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1.0 SUMMARY 

This goal of this research effort was to bring together computer scientists and biologists to 
investigate the potential for self-organizing anomaly detection protocols inspired by those 
observed naturally in colonies of social insects to provide appropriate, dynamic, detection 
thresholds for anomalous event patterns on computer system networks to improve early detection 
and rejection methods to counter malicious threats. The research relied on basic algorithmic 
development, based on bio-inspired theory, from researchers in both biology and computer science 
at Rutgers University, and also on hardware implementation, testing, and real-world tech transition 
development by partners at Honeywell International Incorporated. Simulation testbeds were 
constructed in both software and hardware. Social insect colonies have survived over evolutionary 
time in part due to the success of their collaborative methods, using local information and 
distributed decision making algorithms, to detect both positive and negative anomalies in their 
environment, thereby identifying critical resources and avoiding dangerous threats. These methods 
have the unusual and useful ability to detect anomalies with very little memory and using only 
very local information. Relying on insights from these systems, we analyzed designed initial 
algorithms based on both bees and ants. Early results rapidly converged on a single bio-inspiring 
system (honeybees were quickly seen to provide better results than ants) and ongoing efforts then 
tested/tailored the algorithmic design on a variety of attacks, normal patterns in background 
network traffic, and underlying network topologies. Results from these tests led to algorithmic 
revisions, and the process was iterated. The resulting algorithm has been presented in a series of 4 
accepted peer-reviewed publications in highly respected conferences/journals, one pending 
provisional patent application, and an already-funded grant for further research into the utility of 
the developed algorithm in other contexts by the National Science Foundation.  

2.0 INTRODUCTION 

Early and accurate detection of anomalies in patterns of network traffic allow the best chance 
for mitigation of threats to sufficient/stable network function. Whether these threats are purposeful 
attacks or accidental, cascading failures, identification of divergence from (sometimes highly 
variable) “normal traffic” is critical. The most traditional methods in mathematics, engineering, 
operations research, and computer science for designing surveillance networks have focused on 
hierarchical structure, where local observations are passed up a command chain, eventually 
reaching a centralized gathering of intelligence for broad-view analysis. These methods allow for 
in-depth synthesis and analysis, considering all the available information at once, but also involve 
a variety of problematic features. They create a communications burden on the system, cause a 
delay in detection while information is being gathered from the different sources and synthesized, 
and require at least some level of trust in both participants and communications security to enable 
the sharing of the potentially sensitive information being analyzed along all the links in the chain 
from observer to central analyst. On the other extreme, truly parallel, distributed methods are fast 
and private, but can observe and analyze only local information, thereby failing to see the ‘big 
picture’ as they focus on only one thread in a tapestry. Further, regardless of central vs. parallel 
analysis, existing methods typically rely on a statistical or rule-based model of the expected 
behavior of network traffic, and anomalous activity is identified as any behavior that is not 
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adequately explained by the model [1]. However, these models will fail to capture threats which 
purposefully and maliciously masquerade as ‘normal network behavior.’ 

Social insects in the natural world routinely need to make classification decisions, and take 
actions as a result of those classifications, rapidly and accurately to ensure their survival. As with 
the desired features of network surveillance systems, both false positives and false negatives 
equally compromise success [2]. Critically, these natural systems also include features that, while 
currently mostly ignored in network surveillance design, are likely to be highly desirable in future 
generations of network defense: they easily integrate information from multiple sources at once, 
and are able to make accurate distributed decisions under shifting baseline conditions. Species in 
nature that focus only on the most obvious threat, or the richest food source, survive poorly since 
the natural world includes a simultaneous diversity of threats and more often than not, the richest 
food source is still not sufficient to sustain the population without supplementation from additional 
sources. For these reasons, anomaly detection algorithms found in social insect systems are already 
well adapted to detecting multiple anomalies at once, providing the ability to focus attention 
specifically on one particular facet of observed data without losing the ability to continue to scan 
on a coarser-scale for additional threats. 

To try and leverage the insights in anomaly detection systems available from the study of social 
insects in the natural world, and apply those in a way that would provide rapid, scalable, and 
practical methodologies for human cyber-infrastructure systems, we developed a new algorithm: 
Distributed Intrusion/Anomaly Monitoring for Nonparametric Detection (DIAMoND). 
DIAMoND employs distributed surveillance, but instead of fully independent, parallel analysis, 
each observer/analyst incorporates into their own conclusions the nonparametric descriptions of 
conclusions shared by their network neighbors. This algorithm achieves the rapid, real-time 
detection time of fully parallel surveillance, solves the problem of integrating information coming 
from different scales or gathered by different methods, and eliminates the need to share sensitive 
details/data of local observations or analysis across potentially insecure channels. Our efforts 
involved both software and hardware implementations testing DIAMoND’s performance at 
detecting a variety of threats (focused primarily on DDoS and Stealth Scan attacks), over a variety 
of baseline (e.g. non-anomalous) network traffic patterns, and across a diversity of simplified and 
realistic network topologies. The tests showed DIAMoND achieved improvement in early and 
accurate detection relative to both purely parallel and purely centralized approaches (i.e. methods 
currently employed in modern network anomaly detection). To investigate the practicality of 
integrating DIAMoND into existing surveillance networks, we performed software simulation-
based tests to study the impact of only partial network deployment, and found that 30% deployment 
among surveillance nodes would be sufficient to gain over 80% benefit in anomaly detection 
improvement. Our research also extended DIAMoND to consider cases in which the DIAMoND 
network itself contained participating malicious actors, and test its application as a DNS-based 
mitigation system. 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

Our research involved an iterated process of theoretical design (based on natural systems and 
algorithm performance under testing) (Rutgers), and both software (Rutgers) and hardware 
(Honeywell) simulation testing. We will therefore describe each of these phases to our process 
separately, but they should be understood as repeated steps.  
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3.1 Theoretical Algorithmic Design Based on Social Insect Systems 

The basis for the algorithmic design comes from an understanding of social insect systems and 
the ability to describe such systems using only mathematical logic, rather than biological or 
English language descriptions. We therefore characterized the features of independent 
identification of potential anomalies, communication of independent identification (in)decisions 
among agents (i.e. insects), and the dynamics of updating individual decision making algorithms 
based on the shared insights from communication.  

Abstraction of the logic of the system led us to design a simple, method for leveraging non-
parametric information about independent, parallel parametric analyses. See Figure 1. 

Figure 1. DIAMoND Abstract Design Logic 

Mathematically, our DIAMoND population, consists of nodes 𝑏𝑏1 … 𝑏𝑏𝑥𝑥 and a computer network 
(i.e. an edge set, { }yeeE .1= ) on the nodes where each edge is a pair ji bb , such that ji ≠ .

Each node has access to some subset of information about the packets it handles, we call this 
the Observation set of the node, )( ibo . This may be, but is not assumed to be the same set across
all nodes. For each node, there is also a time window, ( ))(,

i
twt

i boW − , of length w over which the 
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observation set may be analyzed (note: this may be interpreted as an iterative function, such as a 
check sum, but may also be interpreted as loosely as storage of the full packet stream information 
over the node for a duration of time; if there is no limit on memory, w=t).  

Each node also has an internal set of anomaly detection algorithms, ( )( ) ( )( )itii
twt

ii bstboWa ,
, ,−

that are a function of the information in the observation set of that node and also of the set of 
detection sensitivity thresholds for that node at time t, ( )iti bst , , each associated with a detection 

algorithm available to that node (i.e. each element of ist  is associated with an element of ia ). 
These sensitivity thresholds may be either static or dynamically updated over time, and there is no 
a priori assumption of uniformity in sensitivity thresholds across nodes.  

At each time t, each node computes a function of the observed threat level, ( )iti aT , , which is 
the data-driven assessed level of likelihood that an anomaly is occurring. 

Each node i also has an associated set of nodes that influence the sensitivity threshold of i 
called the neighborhood, Nbn i ⊇)( , such that )( ij bnb ∈  st  Ebb ji ∈, . Further, each element of 
the neighborhood is associated with an edge weight as a relative measure of their influence on the 
sensitivity threshold of i at time t, )(, jti bm  for all )( ij bnb ∈ . Note, these measures of influence 
can either be static or can be dynamically updated over time. 

Each node i has a level of concern at time t, ( )( )( )ittiti bnLTc 11,, , −− , which is a function of both 

the previously assessed threat level and of a function ( )( )it bnL  that computes the total impact of 
the concerns of all nodes within the neighborhood of i at time t. 

Our Bee-Inspired DIAMoND Algorithm: 
Initially, we define 01, =ic  and ( )( ) 01 =ibnL for all i. We set 

( )( )

( )

( )

( )

( )

( )

( )

















≤

<≤

<

=

∑

∑

∑

∈
−

∈
−

∈
−

i

bnb
tj

i

bnb
tj

i

bnb
tj

it

bn

c
if

bn

c
if

bn

c
if

bnL

ij

ij

ij

1,

1,

1,

34.12

34.1034.01

034.00

, (1) 

(where the current values listed were informed by the uniform average degree of our initial network 
topology). 

We define ia  for all i as the accurate sampling scheme based on Korczynski, Janowski & 
Duda [5], with adaptive sensitivity thresholds, ist , such that 

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )








<−
=
>+

=

−−

−−

−−

ititti

ititti

ititti

ti

bnLbnLifcst
bnLbnLifst
bnLbnLifcst

st

11,

11,

11,

, :  , (2) 

where c is some constant. 
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We then assign ( ) { }2,1,0, ∈iti aT  for each node in each time based on the observed traffic on 

that node using algorithm ia  with thresholds tist , . 
We then defined four different test functions tic ,  for all nodes in order to explore the impact of 

different levels of importance being assigned to the concern of neighbors (low, med, med+, and 
high), such that the function ( )( )( )ittiti bnLTc 11,, , −−  is described according to Table 1 immediately
below. 

Table 1. Test Functions at Concern Levels 

In the implementation of this naïve algorithm, nodes send information on their levels of 
concern to their neighbors for inclusion in independent determination of threshold violations for 
parallel anomaly detection.  

Each of the described communication frequencies, thresholds for incorporation of information 
from neighbors, and determination of levels of concern based on independent threshold violation 
were then refined under iterated testing to produce our current algorithm (as described in [3]; See 
Appendix B for paper presenting full details). 

3.2 Software Simulation Testing 

3.2.1 Simulation of Network Traffic 

3.2.1.1 Mininet and OpenFlow to Simulate Realistic Network Traffic. We developed a 
prototype communication controller as an OpenFlow component in the POX environment and 
evaluated in Mininet 2.0 simulator. We developed and continue to support POX controllers, 
prototype implementation of the communication protocol (described in 3.1 above), and testing 
scenarios.  
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We designed OpenFlow switches to act as a "standard" type of L2 learning switch analogically 
to forwarding.l2_learning (as described in [4]). However, it ignores the distributed-detection 
communication packets (Ethernet type 0x0105) that are exchanged between switches participating 
in the DIAMoND network. This component detects all kind of anomalies related to the TCP 
protocol locally (as described in [5]). In first place, it creates neighborhoods (smaller subnetworks 
within which the information is exchanged) based on hop limits. Second, it combines levels of 
concern of its neighbors with a report from its internal anomaly detection system. 

Full details and example simulation commands can be found in Appendix A below. 

3.2.1.2 Simplified Network Traffic. We defined ‘regular’ traffic gi(t) in a node i over time follows 
a given distribution. The assumption is that each node had been monitoring the traffic that it 
handles under normal conditions. In our simulations, this distribution has the same functional form 
for all nodes in a given realization. However, since different amounts of traffic go through each 
node, every node uses different values for the distribution parameters (and these do not change 
over time). The simulation proceeds at discrete time steps. At each time step we choose a random 
number from the given distribution for a node, according to this node’s stored parameters. This 
random number includes all the regular (non-attack) traffic that goes through this node at the given 
time step, and we do not explicitly follow the path of individual normal traffic packets. Therefore, 
normal traffic is uncorrelated even between neighboring nodes. We use three different forms of 
normal traffic distributions, which correspond to different scenarios: a) Gaussian, b) uniform, and 
c) exponential.

Gaussian: In this case, the regular traffic in a node is normally distributed. The expected value 
of traffic (in arbitrary units) in each node is constant with time, and uniformly distributed in the 
range μ:[750:1250]. The standard deviation for each node is also constant with time, and is 
uniformly distributed in σ:[25:100]. So, at time step t, the traffic gi(t) on each node i is selected 
from a gaussian distribution (μi,σi). 

Uniform: The expected traffic value for a node is chosen uniformly in the range μ:[750:1250]. 
The width of the distribution is a random number in the range σ:[25:100]. This means that at time 
step t the traffic gi(t) on a node is uniformly selected in the range [μi-σi:μi+σi]. 

Exponential: In this case a random number is drawn from an exponential distribution λexp(-
λr) with parameter λ=1/β, where β is chosen uniformly in the range β:[750:1250]. 

3.2.2 Simulation of Diversity of Network Topologies. Due to the complexity of testing the 
emergent outcomes of the algorithm, we chose to split the testing into two scenarios: (1) realistic 
underlying patterns in normal network traffic (as described in section 3.2.1 above) on simplified 
network topologies, and (2) simplified underlying patterns in normal network traffic on realistic 
network topologies.  

3.2.2.1 Simplified Physical Topologies. In order to explore the impact of network configuration 
on the success of the distributed detection of DIAMoND, we tested the performance of the 
algorithm on a variety of network topologies (each with a total network size of 20 nodes due to 
computational constraints). These included "Full Mesh", "Mesh", "Bipartite", "Linear", and 
"Extended Star", defined as follows: 

"Full Mesh" is the complete undirected network on 20 nodes, involving n*(n-1)!/n=190 edges. 
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"Mesh" is a randomly selected subgraph of Full Mesh in which the probability of each edge is 
0.3, therefore involving 0.3*n*(n-1)!/n=57 edges for each realization. 

"Bipartite" is the division of the network into two sets of size 10, with the probability of 0.6 
for an edge between nodes from different sets and a probability of 0 for an edge between nodes in 
the same set, therefore also involving 0.6*n*(n-1)!/2n=57 edges for each realization. 

"Linear" is a single path of edges among the nodes, i.e. a connected graph in which 2 nodes 
have exactly 1 incident edge and all others have exactly 2 incident edges, therefore involving (n-
1)=19 edges. 

"Extended Star" is a tree, created by initiating the graph with 1 node and then attaching each 
subsequently created node to one of the already existing nodes with uniform probability until the 
network size reaches 20, therefore involving (n-1)=19 edges. 

3.2.2.2 Realistic Physical Topologies. In our simulations, we use six different model network 
topologies: a) a two-dimensional square lattice, where nodes occupy the vertices of a lattice, b) an 
Erdos-Renyi network [6], where nodes are connected randomly to <k>=3 other nodes, c) a scale-
free network [7] created with the configuration model [8], where the degree distribution follows a 
power law with degree exponent γ=3.5, d) a scale-free network with degree exponent γ=2.5, where 
by definition the hubs are much stronger, i.e. they connect to a larger number of nodes, e) the 
CAIDA Autonomous System graph for May 2004 [9], and f) the CAIDA Autonomous System 
graph for May 2007 [9]. 

3.3 Hardware Simulation Testing 

3.3.1 Assumptions for Initial Hardware Testbed (later abandoned). The design here described 
was abandoned by Honeywell before construction due to loss of lead researcher and insufficient 
funds to reconstruct efforts after the fact. Instead, Honeywell later focused on design and testing 
of a DNS-side attack mitigation strategy (see section 3.3.3 below). 

Given the generic nature of the DIAMoND algorithm and the problem DIAMoND is expected 
to solve, we make the following assumptions when designing our testbed: 

1. Emulation on Packet exchange level on network layer is sufficient.
• No need for PHY and MAC emulation
• No need for buffer behavior manipulation at least for Phase I

2. Time synchronization precision on ms level is sufficient
• Common Internet packet delivery delay on ~10ms level so <1ms precision is good

enough for us to properly maintain order of events. 
3. Linux user space applications are sufficient for DIAMoND algorithms emulations

• Given that ms level delay/time sync errors are acceptable, use space applications
are expected to be sufficient for real-time processing. 

• Linux packet queue manipulation tools are available if Kernel configuration for
packet processing is needed (e.g. netem) 

• Command line tools such as iptable can be used to dynamically reconfigure how
kernel handles network traffic 

3.3.2 Initial Hardware Testbed Design (later abandoned). The design here described was 
abandoned by Honeywell before construction due to loss of lead researcher and insufficient funds 
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to reconstruct efforts after the fact. Instead, Honeywell later focused on design and testing of a 
DNS-side attack mitigation strategy (see section 3.3.3 below). 

3.3.2.1 Hardware Architecture. Figure 2 illustrates the hardware setup architecture. 21 machines 
running Linux 12.0.4 LTS were planned. Every machine was to have 2 Ethernet ports (Eth0, Eth1). 
All Eth0 ports were to be connected to a dedicated routers and were to have been Intenet accessible 
with IP address of 131.201.16.(175+nodeID). All Eth1 ports were to be connected to another 
dedicated router to form a private LAN with IP address of 192.168.1.(nodeID). The Internet 
acceissble ports were to be utilized for adminatration and testing management purposes. This 
private LAN was to have been dedicated to simulation of network traffic and execution of the 
DIAMoND alagorithm. 

Figure 2. DIAMoND Hardware Architecture 

Eth1 on Node 21 was to be connected to port 48 on Cisco 3650 router, which was to have been 
set up to be a SPAN port for network traffic monitoring. Network Time Protocol (NTP) would 
have been set up on all machines with Node 21 time sync to Honeywell time synch master. All 
other machines were to time sync to Node 21 as a local master.  

3.3.2.2 Network Setup. Figure 3 shows the intended network setup for node i. Each node was to 
have represented a large network address space. Figure 3 illustrates a sample /16 network setup, 
simulating a network router managing 65535 hosts. The DIAMoND Virtual Network Service 
(VNS) was to have been capable of “spoofing” any arbitrary source IP address, intercept packets 
destined to any Node i’s configured subnet. VNS was also to have been responsible for setting up 
raw IP packet, UDP packet and TCP sessions including handshaking and teardown. DIAMoND 
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Traffic generators, DIAMoND agents and local logging services were all to go through BNI 
(DIAMoND Network Interface) to access information on the simulated network. 

Figure 3. Sample Network Setup for Node i 

3.3.2.3 Software Architecture 

Software modules were to be grouped into three categories: System Services, DIAMoND 
agents, Traffic Generations Services and DIAMoND management services.  See Figures 4 and 5. 
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Figure 4. DIAMoND Software Architecture 

Figure 5. DIAMoND Node Software Architecture 

3.3.2.4 System Services. System services were to have included the following modules: 
1. Virtual Network Services (VNS)
2. Network Time Synchronization Services (NTS)

We were to have used Linux NTP (version number) service for this purpose. Network Time 
Protocol (NTP) would have been set up on all machines with Node 21 time sync-ed to Honeywell 
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time synch master. All other machines were to have been time sync-ed to Node 21 which serves 
as a local master.  

VNS was to have utilized Scapy libraries for rapid raw packet construction and libpcap for 
direct packet interception on ethernet cards. VNS was supposed to completely bypass the 
traditional Linux network stacks. When Kernel cooperations are needed, iptable tools were to have 
been utilized as illustrated in Network Setup section.   

The functional spec of VNS is summarized below: 
1. VNS should provide a set of APIs to

a. build and transmit an raw IP packet with any specified (srcIP, destIP) and
payload.

b. intercept and respond to incoming IP packets within specified timeline.
i. E.g. packets to a virtual host that does not physically exist but

virtually configured and managed by the receiving node
c. filter incoming IP packets and pass summarized states to callers

2. VNS should provide a set of APIs to
a. build a UDP packet with proper protocol flags and specified (srcIP, srcPort,

destIP, destPort) and payload.
b. transmit a UDP packet using the IP APIs decsribed in 1.
c. intercept and respond to incoming UDP packets within specified timeline.

i. E.g. packets to a virtual host that does not physically exist but
virtually configured and managed by the receiving node

d. filter incoming UDP packets and pass summarized states to callers

3. VNS should provide a set of APIs to
a. Initiate and tear down TCP sessions  with a specified (srcIP, srcPort, destIP,

destPort) (i.e., spoofing the src address.)
b. build a TCP packet with proper protocol flags and specified payload.
c. transmit a TCP packet using the IP APIs decsribed in 1.
d. intercept and respond to incoming TCP packets within specified timeline.

i. E.g. packets to a virtual host that does not physically exist but
virtually configured and managed by the receiving node

e. filter incoming TCP packets and pass summarized states to callers

3.3.2.5 Diamond Agents. DIAMoND agents are responsible for simulating “DIAMoND node” 
behaviors with flexible LAD, TIE and TLS algorithms. DIAMoND agents include the following 
modules: 

1. DIAMoND Message Exchange Service (MES)
2. Local Anomaly Detector (LAD)
3. Total Impact Estimation (TIE)
4. Thread Level Estimator (TLS)
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Functional specs for MES were to be: 
1. Takes a pre-specified dynamic network topology configuration file and establish

direct connections (TCP) between every pair of nodes which are connected per
the topology

2. Every node is able to transmit messages asynchronously to all of its direct
neighbors

3. Invoke LAD via pre-specified APIs with new threshold to compute local anomaly
score

4. Invoke TIE via pre-specified APIs to compute total impact from its neighbors
based on received messages on neighbors’ levels of concern.

5. Invoke TLS via pre-specified APIs to compute the local node’s level of concern
and update its neighbors

a. Level of concern is updated only when there is change from last update

3.3.2.6 Traffic Generation Services. System services include the following modules: 
1. Background Traffic Generation Services (BTG)
2. Event Traffic Generation Services (ETG)
3. Replay of Traffic Traces (RTT)

BTG creates “norm” traffic background with pre-specified distribution, BTG takes in a 
configuration file and generate packets pertaining to specified distributions. BTG utilizes VNS to 
interact with physical interfaces. As a starting point, BTG supports only uniform packet 
distribution with variable rates and durations. More complex patterns will be supported later or 
approximated with piece-wise uniform pattern. 

ETG creates “abnormal” traffic with pre-specified timing, type configurations. As a starting 
point, ETG will support random port scan (both horizontally and vertically).  

RTT reads summarized network trace files and regenerate traffic pertaining to the traces. RTT 
is cutom-built to specific network traces. We plan to obtain and support re-play of Witty Worm 
traces from CAIDA managed by UCSD.  

3.3.2.7 DIAMoND Management Services (BMS). BMS handles all administrative and 
automation tasks for setting up DIAMoND, administrating testing scenarios, logging and 
analyzing data in real-time. 

Functional specs for BMS are: 
1. Load a new testing scenarios (topology, traffic trace/configuration, DIAMoND

algorithms) and distribute to all nodes
2. Start and shut down a testing scenario simultaneously on all nodes
3. Retrieving logs from all nodes (e.g. level of concern, local anomaly score changes

over time)
4. Visualize level of concerns of all nodes

3.3.2.8 Traffic Generation. In order to generate traffic (background, simulated attacks, etc.) use 
the traffic generator located in ^/Software/traffic-generator/traffic_generator.py.  The generator 
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relies on configuration files in the same folder, and is started with a configuration file as an 
argument. 
 
3.3.2.9 DIAMoND Validation Test Scenarios 
 
3.3.2.9.1 Port Scan Test Scenario. Design of engineering scenarios was to have followed these 
guidelines: 

• Driven by real world scenarios 
• Allow systematic evaluation of DIAMoND performance 
• Our focus is on distributed collaboration among routers. We will assume known local 

anomaly detection mechanism 
• Share common and practical metrics that are applicable in real world scenarios 
• Enable us to pick right real world applications 
Horizontal TCP service Port Scan was to have been the first scenario to mirror software 

simulation choices by the Rutgers researchers. The port scan event in our 20-node network was to 
have been designed to start from a single malicious node with fixed IP and arbitrary source port to 
reach multiple destination IPs with the same service port numbers. In the setup, the destination 
port numbers were to have been 80 and 443 reflecting the most popular TCP services for HTTP 
and SSH. The whole test scenario set consists of 25 individual tests with the DIAMoND network 
topology and service levels as control variable. The port scan attack remains the same for all 
scenarios. 

 
3.3.2.9.2 Test Network Topologies. In this test set, we were to have considered the following 5 
different DIAMoND network topologies to test how network connectivity affects DIAMoND 
collaboration performance: 

• Topology 1: Linear Circular 
 

 
Figure 6. Linear Circular Topology 

 
• Topology 2: Fully Connected Mesh for all 20 nodes. 

 

 
Figure 7. Full Connected Mesh with 6 Nodes 
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• Topology 3: Hierarchical 2 level structure with 5 hub nodes, illustrated below. All 5 hub
nodes are fully connected while each cluster has a start topology with all lead nodes
connected to a hub node.

Figure 8. Hierarchical 2-Level Topology 

• Topology 4: Hierarchical 2 level structure with 3 hub nodes. Similar to above except
there are only 3 fully connected hub nodes and 3 clusters. Two of those clusters have 7
nodes and another one has 6 nodes.

• Topology 5: Hierarchical 2 level structure with 2 hub nodes. Similar to Topology 3
except there are only 2 fully connected hub nodes and 2 clusters. Each cluster has 10
nodes.

Topologies 1 and 2 represent the lower and upper bound cases in connectivity. Topologies 3 to 5 
represent commonly used hierarchical network structures with varying number of gateways.  

3.3.2.9.3 Service Levels. In this test set, we were to have considered the following 5 different 
service levels (0%, 10%, 20%, 30%, 50%, 80%) representing different types of operations. Service 
level is defined as percentage of the nodes inside the 20-node network that service port 443 or port 
80. These nodes would have properly initiated a TCP session and exchanged data packets with any
clients (both normal and attacker) probing port 443 and 80. All other nodes would not have 
responded to any requests to these two ports. These service level tests would have enabled us to 
understand how DIAMoND performs in different type of operating networks such as a corporate 
network with limited hosted services or a server farm such as Amazon EC2. 

Varying service levels would also have allowed us to simulate attack stealthy-ness since higher 
service levels makes port scan harder to detect thus stealthier.   

Varying the 5 different types of topologies and 5 different service levels would have given us 
25 total test scenarios.  

3.3.2.9.4 Traffic Setups. In all 25 test cases, the background (normal) traffic would have been set 
up as follows: 

Each of the 20 nodes initiates a TCP session with all other 19 nodes on a pre-defined service 
port at 1Hz. Each TCP session would have been properly torn down after 2 normal data packets 
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exchanges. In total, there were to have been 19x19 successful TCP sessions going on inside the 
network every second.   

In all 25 test cases, the event traffic was to have been set up as follows: 
Attacker Node X, which would always have been a child node in all topologies, would start 

scanning port 443 on all nodes (including itself) from time t1 to t2 at a rate of 2Hz. T1 and t2 are 
configurable in DIAMoND configuration file. In our test set, they were to have been set at 5 
seconds and 1500 seconds. Selection of these numbers would have ensured observations of two 
complete network wide state transitions: normal to abnormal; abnormal to normal.  Selection of 
destination nodes was to have been fully random. In total Node X will try to initiate 2x20=40 TCP 
sessions within the test network. Note that the attacker probing rate has to be larger than the normal 
traffic rate because the local anomaly detector use SYN packet and ACK pack mismatching 
(instead of SYN and SYN-ACK mismatching) for anomaly detection. If normal traffic rate on a 
node is higher than probing rate, the local anomaly detector will never trigger any alarm regardless 
what the alarm threshold is. This is also one of the reasons that DIAMoND performance is so 
dependent on how the traffics are set up. In addition, the startup time for the attack plays a 
significant role in performance because the IP counter will keep going up with normal traffic alone 
given the way the local anomaly detector is designed / implemented. This “feature” forced us to 
add a cap on the IP counter to offset this artificial effect. For this reason, we also evaluated the 
dependence of DIAMoND performance on the IP counter cap.  

3.3.2.10 Performance Evaluation Metrics. Given the local anomaly detector is based on TCP 
session negotiation protocols, it is natural to classify traffic on TCP session level. i.e. every TCP 
session will be labeled as either “normal” or “abnormal”.  Thresholds were to have been 
determined by experimental output from software simulation at Rutgers. By testing a diverse 
selection of specific thresholds, we expected to gain generalized insights of DIAMoND 
performance.  

The DIAMoND performance was to have been evaluated using aggregated False Positive Rate 
(FPR) and False Negative Rate (FNR) on all nodes. In addition, we were also to have evaluated 
delay in first detection on network wide to characterize responsiveness of DIAMoND.  

As a benchmark, we were to have used the same local anomaly detector without any 
coordination (i.e. fixed thresholds) for comparison.  

3.3.3 Updated Hardware Simulation (replaced earlier efforts) 

3.3.3.1 DNS Server-Based DIAMoND Mitigation Testing: Distributed Rate Sharing based 
Amplified DNS-DDoS Attack Mitigation (DRS-ADAM). We conducted our experiments in 
both software simulation environment and on a dedicated hardware testbed. Our software 
simulation code is built on a popular networking tool called Mininet (see detailed description in 
Appendix A) which creates a realistic virtual network environment by emulating real kernel, 
switch and application code, on a single machine. For machine, we used a DELL T320s server 
with a 2:4 GHz Intel Core 10 CPU and 16 GB of RAM, running VMware ESXi v5:5 virtualization 
software. An Ubuntu 14:04:1 LTS virtual machine was deployed on the ESXi server. To build a 
virtual network, Mininet uses network name spaces and virtual Ethernet pairs (veth) mechanisms. 
On the top of that we emulated bots, resolvers, and the victim servers which were later deployed 
on the same virtual machine, while each component having its own isolated stack of code, 
application, and network and was connected using a veth pair. To explore the functionality, 
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scalability and performance issues of DRS-ADAM beyond software simulation environment, we 
designed a hardware testbed. This is important in the regard that many solutions often overlooked 
the practical issues one might face in the real world. For building the hardware testbed we 
employed 20 machines with 2:8 GHz Intel core processor and 16 GB RAM, and deployed Ubuntu 
14:04:1 LTS on each of them. A virtual environment is created using virtual IP addresses and 
virtual Ethernet interfaces which can be controlled by a central server. Each machine than becomes 
a hub for certain number of DNS resolvers and bots to reflect a real-world attack. To emulate wide 
area network topology, delays are configured using netem [10]- a tool to create sophisticated 
delays of desired distribution. 
3.3.3.1.1 Emulated topology. The tested topology illustrated in Figure 9 was designed to emulate 
the attack traffic logical topology and the distributed nature of the defense mechanism. Bots and 
resolvers were organized in clusters; each cluster emulated an autonomous system. The size and 
the number of clusters for resolvers and bots varied depending on the setting for each test. Each 
cluster of bots and resolvers was attached to an edge router. These edge routers were connected 
through transit routers, and the added delay or latency between them was set to emulate an Internet 
link-aggregation/core. The resolvers edge router is connected to the victim's edge router also by 
the means of transit routers. There are three types of links; link between resolvers/bots and their 
edge router, link between transit routers and victim's link to its edge router. 
 

 
Figure 9. DDoS Attack 

 
 
3.3.3.1.2 Attack traffic. Each bot in a cluster was programmed to send spoofed TXT queries to a 
designed cluster of resolvers. 

The following is a subset of DRS-ADAM test instructions: 
(i) set up and start the virtual network with the emulated topology; (ii) specify the hosts that 

will behave as bots or name servers, taking into consideration clustering; (iii) start the implemented 
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resolver detector module (see Section 4.1) on every name server-assigned machine; (iv) monitor 
name servers' exchange messages; (v) start the implemented victim monitor module at the assigned 
host; (vi) monitor victim exchange messages and link rates; (vii) master attacker sends commands 
to run attack traffic on every assigned bot. 

The scale of these experiments was the largest we could obtain in our testbed environment 
while guaranteeing the quality and reliability of the results. The testbed was constructed to be less 
dependent on the scale size with the objective to observe the distributed interaction between 
resolvers and the responsiveness of the defense. Note that the fraction of the attack's rate and the 
threshold is considered in the performance measurements. The performance metrics used in the 
experiments are: hit peak attack (HPA), DNS attack traffic over time, mitigation time, and system 
overhead.  

3.3.3.1.3 Partial Deployment. DRS-ADAM is designed to propagate the requisite information 
sequentially from one resolver to another; i.e., by forming a chain of resolvers to reduce the 
message exchange complexity. If DRS-ADAM is not deployed on any one of the resolvers 
involved in an Amplified DNS Distributed Denial of Service Attack (ADD) attack, then it will 
break that chain of information propagation and form disjointed groups of resolvers that cannot 
exchange query rates with other groups. To avoid that situation, we enhanced our original victim 
and DNS resolver communication protocol to allow resolvers to receive multiple DNS resolver 
IPs from the victim monitor module based on the value k. This flexibility in k helps predecessor 
resolvers to be connected with successor resolvers when the chain is broken by a resolver that is 
not equipped with DRS-ADAM. 

4.0 RESULTS AND DISCUSSION 

The main outcomes of our research efforts can best be described as grouped into three main 
focal results. We therefore present and discuss these results separately in this section.  

4.1 Performance of the DIAMoND Algorithm with Realistic Network Traffic on a Simplified 
Network Topology 

4.1.1 Criteria for Evaluation of Detection. We consider three metrics: sensitivity, specificity, 
and overall accuracy. Sensitivity measures the proportion of malicious packets that are correctly 
identified as such, and specificity measures the proportion of legitimate packets that are correctly 
identified as such, whereas accuracy measures the proportion of packets correctly identified 
malicious and legitimate to all the packets. 

Also, we quantify the additional information that is gained by deploying our system on top of 
independent surveillance agents. In other words, we ask by how much, if at all, the inclusion of 
the DIAMoND collaboration among nodes improves their accuracy relative to their use of only 
the local detection algorithms in isolation. We define information gain we using Kullback-Leibler 
(K-L) divergence. (Note: the potential for improvement in accuracy is scaled by the percent of 
malicious packets. Since in the case of network-wide stealth scans malicious packets constitute a 
smaller percentage of all network traffic, the increase in accuracy is strictly bounded; e.g. 0.045 
represents a substantial improvement relative to the range possible for improvement.) 
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We explored the outcomes while varying the surveillance neighborhood size (TTL=1 or 2) for 
the communication overlay network. 

4.1.2 Detection Performance. 

Figure 10 depicts sensitivity as a function of (1 – specificity) for stealth scan attacks on an 
extended star network topology and an overlay network where neighborhoods are created on the 
basis of direct physical connections (TTL=1). The four experiments presented reflect the impact 
of four levels of importance (or trust) being assigned to the concern levels of neighbors. Results 
show a great improvement in sensitivity (between approximately 10% and 20% for low, med, and 
med+, high algorithms, respectively), without compromising specificity in comparison to purely 
parallel surveillance systems, operating independently. The reason why (1 – specificity) does not 
exceed 3:5% (in worst case) comes from two reasons: (i) precise calibration of the rate limiting 
sensitivity thresholds (i.e., the consensus of level of concerns of neighbors cannot reduce the 
sensitivity threshold of a chosen node below sti,min), and (ii) level of concern of a node signals the 
anomaly, while the decision about the assigning particular flows to legitimate or malicious classes 
remain with independent detection. Lastly, the overall information gain of DIAMoND calculated 
over the accuracy of independent surveillance networks is approximately twice as large for med+ 
and high test functions as for low and med (between 0:022 and 0:047, cf. Table 2). 
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Figure 10. ROC Diagrams: Sensitivity as a function of 1–specificity. 

Comparison of DIAMoND and BLID for stealth scans in the TTL=1 
neighborhood for different test functions (low, med, med+, and 
high), and for different topologies: star (top left), tree (top right), 
mesh (bottom left), and full mesh (bottom right). 
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Table 2. Sensitivity, 1–Specificity, Accuracy of BLID and DIAMoND 
Sensitivity, 1–specificity (95% confidence interval), accuracy, and 
accuracy gain of DIAMoND over BLID for four test functions (A: 
low, B: med, c: med+, d: high). 
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4.1.3 Impact of Simplified Network Topologies. If there are no transit nodes, and we assume a 
full mesh1 topology, then the detection accuracy is decreased significantly in comparison to other 
topologies (cf. Figure 10 and Table 2), especially in case of the low and med excitation functions. 
This is because stealth scans are not as aggressive as DDoS attacks or worm propagation, so the 
great majority of nodes within a TTL=1 neighborhood forming a full mesh topology will not report 
any suspicious behavior.  

Our results also indicate that, for aggressive DDoS attacks, the type of topology does not 
influence the accuracy (see Table 2). We observed that the information gain of the overlay 
detection system is lower (though always positive) in comparison with low-rate malicious activity, 
but the system can react close to the source of the attack more effectively and thereby reduce the 
collateral damage to minimum. 

4.1.4 Minimal and Marginal Deployment Gain. Deployment of networked services across 
administrative boundaries usually has to take place progressively. We therefore also studied how 
deployment percentages affect performance of a DIAMoND system. In particular, we tried to 
understand the minimal deployment percentage needed for DIAMoND to have significant 
performance impact and marginal performance gain with additional deployment. To quantitatively 
evaluate deployment gain, we adapted a calculation of “offline marginal utility” originally 
proposed to analyze the impact of additional metrics [11]. 

Figure 11 shows a clear point of diminishing return: after 30% of the nodes participate in the 
DIAMoND system, the information gain is close to that achieved when all nodes are participating 
and the marginal deployment gain from increasing participation is insignificant. Conversely, even 
when only 10% of nodes are participating, the information gain is already over 0.01. When 20% 
nodes are participating, the information gain reached a significant 0.03. We thus concluded that, 
in this case: (i) minimal effective deployment is 10% of the network nodes participating, (ii) 
marginal gain is maximized at 20% deployment, and (iii) DIAMoND plateaus after 30% 
deployment, with minimal value gained by having additional nodes participating. 
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Figure 11. Information Gain of DIAMoND over BLID 

Information gain as a function of the percentage of system 
deployment for scan activity in the TTL=1 neighborhood and the 
star topology. 

 
 

4.2 Performance of the DIAMoND Algorithm as a DNS-Server Level Attack Detection and 
Mitigation System 
 
4.2.1 Effectiveness at Controlling Hit Peak Attack Rate. Figure 12 shows the HPA metric with 
a varying number of name servers (nsIn) for different threshold settings; demonstrating the impact 
of an ADD attack on a victim with DRS-ADAM system in place. The peak attack traffic at the 
victim fluctuates with just small variations around the threshold absolute value (HPA is close to 
the threshold percentage) as we increase the number of resolvers; this is clear after 50 resolvers. 
As a result, inbound attack traffic at the victim will never reach its sustainable bandwidth. This 
implies that DRS-ADAM is scalable with respect to resolvers involved in attacks and suitable for 
mitigating large DNS amplification attacks without disrupting a victim’s normal services. 
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Figure 12. HPA Variation with the Number of Involved Name Servers 

4.2.2 Mitigation Time. DRS-ADAM is a quick response system that can mitigate ADD attacks 
within a few seconds (see Figure 13). We expect even shorter mitigation times in the real-world, 
as the threshold will be much smaller while the attack growth speed is the same as in the test 
experiments. 

Figure 13. Mitigation Time as a Function of the Number of Involved Name Servers 

Also, mitigation time does not vary with respect to the number of resolvers for a fixed 
threshold, which demonstrates the scalability of DRS-ADAM for mitigating real-world attacks. 
When DRS-ADAM is used, the victim’s inbound attack traffic grows in seconds under an ADD 
attack, hits a peak value close to the threshold absolute value, and then declines substantially after 
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this highest point. The peak is short-lived, measured in ms, and the decline occurs within a few 
seconds (< 1:25s for any threshold and number of resolvers).  
 
4.2.3 Bandwidth and Memory Consumption. A victim’s outbound bandwidth consumption 
increases linearly in bytes per second with respect to number of resolvers involved in an ADD 
attack, as shown in Figure 14 (left). During an attack, a range of tens of thousands of resolvers 
corresponds to victim host bandwidth consumption of a few KBps. This consumption is negligible 
in comparison with the MBps or GBps bandwidth available to a victim, and thus, does not affect 
its system workload in any way. Similarly, the average bandwidth consumption for each resolver 
increases linearly with the number of resolvers involved in an attack, as shown in Figure 
14(center). If we again scale the number of resolvers to tens of thousands, the worst case 
corresponds to a few hundred KBps bandwidth consumption per resolver. This amount of 
consumption is manageable and does not disrupt the main activities of a DNS resolver. Figure 14 
(right) represents the total bandwidth consumption per resolver during the whole attack period.  
 
 

 
Figure 14. System Workload 

 
 
4.2.4 Comparison with RRL. To show mitigation capabilities against highly distributed ADD 
attacks, this comparative experiment with RRL used a fixed attack size regardless of the number 
of resolvers. The absolute threshold value stayed the same for any threshold percentage, while the 
number of resolvers increased. As a result, the attack query rate per resolver decreased. To the best 
of our knowledge, this work presents the first experimental evaluation of BIND9’s RRL feature in 
a distributed setting with multiple DNS resolvers; to date, RRL has been tested only on a single 
DNS server. Figure 15 depicts the normalized inbound rate (NIR) observed at the victim’s router 
interface for different numbers of resolvers. The threshold used is 5%. NIR is the real-time attack 
rate percentage of the peak expected attack’s volume at the victim (the total attack volume after 
the growth phase when no mitigation is in place). The responses-per-second value of RRL is set 
to 10 based on the 5% threshold. When the number of resolvers is greater than or equal to 20, the 
RRL rate-limit response is not activated during the attack, and the victim host faces downtime. 
When the ADD attack becomes well-distributed, using more resolvers at the same attack size, it 
can bypass the RRL detection mechanism when the attack query rate per resolver becomes less 
than or equal to the per-second limit of RRL (10 qps in the 20 resolvers’ case). Thus, RRL will 
have little or no impact on highly-distributed ADD attacks. Even when RRL can detect an attack 
in the case of 10 resolvers, it cannot stop the attack traffic before the HPA hits 34:8% for the 5% 
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threshold value. This trait shows that high-scale attacks might still be effective even if they are 
detected and rate-limited. In contrast, DRS-ADAM stops all attack traffic in less than two seconds 
and contains HPA at around 5%. 

Figure 15. Normalized Inbound Rate over Time of Victim’s Router 

4.2.5 Partial Deployment of DRS-ADAM. Figure 16 shows HPA for different percentages of 
resolvers equipped with DRS-ADAM. Resolvers that are equipped with DRS-ADAM were 
randomly selected from a set of 100 resolvers. In particular deployment scenarios, there will 
always be a minimum HPA value, since resolvers that are not equipped with DRS-ADAM cannot 
stop an ADD attack. The best performance line in the graph represents this minimum HPA that 
will be observed when a theoretically best-possible, resolver-based (both local and distributed) 
solution is deployed. By increasing k, the DRS-ADAM performance improved, and eventually 
when k ≥ 5, gave close to that best theoretical performance. The message complexity for the victim 
would now be O(kn), increasing linearly with the value of k. For a small constant k value; however, 
it is safe to expect the complexity to remain at O(n).  
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Figure 16. HPA Variation for Partial Deployment of DRS-ADAM 
Deployment with 100 resolvers and 15% Threshold. 

4.2.6 Manipulating DRS-ADAM and Defending Against UDP Spoofing. The attacker can use 
various methods to manipulate (or game) our DRS-ADAM system by exploiting its 
communication protocol. In one scenario, an attacker can try to falsify the DNS query rates or 
unknown-list circulating among DNS resolvers by forging UDP packets. The attacker can send a 
resolver packet of less than the actual DNS query rate (even 0). DRS-ADAM solves this problem 
by considering the packet with the maximum DNS query rate but limited to an upper rate bound. 
This received attack rate limit prevents a bogus message with a large rate from blocking normal 
DNS traffic to a client. An attacker can also send a huge garbage unknown-list to increase a DNS 
resolver’s communication overhead. DRS-ADAM cross validates list by obtaining the DNS query 
rate for a few random resolvers; the rate should be greater than 0. We implemented both these 
logics in our DRS-ADAM system and simulated a manipulation attack by constantly generating 
forged UDP packets (with an interval of 100 ms) that each carried either a lower DNS query rate 
or a huge garbage list. Our DRS-ADAM successfully dropped all such packets and our results 
remained same as shown in Figures 12 and 13. 

Another scenario exploits DRS-ADAM to block normal DNS traffic even when the victim is 
not under ADD attack. Here, the attacker sends forged packets of DNS query rates. DRS-ADAM 
cross validates query rates from randomly selected resolvers just before blocking the victim 
services. The attacker can further attempt confusion by sending responses from all resolvers. DRS-
ADAM can identify the type of attack as it does not expect packets from all resolvers. For this 
experiment, we sent forged DNS query rates along with normal DNS queries from the victim to a 
resolver. Figure 17 shows that the DRS-ADAM manipulation prevention system successfully 
continued serving DNS queries for the victim even when an attacker tried to exploit it.  
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Figure 17. Manipulating DRS-ADAM and Observed Resolver Normal Traffic 

 
 
 

4.3 Performance of the DIAMoND Algorithm with Simplified Network Traffic on more 
Realistic Network Topologies 
 
4.3.1 Performance on Different Topologies Assuming Gaussian-Distributed Traffic. Both 
DIAMoND and the independent parallel algorithm can in general detect the attack successfully 
when the normal underlying traffic is Gaussian, regardless of the underlying topology (Figure 18). 
On average, the accuracy in square lattices is higher than 90%, and in all other topologies it is 
around 80%. These values depend on the ‘intensity’ of the attack, i.e. the packet size, z, and the 
fraction of compromised nodes, p. (Note: these two parameters do not have the same effect on the 
results.) The detection algorithms are more efficient when a small number of nodes use large 
packet sizes, compared to when more nodes use smaller packets. 
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Figure 18. Accuracy, Sensitivity, Specificity, and Precision for Gaussian Traffic 
Values of accuracy, sensitivity, specificity, and precision for Gaussian distributed 
traffic. For each index, the first column shows the results for the parallel algorithm, 
the second column shows the results for DIAMoND, and the third column displays 
the relative gain of the DIAMoND algorithm over the parallel algorithm. We use 
the upper threshold, si0, as the threshold for the parallel algorithm. 
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DIAMoND significantly outperforms the accuracy of purely parallel detection, in some cases 

as much as 20%. For the lattice structure, the largest improvement is in the regime of small packets, 
where attack detection is more difficult. In random model networks, ER and scale-free, there is an 
improvement of roughly 10%, which in the Internet structures becomes around 7%. For the 
Internet, the advantage of DIAMoND emerges when both z and p have large values. If one of the 
two is small, then both algorithms are equally efficient. 

The improved performance of DIAMoND is mainly due to the successful detection of positive 
hits. In the sensitivity plot, DIAMoND detects a significantly larger fraction of attacked nodes 
compared to the parallel algorithm. The rate of detection is rather low, in both cases, when the 
packet size is small, independently of how many nodes take part in the attack. The detection seems 
to be more efficient in lattices, but in model and real networks the sensitivity increases to 80% 
only when the packet size is ~100 (i.e. roughly 10% of the average regular traffic). For values 
lower than that, neither algorithm can have sensitivity larger than 50%. In all cases, though, the 
shared information scheme results to a much improved detection rate of true positive hits, with a 
gain of 10-20%. The two algorithms yield comparable specificity results with each other. 
Specificity is always very close to 100%, which indicates that it is difficult to mistake regular 
traffic for attack traffic, and there are very few false positives. This explains also the behavior of 
the precision, since almost all hits detected as positive are indeed true positives. The main 
drawback of both algorithms is, therefore, that there are many false negatives, especially in the 
parallel algorithm. In summary, DIAMoND is efficient in separating true from false positives, but 
there are also many false negatives, i.e. undetected positive hits. 

The above comparisons were made when the threshold for the parallel algorithm was equal to 
the upper threshold of DIAMoND, si0. We examined how this comparison changes when the 
parallel threshold takes the value of the lower threshold, siL. As shown in Figure 19, the accuracy 
of the parallel algorithm increases, and now it is higher than in DIAMoND. This increase is mainly 
due to the improvement of sensitivity, which is also larger than in DIAMoND. The specificity, 
though, which above was always close to 100% now suffers a large drop, and even becomes 
smaller than 50%. As a consequence, the measurement of precision also deteriorates a lot. This 
behavior can be explained because when we lower the threshold it becomes easier to detect attacks, 
but at the same time we falsely characterize legitimate traffic as attack. In the extreme case, a very 
low threshold can characterize all traffic as attack, with the tradeoff that it is no longer possible to 
identify regular traffic. 
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Figure 19. Additional Results for Gaussian Traffic 

Same as Figure 18, but now for the parallel algorithm we use the lower threshold, siL. 
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4.3.2 Performance on Different Topologies Assuming Uniformly Distributed Traffic. In 
general, the accuracy improves significantly, both in DIAMoND and the no-sharing algorithms 
(Fig. 20). Except for very small values of the packet size z, accuracy is now larger than 90%. The 
network structure has a minor influence in accuracy and the results are largely agnostic to the 
substrate. All the measures that we calculated - accuracy, sensitivity, specificity, and precision – 
have values close to 100%. There is not a notable gain in using one algorithm over the other, but 
the precision and specificity seem to work better for the parallel algorithm. The gain is minimal, 
though, because both algorithms are very close to perfect detection for all values of z and q. 

The increased detection efficiency, compared to Gaussian traffic in Figure 18, is due to the 
enhanced sensitivity. The algorithms can separate attack from noise better now, because they 
succeed in the detection of true positives, and there are very few false negatives. 
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Figure 20. Accuracy, Sensitivity, Specificity, and Precision for Uniformly Distributed Traffic 
For the parallel algorithm, we use the upper threshold, si0. 
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In the above discussion, the threshold for the parallel algorithm was fixed to the upper 
DIAMoND threshold value, si0, and there was no clear advantage of one method over the other. 
When we move the parallel threshold to the lower value, siL, then DIAMoND outperforms the 
parallel algorithm again. The results for the parallel algorithm become less accurate, and specificity 
decreases significantly. The metric that mainly suffers from the lower threshold is precision 
because now false positives increase. In cases of small packet size z and/or small fraction of 
compromised nodes, there is a dramatic change of precision from an almost perfect precision (for 
the upper threshold) to a complete failure (less than 50% for the lower threshold). 
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Figure 21. Additional Results for Uniform Traffic 
Same as Figure 20, but now for the parallel algorithm we use the lower threshold, siL. 
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4.3.3 Performance on Different Topologies Assuming Exponentially Distributed Traffic. In 
this case, we do not expect the detection algorithms to be efficient, because even regular traffic 
can assume very large values. Therefore, without any additional information it is very hard to 
determine if increased traffic is due to an attack or not. 

This behavior is verified in Fig. 22. The accuracy for lattices, ER networks, and (partially) 
scale-free networks with weak hubs is very low, and in most cases does not even exceed 50%. For 
systems with strong hubs, such as the real CAIDA networks that we studied, the accuracy 
increases, but still remains relatively low, at the level of 75%. The sensitivity fails to reach 50% 
under any circumstances, but the specificity is very high. This simply means that the algorithms 
cannot detect positive hits, but they do not have a problem in detecting the absence of attacks (true 
negative). The precision is quite high, which indicates that when a positive hit is detected, then 
there is a low probability that this is a false positive. In short, for exponential traffic, the algorithms 
are successful when they identify an attack, but they cannot identify the majority of attacks, leading 
to a huge number of false negatives. 
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Figure 22. Accuracy, Sensitivity, Specificity, and Precision for Exponentially Distributed Traffic 
For the parallel algorithm we use the upper threshold, si0. 
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The differences between the two algorithms are not significant, even though DIAMoND 
outperforms the parallel algorithm in precision. When we lower the threshold (Fig. 23), the results 
for the parallel algorithm deteriorate and the detection of true negatives drops by almost 10%. In 
these cases, DIAMoND offers an overall better performance in accuracy, specificity, and 
precision. 
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Figure 23. Additional Results for Exponential Traffic 
Same as Figure 8, but now for the parallel algorithm we use the lower threshold, siL. 
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5.0 CONCLUSIONS 

5.1 The Utility of the Bio-Inspired DIAMoND Algorithm as a Surveillance System Across 
Threat and Normal Network Traffic Scenarios 

Based on algorithms observed in colonies of honey bees, our proposed self-organizing, 
nonparametric distributed coordination framework relies on dynamic individual detection 
thresholds for anomalous event pattern detection on networks. DIAMoND can therefore be used 
with any set of local anomaly detection schemes. We have already demonstrated DIAMoND’s 
ability to improve accuracy in detection for network-wide stealthy port scan and SYNflooding-
based DDoS directly on an emulation testbed. DIAMoND demonstrated up to 20 percent 
enhancement in sensitivity without sacrificing specificity. DIAMoND also proved robust in 
simulation to variation in neighborhood size, communication protocol, and partial deployment. By 
leveraging only nonparametric information sharing, resulting from independent local anomaly 
detection schemes, DIAMoND allows multiple entities, which may be functionally and/or legally 
prohibited from sharing cyber data, to leverage each other’s insight and increase their effectiveness 
in cyber defense. Furthermore, DIAMoND enables real-time adaptation in anomaly defintion, 
eliminating the identification-designed-response delay inherent in defenses that react to known 
and predefined threats, and allowing active defense for emerging novel network attacks. 

5.2 The Utility of DIAMoND as a DNS-Server Detection and Mitigation System 

Existing mitigation techniques for ADD attacks cannot prevent a victim’s network bandwidth 
from being fully consumed even with timely detection of the attack. The DIAMoND-based system, 
DRS-ADAM, can quickly detect ADD attacks and fully stop them well before they pose a 
significant threat to victims. To detect an ADD attack, DRS-ADAM utilizes the DNS resolvers 
that are exploited in the attack and does not require any additional, dedicated hardware. DNS 
resolvers share the local DNS query rates with each other, facilitating quick and accurate 
computation of accumulated query rates. Our simulation results show that DRS-ADAM is scalable 
for both mitigation times and hit peak attack rates. ADD attacks will always be contained close to 
victim’s acceptable thresholds, regardless of the number of DNS resolvers involved in an attack, 
and mitigated within a few seconds. DRS-ADAM is robust against manipulation scenarios such 
as falsifying the DNS query rates shared among DNS resolvers (with UPD packet forging).  

5.3 The Utility of DIAMoND Across Various Realistic Network Topology Scenarios 

DIAMoND’s performance was assessed for different traffic substrates, different distributions 
of regular traffic, different sizes of the attack packets, and different number of nodes taking part 
in the attack. The results of the algorithm were evaluated against a parallel algorithm, where there 
was no information sharing among the participating nodes. In the majority of the cases, DIAMoND 
outperformed the parallel algorithm by a wide margin. In a few cases, the opposite was actually 
true. Even in these cases, though, the information-sharing algorithm was an improvement in some 
aspect, e.g. performing better in precision even though accuracy was worse. 
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Sharing non-parametric conclusions (i.e. level of concern) with neighboring nodes allows for 
an efficient detection of DDoS attacks, and many times this is done with a near perfect accuracy. 
The comparison of this scheme with a strictly local algorithm lacking communication, shows that 
the DIAMoND is more reliable in the majority of the studied conditions. 

5.4 Overall Conclusion 

The research completed with the support of this funding has successfully designed a bio-
inspired anomaly detection algorithm that improves upon performance of strictly parallel 
surveillance systems without incurring the costs of centralized analysis, and without requiring the 
trust and/or secure communication channels that would enable sharing of sensitive data for 
collaborative, hierarchical analysis. While further questions remain open for investigation and 
algorithmic refinement (including, but not limited to, the sensitivity of the system to greater 
diversity of hierarchical scale of DIAMoND system participants, the impact of multi-modal 
surveillance data, and the impact of colluding malicious participants on system performance), 
these outcomes provide a firm foundation for nonparametric collaborative surveillance systems. 
They have now been presented for peer review by academic researchers in conference 
presentations and proceedings[3, 12], magazine articles[13], journal articles [15], and book 
chapters [16]. 
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APPENDIX A – Full Description of Software Simulation Testbed 

The following is quoted directly from a simulation instruction website we developed and 
maintain [14].  

Getting Started 

We have developed our prototype communication controller as an OpenFlow component in 
the POX environment and evaluated in Mininet 2.0 simulator. It has been actively developed and 
supported. We encourage you to contribute code, bug reports, and anything else that can improve 
the proposed controller. 

The easiest way to get started is to download a pre-packaged Mininet VM that includes Mininet 
itself, all OpenFlow binaries and pre-installed tools. In addition to standard Mininet installation, 
we provide our POX controllers, prototype implementation of the communication protocol, and 
some testing scenarios. To install Mininet please download our Mininet VM image (based on 
Mininet version 2.0.0) and follow steps 2-5 of the Mininet VM Installation (recommended), as 
described here. After the installation, we encourage to do the walkthrough and run the OpenFlow 
tutorial. 

DIAMoND Components in POX 

In this section, we discuss the DIAMoND components in POX, whereas the description of 
standard components that come with POX can be found here. 

l2_learning-modif This component makes OpenFlow switches act as a "standard" type of L2 
learning switch analogically to forwarding.l2_learning. However, it ignores the distributed-
detection communication packets (Ethernet type 0x0105) that are exchanged between switches 
participating in the DIAMoND network. 

local_detectors This component can detect all kind of anomalies related to the TCP protocol 
locally, as described in the following paper: "An Accurate Sampling Scheme for Detecting SYN 
Flooding Attacks and Portscans". 

anomaly_detector This component is the most important part of the DIAMoND algorithm. In 
first place it creates neighborhoods (smaller subnetworks within which the information is 
exchanged) based on hop limits. Second, it combines levels of concern of its neighbors with a 
report from its internal NIDS (the local_detectors component). 

This component has two options to determine the scope of the neighborhood and the level of 
trust of a switch to its neighbors: 

    --ttl defines the neighborhood based on a hop limit that reflects the geographical or 
administrative distance. In other words, nodes exchange their levels of concerns with their direct 
neighbors (ttl=1) or their neighbors and neighbors of their neighbors (ttl=2), and so on.  

    --algo defines the level of trust to all switches belonging to node's neighborhood. Possible 
values are: "low", "med", "med+", and "high".  
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Example run command syntax 

sudo ./pox.py anomaly_detector --ttl=2 --algo="med" l2_learning-modif 
openflow.discovery log.level --WARNING --anomaly_detector=DEBUG 
--local_detectors=DEBUG  

And example run command syntax to build the Mininet network: 

sudo mn --switch ovsk --controller=remote,ip=127.0.0.1,port=6633 --custom 
~/mininet/custom/topoStar7pro.py --topo star7pro  

anomaly_detector2 This component has one more option in comparison to anomaly_detector. 
    --strategy defines the strategy of neighborhood creation. In addition, neighborhood based on 

the hop limit (option: "neig"), we propose to correlate previously observed attacks and construct 
neighborhoods based on the assumption that malicious activity may reoccur and be launched from 
the same set of compromised machines and/or against the same victims (option: "anom")  

Example run command syntax 

sudo ./pox.py anomaly_detector2 --ttl=1 --algo="med+" --strategy="anom" 
l2_learning-modif openflow.discovery log.level –WARNING 
--anomaly_detector2=DEBUG --local_detectors=DEBUG  

You may also run the following command with physical Mininet topologies that contain loops: 

sudo ./pox.py anomaly_detector --ttl=1 --algo="med" l2_learning-modif 
openflow.discovery openflow.spanning_tree --no-flood --hold-down log.level 
--WARNING --anomaly_detector=DEBUG --local_detectors=DEBUG 
--openflow.spanning_tree=DEBUG  

You might try to check the effectiveness of the algorithm when some switches behave as a type of 
"typical" L2 switch and some other can be in addition equipped with the DIAMoND algorithm: 

sudo ./pox.py openflow.of_01 --port=6633 anomaly_detector --ttl=1 --
algo="med" l2_learning-modif log.level –WARNING 
--anomaly_detector=DEBUG --local_detectors=DEBUG  

sudo ./pox.py openflow.of_01 --port=6644 forwarding.l2_learning log.level 
--WARNING 

Finally, the structure of our network layer protocol is discussed and can be found in 
/home/mininet/pox/pox/lib/packet/bee.py, whereas further examples can be found in 
/home/mininet/maciej/tests/ 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

DIAMoND  distributed intrusion/anomaly monitoring for nonparametric detection 
MES DIAMoND message exchange service 
LAD local anomaly detector  
TIE  total impact estimation  
TLS  thread level estimator 
BTG background traffic generation services 
ETG  event traffic generation services 
RTT  replay of traffic traces 
HPA hit peak attack  
DRS-ADAM  distributed rate sharing based amplified DNS-DDoS attack mitigation 
ADD amplified DNS DDoS 
RRL  response rate limit 
nsIn  number of name servers 
K-L  Kullback-Leibler (divergence) 
TTL  time-to-live (i.e. hop distance on network topology) 
DNS  domain name system 
TCP  transmission control protocol 
UDP  user datagram protocol 
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GLOSSARY OF TERMINOLOGY 

analysis levels: 
• local concern consensus: a subgroup where node x and at least a majority of the

neighborhood of x agree on the level of concern 
• local threat consensus: a subgroup where node x and at least a majority of the

neighborhood of x agree on the threat level 
• regional (concern/threat) consensus: defined in the same ways as local consensus, but

involving a subgroup larger than the neighborhood of a single node while still smaller (at 
least half?) than the total population 

• global (concern/threat) consensus: defined in the same ways as regional consensus, but
most of the total population (85%?) 

backbone network: a part of computer network that is composed of interconnected nodes 

computer network: which nodes (hosts) can send packets directly to which other nodes (hosts) 
(i.e. the full node/edge set) 

concern level: individual nodes can be “concerned” that a threat might be occurring without any 
data-driven analysis to support this. There can be multiple levels of concern. Concern can 
influence a decision about believed threat level (result of processing a local information = 
direct observation + concern level of the others). 

host: any computer connected to a computer network 

information network: the same node set as the computer network (backbone network), but the 
edge set represents only pairs of nodes that can communicate directly for the purpose of 
anomaly detection (i.e. the union of all neighborhoods for all x); this can be a 
(dynamically) weighted network 

knowledge levels: 
• direct observation from x = analysis of traffic that comes across x itself
• local information/knowledge for x = information about observed data and/or information

about concern from neighbors of x
• global information/knowledge = information that could only be observed if monitoring

the whole population

n-th neighbor of x: a node y is an n-th neighbor of x if the length of the shortest communication 
path between y and x involves n-1 intermediate nodes (note, y is a neighbor of x is 
implicitly equivalent to y is a 1-neighbor of x) 

neighborhood of x: for a node x, the set of nodes (not including x) that x includes in assessing the 
threat level 
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node: switch/router 

population: the entire set of all nodes 

sensitivity: how good we are at noticing actual problems: rate of detection of true positives = 
TP/(TP+FN) 

specificity: how confident we are that detection of a problem is because it’s true: = 1-
FP/(FP+TN) 

stability: applies to level of concern, level of threat, and consensus; the number of time-steps 
over which the factor remains (mostly?) unchanged 

threat level: the data-driven assessed level of likelihood that an anomaly is occurring; this will be 
analyzed at each node, possibly by subgroups, and also possibly at the population level 
(comes from direct observation) 




