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Abstract—Vector sensor imaging presents a challeng-
ing problem in covariance estimation when allowing
arbitrarily polarized sources. We propose a Stokes
parameter representation of the source covariance ma-
trix which is both qualitatively and computationally
convenient. Using this formulation, we adapt the prox-
imal gradient and expectation maximization (EM) al-
gorithms and apply them in multiple variants to the
maximum likelihood and least squares problems. We
also show how EM can be cast as gradient descent on
the Riemannian manifold of positive definite matrices,
enabling a new accelerated EM algorithm. Finally, we
demonstrate the benefits of the proximal gradient ap-
proach through comparison of convergence results from
simulated data.

I. Introduction
A. Vector sensor imaging

The developments of this paper are motivated by the
electromagnetic vector sensor imaging problem: estimating
the magnitude, polarization, and direction of plane wave
sources from a sample covariance matrix of vector mea-
surements. A vector sensor (example shown in Figure 1)
measures the electromagnetic field at a single point using
three orthogonal dipole elements and three orthogonal loop
elements with a common phase center, producing a six-
element measurement vector [2]. This vector represents the
full state of the electromagnetic field at the sensor’s location
[3], implying sensitivity from all directions and complete
polarization information. These properties make even a
single vector sensor ideal for determining the direction
of arrival of signal sources [2, 4, 5], nulling or isolating
specific sources, and maximizing the statistics collected at
a single location [3]. In this application, we seek to use a
single vector sensor to make a map of signal strength and
polarization as a function of direction of arrival.

We model the measured signals in terms of a collection
of point sources distributed equally in angle on the sur-
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Figure 1. Atom antenna [1], an electromagnetic vector sensor. The
antenna is composed of three orthogonal loop and dipole elements
with a common phase center, measuring the complete electromagnetic
field in a six-element vector.

rounding sphere as in [3]. The magnitude and phase of each
source at time sample 𝑛 of 𝑁 is collected in the complex
vector 𝑐u�. The six-element measurement vector 𝑟u� is then
given by

𝑟u� = 𝐴𝑐u� + 𝑤u�, (1)

where 𝐴 is the matrix of steering vectors describing
the contribution from each individual source and 𝑤u� is
measurement noise. We assume that the sources have an
arbitrary phase with respect to time over the 𝑁 samples, so
we impose a probabilistic model where the source and noise
vectors are zero-mean complex normal with covariances Σ
and 𝜎I:

𝑐u� ∼ 𝒞𝒩(0, Σ) ∀𝑛
𝑤u� ∼ 𝒞𝒩(0, 𝜎I) ∀𝑛
𝑟u� ∼ 𝒞𝒩(0, 𝐴Σ𝐴∗ + 𝜎I) ∀𝑛,

(2)

where I denotes the identity matrix. Assuming a known
estimate of the noise variance 𝜎, our objective is to estimate
the source covariance Σ from the measurements 𝑟u�.

B. Covariance estimation
One approach to estimating the source covariance is

to seek the maximum likelihood solution for Σ, with the
likelihood given by the complex normal distribution for 𝑟u�.



Equivalently, we can minimize the negative log-likelihood,
leading to the objective function

𝐻u�u�(Σ) = log det(𝐴Σ𝐴∗ +𝜎I)+tr((𝐴Σ𝐴∗ + 𝜎I)−1𝑆). (3)

The measurements are present only in the sample covari-
ance matrix 𝑆, making it a sufficient statistic:

𝑆 = 1
𝑁

u�−1
∑
u�=0

𝑟u�𝑟∗
u�. (4)

Another approach, perhaps more convenient because of its
convexity and relative simplicity, is to minimize the squared
error between the estimated measurement covariance and
the sample covariance. This gives the least-squares objective

𝐻u�u�(Σ) = 1
2 ‖𝑆 − (𝐴Σ𝐴∗ + 𝜎I)‖2

2. (5)

For both cases, we seek to solve an optimization problem
of the form

minimize
Σ

𝐻(Σ)

subject to Σ ⪰ 0,
(Pml, Pls)

which minimizes the given objective while enforcing the
constraint that the covariance be positive semidefinite
(PSD). The choice of objective function can depend on
a number of factors: convergence guarantees, algorithm
performance, and correctness. Maximum likelihood solves
the desired problem from a statistical standpoint, but it
may be that least-squares also produces an acceptable
solution for a given case while being more practical to
implement.

II. Source signal polarization
A. Independent polarized source model

It is possible to solve the maximum likelihood and least-
squares covariance estimation problems for a general Σ,
but a significant simplification arises by assuming that the
sources are statistically independent for each direction in
the sky. This does not, however, imply that the source
covariance matrix Σ is diagonal. In order to allow for
sources with arbitrary polarization, each source must be
represented in a basis of two orthogonal polarizations. The
Jones vector 𝑧 fully quantifies the state of a two-dimensional
transverse wave at a given location and time:

𝑧 = [𝐸ℎ𝑒u�u�ℎ

𝐸u�𝑒u�u�u�
] = [𝑧ℎ

𝑧u�
] . (6)

Each component 𝑧u� of the Jones vector gives the wave’s
amplitude and phase as a complex number for the corre-
sponding basis direction, in this case horizontal and vertical.
Therefore, each independent arbitrarily-polarized source
requires two entries in 𝑐u� for its Jones vector components.

Representing the horizontal and vertical basis compo-
nents of each source with corresponding entries in vectors
ℎu� and 𝑣u�, we can partition the measurement equation (1)
as

𝑟u� = [𝐴ℎ 𝐴u�] [ℎu�
𝑣u�

] + 𝑤u�, (7)

where 𝐴ℎ and 𝐴u� give the steering vectors for horizontal
and vertical polarizations at each source location. This
leads to a structured source covariance,

Σ = 𝐄([ℎu�
𝑣u�

] [ℎ∗
u� 𝑣∗

u�]) = [Σℎℎ Σℎu�
Σ∗

ℎu� Σu�u�
] . (8)

Note that assuming independent sources for each pointing
direction implies that each of the blocks Σℎℎ, Σℎu�, and
Σu�u� must be diagonal.

B. Stokes parameter formulation
It is convenient both qualitatively and computationally

to represent Σ in terms of Stokes parameters:

Σ = 1
2 [ diag(𝐼 + 𝑄) diag(𝑈 − 𝑖𝑉 )

diag(𝑈 + 𝑖𝑉 ) diag(𝐼 − 𝑄) ] , (9)

where 𝐼 , 𝑄, 𝑈 , and 𝑉 are vectors with corresponding entries
for each independent source. This satisfies the typical
definition of Stokes parameters in terms of second-order
polarization moments:

𝐼 = diag(Σℎℎ + Σu�u�) 𝑈 = 2ℜ(diag(Σℎu�))
𝑄 = diag(Σℎℎ − Σu�u�) 𝑉 = −2ℑ(diag(Σℎu�)).

(10)

𝐼 can be interpreted as total intensity, while 𝑄, 𝑈 , and 𝑉
describe different modes of polarization.

C. Projection onto the positive semidefinite cone
Parametrization in terms of Stokes parameters is conve-

nient because it becomes easy to project a covariance Σ̂
onto the positive semidefinite cone:

arg min
Σ

∥Σ − Σ̂∥
2

F

subject to Σ ⪰ 0.
(Pproj)

With Σ̂ represented by Stokes parameters ̂𝐼 , �̂�, ̂𝑈 , and ̂𝑉 ,
the Frobenius norm in (Pproj) becomes

1
2 ∥𝐼 − ̂𝐼∥

2

2
+ 1

2 ∥𝑄 − �̂�∥
2

2
+ 1

2 ∥𝑈 − ̂𝑈∥
2

2
+ 1

2 ∥𝑉 − ̂𝑉 ∥
2

2
. (11)

Similarly, the positive semidefinite condition becomes

Σ ⪰ 0 ⇔
𝐼 ⪰ 0

𝐼2 ⪰ 𝑄2 + 𝑈2 + 𝑉 2,
(12)

where ⪰ on the right-hand side implies elementwise com-
parison.

This vector optimization problem is separable into scalar
components, so it suffices to solve the problem for each
(𝐼u�, 𝑄u�, 𝑈u�, 𝑉u�) tuple and apply the resulting solution
element-wise to the vector Stokes parameters. First define

𝑃u� = √�̂�2
u� + ̂𝑈2

u� + ̂𝑉 2
u� . (13)

If ̂𝐼u� ≥ 𝑃u�, no projection is needed and the solution is

𝐼u� = ̂𝐼u� 𝑄u� = �̂�u� 𝑈u� = ̂𝑈u� 𝑉u� = ̂𝑉u�. (14)



Otherwise, evaluating the KKT conditions [6] gives a closed-
form expression for the unique minimizer:

𝐼u� = max( 1
2 ( ̂𝐼u� + 𝑃u�), 0)

𝑄u� = 𝐼u�
𝑃u�

�̂�u� 𝑈u� = 𝐼u�
𝑃u�

̂𝑈u� 𝑉u� = 𝐼u�
𝑃u�

̂𝑉u�.
(15)

Essentially, non-physical Stokes components with the total
intensity less than the polarized intensity are scaled to
be fully polarized. Since the general solution to (Pproj)
requires an eigendecomposition [7], it is clear that projec-
tion in terms of Stokes parameters produces a significant
simplification.

III. Algorithms
A. Expectation maximization

Application of the expectation maximization (EM) algo-
rithm [8] to the maximum likelihood covariance estimation
problem is well-known [9, 10], and its formulation is given
in Algorithm 1. It is an iterative algorithm that makes use

Algorithm 1 EM for (Pml) [9]
given Σ0, measurements (𝑆, 𝜎)
repeat

Σu�+1 ← Σu� − Σu� 𝐠𝐫𝐚𝐝u�u�u�
(Σu�)Σu�

until stopping criterion is satisfied

of the gradient of the negative log-likelihood function,

𝐠𝐫𝐚𝐝u�u�u�
(Σ) = 𝐴∗𝑅−1(𝑅 − 𝑆)𝑅−1𝐴, (16)

where
𝑅 = 𝐴Σ𝐴∗ + 𝜎I. (17)

A convenient property of EM is that it implicitly enforces
the condition that Σ be positive semidefinite.

B. Proximal gradient
A similar algorithm that is less well-known with respect

to the covariance estimation problem is proximal gradient
[11], given in Algorithm 2 for a general setting. It solves

Algorithm 2 Proximal Gradient (PG) [11]
given step size 𝜇, 𝑥0

repeat
𝑧u�+1 ← 𝑥u� − 𝜇 𝐠𝐫𝐚𝐝u�(𝑥u�)
𝑥u�+1 ← 𝐩𝐫𝐨𝐱u�u� (𝑧u�+1)

until stopping criterion is satisfied

split-objective problems of the form

minimize
u�

𝐹(𝑥) + 𝐻(𝑥), (Pproxgrad)

where 𝐹 must admit a proximal operator,

𝐩𝐫𝐨𝐱u� (𝑣) = arg min
u�

(𝐹(𝑥) + 1
2 ‖𝑥 − 𝑣‖2

2),

and 𝐻 must be smooth with a gradient given by 𝐠𝐫𝐚𝐝u�(𝑥).

For both the maximum likelihood and least-squares
covariance estimation problems, we already have a smooth
𝐻. In the least-squares case,

𝐠𝐫𝐚𝐝u�u�u�
(Σ) = 𝐴∗(𝐴Σ𝐴∗ + 𝜎I − 𝑆)𝐴. (18)

The positive semidefiniteness constraint can be incorpo-
rated into 𝐹 as an indicator function, making the proximal
operator into Euclidean projection onto the PSD cone.

Though this projection adds a wrinkle in comparison
to the EM algorithm, proximal gradient can incorporate
improvements such as adaptive step size [12, 13] and
acceleration [14, 15] that enable improved convergence.
In addition, it provides a straightforward path to include
additional constraints or regularization that can be useful
for solving variants of the covariance estimation problem.
C. EM as Riemannian proximal gradient

Given the similarities between the EM and proximal
gradient algorithms, it is not surprising that they share a
connection when the problem is viewed through the lens
of gradient descent on the manifold of positive definite
matrices. Manifold optimization relies on the Riemannian
gradient, which provides the direction in the manifold’s
tangent plane along which the function increases most [16,
17]. On the Σ ≻ 0 manifold, the Riemannian gradient of
the maximum likelihood objective is a modified Euclidean
gradient [18]:

𝐠𝐫𝐚𝐝PD
u�u�u�

(Σ) = Σ 𝐠𝐫𝐚𝐝u�u�u�
(Σ)Σ. (19)

Notice that the Riemannian gradient is precisely the
expression that appears in the EM step of Algorithm 1.
From this perspective, EM is simply unit-step gradient
descent on the positive definite manifold.

Introduction of a variable step size to EM is possible
through an appeal to the manifold optimization concept of
a retraction. Useful in this case is the projective retraction,
which takes a Euclidean step along the Riemannian gradi-
ent followed by a Euclidean projection onto the manifold
[17]:

Σu�+1 = Retproj(Σu�, 𝜇 𝐠𝐫𝐚𝐝PD
u�u�u�

(Σu�))

= 𝐩𝐫𝐨𝐱u�Σ≻0
(Σu� − 𝜇 𝐠𝐫𝐚𝐝PD

u�u�u�
(Σu�)). (20)

Unfortunately, projection onto the open set of positive
definite matrices is not well-defined; we can approximate
by projecting onto the positive semidefinite cone instead:

Σu�+1 = 𝐩𝐫𝐨𝐱u�Σ⪰0
(Σu� − 𝜇 𝐠𝐫𝐚𝐝PD

u�u�u�
(Σu�)). (21)

This looks like proximal gradient (Algorithm 2) applied to
the maximum likelihood problem, only with the Rieman-
nian gradient replacing the Euclidean gradient.

In other words, by taking proximal gradient and using a
Riemannian gradient step, one can produce a new family of
“EM” algorithms. Because we can then apply convergence
improvements developed for proximal gradient, this new
Riemannian proximal gradient algorithm may provide
significant benefit over EM.
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Figure 2. Convergence in likelihood for a random problem instance. The accelerated, adaptive-step variant converges in the fewest iterations
for all problem formulations: least-squares with proximal gradient (LS-PG), maximum likelihood with EM or Riemannian proximal gradient
(ML-EM), and maximum likelihood with proximal gradient (ML-PG).
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Figure 3. Convergence in likelihood over all runs for the fastest variants. Trends from the single run case hold over many instances. ML-PG
readily converges to a sparse solution, so it is the easy choice for vector sensor imaging. ML-EM is relatively slow because it is constrained to
the positive definite manifold. LS-PG is not competitive enough to justify the relative simplicity of its implementation.

IV. Simulation convergence comparisons

To compare algorithm convergence rates, we simulated
150 instances of vector sensor measurements for two
randomly located and polarized point sources. Figure 2
shows the normalized negative log-likelihood, scaled and
shifted to start at one and converge to zero, for a single
problem instance as a function of iteration number. It
gives results for proximal gradient applied to the maximum
likelihood (ML-PG) and least squares (LS-PG) problems
and EM or Riemannian proximal gradient applied to the
maximum likelihood problem (ML-EM). Each algorithm
was tested in variants with either a fixed step, adaptive

step, or adaptive step with acceleration. As expected, the
accelerated, adaptive-step variant converges in the fewest
iterations for all problem formulations. The improvements
are significant in this instance, with fixed step ML-PG
converging in over 10,000 iterations while the accelerated
adaptive-step variant converges in about 200 iterations.

To best compare the problem formulations and algo-
rithms between each other, Figure 3 shows the convergence
of all 150 instances for the three configurations using an
adaptive step size and acceleration. Fastest convergence in
general is achieved when solving the maximum likelihood
problem. Between standard proximal gradient using the



Euclidean gradient and our “EM” proximal gradient using
the Riemannian gradient, standard proximal gradient
generally converges faster. The least-squares formulation,
even though it does eventually converge to the maximum
likelihood solution in these cases, is not competitive enough
to justify the relative simplicity of its implementation.

The main performance difference between formulations
likely arises from how well they handle the sparsity of
the true solution. Since only two sources exist in the true
solution, the source covariance is mostly zero and decidedly
positive semidefinite. Since EM, with the Riemannian
gradient, operates on the positive definite manifold, it
is at a decided disadvantage in trying to converge to a
positive semidefinite solution. It is for this reason that
we find ML-PG most suitable for use with vector sensor
imaging. However, the new ML-EM algorithm may be of
great benefit in other problem settings where classic EM
already excels and a positive definite solution is expected.

V. Conclusion
Vector sensor imaging poses a challenge for covariance

estimation. The EM algorithm solves the maximum like-
lihood problem, but its slow rate of convergence makes
EM less than ideal. The proximal gradient algorithm, in
contrast, is well suited to the vector sensor maximum
likelihood problem and can also be applied to the least-
squares covariance estimation problem. EM and proximal
gradient are similar, but EM employs the Riemannian
gradient over the manifold of positive definite matrices.
From this, we formulated a new Riemannian proximal
gradient algorithm combining the Riemannian gradient of
EM with the projection and variable step size of proximal
gradient.

The difficulty in applying any form of proximal gradient
is that it employs projection onto the positive semidefinite
cone, which can be slow and pose numerical problems for
estimating a general covariance matrix. We showed that for
independent but arbitrarily polarized signal sources, Stokes
parameters can be used to represent the source covariance
matrix and simplify projection onto the PSD cone.

We compared the convergence of the proximal gradient
algorithms applied to both the maximum likelihood and
least-squares problems using simulated data. For the vector
sensor imaging problem, we showed that the Euclidean
proximal gradient maximum likelihood algorithm converged
in the fewest iterations, likely because the solution was
sparse and unreachable from exact Riemannian gradient
steps. Nevertheless, we also showed that Riemannian
proximal gradient improves upon EM, so it may be useful
in other applications for which EM is better-suited.
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