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ABSTRACT 

This study analyzes data from a select group of active duty (AD) service members 

enrolled to the Puget Sound area Navy military treatment facilities (MTF) in order to 

develop a model that identifies the risk that opioid users will become high opioid users, 

as defined by Navy Bureau of Medicine and Surgery (BUMED). The analysis examines 

the relationship between the response variable—high opioid user—as a function of a 

number of explanatory variables, including patient age, deployment history, sources of 

prescription and medical diagnoses.  Logistic regression and machine learning models are 

used for data analysis.   

The study concludes that a simple, executable model that consolidates the 

variables to two explanatory factors performs as well, if not better than, the more 

complicated machine learning models.  The two highly influential factors are the number 

of prescription sources for opioid medications and the total number of diagnoses.    

This logistic regression model has the potential to benefit Navy Medicine to make 

important decisions for their opioid-prescribed patients.  With the ability to identify the 

risk that an opioid user becomes a high user, healthcare leaders can better manage 

resources to focus on the prevention and treatment of higher-risk patients.  This 

concentrated coordination can result in improved patient care for this sub-population, 

reduced long-term cost for the military healthcare system and, overall, a more medically 

ready military force.      
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EXECUTIVE SUMMARY 

In an effort to build a model to identify the risk that opioid users may become 

high users, our study examines explanatory factors that influence opioid use.  The data is 

provided by the Analytics/Enterprise Support Services Department of BUMED and 

focuses on active duty (AD) service members enrolled to the Puget Sound area Navy 

military treatment facilities (MTF).  The analysis examines the relationship between the 

response variable, high opioid user, as a function of 91 explanatory variables, including 

patient age, deployment history, sources of prescription and medical diagnoses.  Basic 

logistic regression, elastic net penalized logistic regression, random forest and boosted 

tree classification models are used for our data analysis.   

We plotted cross-validated receiver operating characteristic (ROC) curves to 

compare model performance and to avoid over-fitting for the random forest and boosted 

tree models.  Although simpler, the basic logistic regression model performs well when 

compared to the complex machine learning models.  The logistic regression model is also 

easier to reproduce.  Just as importantly, the output is easy to understand and interpret.   

The log-odds and probability of a high user are a linear function of the two explanatory 

variables in the final logistic regression model and thus, conceptually, easier to 

communicate.   

Therefore, the recommended model for BUMED is a logistic regression model 

with two explanatory variables, without interactions.  These two variables, the number of 

prescription sources for opioid medications and the total number of diagnoses are 

constructed from the original data files from BUMED and encompass the majority of the 

91 explanatory variables.   

A lift curve is used for improved interpretability of the model for decision makers.  

The curve shows that with limited resources, if MTFs could subset the patients, by 

focusing on a percentage of the opioid user population with the highest estimated 

probability of high opioid use, the probability of identifying a high user can be improved 

by the amount of the lift.   
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This logistic regression model has the potential to benefit Navy Medicine to make 

important decisions for their opioid prescribed patients.  With the ability to identify the 

risk that an opioid user becomes a high user, health care leaders can better plan and 

manage finite resources to focus on the prevention and treatment of the higher risk 

patients.  This concentrated coordination of care can result in improved patient care for 

this sub-population, reduced long term cost for the military health care system and 

overall, a more operationally ready workforce.     

This research is an initial effort to explore ways to identify opioid users that may 

have greater risk of becoming a high opioid user.   For future studies, research can also 

examine data on patients that did not have opioids prescribed to compare the risk factors 

of becoming an opioid user.   
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I. INTRODUCTION 

In the United States, there is a growing epidemic that until recently has not 

received much media coverage: the use of opioids to relieve pain.  Opioids are a type of 

narcotic, commonly prescribed for pain.  Roughly 20% of patients with pain-related 

diagnoses are prescribed an opioid (Chou, Dowell, & Haegerich, 2016).  According to the 

National Institute on Drug Abuse (NIDA), opioids can be natural, semisynthetic or 

synthetic.  The drugs provide relief by reducing the intensity of pain signals to the brain 

and this, in turn, minimizes the effects of the painful stimulus (NIDA, 2014). Some 

common medications that are considered opioids include hydrocodone, oxycodone, 

morphine and codeine (NIDA, 2014).   

Opioid pain medications can present serious risks for the patient, including 

dependency, overdose and opioid-use disorder.  Opioid abuse has become the leading 

cause of preventable deaths in the United States (Rudd, Aleshire, Zibbell, & Gladden, 

2016).  In 2014 alone, according to the same source, there were over 47,000 deaths 

attributed to drug overdose and 61% of those deaths involved opioid overdoses. That is 

roughly 25% more deaths than from either firearms or motor vehicle accidents.  The 

Centers for Disease Control and Prevention (CDC) has historically characterized all 

opioid pain reliever deaths as prescription opioid overdoses (Rudd et al., 2016).  

Additionally, the numbers continue to dramatically increase; Figure 1, taken from a CDC 

(2015) report, shows that the rate of opioid overdoses has tripled since 2000.  This 

increase is alarming and present in all demographics, regardless of sex, age or race (Rudd 

et al., 2016).  The focus of this study is a specific population of opioid users, active duty 

(AD) military personnel.       



 2 

 

Figure 1.  Overdose Death Rates from 2000–2014. Source: CDC (2015). 

A. BACKGROUND 

Several important factors contribute to the increase in opioid use and abuse.  The 

liberalization of laws governing the treatment of chronic pain, the aggressive marketing 

efforts of the pharmaceutical industry and the introduction of a different pain 

management standard that began in the 1990s have all played major roles.  Prior to 1990, 

U.S. physicians took a minimalist approach to treating chronic pain patients (Levy, 

Netzer, & Pikulin, 2014).   

In 2015, the CDC published suggested guidelines for prescribing opioids for 

chronic pain in the United States (Chou et al., 2016).  These guidelines specifically focus 

on affecting medical provider’s behavior to ensure the safest and most effective treatment 

for their patients.  The guidelines also discuss the use of opioids in treating chronic pain.  

The guidelines do not target treatment of patients with cancer, palliative care or end-of-

life type care.  Instead, they are intended for primary care providers, who treat chronic-

pain patients in outpatient settings, as they account for almost half of all opioid 

prescriptions.  Chou et al. (2016) noted that the recommendations are based on three key 

principles.  The first is that non-opioid therapy is the preferred method for chronic pain 

treatment.  The second is that the lowest possible opioid dosage should be selected to 
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reduce risk of overdose.  Thirdly, providers should always exercise caution when 

prescribing opioids while closely monitoring their patients. 

Opioid abuse is not just a problem for the civilian population.  It is a problem for 

our nation’s military personnel and veterans as well.  According to a Veterans Affairs 

(VA) study, veterans are twice as likely to die from accidental opioid overdose than non-

veterans (Childress, 2016).  Additionally, Childress (2016) noted, that more than half of 

veterans suffer from chronic pain, compared to only about 30% for the general 

population, where chronic pain is defined “as pain that lasts longer than three months or 

past the time of normal tissue healing.”  Until a few years ago, veterans with chronic pain 

were treated exclusively with opioids.  The prevention, assessment and treatment of 

chronic pain remain a tremendous challenge for health care providers (Childress, 2016).   

The Navy AD population is on average much younger than the general population.  

Nevertheless, in a recent Center for Naval Analyses (CNA) study of four large Navy 

military treatment facilities (MTF), roughly 25% to 32% of all AD beneficiaries received 

at least one opioid prescription during fiscal year (FY) 2013 (Levy et al., 2014).    

The United States Navy Bureau of Medicine and Surgery (BUMED) stresses in its 

vision statement “our health care is patient-centered and provides best value, preserves 

health, and maintains readiness” (Goff & Sayers, 2015).  Thus, two of BUMED’s three 

strategic principles are value and readiness.  More specifically, under the value principle, 

the goal is to decrease enrollee network cost by optimizing resource utilization and 

managing referrals in order to provide the best care at the best value.  Under the readiness 

principle, the goal is to deliver ready capabilities to the operational commander by 

aligning Navy Medicine’s “manning, training, and equipping to maintain a medically 

ready force (Goff & Sayers, 2015).” 

According to Levy et al. (2014), around 80% of health care resources for Navy 

beneficiaries are devoted to patients with chronic pain.  Since chronic pain patients are 

typically prescribed opioids, this group drives a disproportionate amount of the 

populations cost to the health care system.  Additionally, from an operational and 

readiness standpoint, the Navy may not be able to deploy patients who have been 

prescribed opioids for chronic pain or those that have many of the associated comorbid 
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conditions.  Thus, the need to identify and manage the high opioid user population is one 

of strategic importance that aligns with BUMED’s strategic principles of value and 

readiness.  

B. PURPOSE OF THE STUDY 

High opioid use is defined by the Navy and Marine Corps Public Health Center 

(NMCPHC) as having five or more prescriptions dispensed for select pain medications 

within 90 days (Broad, 2016).  Identifying a potential high opioid user early will allow 

health care professionals and leaders to more closely monitor this group of beneficiaries 

to ensure they receive comprehensive care while mitigating the cost and operational 

impact on the patient’s parent organization.  

This study examines over eighty demographic and patient medical variables for 

opioid users in an AD military population and builds a simple logistic regression model 

to estimate the probability an opioid user from this population is a high opioid user.  

While this model is not good for classifying a particular individual as a high opioid user, 

we show that it can be used to identify the increase in the concentration of high users in a 

smaller sub-population.  We also show that the simple model performs well or better than 

more complex machine learning models (penalized logistic regression, random forests, 

boosted trees) fit with the same data.  The results of this study can be used by BUMED to 

help achieve its strategic goals in the areas of readiness and value.    

C. ASSESSING AND DEFINING HIGH OPIOID USERS AMONG AD NAVY 

POPULATION 

Across different health care systems, multiple methodologies and definitions are 

used for patients treated for chronic pain.  In 2015, BUMED established a comprehensive 

case definition to assess and identify opioid-prescribed patients enrolled in Navy MTFs.  

The adopted definition for a high opioid user is the same as NMCPHC’s definition of five 

or more dispensing events of a medication likely to be associated with pain during the 

course of a 90-day period (Ellis, 2015).  The types of medication that would fall within 

this category are listed below to include certain therapeutic classes and selected 
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nonsteroidal anti-inflammatory drugs (NSAID) likely to be associated with pain 

(Ellis, 2015). 

 

 Opiate Agonists 

 Opiate Partial Agonists 

 Skeletal Muscle Relaxants 

 Centrally Acting Skeletal Muscle Relaxants 

 Direct-Acting Skeletal Muscle Relaxants 

 Gaba-derivative Skeletal Muscle Relaxants 

 Skeletal Muscle Relaxants, Misc. 

 Selected NSAIDS (Aspir, Celecoxib, Ketoro, Cambia, Rub, Sulindac) 

Based on those medications, BUMED extracted administrative medical data and 

the Pharmacy Detail Transaction Service (PDTS) data from the Military Health System 

Management Analysis and Reporting Tool (M2).  The data only includes AD service 

members with at least one opioid prescription in FY2014 or FY2015 who were enrolled 

to the Puget Sound area Naval MTF’s.  These are the five facilities:  

 Naval Hospital Bremerton 

 Naval Hospital Oak Harbor 

 Naval Branch Health Clinic Everett 

 Naval Branch Health Clinic Bangor 

 Naval Branch Health Clinic Puget Sound 

Patients diagnosed with any of the cancer-related codes were excluded from the 

high opioid user criteria and removed from the PDTS data.  Appendix A lists the codes 

associated with cancer diagnosis.  This group of patients are already closely monitored 

and specifically prescribed opioids for their cancer-induced pain.  Based on the pseudo-

identification (ID) code representing each member in the PDTS data, BUMED provided a 

risk data file that contained additional information about each particular patient.  The 

details of each field will be discussed in Chapter III.  Due to the Health Insurance 
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Portability and Accountability Act of 1996, that specifically deals with protected health 

information as well as personally identifiable information, much of the demographic 

information was removed from the data files.  There are a few limitations with this study.   

 Reporting errors due to improper or insufficient medical coding as well as 

data entry errors at the clinic may exist in M2 data.  Furthermore, care 

delivered in the operational setting may not be documented in this system.   

 The PDTS table includes data for all prescriptions dispensed by an MTF, 

civilian pharmacy, or mail order.  It cannot be determined if the patient 

was compliant with taking the medication as instructed.  

 Patients with cancer diagnoses that did not occur at the same time as their 

pain diagnosis could be included in this analysis.  

 Potential high opioid users that have changed enrollment sites during the 

FY2014 or FY2015 time period may not be detected as a high user.   

 Since the reporting period covers 24 months, patients that receive opioid 

prescriptions outside of this period will not be accounted for.    

D. THESIS ORGANIZATION 

Chapter II provides background information on high opioid users, chronic opioid 

users (COUs), and the connection between pain and opioids.  Chapter III provides 

descriptive statistics of variables used in the study and gives the details of data 

preparation.  Chapter IV explores the methodologies used, a description and assessment 

of the models and the results of the analysis.  The final chapter presents a summary of the 

study and offers recommendations for further analysis.   
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II. RELATED LITERATURE 

This chapter examines previous studies on patients identified as high and COUs.  

Additionally, we explore the relationships between a very specific patient group, the 

military population and opioid use.  By examining the common factors amongst this 

patient group, we hope to gain a better insight on possible predictors for AD sailors who 

may become high opioid users.    

A. HIGH OPIOID USERS 

According to the Institute of Medicine, pain is recognized as a significant public 

health problem in America with over 100 million people experiencing chronic pain (Levy 

et al., 2014).  The treatment of chronic pain is especially challenging for health care 

professionals.  Due to its complex condition, chronic pain can be defined in different 

ways.  According to the same source, chronic pain is defined as lasting for “greater than 

three months or past the time of normal tissue healing” and can result from previous 

medical conditions, injuries or unknown causes.  An analysis in 2012 by the National 

Health Interview Study showed that 11.2% of adults reported having daily pain (Chou et 

al., 2016).  In fact, Chou et al. noted that approximately one in three Americans will have 

chronic pain in their lifetime and over 80% of the chronic issues are on the neck or lower 

back.  This source also reported that the majority of patients who experience chronic pain 

are also diagnosed with depression. The belief is that the ongoing pain and disability 

leads to frustration and eventually takes a psychological toll (Chou et al., 2016).  

Additionally, chronic pain in some people resulted from a traumatic event that may also 

trigger post-traumatic stress disorder (PTSD) (“PTSD,” 2015).  The same source 

approximates that 15% to 35% of patients with chronic pain also have PTSD.  Only 2% 

of patients diagnosed with PTSD do not have chronic pain.  Thus, PTSD and chronic pain 

have a very clear connection (“PTSD,” 2015).    

Opioids are commonly prescribed for non-cancer pain symptoms.  There is 

always the risk of dependency, abuse and opioid use disorder, which is defined as a 

“pattern of opioid-use leading to clinically significant impairment” (Chou et al., 2016).  
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Thus, it is very important to identify and monitor patients who are considered high 

opioid users.   

The Navy and Marine Corps Public Health Center conducted an M2 data pull in 

2016 for each Navy MTF and discovered that roughly 4% of all AD Navy beneficiaries 

could be classified as high users (Broad, 2016).  The percentage may be a little higher 

overall, as about 2,200 people fitting the description of high users were excluded because 

the last enrollment record did not classify them as AD or Navy enrollees.  Table 1 lists 

each Navy MTF and its percentage of high opioid users. 

 High Users of Chronic Pain Medication among AD Navy 

Enrollees. Source: Broad (2016). 
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B. CHRONIC OPIOID USERS 

While there is evidence to support the short-term effectiveness of opioids in the 

reduction of pain, the evidence is not as clear for long-term use.  Very few studies have 

examined the effectiveness of opioids with outcomes beyond 12 months.  Yet, 

researchers estimated in 2005, that 3% to 4% of the U.S. adult population was prescribed 

long-term opioid therapy (Levy et al., 2014).  Levy also suggested that patients that have 

a history of opioid prescriptions have a greater risk for overdose and opioid use disorder.  

Thus, COUs, generally defined as patients who have been prescribed a 90-day or greater 

supply of opioids, are of particular interest to BUMED and health care professionals 

(Levy et al., 2014).   

In the CNA study of chronic opioid-use and lower-back pain among Navy 

beneficiaries at the four large Navy MTFs, they evaluated opioid-use in terms of episodes 

of use, days of supply and dosage (Levy et al., 2014).  Some of the important factors 

quantified included the following: 

 Was the patient also on anti-depressant? 

 Was an NSAID attempted to relieve the pain, before the onset of opioid 

therapy? 

 Did the patient receive drugs from other pharmacy sources in the civilian 

sector? 

Table 2 shows the percentage of AD opioid users and the percentage of AD COUs 

for each of the four large Navy MTFs.  A key point to note that is not depicted in the 

table is that, while the COU percentage amongst the AD population is low, ranging 

between 1.5% to 3%, the COUs among the retiree demographic ranged from 7.2% to 

13.6% of total opioid users for each facility.  This meant that age and military 

experiences are possibly highly influential factors.   



 10 

 Percentage of Opioid Users and COUs for Each Facility. 

Source: Levy et al. (2014). 

 

 

CNA provided the following findings and recommendations relevant to this study 

(Levy et al., 2014).  

 AD personnel are less likely to become chronic users compared to 

dependents and retiree patients. 

 Users of anti-depressants are much more likely to be chronic users. 

 Those prescribed a NSAID such as ibuprofen or aspirin initially, before 

being prescribed opioid therapy, are less likely to be chronic users.  

 A higher percentage of COUs are chronic lower back pain patients versus 

patients with acute lower back pain.  

 Patients who receive prescriptions entirely in the direct care system or 

entirely in purchased care are less likely to be COUs than those who 

receive prescriptions in both systems.   
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C. PTSD, PAIN AND OPIOIDS 

Based on recent research, there is a clear connection between chronic pain and 

PTSD.  The VA reported that 51% of patients with chronic lower back pain also had 

PTSD symptoms (“PTSD,” 2015).  In another study, over 50% of Iraq and Afghanistan 

veterans diagnosed with PTSD also received one or more chronic pain diagnoses 

(Seal, 2014).  Seal’s research suggested that there is evidence that chronic pain is more 

prevalent in female veterans who recently returned from combat.  Figure 2 compares the 

returning veterans from Iraq and Afghanistan that have pain diagnoses and examines 

whether they have no mental health diagnosis, with a mental health diagnosis (excluding 

PTSD) or have a PTSD diagnosis.  The red bars are larger depicting the prevalence of 

chronic pain in those diagnosed with PTSD.  

 

Figure 2.  PTSD and Chronic Pain. Source: Seal (2014). 
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There are several medical hypotheses for the link between PTSD and pain.  Seal 

presents a very compelling theory of mutual maintenance.  Because PTSD creates an 

anxiety state, the person’s pain perception is increased.  As the perception of pain is 

exacerbated, into possibly chronic pain, this leads to increased disability.  This, in turn, 

drives the person to perceive their pain to be even worse, which feeds back into the 

symptoms of PTSD.  Figure 3 illustrates this cycle.    

  

Figure 3.  The Mutual Maintenance Cycle. Source: Seal (2014). 

Thus, a logical follow-on is to examine the link between PTSD and opioid use.   

Seal’s presentation (2014) references research that shows patients with both pain and 

PTSD are more likely to be prescribed opioids than patients with pain but no PTSD 

diagnosis.  In her study of Iraq and Afghanistan veterans, she found that those with PTSD 

are over two and half times more likely to be prescribed opioids than those patients with 

no mental health diagnosis.  Additionally, Seal concluded that of the PTSD diagnosed 

veterans, those with severe PTSD symptoms are more likely to receive prescription 

opioids for their pain.  This conclusion places this group of patients into an even greater 

risk of adverse effects from opioid use.      
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III. DATA 

This chapter describes the data set analyzed in the study, the data preparation 

process and the description of the response and explanatory variables with some initial 

exploratory analysis.  The variables described in this chapter are used in Chapter IV to 

construct models to estimate the probability that an individual in the AD military sub-

population who has been prescribed an opioid at least once, is a high opioid user.   

The response variable, constructed from the data provided and described in this 

chapter is a binary variable indicating whether an individual is a high user of opioids or 

not a high user of opioids, but all individuals in the data studied have at least one 

prescription for opioids.     

There are 91 explanatory variables available directly from the data provided by 

BUMED.  They can be categorized into three types: 

 Eighty binary medical risk diagnoses (given in Appendix B) variables 

indicating whether the individual has or has not been diagnosed with the 

condition.   

 Five binary variables assigning prescription source as direct care, managed 

care support contractor, theater medical data store, TRICARE mail-order 

pharmacy and VA clinical/health data repository.    

 Six variables pertaining to the patient’s history that may have an influence 

on the patient’s opioid-use.    

The response and explanatory variables are discussed in greater detail in Section 

C of this chapter.  Additionally, a brief description and statistics on some of the 

explanatory variables is included in Section D.   

A. DATA SOURCE/CLEANING 

The data used for this study was obtained from BUMED Analytics/Enterprise 

Support Services Department.  The data contains information on AD patients assigned to 

Puget Sound area Naval MTF’s that received at least one opioid prescription in either 

FY2014 or FY2015.  The data was received in the form of two files, one for each fiscal 
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year.  Each file contains two spreadsheets, one with PDTS records and one containing the 

patient risk file.   

The PDTS spreadsheets have 7066 rows and 8066 rows for FY2014 and FY2015 

respectively.  Each row corresponds to a single opioid prescription issued in that year.  

The PDTS spreadsheets have three relevant fields: 

 Pseudo ID 

 Opioid issue date 

 Source of opioid 

Each patient is identified by their pseudo ID, assigned by BUMED to ensure 

patient confidentiality.  The response variable and the five binary variables assigning a 

prescription source are constructed from this file.   

The risk spreadsheets have 2889 rows for FY2014 and 3742 rows for FY2015.  

Each row corresponds to a patient who had at least one opioid prescription issued in that 

year.  There were 57 duplicate pseudo IDs for the FY2014 risk file and 48 duplicate 

pseudo IDs for the FY2015 risk file.  The files contain 86 fields for the explanatory 

variables (including the 80 medical diagnosis fields plus six others) and a field containing 

the ID.   

Each of the four spreadsheets are exported to comma separated value files and 

imported into the R programming environment for further manipulation (R Core 

Team, 2016).  The two PDTS files are combined before constructing the high user 

response variable based on BUMED’s definition.  Specifically, we define a high user to 

be any patient who is prescribed five or more opioids within 90 days based on the 

combined two-years of PDTS records.  From the combined PDTS files, we construct a 

single PDTS user output file with one row per unique pseudo ID and columns for pseudo 

ID, the minimum number of days between any sequence of five prescriptions for 

individuals with at least five prescriptions, and a column denoting whether the patient 

was a high user.  Figure 4 shows a histogram of the minimum number of days between a 

sequence of five opioid prescriptions, for each patient who has five or more prescriptions.  

The figure shows that only 649 patients have five or more prescriptions and only 235 
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patients, highlighted in red, have five or more prescriptions within a 90 day period 

accounting for 11.4% and 4.1% respectively, of the total patients in the data set.     

 

Figure 4.  A Histogram of the Minimum Number of Days between a Sequence of 

Five Opioid Prescriptions among Opioid Users with at Least Five 

Prescriptions in FY2014 and FY2015  

The two risk files are combined and then merged with the PDTS user output file 

based on pseudo IDs.  An additional column is added to annotate the fiscal year (FY2014 

or FY2015) of the source risk file.  The newly combined output file contains 6,631 

entries with some pseudo IDs appearing multiple times.  This file is then separated by 

fiscal year.  Duplicate ID’s within each fiscal year are merged, with the patient assuming 

the larger value for each explanatory variable.  For example, if the pseudo ID appeared 

three times in FY2014, with one entry having a risk score of one and another entry with a 

risk score of two and the third with a risk score of three, the updated file would contain 

the pseudo ID once, with a risk score value of three.  The higher value is adopted to 

assume a worse case patient characteristic.  This decreases the size of the FY2014 and 

FY2015 files to 2,831 and 3,692 patients respectively.     
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A summary of the number of high users and the total number of records for each 

fiscal year is provided in Table 3.  There is a larger proportion of high users in FY2014, 

0.063, than in FY2015, 0.041.  Treating the two years’ worth of Puget Sound data as 

samples from hypothetical FY2014 and FY2015 populations the large-sample test of the 

null hypothesis that the two years’ proportions are equal, is rejected with a p-value of 

0.0006.  We do not know why the proportions are different.  There may have been a 

change in how opioids are prescribed at the Puget Sound MTFs however there is no 

evidence of policy changes that may have affected these numbers.     

 Number of High Users for Each Fiscal Year 

Risk File Source Hi User Non-Hi User Total 

    FY2014     177     2654  2831 

    FY2015     153     3539  3692 

 

The two files, one for each fiscal year are re-combined into a single file.  To 

ensure that this final data set only has unique pseudo IDs, the same merging process is 

used.  For the 843 patients with records in the FY2014 and FY2015 risk files, the larger 

value of each explanatory variable is used, resulting in a data set with 5680 total patients.  

B. TRAINING AND TEST SETS 

We randomly split our data into training and test sets, with 75% for the training 

set and 25% for the test set.  The training set is used (in Chapter IV) to fit a number of 

different types of models, from which we will choose the “best.”  The test set is set aside 

until after the model fitting is complete and used to obtain unbiased estimates of 

measures of model performance.  Selection of the training and test sets is stratified by 

non-high and high users so that the same ratio of high users is found in both the training 

and the test set.  Table 4 summarizes the number of opioid users in the training and 

test sets.   
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 Number of High and Non-High Users in the Training and Test Sets 

  Training Set Test Set Total  

High User 176 59 235 

Non-High User 4083 1362 5445 

Total 4259 1421 5680 

 

C. RESPONSE AND EXPLANATORY VARIABLES 

The response variable used in the analysis for the models is binary: 1 indicating a 

high user of opioids and 0 if not.  The criteria for determining whether a patient is a high 

opioid user follows BUMED’s adopted definition of five or more dispensing events of a 

medication likely to be associated with pain during a 90-day period. This indicator 

response variable is generated from the PDTS and merged with the risk file according to 

the pseudo IDs.   

There are 88 variables eventually used in the analysis to fit the models.  The 

presence of medical risk conditions make up 77 of the variables.  Appendix B lists these 

medical risk conditions.  These conditions are selected directly from the M2 health risk 

conditions category file.  The risk conditions in M2 are based on the Wakely Risk 

Assessment (WRA) model that maps over 17,000 International Classification of Diseases 

(ICD) volume 9 diagnosis codes to 90 condition categories (Mehmud, 2012).  Appendix 

C lists the WRA condition categories.  BUMED selected 66 of the 90 condition 

categories that may be relevant to this study.  These are shown in Appendix C.  The M2 

medical conditions file contains 13 sub-categories not included in the WRA, that better 

reflect the military population’s common illnesses.  These are annotated in Appendix B 

and mostly pertain to mental health conditions like PTSD, neurotic disorders and 

disturbance of conduct.  Additionally, the following medical conditions were eliminated 

as possible factors to simplify our model because no patient in the data set possessed 

these diagnoses: 

 Cystic fibrosis 

 Disease of the blood (high) 

 Neoplasm cancer (very high) 
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The eleven variables describe patient characteristics as well as the five possible 

sources of a prescription.  The additional six patient characteristics include a categorical 

variable for age, presence of acute reaction to stress, a risk score, number of days since 

most recent Overseas Contingency Operation (OCO) deployment, a binary variable 

indicating if the individual was ever-deployed and a case management (CM) acuity level.  

Based on related studies, there are indications that some of these characteristics may 

affect a patient’s opioid usage (Seal, 2014).     

D. DESCRIPTIVE STATISTICS 

A brief description and basic statistics for the explanatory variables and their 

relationship to the response variable is in this section.  These include the patient 

characteristic variables, the five prescription source variables and a handful of medical 

risk diagnoses variables.  Because the exploratory analysis is part of the model fitting 

processes, the analysis in this section is based only on the 4259 entries of the training set.     

(1) Age Group Category 

Rather than give an age in years, the exploratory variable “Age Group Category,” 

taken directly from the M2 risk file, assigns a letter code, D–G, to patients whose ages 

are 18–24, 25–34, 35–44, 45–64, respectively.  Table 5 shows the number of high users 

for each age group.  Although Category E has the greatest number of opioid users, 

patients in Category G have the largest proportion of high users, thus the proportion of 

high users is increasing with age group.  Additionally, the data set contains 51 entries that 

did not have an assigned code. 

 Percentage of High Users by Age Group Categories 

Ages (Code Category) Hi User (%) Non-Hi User (%) Total 

18-24 (D) 31(2.7%) 1138 (97.3%) 1169 

25-34 (E) 65(3.7%) 1699 (96.3%) 1764 

35-44 (F) 56 (5.4%) 982 (94.6% 1038 

45-64 (G) 19 (8.0%) 218 (92.0%) 237 

No Assigned Code 5 (9.8%) 46 (90.2%) 51 

Total 176 (4.1%) 4083 (95.9%) 4259 
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(2) Acute Reaction to Stress 

The factor acute reaction to stress takes two values, “yes” and “no.”  This factor is 

defined as “a psychological condition arising in response to a terrifying or traumatic 

event” (Kenny, 2013).  These events can range from sexual assaults to extreme 

experiences from war conflicts.  As a result, military personnel can be at greater risk.  

Only nine entries were assigned this diagnosis as shown in Table 6.  Therefore, this factor 

will not likely influence our model.   

 Percentage of High Users by Acute Reaction to Stress  

Acute Reaction  Hi User (%) Non-Hi User (%) Total 

Yes 1 (11.1%) 8 (88.9%) 9 

No 175 (4.1%) 4075 (95.9%) 4250 

Total 176 (4.1%) 4083 (95.9%) 4259 

 

(3) Risk Score 

The risk score describes the person's expected relative cost in medical resources 

based on the diagnoses and drugs accumulated within the reporting period (DHA, 2016).  

The lower the score, the less risk for the patient.  A score of one means the individual is 

at normal risk.  This risk score is not truncated, so there is no upper bound.  In the 

training set, the score ranged from zero to forty seven.  Because only 186 patients have a 

risk score of five or greater, we assign these patients to a single category.  Table 7 lists 

the number and percentage of high users by risk score.  Figure 5 shows that as the risk 

increases, the proportion of high users of opioids also increases.  The red lines indicate 

the standard error bars for the proportion of high users in each risk score category.   
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 Percentage of High Users by Risk Score Category 

Risk Score Hi User (%) Non-Hi User (%) Total 

0 4 (0.4%) 1097(99.6%) 1101 

1 56 (2.9%) 1883 (97.1%) 1939 

2 38 (6.2%) 578 (93.8%) 616 

3 18(6.4%) 265 (93.6%) 283 

4 16 (11.9%) 118 (88.0%) 134 

5 or greater 44 (23.7%) 142 (76.3%) 186 

Total 176 (4.1%) 4083 (95.9%) 4259 

 

 

Figure 5.  Proportion of High Users in Each Risk Score Category 
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(4) Ever Deployed For OCO Deployment 

Studies such as Seal (2014) that links opioid use with deployments to Iraq and 

Afghanistan are not uncommon.  While the percentage of high users in Table 8 increases 

with an OCO deployment, it is only a 1.5% increase.   

 Percentage of High Users by Ever Deployed OCO  

Ever Deployed OCO Hi User (%) Non-Hi User (%) Total 

Yes 113 (4.8%) 2243 (95.2%) 2356 

No 63 (3.3%) 1840 (96.7%) 1903 

Total 176 (4.1%) 4083 (95.9%) 4259 

 

(5) CM Acuity Level 

Many patients do not have an assigned CM acuity level, because 91% of patients 

in the data set have not been assigned a case manager.  Case managers assign a score of 

one to five, with a higher score indicating a patient with more complex health issues, thus 

requiring greater medical oversight.  Appendix D explains the scoring in greater detail.  

The statistics in Table 9 indicate that there may be a relationship between acuity level and 

high opioid use as the p-value is 0.0682 based on Fisher’s Exact Test (McDonald, 2009). 

 Percentage of High Users by CM Acuity Level 

CM Acuity Level Hi User (%) Non-Hi User (%) Total 

0 129 (3.3%) 3766 (96.7%) 3895 

1 24 (11.1%) 192 (88.9%) 216 

2 13 (12.0%) 95 (88.0%) 108 

3 8 (25.8%) 23 (74.2%) 31 

4 0 (0.0%) 4 (1.0%) 4 

5 2 (40.0%) 3 (60%) 5 

Total 176 (4.1%) 4083 (95.9%) 4259 
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(6) Source of Prescription 

There are five prescription source categories, each corresponding to a logical 

variable that takes value “TRUE” if at least one of the prescriptions for a particular 

patient comes from that source and value “FALSE” otherwise.  The five sources and their 

codes are:   

 D = Direct Care (includes VA mail order pharmacy refills made on behalf 

of participating MTFs) 

 M = Managed Care Support Contractor (MCSC) 

 R = Theater Medical Data Store 

 T = TRICARE’s Mail Order Program 

 V = VA CHDR (Clinical/Health Data Repository—Prescription drug 

information for dual MHS/VA eligible beneficiaries—fully funded by the 

VA) 

The statistics in Table 10 indicate that a majority of high opioid users received 

their prescriptions from direct care.  But a greater percentage of opioid users who receive 

their medication from the MCSC are high users.  Table 10 also shows that the number of 

high users from the other three sources is quite small.     

 Percentage of High Users by Source of Prescription  

Prescription Source Hi User (%) Non-Hi User (%) Total 

D 170 (4.4%) 3726 (95.6%) 3446 

M 87 (11.5%) 671 (88.5%) 758 

R 2 (3.1%) 62 (96.9%) 64 

T 0 (0.0%) 2 (1.0%) 2 

V 1 (25%) 3 (75%) 4 
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In the CNA study by Levy et al. (2014), it was noted that patients who received 

prescriptions from more than one source are more likely to become chronic users.  Table 

11 examines the relationship between number of source prescriptions and high opioid 

usage.  We also noted that out of the 84 high users that had two or more prescription 

sources, 82 of those used the direct and MCSC sources.  In our models we replace the 

five binary variables that indicate prescription source with a single variable, number of 

sources, that takes the value “1” if the number of sources is one and “2” otherwise. 

 Opioid Usage Based on Number of Prescription Sources 

Number of Sources Hi User (%) Non-Hi User (%) Total 

One 92 (2.4%) 3706 (97.6%) 3798 

Two or More 84 (18.2%) 377 (81.8%) 461 

Total 176 (4.1%) 4083 (95.9%) 4259 

 

(7) Medical Diagnoses 

Seal (2014) concluded that there is a link between pain, mental health disorders 

and PTSD with opioid use.  The following seven medical risk diagnoses are examined 

more closely in Table 12, since these diagnoses can be associated with pain or mental 

health disorders.    

 Anxiety Related Disorders 

 Dorsopathy 

 Fracture/Dislocation 

 Endocrine/Metabolic/Immunity Disorders (EMI) 

 Bone/Joint/Muscle Infections/Necrosis (BJMIN) 

 Arthropathy 

 PTSD 
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 Percentage of High Users by Diagnoses 

Diagnoses Hi User (%) Non-Hi User (%) Total 

(Y)Anxiety Disorders 38 (14.7%) 221 (85.3%) 259 

(N)Anxiety Disorders 138 (3.5%) 3862 (96.5%) 4000 

(Y)Dorsopathy High 41 (20.2%) 162 (79.8%) 203 

(N)Dorsopathy High 135 (3.3%) 3921 (96.7%) 4056 

(Y)Fracture/Dislocation 

Low 

50 (7.2%) 640 (92.8%) 690 

(N)Fracture/Dislocation 

Low 

126 (3.5%) 3443 (96.5%) 3569 

(Y)EMI Disorder Low 31 (8.7%) 324 (91.3%) 355 

(N) EMI Disorder Low 145 (3.7%) 3759 (96.3%) 3904 

(Y) BJMIN 79 (10.7%) 657 (89.3%) 736 

(N) BJMIN 97 (2.7%) 3426 (97.2%) 3523 

(Y)Arthopathy 80 (8.8%) 831 (91.2%) 911 

(N)Arthopathy 96 (2.9%) 3252 (97.1%) 3348 

(Y) PTSD 25 (18.1%) 113 (81.9%) 138 

(N) PTSD 151 (3.6%) 3970 (96.3%) 4121 

(Y)- Presence of condition 

(N)- Absence of condition 

 

Table 12 shows that for all of the above conditions, there is a percentage increase 

in the number of high users with the presence of the stated condition.  The percentage 

increase varies from 3.7% with the fracture/dislocation condition to 16.9% with the 

dorsopathy condition.  However some of these diagnoses may not have a significant 

impact in predicting high opioid use due to the low number of patients diagnosed with 

that condition.   

Additionally, since there are 77 medical risk conditions used in the analysis for 

the model, we explore whether the presence in the number of conditions is related to high 

opioid usage.  The red line in Figure 6 is a loess smoother (see Faraway (2015) for a 

description of loess smoothers) of the proportion of high users as a function of the 

number of diagnoses.  It depicts an increasing relationship in the proportion of high users 

as the number of diagnosis conditions increase.  The blue dots indicate the proportion of 

high users with exactly the number of diagnoses.  The gray dots in Figure 6 depict the 

binary response variable with random noise added to both the binary response variable 
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and the number of diagnoses to avoid overlap of points.  Because the relationship 

between the number of diagnoses and the proportion of high users is so strong, we also 

include this constructed variable, number of diagnoses in our modeling efforts.  

 

Figure 6.    Proportion of High Users by Number of Diagnoses   
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IV. ANALYSIS AND RESULTS    

The goal of this chapter is to produce a model to estimate the probability that an 

opioid-using individual is a high user based on the diagnoses and other variables 

provided by BUMED and discussed in Chapter III.  Estimated probabilities are not 

intended to be used to classify individuals as high users or not.  Instead, they give a score, 

much like a credit score, to aid health care decisions.  This chapter fits four models on the 

training data set and compares the results.  The four models are a basic logistic regression 

model and three machine learning models: the elastic net penalized logistic regression, 

the random forest and the boosted tree models.  The basic logistic regression model uses 

only a few explanatory variables selected from those described in Chapter III.  It has the 

advantage of being easy to use and to explain.  The machine learning models, on the 

other hand, make use of all the explanatory variables.  Our basic model is compared at 

the end of this chapter with the best model from the other three methods.  For those 

methods, we vary the parameters and choose the best model within each category type 

using cross-validated binomial deviance to avoid over-fitting (Hastie, Tibshirani, & 

Friedman, 2009).  We analyze the ROC curves based on the cross-validated predictors to 

choose the single best model among the three methods and then finally compare it with 

the basic model.  Plotting a lift curve on the test set will allow us to examine unbiased 

estimates of model performance for the best model for our study.    

A. BASIC MODEL 

For our basic high user model, our goal is to create a simple model based on 

variables that might have the strongest relationship to high opioid use.  The standard 

linear regression model is not appropriate in this study with a binary response variable.  

Instead, we use logistic regression, which is a generalization of linear regression for 

binary response variables (Faraway, 2015).  Logistic regression models are easily 

interpretable and are defined as follows: Let n be the number of observations in the 

training set and model the response variable as independent Bernoulli random variables 
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where the probability of a “high user,” Pi for i=1,…, n is related to the explanatory 

variables through the log-odds as shown in the following equation:    

0 1 1log ...
1

i

i

i k ik
P

X X
P

  
 

    
 

   ,                  

where Xi1,…Xik are the values of the k explanatory variables for the ith observation and β0, 

β1,…βk are the unknown parameters to be estimated.    

Based on Levy et al. (2014), patients who utilized multiple sources for their 

opioid prescriptions were found more likely to be a chronic user.  Further, based on our 

analysis in Chapter III, the number of diagnoses is strongly related to the proportion of 

high users.  This variable sums the 77 medical risk diagnoses indicator explanatory 

variables to produce a single variable.  Additionally, we consider the explanatory 

variables of risk score and CM acuity level in developing our basic model.  Two variables 

that we considered, but did not include in our basic model fit are the age group code and 

the number of days since most recent OCO deployment.  Neither variable improved the 

basic model fit. 

In Chapter III, we created two new explanatory variables: the total number of 

prescription sources and the total number of medical diagnoses for each opioid user.  We 

will begin with a model that includes both of these explanatory variables.  The fitted 

logistic regression model has the form: 

1 2,log 5.99 1.48 0.23
1

P
X X

P

 
      

 

where the P  is an estimated probability of high use for an individual, X1 is either one, 

representing one source of prescription or two, representing two or more sources of 

prescription respectively and X2 represents the total number of diagnoses.  The summary 

statistics for this logistic regression model fit are given in Table 13.  The z-values or 

Wald statistics and corresponding p-values are for a large sample test of the null 

hypothesis that each coefficient is zero against the two sided test alternative that it is 



 29 

not (Hastie et al., 2009).  There is strong evidence that the coefficient for the number of 

sources is not zero and the same evidence is true for the other variable, number of 

diagnoses.  Thus, both explanatory variables should be used in our basic model.  The null 

and residual deviance for this model fit are 1466.2 on 4258 degrees of freedom and 

1184.3 on 4256 degrees of freedom.  The null deviance and the residual deviance are 

analogous to the total sum of squares and residual sums of squares for linear regression 

model fits and are often used to compute an R-squared value (Faraway, 2015).  Here the 

R-squared value is 0.24 with the interpretation that only 24% of the null deviance is 

explained by the logistic regression fit with two variables.   

 Summary Statistics for Logistic Regression with Two Variables 

 

Estimated 

Coefficient 

Standard 

Error (SE) 

Wald 

Statistic P-value 

(Intercept) -5.99 0.25 -23.50 <0.001 

Number of Sources 1.48 0.18 8.34 <0.001 

Number of 

Diagnoses 0.23 0.02 11.19 <0.001 

 

The values in Table 13 are on the scale of the log-odds of being a high user. 

Exponentiating the coefficients yields the odds ratios.  Subjects with multiple sources of 

prescriptions, have nearly 4.5 times the odds of being a high user than those with only 

one source (Odds Ratio (OR) = 4.4; 95% Confidence Interval (CI) (3.1-6.2)), holding the 

number of diagnoses constant.  Similarly, for every additional diagnosis, there is an 

increase in odds of being a high user (OR =1.26; 95% CI 1.21-1.31), holding the number 

of sources constant. 

To check that this is a reasonable basic model, we added the interaction between 

the two explanatory variables, the number of diagnoses and the number of source 

prescriptions.  The large-sample likelihood ratio test (LRT) of the null model without 

interaction against the alternative with interactions gives a p-value 0.037 with one degree 

of freedom.  There is evidence of interaction at a 5% level of significance, not at a 1% 

level.  With the large sample size, the model with interactions may be statistically 



 30 

significant but may not be practically significant.  There needs to be performance 

improvement to choose a model with the interaction terms.  To see if there is a practical 

difference in the performance of the two model fits we compare their ROC curves.  

Common measures of performance used for models with a binary response variable are 

the true positive rate and false positive rate where an individual is classified as “positive” 

if the model estimated probability of positive is greater than a specified threshold (0.50 is 

a typical threshold value).  Here positive corresponds to high opioid use.  Rather than use 

a single threshold value, on the training data, the ROC curve considers both the true 

positive rate and the false positive rate for different threshold levels (James, Witten, 

Hastie, & Tibshirani, 2013).  In Figure 7, the ROC curve for the model with interactions 

is on top of the curve for the model without interactions.  Since the model without 

interactions is simpler and not notably improved when compared to the model with 

interactions, out of these two, we will choose the model without interactions.   

 

Figure 7.  ROC Curves Comparing Models with and without Interactions 
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To check that the log-odds of high opioid use can be modeled as linear in the 

number of diagnoses, we converted the explanatory variable, number of diagnoses from 

numeric to categorical and compared the model fit with our current basic model.  The 

ROC curves for the two models plotted in Figure 8 look very similar, thus the simpler 

model, based on numeric rather than categorical version of the number of diagnoses 

variable remains our basic model.       

 

Figure 8.  Comparison of Models with Number of Diagnoses Converted to 

Categorical 

Additionally, we explored logistic regression with different combinations of the 

following four explanatory variables with and without interactions: number of 

prescription sources, number of diagnoses, risk score and CM acuity level.  Similar to the 

earlier results with using the ROC curve, when we compared each model with our basic 

model of two variables, our simple model had very similar, if not better results.  Thus, for 

practical purposes, our basic model will contain only two variables: the number of 

prescription sources and the number of diagnoses with no interactions.     
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B. MACHINE LEARNING MODELS 

In this section, we compare the three machine learning models:  elastic net 

penalized logistic regression, random forest and boosted trees.  For each method, we vary 

the parameters and use cross-validated binomial deviance to choose the best model within 

each category type.  In order to choose the single best machine learning model, we 

analyze ROC curves based on cross-validated true positive and false positive rates.  

1. Elastic Net Penalized Logistic Regression Model 

We use a function called cv.glmnet to conduct 10-fold cross-validation. This 

function is part of the glmnet package in R (Friedman, Hastie, & Tibshirani, 2010) that 

fits a regularized generalized linear model via penalized maximum likelihood.  In these 

models, penalties are functions of the magnitudes of the explanatory variables’ 

coefficients.  The three choices of penalties are the least absolute shrinkage and selection 

operator (lasso), L1 absolute value penalty, the ridge regression, L2 quadratic penalty or a 

combination of the two called the elastic net (Goeman, 2010).  How much the likelihood 

is penalized is governed by a parameter , chosen by cross-validation.   

Tibshirani (1996), suggests that an L1 lasso penalty performs better than the ridge 

penalty when there are a small to moderate number of moderate-sized effects, even out of 

a large number of explanatory variables.  An L2 ridge penalty performs best when there 

are large number of small effects such as when there is much multi-collinearity among 

the explanatory variables.  The advantage of the lasso penalty is that it acts as a variable 

selection procedure by shrinking coefficients to zero.  A shortcoming for lasso is when a 

group of variables are highly correlated, it tends to select only one variable from 

that group.   

To use the glmnet package, all explanatory variables must be numeric.  We 

converted three categorical variables, CM acuity level, risk score and age group code, to 

numeric variables.  CM acuity levels were consolidated to form a new binary variable, 

where a “1” represents an individual assigned an acuity level and “0” meant patient was 

not assigned an acuity level.  The age group code variable was converted from 

categorical with levels “D,” “E,” “F,” “G” to numeric with values 1, 2, 3 and 4 
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respectively.  Lastly, the risk score, with levels 0, 1, 2, 3, 4, 5+ was converted to a 

numeric variable with values 1 to 6.      

To choose the parameter , we compute the cross-validated prediction error for 

approximately 100 different values of .  For cross-validation, we use K=10 randomly-

selected folds.  The cv.glmnet function fits the model to nine folds and then predicts on 

the remaining fold.  This process yields a prediction error, CV1 and is repeated K-1 times 

yielding the corresponding K-1 prediction errors.  The average of the ten prediction errors 

results in CV, the cross-validated prediction error in the following equation (Hastie et 

al., 2009).  

10

1

10

k

k

CV

CV 


 

We use the Bernoulli (or binomial) deviance as a measure of prediction error.  

The plot in Figure 9 shows the cross-validated prediction error for the lasso logistic 

model as a function of log( ).  The left most dotted vertical line shows the  associated 

with the minimum cross-validated prediction error.  The dotted line to the right shows the 

smallest   within the one standard error (SE) of the minimum cross-validated error.  This 

“one-SE rule”   tends to give a simpler model.  The numbers across the top are the 

corresponding number of variables with non-zero coefficients for that cross-validated 

prediction error.   
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Figure 9.  Cross-Validation Error vs. Log( ) for Binomial GLM 

We also penalized the logistic regression models with elastic net penalty.  Here 

the penalty is a combination of lasso and ridge penalties with parameter  , where  =1 

is a lasso penalty,  = 0 is a ridge penalty and 0< <1 is a combination of the two.  We 

fit elastic net models varying  from zero to one in increments of 0.1.  For each  , the 

one-SE rule  , yielded a cross-validated prediction error given in Table 14.  The 

smallest of these is for  = 1 corresponding to a lasso penalty.  Thus our best model 

among the penalized logistic regression models, chosen among models using all possible 

explanatory variables, is the model with three explanatory variables: the two variables in 

the basic model and the medical diagnosis dorsopathies high.   
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 Lowest CV while Varying  .  

 -value CV 

0 0.34329 

0.1 0.32326 

0.2 0.31193 

0.3 0.30556 

0.4 0.30165 

0.5 0.29908 

0.6 0.29728 

0.7 0.29584 

0.8 0.29458 

0.9 0.29348 

1 0.29261 

 

2. Tree-Based Models 

We fit two machine learning models based on Breiman’s (2001) classification 

trees.  See James et al. (2013) for a good discussion of classification trees and related 

models.  For our modeling purposes, the greatest advantage of tree-based models is that 

they naturally accommodate potential interactions among explanatory variables.  In 

contrast, for logistic regression type models, interactions must be deliberately included as 

extra explanatory variables.  The two tree-based models considered in this section are 

random forests and boosted trees.   

a. Random Forest 

Random forests average the outcomes of multiple classification trees (Breiman, 

2001).  Each tree is fit using a bootstrapped sample taken from the training set and during 

tree construction only “mtry” number of variables randomly selected from the set of 

explanatory variables are considered at each split (where mtry is a parameter selected by 

the user).  We use the randomForest package to fit an initial model, while varying the 

value of mtry, the number of variables randomly sampled at each split (Liaw & 

Wiener, 2002).  The default value of mtry is the square root of the number of 

explanatory variables.    
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This method also produces variable importance measures by averaging the 

outcomes of the trees.  These variable importances explain variation in the response as a 

function of the explanatory variables.  Variable importance provides the average 

importance of each variable within the model based on the mean decrease in node 

impurity or gini score (Breiman, 2001).  Table 15 lists the most influential explanatory 

variables in the final random forest model based on gini score.  The larger the value, the 

greater the role that explanatory variable plays in partitioning the data (Witten, Frank, & 

Hall, 2011).  All five of these variables were explored while constructing our basic 

logistic regression model in Section A.   

 Top Five Influential Variables 

Explanatory Variable Mean Decrease Gini 

Number of Diagnoses     23.9215071 

Days Since Most Recent OCO Depl   23.01504065 

Risk Score  17.51883699 

Age Group Code 15.07520383 

Number of Sources     13.25949064 

 

In addition, we use the train function from the caret package in R to automate 

searching for the best mtry (Kuhn, 2016). This function returns an object that contains the 

performance values for each combination of model parameters specified.  We use the ten-

fold cross-validation to find the model with the lowest cross-validated log-loss (which is 

proportional to the Bernoulli deviance).  Figure 10 suggests that the minimum cross-

validated log-loss value occurs between ten to 16 randomly selected 

explanatory variables.  



 37 

 

Figure 10.  Cross-Validated Log-Loss Based on Number of Variables 

We select 14 as our mtry value because it has the smallest cross-validated log-loss 

according to Table 16.  Our random forest model needs to have a sufficient number of 

trees to ensure every input row gets predicted at least a few times to give good 

performance and that the classification error stabilizes (James et al., 2013).  For this 

reason, our best random forest model grows 500 trees and randomly selects 14 

explanatory variables at each split.    

 Log-Loss for Various Mtry Values  

mtry value     CV Log-loss   

2 0.3843926 

4 0.2690813 

6 0.23666 

8 0.2426391 

10 0.2291392 

12 0.2318257 

14 0.2244436 

16 0.2259266 

18 0.2403286 

20 0.2405139 

22 0.2272155 

24 0.2697607 
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b. Boosted Tree 

Like a random forest model, the boosted tree model is another tree-based model 

that is a linear function of classification trees.  However, it grows incrementally to 

improve the prediction results (James et al., 2013).  This is different from random forest 

as the growth of a particular tree is influenced by the performance of those that have 

already been grown.  Thus, the trees may not need to be as large and this helps with 

interpretability.  The maximum tree depth corresponds to the potential degree of 

interaction among explanatory variables.  For example, trees with a single split (depth 

one) are additive with no interactions, trees with depth two can include up to two-way 

interactions, etc.  The trees improve by fitting to the previous residuals instead of to a 

response variable and continues until a specified number of trees are created (James et 

al., 2013).   

The tuning parameters for boosted tree models are the number of trees, the 

shrinkage or learning rate, and the interaction depth.  We use cross-validation to select an 

appropriate number of trees as overfitting can occur if this parameter is too large.  For the 

shrinkage parameter, we used a recommended starting value of 0.001 according to 

James et al. (2013).  We varied this parameter up to 0.05 to find combinations of 

shrinkage parameter and number of trees that could achieve good performance.  The third 

parameter, interaction depth, controls the degree of interaction and adds complexity to the 

model.  For example, an interaction depth of 2 gives a model with up to two-way 

interactions.   e varied this parameter from 1 to 4 and using cross-validation found that 

complex interactions were not needed.    

 We use the gbm function in R from the GBM package to construct our boosted 

decision tree (Ridgeway, 2015).  To choose the optimal model, we use ten-fold cross-

validation on the Bernoulli deviance.  The three parameters in this model that have the 

smallest cross-validated Bernoulli deviance are 244 trees, 0.05 shrinkage rate and an 

interaction depth of two.  This model fit suggests that including two-way interactions 

among the explanatory variables might improve model performance.   
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C. COMPARISON OF MODELS BUILT FROM MACHINE LEARNING 

APPROACHES  

ROC curves are used to compare the performance of the three machine learning 

models in our study:  lasso penalized logistic regression, random forests and boosted 

trees.  It appears initially that the random forest and boosted tree models outperformed 

the lasso penalized regression when analyzing the ROC curves on the training data.   

Upon further examination, the two tree-based models had over-fit the training data and 

thus had inflated model performance.  Figure 11 shows the random forest ROC curve 

based on the training set.  It indicates that the random forest model can predict high 

opioid use with almost 100% accuracy on the training set.  Unfortunately, these results do 

not generalize to an independent data set.  Therefore, to compare our machine learning 

models, we plot the cross-validated ROC curves.   

 

Figure 11.  ROC Plot of Over-Fit Random Forest Model on Training Set 

Based on Figure 12, the lasso penalized logistic regression and the boosted tree 

performed similarly well on the cross-validated ROC curve and slightly better than the 

random forest model.  However, because the boosted model uses many trees and all of 

the explanatory variables, it is comparatively more complex than the lasso penalized 
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regression.  For this reason, our choice for the best machine learning model is the lasso 

penalized regression.  The evaluation of the cross-validated ROC curve performance and 

model simplicity will be our approach in comparing our best machine learning model 

with the basic logistic regression model.   

 

Figure 12.  Cross-Validated ROC Curves Comparing Machine Learning Models 

D. RESULTS AND DISCUSSION 

In this section, we compare the lasso penalized logistic model with our basic 

logistic regression model.  Figure 13 displays the performance of the two models using 

their cross-validated ROC curves.  There is little difference in ROC curve performance 

between the two models.  So applying the simplistic approach to model selection, the 

model we recommend for implementation in a health care setting is the simpler logistic 

regression model.  There are a few reasons for this.  First and foremost, is easier 

implementation.  A logistic regression with two explanatory factors and with one fewer 

explanatory variable is easy to replicate and reproduce.  The log-odds and probability of a 
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high user for the logistic regression model are explicit and thus, conceptually, easy to 

communicate.   

 

Figure 13.  Cross-Validated ROC Curves Comparing Basic Logistic Model with 

Boosted Tree Regression Model  

With the selection of our basic logistic regression model as the preferred model 

for implementation, we evaluate its performance on the test set and using a more practical 

approach to evaluate model performance by plotting a lift curve.  This is a more 

functional method to examine how our model performs.  Think of the estimated 

probability of high opioid use (or equivalently, the estimated log-odds) as an individual’s 

score.  Now suppose we compute this score for all opioid users in a population, ranking 

their scores from highest to lowest.  If the model is useful the sub-population with the 

highest scores should have a larger proportion of high opioid users than the proportion of 

high opioid users in the entire population.  Lift is defined as the ratio of the proportion of 
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high users in the sub-population to the ratio of high users in the general population.  The 

lift plot gives lift as a function of the proportion in the sub-population.  Lift curves 

always reach point (1,1) because by dedicating resources to 100% of the population, the 

probability of identifying a high user will be the same as the actual probability of high 

users in the data set (Witten et al., 2011).    

Figure 14 shows the lift curve on the test set to analyze model performance.  Due 

to the low number of high users in the test data set, the logistic regression had a lot of 

variation when the proportion of the total population is less than 0.05.  The lift curve goes 

through the x coordinate at 0.10 and intersects the y coordinate at four, meaning there is a 

lift of four.  In practical terms, by dedicating resources to only 10% of the population, we 

can now improve and correctly assess the proportion of high users at four times the actual 

rate.  Since the actual percentage of high users in our test set is 4%, we improve our 

probability of identifying a high user to 16%.  Likewise, if we dedicate resources to 50% 

of the population, the lift is two, meaning the probability of identifying a high user is 

doubled.  So depending on how well we want to assess the proportion of high users or 

how much resources we have available for use, we can vary the certain threshold sub-

population to increase our probability of identifying a high user.   

We should note that the lift plot in Figure 14 only shows as an estimate of model 

performance.  However, it illustrates how a model like the basic model might be useful in 

practice.  In the next chapter we outline how our modeling efforts can be improved to be 

used as an operational health care tool.   
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Figure 14.  Lift Curve of the Basic Logistic Regression Model on the Test Set 
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V. CONCLUSIONS AND RECOMMENDATIONS  

Our goal for this thesis is to examine opioid users in the AD military population 

and to build a model that estimates the probability that an opioid-using individual is a 

high user as defined by BUMED.  In order to build a good performing model, we had to 

examine many explanatory variables that potentially influence an individual’s opioid use.  

Our approach was to select, if possible, a simple, executable model and as a result, we 

reduced the initial 91 variables down to two.   

The model that we recommend is a logistic regression model with two 

explanatory variables, with no interactions.  Those two variables are the number of 

prescription sources for the opioid medications and the total number of diagnoses from 

the M2 risk file.  Although simpler, this model performed well when compared to the 

more complex machine learning models.   

This logistic regression model has the potential to benefit Navy Medicine to make 

important decisions for their opioid prescribed patients.  The tool estimates the 

probability that an opioid user is a high user.  With this information, health care leaders 

can better plan and manage finite resources to focus on the prevention and treatment of 

the higher risk patients.  This concentrated coordination of care results in improved 

patient care for this sub-population, reduced long term cost for the military health care 

system and overall, a more medically ready military force.   

Due to the limited demographics data (for example, gender is not included among 

our explanatory variables) and time period of the data set, spanning only two years, there 

are factors associated with high opioid users that may not be accounted for.  Additionally, 

the nature of military jobs involves changing duty stations and MTF assignments every 

few years.  The fact that we are only observing AD assigned to the Puget Sound area 

clinics means that high opioid users that change enrollment sites away from those clinics 

are under-represented.  It also means that AD assigned to Puget Sound might not 

represent a cross-section of the general Navy population.  Lastly, the study analyzed AD 

patients who were already prescribed opioids to examine factors that can contribute to 
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high opioid use.  This excludes data for analysis of the majority of the AD patients who 

were not prescribed opioids.   

For this reason, a suitable follow-on study could examine data on patients that did 

not have opioids prescribed to compare the risk factors of becoming an opioid user.  The 

follow-on study should also consider a number of other explanatory variables such as 

gender and type of duty and be expanded to include other MTFs.  Further, if complete 

records of opioid prescription use are not available because patients change duty stations, 

then dates a patient enrolls and dis-enrolls from the MTF must be included.  With that 

said, this research is simply an initial effort to explore ways to identify opioid prescribed 

patients that may have greater risk of becoming a high opioid user.    
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APPENDIX A.  CANCER DIAGNOSIS CODES 

The following table lists the codes associated with cancer diagnosis (Ellis, 2015). 
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APPENDIX B.  LIST OF 91 EXPLORATORY VARIABLES 

Age.Group.Code* Neoplasm.Cancer..High. 

Acute.Reaction.to.Stress* Neoplasm.Cancer..Very.High. 

Risk.Score..No.Truncation* Non.Psychotic.Disorders.of.Childhood 

Days.Since.Most.Recent.OCO.Depl* Osteoarthrosis 

Ever.Deployed.Flag..OCO.* Oth.Musculoskel.Sys..and.Connective.Tissue 

Anxiety.Related.Disorders Other.Congenital.Anomalies 

Arthropathy Other.Digestive.System.Diseases 

Asthma++ Other.Injury..Low. 

Bone.Joint.Muscle.Infections.Necrosis Other.Injury..Med. 

Cardiac..High..Rx Other.Injury..High. 

Case.Management.Acuity.Level* Other.Mycoses 

Central.Nervous.System..Low. Other.Neurotic.Disorders++ 

Central.Nervous.System..High. Other.Non.Psychotic.Depressive.Disorders++ 

Cerebrovascular.Disease Other.Non.Psychotic.Disorders++ 

Chronic.Ulcer.of.Skin..Except.Decubitus

. 

Other.Psychotic.Disorders++ 

Circulatory.Cardiovascular..Low. Personality.Disorders 

Circulatory.Cardiovascular..Med. Polyneuropathy 

Circulatory.Cardiovascular..High. Psychotic.Disorders.of.Childhood++ 

Circulatory.Cardiovascular..Very.High. PTSD++ 

Congestive.Heart.Failure Pulmonary.Respiratory..Low. 

CP..Hemorrhage..Other.Paralytic.Syn Pulmonary.Respiratory..Med. 

Diabetes Pulmonary.Respiratory..High. 

Cystic.Fibrosis Quadriplegia..Other.Extensive.Paralysis 

Diseases.of.the.Blood..Low. Renal.Failure..Low. 

Diseases.of.the.Blood..Med. Renal.Failure..Med. 

Diseases.of.the.Blood..High. Renal.Failure..High. 

Diseases.of.the.Breast Respirator.Arrest.Dependence.Trach.Stat 

Diseases.of.Ear.Mastoid.Process Schizophrenic.Disorder 

Diseases.of.Genitourinary.System Seizure.Disorders.and.Convulsions 

Disorders.of.Immunity Seretonin.3.Receptor.Antagonist.Rx++ 

Disorders.of.the.Eye.and.Adnexa Skin.and.Subcutaneous.Tissue..Low. 

Disturbance.of.Conduct++ Skin.and.Subcutaneous.Tissue..Med. 

Dorsopathies..Low. Skin.and.Subcutaneous.Tissue..High. 

Dorsopathies..High. Substance.Dependence 

Endocrine..Metabolic..Immune.Dis..Low

. 

Substance.Abuse++ 

Endocrine..Metabolic..Immune.Dis..Hig

h. 

Substance.Induced.Mental.Disorders++ 
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Age.Group.Code* Neoplasm.Cancer..High. 

Fracture.Dislocation..Low. Traumatic.Brain.Injury..Low.++ 

Fracture.Dislocation..Med. Traumatic.Brain.Injury..High.++ 

Fracture.Dislocation..High. Vert.Fractures..Spinal.Cord.Dis.Injury 

GI.Infectious.Parasitic..Low. Vascular.Disease 

GI.Infectious.Parasitic..Med. D_bool* 

GI.Infectious.Parasitic..High. M_bool* 

Maj.CC.of.Medical.Care.and.Trauma R_bool* 

Multiple.Sclerosis T_bool* 

Neoplasm.Cancer..Low. V_bool* 

Neoplasm.Cancer..Med.   

* Denotes variables added that are not part of the M2 medical risk conditions. 

++ Denotes variables not in the WRA model. 
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APPENDIX C.  MEDICAL CONDITION CATEGORIES IN WRA 

MODEL 

The following table lists the 90 condition categories in the Wakely Risk Assessment 

Model (Mehmud, 2012). 

 

WRA Category Description WRA# 

Arthropathies WRA1 

Bone/Joint/Muscle Infections/Necrosis WRA2 

Central Nervous System WRA3 

Central Nervous System (H) WRA4 

Cerebral Palsy, Hemorrhage and Other Paralytic Syndromes WRA5 

Cerebrovascular Disease WRA6 

Chronic Ulcer of Skin, Except Decubitus WRA7 

Circulatory/Cardiovascular (H) WRA8 

Circulatory/Cardiovascular (L) WRA9 

Circulatory/Cardiovascular (M) WRA10 

Cirrhosis of Liver* WRA11 

Congestive Heart Failure WRA12 

Cystic Fibrosis WRA13 

Diabetes with Ophthalmologic or Unspecified Manifestation WRA14 

Diabetes with Renal or Other Specified Manifestation WRA15 

Diabetes without Complication WRA16 

Dialysis Status* WRA17 

Diseases of the Blood (H) WRA18 

Diseases of the Blood (L) WRA19 

Diseases of the Blood (M) WRA20 

Diseases of the Blood (VH) WRA21 

Diseases of the Ear/Mastoid Process WRA22 

Diseases of the Genitourinary System WRA23 

Disorders of Immunity WRA24 

Disorders of the Eye & Adnexa WRA25 

Dorsopathies WRA26 

Dorsopathies (H) WRA27 

Drug/Alcohol Psychosis or Dependence WRA28 

Endocrine, Metabolic, and Immunity Disorders WRA29 

Endocrine, Metabolic, and Immunity Disorders (H) WRA30 

End-Stage Liver Disease* WRA31 

EXCL* WRA32 
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WRA Category Description WRA# 

Fracture/Dislocation WRA33 

Gastrointestinal/Infectious/Parasitic (H) WRA34 

Gastrointestinal/Infectious/Parasitic (L) WRA35 

Gastrointestinal/Infectious/Parasitic (M) WRA36 

HIV/AIDS* WRA37 

Inflammatory Bowel Disease* WRA38 

Injury/Poisoning WRA39 

Lymphatic, Head and Neck, Brain, and Other Major Cancers (H)* WRA40 

Lymphatic, Head and Neck, Brain, and Other Major Cancers (L)* WRA41 

Lymphatic, Head and Neck, Brain, and Other Major Cancers 

(M)* 

WRA42 

Major Complications of Medical Care and Trauma WRA43 

Major Depressive, Bipolar, and Paranoid Disorders WRA44 

Major Organ Transplant Status* WRA45 

Mental Disorders WRA46 

Mental Disorders (H) WRA47 

Metastatic Cancer and Acute Leukemia* WRA48 

Multiple Sclerosis WRA49 

Neonate* WRA50 

Neonate (H)* WRA51 

Neoplasm of Bone, Connective Tissue, Skin, & Breast WRA52 

Neoplasm of Bone, Connective Tissue, Skin, & Breast (H) WRA53 

Neoplasm of Digestive/Peritoneum WRA54 

Nephritis* WRA55 

Osteoarthrosis WRA56 

Other Congenital Anomalies WRA57 

Other Digestive System Diseases WRA58 

Other Heart Disease WRA59 

Other Infectious & Parasitic Diseases* WRA60 

Other Infectious & Parasitic Diseases (H)* WRA61 

Other Musculoskeletal System & Connective Tissue WRA62 

Other Mycoses WRA63 

Other Neoplasm WRA64 

Other Pulmonary/Respiratory WRA65 

Other Rare* WRA66 

Other Transplant Related* WRA67 

Parkinson's and Huntington's, other motor control Diseases* WRA68 

Polyneuropathy WRA69 

Pregnancy (Incomplete)* WRA70 

Pregnancy Related* WRA71 

Proliferative Diabetic Retinopathy and Vitreous Hemorrhage* WRA72 
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WRA Category Description WRA# 

Protein-Calorie Malnutrition* WRA73 

Pulmonary/Respiratory (H) WRA74 

Pulmonary/Respiratory (L) WRA75 

Pulmonary/Respiratory (M) WRA76 

Quadriplegia, Other Extensive Paralysis WRA77 

Renal Failure (H) WRA78 

Renal Failure (L) WRA79 

Renal Failure (M) WRA80 

Respirator Arrest, Dependence/Tracheostomy Status WRA81 

Rheumatoid Arthritis and Inflammatory Connective Tissue 

Disease* 

WRA82 

Schizophrenia WRA83 

Seizure Disorders and Convulsions WRA84 

Septicemia/Shock WRA85 

Skin & Subcutaneous Tissue WRA86 

Skin & Subcutaneous Tissue (H) WRA87 

Vascular Disease WRA88 

Vertebral Fractures, Spinal Cord Diseases/Injury WRA89 

Very Severe Neoplasm / Cancer WRA90 

*Denotes medical conditions that were not included in this study. 
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APPENDIX D. CASE MANAGEMENT (CM) ACUITY LEVELS 

The information in the following table defines the CM acuity level (DHA, 2016). 

 

1 Low 1-150 minutes per month 

or (0-2.5 hrs per month 

Routine discharge planning, 

minimal intervention(s).   

2 Low to 

moderate 

151-360 minutes per 

month or (2.75 - 6.00 

hours per month 

Stable with ongoing needs, 

chronic care intervention, 

infrequent ER/inpatient utilization  

3 Moderate 361-555 minutes per 

month or (6.25 - 9.25 

hours per month) 

Stable with more complicated 

ongoing needs, frequent 

ER/inpatient utilization 

4 Moderate to 

Intense 

556-750 minutes per 

month or (0.5 - 12.5 hrs 

per month) 

Multiple acute needs  

5 Intense 751 minutes and above 

per month (12.75+ hrs per 

month) 

Intensive assessment and/or 

monitoring required 
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