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1 Summary

The general objectives of TARCMO are

a) to collect and design scalable algorithms for robust optimization

b) to find evaluation schemes for robust solutions

c) to provide a software tool that unifies these algorithms and evaluation
schemes

d) to apply these results to network flow and location theory problems

e) to generalize these results to multi-criteria optimization.

In the following, we summarize the progress that has been made on these
objectives over the whole funding period.

2 Introduction

Robust optimization is an active field of research that considers optimization
problems under uncertainty. Contrary to the similar setting of stochastic opti-
mization, a probability distribution is usually not required. Recent surveys on
the topic include [GS16, BTGN09, BBC11].

The research conducted in this project aims at improving the applicability of
robust optimization. This includes several aspects: In most cases, a robust opti-
mization problem is significantly harder to solve than its non-robust counterpart.
We therefore develop algorithms that scale well with the problem size. Further-
more, there are currently no means to assess the quality of a robust solution, and
hence, to guide a practitioner which kind of robustness approach is best-suited
for his needs. To this end, we develop evaluation schemes that help comparing
robust and non-robust solutions.

3 Methods, Assumptions, and Procedures

We consider general optimization problems of the form

min f(x, ξ)

s.t. F (x, ξ) ≤ 0

x ∈ X ,

DISTRIBUTION A. Approved for public release: distribution unlimited.



TARCMO – Final Report 4

where the uncertain data is represented by the scenario parameter ξ coming from
an uncertainty set U . No probability distribution over U is known. We denote
the set of feasible solutions in scenario ξ ∈ U as F(ξ).

In robust optimization there exist several concurrent approaches how to refor-
mulate such a (possibly infinite) family of problems to one single robust counter-
part. We note three such approaches here (for an overview on other counterparts,
see [GS16]).

• Strict robustness [BTN98] considers counterparts of the form

min max
ξ∈U

f(x, ξ)

s.t. F (x, ξ) ≤ 0 ∀ξ ∈ U
x ∈ X ,

• The approach of regret robustness [ABV09] aims at finding robust solutions
which perform well in every scenario, compared to the best possible per-
formance that could be achieved in each scenario, i.e., regret robustness is
represented with the following program:

min max
ξ∈U

f(x, ξ)− f ∗(ξ)

s.t. F (x, ξ) ≤ 0 ∀ξ ∈ U
x ∈ X ,

where f ∗(ξ) := min{f(y, ξ) : F (y, ξ) ≤ 0 ∀ξ ∈ U , y ∈ X}. Often, un-
certainty is only considered in the objective function, and not in the con-
straints.

• For recovery robustness [LLMS09], one assumes the existence of a recovery
algorithm which allows the modification of a solution once the scenario
becomes known. It can therefore be considered as a two-stage approach to
robust optimization.

Typical uncertainty sets include

• finite uncertainty of the form

U =
{
ξ1, . . . , ξN

}
• interval-based uncertainty

U = [ξ
1
, ξ1]× . . .× [ξ

M
, ξM ]

DISTRIBUTION A. Approved for public release: distribution unlimited.
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• general ellipsoidal uncertainty

U = {Aξ + a0 : ||ξ|| ≤ 1}

• axis-parallel ellipsoidal uncertainty

U =

{
ξ ∈ RM :

M∑
i=1

d2
i (ξi − ξ0

i )
2 ≤ 1

}

• Bertsimas-Sim-type uncertainty

U =

{
ξ ∈ RM : ξi ∈ [ξ̂i − di, ξ̂i + di],

M∑
i=1

|ξi − ξ̂i|
di

≤ Γ

}

4 Results and Discussion

In the following, we summarize main research topics and results of the project.

4.1 Bounds for General Combinatorial Regret Problems.

We first describe our results on the analysis of the midpoint solution xmid for
regret problems with interval uncertainty, where the underlying nominal problem
is combinatorial (i.e., all variables are binary). The midpoint solution can be
found by solving a nominal problem with respect to the midpoint (i.e., average)
of the uncertainty. We were able to show that this is a λ-approximation, where
λ can be computed as

λ =
val(xmid, c

xmid)− val∗cxmid

val(xmid, ĉ)−minS⊆N
1
2
(val∗

cS
+ val∗

cS
)

and is always less our equal to 2, meaning that this bound is always at least as
good as the current best known bound.

To compute this bound, an auxiliary optimization problem needs to be solved.
We were able to show that this problem can be solved in strongly polynomial
time for the shortest path problem, the minimum spanning tree problem, the
assignment problem, and the minimum s− t cut problem.

This lower bound is a valuable, as it allows to estimate how good the midpoint
solution performs. Additionally, this lower bound can also be used as part of
a branch-and-bound approach to find an even optimal solution to the regret
problem.

DISTRIBUTION A. Approved for public release: distribution unlimited.
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To analyze the computational improvement when using this bound, we con-
sidered the regret shortest path problem. Here, the current best performance
of a branch-and-bound algorithm was given in [MGD04]. Following the same
algorithm on equally generated instances using our new bound, we considerably
improved computation times by approximately an order of magnitude. Figure 1
shows a representative run of both algorithms.
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Figure 1: Example run comparing our new bound (red) to the former best ap-
proach (green).

The “gap” is the difference between the objective value of the current best
solution, and the best lower bound in each iteration. When the gap is zero, the
instance is solved to provable optimality. While the former approach takes about
10 minutes of computation time, the new approach needs only one minute.

The research on this topic has been published as [CG15b], where details can
be found.

4.2 Bounds for the Regret Knapsack Problem.

We further analyzed the application to the knapsack problem as a special case
of regret robustness with a finite uncertainty set. The current best solution
method is a branch-and-bound approach using a surrogate relaxation bound
[Iid99, TYK08].

We developed a new upper bound for the knapsack problem, which is specifi-
cally designed to counter the drawbacks of the surrogate bound. While the latter
performs well at early nodes in the branch-and-bound tree, the new bound shows

DISTRIBUTION A. Approved for public release: distribution unlimited.
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best performance for deep nodes in the tree. Combining both bounds results in
computation times an order of magnitude better than before.

As an example, we found that for instances with 200 uncorrelated scenarios
and 35 items, the surrogate bound approach takes on average 61 seconds to find
an optimal solution. With our improved bound, this computation time could be
reduced to only 4 seconds on average.

As the surrogate bound is a technique that can be applied to a large class of
problems, our results can potentially be extended to these as well.

The research on this topic has been published as [Goe14], where details can be
found.

4.3 On the Evaluation of Solutions.

As has been explained in the project application, current methods to assess the
quality of a robust solution like the price of robustness [BS04, MP13] have their
drawbacks. We developed alternative ways to evaluate solutions distinguishing
between two cases: (a) The uncertainty is only in the objective function, and not
in the constraints. (b) The uncertainty is both in the objective function and in
the constraints.

Concerning case (a), we propose the usage of the scenario curve, which is gen-
erated in the following way. Given a (robust) solution, we calculate its objective
value in each scenario, and sort these values from their best to their worst. Doing
so for all solutions under consideration makes sure that the performance of a so-
lution is always compared to a performance of similar quality of another solution.
Figure 2 shows an example scenario curve for a knapsack problem.

This approach gives rise to a new robustness concept, that aims at optimization
the performance for a given number of scenarios, which we call n-case robustness.
It allows the practitioner to directly control the degree of worst-case quality he
likes to achieve.

For the case (b) where also constraints are affected by uncertainty, we can-
not simply calculate the objective value of a solution in each scenario, as it may
become infeasible. Thus, we assume the existence of a recovery algorithm that
allows the modification of a given solution to become feasible for a given sce-
nario. Such a recovery procedure has a cost, and the available recovery budget
determines the objective value that is achievable for a scenario.

This allows to calculate a scenario curve for every possible fixed recovery bud-
get. Figure 3 gives an example plot for the midpoint solution (left) and the
strictly robust solution (right) for an uncertain knapsack problem.

The horizontal axis represents the available recovery budget, and the vertical
axis the respective scenario curve. All values are normalized with respect to

DISTRIBUTION A. Approved for public release: distribution unlimited.
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Figure 2: Example performance analysis for optimization problems with uncer-
tainty the objective.

(a) Performance of the midpoint solution. (b) Performance of the strictly robust solution.

Figure 3: Example performance analysis for optimization problems with uncer-
tainty in both objective and constraints.

DISTRIBUTION A. Approved for public release: distribution unlimited.
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the average of several considered solutions, where red are higher than average
objective values, and blue are lower than average objective values. Green and
black are especially good (or bad) values, respectively. As can be seen, the strictly
robust solution has a very good performance for the worst-performing scenarios,
even with low recovery budget (upper left corner), while for the midpoint solution,
this is mostly the other way around.
A summary of these methods is presented in the book chapter [CG16d].

4.4 Robust Timetable Information Problems.

Timetable information is the process of determining a suitable travel route for a
passenger in public transport, especially railway systems. Due to delays in the
original timetable, in practice it often happens that the travel route cannot be
used as originally planned. For a passenger being already en route, it would hence
be useful to know about alternatives that ensure that his/her destination can be
reached.

We proposed a recoverable robust approach to timetable information; i.e., we
aim at finding travel routes that can easily be updated when delays occur during
the journey. We developed polynomial-time algorithms for this problem and
evaluated the performance of the routes obtained this way on schedule data of
the German train network of 2013 and simulated delay scenarios.

We found that this new approach to the timetable information is able to find
paths that perform considerably better than other approaches in terms of travel
times. In Figure 4 we give a histogram showing the improvement of the recover-
able robust approach over the standard timetable information method.

The research on this topic has been published as [GHMH+13], where details
can be found.

4.5 Alternative formulations for the ordered weighted
averaging objective

The ordered weighted averaging (OWA) objective has been developed in a multi-
criteria context, but can be regarded as a direct generalization of the classic min-
max worst-case approach in robust optimization. Starting from a linear program
with multiple objective function (e.g., a different objective function per scenario)
of the form

max
{
Cx | Ax = b, x ∈ Rn

+

}
with C ∈ Rk×n, we use an ordering map Θ : Rk → Rk that sorts a vector
increasingly, i.e., θi(y) ≤ θi+1(y) for i = 1, . . . , k − 1. In the OWA setting, one

DISTRIBUTION A. Approved for public release: distribution unlimited.
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Figure 4: Histogram for the number of cases where we can save x minutes by
choosing a recoverable robust path instead of the standard path.

now considers the aggregated objective function

max

{
k∑
i=1

wiθi(Cx) | Ax = b, x ∈ Rn
+

}
for some weights wi. In other words, for w1 = w2 = . . . = wn−1 = 0 and
wn = 1, this becomes the robust worst-case objective, while for wi = 1/k for all
i = 1, . . . , k, the objective is the arithmetic mean over all scenarios.

Objective functions of this type have seen recently rising interest in the research
community, due to their very general nature. However, they may be difficult to
solve. A reformulation approach of the OWA objective under mild additional
assumptions has been published in [OŚ03], where the following program is pro-
posed:

max
∑
j∈[k]

jw′jrj −
∑
i∈[k]

∑
j∈[k]

w′jdij

s.t. Cx = y

dij ≥ rj − yi ∀i, j ∈ [k]

Ax = b

x ∈ Rn
+, d ∈ Rk×k

+ , y ∈ Rk, r ∈ Rk

By rewriting the OWA objective using the set of all possible permutations of a
vector, and using duality techniques, we were able to find a new and improved

DISTRIBUTION A. Approved for public release: distribution unlimited.
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formulation of the following form:

max
∑
i∈[k]

(αi + βi)

s.t. Cx = y

αi + βj ≤ wiyj ∀i, j ∈ [k]

Ax = b

x ∈ Rn
+, α, β, y ∈ Rk

This formulation is not only more elegant and uses less variables, but also shows
considerably improved solution times by an order of magnitude in computational
experiments on portfolio optimization problems.

The research on this topic has been published as [CG15a], where details can
be found.

4.6 On The Recoverable Robust Traveling Salesman Problem

The traveling salesman problem (TSP) is a well-known combinatorial optimiza-
tion problem, which asks for a circular tour visiting a set of destinations (nodes)
with minimal tour length (see, e.g., [Coo12]). Applications can be found, e.g., in
circuit board drilling, computer wiring, vehicle routing, and many more real-world
problems.

We considered an uncertain variant of this problem, where distances between
nodes are not known exactly, but stem from either a finite uncertainty set, or
an uncertainty of the Bertsimas and Sim type. To find robust traveling sales-
man tours, we followed a recoverable approach; meaning that once the scenario
becomes known, we are allowed to update the current solution. These updates
are bounded by the number of direct connections that we change. The resulting
robust problem is a min-max-min problem, and therefore not solvable directly.

We developed an iterative solution procedure, where three subproblems are
connected: (P1), given a finite set of scenarios, find a robust tour and an updated
tour for every scenario, such that the worst-case travel time is minimized. (P2),
given a robust tour and a set of alternative tours, find a worst-case scenario
maximizing the travel time. (P3), give a scenario and a robust tour, find the best
possible updated tour. The interplay of these problems is visualized in Figure 5.
In the left hand of the figure, we see iterations between P1, which produces a new
candidate solution, and P2+P3, which evaluate this solution. Lower and upper
bounds produced this way converge to an optimal solution after 8 iterations. In
the right hand of the figure, we see the evaluation process of a solution, which is
in itself again an iterative process using P2 and P3.

DISTRIBUTION A. Approved for public release: distribution unlimited.
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Figure 5: The iterative solution procedure for the robust traveling salesman
problem.

While this iterative algorithms results in an optimal solution to the robust TSP,
computation times become too high for larger instances. For this purpose, we
developed a local search meta-heuristic that uses a simplified evaluation scheme
for robust solutions. To this end, we integrate problems P2 and P3 using duality
on the linear programming relaxation of P3. This location search heuristic shows
excellent performance also on larger uncertain instances.

The research on this topic has been published as [CG16c], where details can be
found.

4.7 A Bicriteria Approach to Robust Optimization

We developed a new evaluation scheme for linear programs with an uncertain
objective function. The uncertainty is represented in our model either by a finite
set of scenarios or by box uncertainty. For the new scheme we consider the nom-
inal optimization problem that has only one criterion as a bicriteria optimization
problem. The first criterion is the performance in the average case scenario (AC)
and the second criterion is the worst case guarantee (WC) for all scenarios.

We solve the bicriteria problem by computing the corresponding Pareto front.
We denote this Pareto front as the AC–WC curve (see Figure 6 for some exam-
ples of AC–WC curves). Further, we developed a decomposition method that
uses column generation to compute the AC–WC curve. This method proves to
be effective in computational experiments, especially if we can use specialized
algorithms to solve the nominal problem. Network flow problems are a typical
example for which such specialized algorithms exist, that outperform linear pro-
gramming solvers. For a comparison of computation times between the straight-
forward approach to calculate the AC–WC curveand our decomposition method,
see Figure 7.

DISTRIBUTION A. Approved for public release: distribution unlimited.
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Figure 6: The AC–WC curves of different network flow problems with 300 nodes
and 2-7 different cost scenarios. The average and worst case perfor-
mances are normalized to 100.

As the Pareto front of multicriteria optimization problems might contain expo-
nentially many efficient points and might, therefore, be too large to be computed
exactly, we investigated an approximation algorithm that synergizes well with the
proposed column generation method. For the tested instances the approximation
algorithm is able to produce good approximations of the AC–WC curve in only
5-10–times the time that is needed to compute only the worst case solution.

In the literature (see, e.g., [BS04]) it is a common approach to ignore the un-
certainty in the objective function for linear programs, as the linear objective
function can be represented by a constraint, and to use concepts that are appli-
cable if the constraints of the linear program are uncertain. We show that this
approach has some drawbacks by comparing solutions that are generated with
well known robustness concepts with the AC–WC curve. We denote the concept
that was introduced by Ben-Tal and Nemirovski ([BTN99]) with Ω-robustness
and the concept of Bertsimas and Sim ([BS04]) by Γ-robustness. Both concepts
contain a parameter (Γ\Ω) that can be used to control the conservatism of the
computed solution. For extreme values these concepts produce the worst case

DISTRIBUTION A. Approved for public release: distribution unlimited.
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Figure 7: Time needed to compute the AC–WC curve. The straightforward ap-
proach does not use the decomposition technique and relies purely on
the solution of linear programs.

and average case solution but in between they differ significant from the AC–WC
curve (see Figure 8).

The research on this topic has been published as [CG16a], where details can
be found.

4.8 Robust Geometric Programming is co-NP hard

In a more theoretical study we investigated the complexity status of robust ge-
ometric programming. Geometric Programming is a useful tool with a wide
range of applications in engineering. As in real-world engineering problems input
data is likely to be affected by uncertainty, Hsiung, Kim, and Boyd ([HKB08])
introduced robust geometric programming to include the uncertainty in the op-
timization process. They also developed a tractable approximation method to
tackle this problem. Furthermore, they pose the question whether there exists
a tractable reformulation of their robust geometric programming model instead
of only an approximation method. We give a negative answer to this theoretical
question by showing that robust geometric programming is co-NP hard in its
natural posynomial form. A preprint of the material is available as [CG14].
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4.9 The Quadratic Shortest Path Problem: Complexity,
Approximability, and Solution Methods

We considered the problem of finding a shortest path in a directed graph with a
quadratic objective function (the QSPP). This problem is closely related to the
robust shortest path problem with ellipsoidal uncertainty. The robust shortest
path problem can be solved by solving a sequence of QSPPs. We showed that the
QSPP cannot be approximated unless P = NP. For the case of a convex objective
function, an n-approximation algorithm was found, where n is the number of
nodes in the graph, and APX-hardness is shown. Furthermore, we proved that
even if only adjacent arcs play a part in the quadratic objective function, the
problem still cannot be approximated unless P = NP.

Beside the theoretical analysis we also tried to find exact solution methods
for the QSPP. First we defined a mixed integer programming formulation, and
then devise an efficient exact Branch-and-Bound algorithm for the general QSPP,
where lower bounds are computed by considering a reformulation scheme that is
solvable through a number of minimum cost flow problems. In our computational
experiments we solved to optimality different classes of instances with up to 1000
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nodes. The result of one experiment is reported in Table 1. The underlying
network of this experiment are grid networks with n rows and m columns. We
compared three different algorithmic approaches. Cplex(QP) is the naive ap-
proach to use the standard quadratic integer programming formulation of QSPP
and solve it with Cplex, Cplex(MILP) uses an improved mixed integer linear pro-
gramming formulation and B-and-B represents the Branch and Bound algorithm
we developed.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. lbroot nodes time(s) lbroot nodes time(s) lbroot nodes time(s)

258 512 622 -330.0 9747 1951.3 530.6 161 4.3 593.6 89 3.9
258 512 632 -333.1 10599 2357.2 530.8 235 5.6 588.9 123 4.2
258 512 650 -334.7 14249 2866.3 530.6 309 6.4 564.6 99 3.8
258 512 641 -333.9 13720 1525.7 514.5 295 5.7 586.0 91 4.3
258 512 593 -329.6 8533 1749.5 521.9 74 3.7 562.8 49 3.6

531 1058 1283 -759.4 4684 TL 997.9 5579 518.6 1125.6 414 22.1
531 1058 1281 -757.0 4783 TL 1001.3 4899 492.9 1146.4 438 22.2
531 1058 1302 -812.7 4688 TL 1007.4 4944 490.1 1130.3 768 25.5
531 1058 1283 -757.8 5419 TL 979.2 5113 526.3 1129.0 568 27.1
531 1058 1263 -807.4 3354 TL 1009.2 2101 125.9 1132.3 314 27.8

Table 1: Results for the Grid2Square instances.

The paper is currently under review, but a preprint is available as [RCH+16].

4.10 Approximation of Ellipsoids Using Bounded Uncertainty
Sets

We studied the problem of approximating ellipsoid uncertainty sets with bounded
(Bertsimas-Sim-type) uncertainty sets. Robust linear programs with ellipsoid un-
certainty lead to quadratically constrained programs, whereas robust linear pro-
grams with bounded uncertainty sets remain linear programs which are generally
easier to solve. Hence, it can be beneficial to replace ellipsoid uncertainty sets
with bounded uncertainty sets.

Notation:

• An ellipsoid uncertainty set is given by E(a0,M) = {x | (x − a0)TM(x −
a0) ≤ 1}, where M is a positive semidefinite matrix and a0 is called the
center of the ellipsoid.

• A bounded uncertainty set is a polytope U(a0, a,Γ) ⊂ Rn that is character-
ized by a0, a ∈ Rn and a budget parameter Γ ∈ [0, n].
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We considered two different inner approximation problems. The first problem
is to find a bounded uncertainty set which sticks close to the ellipsoid such that
a shrunk version of the ellipsoid is contained in it. The approximation is optimal
if the required shrinking is minimal.

max
r,a,Γ

r (AP-R)

s.t. rE(a0,M) ⊂ U(a0, a,Γ) ⊂ E(a0,M)

In the second problem, we search for a bounded uncertainty set within the ellip-
soid with maximum volume.

max
a,Γ

vol(U(a0, a,Γ)) (AP-V)

s.t. U(a0, a,Γ) ⊂ E(a0,M)

We derived explicit analytic formulas for the optimal solutions of these prob-
lems. To approximate also general ellipsoids we introduced the notion of rotated
bounded uncertainty sets.

Theorem: Given a general ellipsoid E(a0,M) ⊂ Rn with M = RDRT and

D = diag
(

1
d21
, . . . , 1

d2n

)
. The rotated bounded uncertainty set which gives the best

approximation of this ellipsoid is described by

RT
i (x− a0) ≤ zi ∀i ∈ [n]

−RT
i (x− a0) ≤ zi ∀i ∈ [n]

zi
√
bΓ∗c+ (Γ∗ − bΓ∗c)2 ≤ di ∀i ∈ [n]

n∑
i=1

zi

√
bΓ∗c+ (Γ∗ − bΓ∗c)2

di
≤ Γ∗.

For ratio approximation Γ∗ is set to
√
n. For volume approximation Γ∗ is set to

Γ∗(n) = aminΓ(bΓc+ (Γ− bΓc)2)−
n
2

1
n!

∑bΓc
k=0(−1)k

(
n
k

)
(Γ− k)n.

To prove the benefit of replacing ellipsoids with bounded uncertainty sets we
did the following experiment. We considered the problem P of finding the ro-
bust shortest path in a graph where the edge costs are affected by an ellipsoidal
uncertainty set. We used the derived formula to approximate the ellipsoidal un-
certainty set with a rotated bounded uncertainty set. The resulting problems
are denoted by P ′. It turned out that the optimal solutions of P ′ are very close
or even exactly the optimal solutions of the original problem but can be solved
considerably faster as seen in Figure 9.
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A preprint is available as [Cha16].
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Figure 9: The red dots represent the time to solve P and the black triangles the
time to solve P ′. The computation time is given in seconds. The time
limit is set to 30 seconds.

4.11 Min-Max Regret Problems with Ellipsoidal Uncertainty
Sets

We considered general combinatorial optimization problems of the form

min{cTx : x ∈ X ⊆ {0, 1}n}

where the objective vector c is unknown, and coming from a set U of possible
realizations. The robust objective function in the sense of regret problems is then

Reg(x,U) = max{cTx− opt(c) : c ∈ U}

with opt(c) being the optimal objective value of the original problem with ob-
jective function c. This problem has been extensively analyzed for finite and
hyperbox uncertainty sets. For the first time, we considered the use of ellip-
soidal uncertainty sets in this setting. We distinguish between general ellipsoids
and axis-parallel ellipsoids. We considered two different combinatorial optimiza-
tion problems: The unconstrained combinatorial optimization problem where
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X = {0, 1}n, and the classic shortest path problem. The obtained complexity
results are summarized in Tables 2 and 3.

Interval Finite Axis-Parallel Ellipsoid General Ellipsoid
Eval P∗ P∗ NPC∗ NPC∗

Solve P∗ NPC∗ P∗ NPC∗

Table 2: Overview of the different complexity results of the minmax regret un-
constrained combinatorial problem.

Interval Axis-Parallel Ellipsoid General Ellipsoid Finite
Eval P NPC∗ NPC∗ P
Solve NPC NPC∗ NPC∗ NPC

Table 3: Overview of the different complexity results of the minmax regret short-
est path problem.

After the theoretical investigation of these problems we developed two differ-
ent ways to reformulate the minmax regret problem via a scenario relaxation
procedure, resulting in exact, general solution approaches. These algorithms are
compared in computational experiments.

The research on this topic has been published as [CG16b], where details can
be found.

4.12 Ranking Robustness and its Application to Evacuation
Planning

A new approach to robust optimization was developed, which is based on a pref-
erence ranking of solutions. The basic idea is motivated from decision making in
emergency management, where precise ”objective values” may not be very mean-
ingful, but instead, a rough classification of ”good” and ”bad” solutions in each
scenario can be given. A robust solution in the sense of ranking robustness is one
for which the worst-case ranking is as good as possible.

More formally, we write

P (c) min{f(x, c) : x ∈ X}, c ∈ U (1)

where X denotes the set of feasible solutions, and U a set of possible scenarios,
the so-called uncertainty set. Let a priority list S(c) be given for every scenario
c ∈ U , and let K ∈ N. Then we denote with

XK(c) :=
⋃
i≤K

Si(c) (2)
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the set of feasible solutions with preference at most K in scenario c, and with

XK :=
⋂
c∈U

XK(c). (3)

We say a solution x ∈ X is K-ranking robust if x ∈ XK . The (general) ranking
robustness problem (RR) consists in finding K∗ := min{K ∈ N+ : XK 6= ∅}, i.e.
the smallest K for which a K-ranking robust solution exists.

As a numerical example, consider the following minimization problem with two
scenarios c1 and c2, and three solutions A, B, and C. The objective values are
given in Table 4.

A B C
c1 50 21 10
c2 100 105 110

Table 4: Objective values of an example problem.

Solution A has the best worst-case performance, and is the optimal solution
to class min-max robustness. However, it ignores the poor performance of A
compared to B and C in scenario c1. Solution C has the smallest maximum
regret, and is the optimal solution to min-max regret robustness. Solution B
is the second-best solution in every scenario, and is thus also interesting as a
compromise solution from a practical perspective (while both A and C can be
the worst choices in one of the scenarios, respectively).

We analyzed ranking robustness for two special cases, which we called solution
ranking and objective ranking. Problem complexities and solution algorithms are
presented. In a computational example, we considered Kulmbach in the south
east of Germany, and calculated robust evacuation paths for different flooding
scenarios. Our experiments indicated that ranking robust solutions give an in-
teresting trade-off between robustness and performance, but require high compu-
tation times. Further research will concentrate on more efficient exact solution
methods, and possibly heuristic algorithms.

The research on this topic has been published as [GHK16], where details can
be found.

5 Project Dissemination Overview

Accepted papers:

• A. Chassein, M. Goerigk. Minmax regret combinatorial optimization prob-
lems with ellipsoidal uncertainty sets. To appear in European Journal of
Operational Research, 2016, doi:10.1016/j.ejor.2016.10.055
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• M. Goerigk, H. W. Hamacher, A. Kinscherff. Ranking Robustness and its
Application to Evacuation Planning. To appear in European Journal of
Operational Research, 2016, doi:10.1016/j.ejor.2016.05.037

• A. Chassein and M. Goerigk. Performance analysis in robust optimiza-
tion. In E. Grigoroudis M. Doumpos, C. Zopounidis, editor, Robustness
Analysis in Decision Aiding, Optimization, and Analytics, volume 241 of
International Series in Operation Research & Management Science, pages
145170. Springer International Publishing, 2016.

• A. Chassein, M. Goerigk. A Bicriteria Approach to Robust Optimization.
Computers and Operations Research, Volume 66, February 2016, Pages
181-189

• A. Chassein and M. Goerigk. On the recoverable robust traveling salesman
problem. Optimization Letters, 10(7):181189, 2016.

• A. Chassein, M.Goerigk. A new bound for the midpoint solution in minmax
regret optimization with an application to the robust shortest path problem.
European Journal of Operational Research, Volume 224, Issue 3, 1 August
2015, Pages 739-747

• A. Chassein, M. Goerigk. Alternative formulations for the ordered weighted
averaging objective. Information Processing Letters, Volume 115, Issues 6-8,
June-August 2015, Pages 604-608

• M. Goerigk, H. W. Hamacher. Optimisation Models to Enhance Resilience
in Evacuation Planning. Civil Engineering and Environmental Systems.
Volume 32, Issue 1-2, 2015.

Submitted / Preprints:

• B. Rostami, A. Chassein, M. Hopf, D. Frey, C. Buchheim, F. Malucelli, M.
Goerigk. The Quadratic Shortest Path Problem: Complexity, Approxima-
bility, and Solution Methods. Submitted to Mathematical Programming,
downloadable from semanticscholar.org under https://pdfs.semanticscholar.
org/4f9a/eda15c0139cfb64ecd90f842a9185568bc89.pdf

• A. Chassein. Approximation of Ellipsoids Using Bounded Uncertainty Sets.
Preprint University of Kaiserslautern, downloadable from the KLUEDO
server under https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/
4344
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• A. Chassein, M. Goerigk. Robust Geometric Programming is co-NP hard.
Preprint University of Kaiserslautern, downloadable from the KLUEDO
server under https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/
3938

In preparation (working titles):

• A. Chassein, Robust Optimization: Complexity and Solution Methods PhD
thesis. (Under Review)

Presentations:

• M. Goerigk. Solving Combinatorial Min-Max Regret Problems with Non-
Interval Uncertainty Sets. International Conference on Operations Re-
search, Hamburg 08/2016.

• A. Chassein. Approximation of Ellipsoids Using Bounded Uncertainty Sets.
28th European Conference on Operational Research (EURO), Poznan 07/2016.

• M. Goerigk. First Ideas on Inverse Robust Optimization Problems. 28th
European Conference on Operational Research (EURO), Poznan 07/2016.

• A. Chassein. An Introduction to Robust Optimization. Workshop on Stochas-
tic Approaches in Engineering and Financial Mathematics, Hanover, 03/2016.

• A. Chassein. Reliable Shortest Path Problems. Oberseminar TU Dortmund,
Dortmund, 09/2015.

• A. Chassein. A Bicriteria Approach to Robust Optimization. International
Conference on Operations Research, Vienna, 09/2015.

• M. Goerigk. Flood Evacuation Planning Using a New Approach to Ro-
bustness. 27th European Conference on Operational Research (EURO),
Glasgow 07/2015.

• A. Chassein. Reliable Shortest Path Problems. 27th European Conference
on Operational Research (EURO), Glasgow 07/2015.

• M. Goerigk. A Bicriteria Approach to Robust Optimization. Indo-German
Workshop on Algorithms, Kolkata, 03/2015.

• M. Goerigk. Challenges in Robust Optimization. Invited Seminar at the
University of Osnabrck, 11/2014.

• A. Chassein. Minmax Regret: Improved Analysis for the Midpoint Solution.
International Conference on Operations Research, Aachen, 09/2014.
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• A. Chassein. On Comparing Robustness Approaches for Timetabling. Con-
ference of the International Federation of Operational Research Societies
(IFORS), Barcelona, 07/2014.

Lectures:

• M. Goerigk. Robust Optimization. Summer Semester 2015, TU Kaiser-
slautern.

• H. W. Hamacher. Robust Optimization and Multicriteria Optimization.
Winter Semester 2014/15, TU Kaiserslautern.

6 Conclusions

All problems considered in the project period were investigated in two different
ways. We started with a theoretically analysis of the computational complexity of
the problem. Followed by an implementation of exact, approximation, or heuristic
algorithms to solve the problem. Some highlights of the obtained results are listed
in the following:

• We improved the formulation of the ordered weighted averaging problem
improving the computation time of the method.

• We found a very efficient way to define an aposteriori approximation guar-
antee for the midpoint solution for min max regret problems.

• We developed the concept of the scenario curve to provide a fair evaluation
between different robust solutions.

• We give an extensive analysis of the computational complexity of the quadratic
shortest path problem and several variants.

• We define efficient algorithms for the reliable shortest path problems on
graphs with special structure.

• We present a bicriteria approach, the AC-WC curve, to compare robust
solution concepts.

• We made use of multi-criteria approaches in robust optimization to develop
new, efficient solution algorithms.

Most of the results obtained in this project will be summarized in the PhD
thesis of André Chassein.
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List of Symbols, Abbreviations, and Acronyms

TARCMO Theory and Algorithms for Robust, Combinatorial,
Multicriteria Optimization

U Uncertainty set
f(x, ξ) Uncertain objective function
F (x, ξ) Uncertain constraint function
F(ξ) Set of feasible solutions in scenario ξ ∈ U
X Feasible set not affected by uncertainty

DISTRIBUTION A. Approved for public release: distribution unlimited.


	Summary
	Introduction
	Methods, Assumptions, and Procedures
	Results and Discussion
	Bounds for General Combinatorial Regret Problems.
	Bounds for the Regret Knapsack Problem.
	On the Evaluation of Solutions.
	Robust Timetable Information Problems.
	Alternative formulations for the ordered weighted averaging objective
	On The Recoverable Robust Traveling Salesman Problem
	A Bicriteria Approach to Robust Optimization
	Robust Geometric Programming is co-NP hard
	The Quadratic Shortest Path Problem: Complexity, Approximability, and Solution Methods
	Approximation of Ellipsoids Using Bounded Uncertainty Sets
	Min-Max Regret Problems with Ellipsoidal Uncertainty Sets
	Ranking Robustness and its Application to Evacuation Planning

	Project Dissemination Overview
	Conclusions



