conducted for my M.S. thesis in 2014. 

The following description of RASM is still valid to this dissertation: 

RASM is a limited-domain, fully coupled, high-resolution atmosphere, 
ocean, sea ice, and land model. The primary components are the Weather 
Research and Forecasting (WRF) model, Los Alamos National Laboratory 
(LANL) Parallel Ocean Program (POP) and Sea Ice Model (CICE), and 
the Variable Infiltration Capacity (VIC) land hydrography model. These 
four components are coupled using the Community Earth System Model 
(CESM [1.2]) coupler, CPL7. The domain of RASM includes the Arctic 
Ocean and surrounding marginal seas as well as the sub-Arctic North 
Pacific and North Atlantic. (DiMaggio 2014) 

Figure 3.2, panel a, illustrates the domain of RASM.   
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(a) The 1/12o coupled ice-ocean component is shaded by bathymetry, 50 km atmosphere 
and land components are outlined in red, and the extended ocean domain is outlined in 
magenta. The black line outlines the Arctic System defined as the area “north of the 
boreal mean decadal 10oC sea surface isotherm, the surface air 0oC contour that encircles 
the North Pole, and the southern limit of terrain that drains into the High Arctic” (Roberts 
et al. 2010).  (b) The area in which model and observational data are analyzed is outlined 
in green. 

Figure 3.2. RASM Domain (a) and Region of Study (b). 

For this study, several additional experiments were conducted using the RASM 

framework. A summary of these configurations is listed in Table 3.2. Again, the 

description of RASM components from my 2012 thesis are still valid. “[In most 

configurations,] POP is configured on a rotated spherical coordinate grid with horizontal 

resolution of 1/12o (~ 9 km), has 45 fixed-depth vertical layers, with 8 layers in the upper 

50 m, and it is fully coupled with CICE” (DiMaggio 2014). Two exceptions to this are 

GV-SB and GH-S. In case GV-SB, POP is configured with 60 vertical levels with 10 

levels in the upper 50 m and 20 levels in the upper 100 m; in GH-S case, POP is 

configured with a horizontal resolution of 1/48o (~2.4 km), still with 45 vertical layers. 

Case R uses the fully-coupled configuration as previously described; in all other cases the 

atmospheric and land hydrology components have been replaced by a data model that 

uses “realistic forcing from the Common Ocean Reference Experiment version two 

(CORE2) reanalysis from the National Center for Atmospheric Research (NCAR)” 

(DiMaggio 2014). This reduces computation time and allows for many more experiments 
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to be run. Each experiment differs only slightly from another, in order to isolate the 

effects of each change. The model configurations that are being experimented with are: 

sea-ice physics, vertical mixing, brine parameterization, numerical restoring to 

climatological temperature and salinity, and horizontal and vertical resolution. The reader 

is directed to Table 3.2 for a summary of each experiment configuration. For a more 

detailed discussion on RASM configurations, see Maslowski et al. (2012) and Roberts et 

al. (2016). 

Table 3.2. RASM Experiments Compared in This Study. 

Name Description Resolution Coupling Spin up Sea ice 
treatment 

Brine 
treatment 

R Fully-coupled 
baseline 

45 levels at 
1/12o  fully coupled 

T & S = PHC 
u & v = 0 

62 yr spin-up 
t0 = Jan 1948 

EAP, 
Cf=21.3 none 

G Atmospheric 
forcing from CORE2 “ ice-ocn forced with 

CORE2 “ “ none 

G-V EVP instead of EAP “ “ “ EVP, 
Cf=21.3 none 

G-S Ocean restoring 
during spin-up “ “ 

same but with 
 ocean 3-D 
restoring of  
T & S to PHC 

during spin-up 

EAP, 
Cf=21.3 none 

G-SB Brines after Jin et 
al. 2012 “ “ “ “ Jin et al. 

(2012) 

G-SB1 Increased ice 
strength (Cf) “ “ “ EAP, Cf=34 Jin et al. 

(2012) 

G-SB2 
Lower convective 

diffusivity and 
viscosity 

“ “ “ “ Jin et al. 
(2012) 

G-SBM Adjusted surface 
momentum fluxes “ 

0.5*ice-ocn stress  
0.75*atm-ice stress 
1.5*atm-ocn stress 

“ “ Jin et al. 
(2012) 

GV-SB 
Similar to G-SB with 

higher vertical 
resolution 

60 levels at 
1/12o same as G-SB “ EAP, Cf=22 Jin et al. 

(2012) 

GH-S 
Similar to G-S with 
higher horizontal 

resolution 

45 levels at 
1/48o same as G-S “ EAP, Cf=22 none 

 

3. Observational Data for Comparison: PHC and ITP 

To evaluate model performance, two observational data sets are used. The Polar 

Science Center Hydrographic Climatology (PHC) is an oceanographic climatological 

data set that combines data from the World Ocean Atlas and the Arctic Ocean Atlas 
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(Steele et al. 2001). This data set includes monthly mean fields of temperature and 

salinity at 33 vertical levels, on a 10 × 10 lat/long grid. The PHC data were interpolated 

onto the RASM grid for the comparisons presented in this paper. Ice-tethered profilers 

(ITPs) have been collecting hydrological data in the Arctic since 2005 (Krishfield et al. 

2008) and provide a time-varying data set to which RASM hind-casts can be compared.   

4. Region of Study 

This study will focus on the central Canada Basin (CCB) in the western Arctic 

Ocean as highlighted in Figure 3.2b. This region contains the layered water masses that 

have undergone recent changes as described in Section A of this chapter, and has been 

frequently sampled by the ITP program. The ocean bottom is approximately 3500 meters 

in depth and is relatively flat. The ice pack in this region has experienced dramatic 

changes in recent years; summertime ice extent has dramatically decreased, and 

wintertime multi-year ice has been replaced by first-year ice (Galley et al. 2016).  

C. CLIMATE MODEL SKILL 

Under the framework of CMIP5, the historical experiments contain results up to 

the year 2005. Therefore, the time frame for comparing CMs to PHC is restricted to the 

years from 1980 (after the initiation of satellite observations of the Arctic) to 2005. 

Profiles of ocean temperature, salinity, density, and sound speed of the upper 700 m are 

compared. This depth range was chosen because it includes all of the waters of Pacific 

origin, the main thermocline and halocline between the PWW and AW, as well as most 

of the AW. This depth range also spans the operating depths of ice-tethered profiles, 

enabling their use in evaluating RASM (Section D). Selected bulk properties such as 

mixed layer depth, ocean heat content, and freshwater content are also compared later in 

this section. 

1. Profiles 

The twenty-six years of monthly-mean model outputs in this analysis are binned 

by month and area and averaged to create a mean annual cycle for the CCB region. The 

resulting profiles of potential temperature and salinity are plotted in Figure 3.3. In the 
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top-left panel, the 12 months of PHC potential temperature and salinity are plotted as a 

function of depth. There is some seasonal variability near the surface associated with the 

seasonal mixed layer, but the hydrography of PSW, PWW, and AW is constant. The 

RASM experiment shown in the second panel is the fully-coupled, 1/12o horizontal 

resolution “baseline” configuration R (Table 3.2). Throughout the water column, RASM 

has a cold bias in potential temperature as compared to PHC (dashed lines). The PSW 

temperature maximum shown in PHC is missing in RASM, though temperatures remain 

low down to 150 m. The thermocline above the AW is weaker than in PHC and begins at 

around 150 m, which is 75 m too shallow. The peak AW temperature in PHC is about 0.5 

oC at 550 m, while RASM’s AW temperature only reaches 0.1 oC by 700 m, and appears 

to have not reached a maximum. There is a high salinity bias in the upper 250 m in 

RASM. Surface salinities are roughly 1 psu higher than PHC, though the seasonal range 

of variations are similar. The winter halocline is located near the appropriate depth of 

around 75 m, but is weaker than PHC climatology. PWW salinity is 0.75 psu higher than 

climatology, and the lower halocline is also weaker. AW salinities are represented well. 

There are many potential causes of these discrepancies, and several will be discussed in 

Section D of this chapter. Overall, however, the baseline RASM configuration is not 

capturing the strong temperature and salinity gradients in the upper 300 m, and has a cold 

bias compared to PHC. It is worth to note here, that due to challenges in sampling the 

Arctic Ocean during the winter, PHC contains a higher proportion of summertime 

samples and therefore possibly possesses a warm and fresh bias in the upper ocean 

(Steele et al. 2001).   
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Each profile represents a single month from the mean annual cycle. The dashed black line 
is the total mean of all months from PHC, overlaid on each panel for comparison. 
Climatological depth ranges of PSW, PWW, and AW are indicated with vertical black 
bars. The shallowest depth represented in MPI is 12 m, and the shallowest depth in 
GFDL is 10 m. All other models have data starting at 5 m depth.  

Figure 3.3. Potential Temperature (Blue) and Salinity (Green) of the Upper 700 
m from PHC and Modeled by RASM, CESM, GFDL, HadGEM, and MPI. 

PSW 

PWW 

AW 
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The first ensemble member of the CESM-Large Ensemble is shown in the third 

panel, labeled CESM. The surface temperature, like in RASM, is slightly lower than in 

PHC, and the PSW temperature maximum is similarly missing. Below the mixed layer, 

temperatures immediately begin increasing continuously to a depth of 700 m, where the 

maximum temperature reaches approximately 0.5 oC. Although this maximum 

temperature value is similar to that of PHC, it is about 200 m too deep. CESM salinities 

are similar to those of RASM; they are too high from the surface to 300 m.   

Results from GFDL-CM3 are shown in the fourth panel of Figure 3.3 and are 

labeled GFDL. As with CESM, temperatures begin rising immediately below the mixed 

layer and rise continuously to 700 m. The temperature gradient throughout the column 

remains high all the way past 500 m. Although the GFDL temperatures are similar to 

PHC in the 250 to 450 m range, GFDL temperature has overshot PHC by almost a full 

degree in the AW. As with both of the previous models, the salinity of GFDL is too high 

near the surface. However, the vertical salinity gradient is constant below the mixed 

layer, resulting in a gradient that is too weak in above the AW and too large in the AW. 

The HadGEM2-CC model (fifth panel, Figure 3.3, labeled as HadGEM) has 

relatively better representation of temperatures and salinities at depth between 50 and 

100m. However, it, too, is missing PSW and PWW temperature maxima and minima 

below the mixed layer, but it does recreate a strong vertical temperature gradient above 

the AW. Unfortunately, this thermocline is about 100 m too shallow, and the peak 

temperature is about 0.4 oC too cold and 225 m too shallow. A strong single salinity 

gradient exists, rather than the two distinct upper and lower haloclines associated with the 

top of the PSW and top of AW. AW salinities are similar to PHC below 400 m. 

The final climate model discussed here is the MPI-ESM-MR, labeled in Figure 

3.3 as MPI. As with all other models shown here, the temperature profile is missing the 

structure associated with the Pacific waters. The AW temperature, however, is much 

higher than PHC or any other model. Surface salinities are also too high in MPI, and the 

halocline is too weak. AW salinities are too low, but gradually reach those of PHC by 

700 m. 
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2. T-S Diagrams 

Plotting data as temperature-salinity (T-S) diagrams (Figure 3.4), offers another 

perspective in comparing models’ representation of water mass properties. In T-S space, 

it is easy to identify the major water masses on the panel labeled PHC: AW has high 

temperature and salinity, PWW has moderate salinity (~33 psu) and low temperature, 

PSW is slightly warmer than PWW and has a salinity around 32 psu, and the surface 

mixed layer properties vary seasonally near the freezing line and slightly warmer. RASM 

generally parallels PHC, but at cooler temperatures. The PSW peak is too small, and 

temperatures are near freezing above 125 m. CESM possesses a cold bias above 150 m 

and below freezing surface temperatures, but otherwise matches the shape of PHC. 

GFDL’s AW is too warm, and waters above 125 m are too cold and too salty. In 

HadGEM, both the AW and surface waters are slightly too cool, but the weak gradients 

of temperature and salinity result in a too-warm PWW. Additionally, the surface water 

temperatures drop below the freezing line, indicating unrealistic super-cooled surface 

waters. MPI, like GFDL, has a too-warm AW and too-cool surface waters, which are also 

sub-freezing. Sub-freezing temperatures may be produced as a consequence of their 

coupling to the sea ice component. For example, in some versions of CICE, melting ice 

adds water to the surface of the ocean at a fixed temperature of -1.8oC. This temperature 

corresponds to the freezing temperature of sea water at a salinity of 33 psu. For surface 

waters that are fresher than 33 psu, this parameterization of melt water injection can lead 

to super-cooled temperatures. RASM does not produce sub-freezing temperatures since it 

uses CICE5, which allows for melt water to be added to the ocean at a salinity-dependent 

freezing temperature.  
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Each colored circle represents a different model-level value and is colored according to 
depth. The mean PHC T-S curve is plotted as a dashed line, and the freezing temperature 
is plotted as a solid line on all panels for reference.   

 

Figure 3.4. Potential Temperature as a Function of Salinity of Water Mass 
Properties from PHC, RASM, and CMs. 

3. Bulk Property Time Series 

Errors in ocean temperature and salinity will have an effect on coupled processes 

like heat and momentum exchange between the atmosphere and ocean. To illustrate and 

quantify these effects, several bulk properties are derived from the profiles of temperature 

PWW 

AW 

PSW 

surface 
water 
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and salinity and plotted in Figure 3.5. The properties compared in this section are ocean 

heat content, freshwater content, maximum Brunt-Väisällä frequency (magnitude and 

depth), maximum temperature gradient (magnitude and depth), maximum salinity 

gradient (magnitude and depth), mixed layer depth, and halocline depth. Ocean heat 

content per area (HC) is computed as follows: 

   (3.1) 

where C is the heat capacity of water (4186 J/kgK), ρk is the density of the kth level of 

the model’s vertical grid, Tk is the temperature of that level, Tref is the reference 

temperature (chosen as the freezing temperature), dzk is the thickness of the model level 

k, and D is the deepest depth included in the sum. Plotted in the top row of Figure 3.5 are 

the mean annual cycles of HC integrated from the surface to three different depths. HC700 

includes heat from the surface to 700 m; this range includes surface waters, Pacific 

waters, the lower halocline, and the core of the AW. The mean annual cycle of HC700 in 

PHC is relatively constant at 4.5 x109 J/m2. The CESM, HadGEM, and GFDL models are 

all within 0.3 x109 J/m2 of PHC; RASM’s HC700 is 1.1 x109 J/m2 lower than PHC and 

MPI’s is 2.5 x109 J/m2 higher. Because the AW temperatures are so much higher than the 

other waters, the AW heat content dominates this calculation. Raising the lower depth 

limit to 300 m excludes the core AW, but retains the lower thermocline. HC300 in PHC 

ranges from 1.02 x109 J/m2 in late winter to 1.10 x109 J/m2 in late summer. GFDL 

recreates the closest HC300 to PHC at approximately 0.93 x109 J/m2. CESM and RASM 

both have too little heat content in this depth range and HadGEM and MPI have too 

much. We go even further and eliminate the thermocline by limiting the lower depth to 

150 m. The heat in this depth range includes surface mixed layer heat, the near-surface 

temperature maximum, and PSW. In PHC, HC150 ranges from 0.20 to 0.28 x109 J/m2 

seasonally, and all models, except for HadGEM, under represent this heat. This result is 

expected, considering none of the models adequately represented the PSW temperature 

maximum (Figure 3.3). The heat content in the upper 150 m of HadGEM is similar to that 

of PHC, but it can clearly be seen in Figure 3.3 that this result is a consequence of the 

much too shallow AW thermocline.   
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See text for descriptions of each panel 

Figure 3.5. Mean Annual Cycles of Fifteen Bulk Water Mass Properties from 
PHC and Modeled by RASM, and CMs. 
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Ocean freshwater content per area (FWC), measured as equivalent thickness of 

fresh water referenced to a chosen salinity, is computed as follows: 

   (3.2) 

where Sk is the salinity of the model level, and Sref is a reference salinity of 35 psu. The 

panels of the second row of Figure 3.3 show the mean annual cycles of FWC. The 

FWC700 of PHC shows a seasonal cycle of 19.8 to 21.2 m of FWC700, with more fresh 

water in the summer. All models except MPI have 2–4 m less FWC700 than PHC; MPI’s 

FWC700 is 3 m greater. Eliminating the core AW, MPI’s FWC300 is very close to that of 

PHC at 18 to 19.5 m. All other models have 1.5 to 4 m lower FWC300. When restricting 

the FWC calculation to just the upper 150 m, only HadGEM reproduces a similar result 

to PHC, all others have too little freshwater. 

The upper Arctic Ocean exhibits strong stratification. One way to quantify this 

stratification is by computing the Brunt-Väisällä frequency: 

  . (3.3) 

 By computing the maximum Brunt-Väisällä frequency (Nmax), the strength of 

stratification can be compared across models. The panel labeled Nmax in Figure 3.5 shows 

the mean annual cycles of Nmax. A weak seasonal cycle exists in the Nmax of PHC; all 

models show a similar seasonal cycle, though models show a greater variance. Similarly, 

the depth of the maximum stratification (Figure 3.5, panel labeled z(Nmax)) varies only 

between 50 m and 72.6 m in PHC, but the seasonal variations are much stronger in all 

models. The seasonal cycle of the maximum salinity gradient (dS/dzmax) is well correlated 

with Nmax, an expected result since density (and therefore density gradient) is strongly 

dependent on salinity in the Arctic. The depth of the maximum salinity gradient (z(dS/

dz)max) is similar to z(Nmax) in all models; the maximum salinity and density gradients are 

shallow in the summer and deeper in winter.   

The models have a wider spread in representing the temperature gradient. The 

maximum temperature gradient (dT/dzmax) in PHC varies seasonally from 0.017 oC/m in 

winter to 0.015 oC/m in summer, and the depth of the maximum temperature gradient 



 67 

(z(dT/dz)max) varies slightly around 206 m, which represents the depth of the AW 

thermocline. Only HadGEM and MPI reproduce a similar dT/dzmax, although the 

thermocline depths in those models are on average 77 m shallower. RASM places z(dT/

dz)max slightly deeper than PHC, while other models place it too shallow. In all of the 

analyzed data sets, there is a second slightly weaker peak in temperature gradient 

associated with the bottom of the winter mixed layer (not shown) that varies in depth and 

strength seasonally. In two of the models, MPI and CESM, the mixed layer thermocline 

becomes stronger than the AW thermocline in October and November, causing z(dT/

dz)max to decrease dramatically. 

The MLD is an important diagnostic for evaluating a coupled model. Here, the 

MLD is defined as the depth at which ρ is at least 0.25 kg/m3 greater than that of the 

shallowest level. This density change threshold method is similar to that used by 

Timmermans et al. (2012). Plotted in the first panel of the bottom row of Figure 3.5 is the 

mean annual cycle of the MLD. All models produce an MLD seasonal cycle that is well 

correlated with that found in PHC, but winter MLD’s are overestimated in all models by 

10 to 25 m. During summer months, most models produce an MLD closer to that of PHC. 

Because PHC contains a higher proportion of summertime samples, it is reasonable to 

expect that the wintertime MLD’s in PHC are underrepresented (Steele et al. 2001). The 

MLD depths are well correlated with the depths of maximum salinity and density 

gradients, z(dS/dz)max, and z(Nmax), suggesting that they are all tracking the same feature. 

However, the MLD remains shallower than 70 m in all models, while the z(dS/dz)max and 

z(Nmax) both deepen to over 100 m in some models. In PHC, the z(dS/dz)max and z(Nmax) 

are correlated to the MLD, but are both deeper than the MLD.   

The lower halocline, sometimes referred to as the cold halocline, is the strong 

salinity and temperature gradients that separate the warm and salty AW from the colder 

and fresher PWW. There have been few methods proposed for quantifying the halocline 

depth (Bourgain and Gascard 2011; DiMaggio 2014), and any definition would depend 

on what phenomenon or quantity was being studied. Here we define the halocline depth 

(HD) in two ways. The first, HDS, is the depth of the maximum salinity gradient below 

the MLD. In PHC, the HDS remains between 213 and 222 m throughout the year (Figure 
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3.5, panel labeled HDS). The HDS produced in all models is shallower than that in PHC. 

The halocline depths that result from this definition are generally around the same depths 

as the strong thermocline above the AW. If one were to compute ocean heat content 

above this depth, the thermocline would contribute a significant amount of heat. 

Therefore, a second way to define the halocline depth (HDT) is proposed as the depth of 

the minimum temperature gradient above the AW, which should correspond to the depth 

of the PWW temperature minimum. Below the HDT, temperature increases towards the 

AW temperature maximum. Ocean heat content above the HDT consists of heat content 

of only Pacific and surface waters, which have the greatest potential of affecting sea ice 

and the surface heat budget. All of the models analyzed have a HDT that is shallower than 

that of PHC, though the HDT in RASM is closest to that in PHC. 

4. Taylor Diagrams and Skill Scores 

As a way to compare model performance, Taylor Diagrams (Taylor 2001) are a 

useful tool, which display multiple sets of statistics on a single plot. The statistics 

computed are the standard deviation of a set of model results and the correlation between 

the model results and reference data, often an observational data set. The Taylor Diagram 

plots a model’s standard deviation along the radius and the correlation coefficient as an 

angle on a polar plot. As a consequence of their geometric relationships, the centered root 

mean square (RMS) deviations increase with distance from the reference value. 

Additionally, Taylor (2001) proposed an objective method for comparing model 

performance with a skill score. The Taylor Skill Score considers a model’s ability to 

reproduce the variance of an observable quantity as well as the correlation between the 

modeled and a reference data set. That reference data set could be derived from 

observations or another model. For a given quantity, the skill can be determined by 

   (3.4) 

   

where  is the ratio of the standard deviation of model results to the standard deviation 

of the reference data (i.e.  where m and o subscripts refer to the model and 

observational data, respectively.)  R is the correlation between the model results and the 
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reference data, R0 is the maximum correlation attainable (e.g., due to observational 

uncertainty), and n is a weighting factor. As modeled variance approaches observed 

variance, and as R approaches R0, skill approaches 1. Skill decreases to zero as 

correlation becomes more negative or as variance decreases to zero or increases to 

infinity. Because this score accounts for both variance and correlation, models are 

penalized for too strong or too weak values and if the local maxima are at the wrong time 

or location. The choice of n may strongly affect the skill score. Taylor (2001) showed 

that setting n = 1 results in a score that allows for very low correlations without strong 

skill score penalties. Taylor (2001) also considers setting n = 4, which increases the 

penalties for low correlation, but perhaps by too much. Examples of Taylor Diagrams 

with overlaid contours of Taylor Skill Scores are reproduced from Taylor (2001) in 

Figure 3.6. 
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Left panel: Overlaid skill scores use the weighting factor n = 1. A hypothetical model 
(indicated with a red dot) with the same standard deviation as observations could still 
have a skill score of 0.5 despite having zero correlation. Conversely, a different model 
(indicated with a blue dot) could have the same skill score despite having a correlation 
greater than 0.95. 

Right panel: Overlaid skill scores use the weighting factor n = 4. A hypothetical model 
(indicated with a red dot) with relatively high correlation of 0.7 and the same standard 
deviation as observations would only have a skill score of 0.5. Meanwhile, a model with 
a significantly lower standard deviation earns the same skill because of its high 
correlation. 

Figure 3.6  Example Taylor Diagrams with Overlaid Contours of Taylor Skill 
Score. Adapted from Taylor 2001. 

For the analysis of the CMIP climate models, we use PHC climatology as our 

reference data set. Because all models are being compared to the same data set, the 

choice of Ro may be chosen arbitrarily to 1 without qualitatively changing the results. We 

chose the skill weighting factor n = 2, which balances the contributions of error produced 

by poor variance and correlation; i.e.  

   (3.5) 

The computation of the standard deviations and correlations are done using the common 

methods: 

   (3.6) 
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       (3.7) 

where xi and yi represent members of a data set that varies in time only (i.e., xi(t)), or both 

depth and time (i.e., xi(z,t)); and represent the means of those data sets, and N is the 

size of that data set. In this way, we are computing spatio-temporal pattern statistics and 

skill scores. We may evaluate model performance across any interval of z or t; in the case 

of climate models, we are comparing seasonal variability against the twelve-month 

climatology and are choosing three depth intervals: m, m, 

m for the depth-varying data sets. For example, Figure 3.7 shows the mean 

January temperature profile from RASM and PHC as a function of model level in the left 

panel, and the twelve-month seasonal cycle in the right panel.  
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The left panel shows data from January; the right panel shows data from all months. The 
lower depth of RASM model level 21 is 700 m. 

Figure 3.7. RASM and PHC Temperature as a Function of Model Level.   

Figure 3.8 shows a pair of Taylor Diagrams (Taylor 2001) comparing upper 300 

m potential temperature and salinity from the models to PHC. In both temperature and 

salinity, RASM’s statistics are the closest to those of PHC. For temperature, HadGEM 

has the lowest correlation, and the highest standard deviation of 2.76 times that of PHC. 

All models have high correlation in salinity. HadGEM has a higher standard deviation 

than PHC, and all other models have a lower standard deviation. RASM and HadGEM 

both score near 0.9 in upper 300 m salinity; only RASM scores near 0.9 in upper 300 m 

temperature. 
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Normalized standard deviation is plotted as a function of correlation coefficient on a 
polar plot. Skill scores are contoured as grey dashed lines. 

 

Figure 3.8 Taylor Diagrams of Upper 300 m Ocean Potential Temperature (a.) 
and Salinity (b.) from RASM and Four Climate Models. 

Taylor Diagrams could be produced for any number of observables, but a more 

efficient way of comparing model skill is to simply compute Taylor skill scores (using 

Equation 3.5) for the chosen observables and display them along with their relative biases 

in Figure 3.9. Biases are computed as the difference between the means of the model and 

PHC. Similar information can be obtained by analyzing the time series of Figure 3.5 and 

profiles of Figure 3.3, but this method allows for a much simpler, quantitative and 

objective comparison. Each row of Figure 3.9 displays the skills scores for an individual 

model; each column represents a different observable. The first columns rows show skills 

for the important near-surface bulk parameters of MLD, HC, and FWC. All models score 

well at representing the mean annual cycle of MLD, although they all overestimate its 

depth and have a positive bias. MPI and RASM have the highest skills with relatively low 

biases. Large negative biases (greater than twice the standard deviation) exist in all 

models except for HadGEM at representing both upper 150 m heat content (HC150) and 

fresh water content (FWC150). HadGEM reproduces HC150 and FWC150 with smaller 

positive biases but its score for HC150 second lowest after MPI. CESM scores the highest 
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for HC150, but the lowest for FWC150. MPI scores the highest for FWC150, but the lowest 

for HC150.   

 
Each column is a different observable (see text for descriptions). Scores are displayed in 
rows of models and columns of observables. The color of each block represents the skill 
score where 1 is best skill and 0 is worst. The size of the triangle indicates the bias of the 
model; smaller triangles represent smaller biases, and a triangle that fills its box 
represents a bias that is more than two standard deviations away from the mean of the 
observed quantity. An upward (downward) pointing triangle indicates a positive 
(negative) bias. 

Figure 3.9 Taylor Skill Scores for RASM and CMs Evaluated Against PHC.   

These first three sets of scores evaluate a model’s ability to reproduce a one-

dimensional mean annual cycle of a bulk value. The remaining scores evaluate profiles 

varying in time, and are computed using the pattern skill described above. To score well, 

a model must reproduce the shape of the profile and it’s temporal variance. The first three 

sets of profiles compared are potential temperature from the surface to 700 m (T700), 

surface to 300 m (T300), and surface to 150 m (T150). All models score well for T700 and 

have small biases. As discussed above, the AW properties dominate this depth range, so 

one can infer that models perform well at representing the AW. Model performance for 

T300, which excludes the core AW, is reduced in all models, although HadGEM and MPI 

have the largest decreases in skill. All models score poorly at representing T150, and all 

models except for HadGEM have a very large temperature bias. All models score fairly 

well at representing all three depth-ranges of salinity (S700, S300, and S150), though 

GFDL’s scores are modest. RASM has the highest skill score, and HadGEM produces the 

smallest biases. Most models have a too-salty bias in S150. Because density is strongly 
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dependent on salinity, the density skill scores (ρ700, ρ 300, and ρ 150) mirror the salinity skill 

scores.   

Although these models are not necessarily designed for representing ocean-

acoustics processes, a simple diagnostic for the suitability of these models for use in 

acoustical studies is their ability to represent sound speed. Sound speed, C, is computed 

by using the UNESCO 1983 polynomial (Fofonoff and Millard 1983), and depends on 

salinity, temperature, and pressure. All models score very well for representing C700 and 

skills are reduced only slightly for C300 and again for C150. CESM scores the highest for 

all three ranges of C. The mean acoustic fields are fairly well reproduced in these models. 

However, acoustic propagation depends strongly on small-scale perturbations in C; the 

suitability of these models for modeling these small-scale perturbations is beyond the 

scope of this subject. 

The nine remaining skill scores are also for vertical profiles, but represent vertical 

gradients and scores are categorically lower. In all three depth-ranges, models have 

moderate scores in representing Brunt-Väisällä frequency as a function of depth (N700, 

N300, N150). As with so many of the other observables, skill for N is reduced as the depth 

range narrows. RASM and CESM have the highest scores and smallest biases in all depth 

ranges. All models score poorly at representing the temperature gradients (dT/dZ700, dT/

dZ300, and dT/dZ150). These poor scores capture the essence of the previous discussion; 

models are unable to represent the temperature extremes of PSW and PWW. RASM 

scores the highest in the deeper two ranges for dT/dZ, and HadGEM scores the highest in 

the upper 150 m. Models score slightly better at representing salinity gradients (dS/dZ700, 

dS/dZ300, and dS/dZ150), though improvements are still warranted. 

D. SENSITIVITY EXPERIMENTS WITH RASM 

In the previous section, four global climate models (CESM, GFDL, HadGEM, 

and MPI) were evaluated along with RASM against climatology. In this section, results 

from several experiments using the RASM framework are analyzed in order to identify 

the configurations, parameterizations, and processes that can improve model 

representation of Arctic hydrography and lead to the smallest errors and highest skill 
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scores. In addition to comparing long-term means to climatology as was done in the 

previous section, model data will also be compared to ITP observations for a time series 

of 47 months from August 2005 through June 2009. This time period includes the highest 

quality ITP data available and the most results available from RASM runs. This time 

period also includes the extreme sea-ice minimum of September 2007, and represents a 

state of the upper Arctic Ocean that is significantly different from climatology (see e.g., 

Proshutinsky et al. 2009, Steele et al. 2010, Jackson et al. 2011, and Timmermans et al. 

2014).   

1. Profiles 

Figure 3.10 provides a side-by-side comparison of temperature and salinity in the 

upper 700 m of the Central Canada Basin as measured by ITPs, recorded in PHC, and 

simulated by several RASM experiments. To avoid clutter, not all RASM experiments 

are plotted in Figure 3.10. The first panel shows ITP data. For each month between 

August 2005 and June 2009, a mean profile was computed for all data available within 

the bounds depicted in Figure 3.2. The ITP record shows strong variability in the upper 

150 m, with surface temperatures varying between -1.6 oC and -0.4 oC and PSW 

temperatures varying between -1.3 oC and 0 oC. The PWW temperature remains very 

near -1.4 oC, and there is some variability of approximately +/- 0.25 oC in the thermocline 

and upper AW temperatures. Salinity variation is strongest near the surface, varying 

between 24 and 30 psu, but the range of variability decreases to about +/- 0.5 psu in the 

PSW and PWW; there is almost zero variation in the AW salinity. The salinity profiles 

show two distinct haloclines: the upper halocline is at the base of the mixed layer which 

varies seasonally, and the permanent lower halocline separates the PWW from the AW 

(Jackson et al. 2010). 
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Each profile represents a single month during the period between August 2005 and June 
2009. The grand mean of ITP data is plotted as dashed black lines, and PHC is plotted as 
circles. 

Figure 3.10 Monthly Regional Mean Profiles of Potential Temperature (Blue) 
and Salinity (Green) from ITP Observations, PHC Climatology, and Seven RASM 

Experiments.   

In the second panel, the twelve months of PHC data are plotted against the grand 

mean of ITP data; significant differences are readily apparent. It is beyond the scope of 

this paper to completely diagnose the sources of error between PHC and this period of 

ITP data, yet we must acknowledge the differences and their implications for models that 
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rely on climatology for initialization or restoration. The mean temperature of PHC 

(plotted as circles) at the surface is very near the same value of ITP data, but the variance 

is much lower in PHC. Surface temperatures in PHC vary between -1.7 and -1.2 oC. The 

PSW is nearly unchanging in PHC. The maximum temperature of PSW in PHC is 

approximately 0.3 oC colder and 25 m deeper than in ITPs. PWW temperatures are 

similar, but PHC AW is as much as 0.6 oC colder than in ITP. Surface salinity in PHC is 

nearly 3 psu higher than in ITPs and also shows much less variability. PHC does capture 

the two distinct haloclines, although both are much weaker in climatology. The lower 

halocline is also approximately 50 m deeper than observed.  

Several RASM sensitivity experiments have been run as part of this study; Figure 

3.10 compares seven of these experiments to climatology and observations. The values 

plotted here are computed by taking the mean of all model output profiles in the region 

that have sea ice thickness of at least 1.5 m. By removing the open water and thin ice 

areas, we can more directly compare model results to the observations made by ITPs, 

which are typically deployed in thicker ice and have not observed in open water 

conditions at that time period.   

a. Fully coupled baseline (R) 

The first experiment, case R, is the same one used for comparison with PHC data 

in the previous sections and it will be considered the baseline model to which one can 

compare further experiments. Case R uses the fully-coupled framework to exchange 

information between the ice, atmosphere, and ocean model components.  (See Table 3.2 

for RASM experiment summaries.)  While its surface temperatures and salinities in 

Figure 3.10 have the same mean as PHC, they experience greater variance, though not as 

much variance as observed by ITPs. The surface salinities, like PHC, are on average 3 

psu higher than observed by ITPs during the 2005–2009 time period. The upper halocline 

varies in depth from less than 25 m to around 50 m on a seasonal time scale, and a lower 

halocline with similar depth and strength as observed by ITPs is present in this 

experiment. The temperature profiles in case R, however, do not capture the structure of 

either PHC or ITPs as its seasonally varying surface temperature transitions to a constant 
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cold layer between 50 and 150 m. This water mass closely resembles PWW, but is too 

shallow and too fresh to truly represent PWW. No subsurface warm layer, i.e. PSW, is 

present. Additionally, the thermocline between Pacific and Atlantic waters is weaker than 

both climatology and ITP observations.   

b. Coupled vs. forced (R – G) 

The second experiment, case G, is identical in configuration as case R except the 

atmospheric and land hydrology components have been replaced by realistic atmospheric 

forcing from the CORE2 reanalysis. This case is much more computationally efficient, 

and determines the importance of atmospheric coupling on the representation of the upper 

ocean. Results from cases G and R are similar with only a few differences. Case G 

surface salinities are approximately 1 psu higher than case R, leading to a weaker upper 

halocline. Surface temperature variations are smaller in case G, but the lack of a 

subsurface temperature maximum is still apparent. The differences in the ocean column 

between the coupled (R) and un-coupled (G) cases are small and restricted to the surface, 

indicating that the limitations of representing the Pacific waters are not due to the 

atmosphere model component. Additionally, because case G is more computationally 

efficient, it can be used to run a greater number of sensitivity experiments.  

c. Sea ice rheology (G – G-V) 

Case G-V is identical to case G with the exception of changing the sea ice 

rheology physics scheme. Case G uses the more sophisticated elastic anisotropic plastic 

(EAP) rheology, while case G-V uses an earlier elastic viscous plastic (EVP) rheology. A 

more thorough discussion of the implications for these sea ice rheologies is discussed in 

Roberts et al. (2016). The differences in cases G and G-V are quite small below the 

surface, which is why G-V results are not included in Figure 3.10. Salinities in case G-V 

are only slightly higher than both PHC and G, and surface temperatures are lower. Also, 

or possibly as a consequence of these surface differences, the sub-surface gradients are 

weaker, and the lower thermocline is deeper. Because the improvements to the ocean are 

slight, the EAP option is incorporated in all the remaining experiments. 
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d. Ocean restoring during model spin-up (G – G-S) 

Model spin-up may be partially to blame for the lack of a warm PWW. At the 

beginning of the initial spin-up, RASM is initialized with no sea ice at the surface, and 

allows ice to grow during model spin-up without any constraints on temperature or 

salinity. It is possible that the formation of realistic sea ice cover and the subsequent 

buoyancy input to the ocean model without any restoring to T/S climatology may 

produce a side effect persisting even after 100+ years of model integration (46-year spin-

up plus 58-year production). The result could be increased surface salinities and vertical 

mixing, which both act to reduce vertical gradients of temperature and salinity. To test 

this hypothesis, case G-S is run using a 46-year spin-up that incorporates 30-day 

restoration to climatology of both temperature and salinity at all depths. Other than this 

new spin-up, case G-S has the same configuration as case G. In the 2000s there is a slight 

elevation of surface salinity in case G-S over G, and the AW temperature maximum is 

also slightly higher in case G-S. However, the limited improvement indicates that some 

other processes are limiting the representation of PSW and PWW.   

e. Brine rejection parameterization (G-S – G-SB) 

As discussed by Ngyuen et al. (2009) and Jin et al. (2012), different subgrid scale 

brine-rejection parameterization schemes will have significant consequences to the ocean 

water column. RASM case G-SB utilizes the brine-rejection scheme as presented in Jin et 

al. (2012), which produces very similar results to the scheme of Ngyuen et al. (2009), and 

produces near-surface salinities that are similar to those in PHC, yet not quite as low as 

observed by ITPs. Temperatures in the 50–350 m range are much warmer than in the 

previous RASM experiments discussed so far. As discussed by Ngyuen et al. (2009), this 

parameterization prevents excessive deepening of the MLD, which would act to mix out 

the warm PSW layer. However, there remains a positive temperature gradient below 100 

m, albeit weaker than above 100 m, and this eliminates the previously cool layer found 

between 100 and 200 m. Ngyuen et al. (2009) also show that combining this brine 

rejection parameterization with a low background vertical diffusivity of  

works best for their model. RASM uses the same low background vertical diffusivity of 
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, yet gradients still weaken over time. It is possible that this parameter may 

yet be too large, and Ngyuen et al. (2009) did not see significant gradient weakening after 

only 15 years of model run as compared to RASM’s 104 years. 

f. Surface momentum fluxes (G-SB – G-SBM) 

Several further experiments were conducted exploring parameters affecting 

momentum exchanges between the air-ice, ice-ocean, and air-ocean interfaces. These 

experiments were originally designed to test the sensitivity of sea ice drift and ocean 

currents to adjustments in the surface momentum balance; but ocean hydrography was 

also found to be quite sensitive to these changes. 

 RASM experiment G-SBM represents the best result of this group with respect to 

representing the thermohaline structure of the upper 700 m. In this experiment, sea ice 

strength has been increased, ice-ocean stress has been reduced by 50%, air-ice stress has 

been decreased by 25%, and the air-ocean stress has been increased 50%. These 

parameters are prescribed constants for the entire model domain, independent of the 

physical properties of sea ice such as ice thickness, roughness, or keel depths. By 

reducing ice-ocean and air-ice stresses we attempt to account for the changing ice 

properties, and by increasing air-ocean stress we account for a larger marginal ice zone. 

As a result, the upper 100 m temperatures and salinities are almost identical to the mean 

ITP values. Temperatures continue to increase in the PWW where they should decrease, 

though, but the AW temperature of this experiment is the closest to ITP observations. The 

positive temperature gradient between 100 and 200 m, and the continuous salinity 

gradient between the surface and 150 m (as opposed to distinct upper and lower 

haloclines) indicate that some process is yet missing from these experiments. Two likely 

candidates are lateral advection of Pacific waters from the Chukchi shelf, or simply 

limited vertical resolution of the model.   

g. Time evolution of hydrography 

Before discussing the RASM experiments with increased vertical and horizontal 

resolution, it is worth revisiting the model spin-up. Several new experiments are run in 
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order to see how certain configurations affect the evolution of the upper ocean’s 

hydrography. These new experiments are G-SB1, which uses a higher ice strength 

coefficient (Cf), and G-SB2, which reduces the convective diffusion and convective 

viscosity parameters from the default setting of 10000 in CESM-POP to 1000 originally 

set in POP. Figures 3.9a and 3.9b show the evolution of temperature and salinity at four 

times: immediately after model initialization (1948), five years later (1953), fifteen years 

later (1963), and in 2006 when ITP results are available. All experiments are initialized at 

January 1948 (Figures 3.11a and 3.11b, 1948–01) following the spin up as in case G-S 

with values similar to climatology, but by that August (1948-08) G-S and G-SB1 both 

show a low-temperature bias between 50 and 100 m. The isohaline layer between 25 and 

75 m (Figure 3.11b, 1948–08) indicates that excessive mixing has occurred in these two 

experiments. By January 1953, both G-S and G-SB1 show mixed layers of over 125 m, 

the result of which is the loss of all heat from the PSW. The other experiments (G-SB, G-

SB2, and G-SBM) retain a warm layer near 50 m and a halocline below 25 m. Why do 

some models suffer from excessive vertical mixing near the surface and others do not?  

First let’s take a look at G-S, which suffers from excessive mixing, and G-SB, which 

does not. The only difference between these two experiments is that G-SB uses the brine 

rejection parameterization of Jin et al. (2012) and G-S does not. When the brines created 

during sea ice formation are more realistically redistributed in the upper water column, 

surface mixing is limited to more realistic depths and the PSW temperature maximum is 

retained.   
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PHC climatology is in black, and the mean ITP profile for that month is in brown (2006 
only). The top row is January for each year and the bottom row is August for each year. 

Figure 3.11a. Evolution of Temperature Profile After Model Initialization for 
Several RASM Experiments. 
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Notation is the same as Figure 3.11a. 

Figure 3.11b. Evolution of Salinity Profile After Model Initialization for Several 
RASM Experiments. 

However, G-SB1, which includes the brine rejection parameterization, also 

suffers from excessive mixing. G-SB1 uses a higher ice strength coefficient (Cf). A 

consequence of higher ice strength could be an increased salt flux from the ice to the 

ocean; this is likely caused by greater thermodynamic growth of ice since mechanical 

growth (e.g., from rafting and ridging) is reduced by the higher ice strength. An 

additional consequence of higher ice strength is faster ice drift speeds. Because more 

energy is required to deform the ice, more energy remains for kinetic energy, and ice 

drifts faster. Increased ice drift speed, combined with increased salt flux from the ice, 

result in increased vertical mixing in G-SB1.  
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Another set of parameters that are explored here are the convective diffusivity and 

convective viscosity. These parameters set the numerical diffusivity and viscosity only 

when a model grid cell becomes dynamically unstable and it undergoes convective 

mixing. In the default version of POP, following the CESM setting, these two parameters 

are set to 10000. By reducing these values by a factor of 10, as is done in G-SB2, and 

which was originally set in POP, the vertical extent of mixing due to convection is 

reduced. This is evidenced by the fact that the mixed layer depths are much more realistic 

in G-SB2 and that the PSW temperature maximum is retained (Figures 3.9a and 3.9b).   

Some additional model limitations, e.g., under-representation of eddies, vertical 

resolution, etc., might accumulate over the multi-decadal integration time resulting in 

excessive smoothing of T and S profiles. As was discussed previously, the vertical 

gradients of temperature and salinity are gradually reduced as the model integrates in 

time. This can be seen in Figure 3.11a as experiments G-SB, G-SB2, and G-SBM all start 

with a PWW temperature minimum in 1948 and retain it through the next several years; 

however, by 2006 the PWW temperature minimum is gone. Further experimentation is 

required to identify which parameters are causing the vertical gradients to weaken over 

time. One possibility could be that, the horizontal flux of PWW from the Chukchi shelf 

and its spreading in the western Arctic is under-estimated due to insufficient model 

spatial resolution, hence the signature of PWW is continuously diminished over longer 

model integrations. Another factor could relate to insufficient vertical resolution, which is 

discussed next. 

h. Increased vertical resolution (G-SB – GV-SB) 

As Steele et al. (2011) point out, representation of the closely separated 

temperature maximum of PSW and temperature minimum of PWW may be limited due 

to vertical resolution in the model. Experiment GV-SB uses an expanded vertical grid 

that increases the number of levels from 45 to 60, with all of the additional levels 

between 20 and 200 m. Other than this increased vertical resolution, GV-SB is identical 

to experiment G-SB. Comparing these two panels on Figure 3.10, it can be seen that 

increased vertical resolution results in a slightly negative temperature gradient in the 
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PWW. Additionally, the temperature of the AW layer is more similar to PHC, although 

still lower than ITP observations. While these changes fall short of producing the exact 

profile found in nature, there is definitely an improvement here.  

i. Increase horizontal resolution to 1/48o (G-S – GH-S)  

These experiments have all focused on local processes affecting the vertical water 

column. However, none of those experiments has appropriately represented both the 

PSW temperature maximum and the PWW temperature minimum. The next step is to 

address lateral advection of water-mass properties. In order for Pacific waters to reach the 

central Canada Basin, they must cross from the Chukchi and Beaufort shelves into the 

deep basin. It has been shown that mesoscale eddies play a large role in this shelf-basin 

exchange (Pickart et al. 2005, Spall et al. 2008, Watanabe et al. 2009). The baseline 

RASM experiment, case R, is configured with a horizontal grid spacing of 1/12o, or about 

9 km in the central Arctic. At this resolution, smaller eddies (with a radius of O(10km)) 

are not resolved. A series of experiments currently performed and evaluated increases the 

horizontal resolution of RASM to 1/48o spacing, or about 2.4 km. This model set-up 

(here called GH-S) resolves eddies of radius less than 10 km (Maslowski et al. 2014), and 

is similar to experiment G-S. The thermohaline structure of GH-S is similar to G-S with 

two slight improvements: the top of the lower thermocline is deeper in GH-S at a more 

realistic depth of 200 m (as opposed to 150 m in G-S), and the cold temperature bias in 

the Atlantic water is reduced (Figure 3.10). With the 2.4 km configuration showing 

encouraging results and based on the guidance of this study, an experiment that 

incorporates higher horizontal resolution, higher vertical resolution, and a subgrid scale 

brine rejection parameterization is now under development. 

2. T-S Diagrams 

Here we discuss the performance of the RASM experiments by comparing their 

representation of temperature and salinity in T-S space (Figure 3.12). ITP data clearly 

show the unvarying AW with high salinity and temperature, the relatively consistent 

PWW with low temperature, and highly variable PSW and surface waters. The freezing 

temperature as a function of salinity is overlaid on these T-S diagrams, and it can be seen 
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that ITP data stays above this limit. PHC climatology shows the same basic structure of 

water masses, yet it does not capture the high variability and low near-surface salinities 

found in the ITP record. RASM experiments generally do not reproduce the same amount 

of variability as do the ITP data, but certain modifications do improve results beyond 

PHC. The water masses in are generally all too cold in the baseline case R, as well as in 

the G and G-S experiments. By incorporating the subgrid-scale brine rejection 

parameterization, as was done in case G-SB, a warmer and saltier water mass is retained 

in the depth range of PSW (50-150 m), though the PWW temperature minimum is not 

represented. Experiment G-SBM, which uses the adjusted surface momentum fluxes, 

very nearly recreates the surface, PSW, and AW layers, though still has a too-warm 

PWW. Experiment GV-SB results in a similar plot as G-SB, and GH-S results are similar 

to G-S. 
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Data is color coded by depth, the black dashed line is the mean of ITP data, and the black 
solid line is the freezing point. 

 

Figure 3.12. T-S Diagrams of the Upper 700 m as Found in ITP, PHC, and 
RASM Experiments. 

3. Bulk Property Time Series 

Figure 3.13 shows time series of fifteen bulk properties derived from temperature 

and salinity results of the RASM experiments compared to PHC and ITP observations 

between August 2005, and June 2009. The methods of computing these values are the 

same as described in Section C.3, but instead of mean annual cycles, these results are for 

all 47 months in the time period of interest. It should be noted that the number of ITP 

observations in each month varies; in general, there are more observations in winter 
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months. Neither the heat content (HC700, HC300, HC150), nor the fresh water content 

(FWC700, FWC300, FWC150) of the upper ocean is observed by ITPs to have strong 

seasonal variability; though a seasonal cycle is produced in climatology and RASM 

experiments. HC700 includes the bulk of AW, which dominates the magnitude; hence, we 

should not expect seasonality. We should not expect a strong seasonality to HC300, 

because the thermocline above the AW remains relatively constant. HC150 does show 

some seasonality, but inter-annual variability at that depth is as large as or larger than the 

seasonal changes. One would expect there to be strong seasonality to FWC, especially 

FWC150 given the freeze-melt cycle of sea ice. Since the top layer accounts for the bulk of 

the FWC magnitude, we would expect the seasonality to be present at all depth ranges. 

However, a seasonal cycle is not observed in ITP observations. This may be because the 

shallowest ITP observations are made around 5 – 7 m in depth. This is done to prevent 

the measuring device from colliding with the bottom of the sea ice. However, there may 

be a significant amount of fresh water that is not measured. 

RASM experiments G-SB and GV-SB reproduce heat content values nearest to 

those of ITPs, though experiment G-SB underestimates HC700. Experiment G-SBM 

overestimates heat content in all depth ranges, and all other RASM experiments greatly 

under estimate it. All experiments underestimate freshwater content at all depths. 
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Figure 3.13. Time Series of RASM Experiments Water Mass Properties 
Compared to ITP Observations Between August 2005 and June 2009.   
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The amplitudes of maximum vertical gradients (dS/dzmax and dT/dzmax) and 

Brunt-Väisällä frequency (Nmax) are all under predicted by RASM experiments, though 

RASM does a better job of recreating these peaks than climatology (Figure 3.13).   

The depth of maximum N, and the depth of maximum dS/dz, and the MLD are 

nearly identical in ITP observations, which should be no surprise since they are closely 

related. These values roughly follow a seasonal cycle between 15 and 35 m (Figure 3.13). 

Most RASM experiments show a greater variation with wintertime MLDs as deep as 65 

m. As was discussed in Section D.1.g, several experiments exhibit excessive surface 

mixing as the model evolves. Experiments G-SB and GV-SB produce MLDs that are the 

most similar to those of ITPs, as they did not suffer from excessive surface mixing. 

Experiment G-SBM underestimates the winter MLD, indicating that this model 

configuration may not have enough surface mixing. 

The depth of maximum dT/dz (z(dT/dzmax)) varies between 40 and 140 m in ITPs 

with no apparent seasonal cycle (Figure 3.13). The thermocline below the MLD and the 

thermocline below the PWW are similar in strength, so z(dT/dzmax) could identify either 

feature. PHC places z(dT/dzmax) at the depth of the lower thermocline; G-SB, G-SBM, 

and GV-SB place it at the depth of the MLD thermocline; the remaining experiments 

place it at different features at different times of year.  

The salinity gradient based halocline depth (HDS) stays near 175 m in ITP data, 

which is about 50 m shallower than in PHC (Figure 3.13). RASM experiments place the 

HDs between 100 and 160 m, with experiments R, G, and GV-SB producing the closest 

results to ITPs. The good representation of HDs in R and G is a consequence of the too-

deep MLDs in those experiments and not an indication of good overall model 

performance. The temperature gradient based halocline depth (HDT) is generally around 

180 m in ITP, which is nearly the same as in PHC. All RASM experiments place the HDT 

too shallow. This is a consequence of the too weak or missing PWW layer. 

4. Taylor Diagrams and Skill Scores 

Figure 3.14 displays Taylor Diagrams for T300 and S300 as represented by the seven 

discussed RASM experiments and PHC with statistics computed against ITP data. The 
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upper 300 m temperature representation in RASM experiments R, G, G-S, and GH-S all 

have a normalized standard deviation of between 0.5 and 0.7, indicating they represent 

about half as much of the variation of temperature in the vertical as observed by ITPs 

(Figure 3.14, left panel). However, these models’ correlations are relatively high (greater 

than 0.9), indicating that the temperature extremes are near the correct depths. It is 

noteworthy that PHC has similar statistics as this group of experiments. The experiments 

that use the brine rejection parameterization, G-SB, G-SBM, and GV-SB, have standard 

deviations closer to that of ITPs, though their correlations are lower. These lower 

correlation scores are due to the lack of a PWW temperature minimum. The two RASM 

experiments with the highest skill score for upper 300 m temperature are GH-S and G-

SBM. 

 
Annotations are the same as in Figure 3.8. 

Figure 3.14. Taylor Diagrams For Upper Ocean Potential Temperature (a.) and 
Salinity (b.) of RASM Experiments Evaluated Against ITPs. 

The upper 300 m salinity representation in RASM experiments is tightly clumped 

along with PHC at a standard deviation of 0.5 and correlations between 0.9 and 0.95. The 

one exception is experiment G-SBM, which has a high correlation (0.98) and normalized 
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standard deviation of nearly 1.0. This experiment set up has by far the best representation 

of upper ocean salinity. 

Figure 3.15 presents the skill scores of each RASM experiment evaluated against 

the ITP record from August 2005 to June 2009 for the central Canada Basin region. For 

comparison, the PHC skill scores are also presented in Figure 3.15. The skills for the 

upper ocean properties of MLD, HC150, and FWC150 in all RASM experiments are poor, 

and biases are generally large. These same properties, however, are similarly represented 

poorly by PHC. Two experiments, however, G-SB and GV-SB, have smaller biases for 

MLD and HC150. The low scores for these upper ocean properties are a result of the poor 

representation of upper 150 m temperatures (T150); it is in this depth range that ITPs 

observe the largest variability. RASM scores are much higher for T300 and T700. The 

experiments using both brine rejection parameterization and ocean restoration during 

spin-up (G-SB, G-SBM, and GV-SB) all perform the best at representing T150. These 

three experiments also score high for representing upper ocean salinity (S700, S300, S150), 

though scores are slightly reduced for shallower depth ranges. Because density and sound 

speed both depend strongly on salinity in the Arctic, scores for ρ700, ρ300, ρ150, C700, C300, 

and C150 mirror those for salinity. As was found with the global climate models (Figure 

3.9), skill scores for the vertical gradients (dT/dz, dS/dz, and N) are all low, though 

experiments G-SB and G-SBM perform slightly better. Most RASM experiments, 

especially G-SB, G-SBM, and GV-SB, offer substantial improvements of upper ocean 

hydrography over PHC. 
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Notation is the same as Figure 3.9. 

 

Figure 3.15. Skill Scores for RASM Experiments and PHC Evaluated Against 
ITPs for August 2005 to June 2009. 

E. SUMMARY AND CONCLUSIONS  

Global climate models are important tools for exploring climate change, yet their 

representation of Arctic sea ice remains unsatisfactory. In this study, we used Taylor skill 

scores to quantitatively compare multiple model aspects simultaneously. Of the four 

global climate models that Massonnet et al. (2012) consider to best represent the rate of 

recent sea-ice decline, CESM, GFDL, HadGEM, and MPI, none reproduce the water 

mass structure observed in the central Canada Basin. These models represent the sub-

surface layer as a gradual thermocline and halocline down to warm and salty AW rather 

than recreating the warm PSW and cold PWW layers. The high-resolution regional 

model, RASM, performs somewhat better than the lower-resolution global climate 

models, but still under-represents the heat content of the PSW layer. Before any of these 

models can be used to explore the role of ocean heat content in the decline of sea ice, 

improvements must be made in their representation of the thermohaline structure of the 

upper ocean.   

Several experiments are conducted using the RASM framework in order to 

identify potential improvements. For a given horizontal and vertical resolution, several 
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factors were identified as improving the overall representation of PSW and PWW water 

mass properties. The inclusion of a sub-grid scale brine rejection parameterization such 

as used by Nguyen et al. (2009) and Jin et al. (2012) prevents excessive surface mixing 

which would penetrate into the PSW, removing that heat. Similarly, reducing the 

numerical diffusion and viscosity coefficients that govern convective mixing prevents the 

erosion of PSW heat. The parameters that determine coupling of horizontal momentum 

across the atmosphere-sea ice-ocean interface, as well as ice strength, are also identified 

as having a large effect on the vertical thermohaline structure.   

Finally, two experiments were performed which increase horizontal and vertical 

resolution. By increasing the number of model levels from 45 to 60, some improvement 

was made in the representation of upper 300 m temperature; and by increasing the 

horizontal resolution from 1/12th degree to 1/48th degree grid spacing also resulted in 

slight improvements, likely due to more realistic lateral eddy fluxes. Despite these 

improvements, vertical gradients of temperature and salinity remain too weak. Therefore, 

errors exist in the magnitude and location of the PSW and PWW temperature extremes. 

Further experimentation is needed and ongoing to improve the representation of upper 

ocean hydrography in order to better understand ocean heat and its role in climate-scale 

changes in the Arctic region.  
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IV. CONCLUSIONS 

A. SUMMARY OF RESEARCH 

The research conducted as part of this dissertation was carried out to: (i) enhance 

the U. S. Navy’s understanding of environmental changes in the Arctic Ocean in response 

to climate change and (ii) their significance to the acoustic environment, as well as (iii) 

quantify modeling capabilities to represent them and (iv) guide future improvements 

needed to reduce uncertainty and advance model skill in prediction of future changes. 

There were two primary goals: to characterize the present hydrography and sound-speed 

structure of the western Arctic Ocean, and to evaluate the climate modeling community’s 

ability to represent this hydrography. These goals were met by utilizing observations 

from, the Canada Basin Acoustic Propagation Experiment (CANAPE) pilot study, in the 

summer of 2015, and by evaluating the skill of global and regional climate models. 

In the CANAPE pilot study, variations in temperature were observed in the upper 

500 m that produced strong sound-speed anomalies. These variations were largely due to 

internal waves and spice variability. Internal waves with amplitudes on the order of 1.5 m 

were observed between 100 and 500 m depth; yet significant sound-speed variability was 

still observed in the upper 150 m. Spicy sound speed variability was lower than observed 

at lower latitudes, but still accounted for more sound speed variations than internal waves 

in the upper 200 m. The cause of these spicy sound speed variations is still not well 

understood. The structure of the spice was strongest at shallower depths, so future studies 

should investigate the source of isopycnal sound-speed anomalies near the surface. Based 

on the limited CTD data collected during the CANAPE pilot, very large variations in 

upper 150 m temperature and sound speed were observed at locations less than 100 km 

apart. The source of this variability is not certain, yet it is likely due to eddies, local 

surface heat fluxes, or upstream variations in the source waters or their advective 

pathways. The full CANAPE experiment, to be conducted between summer 2016 and 

summer 2017, should shed some light on this large-scale variability. Additionally, 

deploying more ocean-sensing instruments suited for the near-freezing conditions of the 
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marginal ice zone would provide more evidence for the source of these near-surface 

sound speed variations. 

From a modeling perspective, this dissertation has found that no global climate 

model, nor any current configuration of RASM, is successful in capturing the mean state 

of hydrography in the western Arctic Ocean. Improvements have been identified, but 

more experiments are required in order to utilize coupled models to simulate the small-

scale variability in temperature and salinity that give rise to the acoustic variability 

observed in CANAPE. Based on the promising results of the experiments conducted for 

this project, several avenues for improvement have been identified. Increasing the 

number of vertical levels in the ocean model component improved the representation of 

the upper 150 m temperature and salinity profiles, as did increasing the horizontal 

resolution. The biggest improvements came from parameterizations that resulted in 

adequate but not excessive surface mixing. Excessive surface mixing acted to remove 

heat and add salt to the Pacific Summer Water (PSW) layer, resulting in significant errors 

in the upper 150 m hydrography. It would be worthwhile to investigate other methods of 

modeling surface momentum exchange, such as using time/space varying, physics-based, 

model-predicted ice deformation and form drag. Ongoing developments are underway to 

incorporate these improvements into the higher resolution versions of RASM, and future 

experiments are being designed and conducted to improve representation of ocean 

hydrography. 

B. IMPLICATIONS FOR ACOUSTIC PROPAGATION 

One of the overall goals for this project was to advance the Navy’s understanding 

of the changing Arctic with regards to the acoustic environment. During the CANAPE 

pilot, observations were made of the sound-speed structure during the summer of 2015 in 

the marginal ice zone; during the Navy’s Ice Exercise (ICEX), similar observations were 

made winter of 2016 under pack-ice. Theses by Pearson (2016) and Nelson (2016) 

analyzed the acoustic environment during those two experiments. However, models must 

be used to make projections for future climate states and their acoustic environments, 

especially on large spatial scales. Figures 4.1a and 4.1b present a side-by-side 

comparison of observations and RASM output (experiment G-SBM) for the locations of 
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CANAPE (figure 4.1a) and ICEX (figure 4.2b). Because at present RASM output is not 

available for dates beyond 2009, the model months chosen to display are from 2007 and 

2008, which had similar ice coverage as observation years 2015 and 2016. In this figure, 

the model limitations identified in chapter 3 are evident. However, RASM offers 

substantial improvements over PHC climatology in representing the magnitude of 

variance of both the hydrography and the sound-speed structure (figure 4.1, bottom row), 

though modeled variability was still less than observed. The sound-speed profiles of 

RASM and observations show similar structure, though these differences would certainly 

be reduced as RASM’s representation of upper ocean temperature and salinity are further 

improved.   
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Observations are plotted in orange, RASM model output in blue, and climatology in 
black. CTD data are from the CANAPE pilot study conducted in August 2015; RASM 
data are from August 2007 in the CANAPE region 

Figure 4.1a. Profiles of CANAPE Temperature (top left), Salinity (top middle), 
and Sound Speed (top right) and Their Standard Deviations (bottom row).  
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Observations are plotted in orange, RASM model output in blue, and climatology in 
black. CTD data are from ICEX conducted in March 2016; RASM data are from March 
2008 in the ICEX region. 

Figure 4.1b. Profiles of ICEX Temperature (top left), Salinity (top middle), and 
Sound Speed (top right) and Their Standard Deviations (bottom row). 

A very important feature was observed in some of the CANAPE and ICEX CTD 

profiles: a sub-surface sound-channel (Pearson 2016, Nelson 2016). Figures 4.2 and 4.4 

show acoustic transmission loss of a 1000 Hz signal, as modeled by the Bellhop acoustic 

transmission model, when using the observed temperature and salinity to derive a range-

independent sound-speed field. Generally, sound speed increases with depth in the Arctic 

so sound generated at most depths is refracted upwards. The sound would then reflect off 

the surface and continue a pattern of deep-ocean refraction and surface reflection. The 

presence of sea ice complicates the surface reflection, introducing significant scattering 
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and absorption losses. However, a sound-speed maximum, created by the PSW 

temperature maximum, was observed at around 50–80 m in both CANAPE and ICEX. 

This sound-speed maximum refracts sound generated below it back down away from the 

surface. Below this is the cold PWW layer, which forms a sound-speed minimum. The 

PSW sound-speed maximum above the PWW sound speed-minimum results in an 

acoustical wave-guide, which would trap sound energy in a so-called “sound channel.”  

Depending on frequency, sound generated in the PWW sound channel would be refracted 

about the sound-speed minimum and would not interact with the surface, thereby 

reducing the surface attenuation. In both field studies, a sub-surface sound-channel 

reduces transmission loss near 150 m in depth. The sound-speed fields derived from 

RASM output (Figures 4.3 and 4.5) do not include a sound-channel identical to that 

observed. However, RASM does possess a weak sound-speed minimum at a shallower 

depth; when the sound source is placed at this depth, the signal is trapped in a sound 

channel (Figures 4.6 and 4.7).   

 
Sound speed field is derived from the mean CTD measurements during the CANAPE 
pilot study in August 2015. A sound-channel, in which transmission loss is significantly 
reduced, is located near 150 m depth. A surface duct, in which sound reflects off the 
surface, is also present. 

 

Figure 4.2. Modeled Transmission Loss for a 1000 Hz Acoustic Source at 150 m 
Depth During CANAPE using CTD Observations 



 103 

 
Sound speed field is derived from the mean August 2008 RASM output from the same 
geographic region as the CANAPE pilot. A surface duct, in which sound reflects off the 
surface, is present, but not the sub-surface sound-channel that was observed (Figure 4.2). 

Figure 4.3. Modeled Transmission Loss for a 1000 Hz Acoustic Source at 150 m 
Depth During CANAPE using RASM output. 

 
Sound speed field is derived from the mean CTD measurements during the ICEX in 
March 2016. A sound-channel, in which transmission loss is significantly reduced, is 
located near 150 m depth. A weak surface duct, in which sound reflects off the surface, is 
also present 

Figure 4.4. Modeled Transmission Loss for a 1000 Hz Acoustic Source at 150 m 
Depth During ICEX using CTD Observations. 
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Sound speed field is derived from the mean March 2009 RASM output from the same 
geographic region as the ICEX. A surface duct, in which sound reflects off the surface, is 
present, but not the sub-surface sound-channel that was observed (Figure 4.4) 

Figure 4.5. Modeled Transmission Loss for a 1000 Hz Acoustic Source at 150 m 
Depth During ICEX using RASM Output. 

 
Sound generated at a depth of 35 m would be trapped in a sound channel. The range of 
depths displayed is limited to the upper 500 m to highlight the relevant depth range. 

Figure 4.6. Modeled Transmission Loss for Same RASM Output (CANAPE) as 
Figure 4.3 but with the Source at 35 m. 



 105 

 
Sound generated at a depth of 75 m would be trapped in a sound channel. The range of 
depths displayed is limited to the upper 500 m to highlight the relevant depth range 

Figure 4.7. Modeled Transmission Loss for Same RASM Data (ICEX) as Figure 
4.5 but with the Source at 75 m. 

The PWW sound channel and PSW sound-speed maximum create a unique 

tactical situation. A sound source near the surface would only be detectable at long 

ranges in open water or under very smooth sea ice; however, a sound source in the PWW 

sound channel would be detectable at long ranges regardless of the surface conditions.  

The PWW duct is not consistent in time, location, or strength. During ICEX, 

which was conducted under pack-ice in the winter of 2016, Nelson (2016) found a stable 

PWW duct with a sound-channel axis at approximately 150 m depth. However, Pearson 

(2016), during the CANAPE pilot study conducted in the marginal ice zone in the 

summer of 2015, found that the PSW sound-speed maximum was highly variable and 

sometimes non-existent. In these conditions, the acoustic propagation conditions would 

vary substantially in time and space. Undersea forces would need to frequently sample 

their environment at many locations to make reasonable predictions of sensor 

performance and acoustic vulnerabilities. High-resolution and more-accurate coupled 

climate model simulations would allow acoustic operators the ability to know the 

location, strength, and variability of the acoustic conditions, greatly enhancing their 

mission success. 
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C. RECOMMENDATIONS 

As the Arctic Ocean continues to change and human activity in the region 

expands, we should consider the next steps to take in order to safeguard U. S. interests 

and activities in the region. This dissertation has identified improvements that have been 

demonstrated in RASM, as well as areas that should be further investigated. The 

guidance from RASM experiments should be utilized by the climate modeling 

community to improve global climate and Earth system models, which provide the 

scientific basis for international policies on climate change. To support modeling efforts, 

observational studies should target the upper 150 m, especially in the expanding Arctic 

marginal ice zones, to identify the spatial and temporal variability of ocean hydrography.  

The acoustic analysis conducted in this dissertation was based on heuristic models 

of sound propagation and limited numerical acoustic modeling. To truly understand the 

significance and variability of the PSW and PWW acoustic features, further in-situ 

acoustic experiments, such as CANAPE, should be conducted.   

This dissertation focused solely on the implications of the background 

hydrography and resulting sound-speed structure. There are several other important 

components of the acoustic environment that warrant study. The effects of varying sea ice 

properties, such as age, on sound attenuation are not yet well known, and a changing ice 

cover will likely introduce further uncertainty with respect to the ocean-ice acoustic 

interface. A warming climate has also resulted in overall thinner sea ice, more open water 

seasonally, more biological activity, and more human activity. All of these are likely to 

increase the ambient noise environment.  

The scientific community is not alone in studying the Arctic. Prior to and during 

operations, Naval undersea forces in the Arctic should conduct thorough in-situ sampling 

to determine the strength and variability of the PSW and PWW sound-speed features. The 

Navy METOC community should also focus efforts on sampling (in-situ and remotely) 

the marginal ice zone in order to improve battlespace awareness. 
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