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ABSTRACT 

With the increased use of Unmanned Aerial Vehicles (UAVs) in military 

operations, their role in a missile defense operation is not well defined. The 

simulation program discussed in this thesis studies the feasibility of utilizing 

UAVs to patrol a potential Intercontinental Ballistic Missile (ICBM) launch area 

using a single or multiple Counter Unmanned Aerial Vehicles (CUAVs), detecting 

the launch event and tracking an ICBM using the CUAVs’ onboard optical 

sensors. The ultimate goal is to assess the parameters of ICBM ascent and 

provide target information to bring the attacking UAVs onto the anti-missile 

launch course to reliably intercept the threat.  

This thesis explores the challenges in creating a simulation program to 

process video footage from an unstable platform and the limitations of using 

background subtraction method to detect the missile motion. Although the 

simulation program test results showed that it is unable to consistently detect a 

missile launch and track its trajectory for all the test videos; the developed 

algorithms allowed a surveillance UAV to detect a missile launch for most of the 

videos and also track its trajectory with an accuracy that is sufficient for targeting 

purposes.  

This thesis is limited to using the simulation program to detect a launch 

event offline and is based on the amateur rocket launch data gathered during the 

launch trials at Mojave Desert in May of 2016. 
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I. INTRODUCTION 

A. BACKGROUND 

Missiles and rockets have been deployed in many military operations 

throughout the years. They have been used as offensive and defensive weapons 

against munitions, aircraft, buildings, vehicles, and many other high-value targets 

in the theatre. In July 2014, Hamas attacked Israel by firing a series of rockets on 

neighboring cities [1], [2]. In response, the Israel Defense Force (IDF) deployed 

the Iron Dome air defense system to counter the rockets that were approaching 

these populated areas [3].  

Missile detection and tracking, using either active or passive sensors 

mounted on a UAV, is essential in effecting any missile defense. Active sensors 

such as radar utilize a transmitter to bounce a radio frequency off the target and 

a receiver to capture the signal reflected from the target. These active sensors, 

though, are detectable by the anti-radar sensors deployed by the adversary. In 

response, the adversary can identify the tracking system’s location and launch 

countermeasures against it.  

An UAV utilizing passive sensors, such as a thermal-imaging camera or a 

color-imaging camera, have the advantage of detecting and tracking the target 

without alerting an adversary. The passive sensor does not transmit any energy 

toward the target; instead, it utilizes video imagery from its sensor and identifies 

the target from the video footage. Therefore, the susceptibility of the UAV against 

countermeasures during operations is reduced significantly.  

In order to track and detect the missile passively using the UAV’s passive 

sensor; the target needs to have a distinctive signature in the video footage. The 

UAV can detect an adversary’s missile by processing the thermal imagery from 

the thermal-imaging sensor, which captures the temperature gradient of the 

surroundings within its field of view. As the missile’s propulsion motor emits 

gases at high temperature to generate the thrust required for its flight, the heat 
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signature of the propulsion motor will be detected by the thermal-imaging sensor. 

However, in order to achieve a high temperature gradient between the missile’s 

propulsion motor and the surroundings, the thermal-imaging sensor needs to be 

cooled down before the start of every operation. This increases the setup time for 

the passive sensor on the UAV, and the coolant mechanism increases the UAV’s 

overall weight.  

On the other hand, the UAV can use a color-imaging sensor to detect and 

track the adversary’s missile. As the color-imaging sensor captures video footage 

of everything within its field of view, the UAV has to identify the missile from the 

rest of the surroundings before it can detect its launch and track its trajectory. 

However, the passive sensor does not require any additional hardware for 

operation and has a very short setup time.  

This thesis addresses the problem of processing a missile launch video, 

taken from a color-imaging sensor, on a simulation program to detect a missile 

launch and track its trajectory. As the initial missile launch videos, taken from a 

quadcopter, are not stabilized, it is not suitable for processing by the simulation 

program. Therefore, additional missile launch videos, taken from a stabilized 

platform on the ground, are recorded in the missile launch trial held in Mojave 

Desert on May 21. These missile launch videos are then used to write the 

simulation program and to assess the program’s performance. Once the 

simulation is able to detect a missile launch and track its trajectory, it will be able 

to calculate the missile speed and position. This information can be relayed to an 

attacking UAV to launch a countermeasure against it. As the simulation program 

is unable to process any missile launch videos taken from an unstable platform, it 

cannot be deployed to a surveillance UAV to detect a missile launch and 

trajectory tracking in real time. If the simulation program can be enhanced to 

stabilize the video before performing any video processing, it can be deployed to 

a surveillance UAV for real-time missile launch detection and trajectory tracking. 

The next section describes the current approaches to address this problem and 

the final section of this chapter provides a detailed layout of this thesis. 
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B. PREVIOUS WORK ON MOTION TRACKING AND DETECTION  

There are several computer vision methods used to detect and track an 

object from video footage. Methods such as background subtraction, Scale-

Invariant Feature Transform (SIFT) and Speeded-Up Robust Feature (SURF) 

detection, and Kalman filtering are frequently used for object tracking. These 

methods have been applied frequently on video records of sportsman in their 

sports event for the coaches to find ways to improve the performance of their 

sportsman.  

In motion detection and tracking, it is always desired to have the motion of 

the object in interest, left in the frame after applying the background subtraction 

method on successive frames. However, due to the camera motion during 

filming, the surroundings will also move according to the camera motion. This will 

cause the surroundings to appear as noise in the frame after applying the 

background subtraction method. Therefore, the video image has to be stabilized 

before applying background subtraction, to reduce the noise created by the 

surroundings movement, so that the object motion can be detected easily by the 

simulation program. Lucas and Kanade presented a method to identify features 

in two images that could be used as an anchor to stabilize the video footage [4]. 

Szeliski presented a method [5] that can automatically register video frames into 

2D and partial 3D scene models. This method allows common features in 

successive images to be identified and stitched together to form a video mosaic. 

With the video image stabilized, the targeted object in the video frame 

could be identified using descriptors of the unique features of the object. This 

could be done using the SIFT method [6] and the SURF method [7]. Rublee et al. 

presented an alternative method to SIFT and SURF, which improves on their 

performance and efficiency of feature detection [8].  

Once the object had been identified in the video image, the motion of the 

object could be estimated through the comparison of the object’s location in 

successive video frames. Patel used successive frame differencing and pixel 
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variance to track, detect, and validate a moving object in a video sequence [9]. 

Fleet and Weiss described a variety of mathematical models that could be used 

to determine the object’s motion [10]. 

C. THESIS ORGANIZATION 

This thesis consists of four chapters. Chapter I provides a brief 

introduction to the purpose of missile detection and tracking and an overview of 

previous work on the topic of motion tracking and detection. It also formulates a 

problem this thesis tries to address. 

Chapter II gives an overview of the method used in a simulation program 

to detect missile launch and track its trajectory. A detailed breakdown of the 

methods used and the lessons learnt are discussed in this chapter. 

Chapter III discusses the test results of the simulation program on several 

missile launch videos. The performance of the simulation program is presented in 

this chapter. 

Chapter IV discusses the methods to perform pose estimation of the 

missile and compares the estimates from the simulation program with an actual 

firing. 

Chapter V discusses the feasibility of using the simulation program to 

detect a missile launch and tracks its trajectory. This chapter also recommends 

future work that could expand on this study. 

The Python code for the simulation program and the summarized results 

of all the tested missile launch videos are given in Appendix A and Appendix B, 

respectively.  
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II. ALGORITHMS FOR MISSILE LAUNCH DETECTION 
AND TRAJECTORY TRACKING 

This chapter addresses the video stabilization issues encountered in 

processing the unstable video footage taken from a quadcopter in previous 

rocket launch and describes the new experimental setup that is used to capture 

the rocket launch videos. From the rocket launch videos, the algorithms of the 

simulation program are written based on the characteristics of the missile 

launches during the trial. Subsequently, the chapter will describe the essence of 

the simulation program written in Python using open-sourced libraries from 

Opencv that are commonly used for video processing.  

The simulation program is split into two main sections, namely a missile 

launch detection phase and a missile trajectory tracking phase. The simulation 

program first breaks down the videos into individual frames and converts them to 

grayscale. The frames have fewer variables to process in grayscale than in Red-

Green-Blue (RGB) color format. Once the frames have been processed for each 

phase, the results are back projected to the frames in RGB format and saved as 

color video footage. The following sections address the problem of video 

stabilization and describe the simulation program algorithm. 

A. VIDEO STABILIZATION 

Two rocket launch videos (each taken from a different perspective by a 

quadcopter) were initially used to write the simulation program. Sample frames 

are shown in Figure 1. Due to the stability of the quadcopter during flight, the 

video footage of the rocket launches was not very stable. This posed a great 

challenge in detecting the rocket launch and tracking its trajectory using the video 

processing tools available. 
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Figure 1.  Images of Missile Launch from Two Different Angles 

In the most common video processing for motion, the background 

subtraction method is used to sieve out any objects that are moving in the video. 

It subtracts the intensity of two video frames and creates a new frame, in 

grayscale, to show the objects that were moving between the frames. As shown 

in Figure 2, the background subtraction method detects the rocket launch and 

also the surrounding features due to the motion of the quadcopter during the 

recording. The video processing tools in Opencv cannot stabilize the video 

footage enough for the simulation program to perform its task.   

 

Figure 2.  Images of Missile Launch after Background Subtraction 

Therefore, we stabilize the videos using external video processing 

software, and the results are shown in Figure 3. 



 7

 

Figure 3.  Background Subtraction Images after Video Stabilization 

The results of the background subtraction images after video stabilization 

are good for launch detection and trajectory tracking. However, as the motion of 

the video footage is too pronounced, the stabilization results are not consistent in 

all the video frames. Some of the frames still have the surrounding features 

captured by the background subtraction method. This causes the simulation 

program to falsely detect a missile launch and also mistake a patch of grass as a 

missile in flight. Therefore, the two missile launch videos taken from a 

quadcopter are not suitable for use by the simulation program.  

To simplify the problem of detecting a missile launch and tracking its 

trajectory, another series of missile launch videos is taken from a camera 

mounted onto a tripod on the ground so that there are no issues of video 

stabilization.  

B. EXPERIMENTAL SETUP 

The missile launch trials are held in the Mojave Desert on May 21, 2016. A 

total of six missile launch videos is recorded using a Canon 650D during the trial. 

The camera is capable of recording videos in 1080p (1920 x 1080 pixels) with a 

frame rate of 25 frames per second. The range of the camera to the missile 

launch site is not measured during the trial as the main objective is to record 

missile launch videos to be used as test videos for creating the simulation 

program. The experimental setup is shown in Figure 4. 
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Figure 4.  Experimental Setup of the Missile Launch 

C. SIMULATION PROGRAM ALGORITHM 

As mentioned earlier, the simulation program has two main phases, 

namely the missile launch detection phase and the missile trajectory tracking 

phase. When a missile launch has been detected in the first phase, the program 

transitions to the missile trajectory tracking phase and attempts to track the 

missile’s trajectory. In this phase, the program first locates the missile in each 

frame and tracks its position as the missile moves across the camera’s field of 

view. The simulation program marks the missile location with a red circle on each 

of the video frames to indicate a successful track and outputs it to the missile 

video. An overview of the simulation program algorithm is shown in Figure 5. 
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Figure 5.  Overview of the Simulation Program Algorithm 

1. Missile Launch Detection Phase 

When the missile is launched from the launch pad, smoke plumes are 

generated by the rocket motor to provide the thrust needed to propel the 

missile. Therefore, the smoke plume is a good indication that a missile has 

been launched. Through the detection of smoke plumes of a certain size in 

each frame, the simulation program can identify a missile launch. As different 

missiles produce different sized smoke plumes during launch (Figure 6), the size 

of the smoke plume that can be used for missile launch declaration, have to 

be optimized. 

 

Figure 6.  Missile Launches and the Corresponding 
Background Subtraction Frames 
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The simulation program determines the size of the smoke plume by 

calculating the area of the white “blob” in the frame. When the program detects a 

smoke plume with the required size, a missile launch flag is triggered and the 

program declares a missile launch. 

 

Figure 7.  Missile Launch Detected by the Simulation Program 

For missiles with minimal smoke plumes, the simulation program can still 

detect the smoke plumes by setting the threshold to a very low value. However, 

this may cause the simulation program to falsely declare multiple missile 

launches for missiles with huge smoke plumes. This is because some missiles 

eject a lot of smoke before liftoff from the launchpad. This will create a problem 

for the missile trajectory-tracking phase of the program, as it will not be able to 

differentiate the missile from the smoke plume or the launch rail. Due to the huge 

differences in the smoke plume size for different missiles, the threshold level is 

set at an optimal level where most of the missile launch videos will have a 

positive missile launch declared. On the other hand, the simulation program 

will not be able to detect a missile launch for those missiles with minimal 

smoke plumes. 

2. Missile Trajectory-Tracking Phase 

The missile trajectory-tracking phase starts only when a missile launch 

flag is triggered by the missile launch detection phase. To track the missile’s 

trajectory, the simulation program has to detect the position of the missile in each 

frame. In this case, the background subtraction method is again used to sieve out 
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the missile moving between each frame. However, the missile location in each 

frame is not prominent due to the smoke plume at the trailing end of the missile. 

As the smoke plume is ejecting out of the rocket motor, the background 

subtraction method detects it as a moving object (Figure 7), causing it to mask 

the actual missile location. Since the missile location cannot be easily identified 

from the background subtraction frame, the missile location can still be found by 

identifying the missile nose tip using the ORB (Oriented FAST and Rotated 

BRIEF) method. 

 

Figure 8.  Missile Position Cannot Be Identified after the 
Background Subtraction Method 

a. Oriented FAST and Rotated BRIEF Method for Determining 
Missile Location 

As the missile is always located at the tip of the white blob in each frame, 

the simulation program can determine the missile’s location by detecting the 

leading edge of the white blob using the ORB (Oriented FAST and Rotated 

BRIEF) method.  

The ORB method can detect the leading edge of the white blob, which will 

in turn determine the missile’s nose tip. First, using the method, the algorithm 

looks for unique features in the “training” and “query” frames1 and determines the 

                                            
1 The “training” frame is usually the immediate frame, or several frames, before the “query” 

frame. “Training” frames are used as a template for comparison with the “query” frame. 
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descriptors for each feature in both frames (Figure 9). Thereafter, it compares the 

feature descriptors of both frames and matches them (Figure 10).  

 

Figure 9.  Unique Features detected by the ORB Method on the 
“Training” Frame (left) and the “Query” Frame (right) 

 

Figure 10.  Matching of the Features in the “Training” and “Query” Frames 
by the ORB Method 

Although the ORB method can determine the missile’s position, it cannot 

reliably track the missile’s trajectory throughout its flight. This shortcoming arises 

because the ORB method cannot consistently match the missile nose tip in each 

frame. As previously described, the ORB method assigns descriptors to 

determine the missile nose tip, but it may also assign similar descriptors to the 

smoke plumes that are moving underneath the missile and match them with the 

missile nose tip. To circumvent this problem, the ORB method must ignore the 

features detected on the smoke plume and only allow features that are found to 

be in the same direction of the missile flight. The latter can be used as a match 

with the missile nose tip in the “training” frame. 

The missile flight direction is found by using the coordinates of the first 

matching missile nose tip in the “training” and “query” frames. With the missile 
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flight direction found, a search area can be defined in the “query” frame using the 

position of the missile nose tip, which is found in the “training” frame as the 

starting point of the search area, as shown in Figure 11. 

  

Figure 11.  Features Search Area Superimposed on the 
“Training” and “Query” Frames 

If the coordinates of the features found are not in the search area, the 

simulation program will not include them in the list of features to be used for 

matching with the “training” frame. In this way, the ORB method would not match 

the missile nose tip with the smoke plume underneath.  

b. Factors Affecting Correct Matching by ORB Method 

The method described in the previous section hinges on the first 

successful match of the missile nose tip in the “training” and “query” frames. 

Therefore, the first match is very critical in determining the success of the 

program’s ability to track the missile. To have a good first match, as explained in 

more detail in the following subsection, the timing to start the missile trajectory-

tracking phase is very important. If a missile launch is declared and the missile 

has not left the launching rail, the missile trajectory-tracking algorithm will not be 

able to locate the missile, and as result, the program will create an erroneous 

match. An erroneous match can also occur if the features found on the smoke 

plume are similar to those found for the missile nose tip of the “training” frame, 
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even though the ORB method has found the missile nose tip in the “query” frame. 

This is illustrated in Figure 12 and discussed further at the end of this section. 

 

Figure 12.  The Missile Trajectory-Tracking Algorithm Detecting 
the Smoke Plume instead of the Missile 

(1) Delay in Missile Launch from the Launch Rail 

From the various missile launch videos, the author observed that different 

missiles emit different amounts of smoke before they take off and leave the 

launch rail. By fine tuning the threshold for the size of the smoke plume, we can 

enable the simulation program to declare a missile launch even when the missile 

does not leave the launch rail enough for the missile trajectory-tracking algorithm 

to track it. Furthermore, as different launch rails are used in the videos, the 

author also noted that the time the missiles took to leave the rail differed. To 

prevent a false missile tracking, we delayed the missile trajectory-tracking 

algorithm by a few frames after a missile launch detection flag is triggered. This 

parameter was then tested on all the missile launch videos to determine the 

optimal number of frames to be delayed. 

(2) Erroneous Matching of Missile Nose Tip 

To minimize the erroneous matching of the missile nose tip between the 

“training” and “query” frames, the missile nose tip features detected on the 

“query” frame must be prominent for the ORB method to correctly match them 
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with the corresponding features on the “training” frame. In most of the test cases, 

when the missile launch detection algorithm declared a missile launch, the ORB 

method could not correctly match the missile nose tip when the “query” frame 

was immediately after the “training” frame. This can be due to the insufficient 

displacement of the missile position between the two frames. To solve this 

problem, the “query” frame has to be several frames after the “training” frame to 

allow a good displacement of the missile location between the frames. This 

parameter was tested on all the missile launch videos to determine the optimal 

number of frames to be skipped. 

Once the simulation program could detect the missile launch and track its 

trajectory properly, the program was tested with more missile launch videos to 

determine its performance. These test results are presented in the next chapter. 
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III. ALGORITHMS VERIFICATION 

Six missile launch videos were available with which to test and verify the 

performance of the simulation program. As each missile launches differently in 

the videos, the simulation program was trained with one video and then tested 

with the other videos to tune the performance of the simulation program. In this 

way, the performance of the simulation program was optimized for all the missile 

launch videos. 

A. EFFECTS OF CAMERA ORIENTATION 

From the logic of the missile trajectory-tracking algorithm, the simulation 

program is capable of tracking the missile trajectory in all directions. As the 

missiles were launched from the ground up in all the videos, these videos did not 

provide any opportunity to test the algorithm against different perspectives on the 

missile launch direction. Therefore, the missile launch videos are rotated using 

external video editing software (iMovie) and then tested on the simulation 

program. A total of three additional missile launch videos were created in this 

process to simulate the missile launch from top to bottom, left to right, and right 

to left directions in the video frames. 

From Figures 13 and 14, it can be seen that the simulation program is 

capable of tracking the missile trajectory in the horizontal and vertical directions. 

Therefore, this test proved that the simulation program is able to track a missile 

launch in any direction.   
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Figure 13.  Testing of the Simulation Program for Missile Launch 
in Horizontal Direction 

 

Figure 14.  Testing of the Simulation Program for Missile Launch 
in Vertical Direction  

B. ALGORITHM INITIATION TUNING  

As mentioned in the previous chapter, there are two parameters in the 

simulation program that need to be optimized to improve the performance of the 

simulation program. They are: 1) the number of frames to be delayed after the 

missile launch flag has been triggered, and 2) the number of frames to skip after 

the “training” frame to select the “query” frame. In this optimization test, a total of 

nine missile launch videos are used, including the additional three missile launch 

videos mentioned in the previous section.  
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The optimization tests are done by running all the videos through the 

simulation program and evaluating the performance of the program on individual 

frames in each video. The evaluation criteria for each frame are categorized as 

follows: 

 True Positive: The simulation program correctly identifies the 
missile location in the frame. 

 False Alarm (False Positive): The simulation program wrongly 
identifies another object as the missile location in the frame. 

 False Negative: The simulation program does not identify the 
missile location in the frame when the missile is in flight. 

Once all the frames have been evaluated, the total number of frames for 

each category is tallied to calculate the average percentage of true positives and 

false alarms. This determines the performance of the simulation program for 

each combination of the two parameters. 

As there are two parameters to be optimized, one of the parameters has 

to be fixed while the other parameter is iterated. For the first optimization test, the 

number of frames to be delayed after missile launch flag triggered is set at four 

frames, while the number of frames to be skipped after the “Training” frame is 

iterated from one to ten frames. In the second optimization test, the optimal 

number of frames to be skipped, found in the first test, is used while iterating the 

number of frames to be delayed after missile launch, from one to ten frames. 

1. Number of Frames to Skip after the “Training” Frame 

The results of the first optimization test are summarized in Table 1 and 

plotted in Figure 14.  
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Table 1.   Test Results of the First Optimization Test 

Number of 
frames to skip  
(9 videos) 

1 2 3 4 5 6 7 8 9 10 

Average % of 
true positive 
tracking 

40.96 49.40 47.30 47.08 42.33 40.61 35.36 35.92 39.06 40.88 

Average % of 
false alarm 

59.04 50.60 52.70 52.92 57.67 59.39 64.64 64.08 60.94 59.12 

 
The number by each marker represents the number of frames that were skipped. 

Figure 15.  Outcome of the First Optimization Test 

From Figure 15, it follows that the optimal number of frames to be skipped 

is two frames. This is because the simulation program has the highest true 

positive percentage2 at 49.4 percent and the lowest false alarm rate at 50.6 

percent.   

 

                                            
2 The percentage calculation is based on the total number of frames for all nine tested 

videos. 
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If the two missile launch videos with minimal smoke plume are excluded 

from the test, the test results have an improvement of about 10 percent in both 

the true positive percentage and false alarm rate. The newly tabulated test 

results are summarized in Table 2. 

Table 2.   Test Results of the First Optimization Test without Minimal Smoke 
Plume Missile Launch Videos 

Number of 
frames to skip  
(7 videos) 

1 2 3 4 5 6 7 8 9 10 

Average % of 
true positive 
tracking 

50.10 59.14 58.36 58.09 49.90 49.87 40.69 46.18 48.63 52.56 

Average % of 
false alarm 

49.90 40.86 41.64 41.91 50.10 50.13 59.31 53.82 51.37 47.44 

 

From Table 2, the optimal number of frames to skip is still at two frames 

even though the missile launch videos with minimal smoke plume are excluded 

from the tabulation. This shows that the missile launch videos with minimal 

smoke plumes do not have any impact on the optimization test. 

2. Number of Frames Delayed after Missile Launch Flag 
Triggered 

From the first test results, the optimized number of frames to be skipped 

from the ‘training’ frame is used in the second test to find the optimized number 

of frames to be delayed. The results are summarized in Table 3 and plotted in 

Figure 15. 

Table 3.   Test Results of the Second Optimization Test 

Number of  
frames delayed  
(9 videos) 

1 2 3 4 5 6 7 8 9 10 

Average % of 
true positive 
tracking 

30.90 35.41 40.96 47.08 47.51 48.22 42.33 39.93 35.36 36.07 

Average % of 
false alarm 

69.10 64.59 59.04 52.92 52.49 51.78 57.67 60.07 64.64 63.93 
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The number by each marker represents the number of frames that were delayed. 

Figure 16.  Visualization of the Second Optimization Test Results 

The second optimization test results show that when the simulation 

program starts tracking the missile at the sixth frame after the missile launch flag 

was triggered, it would have the highest true positive percentage at 48.22 

percent and the lowest false alarm rate at 51.78 percent.   

When the two missile launch videos with minimal smoke plume are 

excluded from the test, the test results have an improvement of about 3 percent 

to 10 percent in both the true positive percentage and false alarm rate. The newly 

tabulated test results are shown in Table 4. 

Table 4.   Test Results of the Second Optimization Test without Minimal 
Smoke Plume Missile Launch Videos. 

Number of  
frames delayed  
(7 Videos) 

1 2 3 4 5 6 7 8 9 10 

Average % of true 
positive tracking 

33.87 40.44 50.10 58.09 58.64 57.52 49.90 48.98 40.69 46.18 

Average % of false 
alarm 

66.13 59.56 49.90 41.91 41.36 42.48 50.10 51.02 59.31 53.82 
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The optimal number of frames to be delayed after the missile launch flag 

triggered has changed from the sixth frame to the fifth frame. By comparing the 

results of the optimal frames in Tables 3 and 4, we find a 10 percent 

improvement in both the true positive tracking percentage and false alarm rate. 

This shows that the missile videos with minimal smoke plumes have a significant 

influence on this parameter. The performance of the simulation program is 

improved from a percentage of 48.22 percent in true positive tracking and 51.78 

percent false alarm rate, to 58.64 percent in true positive tracking and 41.36 

percent in false alarm rate. 
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IV. POSITION ESTIMATION 

A. MISSILE SPEED 

As mentioned previously, military operations are making increased use of 

UAVs, and the purpose of this thesis is to explore the feasibility of their use to 

patrol a potential ICBM launch area. The onboard camera of such a UAV has the 

capability to record the tilt and pan of a gimbal, which, along with inertial 

measurement unit/ global positioning system (IMU/GPS) information, allows 

calculating a missile’s geographic position. Figure 17 represents a general 

geometry of tracking a missile launch by a UAV. 

 

Figure 17.  Observing a Missile Launch from UAV 

In the experiment that took place in Mojave Desert, there was no tilt/pan 

information (the stationary ground camera was used) and the camera’s position 

data was not available either. Hence, only a limited analysis on the missile could 

be carried over. Figure 18 represents the geometry in this case. 



 26

 

Figure 18.  Detecting a Missile Launch using the Pinhole Camera Model 

Using the pinhole camera model, the size of a rocket in the image frame, 

lp  via its physical size, L , can be expressed as  

 lp 
f

R
L 

1

k
L   (1) 

In Equation (1), R  is the (unknown) range to the missile launch site and f  

is the (unknown) focal point of the camera. With the values L  and lp  known 

before the launch, the coefficient k  can be estimated as 

 
k 

L

lp  [m/pixel] (2) 

Therefore, the rocket speed, v, can be estimated using the camera frame 

rate,  , and the number of pixels the rocket has moved between the two 

consecutive frames, dp , as 

 v  kdp  [m/s] (3) 

Figure 18 shows how the estimated rocket speed calculated from the 

simulation program is displayed in the video. 
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Figure 19.  Rocket Speed Calculation 

Figure 19 provides a comparison of the rocket speed calculated by the 

simulation program and the actual speed recorded using the accelerometer and 

barometric altimeter carried onboard the rocket. The errors in the speed values 

are due to the simulation program limited accuracy in detecting the rocket 

position. The simulation program cannot accurately detect the same spot on the 

moving rocket in each frame. 

 

Figure 20.  Rocket Speed Time History 
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The aforementioned method of calculating the rocket speed could be 

enhanced by accounting for the elevation angle α (see Figure 17). In this case, 

Equation (3) becomes 

 v 
kdp
cos

 [m/s] (4) 

where   tan1 H

R






. While the rocket altitude, H , could be estimated as  

 H  vdt
0

t

  (5) 

(and verified using onboard sensor data), the range from the camera focal point 

to the missile launch site was not measured. In addition, Equation (4) does not 

account for the rocket orientation, which might be slightly different from a straight 

vertical. 

Another set of field experiments to gather more data and conduct an 

advanced analysis was scheduled in mid-August, but it was postponed. Hence, 

the results based on those additional trials did not make it into this thesis. 

B. MISSILE ORIENTATION 

Using two consecutive frames of a stationary camera, a launch plane 

orientation (with respect to the camera coordinate frame) can also be determined 

as  

   tan1 y2  y1

x2  x1







 (6) 

where refers to the coordinates of the missile nose tip in the first frame 

and  refers to the coordinates of the missile nose tip in the second frame. 

The deflection angle (from the vertical), computed using Equation (6), by 

the simulation program is shown in Figure 20.  

x1, y1 
x2 , y2 
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Figure 21.  Time History of Missile Deflection Angle 

The error bars shown in Figure 20 are estimated based on the rocket 

speed and the fact that x- and y-coordinates of the rocket nose tip are only 

accurate to about 1 pixel. These outliers are probably related to the fact that the 

camera was mounted on a tripod relatively close to the launch position, causing it 

to vibrate during the launch. 

If a missile launch is observed by two UAVs, using the plane angle   

would result in an estimate of the missile altitude, which would in turn result in a 

further correction of Equation (4).  

C. SUMMARY 

Based on the results of the calculated missile speed by the simulation 

program, the program showed that it is capable of estimating the missile speed 

using the missile position captured in each frame. The simulation program is also 

able to calculate the missile deflection angle from the vertical. However, it will 

only be useful when the missile deflection angle is calculated by two UAVs 

separated by at least 90 degrees in azimuth from the missile launch site. In this 

way, the missile altitude can be triangulated using the plane angles from each 

UAV.    
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V. CONCLUSION AND FUTURE RESEARCH 

A. CONCLUSION 

The simulation program was able to detect a missile launch and track its 

trajectory in the video’s field of view. Although it could only achieve a true 

positive tracking percentage of 58.46 percent, the update rate of the missile 

position by the simulation program was sufficient for a weapon system to 

intercept it reliably. This means that for a missile launch video with 25 frames per 

second, the simulation program was able to provide about 14 updates on the 

missile position per second.  

On the other hand, the simulation program is unable to process any 

missile launch videos that are not stabilized and is also unable to detect a missile 

launch of a missile with a minimal smoke plume. In its current state, the 

simulation program cannot process the surveillance videos from the CUAV to 

achieve its objective of providing targeting information for an attacking UAV to 

reliably intercept it. However, if the surveillance video can be stabilized before 

processed by the simulation program, it can be installed on a surveillance UAV to 

detect a missile launch threat and provide targeting information to an attacking 

UAV to reliably intercept the missile.  

B. FURTHER STUDIES 

The simulation program can be enhanced to improve the missile trajectory 

tracking methods and determine the 3D location of the missile. This information 

will enhance the accuracy of the targeting information that will be fed to the 

attacking UAV for intercepting the missile. Further work can also be done to 

stabilize the video in real time before processing the missile launch video using 

the simulation program. This will allow real-time surveillance by the UAV at the 

missile launch site.  
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1. Determine Missile Location in 3D Space 

The calculation of the missile speed and orientation by the current 

simulation program is only accurate if the missile down range of the video 

camera remains constant, which will not be possible in real life. To determine the 

actual 3D location of the missile, future research should use multiple cameras 

with known distances and bearing from each other, to enable the calculation of 

the missile location using the triangulation method [11]. By using the missile 

trajectory-tracking algorithm in this simulation program, the researcher can write 

a program to process the missile launch videos from multiple cameras and 

determine a missile’s location in 3D space. 

2. Object Motion Tracking 

The background subtraction method used in this simulation program is 

unable to identify the missile position in each frame due to the smoke plume 

created by the missile rocket motor. In addition, the missile launch algorithm of 

the simulation program is also unable to detect the launch of a missile with a 

minimal smoke plume.  

Instead of using the background subtraction method to track object 

motion, researchers can consider the optical flow technique. Optical flow [12] 

performs estimation of the motion in each individual pixel of the frame by 

calculating the motion of each pixel. Once the motion of each pixel has been 

calculated, the mean shift method can be used to cluster the pixels with similar 

motion descriptions together to identify the missile’s location in each frame.  

3. Video Stabilization 

To perform detection of a missile launch and trajectory tracking from a 

single or multiple CUAVs, the researcher must ensure the video footage from the 

CUAV is stabilized before any video processing can be done. Matsushita et al. 

recommended a methodology to stabilize a video with minimal impact to the size 

of the video frames [13]. This methodology can be applied to stabilize the missile 
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launch video and subsequently feed it into the simulation program for missile 

launch detection and trajectory tracking. In this way, the videos taken from the 

CUAV(s) can be used to perform a surveillance mission and track a launched 

missile so that an attacking UAV can intercept it. 
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APPENDIX A. SIMULATION PROGRAM PYTHON CODE 

The Python code provided here detects the missile launch from a video 

and tracks the missile’s trajectory within the video’s field of view. When a missile 

launch is detected by the simulation program, a “Missile Launch Detected” 

indicator appears in the top left corner of the video. The speed and orientation of 

the missile launch are indicated in the same corner. A green indicator flashes on 

the video to indicate a missile launch detected from the missile smoke plume. If 

the simulation program also detects the missile’s location, a red circle shows up 

in the video to indicate that location. Finally, the simulation program overlays all 

indicators mentioned previously on the existing missile launch video and outputs 

it as a video file saved on the hard disk. 

 

import sys 
sys.path.append('/Applications/OpenCV3/build/lib/python3') 
 
import cv2 
import numpy as np 
import matplotlib.pyplot as plt 
import math 
cv2.ocl.setUseOpenCL(False) 
 
# Loading a missile launch video 
cap = cv2.VideoCapture('ML-Side1.mov') 
framecount = 1 
 
#Initialise the background subtraction technique 
bgs = cv2.createBackgroundSubtractorMOG2() 
 
#Retrieve the video properties 
fps = cap.get(cv2.CAP_PROP_FPS) 
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) 
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)  
count = cap.get(cv2.CAP_PROP_FRAME_COUNT)  
outsize = (int(width), int(height)) 
TFrame = cap.get(7) 
 
#Initialise the parameters to output a video 
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fourcc = cv2.VideoWriter_fourcc(*'XVID') 
out = cv2.VideoWriter('ML1 Final.avi', fourcc, fps, outsize, isColor=True) 
 
a = 0 
b = 0 
Ang1 = 0 
flag=1  
delay=0 
detection =0 
firstorb = 0 
FSkip = 1000000 
MLcount = 100000 
deFlag = 0 
LText = 1 
Repeat = 0 
MxVel = [] 
 
#Initialise count for performance verification 
Positive = 0 
FPositive = 0 
DCount = 0 
 
while True and framecount <= TFrame: 
    ret, frame = cap.read() 
    Detect = frame.copy() 
    print('\n\nFrame count = ',framecount) 
     
    if frame is None : 
        print('\nFrame is empty!!!!') 
        break 
 
    #Perform Gaussian Blur to the frame before background subtraction 
    gframe = cv2.GaussianBlur(frame, (15, 15), 0) 
    fgmask = bgs.apply(gframe) 
    ret,thresh = cv2.threshold(fgmask,125,255,cv2.THRESH_BINARY) 
 
    if framecount ==2: 
        M1 = thresh.copy() 
 
    M2 = thresh.copy() 
 
    if framecount >2: 
        im2, contours, hierarchy = 
cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) 
        moments = [cv2.moments(x) for x in contours] 



 37

 
        #Calculation of the missile smoke plume size for missile launch detection 
        for c in contours: 
            area = cv2.contourArea(c) 
            #print('Area is ', area, '\n') 
            if(area>500) and deFlag == 0: 
                detection=1 
                print('Launch Detected!!!!') 
                MLcount = framecount + 6 
                cv2.drawContours(Detect, c, -1, (0,255,0), 3) 
                deFlag = 1 
        #Creation of the Missile Launch indicator text              
        if detection == 1: 
            font = cv2.FONT_HERSHEY_SIMPLEX 
            LText +=1 
            if LText %2 == 0: 
                cv2.putText(Detect,'Missile Launch Detected',(100,100), font, 
1,(50,50,255),3,cv2.LINE_AA) 
                 
    print('Checking flag = ', framecount >= MLcount) 
 
    #Feature Matching Algorithm 
    if framecount >= MLcount: 
         
        orb = cv2.ORB_create(nfeatures=200) 
        kps1 = orb.detect(M1, None) 
        kps1, descriptors1 = orb.compute(M1, kps1) 
 
        if len(kps1)!= 0 and framecount <= FSkip: 
            if firstorb == 0: 
                #Number of frame to skip after the "Training" frame 
                FSkip = framecount + 2 
                firstorb = 1 
        else: 
            DCount += 1         
            kps2 = orb.detect(M2, None)  
            kps2, descriptors2 = orb.compute(M2, kps2) 
            bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) 
 
            if len(kps2) != 0: 
                matches = bf.match(descriptors1, descriptors2) 
                matchesy = sorted(matches, key = lambda y:y.distance) 
                print("Found {} matching feature pairs.".format(len(matches))) 
                Best = matchesy[:5] 
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                if len(matches) != 0: 
                 
                    # Initialize lists of matching fetures 
                    SelectTrans = 0 
                    EuclideanDist = [] 
                    Px1 = [] 
                    Py1 = [] 
                    Px2 = [] 
                    Py2 = [] 
                    AngList = [] 
                    i = 0 
     
                    # For each match... 
                    for mat in Best: 
     
                        # Get the matching keypoints for each frame 
                        img1_idx = mat.queryIdx 
                        img2_idx = mat.trainIdx 
         
                        # x - columns 
                        # y - rows 
                        # Get the coordinates 
                        (x1,y1) = kps1[img1_idx].pt 
                        (x2,y2) = kps2[img2_idx].pt 
                        Px1.append(x1) 
                        Py1.append(y1) 
                        Px2.append(x2) 
                        Py2.append(y2) 
 
                        DistTrans = math.sqrt(math.pow((x1-x2),2)+math.pow((y1-y2),2)) 
                        EuclideanDist.append(DistTrans) 
                         
                    #Initial Parameters for the first iteration 
                    SEu = np.argmax(EuclideanDist, axis=0) 
 
                    if a == 0 and b == 0: 
                        a = Px1[SEu] 
                        b = Py1[SEu] 
 
                    #Calculation of the missile orientation 
                    Ang = -math.atan2((Py2[SEu]-b),(Px2[SEu]-a))                                     
 
                    if Ang1 == 0: 
                        Ang1 = Ang 
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                    #Checking whether the features found are within the search area. 
                    if Ang <= (Ang1 + math.radians(35)) and Ang >= (Ang1 - 
math.radians(35)): #y2 - b < 0: 
                        Olda = a 
                        Oldb = b 
                        a = Px2[SEu] 
                        b = Py2[SEu] 
                        Ang1 = Ang 
                                       
                    DistTrans = 0 
                     
                    if b != b1: 
                        a = np.int0(a) 
                        b = np.int0(b) 
 
                        #Draw a circle on the detected missile location 
                        cv2.circle(Detect,(a,b), 10,(0,0,255),3) 
                        print('Circle Drawn\n') 
 
                        #Calculate the distance that the missile has travelled between 2 
frames 
                        if Repeat == 0: 
                            MxDist = math.sqrt(math.pow((a-Olda),2)+math.pow((b-
Oldb),2)) 
                        else: 
                            MxDist = math.sqrt(math.pow((Py2[SEu]-
Py1[SEu]),2)+math.pow((Px2[SEu]-Px1[SEu]),2)) 
                            Repeat = 0 
 
                        #Calculate the speed of the missile                            
                        MxSpeed = np.around(((MxDist/22.601)*1.52)*fps, decimals=2) 
                        print('\nMissile Speed = ', MxSpeed) 
 
                        #Display of the missile speed and orientation in the output video 
                        cv2.putText(Detect,'Missile Speed = %.2f m/s' % 
MxSpeed,(100,150), font, 1,(50,255,50),2,cv2.LINE_AA) 
                        cv2.putText(Detect,'Deflection Angle = %.2f degrees' % 
np.around(90 - math.degrees(Ang), decimals=2),(100,200), font, 
1,(50,255,50),2,cv2.LINE_AA) 
                        cv2.putText(Detect,'from the Vertical',(100,250), font, 
1,(50,255,50),2,cv2.LINE_AA) 
                        MxVel.append(format(MxSpeed, '.2f')) 
                        Positive += 1 
                        print('Deflection Angle = ', 90 - math.degrees(Ang)) 
                    else: 
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                        cv2.putText(Detect,'Missile Speed = %.2f m/s' % 
MxSpeed,(100,150), font, 1,(50,255,50),2,cv2.LINE_AA) 
                        cv2.putText(Detect,'Deflection Angle = %.2f degrees' % 
np.around(90 - math.degrees(Ang1), decimals=2),(100,200), font, 
1,(50,255,50),2,cv2.LINE_AA) 
                        cv2.putText(Detect,'from the Vertical',(100,250), font, 
1,(50,255,50),2,cv2.LINE_AA) 
                        Repeat = 1 
                        FPositive += 1 
                        print('\nMissile Speed = ', MxSpeed) 
                        print('Deflection Angle = ', 90 - math.degrees(Ang1)) 
                         
            else: 
                print('No matches in kps2') 
                
    M1 = M2.copy() 
    b1 = b 
 
    #Output the processed video                 
    out.write(Detect) 
 
    #Display the processed video 
    cv2.imshow('Missile Launch Post processing', Detect) 
    cv2.waitKey(100) 
 
    if cv2.waitKey(1) & 0xFF == ord ('q'): 
        break 
    framecount += 1 
     
print('\nThe number of postive detection is ', Positive) 
print('The number of false postive detection is ', FPositive) 
print('The expected total number of detection is ', DCount) 
print('The number of frames true negative in the video is ', (framecount - 
DCount)) 
print('\nThe camera fps is ', fps) 
cap.release() 
cv2.destroyAllWindows() 
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APPENDIX B.  TEST RESULTS OF MISSILE LAUNCH VIDEOS 

A. OPTIMIZATION TEST RESULT FOR THE NUMBER OF FRAMES TO SKIP AFTER THE “TRAINING” FRAME 

Skip Frame = 10 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 7 17 21 9 0 0 8 7 8 

False Positive 7 11 10 9 7 66 7 8 9 

False Negative 0 0 0 1 1 3 0 0 2 

False Alarm 7 11 10 10 8 69 7 8 11 

Total 14 28 31 19 8 69 15 15 19 

% Positive 50.00% 60.71% 67.74% 47.37% 0.00% 0.00% 53.33% 46.67% 42.11% 

% False Alarm 50.00% 39.29% 32.26% 52.63% 100.00% 100.00% 46.67% 53.33% 57.89% 

Average % Positive 40.88% Average % Positive w/o ML5 & ML2-Slow 52.56% 

Average % False Alarm 59.12% Average % False Alarm w/o ML5 & ML2-Slow 47.44% 

 

Skip Frame = 9 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 8 18 22 10 1 0 9 8 0 

False Positive 7 11 10 9 8 68 7 8 19 

False Negative 0 0 0 1 0 2 0 0 1 

False Alarm 7 11 10 10 8 70 7 8 20 

Total 15 29 32 20 9 70 16 16 20 

% Positive 53.33% 62.07% 68.75% 50.00% 11.11% 0.00% 56.25% 50.00% 0.00% 

% False Alarm 46.67% 37.93% 31.25% 50.00% 88.89% 100.00% 43.75% 50.00% 100.00% 

Average % Positive 39.06% Average % Positive w/o ML5 & ML2-Slow 48.63% 

Average % False Alarm 60.94% Average % False Alarm w/o ML5 & ML2-Slow 51.37% 

Skip Frame = 8 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 
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Positive 9 18 0 11 0 0 10 9 9 

False Positive 7 11 30 9 9 68 7 8 10 

False Negative 0 1 3 1 1 3 0 0 2 

False Alarm 7 12 33 10 10 71 7 8 12 

Total 16 30 33 21 10 71 17 17 21 

% Positive 56.25% 60.00% 0.00% 52.38% 0.00% 0.00% 58.82% 52.94% 42.86% 

% False Alarm 43.75% 40.00% 100.00% 47.62% 100.00% 100.00% 41.18% 47.06% 57.14% 

Average % Positive 35.92% Average % Positive w/o ML5 & ML2-Slow 46.18% 

Average % False Alarm 64.08% Average % False Alarm w/o ML5 & ML2-Slow 53.82% 

 

Skip Frame = 7 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 10 19 22 12 2 11 0 0 10 

False Positive 7 12 11 9 9 59 17 17 10 

False Negative 0 0 1 1 0 2 1 1 2 

False Alarm 7 12 12 10 9 61 18 18 12 

Total 17 31 34 22 11 72 18 18 22 

% Positive 58.82% 61.29% 64.71% 54.55% 18.18% 15.28% 0.00% 0.00% 45.45% 

% False Alarm 41.18% 38.71% 35.29% 45.45% 81.82% 84.72% 100.00% 100.00% 54.55% 

Average % Positive 35.36% Average % Positive w/o ML5 & ML2-Slow 40.69% 

Average % False Alarm 64.64% Average % False Alarm w/o ML5 & ML2-Slow 59.31% 
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Skip Frame = 6 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 10 19 23 12 0 12 11 2 11 

False Positive 7 12 12 9 10 59 8 17 10 

False Negative 1 1 0 2 2 2 0 0 2 

False Alarm 8 13 12 11 12 61 8 17 12 

Total 18 32 35 23 12 73 19 19 23 

% Positive 55.56% 59.38% 65.71% 52.17% 0.00% 16.44% 57.89% 10.53% 47.83% 

% False Alarm 44.44% 40.63% 34.29% 47.83% 100.00% 83.56% 42.11% 89.47% 52.17% 

Average % Positive 40.61% Average % Positive w/o ML5 & ML2-Slow 49.87%    

Average % False Alarm 59.39% Average % False Alarm w/o ML5 & ML2-Slow 50.13%    

 

Skip Frame = 5 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 11 20 24 13 2 12 12 10 0 

False Positive 8 13 12 9 10 60 8 10 23 

False Negative 0 0 0 2 1 2 0 0 1 

False Alarm 8 13 12 11 11 62 8 10 24 

Total 19 33 36 24 13 74 20 20 24 

% Positive 57.89% 60.61% 66.67% 54.17% 15.38% 16.22% 60.00% 50.00% 0.00% 

% False Alarm 42.11% 39.39% 33.33% 45.83% 84.62% 83.78% 40.00% 50.00% 100.00% 

Average % Positive 42.33% Average % Positive w/o ML5 & ML2-Slow 49.90% 

Average % False Alarm 57.67% Average % False Alarm w/o ML5 & ML2-Slow 50.10% 
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Skip Frame = 4 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 12 22 26 14 0 13 14 12 12 

False Positive 9 13 12 9 13 61 8 10 11 

False Negative 0 0 0 3 2 2 0 0 3 

False Alarm 9 13 12 12 15 63 8 10 14 

Total 21 35 38 26 15 76 22 22 26 

% Positive 57.14% 62.86% 68.42% 53.85% 0.00% 17.11% 63.64% 54.55% 46.15% 

% False Alarm 42.86% 37.14% 31.58% 46.15% 100.00% 82.89% 36.36% 45.45% 53.85% 

Average % Positive 47.08% Average % Positive w/o ML5 & ML2-Slow 58.09% 

Average % False Alarm 52.92% Average % False Alarm w/o ML5 & ML2-Slow 41.91% 

 

Skip Frame = 3 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 13 22 26 15 0 13 14 12 11 

False Positive 9 13 12 9 13 61 8 10 11 

False Negative 0 0 0 2 2 2 0 0 4 

False Alarm 9 13 12 11 15 63 8 10 15 

Total 22 35 38 26 15 76 22 22 26 

% Positive 59.09% 62.86% 68.42% 57.69% 0.00% 17.11% 63.64% 54.55% 42.31% 

% False Alarm 40.91% 37.14% 31.58% 42.31% 100.00% 82.89% 36.36% 45.45% 57.69% 

Average % Positive 47.30% Average % Positive w/o ML5 & ML2-Slow 58.36% 

Average % False Alarm 52.70% Average % False Alarm w/o ML5 & ML2-Slow 41.64% 
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Skip Frame = 2 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 13 23 27 15 2 14 15 13 12 

False Positive 9 13 12 9 11 61 8 10 11 

False Negative 0 0 0 3 3 2 0 0 4 

False Alarm 9 13 12 12 14 63 8 10 15 

Total 22 36 39 27 16 77 23 23 27 

% Positive 59.09% 63.89% 69.23% 55.56% 12.50% 18.18% 65.22% 56.52% 44.44% 

% False Alarm 40.91% 36.11% 30.77% 44.44% 87.50% 81.82% 34.78% 43.48% 55.56% 

Average % Positive 49.40% Average % Positive w/o ML5 & ML2-Slow 59.14% 

Average % False Alarm 50.60% Average % False Alarm w/o ML5 & ML2-Slow 40.86% 

 

Skip Frame = 1 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 14 24 0 15 0 14 16 14 13 

False Positive 9 13 37 9 16 62 8 10 11 

False Negative 0 0 3 4 1 2 0 0 4 

False Alarm 9 13 40 13 17 64 8 10 15 

Total 23 37 40 28 17 78 24 24 28 

% Positive 60.87% 64.86% 0.00% 53.57% 0.00% 17.95% 66.67% 58.33% 46.43% 

% False Alarm 39.13% 35.14% 100.00% 46.43% 100.00% 82.05% 33.33% 41.67% 53.57% 

Average % Positive 40.96% Average % Positive w/o ML5 & ML2-Slow 50.10% 

Average % False Alarm 59.04% Average % False Alarm w/o ML5 & ML2-Slow 49.90% 
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B. OPTIMIZATION TEST RESULT FOR THE NUMBER OF FRAMES TO DELAY AFTER MISSILE LAUNCH 

Start Track = 10 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 9 18 0 11 0 1 10 9 9 

False Positive 7 11 30 9 9 68 7 8 10 

False Negative 0 1 3 1 1 2 0 0 2 

False Alarm 7 12 33 10 10 70 7 8 12 

Total 16 30 33 21 10 71 17 17 21 

% Positive 56.25% 60.00% 0.00% 52.38% 0.00% 1.41% 58.82% 52.94% 42.86% 

% False Alarm 43.75% 40.00% 100.00% 47.62% 100.00% 98.59% 41.18% 47.06% 57.14% 

% False Positive 43.75% 36.67% 90.91% 42.86% 90.00% 95.77% 41.18% 47.06% 47.62% 

Average % Positive 36.07% Average % Positive w/o ML5 & ML2-Slow 46.18%    

Average % False Alarm 63.93% Average % False Alarm w/o ML5 & ML2-Slow 53.82%    

 

Start Track = 9 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 10 19 22 12 2 11 0 0 10 

False Positive 7 12 11 9 9 59 17 17 10 

False Negative 0 0 1 1 0 2 1 1 2 

False Alarm 7 12 12 10 9 61 18 18 12 

Total 17 31 34 22 11 72 18 18 22 

% Positive 58.82% 61.29% 64.71% 54.55% 18.18% 15.28% 0.00% 0.00% 45.45% 

% False Alarm 41.18% 38.71% 35.29% 45.45% 81.82% 84.72% 100.00% 100.00% 54.55% 

% False Positive 41.18% 38.71% 32.35% 40.91% 81.82% 81.94% 94.44% 94.44% 45.45% 

Average % Positive 35.36% Average % Positive w/o ML5 & ML2-Slow 40.69% 

Average % False Alarm 64.64% Average % False Alarm w/o ML5 & ML2-Slow 59.31% 
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Start Track = 8 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 10 19 23 13 0 12 11 0 11 

False Positive 7 12 12 9 10 59 8 17 10 

False Negative 1 1 0 1 2 2 0 2 2 

False Alarm 8 13 12 10 12 61 8 19 12 

Total 18 32 35 23 12 73 19 19 23 

% Positive 55.56% 59.38% 65.71% 56.52% 0.00% 16.44% 57.89% 0.00% 47.83% 

% False Alarm 44.44% 40.63% 34.29% 43.48% 100.00% 83.56% 42.11% 100.00% 52.17% 

% False Positive 38.89% 37.50% 34.29% 39.13% 83.33% 80.82% 42.11% 89.47% 43.48% 

Average % Positive 39.93% Average % Positive w/o ML5 & ML2-Slow 48.98% 

Average % False Alarm 60.07% Average % False Alarm w/o ML5 & ML2-Slow 51.02% 

 

Start Track = 7 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 11 20 24 13 2 12 12 10 0 

False Positive 8 13 12 9 10 60 8 10 23 

False Negative 0 0 0 2 1 2 0 0 1 

False Alarm 8 13 12 11 11 62 8 10 24 

Total 19 33 36 24 13 74 20 20 24 

% Positive 57.89% 60.61% 66.67% 54.17% 15.38% 16.22% 60.00% 50.00% 0.00% 

% False Alarm 42.11% 39.39% 33.33% 45.83% 84.62% 83.78% 40.00% 50.00% 100.00% 

% False Positive 42.11% 39.39% 33.33% 37.50% 76.92% 81.08% 40.00% 50.00% 95.83% 

Average % Positive 42.33% Average % Positive w/o ML5 & ML2-Slow 49.90% 

Average % False Alarm 57.67% Average % False Alarm w/o ML5 & ML2-Slow 50.10% 
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Start Track = 6 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

True Positive 11 21 25 14 2 13 13 11 12 

False Positive 8 13 12 9 10 60 8 10 11 

False Negative 1 0 0 2 2 3 0 0 2 

True Negative 20 64 16 20 22 26 19 0 20 

False Alarm 9 13 12 11 12 63 8 10 13 

Total 20 34 37 25 14 76 21 21 25 

% Positive 55.00% 61.76% 67.57% 56.00% 14.29% 17.11% 61.90% 52.38% 48.00% 

% False Alarm 45.00% 38.24% 32.43% 44.00% 85.71% 82.89% 38.10% 47.62% 52.00% 

% False Positive 40.00% 38.24% 32.43% 36.00% 71.43% 78.95% 38.10% 47.62% 44.00% 

Average % Positive 48.22% Average % Positive w/o ML5 & ML2-Slow 57.52% 

Average % False Alarm 51.78% Average % False Alarm w/o ML5 & ML2-Slow 42.48% 

 

Start Track = 5 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 12 22 26 15 0 13 14 12 12 

False Positive 9 13 12 9 13 61 8 10 11 

False Negative 0 0 0 2 2 2 0 0 3 

False Alarm 9 13 12 11 15 63 8 10 14 

Total 21 35 38 26 15 76 22 22 26 

% Positive 57.14% 62.86% 68.42% 57.69% 0.00% 17.11% 63.64% 54.55% 46.15% 

% False Alarm 42.86% 37.14% 31.58% 42.31% 100.00% 82.89% 36.36% 45.45% 53.85% 

% False Positive 42.86% 37.14% 31.58% 34.62% 86.67% 80.26% 36.36% 45.45% 42.31% 

Average % Positive 47.51% Average % Positive w/o ML5 & ML2-Slow 58.64% 

Average % False Alarm 52.49% Average % False Alarm w/o ML5 & ML2-Slow 41.36% 
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Start Track = 4 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 12 22 26 14 0 13 14 12 12 

False Positive 9 13 12 9 13 61 8 10 11 

False Negative 0 0 0 3 2 2 0 0 3 

False Alarm 9 13 12 12 15 63 8 10 14 

Total 21 35 38 26 15 76 22 22 26 

% Positive 57.14% 62.86% 68.42% 53.85% 0.00% 17.11% 63.64% 54.55% 46.15% 

% False Alarm 42.86% 37.14% 31.58% 46.15% 100.00% 82.89% 36.36% 45.45% 53.85% 

% False Positive 42.86% 37.14% 31.58% 34.62% 86.67% 80.26% 36.36% 45.45% 42.31% 

Average % Positive 47.08% Average % Positive w/o ML5 & ML2-Slow 58.09% 

Average % False Alarm 52.92% Average % False Alarm w/o ML5 & ML2-Slow 41.91% 

 

Start Track = 3 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 14 24 0 15 0 14 16 14 13 

False Positive 9 13 37 9 16 62 8 10 11 

False Negative 0 0 3 4 1 2 0 0 4 

False Alarm 9 13 40 13 17 64 8 10 15 

Total 23 37 40 28 17 78 24 24 28 

% Positive 60.87% 64.86% 0.00% 53.57% 0.00% 17.95% 66.67% 58.33% 46.43% 

% False Alarm 39.13% 35.14% 100.00% 46.43% 100.00% 82.05% 33.33% 41.67% 53.57% 

% False Positive 39.13% 35.14% 92.50% 32.14% 94.12% 79.49% 33.33% 41.67% 39.29% 

Average % Positive 40.96% Average % Positive w/o ML5 & ML2-Slow 50.10% 

Average % False Alarm 59.04% Average % False Alarm w/o ML5 & ML2-Slow 49.90% 
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Skip Track = 2 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 15 0 0 15 3 15 17 14 13 

False Positive 9 37 38 10 12 62 8 11 11 

False Negative 0 1 3 4 3 2 0 0 5 

False Alarm 9 38 41 14 15 64 8 11 16 

Total 24 38 41 29 18 79 25 25 29 

% Positive 62.50% 0.00% 0.00% 51.72% 16.67% 18.99% 68.00% 56.00% 44.83% 

% False Alarm 37.50% 100.00% 100.00% 48.28% 83.33% 81.01% 32.00% 44.00% 55.17% 

% False Positive 37.50% 97.37% 92.68% 34.48% 66.67% 78.48% 32.00% 44.00% 37.93% 

Average % Positive 35.41% Average % Positive w/o ML5 & ML2-Slow 40.44% 

Average % False Alarm 64.59% Average % False Alarm w/o ML5 & ML2-Slow 59.56% 

 

Skip Track = 1 ML1 ML3 ML4 ML6 ML5 ML2-Slow ML1 L-R ML1 R-L ML6 U-D 

Positive 16 0 0 16 4 16 18 1 14 

False Positive 9 38 41 10 12 62 8 25 12 

False Negative 0 1 1 4 3 2 0 0 4 

False Alarm 9 39 42 14 15 64 8 25 16 

Total 25 39 42 30 19 80 26 26 30 

% Positive 64.00% 0.00% 0.00% 53.33% 21.05% 20.00% 69.23% 3.85% 46.67% 

% False Alarm 36.00% 100.00% 100.00% 46.67% 78.95% 80.00% 30.77% 96.15% 53.33% 

% False Positive 36.00% 97.44% 97.62% 33.33% 63.16% 77.50% 30.77% 96.15% 40.00% 

Average % Positive 30.90% Average % Positive w/o ML5 & ML2-Slow 33.87% 

Average % False Alarm 69.10% Average % False Alarm w/o ML5 & ML2-Slow 66.13% 
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