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ABSTRACT 

Over the next ten to fifteen years, the number of internet-enabled devices is 

anticipated to grow exponentially, which will magnify cyber risks across an expanding 

attack surface area. It is unclear whether current manual methods of detection, 

verification, and remediation will allow network defenders to keep up with those risks. 

This thesis examined whether automated cyber defenses promise to be more effective 

than current models to cope with the results of vulnerabilities introduced by the projected 

increase in internet-enabled devices. The thesis further proposed a future model called 

Automated Defense of Cyber Systems, built upon three core technological components: 

sensors, autonomics, and artificial intelligence. Our conclusion is that automation is the 

future of cyber defense, and that advances are being made in each of the three 

technological components to support needed productivity gains for information 

technology security personnel. Continued advances will occur piecemeal, and it is 

recommended that network defenders make incremental investments consistent with an 

automated defensive strategy.  
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EXECUTIVE SUMMARY 

This thesis examined if automated cyber defense promises to be more effective 

than current models to cope with the results of vulnerabilities introduced by the projected 

increase in internet-enabled devices. The question was scoped to foresee cyberspace 

landscape evolution over the next 10 to 15 years. In particular, the author claims the 

anticipated exponential growth of internet-of-Things (IoT) devices will open 

vulnerabilities at such a rate that current manual methods of detection, verification, and 

remediation will not be able to keep up. The thesis then explains why the automation of 

cyber defenses will be more effective than current models in performing methodical 

tasks, and that such automation will be required to handle the oncoming crush of IoT 

devices and associated vulnerabilities.   

Current defensive models and efforts are not adequate to defend networks from 

the volume of vulnerabilities introduced through IoT devices. Three gaps contribute to 

this: 1) the expected exponential growth of IoT devices, 2) limited growth of IT security 

personnel and budgets, and 3) an increase in cyber attacks, to include machine-to-

machine attacks. The mass proliferation of internet-enabled devices has the potential to 

unravel traditional mechanisms of coping with cyber attacks. The Federal Bureau of 

Investigation (FBI) has warned of threats associated with the spread of IoT devices, and 

the number of attacks are increasing. The compromise of vulnerable devices connected to 

the internet will foster malicious actor attempts to disrupt or gain access to all types of 

sensitive networks. Furthermore, the number of cybersecurity professionals will not grow 

at the same pace as the devices requiring protection. This will result in expanding gaps in 

cyber defenses.   

The IoT wave began in earnest in the early part of the current decade, and there is 

no reason to believe it will abate from exponential growth. Additionally, the internet has 

shown to be inherently insecure since inception, with new vulnerabilities introduced and 

identified on a regular basis. Terrorism, nation states, and organized crime will continue 

to be the primary malicious actors, and the level of associated threat may even grow as 

the cost to conduct offensive cyber operations drops while the cost to defend increases. 
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Consequently, there will be a greater surface area with vulnerabilities exploitable by 

those motivated to attack. 

Defensive models have evolved since the inception of the internet, beginning with 

a simplistic exterior network defense, progressing to layered, ever-vigilant, and 

intelligence driven. Both industry and government have adapted to increasingly complex 

networks, setting frameworks for establishing defensive efforts, exchanging attack 

intelligence, and moving toward partial automation. However, broad use of external/

offensive cyber operations is not viable, particularly by private industry, as it has high 

business and professional risks, introduces the potential for criminal liability, and may 

lead to unintended escalation between nation states. 

Greater automation is viewed as the future of cyber defense. Numerous 

technological advantages are on the near-to-mid horizon to help perform many 

cybersecurity functions. They will take advantage of the same exponential growth curve 

as seen in the introduction of IoT devices, thereby allowing a slowly growing number of 

cybersecurity professionals to defend vastly larger and more complex networks. Three 

core technological components are identified as essential toward realizing what is 

proposed by the thesis as the automated defenses of cyber systems (ADCS): sensors, 

autonomic computing, and artificial intelligence (AI). Various technological 

advancements are cited as evidence of each component’s emergence. 

The realization of ADCS will not take place overnight. It is much more likely it 

will arrive piecemeal, with incremental improvements to the sensor, autonomic, and AI 

components. National policy should continue to encourage investment in the broad use of 

defensive cyber automation. Such automation should be limited to activities contained 

within a defender’s network, and should not include offensive cyber measures in which 

the confidentiality, integrity, and availability triad is compromised without authorization. 

When considering incremental improvements from today’s cyber security environment, a 

logical first step is to provide the advantages of the Department of Homeland Security’s 

Continuous Diagnosis and Mitigation program to private industry. Further, private 

industry’s use and contribution to cyber vulnerability and threat information sharing is 

critical; barriers to participation in the Automated Indicator Sharing program should be 
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aggressively removed, whether through incentives, regulatory control, or mitigation of 

civil liability. Finally, organizations should develop an investment strategy in building 

sensor networks that support business operations. This encompasses evaluation and 

iteration of data useful for collection. Likewise, they should invest in development and 

maturation of computational models that capture business functions. Rather than trying to 

model entire systems, such development should be incremental, focusing on the most 

critical business processes, data sets, or network segments. This, in turn, will feed into 

improvements in automation.   
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I. INTRODUCTION 

This thesis examines if automated cyber defense promises to be more effective 

than current models to cope with vulnerabilities introduced by the projected increase in 

internet-enabled devices. The question is scoped to foresee cyberspace landscape 

evolution over the next 10 to 15 years. In particular, the author claims the anticipated 

exponential growth of Internet of Things (IoT) devices will open vulnerabilities at such a 

rate that current manual methods of detection, verification, and remediation will not be 

able to keep up. The thesis then explains why the automation of cyber defenses is more 

effective than current models in performing methodical tasks, and why such automation 

will be required to handle the oncoming crush of IoT devices and associated 

vulnerabilities. Anticipated technological developments critical to automation are 

examined, which organizations should be able to leverage to enhance their cybersecurity 

posture. 

Current defensive models and efforts are not adequate to defend networks from 

the volume of vulnerabilities introduced through IoT devices. Three gaps contribute to 

this: 1) the expected exponential growth of IoT devices, 2) limited growth of IT security 

personnel and budgets, and 3) an increase in cyber attacks, to include machine-to-

machine attacks. 

Three core technological components are identified as essential toward realizing 

the automated defenses of cyber systems (ADCS): sensors, autonomic computing, and 

artificial intelligence (AI). Various technological advancements are cited as evidence of 

each component’s emergence. The realization of ADCS will likely arrive piecemeal, with 

incremental improvements to the sensor, autonomic, and AI components. The purpose of 

this thesis is to inform policy on acceptance of the ADCS model, and to encourage 

accelerated research and investment into the aforementioned components. 
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A. BACKGROUND 

Despite periodic embarrassing revelations of cyber attacks, today’s organizations 

do their best to internally manage cybersecurity risks through various mitigation 

strategies. Impacted consumers typically recognize their involvement only when they are 

notified, usually with an offer of free credit monitoring or a new credit card. However, 

this will change as consumers increasingly use IoT devices in almost every imaginable 

way. A glimpse of what is to come was recently shown when Fisher-Price acknowledged 

a vulnerability in one of its WiFi-connected smart toy bear lines that had the potential to 

expose children’s personally identifiable information (PII).1 

The mass proliferation of internet-enabled devices has the potential to unravel 

traditional cyber attack coping mechanisms. The Federal Bureau of Investigation (FBI) 

has warned of threats associated with the spread of IoT devices, stating it “increases the 

target space for malicious actors.”2 Typical IoT devices are smartphones, closed-circuit 

television (CCTV) cameras, connected cars, industrial sensors connected to the internet, 

and emerging smart devices such as smart watches and appliances. In the near-term 

future, IoT will encompass any product of any size that communicates through the 

internet. 

Left unchecked, risk managers in government and the private sector will struggle 

to secure burgeoning attack surfaces, and impacts from successful cyber attacks are likely 

to increase in frequency and severity. An attack surface of a software environment is “the 

sum of the different points (the ‘attack vectors’) where an unauthorized user (the 

‘attacker’) can try to enter data to or extract data from an environment.”3 

 

                                                 
1 “Researchers Discover a Not-So-Smart Flaw in Smart Toy Bear,” Trend Micro, February 4, 2016, 

http://www.trendmicro.com/vinfo/us/security/news/Internet-of-things/researchers-discover-flaw-in-smart-
toy-bear.  

2 Douglas Bonderud, “IoT Warning: FBI Says More Devices Equal Bigger Attack Surface,” Security 
Intelligence, last modified September 15, 2015, https://securityintelligence.com/news/iot-warning-fbi-says-
more-devices-equal-bigger-attack-surface/. 

3 Wikipedia, s.v. “Attack Surface,” last modified September 8, 2015, 
https://en.wikipedia.org/wiki/Attack_surface. 

http://www.trendmicro.com/vinfo/us/security/news/Internet-of-things/researchers-discover-flaw-in-smart-toy-bear
http://www.trendmicro.com/vinfo/us/security/news/Internet-of-things/researchers-discover-flaw-in-smart-toy-bear
https://securityintelligence.com/news/iot-warning-fbi-says-more-devices-equal-bigger-attack-surface/
https://securityintelligence.com/news/iot-warning-fbi-says-more-devices-equal-bigger-attack-surface/
https://en.wikipedia.org/wiki/Attack_surface


 3 

A recent example was revealed in June 2016 when the cybersecurity firm Securi 

reported a distributed denial of service attack targeting a small business. What made this 

attack relevant is that the underlying botnet4 was attributed to over 25,000 compromised 

internet-enabled CCTVs, devices that most consumers do not think of as networked 

computers. Furthermore, the devices were spread out globally and came from various 

CCTV vendors.5 This suggested the devices were compromised by a single exploit, 

possibly through a previously disclosed vulnerability in digital video recording software 

commonly used within CCTV devices to allow remote code execution.6 In lay terms, the 

bad guy—who may have been across the street or on another continent—executed 

programs on another person’s computer without the owner’s knowledge or consent. This 

was not only bad for the small business targeted by the botnet, but also for every one of 

the CCTV owners who gave a skilled hacker an entryway into their corporate, business, 

or home networks. 

Current cybersecurity models were developed in a pre-IoT internet era, most 

frequently characterized by a client/server environment in which desktop and laptop 

computers were clients, and rack-mounted hardware were servers. Unfortunately, these 

models are insufficient to address vulnerabilities associated with the impending 

expansion of cyber surface area through IoT. Furthermore, the number of cybersecurity 

professionals will not grow at the same rate as the devices requiring protection. This will 

result in expanding gaps in cyber defenses. The compromise of vulnerable devices 

connected to the internet will foster malicious actor attempts to disrupt or gain access to 

all types of sensitive networks. Consequences will magnify as governments, businesses, 

and individuals grow increasingly dependent on these networks. 

                                                 
4 From Wikipedia, “A botnet is a number of Internet-connected computers communicating with other 

similar machines in which components located on networked computers communicate and coordinate their 
actions by command and control (C&C) or by passing messages to one another (C&C might be built into 
the botnet as peer-to-peer).” Wikipedia, s.v. “Botnet,” last modified September 1, 2016, 
https://en.wikipedia.org/wiki/Botnet. 

5 Daniel Cid, “Large CCTV Botnet Leveraged in DDos Attacks,” sucuri, last modified June 27, 2016, 
https://blog.sucuri.net/2016/06/large-cctv-botnet-leveraged-ddos-attacks.html. 

6 Rotem Kerner, “Remote Code Execution in CCTV-DVR Affecting over 70 Different Vendors,” 
Kerner on Security, March 22, 2016, http://www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-
dvrs-of.html. 

https://en.wikipedia.org/wiki/Botnet
https://blog.sucuri.net/2016/06/large-cctv-botnet-leveraged-ddos-attacks.html
http://www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-dvrs-of.html
http://www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-dvrs-of.html
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While eliminating all cyber risk is not reasonable, a better choice over today’s 

cybersecurity models is needed that will allow cybersecurity professionals to manage 

vulnerabilities on more complex networks with exponentially more devices. This thesis 

proposes such a model. 

B. METHODOLOGY 

The research is based upon a review of cybersecurity literature, which includes 

academic books, peer-reviewed articles, research papers, government publications, 

testimony before Congress, commercial literature, news articles, and online blogs 

conversant with the topic. As an exploratory effort, relevant points of information were 

extracted and presented to build a logical narrative describing the current and predictive 

future state of cyber attacks and available cybersecurity solutions. 

C. OVERVIEW 

Chapter II describes impending threats in terms of trends in internet-based 

technologies that will shape the future cyberspace landscape. The vulnerabilities come 

primarily from IoT and how quickly these devices will be deployed, trends in IT security 

personnel and budget investments, and the motivations of malicious actors. Changes 

around the cost structure and frequency of cyber attacks are also reviewed. 

Chapter III examines current cybersecurity models, starting with significant 

historical roots of the security challenges we face today and will face in the future. Four 

prominent cybersecurity models are presented: 1) network boundary control, 2) defense-

in-depth, 3) continuous monitoring, and 4) intelligence driven. Finally, four recent and 

critical cybersecurity initiatives, designed to address current threats are reviewed: 1) the 

National Institute of Standards and Technology (NIST) Cybersecurity Framework, 2) 

Automated Indicator Sharing (AIS), 3) Continuous Diagnosis and Monitoring (CDM), 

and 4) Active Cyber Defense (ACD). 

Chapter IV proposes a change in cybersecurity approach called automated defense 

of cyber systems (ADCS). It represents two critical shifts in cyber defense: a move away 

from current client/server conceptual models to a much more complex, organic 



 5 

perspective of networked systems; and an evolution from manual, human-driven 

interventions to automation. Three core technological components are critical toward 

realizing this evolution, which are 1) mass promulgation of internet-enabled sensors, 2) 

autonomic computing, and 3) artificial intelligence techniques. 

Chapter V provides findings, conclusions, and recommendations, which are 

geared to both cybersecurity professionals and policy makers, and designed to accelerate 

adoption of ADCS. The chapter also suggests several areas of future research for those 

wishing to continue examining this topic.  
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II. FUTURE LANDSCAPE OF CYBERSECURITY 

This chapter describes the most likely near-future threats due to the IoT, 

investment trends for IT security personnel and budgets, and the motivations of three 

groups of malicious actors. Changes around the cost structure of vulnerabilities, attacks, 

and defenses are also reviewed. 

A. INTERNET OF THINGS IMPACT ON CYBERSPACE 

The IoT is defined as “interrelated computing devices, mechanical and digital 

machines, objects, [etc.] with unique identifiers and the ability to transfer data over a 

network without requiring human-to-human or human-to-computer interaction.”7 Such 

devices include not just smartphones and tablets, but wearable health monitors, 

televisions that stream videos, and sensors that read voltage on power lines, to name only 

a few. 

In 2015, nearly two-thirds of American adults had a smartphone, 90 percent had 

broadband service at home, and only 7 percent had neither a smartphone nor broadband 

service at home.8 In January 2015, there were over 50 million publically available WiFi 

hotspots globally, and the number is projected to reach 340 million by 2018.9 With this 

infrastructure in place, an overwhelming majority of Americans have ready access to 

highly functional devices connected to the internet, which will act as gateways to take 

advantage of IoT devices and capabilities. Citizens will be able to access their IoT 

devices from virtually anywhere. We will increasingly work, learn, socialize, pay our 

bills, lock our doors, monitor our heart rate, watch our children or favorite zoo animals, 

and check the contents of our refrigerator, all from anywhere with a signal. 

                                                 
7 Margaret Rouse, “Internet of Things (IoT),” Whatis.com, accessed August 28, 2016, 

http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT. 
8 Aaron Smith, “U.S. Smartphone Use in 2015,” Pew Research Center, April 1, 2015, 2–3, 

http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/.  
9 “The Global Public Wi-Fi Network Grows to 50 Million Worldwide Wi-Fi Hotspots,” IPass, January 

20, 2015, https://www.ipass.com/press-releases/the-global-public-wi-fi-network-grows-to-50-million-
worldwide-wi-fi-hotspots/. 

http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/
https://www.ipass.com/press-releases/the-global-public-wi-fi-network-grows-to-50-million-worldwide-wi-fi-hotspots/
https://www.ipass.com/press-releases/the-global-public-wi-fi-network-grows-to-50-million-worldwide-wi-fi-hotspots/
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1. Exponential Growth 

Within the next decade, IoT devices will dominate the cyber landscape. In a 

research brief published in September 2015, CompTIA projected compound growth of 

23.1 percent annually, with over 50.1 million devices by 2020.10 Using CompTIA’s 

historic and projected data points, a calculation of growth can be expressed by the 

following formula: 

Number of Devices in Billions = 0.121 * 1.231^(Year – 1991). 

As illustrated in Figure 1, this calculates out to an astounding 400+ billion devices 

by 2030. While the value of the coefficient in this formula is up for debate, such 

projections are entirely plausible given potential reduction in cost, size, and power 

requirements for each IoT device, along with increases in business application and 

efficiencies as commercial IoT solutions emerge. The critical concept is that deployment 

is on an exponential growth curve, and that we are only at the beginning of that curve. 

 

Figure 1.  Projected Number of IoT Devices 

 

                                                 
10 CompTIA, “Sizing up the Internet of Things,” August 28, 2015, 4, 

https://www.comptia.org/resources/sizing-up-the-internet-of-things.  

https://www.comptia.org/resources/sizing-up-the-internet-of-things
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Improvement—and subsequent adoption—of a new technology is frequently 

described in terms of an S-curve. Harvard business professor Clayton Christensen 

explains an S-curve as slow progress in early stages, increasing as the technology 

becomes better understood and slowing as it approaches a natural or physical limit.11 

Figure 1 only shows the beginning of the S-curve, and it is reasonable to question when 

IoT market saturation will occur. However, market saturation is unlikely to occur for IoT 

device integration, at least during the projected period; advances in computational 

capacity and miniaturization will propel new and innovative uses of IoT devices. 

According to Professor Jianguo Ding, University of Skövde, “Computing is deeply 

embedded into every physical component, possibly even into materials.”12 Unlike 

traditional markets, where physical limits are often associated with the number of people 

(e.g., the percentage of device ownership approaches 100 percent), there does not appear 

to be a limit of IoT devices per person. As is later argued in Chapter IV, traditional 

networks of servers and wires will almost completely cease to exist, replaced by mobile 

nanodevices, which are tiny computers measured in nanometers with integrated wireless 

connectivity. Therefore, maturation in the IoT S-curve cannot be reasonably projected 

until a better understanding of the natural and physical limits are understood. 

2. IoT Impact on Cybersecurity 

The IoT is vastly expanding the attack surface vulnerable to malicious 

exploitation. To more precisely specify what is included within the IoT attack surface, the 

not-for-profit Open Web Application Security Project (OWASP) drafted a mapping of 19 

distinct  IoT attack surface area categories to 130 vulnerability types, and then published 

the list of top ten vulnerabilities (see Figure 2). These findings were more recently 

supported by Hewlett Packard Enterprise in 2015. Hewlett Packard’s study of common 

household IoT devices found that 80 percent used weak passwords (susceptible to brute 

force password attacks), 70 percent used unencrypted services (susceptible to network 
                                                 

11 Clayton M. Christensen, “Exploring the Limits of the Technology S-curve. Part I: Component 
Technologies,” Production and Operations Management 1, no. 4 (Fall 1992): 334. 

12 Jianguo Ding, “Intrusion Detection, Prevention, and Response System (IDPRS) for Cyber-Physical 
Systems (CPSs),” in Securing Cyber-Physical Systems, ed. Al-Sakib Khan Pathan (Boca Raton, FL: CRC 
Press, 2015), 373. 
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sniffing), 70% allowed account enumeration (allows refined attack targeting), and 60% 

exhibited user interface vulnerabilities (persistent cross-site scripting and weak 

credentials).13 To demonstrate growth in potential exploitation of these vulnerabilities, a 

2016 AT&T Security Operations Center report noted a 458 percent increase in IoT 

vulnerability scans over the past two years.14 

 

Figure 2.  OWASP Top10 IoT Vulnerabilities in 201415 

Even skeptics among cybersecurity professionals acknowledge the eventual 

emergence of risk associated with the IoT. Andrzej Kawalec, head of security research 

and chief technology officer at Hewlett Packer Security Services, stated, “Although there 

may be an immediate threat to business due to some consumer IoT device that’s been 

                                                 
13 “Internet of Things Research Study,” Hewlett Packard Enterprise, November 2015, 4, 

https://www.hpe.com/h20195/V2/GetPDF.aspx/4AA5-4759ENW.pdf.  
14 “The CEO’s Guide to Security the Internet of Things,” AT&T, 2016, 8, 

https://www.business.att.com/cybersecurity/docs/exploringiotsecurity.pdf.  
15 Source: Sebastien Gioria, “CLUSIRInfoNord OWASP IoT 2014,” LinkedIn, January 20, 2015, 

http://www.slideshare.net/SebastienGioria/clusir-infonord-owasp-iot-2014. 

https://www.hpe.com/h20195/V2/GetPDF.aspx/4AA5-4759ENW.pdf
https://www.business.att.com/cybersecurity/docs/exploringiotsecurity.pdf
http://www.slideshare.net/SebastienGioria/clusir-infonord-owasp-iot-2014
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adopted, most businesses will only face this in around five years’ time.”16 Despite 

downplaying current risk, his full statement made clear that specific early-adopter 

industries (e.g., healthcare, hotels) are currently vulnerable, and that it is only a matter of 

time before competitive advantage forces industries to adopt IoT devices. Kawalec 

described this moment as the “IoT tsunami.” 

B. IT SECURITY PERSONNEL AND BUDGETS 

1. IT Security Personnel 

While the number of managed devices grows exponentially, the number of 

personnel responsible for securing those devices will not. According to the Bureau of 

Labor Statistics (BLS), the job growth outlook for information security analysts is 18 

percent between 2014 and 2024, starting in 2014 at 82,900 positions.17 BLS projects an 

8-percent growth rate for network and computer systems administrators—a position that 

overlaps significantly with information security analysts—over the same period, starting 

with 382,600 positions. Combined, they project an average growth rate of 9.8 percent, 

with a 2014 base of 465,500 positions.18 

While the combined growth figure for these two positions is higher than the BLS 

average job growth outlook of 7 percent, it is negligible compared to the projected 800 

percent growth of IoT devices during the same timeframe. If position productivity were 

measured by an employee’s ability to manage a set number of devices, and presuming the 

U.S. growth of IoT devices mirrors the global projection provided in Section A1, the 

2024 employee would have to manage 730 percent more devices than his or her 2014 

counterpart. 

                                                 
16 Warwick Ashford, “Exploding IoT attack surface Not an Immediate Threat to Business,” 

ComputerWeekly, May 27, 2016, http://www.computerweekly.com/news/450297327/Exploding-IoT-
attack-surface-not-an-immediate-threat-to-business. 

17 “Occupational Outlook Handbook: Information Security Analyst,” Department of Labor Bureau of 
Labor Statistics, December 17, 2015, http://www.bls.gov/ooh/computer-and-information-
technology/information-security-analysts.htm. 

18 “Occupational Outlook Handbook: Network and Computer Systems Administrators,” Department 
of Labor Bureau of Labor Statistics, December 17, 2015, http://www.bls.gov/ooh/computer-and-
information-technology/network-and-computer-systems-administrators.htm. 

http://www.computerweekly.com/news/450297327/Exploding-IoT-attack-surface-not-an-immediate-threat-to-business
http://www.computerweekly.com/news/450297327/Exploding-IoT-attack-surface-not-an-immediate-threat-to-business
http://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm
http://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm
http://www.bls.gov/ooh/computer-and-information-technology/network-and-computer-systems-administrators.htm
http://www.bls.gov/ooh/computer-and-information-technology/network-and-computer-systems-administrators.htm
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2. IT Security Budgets 

The investment in IT security budgets, which is anticipated to grow, also pales in 

comparison to the 23.1 percent compound growth of IoT devices. Gartner, Inc. assessed 

global IT spending at $75.4 billion in 2015, and projects the market will grow at 

compound annual growth rate of 7.8 percent through 2019, which equates to annual 

spending north of $100 billion at that time.19 Overall IT spending is expected to grow 

only 1.9 percent. 

As Mark Lobel of PricewaterhouseCoopers (PwC) put it, “Strategic security 

spending demands that businesses … fund processes that fully integrate predictive, 

preventive, detective, and incidence response capabilities.”20 However, given the 

anticipated personnel increase, a significant portion of the IT spending growth can 

reasonably be expected to pay for salaries, to include salary growth from inflation. Only a 

portion of those funds, whether funded through IT security budgets or general IT budgets, 

will be available for investment in employee productivity. 

C. MALICIOUS ACTORS 

This section assesses if categories of cyber actors unacceptably disrupting social 

order today will continue to do so in the future. Understanding motivations, and how they 

may evolve, is an important component in understanding the threat environment within 

which a defender exists. The FBI has identified three broad groups that constitute cyber 

threats today: terrorists, state-sponsored actors, and criminal organizations.21 Given 

history and human nature, it is fair to assume these threats will persist. 

                                                 
19 “Gartner says Worldwide Information Security Spending Will Grow Almost 4.7 Percent to Reach 

75.4 Billion in 2015,” Gartner, September 23, 2015, http://www.gartner.com/newsroom/id/3135617; 
“Forecast Analysis: Information Security, Wordwide, 4Q15 Update,” Gartner, March 22, 2016, 
https://www.gartner.com/doc/3261517/forecast-analysis-information-security-worldwide. 

20 “Security Incidents Continue to Rise in Cost and Frequency while Budgets Decrease, According to 
PwC, CIO and SCO’s The Global State of Information Security Survey 2015,” PricewaterhouseCoopers, 
September 30, 2014, http://www.pwc.com/us/en/press-releases/2014/global-state-of-information-security-
survey-2015.html. 

21 Shawn Henry, “Cyber Threat: On the Front Lines with Shawn Henry,” Federal Bureau of 
Investigation, March 27, 2012, https://ucr.fbi.gov/news/stories/2012/march/shawn-henry_032712/shawn-
henry_032712. 

http://www.gartner.com/newsroom/id/3135617
https://www.gartner.com/doc/3261517/forecast-analysis-information-security-worldwide
http://www.pwc.com/us/en/press-releases/2014/global-state-of-information-security-survey-2015.html
http://www.pwc.com/us/en/press-releases/2014/global-state-of-information-security-survey-2015.html
https://ucr.fbi.gov/news/stories/2012/march/shawn-henry_032712/shawn-henry_032712
https://ucr.fbi.gov/news/stories/2012/march/shawn-henry_032712/shawn-henry_032712
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1. Terrorism 

Terrorism, in the traditional sense of the term, is defined within the United States 

by 18 U.S.C. § 2331. While the statute differentiates between domestic and international 

terrorism, both comprise a violent or dangerous act that violates U.S. law with the intent 

“(a) to intimidate or coerce a civilian population; (b) to influence the policy of a 

government by intimidation or coercion; or (c) to affect the conduct of a government by 

mass destruction, assassination, or kidnapping.” The difference between domestic and 

international terrorism is, as the words imply, whether the perpetrator’s desired effect 

occurs primarily inside or outside the territorial jurisdiction of the United States.22 The 

term “cyber terrorism,” in comparison, does not have a formal legal definition. It often 

conflates issues such as unauthorized hacking, propaganda dissemination, and 

recruitment.23 To limit scope, Jian Hua and Sanjay Bapna proposed that cyber terrorism 

is an act performed by individuals who seek to deny the confidentiality, integrity, or 

availability of networked computing technologies, to include data, from authorized users, 

for the purpose of either interfering with significant political, social, or economic 

functioning, or to induce physical violence or panic.24  

Terrorist organizations are increasingly using cyber terrorism, as Hua and Bapna 

defined it, to meet their objectives. While analyzing news media coverage of cyber 

terrorism matters, researchers identified an increase in related articles, calculating an 

average of 2.2 items per month for the 33 months prior to 2010, and 5.4 per month in the 

following 32 months—an increase of 236 percent.25 In explaining cyberterrorism’s 

strategic advantages for potential attackers, John Klein of Falcon Research cited very low 

start-up costs, enhanced anonymity over kinetic methods, a wide swath of potential 

                                                 
22 Crimes and Criminal Procedure, 18 U.S.C. § 2331. 
23 E. E. Nesmeyanov, A. M. Rudenko, and V. V. Kotlyarova, “Sociocultural Analysis of 

Cyberterrorism in Social Nets within the Problems of Information Safety of Russian Society,” Science 
Almanaca Black Sea Countries 4 (2015): 3. 

24 Jian Hua and Sanjay Bapna, “The Economic Impact of Cyber Terrorism,” The Journal of Strategic 
Information Systems 22, no. 2 (2013): 3. 

25 Lee Jarvis, Stuart Macdonald, and Andrew Whiting, “Constructing Cyberterrorism as a Security 
Threat: A Study of International News Media Coverage,” Perspectives on Terrorism 9, no. 1 (2015). 
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targets, and the ability to conduct attacks remotely.26 Examples of cyber attacks include: 

a) intimidating a target, often through denial-of-service attacks in which ongoing business 

operations supported through networked technology are disrupted; b) delivering 

propaganda by co-opting and defacing networked information delivery mechanisms; and 

c) obtaining and releasing information to facilitate kinetic targeting of specific locations 

or individuals. 

Future terrorists will see cyberterrorism as a quick and cost-effective means to 

move their agendas forward. Additionally, as technology becomes further integrated and 

available worldwide, potential cyber terrorists will have both an entry point from which 

to conduct a cyber attack and a better understanding of society’s reliance on internet-

based technologies. 

2. Nation States 

When providing the “Worldwide Threat Assessment of the U.S. Intelligence 

Community” to the Senate Armed Services Committee, the director of national 

intelligence led with cyber and technology threats from other nation states.27 When 

considering cyber attackers, the term “state-sponsored” refers to the disruption or 

obtainment of unauthorized access to networked systems by countries, or their proxies, to 

achieve a national objective. Nations have broad ranges of military, political, and 

economic interests, and state-sponsored hacking is inclusive of both cyberwarfare—

characterized by attacks intended to damage or deny advantage at the strategic, tactical, 

and operational levels—and cyber espionage—characterized by clandestine intelligence 

collection and covert operations conducted predominantly online.28 Given the availability 

of networked systems impacting those interests, the number of potential targets is limited 

                                                 
26 John J. Klein, “Deterring and Dissuading Cyberterrorism,” Journal of Strategic Security 8, no. 4 

(2015): 27–28. 
27 Testimony before the U.S. Senate Armed Services Committee (2016) (“Statement for the Record: 

Worldwide Threat Assessment of the U.S. Intelligence Community,” James R. Clapper), 2–4, 
https://www.dni.gov/files/documents/SASC_Unclassified_2016_ATA_SFR_FINAL.pdf. 

28 Maren Leed, Offensive Cyber Capabilities at the Operational Level, (Washington, DC: Center for 
Strategic International Studies, 2013), 2, https://csis-prod.s3.amazonaws.com/s3fs-
public/legacy_files/files/publication/130916_Leed_OffensiveCyberCapabilities_Web.pdf.  

https://www.dni.gov/files/documents/SASC_Unclassified_2016_ATA_SFR_FINAL.pdf
https://csis-prod.s3.amazonaws.com/s3fs-public/legacy_files/files/publication/130916_Leed_OffensiveCyberCapabilities_Web.pdf
https://csis-prod.s3.amazonaws.com/s3fs-public/legacy_files/files/publication/130916_Leed_OffensiveCyberCapabilities_Web.pdf
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by only two factors: 1) a nation’s laws and policies on acceptable norms of behavior in 

cyberspace, and 2) resources available to pursue targets. 

While sensitive techniques associated with military action are often classified, 

instances of alleged cyberwarfare have been documented, likely due to their directly 

observable impacts. One of the earliest examples involved the targeting of U.S. 

computers by the Yugoslav air defense system during the 1998 conflict.29 In another 

example, cyber attackers were alleged to be directed, or intentionally incited, by the 

Russian government in response to a 2007 political incident; these cyber attacks 

effectively disrupted internet-based services in Estonia, thereby contributing to regional 

chaos in a manner that Russia could exploit.30 Similarly, Islamic Revolutionary Guard 

Corps–led Iranian hackers allegedly conducted a series of denial-of-service attacks in 

2012 against a large number of U.S. financial sector institutions,31 presumably “in 

response to increasingly strong economic sanctions imposed by the United States and 

Europe in an attempt to force Iran to curtail its nuclear program.”32 

State-sponsored cyber espionage, by nature, is hidden by perpetrators via state 

secrets. Unlike cyberwarfare, well-executed cyber espionage attacks are not directly 

observable, and concrete examples are hard to find. The range of cyber espionage 

activities include recruiting human intelligence, spying on dissident expatriate 

communities, gaining economic advantage or foreign influence, and obtaining foreign 

government information. The People’s Republic of China’s (PRC) global targeting of 

proprietary and commercial information, for example, is well documented in reports by 

various governments, and has fueled a massive expansion of private cybersecurity firms. 

These firms have produced detailed technical reports that suggest the PRC is transitioning 

                                                 
29 Bradley Graham, “Military Grappling with Rules for Cyber Warfare,” Washington Post, November 

8, 1999, http://www.washingtonpost.com.  
30 Jason Richards “Denial-of-Service: The Estonian Cyberwar and its Implications for U.S. National 

Security,” International Affairs Review 18, no. 2 (2009). 
31 “International Cyber Crime: Iranians Charged with Hacking U.S. Financial Sector,” Federal Bureau 

of Investigation, March 24, 2016, https://www.fbi.gov/news/stories/iranians-charged-with-hacking-us-
financial-sector. 

32 Ellen Nakashima and Matt Zapotosky, “U.S. Charges Iran-Linked Hackers with Targeting Banks, 
N.Y, Dam,” Washington Post, March 24, 2016, https://www.washingtonpost.com.  

http://www.washingtonpost.com/
https://www.fbi.gov/news/stories/iranians-charged-with-hacking-us-financial-sector
https://www.fbi.gov/news/stories/iranians-charged-with-hacking-us-financial-sector
https://www.washingtonpost.com/
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from seeking volume to pursuing focused cyber attack targeting.33 In its 2015 Global 

Threat Report, Crowdstrike opined the PRC’s massive targeting of PII across various 

public and private databases could enable identification of individuals with access and 

potentially susceptible to recruitment.34 Additionally, the Russian government is 

suspected of leaking Democratic National Committee emails to WikiLeaks during the 

2016 U.S. presidential election cycle, possibly to create domestic turmoil and to move the 

United States to a less-engaged position globally.35 

These examples show that valuable targets are available to sovereign entities, with 

promise for relatively quick and inexpensive national gain when compared to diplomacy, 

public policy, or judicial processes. Considering the expanded network surface via the 

IoT, nation states will have exponentially greater avenues through which to exploit 

targets. Senior Defense Analyst Brian Mazanec captured it best when he wrote, “The 

norm evolution theory for emerging-technology weapons predicts grim prospects for the 

evolution of constraining cyber norms.”36 

3. Organized Crime 

Organized crime, and its corresponding definition, has changed as a result of law 

enforcement’s targeted disruption efforts. Forty years ago, organized crime was 

predominantly seen as monolithic, often limited by ethnicity and motivated by greed and 

territorial power. A contemporary view of organized crime is far more inclusive of 

loosely coupled networks of groups and individuals with varying motivations. These can 

include traditional criminal goals of monetary gain, but also “intellectual challenge, 

individual or group notoriety, lust …, ideology, rebellion, and curiosity.”37 Such groups 

                                                 
33 “Redline Drawn: China Recalculates its Use of Cyber Espionage,” FireEye, accessed August 21, 

2016, 15, https://www.fireeye.com/content/dam/fireeye-www/current-threats/pdfs/rpt-china-espionage.pdf. 
34 “2015 Crowdstrike Global Threat Report,” Crowdstrike, accessed August 21, 2016, 6, 

https://www.crowdstrike.com/global-threat-report-2015/. 
35 David E. Sanger and Eric Schmitt, “Spy Agency Consensus Grows That Russia Hacked D.N.C.,” 

New York Times, July 26, 2016, http://www.nytimes.com. 
36 Brian M. Mazanec, “Why International Order in Cyberspace Is Not Inevitable,” Strategic Studies 

Quarterly 9, no. 2 (2015): 95. 
37 Roderic Broadhurst et al., “Organizations and Cyber Crime: An Analysis of the Nature of Groups 

Engaged in Cyber Crime,” International Journal of Cyber Criminology 8, no. 1 (2014): 3. 

https://www.fireeye.com/content/dam/fireeye-www/current-threats/pdfs/rpt-china-espionage.pdf
https://www.crowdstrike.com/global-threat-report-2015/
http://www.nytimes.com/2016/07/27/us/politics/spy-agency-consensus-grows-that-russia-hacked-dnc.html?_r=0
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lend themselves well to the internet’s distributed and often anonymous nature. In 

characterizing the transition from offline to online groups conducting cybercrime, 

criminologist Dr. Michael McGuire modeled six types of group structures: swarm, hub, 

clustered hybrid, extended hybrid, hierarchy, and aggregate groups.38 The first two 

operate predominantly online, the third and fourth mix online and offline activity, and the 

fifth and sixth are predominantly offline. The online elements of the first four groups are 

often fluid, requiring technical and expert ebb and flow to meet a specific criminal 

goal.39 

In addition to adapting their structure, criminals adapt their techniques to evade 

law enforcement. Using open source and commercially available tools allow criminals to 

obscure both the origin and contents of internet communication. The evolution of 

ransomware between Cryptolocker and CryptoWall demonstrated the integration of the 

Onion Router (to obfuscate network traffic patterns) and virtual currency payment (to 

avoid financial transaction reporting).40 Another such adaptation is criminal use of 

encryption and ephemeral services to hinder law enforcement’s ability to search or 

intercept communications, which has been outlined by the FBI in a phenomenon called 

“Going Dark.”41 

D. INCENTIVES AND FREQUENCY OF CYBER ATTACKS  

An examination of attacker and defender incentives shows resource costs 

decreasing for attackers, while increasing for defenders. This will likely elevate cyber 

attacks, as actors frequently possess both the resources and intent to conduct an attack. 

Furthermore, the frequency of attacks is increasing. 

                                                 
38 Ibid. 
39 Broadhurst et al., “Organizations and Cyber Crime,” 3. 
40 Oversight of the Federal Bureau of Investigation (December 9, 2015) (testimony of James B. 

Comey before the U.S. Senate Judiciary Committee), https://www.fbi.gov/news/testimony/oversight-of-
the-federal-bureau-of-investigation-8. 

41 “Going Dark,” Federal Bureau of Investigation, accessed July 29, 2016, 
https://www.fbi.gov/services/operational-technology/going-dark. 

https://www.fbi.gov/news/testimony/oversight-of-the-federal-bureau-of-investigation-8
https://www.fbi.gov/news/testimony/oversight-of-the-federal-bureau-of-investigation-8
https://www.fbi.gov/services/operational-technology/going-dark
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1. Cost to Attack 

The cost to build and use cyber tools to exploit cyber vulnerabilities is low and 

decreasing. Hacking toolkits are frequently updated and readily available. Many are free, 

openly developed, and co-opted from legitimate network security uses (e.g., nmap, cain 

& able, and Nikto).42 The price of a remote access Trojan went from between $50 and 

$250 in 2013 to between $5 and $10 in 2016.43 Distributed denial-of-service attacks were 

sold for $50 per night.44 Particularly disturbing research from Dell SecureWorks in 2016 

showed that some of these markets have been allowed to mature in relative stability, to a 

point where they have incorporated higher-functioning business processes built around 

customer service and guarantees of value.45 

The cost to obtain criminal means that enable cyber attacks is also decreasing, 

evident in analysis of virtual black markets between 2005 and 2011. The analysis 

indicated that standard U.S. credit cards were sold for $6 and skimmers, used to steal 

credit card data, ranged from $425 to $6,000.46 Dell Secureworks further showed that 

virtual marketplaces are flooded with counterfeit documents, and that the breadth and 

depth of stolen financial information has expanded. Between 2014 and 2016, the cost of a 

matching social security card, driver’s license, and utility bill dropped from $350 to 

$90.47  

Beyond criminal use, the cost of state-sponsored advanced malware has dropped 

precipitously. Costin Raiu, head of global research and analysis at Kaspersky Lab, stated 

during a prepared speech that Stuxnet, an early cyber weapon that targeted Iran’s nuclear 

                                                 
42 “Hacker Tools Top Ten: Our Recommended Tools for 2016,” Concise AC, accessed August 26, 

2016, https://www.concise-courses.com/hacking-tools/top-ten/. 
43 Ibid., 4. 
44 Ziming Zhao et al., “Mules, Seals, and Attacking Tools: Analyzing 12 Online Marketplaces,” IEEE 

Security & Privacy 14, no. 3 (2016): 37. 
45 “Underground Hacker Markets,” Dell SecureWorks, 2016, 7, 

https://www.secureworks.com/resources/rp-2016-underground-hacker-marketplace-report.  
46 Zhao et al. “Mules, Seals, and Attacking Tools,” 37. 
47 “Underground Hacker Markets,” Dell SecureWorks, 5, 14. 

https://www.concise-courses.com/hacking-tools/top-ten/
https://www.secureworks.com/resources/rp-2016-underground-hacker-marketplace-report
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development program, was estimated to cost $100 million.48 The IceFog malware, which 

targeted U.S. energy companies, was hypothesized to cost $10,000. Raiu went on to 

opine, “The cost of entry for [advanced persistent threats] is decreasing …. We’re going 

to see more surgical strikes and critical infrastructure attacks.”49 

2. Cost of an Attack 

The cost borne by cyber attack victims is increasing. A 2014 report by Intel 

Security (McAfee) estimated the damage caused by cybercrime to be more than 

$400 billion annually.50 Analysis conducted by Juniper Research projects cyber data 

breaches will globally cost society $2.1 trillion by 2019—a fourfold increase over their 

estimated breach costs for 2015, compounding at an astonishing annual rate of 41 

percent.51 HP Enterprise Security underwrote a 2015 survey of 252 large organizations 

(1000+ individuals) on the global cost caused by cybercrime, cataloging 1,928 total 

attacks, and found that the mean cost associated with an incident was $7.7 million.52 The 

study has been repeated annually with incident costs on the rise, albeit at an annual rate 

of 1.9 percent. Of the external costs incurred, the top three impacted areas were business 

disruption (39 percent), information loss (35 percent), and revenue loss (21 percent).53 

3. Attack Frequency 

In testimony before the U.S. House of Representatives, FBI Assistant Director 

Joseph Demarest stated, “The frequency and impact of cyber attacks on our nation’s 

private sector and government networks have increased dramatically in the past decade 

                                                 
48 Pierluigi Paganini, “Speaking at Kaspersky Lab’s Industry Analyst Summit Costin Raiu, Revealed 

that the Cost for APT Campaign is Dramatically Dropping,” Security Affairs, February 9, 2014, 
http://securityaffairs.co/wordpress/22056/cyber-crime/apt-cost-dramatically-dropping.html. 

49 Ibid. 
50 Intel Security, Net Losses: Estimating the Global Cost of Cybercrime (Santa Clara, CA: Intel 

Security Center for Strategic and International Studies 2014), 2. 
51 “Cybercrime Will Cost Businesses Over $2 Trillion by 2019,” Juniper Research, May 12, 2015, 

http://www.juniperresearch.com/press/press-releases/cybercrime-cost-businesses-over-2trillion. 
52 Ponemon Institute, 2015 Global Report on the Cost of Cyber Crime (Traverse City, ME: Ponemon 

Institute, 2015), 6. 
53 Ibid., 16. 
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and are expected to continue to grow.”54 A PwC survey showed 42.8 million security 

incidents in 2015, with the data indicating that the compound annual growth rate of 

detected security incidents “has increased 66 percent year over year since 2009.”55 

The number of cybersecurity incidents continues to rise. During testimony for the 

U.S. House of Representatives, Government Accountability Office Director Gregory C. 

Wilshusen presented a chart demonstrating growth in cyber incidents reported by federal 

agencies to the U.S. Computer Emergency Readiness Team, growing from 5,503 in 2006 

to 67,168 in 2014.56 The data suggest a linear growth rate (see Figure 3), which projects 

over 150,000 reported incidents on federal systems by 2025. 

                                                 
54 Joseph Demarest, “Statement of Joseph Demarest Assistant Director Cyber Division Federal Bureau 

of Investigation,” Testimony before the U.S. House of Representatives Homeland Security Committee, May 
21, 2014, 2. 

55 “Security Incidents Continue to Rise,” PricewaterhouseCoopers. 
56 Information Security, Cyber Threats and Data Breaches Illustrate Need for Stronger Controls 

across Federal Agencies (July 18, 2015) (Testimony of Gregory C. Wilshusen, before the U.S. House of 
Representatives, Subcommittee on Research and Technology and Oversight), 7, 
http://www.gao.gov/assets/680/671253.pdf. 
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Actual incidents were adapted from data in Wilshusen, “Information Security.” Forecast incidents were projected consistent with actual incident data. 

Figure 3.  Projecting Federal Cyber Incidents Reported to US-CERT 
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Machine-to-machine attacks may push the number of cyber attacks to a growth 

curve similar to the integration of IoT devices. Cybersecurity experts have predicted 2016 

will see the first generation of worms and viruses targeting “headless devices,” which are 

IoT devices without user interfaces that are controlled by hub devices, such as a 

smartphone.57 

In their examination of botnet designed to send spam email, Proofpoint observed 

that “25 percent of the volume was sent by … everyday consumer gadgets such as 

compromised home networking routers, connected multi-media centers, televisions and at 

least one refrigerator.”58 Two viable vectors of malicious code introduction include 

through the hub device (e.g., a smartphone downloads a compromised app) and supply 

chain (i.e., a new product ships with embedded malicious software).   

To summarize, the incentives for attackers are increasing, the impact to victims is 

increasing, and the frequency of attacks is increasing. While a causal relationship 

between the three is not explicitly drawn, the correlation is apparent. Attack costs and 

frequency remain valid metrics through which to evaluate the efficacy of future 

cybersecurity efforts. 

  

                                                 
57 Harriet Taylor, “Biggest Cybersecurity Threats in 2016,” CNBC, December 28, 2015, 
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58 Pierluigi Paganini, “Proofpoint Discovered More Than 750,000 Phishing and SPAM Emails 

Launched from ‘Thingbots’ Including Televisions, Fridge,” Security Affairs, January 19, 2014, 
http://securityaffairs.co/wordpress/21397/cyber-crime/iot-cyberattack-large-scale.html. 

http://www.cnbc.com/2015/12/28/biggest-cybersecurity-threats-in-2016.html
http://securityaffairs.co/wordpress/21397/cyber-crime/iot-cyberattack-large-scale.html


 23 

III. CURRENT CYBERSECURITY EFFORTS 

A. A FEW WORDS ABOUT THE INTERNET 

1. Origins of Cybersecurity 

Cybersecurity efforts are rooted in three core principles toward protecting data 

processed by networked computers: confidentiality, integrity, and availability. In brief, 

confidentiality preserves privacy for and between authorized users of data, integrity 

ensures the data being processed has not been maliciously or unintentionally altered, and 

availability means users are able to access and use the data when they want to. These 

principles are collectively referred to as the “CIA triad,” and are the bedrock upon which 

the security of devices and systems are evaluated.59 They are applied to data at rest 

(saved to a hard drive or memory card), in process (being actively manipulated by a 

computing device), and in motion (being transmitted between devices over a network 

segment). Any malicious attempt to compromise the CIA triad is a cyber attack, whether 

successful or not. 

An additional cybersecurity concept can be considered as part of the “I” within 

the CIA triad: non-repudiation, defined as “proof of the integrity and origin of data that 

can be verified by a third party.”60 Non-repudiation is frequently associated with 

accountability of digital actions with a specific user, such as through a digital signature. 

Since 1988, progress toward achieving non-repudiation over the internet has been 

supported through the X.509 Public Key Infrastructure (PKI), which comprises a set of 

cryptographic standards implemented in a number of protocols, such as secure web 

browsing and the exchange of encrypted email.61 PKI is often associated with 

authentication—which confirms and ensures a computer user’s identity—and 
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authorization—which bounds access levels and actions available to a user of a 

computer system.62 

2. Inherent Insecurity 

The internet is inherently insecure, and the cause of the problem can be tracked 

down to three issues. First, the internet’s creators failed to fully contemplate security. 

Vinton Cerf, one of the original designers of the internet, admitted, “We didn’t focus on 

how you could wreck this system intentionally.”63 To the internet’s architects, the 

dominating security principle was survivability in the event of military action, not the 

CIA triad. The technologies to build in security were not available or sufficiently mature, 

in part due to limits in computational power available at the time and export controls on 

enabling technologies (i.e., encryption).64 As the designers defined the seven layers of 

the TCP/IP network stack, the primary objective was reliability. Initial engineering 

efforts were focused on getting the technology working, not the assurance of the CIA 

triad. This is why it is often said security was “bolted on” to the internet after the fact. 

Second, vulnerabilities are routinely introduced into every layer of the cyber 

ecosystem, and can never be entirely eliminated. Software bugs are defects in how a 

program was designed to operate, resulting in software behaviors that were not 

anticipated by the designer, and hackers seek to exploit bugs to actively circumvent how 

a program was designed to operate. In a Department of Homeland Security (DHS)-

funded analysis, Coverity, Inc. found an error rate of 0.434 defects per thousand lines of 

code in a broad range of open-source software projects.65 Each of the TCP/IP layers 

requires programming, whether implemented in software or hardware. Bugs are fixed 
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over time, whether before or after programs are released.66 However, it is unlikely that 

programmers will be able to radically reduce future introduction of bugs in new 

programming efforts. Two factors drive this: the pace of competition to produce and sell 

new features, and rapid advancement of underlying hardware upon which programs run. 

The third fundamental internet security issue is that cyber attacks are a cat-and-

mouse game—they are perpetrated and defended by humans, acting and counteracting 

each other so that one can gain an advantage over the other. Those involved are 

characterized as “black hats,” “white hats,” and “gray hats.” Black hats work to 

compromise the CIA triad with malicious intent, while white hats work to ensure the CIA 

triad, particularly for devices they are charged to protect. Gray hats refer to those who 

actively work to compromise the CIA triad, perhaps to include conducting activities that 

have been criminalized, but without malicious intent.67 Ultimately, the human adversarial 

dynamic makes it difficult to predict the manifestation of future exploits, which makes it 

more difficult to defend against them. 

B. DEFENSIVE MODELS 

Network defenders have designed various models, tools, and techniques to help 

mitigate a hostile environment in which vulnerabilities are exploited by cyber threats 

actors. The most prevalent models are presented in this section. These models are not 

mutually exclusive, and are often used in combination. No model can fully protect a 

network. The goal of the defender is to reduce risk to an acceptable level at an acceptable 

cost. 

1. Network Boundary Control 

The network boundary control model is built upon the assumption that a cyber 

attack will originate from outside the defended network. Therefore, the simplest 

mechanism to protect the network would be one that enforces a secure border separating 
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the internal network from the external internet. In this model, devices with external 

network connections are identified, and robust security controls are placed on them. This 

puts the cybersecurity focus on any and all devices reachable from the internet. The 

model does not, however, defend devices and services within the network that are not 

directly accessible from the internet. Such an approach has been described as being like 

M&M candies, hard on the outside and soft on the inside.68   

Cybersecurity professionals have largely discounted this approach as a standalone 

model. A major flaw of this approach is the basic assumption that threats originate from 

outside an organization. The model is particularly vulnerable to insider threats—those 

who have authorized access to the defended network but exceed their scope of 

permissions for an unauthorized purpose. Once a malicious actor breaches the external 

defenses, the interior network is left unguarded and vulnerable. Another challenge to this 

model is that modern devices frequently combine plug-and-play configuration with 

multiple network interfaces, potentially opening holes in the wall unbeknownst to 

defenders. Despite these flaws, the network boundary control model remains commonly 

used as a building block within network security architectures to reduce the network 

surface area directly accessible from the internet. 

2. Defense-in-Depth 

Defense-in-depth was promulgated to overcome the single point of failure of the 

network boundary control model, and was conceptualized using the military principle of 

weakening an adversary by delaying an attacker’s advance through the ceding of 

defended territory. The cyber correlation is to deploy multiple forms of layered defenses, 

each requiring time and effort for an adversary to defeat, and to give defenders more time 

to recognize and then mitigate an attack. It provides for information assurance by making 
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cost-effective security investments focused on people (users), the technology of the 

system, and the system’s operation.69 

This approach raises the cybersecurity bar by acknowledging malicious events 

could originate from anywhere, even inside the organization. It also introduced a strategy 

toward managing security solutions over time, and is considered a best practice by many 

security professionals.70 However, the approach has been criticized because historic 

military advantages from defense-in-depth have not been realized within cyberspace. 

Specifically, attackers have not been weakened; rather, they are attacking and succeeding 

at higher rates, and delays from defensive layering have not significantly increased the 

amount of effort necessary for an attack to succeed.71 

3. Continuous Monitoring 

The continuous monitoring model assumes a network will not remain in a healthy 

state and it is therefore necessary to continuously review for faults. It further assumes 

devices and programs are designed to provide robust diagnostic information that can be 

logged and analyzed. Investment is focused on collecting and analyzing information from 

critical systems and network segments, identifying concerns, and alerting for further 

review and potential remediation. 

A monitoring and logging guide authored by CREST, a U.K.-based non-profit 

cybersecurity organization, outlined a framework and process toward implementing 

continuous monitoring. Figure 4 illustrates the framework in which common logging 

mechanisms within a network are analyzed.72 Such logs exist at the server, network, 

application, and security suite level. The seven-step process is to: 1) develop a 
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monitoring and logging plan; 2) identify and address your cybersecurity posture outside 

of logging and monitoring; 3) identify sources of security indicators; 4) develop people, 

processes, and practices to monitor and log; 5) buy or build monitoring and logging 

solutions; 6) integrate solutions into security architecture; and 7) maintain the 

capability.73 

 

Figure 4.  CREST Monitoring and Logging Framework74 

The main drawback of continuous monitoring is managing the complexity of 

information collected, and the level of effort required to synthesize the collected data into 

digestible information. The model also assumes devices and applications will generate 

sufficient logs to identify a fault. Finally, the model does not make explicit the 

remediation of incidents. 
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4. Intelligence-Driven 

The intelligence-driven model attempts to understand cyber attacks using 

information about the aggressor. Motivation and attack life cycle are analyzed to assess 

points of vulnerability and defensive gaps. Lockheed Martin’s Cyber Kill Chain 

framework implements this at the operational level. It consists of seven stages through 

which an attacker must successfully progress, with the belief that a defender can disrupt 

the attacker at any of the seven stages.75 Adversary intelligence is collected and evaluated 

for each step toward identifying attack mitigation strategies. The seven stages of the 

Cyber Kill Chain are: 

• Reconnaissance—the attacker identifies the victim’s assets and potential 
vulnerabilities to exploit; 

• Weaponization—the attacker develops tools and scripts to conduct the 
cyber attack; 

• Delivery—the attacker deploys the tools and scripts previously developed, 
most likely remotely, toward the target; 

• Exploitation—the attacker uses the tools and scripts to take advantage of a 
vulnerability in the attacked system; 

• Installation—once unauthorized access is obtained, the attacker moves 
additional tools and scripts to the victim system(s) to further exploit the 
compromised network; 

• Command and Control (C2)—the attacker remotely controls the tools and 
scripts, allowing him or her to further exploit the compromised network; 

• Actions on Objectives—whether through exfiltration or destruction, the 
attacker affects his or her original goal for attacking the victim.76 

Deloitte introduced a more strategic model, geared toward processing of data and 

information into actionable intelligence (see Figure 5). Key elements include the 

collection of diversified information feeds from within and outside the defending 
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organization, integrated with expert analysis in a relevant contextual framework, and 

used to inform both technical and business decision processes. 

 

Figure 5.  Deloitte Cyber Intelligence Model77 

Despite its popularity, the Cyber Kill Chain has been criticized for focusing on 

malware and neglecting insider threat, social engineering, and non-malware remote 

access methods as the vector of intrusion.78 Another critique of Deloitte’s model is that it 

relies upon considerable analytical resources for intelligence production, almost certainly 

far greater than available to most organizations. 
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C. KEY CYBERSECURITY EFFORTS 

There has been considerable effort by the public and private sectors to address 

cybersecurity risks in today’s environment. This section highlights four of the most 

influential efforts underway, designed to familiarize network defenders with the current 

threat environment. Most aspects of these are human driven, as they rely upon the 

synthesis of complex information toward subjective judgements. 

1. NIST Cybersecurity Framework 

In 2014, the National Institute of Standards and Technology (NIST), a branch of 

the U.S. Department of Commerce, published Framework for Improving Critical 

Infrastructure Cybersecurity, more popularly known as the NIST Cybersecurity 

Framework. The purpose of the framework is to understand, manage, and reduce 

cybersecurity risks by prioritizing activities to assure critical operations and service 

delivery.79 It creates a common language to be used by cybersecurity professionals and 

executives that helps facilitate clearer communication when planning, implementing, and 

operating cybersecurity systems. The framework identifies four tiers of cybersecurity 

readiness with five core functions for effective cybersecurity (see Figure 6).80 Together, 

these tiers and functions allow organizations to evaluate their readiness posture and to 

prioritize where investments can most optimally be made. NIST recommends 

organizations progress to at least tier three (“Repeatable”) in their cybersecurity 

readiness. 

  

                                                 
79 “Cybersecurity Framework Frequently Asked Questions,” National Institute of Standards and 

Technology, last modified October 21, 2015, http://www.nist.gov/cyberframework/cybersecurity-
framework-faqs-framework-basics.cfm. 

80 NIST, Framework for Improving Critical Infrastructure Cybersecurity (Gaithersburg, MD: National 
Institute of Standards and Technology, 2014), 4–5. 

http://www.nist.gov/cyberframework/cybersecurity-framework-faqs-framework-basics.cfm
http://www.nist.gov/cyberframework/cybersecurity-framework-faqs-framework-basics.cfm


 32 

NIST Cybersecurity Framework Tiers 

Tier Characteristics 

Partial 
• Ad hoc reactive risk management 
• Limited awareness of enterprise risks 
• No external coordination and collaboration 

Risk Informed 

• Local risk management processes 
• Local awareness on enterprise risks, with limited information sharing 

across enterprise 
• Limited external coordination and collaboration 

Repeatable 

• Enterprise-wide risk management policy and processes 
• Enterprise-wide awareness of risks, with effective processes and 

personnel 
• Robust external coordination and collaboration on cybersecurity risks 

Adaptive 

• Cybersecurity practices adapt via lessons learned and predictive 
indicators 

• Enterprise culture of risk management with high awareness of 
environment 

• Proactive coordination and collaboration on cybersecurity risks 

  
NIST Cybersecurity Framework Functions 

Function Characteristic 

Identify Understand and manage cybersecurity risk to systems, assets, data, and 
capabilities 

Protect Safeguards to ensure delivery of critical infrastructure services 

Detect Activities to identify the occurrence of a cybersecurity event 

Respond Activities to take action regarding a detected cybersecurity event 

Recover Activities to maintain plans for resilience and to restore capabilities/
services impaired due to a cybersecurity event 

Figure 6.  NIST Cybersecurity Framework Tiers and Functions81 
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This framework encourages planned and well-resourced cybersecurity efforts, but 

falls short in fully integrating cyber threat intelligence. In an assessment of the 

framework conducted by PwC, they indicated that the framework “does not address the 

need to implement processes to identify and understand an organization’s unique threat 

adversaries, their motivations, their capabilities, and the data they target.”82 

2. Automated Indicator Sharing 

DHS, through the National Cybersecurity and Communications Integration Center 

(NCCIC), established the Automated Indicator Sharing (AIS) program to encourage real-

time sharing of threat information between participants, which include federal, state, 

local, tribal, territorial, information sharing and analysis centers; private companies; and 

foreign partners.83 AIS is built upon two complementary technical specifications 

developed internationally through community-driven collaboration, for the purpose of 

information sharing about cyber threats, situational awareness, and the defense of 

networks.84 

One of these specifications is TAXII, which is an acronym for the Trusted 

Automated eXchange of Indicator Information, designed to facilitate the exchange of 

cyber threat information.85 It is a framework to provide services, messaging and 

protocols, querying, and content categories.86 The other specification is STIX, which is a 

structured language to convey the full range of cyber threat information. Examples 

include the analysis of threats, incidents, indicators, patterns of behavior, defensive 

response to threats, adversaries, and adversarial efforts.87 To use an analogy around 
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human language, TAXII is the phone and the voice networks we use to communicate, 

inclusive of services to connect people together; STIX is English, and all the rules that 

govern forming comprehensible phrases and sentences. 

There has been some concern expressed over AIS, citing potential issues with 

customer privacy, PII leakage, unwanted scrutiny into vulnerabilities within participant 

networks, and potential legal liability.88 Participation in AIS by private industry is also 

discretionary, both at the organizational and incident level. The timeliness and 

completeness of information can therefore not be assured. 

3. Continuous Diagnosis and Mitigation 

DHS also developed Continuous Diagnosis and Monitoring (CDM), an 

implementation of the NIST framework principles that charts a three-pronged strategy. 

The first prong is to harden the components throughout a network by authorizing and 

managing all capacity, capability, and users. The second is automated scanning of all 

managed devices and activities to provide more timely and enhanced situational 

awareness of security vulnerabilities throughout the network. The third is maturation of 

processes and tools to aid decision makers in their efforts to prioritize issues and 

mitigation strategies. When implemented, CDM provides cyber security professionals a 

comprehensive solution to manage cyber assets (see Figure 7). CDM is mandated for 

federal departments and agencies, and available for use by state, local, tribal, and 

territorial governments. As a program, it consists of a modernized security framework, a 

suite of over 300 commercial off-the-shelf technologies, and an acquisition tool to 

streamline purchasing and reduce costs.89 
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Figure 7.  CDM Operational Model90 

CDM’s framework provides for an extensible security architecture. While it is 

fully defined by fifteen core functions, it has been segmented into three phases so it can 

be implemented over time.91 Phase One focuses on cyber assets, both physical and 

logical, and addresses the issue of hardening individual devices. It includes identification 

of known malware instances, device configuration management, and introduction of new 

hardware and software into the environment. Phase Two focuses on the business 

processes and people the network serves. It manages access to accounts, services, and 

information available to authorized users, and identifies anomalies, flagging potential 

accidental, reckless, and malicious behaviors by insiders Phase Three addresses processes 

and practices to optimally manage the security life cycle of the network, including 

response to incidents. Phase Three accounts for the an organization’s constantly changing 

environment, and changes to the systems that support the organization. As new business 

requirements are identified—then engineered into capabilities, capacity, processes, and 

                                                 
90 John Pescatore, Continuous Diagnostics and Mitigation: Making it Work (Bethesda, MD: SANS 

Institute, 2014), 3. 
91 “CDM Capabilities,” General Services Administration, last modified June 30, 2016, 

http://www.gsa.gov/portal/content/177887.  

http://www.gsa.gov/portal/content/177887


 36 

information resources—Phase Three integrates the requirements into the existing 

management structure established in Phases One and Two. Phase Three also builds a 

more robust, cohesive ability to plan, detect, and respond when things go wrong.  

Similar to continuous monitoring, CDM has been criticized for being focused on 

vulnerabilities instead of threats, and offering an incomplete solution.92 It also aims for a 

full three days from initiating a search for vulnerabilities to addressing them, which can 

be a very long time when an adversary is actively exploiting a network. 

4. Active Cyber Defense 

Consistent with its conceived use for national defense, the United States 

Department of Defense (DOD) proposed Active Cyber Defense (ACD) and described it 

within the 2011 DOD Strategy for Operations in Cyberspace. The objective of ACD is to 

seize initiative from the attacker. DOD described ACD as “synchronized real-time 

capability to discover, detect, analyze, and mitigate threats and vulnerabilities. It builds 

on traditional approaches to defending DOD networks and systems, supplementing best 

practices with new operating concepts. It operates at network speed by using sensors, 

software, and intelligence to detect and stop malicious activity before it can affect DOD 

networks and systems.”93 The strategy assumes that ACD will need to extend beyond a 

defender’s network boundaries, with activities to understand the various threats to DOD 

networks.94 The concept has been further developed by the National Security Agency’s 

(NSA) Information Assurance Directorate (IAD), in which they defined six functional 

areas of ACD: 

• Sensing—ability to monitor network environment, states, and behaviors; 

• Sense-Making—analytics to understand events within context; 

• Decision Making—reducing and evaluating response choices, and 
selecting the best option 
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• Acting—affecting the selected choice, manually or automated; 

• Messaging/Control—communication and coordination of shared 
situational awareness and responses; 

• ACD Mission Management—operational control of any particular 
instance of an ACD implementation.95 

Figure 8 illustrates the relationship between the first five functional areas (the sixth, ACD 

Mission Management, is not displayed as it is implementation dependent). 

 

Figure 8.  NSA/IAD’s ACD Conceptual Architecture96 
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Those in the private sector have looked to leverage ACD concepts. Industry 

experts have not fully accepted the DOD’s definition of ACD because of their own 

desires to mold the capability to non-defense purposes, despite the absence of legal 

authorities, protections, and obligations of sovereign nations. Emilio Iasiello, chief of 

threat analysis at iSIGHT Partners, argues there is no internationally agreed-upon 

definition of ACD.97 A review of literature across academia, legal experts, industry 

experts, and government officials shows key characteristics of ACD applicable to private 

use. These characteristics are: 

• is triggered by a malicious attack, 

• involves knowledge of the defenders environment, 

• provides mechanism for “near” real-time response, and 

• provides mechanisms to respond, both internally and externally, to the 
defender’s network.98 

ACD techniques are built upon use of deception, disinformation, misdirection, delaying, 

deflection, attribution, degradation, and destruction.99 Many of these have been 

researched and implemented into various tools available for private use. Within a 

defended network, available ACD tools include honeypots, honey patching, honeynets, 

honey files, decoys, tar pits, beacons, and traffic deflection. External to a defended 

network, the tools include deployment of remote access Trojans and other one-off 

hacking techniques to obtain information from, and possibly unauthorized access to, 

attacking systems.100 

Significant challenges constrain private use of ACD techniques. Accurate 

identification of attackers remains an analytical art, complicating the decision of which 
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external systems to exploit when going after an attacker.101 Further, the underlying back-

and-forth between attackers and defenders requires constant innovation. Tools quickly 

become obsolete, requiring frequent and expensive reengineering. Additionally, lack of 

concise cyber laws and precedence has prevented consensus on the legality of its private 

use. The uncertainty of legality is expressed as opinion on the likelihood of criminal or 

civil liability for those engaged in ACD, with low risk for use of techniques within a 

defended network and high risk for use of techniques external to a defended network.102 

Further, the use of ACD techniques may result in individuals running afoul of 

professional ethics codes within the legal and cybersecurity fields.103 Finally, external 

ACD techniques have a high likelihood of infringing upon the sovereign rights of nations, 

and may trigger geopolitical escalations with unintended consequences.104 
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IV. AUTOMATED DEFENSE OF CYBER SYSTEMS 

[The next innovation regarding cybersecurity is] automating cybersecurity 
capabilities. Our networks and data are subject to continuous cyberattacks 
from a wide range of threats. Effective defenses against these adversaries 
include real-time, complex synchronization of thousands of endpoints and 
networks, multiple organizational processes, and the selection, de-
confliction, and execution of complex response actions within and across 
diverse domains. 

—Curt Dukes, NSA/IAD Director 

 

As previously argued, today’s cybersecurity models and efforts will not be 

sufficient to address tomorrow’s exponentially larger networks and corresponding 

vulnerabilities. The rate at which critical infrastructure, corporations, and citizens 

integrate IoT devices will upend current practices. However, it is possible to take today’s 

concepts to build a more effective, scalable cybersecurity model. It requires tying 

cybersecurity to the same exponential growth curve as the technology it is bound to 

protect. This means responding to threats in cyber time, not human time, while avoiding 

offensive tools that may antagonize sovereign nations. Innovations are occurring that will 

propel automated solutions forward, and will come together into what is put suggested in 

this paper as automated defense of cyber systems (ADCS). 

A. DEFINING ADCS 

1. Automation 

The definition of automation is fairly straightforward: “the technique, method, or 

system of operating or controlling a process by highly automatic (having the capability of 

starting, operating, moving, etc., independently) means, as by electronic devices, 

reducing human intervention to a minimum.”105 When applied to Director Curt Dukes’ 

quote that opened this chapter, automating cyber defenses envisions protecting the 

networks and data from continuous attacks. Furthermore, the endpoints within networks 
                                                 

105 “Automation,” Dictionary.com, accessed August 1, 2016, 
http://www.dictionary.com/browse/automation. 
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matter—the individual devices are interconnected with each other, and these devices and 

networks support a variety of business operations critical for achieving an organization’s 

mission. Automation includes assessing impact of deploying available defensive options 

on both the attacker and the defended network.  

The timeframe for automation is “real-time,” which is often quoted by 

cybersecurity experts. Don Adams, vice president and chief technology officer for 

TIBCO Software Federal, described a need to manage “real-time events from distributed 

sensors, agents and other processing components.”106 An analogous term is “cyber-

relevant time.”107 The use of real and cyber-relevant time connotes that actions and 

reactions in cyberspace are the result of computation using algorithms, rather than 

application of human logic and judgement.108 It does not imply instantaneous or 

immediate action. It is the amount of time necessary, which will vary depending upon an 

organization’s mission, to support resiliency and smooth degradation such that defenders 

retain operational control over the defended devices and network. 

Finally, the human is not completely removed from cybersecurity. Rather, 

automation is used to build a baseline of system-managed knowledge for use by 

cybersecurity professionals. The baseline of knowledge includes an understanding of the 

data traversing a network, devices and networks to be protected, knowledge of how 

business processes support business operations, means to measure and assess business 

operations, knowledge of what defensive options are available, and an ability to assess 

probable impact of defensive options on business operations. 

2. ADCS Core Components 

Future cybersecurity models must benefit from anticipated advancements in 

computational power and algorithms for the purpose of abstracting network and device 

complexity. Therefore, ADCS will build on top of advances in today’s models and efforts 
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that take advantage of enhanced structuring of information that currently feed human-

driven processes. This will free cybersecurity professionals from the minutia of 

individual device management, allowing them to instead focus on supporting 

organizational objectives and resolving unanticipated cyber crises. 

B. SENSORS 

We have five senses—sight, hearing, taste, smell, and touch—to help us 

comprehend the world. ADCS will have senses as well, except many more than a person. 

Some of the ADCS senses will correlate to those possessed by humans while others will 

capture measurements relevant to cyber systems, such as network data flow. Others still 

will be geared toward measuring the operational mission of the network. 

All of these senses will contribute to automated decision making. The importance 

of reading sensors and responding to them within automated cybersecurity systems was 

recognized in 2004 when two Institute of Electrical and Electronics Engineers (IEEE) 

members prototyped an autonomic defensive system, using the sensors to “repeatedly 

report on the presence or absence of normal or intrusive activity.”109 

1. The Sensing Device 

Future sensors will have greater capability and autonomy than today’s devices, 

enabled through miniaturization, self-power, and wireless communication. This will 

allow for their use in almost any conceivable environment enhanced through data 

processing. 

Miniaturization is the ultimate win-win for electronics, as it allows for increased 

computational capacity at reduced power consumption. In the book One-Dimensional 

Metals, Sigmar Roth and David Carroll projected the minimum feature size of electronic 

components using a Moore plot. Examining transistor density, the book traced 

miniaturization from vacuum electronics, through solid-state, microelectronics, to VLSI 

(very large scale integration). The authors’ projection culminates in the achievement of 

                                                 
109 O. Patrick Kreidl and Tiffany M. Frazier, “Feedback Control Applied to Survivability: A Host-

Based Autonomic Defense System,” IEEE transactions on Reliability 53, no. 1 (2004): 149. 



 44 

molecular electronics around the year 2020. The book also describes the technological 

challenges toward transitioning to the molecular level. While the realization of molecular 

transistors may not occur by 2020, the authors draw a plausible path for continued 

improvements.110 

Dependence on reliable and continuous power further limits mass deployment of 

sensors. Unfortunately, the pace of battery development is frequently sighted as lagging 

the timescale described in Moore’s Law.111 Rather than relying on a slower-moving 

technology requiring recharge, advancements are being made in self-powered devices. In 

research conducted in 2003, two prototype systems were successfully developed using 

vibration-based magnetic coil generators, although the prototypes were large and 

clunky.112 More recent work conducted in China prototyped self-powered smart skin, 

capable of detecting contact location and velocity, and sensitive enough to “perceive the 

perturbation of a honey bee,” all on a 1.9 mm deep device.113 

A research group from the Georgia Institute of Technology’s School of Material 

Science described its wireless nanotechnology goal as “aiming at building a self-powered 

system that operates independently, sustainably, and wirelessly by itself without using a 

battery.”114 Their tests demonstrated a device capable of transmitting within a range of 

five to ten feet, with signals detectable using commercial radios.115 Range limitations can 

be overcome through current protocols, such as Bluetooth, allowing signal retransmission 

over longer distances.116 
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2. Sensor Arrays 

Equally important to individual sensor development is the ability for a large 

number of sensors to work in aggregate to develop high-resolution information. A group 

from the University of Texas Electrical Engineering Department demonstrated a 

massively-deployable architecture of sensor nodes, each capable of up to thirty-one 

distinct sensing capabilities. Similar to the wireless capabilities described in the previous 

section, the sensor array utilized low-power Bluetooth to wirelessly transmit to a base 

station, with the data transmitted over the internet and stored in the cloud.117 

An advantage of large sensor arrays is that they are fault tolerant when one sensor 

fails. The readings of a particular sensor can be assessed relative to its neighbors to come 

to a judgment about the sensor’s reliability. A 2006 research project utilized evolvable 

hardware (EHW), which applies genetic algorithms to programmable portions of the 

hardware. In the project, EHW was used to allow for autonomous reprogramming once a 

sensor fault was detected. This allowed for the removal of a node without human 

intervention, and without significantly detracting from measurement accuracy.118 

3. Data Collection and Aggregation 

The mass promulgation of sensors will inevitably result in data stores that are in 

orders of magnitude larger than they are today. Research on data from ambient assisted 

living communication (AAL) described this as a threefold problem: volume—large and/

or computationally heavy data sets; velocity—the rate at which data flow through the 

data store; and variety—the range of types and sources of data.119 The solution proposed 

in the research is the use of metric space–based big data abstraction for computationally 
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simpler analysis. The key is in engineering algorithms in which resulting data patterns 

could be recognized and understood.120 

C. AUTONOMIC COMPUTING 

When applied to cybersecurity, the goal of autonomic computing is development 

of technology to manage technology, abstracting a system’s complexity while ensuring 

optimal performance.121 IBM released a blueprint for a system and described four key 

attributes for autonomic computing.: self-configuring—dynamic adaptation to the 

environment; self-healing—discover, diagnose, and react to disruptions; self-

optimizing—monitor and tune performance; and self-protecting—anticipate, detect, and 

counter all source threats.122 A potential future for these four attributes is described in the 

following sections. 

1. Self-Configuring, Healing, and Optimizing 

In their review of over 1,100 articles about autonomic systems, Muccini, Sharaf, 

and Weyns found that the top priorities of autonomic research are efficiency/performance 

(i.e., self-optimizing), flexibility and reliability (i.e., self-healing), and configurability 

(i.e., self-configuring). Proposed autonomic solutions existed across the TCP/IP stack, 

with most existing at the application layer. A drawback identified by the review was that 

relatively few articles identified cybersecurity as the primary focus.123 

In prototyping an autonomic architecture, Kreidl and Frazier defined four key 

architectural elements: the information system (i.e., host or device) to be protected, a set 

of sensors, a set of actuators capable of responding with various defensive mechanisms, 
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and a controller to analyze and coordinate the sensors and actuators toward host 

survivability.124 

Autonomic computing extends beyond the device, and must be able to handle 

increases in size, complexity, and topography of a network. It begins with an automated 

understanding of connected devices, their capabilities, and the communication channels 

that make up the whole. In a 2014 study of industrial control network awareness, 

Vollmer, Manic, and Linda developed a discovery mechanism they called Network Entity 

Identification (NEI). It used sensors to passively monitor network traffic for the purpose 

of identifying connected devices as well as correlating the logical and physical device 

addresses.125 A more comprehensive solution will discover and catalog device 

capabilities, correlating them to business functions served by a network. With this in 

place, cybersecurity professionals will no longer manage the minutia of securing 

individual devices. 

2. Self-Protecting 

The defining characteristics of a self-protecting device, as suggested by Inderpreet 

Chopra in his dissertation, are that it can “proactively detect and identify hostile behavior 

and can take autonomous actions to defend itself.”126 Chopra goes on to define a 

classification for a grid security system, identifying a hierarchy of attacks across the 

system, management, and network layers. He then describes various available techniques 

and algorithms, and proposes methods to detect and respond to such attacks across the 

system, management, and network levels.127 

In 2016, four researchers at the University of Toronto published an article on 

Talos, a system designed to rapidly respond to coding flaws. A common line of threat for 
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systems is the pre-patch window of vulnerability where a specific vulnerability is 

identified and made public, but no fix is available.128 What the University of Toronto 

researchers tested was a mechanism to trigger preexisting error-handling within 

vulnerable sections of code, thereby avoiding its execution and potential exploitation.129 

The mechanism demonstrated an ability to safely neutralize three-quarters of all potential 

vulnerabilities tested.130 While this did result in loss of functionality, in most cases it was 

in non-critical portions of the software and did not prevent the product from performing 

its primary purpose.131 When combined with a sensing network, this technique could be 

integrated and deployed as one of multiple options to mitigate a threat attempting to 

manifest itself on a device. 

An example of a self-protection mechanism beyond a single device is the 

automated creation of internal decoys and disinformation in response to a cyber attack. 

The idea is that an autonomic system could handle the complexity of extending the 

defended network by creating realistic and compartmentalized segments. The intent 

would be to distract, confuse, and mitigate the efforts of the attacker. Jonathan Voris, Jill 

Jermyn, Nathanial Boggs, and Salvatore Stolfo prototyped a technique to automate the 

deployment of decoy files within a network, verifying that the system was as effective as 

manual generation and placement of such files.132 In the study cited in the previous 

section, Vollmer, Manic, and Linda integrated a dynamic honeypot defense and 

demonstrated a capability to “automatically deploy deceptive virtual network entities” for 

the purpose of luring those conducting a cyber attack.133 
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D. ARTIFICIAL INTELLIGENCE 

Tim Urban, a prolific writer on the topic of AI, divides AI’s evolution into three 

tiers. The first is Artificial Narrow Intelligence (ANI), described as specialization in one 

area, but not extendable or applicable in other domains (like asking a self-driving car to 

play chess, which it would never learn to do). The second, Artificial General Intelligence 

(AGI), possesses a capability on par with human intelligence; it can be given any task, 

and incorporates the ability to reason, abstract, and learn from experience. The third, 

Artificial Superintelligence, is the creation of an intellect superior to humans, and is the 

type of AI that generates the greatest speculation on existential impact, positive or 

negative.134 

This thesis focuses on potential solutions in the ANI space. ANI is the area of AI 

where innovations are already available today, and where rapid growth over the next ten 

to fifteen years is most likely to occur. 

1. Machine Learning 

Machine learning is a sub-domain of AI that automates the process of “getting 

computers to act without being programmed,” and incorporates training techniques both 

supervised and unsupervised by humans.135 The technology has been applied to problem 

solving in a number of areas, a few of which include face detection, identification of 

topics within articles, and medical diagnosis.136 

Northrup Grumman developed a system called BluVector, designed to utilize 

machine learning to better detect and classify malicious software in real-time operating in 

a network.137 An independent test of BluVector’s efficacy, conducted by Miercom, 

achieved malware detection rates between 99 and 100 percent across multiple tests, and 
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was complementary to BluVector’s logging system and how it can be used in threat 

remediation.138 Crowdstrike has introduced a similar system called Falcon Host, a 

product with its own machine learning algorithms.139 A challenge for unsupervised 

machine learning is false-positive rate, which rises with detection rate and is a source of 

great frustration to defenders by mixing real attacks with suspect but innocuous events. 

To address this, a group from MIT developed the AI2 platform, which combines 

supervised and unsupervised machine learning techniques. Analyzing 3.6 billion log 

lines, the system was able to achieve a cyber attack detection rate of greater than 86 

percent while reducing the rate of false positives by 500 percent.140 

2. Situational Awareness 

One of the challenges in today’s cyberspace environment is building situational 

awareness, which Endsley describes as “the perception of the elements in the 

environment within a volume of time and space, the comprehension of their meaning and 

the projection of the status in the near future.”141 MITRE goes on to describe three sub-

domains of cyber situational awareness: network, threat, and mission awareness. These in 

turn feed into providing a tactical, operational, and strategic outlook for decision 

making.142 

Because of the overwhelming amount of information to consider, the problem 

space requires computational assistance to collate and synthesize in a timely manner. In a 

2014 literature review of cyber situational awareness, Franke and Brynielsson identified 

102 articles dedicated to building cyber situational awareness. Of those, they found 45 
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with an empirical contribution, described as having “results based on data from 

experiments or archival studies, but also e.g., mathematical proofs, results from 

simulations, informed reasoning about computational complexity etc.”143 Further, 33 of 

those articles contained ideas for design and implementation. This demonstrates potential 

for significant advancement of ANI situational awareness tools for network defense. 

3. Dealing with Uncertainty 

As inter- and intra-network complexity increases, wicked problems will present 

themselves with greater frequency. A cyber attack and corresponding defensive 

cybersecurity response, whether performed manually or automated, may upset the 

homeostatic state of a network. ADCS needs to measure and assess the effects of attacker 

and defender actions, which include actual and relative changes in network status and 

their impact on supported business processes.   

In a 2015 article, Zoubin Chahramani from the University of Cambridge 

described a framework utilizing probabilistic modeling applied to machine learning, with 

a goal of allowing computers to learn from observing data made available to them. 

However, data by nature is incomplete, either due to a lack of collection or granularity. 

Machine learning relies on making assumptions, or inferences, about unobserved data 

from the observed data, and the collection of assumptions is represented in a model. 

Uncertainty is the expression of that model’s inability to accurately predict unobserved 

data. Probabilistic modeling captures and accounts for all uncertainty within a model 

using probabilistic distributions, and “learns” through the use of Bayesian learning to 

adjust the distribution after observing new data.144 

4. Human Analogy 

An analogy of ADCS to human biology is made to illustrate the relationship of 

the ADCS components to the desired cybersecurity capability. The analogy has been 
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frequently used in the literature to address complexity and visualize solutions. In a 2009 

IEEE article, the autonomous nervous system was used as a model to build a 

cybersecurity architecture. It accounted for sympathetic (unconscious) and 

parasympathetic (conscious) actions, which sometimes conflict with each other but are 

complementary toward achieving homeostasis in protecting the body.145 For example, the 

body unconsciously breathes, but breathing can be controlled when it can be harmful, 

such as when one is underwater or in a smoke-filled room. 

In ADCS, sympathetic actions are automated while parasympathetic actions are 

controlled by cybersecurity professionals. The ADCS components make up the lower- 

and higher-order elements of a complex system, much like nerves and organs make up 

the body. ADCS is self-contained in that the defensive mechanisms are focused internal 

to the defended network. The concept of an internally defended network was introduced 

by Dr. Kristopher Hall when he built and tested Rx, a cyber security system to mitigate 

threats from internet worms. Rx looked at cyber security threats as a disease, and used 

concepts from biological epidemiology to internally treat them.146 
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V. FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS 

A. FINDINGS 

This thesis began by considering if automated cyber defense promises to be more 

effective than current models in coping with anticipated exponential growth of IoT 

devices and vulnerabilities, and subsequently examined relevant literature. An affirmative 

response was validated through the examination of the present and future cybersecurity 

landscape. 

The IoT wave began in earnest in the early part of the current decade, and there is 

no reason to believe it will abate from exponential growth. Additionally, the internet has 

shown to be inherently insecure since its inception, with new vulnerabilities introduced 

and identified on a regular basis. Terrorism, nation states, and organized crime will 

continue to be the three primary malicious actors, and the level of threat from them may 

even grow as the cost to conduct offensive cyber operations drops while the cost to 

defend increases. Consequently, there will be a greater surface area with vulnerabilities 

exploitable by those motivated to attack. 

Defensive models have evolved since the inception of the internet, beginning with 

a simplistic exterior network defense, progressing to layered, ever vigilant, and 

intelligence driven. Both industry and government have adapted to increasingly complex 

networks, setting frameworks for establishing defensive efforts, exchanging attack 

intelligence, and moving toward partial automation. Broad use of external/offensive 

cyber operations is not viable, particularly by private industry, as it has high business and 

professional risks, introduces the potential for criminal liability, and may lead to 

unintended escalation between nation states. 
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B. CONCLUSIONS 

Greater automation is viewed as the future of cyber defense. Numerous 

technological advantages are on the near-to-mid horizon to help perform many 

cybersecurity functions. They will take advantage of the same exponential growth curve 

as seen in the introduction of IoT devices, thereby allowing a slowly growing number of 

cybersecurity professionals to defend vastly larger and more complex networks. 

A vast decrease in price with corresponding increase in computational power will 

be the driving force behind mass deployment of internet-enabled sensors. This will make 

a sea of data available for use by automated cyber defensive systems that are capable of 

responding at both the device and network level. These sensors will feed into AI systems 

tuned to maximize the performance of the network while handling configuration, healing, 

optimization, and protection activities under most circumstances. Cybersecurity 

professionals will remain involved by monitoring and tuning AI systems, and to step in 

when circumstances arise that cannot be handled by automated systems. The automation 

and abstraction provided by ADCS will allow private industry to limit the number of 

cybersecurity professionals they will need to hire. The skillset and experience required by 

cybersecurity professionals will increase, as they will be expected to understand 

defensive AI systems as well as modeling of business functions supported by networks.   

C. RECOMMENDATIONS 

The realization of ADCS will not take place overnight. It is much more likely it 

will arrive piecemeal, with incremental improvements to the sensor, autonomic, and AI 

components.  

National policy should continue to encourage investment in the broad use of 

defensive cyber automation. Such automation should be limited to activities contained 

within a defender’s network, and should not include offensive cyber measures in which 

the CIA triad is compromised without authorization. The reasons are threefold. First, 

offensive cyber measures introduce unacceptable risk to the businesses and individuals 

conducting the offensive operations. Second, the actions performed will likely be 

transnational, may not reflect the will or interests of the United States, and will not have 
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the same accountability to the governed as cyber actions initiated by the government. 

Third, automated cyber attacks beyond human control, even for defensive purposes, may 

result in magnified real-world consequences that are rapidly escalated and unintended. 

When considering incremental improvements from today’s cyber security 

environment, a logical first step is to provide the advantages of CDM to private industry. 

While the U.S. government provides some incentive through mandating adoption and use 

by executive agencies, private industry represents the greatest source of funding available 

to encourage more research and faster product development. Further, private industry’s 

use and contribution to cyber vulnerability and threat information sharing is critical, and 

barriers to participation in the Automated Indicator Sharing program should be 

aggressively removed, whether through incentives, regulatory control, or mitigation of 

civil liability. 

Finally, organizations should develop an investment strategy in building sensor 

networks that support operations. This encompasses evaluation and iteration of data 

useful for collection. Likewise, they should invest in development and maturation of 

computational models that capture business functions. Rather than trying to model entire 

systems, such development should be incremental, focusing on the most critical business 

processes, data sets, or network segments. This, in turn, will feed into improvements in 

automation. 

D. FUTURE RESEARCH 

Future areas for research toward ADCS realization are plentiful. Unexplored, but 

implied and interrelated to the benefits of ADCS, are the mitigation of non-malicious 

cyber disruptions, which can include such things as hardware, software, and human 

operator failures. Benefits of system reliability and resiliency may prove to be far greater 

for non-malicious incidents than for malicious ones. 

While the paper evaluated the vulnerabilities and threats faced by cyber networks 

through the introduction of vulnerabilities by IoT devices, the complexity of cyber-

physical systems (CPS) and their impact on social networks was not explored. It is highly 

likely that future networks will support CPS, and successful cyber attacks may 
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increasingly cause non-virtual effects experienced by more people. This may alter the 

consequence piece of the risk calculus, and potentially support more urgent action on 

cyber defense. 

This thesis did not consider the use of non-cyber deterrents to malicious activity. 

Anecdotal observations from recent legal actions by the U.S. Department of Justice 

against PRC and Iranian cyber actors suggest an evolution of state-sponsored activities. A 

targeted study of state behavior pre- and post-indictment would be of interest toward 

understanding the evolution of threat actor motivations. The indictments may also be 

influencing how states view norms of cyber behavior, which have yet to crystalize into 

formal agreements of treaties. 

Finally, this thesis speculated on only a few technologies that may shape the 

cybersecurity environment. There are undoubtedly more techniques and algorithms 

beyond sensors, autonomics, and AI that will emerge as viable cybersecurity solutions 

over the next ten to fifteen years. 
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