

US Army Corps of Engineers<sub>®</sub> Engineer Research and Development Center



# Petrographic Analysis of Portland Cement Concrete Cores from Pease Air National Guard Base, New Hampshire

E. Rae Reed-Gore, Kyle L. Klaus, and Robert D. Moser

November 2016



Engineer Research and Development Center

# Contents

| Fig | gures and Tables          | 2 |
|-----|---------------------------|---|
| Pre | eface                     | 3 |
| 1   | Scope                     | 4 |
| 2   | Methods                   | 5 |
|     | 2.1 Petrographic Analysis | 5 |
| 3   | Results and Discussion    | 6 |
|     | 3.1 160159-11 (T07A2)     | 6 |
|     | 3.2 160159-12 (T07A3)     | 8 |
|     | 3.3 160159-13 (T03A)      |   |
| 4   | Summary and Conclusions   |   |
|     | opendix                   |   |

# **Figures and Tables**

#### Figures

| Figure 1. 160159-11 (T07A2), the as received core sample                                                                                                                                                                                                                                                                                                                                         | ; |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Figure 2. To view of the as-received sample (T07A2). The surface of the sample had 2 fine cracks measuring 0.08 mm and 0.15 mm                                                                                                                                                                                                                                                                   | , |
| Figure 3. Low and high magnification photomicrographs of 160159-11 – T07A2,<br>(a) very little carbonation staining at the surface, (b) infilling of voids and crack at<br>coarse aggregate boundary, (c) crack in coarse aggregate into the paste, (d) view<br>of cement and fine aggregate, with infilling of voids                                                                            | , |
| Figure 4. 160159-12 (T07A3), the as received core sample                                                                                                                                                                                                                                                                                                                                         | ; |
| Figure 5. To view of the as-received sample (T07A3). The surface of the sample had cracks measuring 0.5 mm to 7.0 mm9                                                                                                                                                                                                                                                                            | ) |
| Figure 6. Low and high magnification photomicrographs of 160159-12 – T07A3,<br>(a) carbonation staining at the surface and down crack, (b) crack along coarse<br>aggregate, (c) highly fractured coarse aggregate with what appears to be gel<br>infilling crack and voids, (d) view of cement and fine aggregate, with infilling of<br>voids                                                    | ) |
| Figure 7. 160159-13 (T03A), the as received core sample10                                                                                                                                                                                                                                                                                                                                        | ) |
| Figure 8. To view of the as-received sample (T03A). The surface of the sample had 6 fine cracks measuring less than 0.08 mm11                                                                                                                                                                                                                                                                    | - |
| Figure 9. Low and high magnification photomicrographs of 160159-13 – T03A,<br>(a) very little carbonation staining at the surface, (b) iron staining within around<br>coarse aggregate, (c) highly fractured coarse aggregate with what appears to be<br>ASR gel infilling voids and around deboned surface, (d) view of cement and fine<br>aggregate, with infilling of voids and iron staining | - |

#### Tables

| Table 1. CMB checkin id, AFCEC section id and core id, age of the concrete being |   |
|----------------------------------------------------------------------------------|---|
| evaluated and tests performed                                                    | 4 |

### Preface

This study was conducted in support of the Air Force Civil Engineer Center (AFCEC) to assess concrete obtained from Pease Air National Guard Base, New Hampshire. The technical monitor was Dr. Robert D. Moser of the U.S. Army Engineer Research and Development (ERDC).

The work was performed by the Concrete and Materials Branch (GMC), of the Engineering Systems and Materials Division (GM), US Army Engineer Research and Development Center (ERDC), Geotechnical and Structures Laboratory (ERDC-GSL). At the time of publication, Christopher M. Moore was Chief, CEERD-GMC; Dr. Gordon W. McMahon was Chief, CEERD-GM. The Deputy Director of ERDC-GSL was Dr. William P. Grogan and the Director was Mr. Bart Durst.

COL Bryan Green was the Commander of ERDC, and Dr. Jeffery P. Holland was the Director.

### **1** Scope

The Concrete and Materials Branch (CMB), Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, was requested by the Air Force Civil Engineer Center (AFCEC) to perform petrographic analysis of a concrete core sample from Pease ANGB. A total of three cores were provided to the CMB which were checked in under CMB Serial Number 160159-11 to 160159-13. Table 1 lists the cores received with the CMB serial number, original sample identifier, age of the core, and the lab tests performed for each core. The core underwent petrographic examination according to ASTM C-856. The petrographic analysis focused on determining whether deterioration caused by alkali-silica reaction (ASR) was present and, if so, to what degree.

The following sections provide a summary of the methods utilized, results obtained from each core, and a summary and recommendations regarding potential impacts on the site investigated.

Table 1. CMB checkin id, AFCEC section id and core id, age of the concrete being evaluated and tests performed.

| CMB ID    | AFCEC Section ID<br>-Core ID |    | Lab Tests<br>Performed |
|-----------|------------------------------|----|------------------------|
| 160159-11 | T07A2-35                     | 31 | ASTM C-856             |
| 160159-12 | T07A2-33                     | 61 | ASTM C-856             |
| 160159-13 | T03A-24                      | 61 | ASTM C-856             |

# 2 Methods

#### 2.1 Petrographic Analysis

Modes of distress such physical distress and dimensional stability, were assessed by visual examination of the as received cores as well as a petrographic analysis performed on polished cross sections conducted according to ASTM C856 - *Standard Practice for Petrographic Examination of Hardened Concrete*. A 1 in (25 mm) thick section of a core was cut and prepared for the petrographic analysis. The section for petrographic analysis was polished using diamond incrusted polishing pads. The polished sample was imaged using a Zeiss Stereo Discovery V20 microscope at magnifications of 5 X to 40 X. An overall image was obtained for the sample at low magnification, and at least three selected sites were also imaged at higher magnification. Specific focus was given to microcracking, air void structure, aggregate deterioration, and any other possible modes of concrete deterioration that are relevant for service life estimation.

## **3** Results and Discussion

#### 3.1 160159-11 (T07A2)



The as-received core from location To7A2 is shown in Figures 1 and 2. The core was 16.25 inches (41.3 cm) long and approximately 6 inches (15.24 cm) in diameter. The surface of the sample had 2 fine cracks measuring 0.08 mm and 0.15 mm. Initial observation of the sample noted cracking throughout the sample. There were 2 vertical cracks, one measured 3.9 inches (9.9 cm) from the surface and was 0.25 mm wide. The second was located at 14.5 inches (36.83 cm) depth in the core and was 1.5 inches (3.81 cm) long and 0.25 mm wide. Horizontal cracks were evaluated at 3.5 in (8.9 cm), 4.0 in (10.2 cm), 7.0 in (17.8 cm), 8.0 in (20.3 cm), 10.25 in (26.0 cm), and 11.5 in (29.2 cm). They ranged in width from 0.2 mm to 1.75 mm. Cracking in coarse aggregates, where the crack extends through the cement fraction, was observed throughout the core. Cracks, entrained air voids and entrapped air voids were infilled by a white deposited arbonation staining was observed within the top 2 mm of the sample. The aggregates were angular to sub-round (granitic to gneissic in composition) (Figure 3).







Figure 2. To view of the as-received sample (T07A2). The surface of the sample had 2 fine cracks measuring 0.08 mm and 0.15 mm.

Figure 3. Low and high magnification photomicrographs of 160159-11 – T07A2, (a) very little carbonation staining at the surface, (b) infilling constant of the surface aggregate boundary, (c) crack in coarse aggregate into the paste, (d) view of cement and fine aggregate, with infilling of voids.









(c) Low magnification photomicrograph



(d) High magnification photomicrograph

### 3.2 160159-12 (T07A3) 📿

The as-received core from location To7A3 is shown in Figures 4 and 5. The core was 14.2 inches (36.1 cm) long and approximately 6 inches (15.24 cm) in diameter. The surface of the sample had cracks measuring 0.5 mm to 7.0 mm. Initial observation of the sample noted cracking throughout the sample. There were 4 vertical cracks, one measured 2.5 inches (6.35 cm) and another, 4.5 inches (11.4 cm) from the surface and were 1.75 mm and 1.55 mm wide respectively. The other 2 were located at 8.8 inches (22.4 cm) depth in the core and were 6.0 inches (15.24 cm) long and were 2.0 to 2.5 mm wide. Horizontal cracks were evaluated at 5.4 in (13.7 cm), 6.0 in (15.24 cm), 7.2 in (18.3 cm), and 7.8 in (19.8 cm). The horizontal cracks at 5.4 in (13.7 cm) and 7.8 in (19.8 cm) were complete delamination cracks. Others ranged in width from 0.6 mm to 1.5 mm. The cracking in coarse aggregates, where the crack extends through the cement fraction, was observed throughout the core. Cracks, entrained air voids and entrapped air voids were infilled by a white deposit. Carbonation staining was observed within the top 2 mm of the sample and down surface cracks. The aggregates were angular to sub-round (granitic to gneissic in composition) (Figure 6).



Figure 4. 160159-12 (T07A3), the as received core sample.



Figure 5. To view of the as-received sample (T07A3). The surface of the sample had cracks measuring 0.5 mm to 7.0 mm.

Figure 6. Low and high magnification photomicrographs of 160159-12 – T07A3, (a) carbonation staining at the surface and down crack, (b) crack along coarse aggregate, (c) highly fractured coarse aggregate with what appears to be gel infilling crack and voids, (d) view of cement and fine aggregate, with infilling of voids.



(a) Low magnification photomicrograph







(c) Low magnification photomicrograph



(d) High magnification photomicrograph

## 3.3 160159-13 (T03A) 📿

The as-received core from location To3A is shown in Figures 7 and 8. The core was 15.5 inches (39.4 cm) long and approximately 6 inches (15.24 cm) in diameter. The surface of the sample had 6 fine cracks measuring less than 0.08 mm. Initial observation of the sample noted cracking the top 1.0 to 1.5 inches (2.54-3.81 cm) of the sample. There were 2 vertical cracks, one measured 1.0 inches (2.54 cm) from the surface and was 2.0 mm wide. The second was located at 1.5 inches (3.81 cm) from the surface and was 0.2 mm wide. Cracking in coarse aggregates, where the crack extends through the cement fraction, was observed throughout the core. Cracks one through the cement fraction, was observed throughout the core. Cracks one to 1.5 inches and entrapped air voids were infilled by a white deposit. Entrapped air voids ranged in size from 1.0 mm to 19 mm. Carbonation staining was observed within the top 2 mm of the sample. The aggregates were angular to sub-round (granitic to gneissic in composition) (Figure 9).







Figure 8. To view of the as-received sample (T03A). The surface of the sample had 6 fine cracks measuring less than 0.08 mm.

Figure 9. Low and high magnification photomicrographs of 160159-13 – T03A, (a) very little carbonation staining at the surface, (b) iron staining within around coarse aggregate, (c) highly fractured coarse aggregate with what appears to be ASR gel infilling voids and around deboned surface, (d) view of cement and fine aggregate, with infilling of voids and iron staining.



(a) Low magnification photomicrograph







(c) Low magnification photomicrograph



(d) High magnification photomicrograph

## **4** Summary and Conclusions

This study examined three concrete cores provided to the ERDC by the AFCEC from Pease ANGB. The cores were subjected to an in-depth analysis consisting of visual and petrographic examination. The results of the study include the following:

- Moderate to full infilling of air voids was observed in all three cores. This may be mineral deposition such as ettringite and/or calcium hydroxide as well as alkali-silica gel deposited in voids. Microcracks and debonded aggregate interfaces were observed particularly in cores To7A3 and To3A. Microcracks were partially infilled with deposits of alkali-silica gel.

- All the samples exhibited cracking in coarse aggregate fraction with cracks extending through the mortar fraction / paste. Cracking did not appear to be severe enough to have significant degradation of mechanical properties but is evidence of distress.

- Internal delamination planes were observed in the core 160159-11 and 160159-12, with 160159-12 having the most extensive damag $\bigcirc$ 

- The concrete appeared to contain anticipated constituents at proportions typical for concrete of this age.

- Freeze-thaw damage may be aggravated by the low amount of empty air voids due to mineral infilling. Some of this may be due to the time period the concrete was constructed, prior to consistent air entrainment practices.

# **Contact Information**

For any questions related to the results of this study please contact:

E. Rae Reed-Gore, G.I.T. Research Geologist Concrete and Materials Branch Geotechnical and Structural Laboratory U.S. Army Engineer Research and Development Center Office: (601) 634-2235 Erin.R.Gore@usace.army.mil

Robert D. Moser, Ph.D. Senior Research Civil Engineer Engineering Systems and Materials Division – Research Group Geotechnical and Structural Laboratory U.S. Army Engineer Research and Development Center Phone: (601) 634-3261 Robert.D.Moser@usace.army.mil

# Appendix

| DRILLING LO                               | 01         | VISION                  | USQ<br>INSTALL | ATION                   |                              | Hole No.                                     | SHEET<br>OF SHEETS                             |
|-------------------------------------------|------------|-------------------------|----------------|-------------------------|------------------------------|----------------------------------------------|------------------------------------------------|
| . PROJECT                                 | _          |                         | 10. SIZE       | AND TYP                 | OF BIT                       |                                              |                                                |
| AFCE                                      |            | tion                    | TI. DATE       | M FOR E                 | EVATION                      | SHOWN (TRN or MS.                            | 0                                              |
|                                           | 104 07 518 | Hand Pense AFB          | 12. MAN        | FACTURE                 | R'S DESIG                    | NATION OF DRILL                              |                                                |
| B. DRILLING AGENCY                        | T1603      | L TOTA2 35              | -              |                         |                              | DISTURBED                                    | UNDISTURBED                                    |
| A. HOLE NO. (As abown<br>and file number) | on drewin  | e title                 | BUR            | DEN SAMP                | OVER-                        | N                                            | UNDISTURSED                                    |
| . NAME OF DRILLER                         |            |                         |                |                         | R CORE B                     |                                              |                                                |
| DIRECTION OF HOL                          | -          | and the second second   | 15. ELE        | ATION G                 | ROUND WA                     |                                              | OMPLETED                                       |
| VERTICAL DI                               |            | DEG. FROM VERT          | 16. DAT        | HOLE                    |                              | RIED                                         | OMPLETED                                       |
| . THICKNESS OF OVE                        | BURDEN     |                         |                |                         | P OF HOL                     |                                              |                                                |
| . DEPTH DRILLED IN                        | TO ROCK    |                         |                |                         | INSPECT                      | FOR BORING                                   | *                                              |
| . TOTAL DEPTH OF H                        | OLE        |                         | 1              | -                       |                              |                                              |                                                |
| ELEVATION DEPTH                           | LEGEND     | CLASSIFICATION OF MATER | ALS            | 1 CORE<br>RECOV-<br>ERY | BOX OR<br>SAMPLE<br>NO.<br>f | REM<br>(Drilling time, wa<br>weathering, etc | ARKS<br>ter loss, depth of<br>, if eignificend |
|                                           | S          | · cracking present in 1 | CA's           |                         |                              | 16 1/4" 10                                   |                                                |
| E                                         | Y          | In Joine Cades exitint  | MA 10 18       |                         |                              |                                              | A.C                                            |
| E                                         | 16         | pasts or infilled which | dyosit         |                         |                              | 6" disme                                     | for bit                                        |
| =                                         | ) 1        | -2" cracks begin        |                | 7.58                    |                              | surface cro                                  | . ke                                           |
| 1 7                                       | 5          |                         |                | 2                       |                              |                                              |                                                |
| E                                         | 5          | leave parallel          |                | Petro                   |                              | . 15mmyt .                                   |                                                |
|                                           |            | 1                       | 1              | 2                       |                              | Suburgular (                                 | A 1-2"                                         |
| 1 3                                       | ~~~        | largest entropped       | Cat            |                         |                              | V                                            |                                                |
|                                           | ~~         | 17 mm; infilling x      | 1              | -                       |                              | -                                            | ~                                              |
| 1 3                                       |            |                         |                |                         |                              | 1                                            | >>                                             |
| 5                                         |            | white duposits, like    | 3              |                         |                              | 1 5.08                                       | 2.15                                           |
|                                           |            | ASK gel                 |                |                         |                              |                                              | 3                                              |
|                                           |            |                         |                |                         |                              | $\langle \langle \rangle$                    | 8/                                             |
| 13                                        |            | - 1.75mm , provible     |                |                         |                              |                                              | 1/                                             |
|                                           | ~~         | - 175mm, plucking       | s of           |                         |                              |                                              | _                                              |
|                                           |            | CA aling crack          |                |                         |                              |                                              |                                                |
| E                                         |            | in any chick            |                |                         |                              |                                              |                                                |
|                                           |            |                         |                |                         |                              |                                              |                                                |
| =                                         |            |                         |                |                         |                              |                                              |                                                |
| E                                         |            |                         |                |                         |                              | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1     |                                                |
| 10"                                       |            |                         |                |                         |                              |                                              |                                                |
| [(0 -=                                    | 1          | 2mm                     |                |                         |                              | de la lance                                  | - A                                            |
| EI                                        |            |                         |                |                         |                              |                                              | 11 11 12 2                                     |
|                                           |            | - in aggregate ect      | aling          |                         |                              | 1.1                                          |                                                |
| F                                         | ~          | - in aggregato with     |                |                         |                              | 1.1                                          |                                                |
|                                           |            | into parte              |                |                         |                              | and the second                               |                                                |
|                                           |            |                         |                |                         |                              | 1.2                                          |                                                |
|                                           |            |                         |                |                         |                              | 1997                                         |                                                |
| 1                                         |            |                         |                |                         |                              | 1.                                           |                                                |
| 1                                         |            |                         |                |                         | 1.2                          |                                              |                                                |
| E                                         | 1000       |                         |                |                         |                              |                                              |                                                |
| 150-                                      | 3          | 15 pm                   |                |                         |                              |                                              |                                                |
| E                                         | Su         | 03                      |                |                         |                              |                                              |                                                |
| -                                         | 5          |                         |                |                         |                              |                                              |                                                |
|                                           | ,          |                         |                |                         |                              |                                              |                                                |
| -                                         |            |                         |                |                         |                              |                                              |                                                |
| =                                         |            |                         |                |                         |                              |                                              |                                                |
| 1                                         |            |                         |                |                         |                              |                                              |                                                |
| 1                                         |            |                         |                |                         |                              |                                              |                                                |
| 1                                         |            |                         |                |                         |                              |                                              |                                                |
| -                                         |            |                         |                |                         |                              |                                              |                                                |
|                                           |            |                         |                | 1                       | 1                            |                                              |                                                |

| INDUCE     MARCE     Interview Experiment       INDUCE     MARCE     Interview Experiment       I CONTINUE ARENCY     TABLE       I CONTINUE ARENCY     TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DRILL       | ING LOG            | VISION                | INSTALL  | ATION                | 59-1          | SHEET                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-----------------------|----------|----------------------|---------------|---------------------------------------------------------------------------|
| A HOLE NO. (A shown or descript distent<br>S. DORILLING AGENCY<br>B. LOCATION OF DRILLE<br>S. DORILLING AGENCY<br>A HOLE NO. (As shown or descript distent<br>and give manifold<br>S. DIRECTION OF HOLE<br>S. THICKNESS OF OVERBURDEN<br>S. THICKNESS OF OVE                                                                                                                                                                                                                                                                                                                                                                                         |             |                    |                       | 10. SIZE | AND TYPE             | OF BIT        | OF SHEETS                                                                 |
| 3. DRILLING AGENCY       TO TA 3         4. MOLE NO. (As Norm on descring during       International and descring during         4. MOLE NO. (As Norm on descring during       International and descring during         5. NAME OF DRILLER       International and descring during         5. NAME OF DRILLER       International and descring during         6. DIRECTION OF NOLE       International and descring during         1. VERCENTION OF DRILLER       International and descring during         7. THICKNESS OF OVERBURDEN       International and descring during         8. DEPTH ORILLED INTO NOCK       International and descring during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                    |                       | 11. DATU | M FOR EL             | EVATION       | SHOWN (TBM or MSL)                                                        |
| 4. MOLE NO. CA NOW ON CARDING WARNING WILL<br>4. Mart of Daniel Carding Wills<br>5. NAME OF DRILLER<br>5. NAME O                                                                                                                                                                                                                                                                                                                                       |             |                    | Peace AFB             | 12. MANU | FACTURE              | R'S DESIG     | NATION OF DRILL                                                           |
| A HOLE NO. (As above on drawing itils  BURDEN SAME OF DRILLER  A MARE OF DRILLER  A MARE OF DRILLER  A TOTAL MUMBER CORE BOXES  A MARE OF DRILLER  A TOTAL MUMBER CORE BOXES  A MARE OF DRILLER  A TOTAL MUMBER CORE BOXES  A TOTAL MUMBER CORE BOXES  A TOTAL MUMBER CORE BOXES  A DIRECTION OF HOLE  A TOTAL CORE RECOVERY FOR BOING  B COMPLETED  A TOTAL CORE RECOVERY FOR BOING  B COMPLETION  A DIRECTION OF HOLE  B SUBARUME OF INSERTION  B COMPLETION  C CLASSIFICATION COMPLETION  B SUBARUME OF BOXING  B COMPLETION  C CLASSIFICATION COMPLETION  B SUBARUME OF BOXING  B COMPLETION  C CLASSIFICATION COMPLETION  B SUBARUME OF BOXING  B COMPLETION  C CLASSIFICATION COMPLETION  B SUBARUME OF BOXING  B COMPLETION  C CLASSIFICATION COMPLETION  B SUBARUME OF BOXING  B COMPLETION  C CLASSIFICATION  C CLASSIFICATION COMPLETION  C CLASSIFICATION  C CLASSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B. DRILLING | AGENCY TO TA       | 3                     |          |                      |               |                                                                           |
| S. MARE OF DRILLER   S. MARE OF DRILLER  S. DIRECTION OF HOLE  UVERTICAL CINEDD  DEE. PROM VERT.  S. DEPTH ORILLED INTO ROCK  D. THILDENT OF HOLE  S. TOTAL DEPTH OF HOLE  CLASSIFICATION OF MATERIALS  CLASSIFICATION OF MATERIALS  CASSIFICATION OF MATERIALS  CASSIFICATION OF MATERIALS  CASSIFICATION OF MATERIALS  CASSIFICATION OF MATERIALS  CONSTRAINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A. HOLE NO. | (As shown on drawb | ng title              | 13. TOTA | EN SAMPI             | OVER-         | N                                                                         |
| 6. DIRECTION OF HOLE<br>UNEXTICAL DIRECTION OF AROUVERT.<br>7. THICKNESS OF OVERBURDEN<br>8. DEPTH OPLICINED<br>6. DEPTH OPLICE<br>15. ELEVATION TO POP HOLE<br>15. ELEVATION OF MATERIALS<br>6. DEPTH OPHIOLE<br>17. ELEVATION OF MATERIALS<br>6. DEPTH OPHIOLE<br>17. TOTAL CORE RECOVERY FOR BORING<br>17. TOTAL CORE RECOVERY FOR BORING<br>17. TOTAL CORE RECOVERY FOR BORING<br>18. TOTAL CORE RECOVERY FOR BORING<br>19. SIGNATURE OF INSPECTOR<br>10. DEPTH OF MOLE<br>10. TOTAL CORE RECOVERY FOR BORING<br>11. TOTAL CORE RECOVERY FOR BORING<br>12. TOTAL CORE RECOVERY FOR BORING<br>13. TOTAL CORE RECOVERY FOR BORING<br>13. TOTAL CORE RECOVERY FOR BORING<br>14. TOTAL CORE RECOVERY FOR BOR                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                    |                       |          |                      |               |                                                                           |
| UVERTICAL       Inclined       DES. PROVERTING       IS. DETENDED         17. ELEVATION       TO ELEVATION TO POP OF NOLE       IS. ELEVATION TO POP OF NOLE         18. DEPTH DENLLED INTO ROCK       IS. INFORMATION OF MATERIALS       IS. CONTENT OF ROTAL CORE RECOVERY FOR BORING         18. DEPTH OF HOLE       CLASSIFICATION OF MATERIALS       IS. CONTENT OF ROLE       IS. CONTENT OF ROLE         19. SIGNATURE OF INSPECTOR       IS. CONTENT OF ROLE       IS. CONTENT OF ROLE       IS. CONTENT OF ROLE         10. CONTENT OF ROLE       CLASSIFICATION OF MATERIALS       IS. CONTENT OF ROLE       IS. CONTENT OF ROLE         10. CONTENT OF ROLE       CLASSIFICATION OF ALTERIALS       IS. CONTENT OF ROLE       IS. CONTENT OF ROLE         10. CONTENT       IS. STENT ONS Along backer       IS. STENT ONS ALONG BORING       IS. STENT ONS ALONG BORING         10. CONTENT       IS. STENT FOR ALONG BORING       IS. STENT ONS ALONG BORING       IS. STENT ONS ALONG BORING       IS. STENT ONS ALONG BORING         10. CONTENT OF CONTENT OF ALONG BORING       IS. STENT FOR ALONG BORING       IS. STENT ONS ALONG BORING       IS. STENT ONS ALONG BORING         10. CONTENT OF CONTENT OF ALONG BORING       IS. STENT FOR ALONG BORING       IS. STENT ON ALONG BORING       IS. STENT ON ALONG BORING         IS. STENT FOR ALONG BORING       IS. STENT FOR ALONG BORING       IS. STENT FOR ALONG BORING       IS. STENT ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . DIRECTION | OF HOLE            |                       | -        | Dec a la composition |               |                                                                           |
| 7. THICKNESS OF OVERBURGEN       B. DEPTH DRILLED INTO ROCK       B. DEPTH OFINEL       B. TOTAL ECREND OF INDER       B. TOTAL ECREND OF I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                    | DEG. FROM VERT        | -        |                      |               |                                                                           |
| B. DEPTH DRILLED INTO ROCK<br>B. TOTAL DEPTH OF HOLE<br>CLASSIFICATION OF MATERIALS<br>B. SIGNATURE OF INSPECTOR<br>REALS<br>B. SIGNATURE OF INSPECTOR<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS<br>REALS | 7. THICKNES | S OF OVERBURDEN    | ()                    |          | _                    |               |                                                                           |
| ELEVATION DEPTH LEGEND CLASSIFICATION OF MATERIALS<br>(Description)<br>CLASSIFICATION OF MATERIALS<br>(Description)<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RECANCE<br>RE                                                                                                                                                                                                                                                                                                                                         |             |                    |                       |          |                      |               |                                                                           |
| 5"<br>1.75 nm rong along bader<br>1.75 nm rong along bader<br>1.75 nm rong along bader<br>10 cm<br>1.55 nm runs along bader<br>of CA<br>5"<br>Complete separation /delem<br>-1.5 mm<br>-1.5 mm<br>-1                                                                                         |             |                    |                       |          | * CORE               | BOX OR        | RENARKS                                                                   |
| 5"<br>Complete sepretion /delem<br>- Complete sepretion / delem<br>- Complete                                                                                                                                                                                                                                                                                                                                                                                                      |             | DEPTH LEGEND       | (Description)         | ALS      | RECOV-               | SAMPLE<br>NO. | (Drilling time, water loss, depth of<br>weathering, etc., if significant) |
| 5"<br>Complete sepretion / dolor<br>Complete sepretion<br>Complete sepretion<br>Co                                                                                                                                                                                                                                                                                                                                     |             | = (*               | - 1.75 mm rone alum   | bsedur   |                      |               | 111.3/4 1 1                                                               |
| 5"<br>10 cm<br>1.55m runs along bodes<br>of CA<br>5"<br>5"<br>5"<br>5"<br>5"<br>5"<br>5"<br>5"<br>5"<br>5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | ELL                | of an agg.            |          |                      |               |                                                                           |
| 5"<br>10 cm<br>1.55m runs along bodes<br>of CA<br>5"<br>5"<br>5"<br>5"<br>5"<br>5"<br>5"<br>5"<br>5"<br>5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | =11                | and marked and marked | L        |                      |               | lo" diameter bit                                                          |
| 5"<br>10 cm<br>1.55 m runs along backst<br>of CA<br>5"<br>Complete separation /dolon<br>-1.5 mm<br>Complete separation /dolon<br>-1.5 mm<br>Complete separation<br>-1.5 mm<br>Complete separation<br>-1.5 mm<br>Complete separation<br>-1.5 mm<br>Complete separation<br>-1.5 mm<br>-1.5                                                                                             |             | = ) )              | entrapped air up      |          |                      |               |                                                                           |
| 5"<br>1.55m runs along bodies<br>of CA<br>5"<br>Complete separation /delan<br>- 1.5mm<br>- 6 mm<br>complete separation<br>- 6 mm<br>- 1.5mm<br>- 6 mm<br>- 1.5mm<br>- 1.5mm                                                                                 |             | =(()               |                       |          |                      |               | Surface CRACKS                                                            |
| 5" CA<br>5" CA<br>Complete separation /delim<br>-1.5 mm<br>-1.5 m                                                                             |             | =/1                |                       | , boder  |                      |               | 15mm - 7mm                                                                |
| 5" Complete separation /dolom<br>- 1.5 mm<br>- 6 mm<br>- 6 mm<br>- 1.5 mm                                                                                                                            |             | -1                 |                       | )        |                      |               |                                                                           |
| 5" Complete separation /dolom<br>-1.5 mm<br>6 mm<br>conflicte separation<br>-reaction rime on CA<br>on the eads of the<br>separated piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | =)                 | of CA                 |          |                      |               | 21/2" PA angular to                                                       |
| - 1.5 mm<br>- 6 mm<br>consister separation<br>consister separation<br>- reaction rime on CA<br>on the ends of the<br>separated piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                    |                       |          |                      |               | subangur                                                                  |
| - 1.5 mm<br>- 6 mm<br>consister separation<br>consister separation<br>- reaction rime on CA<br>on the ends of the<br>separated piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | = }                |                       |          |                      |               | $\frown$                                                                  |
| - 1.5 mm<br>- 6 mm<br>consister separation<br>consister separation<br>- reaction rime on CA<br>on the ends of the<br>separated piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 5"-                |                       | 1.1.1    |                      |               | $\langle \rangle \wedge$                                                  |
| - 1.5 mm<br>.6 mm<br>consister separation<br>- reaction rime on CA<br>on the ends of the<br>separated piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | Tastant            | complete segnation /  | accum    |                      |               |                                                                           |
| - 16 mm<br>consister separation<br>- reaction rime on CA<br>on the ends of the<br>separated piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -           |                    |                       |          |                      |               | $(\gamma)$                                                                |
| 10" hervily cracked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | -                  | 1.5 mm                |          |                      |               |                                                                           |
| 10" hervily cracked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 1                  |                       |          |                      |               |                                                                           |
| 10" - reaction rime on CA<br>on the ends of the<br>seported piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                    |                       |          |                      |               | $\sim$                                                                    |
| 10" - reaction rime on CA<br>on the ends of the<br>seported piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | E                  | rimlife somethin      |          |                      |               |                                                                           |
| 10" - reaction nime on the ends of the Jeproted piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | = /                |                       | an an    |                      |               | heavily cracked                                                           |
| 10" - { for the ends of the superfect piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | =/(                | -reaction rime on     | CA       |                      | 1             | nanang carrie                                                             |
| 10" - Jepisted piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | FIF                | on the ends of th     | e        |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | =/ )               | readed site           | 1.1      | 1                    |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 10'=\              | Jephanca pro-         |          |                      |               |                                                                           |
| 15"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | =)                 | 1                     |          |                      | 1.00          | 1                                                                         |
| 15"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | -()                |                       |          |                      |               | State - The plate                                                         |
| 15"<br>15"<br>15"<br>15"<br>15"<br>15"<br>15"<br>15"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×           | = )(               | 0 C                   | n.t.     |                      |               |                                                                           |
| 15"<br>15"<br>15"<br>15"<br>15"<br>15"<br>15"<br>15"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | Flet               | - 2.5mm popogates     | 0.ML     |                      |               | Section 2.                                                                |
| 15"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | E                  | of separated pick;    | MJAT     |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | = \ (              | superalian of pitce   |          |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | = ()               |                       |          |                      |               | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | ) } E '            | 2.0mm                 |          |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 11=                |                       |          |                      |               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | =                  |                       |          |                      |               | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 15"-               |                       |          | 1                    |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | -                  |                       |          |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | _                  |                       |          |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | =                  |                       |          |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | =                  |                       |          |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | =                  |                       |          |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | -                  |                       |          |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | -                  |                       |          |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Ξ                  |                       |          |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | -                  |                       |          |                      |               |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 1 1                |                       |          |                      |               |                                                                           |

