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ABSTRACT

A method for predicting the accuracy of unguided artillery projectiles is presented 

in this thesis. The goal was to develop a standalone program that would estimate 

accuracy without the need for a large database of weapon trajectory data. The presented 

method uses a simplified version of the modified point mass trajectory model and error 

computation models to predict error metrics that are particularly useful in predicting 

damage effects on various types of targets using the Joint Weaponeering System (JWS).

The developed program is coded in Visual Basic, and the error metrics can typically be 

computed in less than 30 seconds for most ranges, in the computation precision specified 

in this thesis.

The program was verified by comparing it against the FT 155-AM-02 firing table 

for the M107(HE) 155mm artillery projectile. The verification results demonstrate that 

the developed trajectory model closely matches the basic trajectory data to within 2% and 

ballistic partials to within 7% for most ranges of interest. Accuracy metrics derived from 

the ballistic partials generated from the developed program are within 10% of those 

derived from the firing table’s ballistic partials for typical firing ranges. The model is 

able to take into account wind effects and varying levels of meteorological data staleness.

The developed program is named the Indirect Fire Delivery Accuracy Program (IFDAP), 

and it can be used to predict accuracies for any unguided projectile given the required 

aerodynamic coefficients, physical properties, and error budgets.
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1

I. INTRODUCTION

A. BACKGROUND

Artillery is a non-line-of-sight class of large caliber military weapons designed 

to propel large projectiles over long distances to cause significant damage to the 

adversary. Early employment of artillery focused on creating mass destruction effects,

causing severe casualties, breeching fortifications, and decreasing the morale of the 

adversary. When timed correctly, the after effects of artillery can enable friendly

forces to enter the battlefield with a significant advantage and greatly reduce 

casualties.

The evolution of artillery between World War I and World War II was focused 

on building bigger and heavier artillery, propelling larger projectiles over longer 

distances. Given that artillery projectiles lost most of their momentum in the initial 

phase of flight and that the velocity of the projectiles were limited to roughly the 

speed of sound [1], these weapons were inefficient, requiring huge amounts of 

manpower and propellants. The Paris Gun, a German long-range siege artillery gun

built during World War I to bombard Paris, was 34 m long, with a bore diameter of 

211 mm, and weighed 256 tons [2]. The gun was able to launch a shell 120 Km, but 

due to its weight and sheer size, it had to be transported on rails and required a crew 

of 80 men [2]. The Paris Gun was by no means a successful military weapon. The 

payload was small, barrel replacement was frequent, and it was highly inaccurate,

making it appropriate only for city-sized targets. The labor-intensive weapon could 

only be fired at a maximum rate of 20 rounds / day, after which, re-boring was 

required [3]. Throughout its life, a mere 367 rounds were fired, of which, only 183 

rounds landed within the city boundaries [3]. Its primary purpose was more as a

psychological weapon than a military weapon to destroy Paris.

Modern artillery has evolved to reduce manpower requirements, and to 

increase automation, accuracy and mission effectiveness. In the past, the typical crew 

size was about 11 men to operate a M114 155mm howitzer. Today, the M109A6 

Paladin Self-Propelled Howitzer needs a crew of only three, and if needed, it can

execute a mission with a crew of only one. The increased automation eliminates the 

need to have a separate vehicle to tow the gun and for the crew to manually deploy 
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the gun. This reduces the time needed to deploy a gun as well as the susceptibility to 

enemy counter-fire or ambush from special forces. The weight of the guns has also 

been reduced to enable air transportation, increasing their capability to support a great 

array of military operations. 

Modern-day artillery is also employed strategically to strike high-value or 

high-payoff targets to shape the battlefield for maneuver forces or to achieve a 

strategic outcome. This process is known as targeting, and its proper employment is 

crucial to the outcome of the overall battle.

Today’s battlespace environment also presents more challenges than in the 

past. Greater pressure from the media and targeting of civilians decreases confidence 

in the military and has changed the modern battlespace into one in which collateral 

damage is of paramount concern. This change has expanded the role of the artillery 

from delivering large area effects to performing surgical precision strikes. As 

technology has advanced, global positioning system (GPS) and internal navigation 

system (INS) devices have been incorporated to guide projectiles and to provide 

consistent and highly accurate strikes, minimizing collateral damage. While effective, 

these high-tech projectiles are very costly and the ability to fire unguided projectiles 

accurately remains an important military requirement.

The highly complex statistical ballistic problem of accurately predicting the 

trajectory of an artillery projectile has been studied for decades. It is desirable for 

commanders on the ground to have prior knowledge of the probability of kill of a 

given target to aid decision making. This is especially true for targeting missions, 

where the predictability of the outcome is crucial. Furthermore, in an indirect fire 

attack, the element of surprise is the most important factor in determining the extent

of casualties. Consequently, it is desirable for first and subsequent rounds to land on 

target. Various types of firing techniques have been developed to enhance the 

accuracy of artillery fire. These are briefly described in the next section.

1. Types of Artillery Fire 

There are various methods of delivery an artillery projectile onto a target. 

These are mainly classified as unadjusted/predicted fire or adjusted fire. Unadjusted 

fire employs all the knowledge that can be obtained without firing a projectile to best 
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predict the corrections needed to bring the first projectile as near to the target as 

possible. These corrections typically include muzzle velocity information for that 

particular gun, the gun and target location and altitude, and the latest meteorological 

message applied to a nominal firing solution obtained from a firing table. However, 

the technique of unadjusted firing is unable to account for several inherent errors that 

cannot be known beforehand, such as the variation in propellant mass for that 

particular charge lot, the variation in projectile mass, gun and target location errors, 

and gun crew aiming errors [4].

In adjusted fire, these errors can be compensated for because one or several 

rounds are fired before the intended mission to observe and adjust the impact point. 

The technique is mainly classified into two groups [4]: observer adjusted fire and 

registration transfer fire. In observer adjusted fire, a forward observer (FO) is inserted 

to a location where he is able to observe the target. The observer records the impact 

points of all projectiles and transmits the corrections back to the Fire Direction Center 

to adjust subsequent rounds to land on target. Although this technique is more 

accurate, the insertion of an FO into enemy territory presents a higher risk and, by 

firing inaccurate projectiles into enemy territory, the element of surprise is lost. In 

registration transfer fire, several rounds are fired onto registration points where 

impact data is collected, and errors are eventually quantified into two parameters 

known as position line correction (PLC) and position velocity error (PVE). These 

parameters are used in adjusted fire techniques such as MET+VE.

Various techniques of delivery will have differing degrees of accuracy 

associated with them. In general, adjusted fire techniques are more accurate because 

they take into account errors that could not be quantified using unadjusted fire 

techniques.

2. Errors Associated with Artillery Firing

There are three main types of errors associated with weapon delivery [4]:

1. A fixed bias error

2. An error that varies between occasions, called mean point of impact 
(MPI) error

3. An error that varies between rounds fired, called precision error
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A fixed bias error is a systematic error that is consistently present in every 

firing. For example, an error in the calibration of the aiming sight may cause the 

howitzer to be laid five milliradians off. This error may be corrected by a shift in the 

azimuth of the pointing direction. The MPI error is an overall quantity that accounts

for several factors that vary between occasions of firing. An independent occasion in 

this case refers to whether a re-aiming on the target was done [4]. Some examples that 

would pertain to different occasions are: a displacement to a new location, traversing 

back to the center of arc (COA) and re-aiming, or firing at the same occasion on a 

different day. The precision error is a random error that accounts for the distribution 

in impact points from the mean point of impact in a single occasion (no re-aiming). 

This random error can be attributed to slight variations in the quantity of propellant 

between charges, or slight changes in wind speed and direction or air density. 

An illustrative example of MPI and precision errors is shown in Figure 1. In 

this example, the gun is aiming at a target located in the origin of the coordinate 

frame. The gun fires four rounds consecutively without re-aiming and the impact 

points are as shown. An MPI can be computed from the four impact points. The 

distance from the target to the MPI is the MPI error, and the distance from the MPI to 

an impact point is the precision error.

Figure 1. Precision and MPI Errors in a Single Occasion. Adapted from [4].

Actual target
locationError in mean 

point of impact 
(MPI Error)

Round-to-round dispersion
(Precision Error)
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It is important to treat precision and MPI errors separately [5]. While it is 

possible to gather all data from decades of firing and compute a circular error 

probable (CEP), this number is too general and does not adequately describe the 

distribution of impact points associated with a unique set of conditions and technique 

of fire in a particular fire mission. 

B. PURPOSE

The primary objective of the research is to develop trajectory models to 

estimate the precision of conventional ground launched, unguided ballistic projectiles 

using error computation models. Results of this research are intended to enable real 

time (<30 sec) evaluation of accuracy at a given range through the use of ballistic 

partials together with statistical variation of various ballistic factors, known as an 

error budget, determined from years of documented live firing data. Further 

explanation of ballistic partials and error budgets is presented in Chapter IV.

C. PROBLEM DESCRIPTION AND PROPOSED SOLUTION

There are three main components needed for a program to predict the accuracy 

of an unguided weapon. First, a trajectory model would take inputs such as the initial 

velocity of a projectile and the angle in which the projectile was fired, known as the 

quadrant elevation (QE), and calculate outputs such as range, time of flight, and other 

impact conditions. This is presented in Chapter III. Second, ballistic partials need to 

be calculated by running the trajectory model with perturbed input variables. Last, 

mathematical error models are used to quantify the accuracy of a given set of firing 

conditions using the relevant ballistic partials and error budgets. These are further 

explained in Chapter IV.

The main effort of the research is to develop external ballistic trajectory 

models of an artillery projectile to obtain results as close to real-world data as 

possible. Two trajectory models are developed with varying degrees of fidelity, taking

into consideration some or all of the following factors affecting projectile flight: 

quadrant elevation, air density, wind, out of plane motion due to rotation of projectile, 

drag forces, gravitational forces, muzzle velocity, and position errors. The main 

projectile of interest is the Artillery 155mm M107 (High Explosive) round.
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Existing high fidelity 6 Degrees of Freedom (DOF) models are able to predict

the trajectory of an unguided ballistic projectile to high degree of accuracy, but these

models uses complex equations that cannot be solved fast enough for strike planning 

purposes. This research seeks to develop approximate models using simple 

mathematical equations to enable a quick estimation of the accuracy.

D. METHODOLOGY

The following highlights the approach to this research:

1. Survey the literature on the subject. This is presented as background 
information and the fundamental principles of the subject of ballistics 
in this introduction and in Chapter II. Literature references are also 
used to make assumptions as discussed throughout the thesis.

2. Develop zero drag, point mass trajectory model (using MATLAB). 
This is the simplest of trajectory models and serves as an introduction 
for non-experts.

3. Develop modified point mass model (using MATLAB). This model is 
a high fidelity trajectory model that will provide good estimation of 
real-world data found in the artillery FT 155-AM-02 firing table. The 
purpose of artillery firing tables is further explained in Chapter III.

4. Compare trajectory model outputs with data from FT 155-AM-02.

5. Code the MATLAB model in Visual Basic and develop the QE finder 
model.

6. Generate ballistic partials, the variables required to compute probable 
errors (PE) and MPI errors using the models.

7. Compute accuracy metrics using error models.

E. OUTLINE OF THESIS

Chapter I provides an introduction to artillery and briefly describes the types 

of artillery fire techniques and errors associated with an artillery firing. The purpose 

of the thesis, and the main tasks accomplished, are also briefly discussed.

Chapter II discusses the ballistics involved. This chapter mainly describes the 

phenomenon and forces encountered by a projectile through the three phases of 

internal, external, and terminal ballistics, along with the describing equations that 
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quantify these forces. This chapter also provides the reader with a sufficient degree of 

understanding of projectile ballistics in order to understand the trajectory models.

Chapter III presents the MATLAB trajectory models and the kinematic and 

mathematical equations used to derive the presented results. A comparison with FT 

155-AM-02 is also presented.

Chapter IV presents the two error models, namely precision and MPI error 

models, used to derive accuracy statistics. 

Chapter V presents the implementation computation flow using the models in 

Chapters III and IV coded in MATLAB with an example case study and in Microsoft 

Excel Visual Basic for operational usage.

Chapter VI validates the implemented models over a comprehensive range of 

data from FT 155-AM-02.

Chapter VII discusses various key observations made during the work of this 

thesis.

Chapter VIII concludes the thesis with some important observations.
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II. BALLISTICS

Ballistics, in a simple sense, is the engineering study of the motion of a 

projectile to achieve a desired performance. Ballistics is generally divided into three

phases: internal ballistics, which studies the propulsion; external ballistics, which

studies the flight; and terminal ballistics, which studies the detonation effects. This 

thesis focuses on quantifying the various factors in internal and external ballistics to 

provide accurate estimations on the accuracy of an artillery firing.

A. INTERNAL BALLISTICS

Internal ballistics deals with the events that take place when the projectile is in 

the barrel of the gun. In the case of a conventional artillery gun firing a non-bleeding 

projectile, all the energy that is required for the projectile to be propelled through the 

air is imparted in the barrel by igniting solid propellants known as charges. In modern

artillery platforms, the charges are molded in blocks called a Modular Artillery 

Charge System (MACS), which provides flexibility to the user in terms of varying 

muzzle velocity according to the number of charges put in place. The ignition of the 

charges produces hot and high pressure gases over a short period of time, which 

pushes the projectile through the barrel, launching it into the air.

As the projectile navigates through the barrel, the wall of the barrel serve four 

important purposes: 1) it provides directional guidance to the projectile; 2) it aligns

the axis of the projectile in a particular direction; 3) it causes the projectile to spin, 

which provides stability to during the flight; and 4) it helps to absorb the recoil [1].

The spinning of the projectile is caused by engravings, known as rifling, along the 

walls of the barrel. The spinning motion generates stability for the projectile, which is

discussed later in Chapter II-B. Rifling is analogous to a screw thread, but spread 

further apart. If you follow a rifling down the barrel, eventually it will make one full 

circle. The length of the barrel required to make one full circle, is known as twist, 

which is usually measured in terms of calibers, the unit length for the diameter of the 

projectile. The smaller the twist length, the faster the spin of the projectile. The

engravings of the rifling form lands and grooves, which are parts of the wall that are 

protruding out and cut in. The projectile has a ring called a rotating band near the rear, 

which is usually made of a soft metal such as a special copper alloy. As the projectile 
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travels through the barrel, the lands cut the rotating band, imparting spin onto the 

projectile. The friction produced causes barrel wear over time, which reduces the 

pressure built up in the chamber and reduces muzzle velocity, thus affecting the 

accuracy. Heat produced from repeated firings also expands the barrel, producing the 

same undesirable effect.

In an ideal scenario, a firing should not produce any movement in the barrel. 

However, due to the high forces involved, small movements are unavoidable. For 

instance, a long barrel gun may sag a little, but during firing, the internal pressure 

straightens the drooping gun causing a slight increase in the elevation [1]. This 

phenomenon is called a whip. The large recoil force may also cause the platform to 

move, called a hop. These movements result in the change in the initial direction of 

laying, which is called a jump. These motions are undesirable and affect the accuracy 

of the projectile.

B. EXTERNAL BALLISTICS

External ballistics deals with events that take place from the moment when the 

projectile leaves the barrel to the moment just before detonation. This may or may not 

be at impact, as further discussed in Chapter II-C2 on various fuze types. In this 

section, the various forces and phenomena that a projectile encounters and the 

equations that quantify them are presented. This is accompanied by the kinematic 

equations used to compute the trajectory, which are presented in Chapter III.

1. Drag

Suppose that a projectile is fired in a vacuum. The only force that affects the 

trajectory of the projectile is gravity, which acts approximately equally throughout the 

flight. This results in a trajectory that would be symmetrical, and the maximum 

ordinate would be at half the range. Air resistance reduces the range of the projectile 

and causes a higher angle of impact than the angle of gun elevation. As a result, the 

maximum ordinate (maximum altitude) of the projectile would be somewhere beyond 

half range, and the trajectory would not be symmetrical about the apex. Figure 2 

shows the differences in trajectory for a projectile experiencing zero drag and 

with drag.
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Figure 2. Effect of Drag on the Trajectory of a Projectile. Source: [4].

Air resistance exists in various forms. First, as the projectile travels through 

the air, it pushes aside and compresses the air in front of it. This compressed air tends 

to oppose the projectile, creating a forebody drag, which increases with velocity. 

Second, at the rear, a momentarily low pressure region is generated behind the base as 

air displaced by the body of the projectile creates a partial vacuum. This is known as 

base drag, which tends to draw the projectile toward the partial vacuum. Finally, air 

that flows around the body of the projectile generates skin friction, further reducing 

the velocity of the projectile. These three forms of air resistance vary differently with 

the velocity of the projectile. Forebody drag increases linearly up to the speed of 

sound, beyond which, forebody drag increases substantially with increasing velocity. 

Base and spin drag tend to level off as the velocity of the projectile approaches 

Mach 1 (Figure 3).

height

range

zero drag

with drag
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Figure 3. Variations of Various Forms of Resistance with Projectile 
Velocity. Source: [4].

The total drag force, Fd, acts in the direction directly opposite to the velocity 

vector (Figure 4) and is a function of projectile velocity relative to air and the density 

of air, described by the following equation:

( 1 )

where S is the reference surface area,

Cd is drag force coefficient,

is the density of air, and

V is the projectile total velocity

Figure 4. Direction of Total Drag Force Acting on a Projectile in Flight
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2. Stability

The stability of a projectile is determined by the position of its center of 

gravity (CG) relative to its center of pressure (CP). The CP is an imaginary point 

along the axis of the projectile such that the sum of all aerodynamic moments is zero, 

whereas the CG is a point along the same axis such that the moments caused by its 

own weight sum to zero. For a projectile to be stable, the CP must be behind the CG 

(Figure 5). Otherwise, the projectile will tumble forward.

Figure 5. Stable (left) and Unstable (right) Projectiles. Source: [4].

The ogive-shaped nose of an artillery projectile that is critical for reducing 

forebody drag will always result in the location of the CG behind the CP, hence 

causing an unstable flight. Therefore, some means of stabilization is necessary. In 

general, a projectile may be stabilized by fins or by spinning the projectile. Fins 

provide additional aerodynamic moments at the aft of the projectile such that the 

resultant CP is shifted to the rear. These fins can also steer the projectile during flight 

to the trajectory such that the projectile falls accurately on target. While effective, fins 

are delicate components. The ignition of charges in the barrel chamber is explosive in 

nature and imparts setback accelerations in excess of 15,000Gs [1]. Fins designed to 

sustain such high forces can be expensive to manufacture. Since artillery howitzers 

are usually employed for mass effects purposes where tens of projectiles are fired in a 

single mission, spin stabilization is the more economical option.

3. Lift (Out of Plane Motion)

Ideally, a projectile fired at an elevation from the ground without the presence 

of wind will only have velocity components in the vertical plane. However, if the 

projectile is spinning, an out of plane motion will occur due to gyroscopic drift. 

center of
pressure

f
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gravity
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gravity

center of
pressure



14

a. Gyroscopic Effects of Spin

A spinning projectile is governed by the gyroscopic effect, which tends to 

maintain the orientation of the axis of spin. This effect is commonly observed in 

spinning tops, which stay upright because the spin produces a resultant force acting 

along the axis of spin. For an upright spinning top, this force counteracts gravity and 

prevents the spinning top from falling over [6]. As the spinning top slows down, the 

magnitude of this force reduces until it is overcome by gravity and topples over

(Figure 6).

Figure 6. Direction of Lift and Gravitational Forces in a Spinning Top

A non-spinning projectile has a resultant overturning moment that causes the 

projectile to tumble forward. Similar to the spinning top, the spinning projectile 

produces a force that counteracts this overturning moment and maintains the 

orientation of the spinning axis (Figure 7).

Figure 7. Direction of Overturning Moment and Lift Forces in a
Spinning Projectile.
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When a disturbance is applied to a spinning top, a torque will be generated 

along the axis that the force is trying to rotate the object. This axis, and the direction 

of the torque, would be 90 degrees from the direction of the force. The torque causes 

the axis of spin to move in its direction, resulting in the precession of the top 

(Figure 8). 

Figure 8. Precession of a Spinning Top. Source: [7].

In the case of a spinning Artillery projectile, the overturning moment in the 

vertical direction causes a torque to be generated along the lateral direction (Figure 9).

This causes another torque to be generated in the vertical direction, resulting in 

precession of the projectile.

Figure 9. Initial Overturning Moment and Direction of Torque in a Spinning 
Projectile
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As the spin rate slows down due to skin friction, the precession dampens out. 

This is known as nutation (Figure 10), and the resulting trajectory would be a 

precession about its trajectory instead of a straight line (Figure 11).

Figure 10. Nutation of an Artillery Projectile. Source: [7].

Figure 11. Precession of an Artillery Projectile along its Trajectory.
Source: [7].

b. Spin Rate

Generally, the rate of spin equates to the magnitude of stability of the 

projectile. If the rate of spin is too high, the projectile can be over stabilized and land 

on its base instead of its nose (Figure 12). If the rate of spin is too low, the projectile 

will be insufficiently stable and continue to tumble over. The design of an ideal spin 

rate balances the required stability for flight while allowing for pitching motion such 
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that it may impact fuze first. The angular velocity about the projectile’s axis is 

denoted as p. The initial spin rate p0, can be evaluated from the following equation:

( 2 )

where L is the twist rate, in calibers, as explained in Chapter II-A.

Figure 12. Behavior of Projectile at Various Stability Levels. Source: [7].

c. Spin Damping Moment

As the projectile travels through the air, skin friction and moments of inertia 

reduce the spin rate over time. The deceleration in spin rate can be calculated from the

spin damping moment equation as follows [8]:

( 3 )

( 4 )

where Mp is the spin damping moment.

Perfectly Stabilized

Under Stabilized
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Since the aerodynamic coefficient Clp is always negative, the change in 

angular velocity will always be negative.

d. Yaw of Repose

A right-hand spinning projectile always starts precessing from the right. As

the spin rate decreases during the precession, the magnitude of the torque that 

displaces the projectile’s axis from the direction of fire is larger than the torque that 

returns it back. This results in a net yaw angle known as the yaw of repose. The 3D 

yaw of repose has two components: an angle of attack, and a side slip angle (Figure 

13 and Figure 14). The yaw of repose is not constant throughout the flight. It 

increases initially as the torque that initiates the precession is larger than the 

overturning moment and decreases when the torque drops below the magnitude of the 

overturning moment that destabilizes the projectile with decreasing spin rate. The yaw 

of repose has three effects on the trajectory of the projectile: 1) it produces a lateral 

force that results in a the projectile drifting right (for a right-hand spinning projectile);

2) it produces some lift, which increases range; and 3) it increases the total drag due 

to an additional yaw drag component. The additional lift is of a very small magnitude, 

and the yaw drag component is a second order term; thus, they will be omitted for the 

purposes of this thesis. The magnitude of the yaw of repose, , can be evaluated 

from [9]:

( 5 )

It is usual to define the side slip angle as the projection of the yaw of repose on the 

horizontal plane [9]:

( 6 )
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Figure 13. Gyroscopic Drift due to Yaw of Repose. Source: [10].

Figure 14. Side (left) and Plan (right) View of Yaw of Repose

e. Lateral Lift (Drift)

When a projectile’s velocity vector is not aligned with its axis of symmetry, 

there exists an angle of attack, a, and/or side slip angle, . This produces a lateral lift 

to the right, for a right-hand spinning projectile, which results in the out of plane 

motion. The lateral force, Fl,z, due to yaw of repose is estimated using the following 

equation [8]:

( 7 )

where is the normal force coefficient, and

at is the total angle of attack given by [8]:

( 8 )
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In the trajectory model developed in this thesis, it is assumed that the angle of 

attack is negligible. This assumption is justified later. Hence, Equation 8 is reduced 

to:

( 9 )

and Equation 7 becomes:

( 10 )

Note that if the normal force coefficient is used, the lift force is normalized to 

the orientation of the projectile.

4. Coriolis Effect

While the angular velocity of the Earth is the same at all latitudes, the surface 

velocity is different due to the difference in distance from the axis of spin. At the 

equator, distance is furthest from the spinning axis and therefore has a highest ground 

velocity as compared to other latitudes. This phenomenon results in a trajectory that 

would not be straight if the projectile was fired into either hemisphere from the 

equator. Since the tangential surface velocity at the equator is the highest, if the 

projectile is fired toward the northern hemisphere from the equator, it would carry 

with it a tangential surface velocity higher than the northern hemisphere. As a result, 

the projectile would move to the right faster than the surface velocity of the earth at 

the northern hemisphere, resulting in a drift to the right of the intended path. This 

would be the exact opposite if the projectile is fired into the southern hemisphere. 

This effect is depicted in Figure 15. Although it affects the trajectory of the projectile, 

for a given set of firing conditions, the Coriolis effect does not vary between 

occasions, and therefore, it does not affect accuracy. It is also the objective of the 

thesis to compare the developed trajectory model with real data, which omits the 

Coriolis effect. Coriolis force is therefore not taken into account for the purpose of 

this thesis. 
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Figure 15. Coriolis Effect on Cross-Latitude Trajectory

5. Magnus Effect

A spinning projectile at some relative velocity to the surrounding air 

experiences an additional force caused by unequal pressures on opposite sides of the 

spinning body. It is a result of viscous interaction between air and the spinning 

surface of the projectile. This effect is responsible for keeping a tennis ball in the air 

relatively longer when hit with an underspin or dropping faster when hit with a 

topspin. For instance, in Figure 16, the ball travels at some relative velocity to the air 

with a clockwise spin. Friction between the ball and air causes air to be dragged along 

in the same direction of the spin. As a result, the air just above it would have a lower 

relative velocity, and the air below it would slip by faster. The pressure above it 

would therefore be higher than the pressure below, resulting in a downward force.
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Figure 16. Flow Field around a Spinning Object where FM Is the Resulting 
Magnus Force. Source: [11].

While this effect is significant in spherical objects, Skande [11] (Figure 17)

has proven that the Magnus force for an artillery projectile is very small compared to 

drag and gravitational force and can be omitted. Hence, Magnus force is not 

considered for the purpose of this thesis. 

Figure 17. Total Work of Forces over Trajectory. Source: [11].

C. TERMINAL BALLISTICS

Terminal Ballistics deals with events that take place when the projectile 

approaches the impact point. The ability of a projectile to damage a target depends on 

a variety of reasons, briefly,
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1. Impact Angle. The impact angle of the projectile affects its ability to 
penetrate a target. If the impact angle is small, the projectile may more 
likely ricochet, and any penetration will not be as deep as a projectile 
with steeper angle of impact since a projectile with a smaller angle of 
impact must travel through more material.

2. Impact Velocity. The impact velocity affects the degree of penetration 
of the target. In general, a higher velocity projectile has more force and 
is thus able to penetrate deeper into targets. However, beyond a certain 
extent, the projectile may eventually shatter on impact.

3. Shape and Weight. A slender and streamlined projectile experiences
less drag and thus increased impact velocity and penetration. However, 
a blunt nose projectile has more strength at the tip and does not break 
as easily upon impact. A heavier projectile travels a shorter distance, 
considering all other factors constant, but provides better penetration 
depth. A balance of these factors is crucial in obtaining the desired 
terminal effect.

While it is desirable to have greater penetration depth when targeting material 

targets, the similarly configured projectile will have little effect against targets on the 

surface such as troops in the open. Thus, a variety of fuzes to produce a desired 

terminal effect have been developed. The following are several common types 

described briefly:

1. Point Detonating. A point detonating fuze is configured to detonate 
immediately upon impact. This type of fuze is effective against light 
material and uncovered personnel. 

2. Proximity Action. A proximity fuze detonates when the distance to the 
target becomes smaller than some preset value. This is usually used to 
maximize fragmentation as the primary damage mechanism and is thus 
most effective against troops in the open or light materiel targets such 
as aircraft and missiles. 

3. Delay Action. A delay fuze only detonates after some penetration, thus 
has fewer fragmentation effects than proximity or point detonating
fuzes. This type of fuze is usually effective against targets such as 
fortifications, dugouts, and buildings, where internal damage is more 
important that exterior damage. 

Intuitively, the various fuze settings can have errors associated with them. For 

example, there is a finite uncertainty in the proximity sensor of a fuze, and therefore, 

it results in a small error in range and/or deflection from the desired detonation 

coordinates. These effects are not considered in the scope of this thesis.
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III. TRAJECTORY MODELS

A. POINT MASS, ZERO DRAG TRAJECTORY MODEL - 2 DOF, 
RANGE ONLY

The two-dimensional point mass, zero drag trajectory model is the simplest 

form of trajectory simulation where the projectile is represented by a single imaginary 

point in space with no length and experiences no air resistance throughout its flight. 

Only two dimensions are modeled in this case, the horizontal (x) and vertical (y) axes. 

The reference axes are located at the projectile centroid and are in the horizontal and 

vertical directions throughout the flight, as shown in Figure 18. 

Figure 18. Reference Axes for 2D Point Mass, Zero Drag Trajectory Model. 
Source: [4].

The initial energy input to the projectile produces the initial velocity and is 

only affected by gravity throughout the flight. The horizontal direction is not affected 

by gravity; therefore, its velocity component remains throughout the flight. The 

equations of motion for the vertical direction can be derived from Newton’s Second

Law for the following conclusions represented by Equations 13 and 14 [4]. This 

model results in closed form solutions that can be easily calculated.
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Figure 19. 2D Free Body Diagram for a Projectile with Zero Drag

( 11 )

( 12 )

( 13 )

( 14 ) 
The time of flight can be obtained from solving the Equation 14 by setting 

y = 0:

( 15 )

The impact velocity is the root mean squared of the two velocity components:

( 16 )

The impact angle is measured from the x-axis and can be evaluated from:

( 17 )

where vy,imp is the y velocity component at impact, and vx,imp is the x velocity 

component at impact.
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1. Model Inputs

The inputs to the trajectory model are shown in Table 1. At the elevation of 

456 mils, the range according to the FT 155-AM-02 firing table is 15 km for a 

standard initial velocity of 684 m/s, produced from firing with charge 8.

Table 1.  Model Inputs for Point Mass, Zero Drag Trajectory Model

Parameters Values
Firing elevation, 456 mils
Initial Velocity, 684 m/s

It is customary for the artillery community to specify the firing angle, known 

as QE, in units of milliradians or mils. A complete 360-degree turn corresponds to 

6400 mils. Hence, the conversion from mils to radians can be determined from the 

following equation:

( 18 )

2. Range for a Given Firing Angle

As shown in Figure 20, the resulting trajectory is a symmetric parabolic, 

where the apogee is precisely half of the range. The range obtained is 37,621 m, with 

an impact angle of 504 mils and impact velocity of 686.7 m/s. The time of flight is

60.4 sec.
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Figure 20. Trajectory Plot for Point Mass, Zero Drag Trajectory Model

3. Firing Angle for a Given Range

The required elevation to reach a desired range can be obtained from Equation 

19. The solution produces two firing angles of and , corresponding to low 

angle and high angle trajectories. These are shown in Figure 21.

( 19 )



29

Figure 21. Low and High Angle Trajectories of Equal Range

4. Firing Tables

For operational purposes, trajectory results are documented in books known as 

firing tables. These documents are specific to various combinations of charge and 

projectile types. Firing tables contain basic trajectory information and necessary 

corrections for non-ideal firing conditions, including wind, location, and drifting 

effects. Conventionally, these documents are used in the Battery Command Post to 

generate firing solutions manually in preparation for fire mission orders. This 

computation process is termed manual gunnery. In modern artillery, the data in firing 

tables is stored in the Fire Control Systems (FCS) where the firing solution can be 

generated much faster and minimizes human errors. However, the mathematical 

process of manual gunnery is still taught in military training today as a backup to the 

FCS. An example of the basic trajectory data extracted from a firing table is shown in 

Figure 22. 
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Figure 22. Basic Trajectory Data Extracted from a Firing Table. Source: [4].

The data from firing tables is derived from actual firings. From the example in 

Figure 22, column 1 shows the range of the projectile fired with an elevation listed in 

column 2. The corresponding total time of flight is shown in column 7. Azimuthal 

aiming corrections necessary to compensate for drifting effects are shown in column 

8, and column 9 shows the azimuthal corrections needed to compensate for cross 

wind. A unique table exists for every charge increment of a particular combination of 

charge model and projectile.

5. Discussion of Model Predictions

A comparison with the U.S. Artillery firing table FT 155-AM-02 for three

sample ranges is shown in Table 2. It is observed that the impact velocity for the 

model is roughly equal to the initial velocity. The impact angle is lower due to the 

lower elevations needed to reach the same distance as compared to data from the 
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firing table. This also resulted in a lower max ordinate and shorter time of flight. For 

low drag munitions, the Point Mass, Zero Drag Trajectory Model gives results within 

5 percent of higher fidelity models, but for high drag munitions, the errors increase 

considerably [4].

Table 2.  Comparison of Data from Point Mass, Zero Drag Trajectory Model 
with FT 122-AM-02

QE (mils)

Impact 
Velocity 

(m/s)
Impact 

Angle (mils)
Max Ord 

(m) TOF (s)
Fixed Range Comparison (5000m)

Range Table 71 445 95 100 9.1
Zero Drag 53.49 684 53.5 65.7 7.32
Difference -17.51 239 -41.5 -34.3 -1.78
% diff -24.66% 53.71% -43.68% -34.30% -19.56%

Fixed Range Comparison (8000m)
Range Table 141.6 338 228 352 17
Zero Drag 85.84 684 85.87 168.95 11.74
Difference -55.76 346 -142.13 -183.05 -5.26
% diff -39.38% 102.37% -62.34% -52.00% -30.94%

Fixed Range Comparison (10000m)
Range Table 208.4 312 358 691 23.6
Zero Drag 107.58 684.01 107.71 265.01 14.7
Difference -100.82 372.01 -250.29 -425.99 -8.9
% diff -48.38% 119.23% -69.91% -61.65% -37.71%

Clearly, the Point Mass, Zero Drag Trajectory Model is insufficient to predict 

real data for the artillery 155mm M107(HE). The primary reason is that drag force, a 

major parameter that affects the trajectory of the projectile, is not accounted for. In 

addition, as discussed in Chapter II, artillery projectiles are spin-stabilized, which 

produces an equilibrium yaw, causing a lateral force to be generated that results in the 

drifting of the projectile to the right.

B. MODIFIED POINT MASS TRAJECTORY MODEL (MPMTM)

The Modified Point Mass Trajectory Model is a mathematical trajectory 

model used in the preparation of firing tables. The trajectory model is based on the 

equation of motion for a projectile and uses an estimate for the equilibrium yaw angle 



32

to calculate lateral and vertical lift effects. As mentioned in Skande [11], the 

application of the MPMTM requires parameterization of a number of projectile data,

such as aerodynamic coefficients and several form factors. These form factors are 

obtained from wind tunnel tests and by comparing trajectory model results and live 

firing tests. The equation of motion for the center of mass of the projectile for the 

MPMTM is shown in Equation 20 and illustrated by Figure 23. The evaluation of the 

forces in the equation of motion are not trivial because of coupling effects in range 

and deflection direction. This complete model is presented in Lieske [12].

( 20 )

where Fd is the drag force, Fl is the lift force, Fg is the gravitational force, FC is 

Coriolis force, and FM is Magnus force.

Figure 23. Forces and Motion of a Projectile. Source: [4].

C. INDIRECT FIRES DELIVERY ACCURACY PROGRAM (IFDAP)
TRAJECTORY MODEL - 4 DOF, RANGE, AND DEFLECTION

The complete program developed in this thesis is called the Indirect Fires 

Delivery Accuracy Program (IFDAP). The trajectory model of the IFDAP is based on 

the MPMTM, omitting Coriolis and Magnus forces, and decoupling the motion in 

range from deflection. The side slip angle is considered for drift effects computation, 

and the angle of attack on range effects is considered sufficiently small to neglect.

Second order drag and lift terms are also omitted to enhance computation efficiency. 

drag
weight

trajectory

Coriolis Magnus velocity

lateral acceleration -
gyroscopic
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These assumptions are validated by comparing trajectory results with the FT 155-

AM-02.

1. Reference Axes

The axes used is referenced to the projectile orientation at firing. This is the 

same as shown in Figure 18 with an additional z axis added in the lateral direction as 

shown in Figure 24. The angle is measured between the projectile’s axis and the x-z

plane and defines the pitch angle of the projectile. The side slip angle, , is zero at 

launch, and the z-axis is pointed perpendicularly towards the right of the projectile

(see Figure 24 and Figure 25).

Figure 24. References Axes Definition in 3D
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Figure 25. References Axes Definition in 2D

2. Acceleration

Since each axis of motion (horizontal, vertical, and lateral) is treated 

independently, the drag force needs to be resolved for each independent axis to 

compute the corresponding acceleration (Figure 26). These are shown in Equations

21 to 24.

Figure 26. Orthogonal Components of Drag Force
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( 21 )

where is obtained from Equation 22,

( 22 )

( 23 )

( 24 )

The acceleration in each axis is derived from equating Newton’s Second Law 

with the drag force equation. For the horizontal (x) and vertical (y) axes, the results 

are as follows: 

( 25 )

( 26 )

In the lateral (z) direction, the resulting force is a sum of the lift force 

(Equation 10) that acts in the positive z-direction, and a drag force that acts in the 

negative z-direction. 

( 27 )

If the normal force cofficient is used in evaluting the lift force, the resulting 

accerlation is normal to the projectile axis of symmetry; hence, the z-component can 

be evaluted from multiplying the lift force by . The resulting acceleration 

in the z-direction is:

( 28 )

where is evaluated from equation 22, and is evaluated from Equation 6.
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3. Velocity

The acceleration computed from Equations 25 to 27 is taken as the forward 

difference of the velocity divided by the simulation time step. Taking the horizontal 

(x) component as an example, the velocity can be evaluated from Equations 29 and 

30. This is similarly done for the vertical (y) and lateral (z) axes, and angular velocity 

(p).

( 29 )

( 30 )

( 31 )

( 32 )

This results in vx, vy, vz, and p at t + dt. The total velocity of the projectile can 

be determined from the root-sum-squared of all othorgonal velocity components:

( 33 )

4. Displacement

Following velocity calculations, the displacement can be computed using the 

same method:

( 34 )

( 35 )

( 36 )

This results in x, y, z, at t + dt. 
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5. Angular Calculations

Using the orthogonal velocity components, the angles that are used to resolve 

the forces and calculate the lateral lift can be calculated.

a. Projectile Pitch Angle

Extending Equation 17 to three dimensions, the pitch angle of the projectile at 

t + dt can be calculated from:

( 37 )

b. Side Slip Angle

From Equation 6, the side slip angle at t + dt can be evaluated using:

( 38 )

c. Angle between Velocity Vector and x-axis

From Equation 22, the angle between the velocity vector and the x-axis at t +

dt can be evaluated is:

( 39 )

The solution to the next time step may be accomplished by setting variables at 

(t + dt) to t and repeating calculations from sections 1 through 5.

6. Aerodynamic Coefficients

Since the altitude of the projectile changes at every time step, the speed of 

sound is re-evaluated to determine the correct areodynamic coefficients , ,

, , and air properties, T and . Equation 40 is used to determine the speed of 
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sound. The equations used to interpolate the aerodynamic coefficients and air 

properties are presented in the subsequent sections.

( 40 )

a. Interpolation of Air Properties

U.S. standard atmosphere air properties are used in the trajectory computation. 

From the raw data of properties, two constants, a0 and a1, are calculated. A straight 

line is assumed between two consecutive discrete set of air properties. The straight 

line would have a Y-intercept, , and gradient, , determined from the raw data. 

The interpolation is done using the following equation:

( 41 )

In the interpolation of air properties, the dependent variables are air 

temperature and air density, and the independent variable is the altitude of the 

projectile. At the current altitude of the projectile, the independent variable, X 

(altitude), falls within X1 and X2, the two altitude lines below and above the current 

altitude in the raw data. The a0 and a1 corresponding to X2, the altitude line above, are 

used to interpolate the dependent variable. An example is shown in Table 3.

Table 3.  Example of Altitude vs. Air Temperature with
Various a0 and a1 Values

Geo potential Altitude 

above Sea Level Temperature a0 a1

(m) (K)

2000 275.15 288.15 -0.0065

3000 268.66 288.13 -0.00649

In this example, the dependent variable is temperature and the independent 

variable is the altitude of the projectile. Suppose the current altitude of the projectile 

is at 2500 m. This altitude falls between X1 = 2000 m and X2 = 3000 m. The a0 and a1

values are therefore 288.13 and -0.00649. Hence, the air temperature at 2500 m is:
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( 42 )

b. Interpolation of Aerodynamic Properties

The interpolation of aerodynamic properties uses the same method presented 

for the interpolation of air properties. The instantaneous Mach number of the 

projectile is evaluated by dividing Equation 33 by Equation 40.

( 43 )

7. Termination of Simulation

From the aforementioned process, at each time increment, we are calculating

the accerlation variables ax, ay, az, and ; the velocity variables vx, vy, vz; and p; the 

displacement variables x, y, z; and the angular variables , , and . The simulation 

ends where the altitude, y, becomes negative, and the impact conditions are the last 

values determined. The list of output variables is shown in Table 4.  

Table 4.  Table of Output Variables

Terminal Output Variables Values

Quadrant Elevation

Range

Initial Velocity

Impact Velocity

Drift (m) z(t+dt)

Drift (mils)

Max Ordinate Maximum of y

TOF t+dt
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8. Wind Effects

The modeling of wind effects is limited to range wind (x-axis) and cross wind 

(z-axis) as vertical wind usually has insignificant effects. The effects of wind are

accounted for by modifying the projectile velocity components to relative velocity to 

the air. This affects the projectile Mach number and the areodynamic coefficients 

used. Specialized artillery units are often dedicated to obtaining metrological data in 

the vicinity of firing by sending a sounding balloon, which carries instruments on 

board to transmit a profile of weather parameters including air humidity, temperature, 

wind speed, atmospheric pressure, by means of a measuring device called a 

radiosonde.

a. Range Wind Effects

The effect of range wind can be understood by accounting for the relative

change in velocity of the projectile relative to the air (Figure 27). In the case of no 

range wind, the velocity of the projectile relative to air in the horizontal (x) direction, 

, is just the velocity of the projectile relative to the ground, or vx, which is 

positive in the x-direction. With the effects of range wind, this vector is redefined 

using the kinematic relative velocity equation [4]:

( 44 )

where is positive for tail wind and negative for head wind.
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Figure 27. Relative Velocity of Projectile

b. Cross Wind Effects

The effect of cross wind is accounted for using the same methodology as 

described previously for range wind.

9. Initial Comparison between Models

The inputs to the IFDAP trajectory model are shown in Table 5. At the 

quadrant elevation of 456 mils, the range according to the FT 155-AM-02 firing table 

is 15 km for a standard initial velocity of 684 m/s, when firing with charge 8.

Table 5.  Model Inputs for IFDAP

Parameters Values
Firing elevation, 456 mils
Initial Velocity, 684 m/s

A trajectory comparison between the FT 155-AM-02, IFDAP, and Zero Drag 

Model is shown in Table 6. Contrary to the Point Mass, Zero Drag Trajectory Model, 

the trajectory obtained from the IFDAP is not parabolic. The apogee is skewed 

towards the second half of the projectile range, and the range is significantly shorter

(Figure 28 and Figure 29). The angle of fall is also steeper than the zero drag model. 

Velocity of wind, vA/G

Relative velocity 
of projectile, vP/A

Velocity 
of projectile, vP/G
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The shape of the trajectory is due to the fact that most of the energy imparted at 

ignition is lost during the ascending phase of the flight. Once past the apogee, the 

pitch angle of the projectile decreases quickly, leading to a higher impact angle than 

the zero drag model. This result indicates the significance of the drag force.

Table 6.  Trajectory Comparison between FT 155-AM-02, IFDAP and Zero 
Drag Model

Variables FT 155-AM-02 IFDAP Zero Drag Model

Range 15,000 m 14,884 m 37, 621 m

Impact Angle 709 mils 707 mils 504 mils

Impact Velocity 314 m/s 314.5 m/s 686.7m/s

Time of Flight 43.7 s 43.27 s 60.4 s

Figure 28. IFDAP Trajectory Model
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Figure 29. 2D Trajectory Plot (Range/Altitude) from IFDAP Model

10. Discussion

A more detailed comparison with the U.S. Artillery firing tables is shown in 

Table 7. The IFDAP based on the MPMTM clearly provides a much better estimation 

of the outputs than the simple zero drag trajectory model. These simplified equations 

of motion enable rapid computation, and their degree of accuracy is sufficient for 

conventional artillery area target missions. Comparing the FT 155-AM-02 with the 

IFDAP trajectory model, the range estimation is within 1 percent; hence, this proves 

the increase in range due to the angle of attack component in the yaw of repose is 

sufficiently small to be neglected for computational efficiency.
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Table 7.  Comparison of Data between IFDAP Trajectory Model and
FT 155-AM-02

Range 
(m)

Initial 
Velocity 

(m/s)

Impact 
Velocity 

(m/s)

Impact 
Angle 
(mils)

Drift 
(m)

Drift 
(mils)

Max 
Ord 
(m) TOF (s)

Max 
Range 

(m)
Fixed QE Comparison (71 mils)

Range 
Table 5000 684 445 95 11 2.2 100 9.1 18100
Thesis 4954.13 447.14 94.11 11.36 2.29 99.12 8.99 17752 17752
Difference -45.87 2.14 -0.89 0.36 0.09 -0.88 -0.11 -348 -348

% diff -0.92% 0.48% -0.94% 3.27% 4.09% -0.88%
-

1.21% -1.92%
-

1.92%
Fixed QE Comparison (208.4 mils)

Range 
Table 10000 684 312 358 71 7.1 691 23.6
Thesis 9921.19 312.91 355.87 69.28 6.98 683.75 23.34 9921.19
Difference -78.81 0.91 -2.13 -1.72 -0.12 -7.25 -0.26 -78.81

% diff -0.79% 0.29% -0.59% -2.42% -1.69% -1.05%
-

1.10% -0.79%
Fixed QE Comparison (455.9 mils)

Range 
Table 15000 684 314 709 234 15.6 2497 43.7
Thesis 14882.53 314.44 706.78 228.11 15.33 2475.62 43.26 14882.53
Difference -117.47 0.44 -2.22 -5.89 -0.27 -21.38 -0.44 -117.47

% diff -0.78% 0.14% -0.31% -2.52% -1.73% -0.86%
-

1.01% -0.78%
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IV. ERROR AND ACCURACY COMPUTATIONS

A. ERROR BUDGETS AND BALLISTIC PARTIALS

The sets of parameters used in the error models to estimate precision and MPI 

errors are the ballistic partials and error budgets. The ballistic partials are also known 

as unit effects; these are the change in the dependent variable for a unit change in the

independent variable, and the error budgets are the standard deviations in the 

independent variable. The two quantities multiply to determine the standard deviation 

in the dependent variable, as shown in equation 46.

One of the factors that affect the range of a projectile is the muzzle velocity of 

the gun. Suppose all other factors are kept constant, we can express the unit change in 

range due to a change in muzzle velocity as [4]:

( 45 )

Thus,

( 46 )

Computing the unit effect is be done by running the trajectory model with 

a small perturbation, about the nominal firing solution dv, and observing the 

corresponding change in impact point, dx. In general, the smaller the perturbation, the 

more accurate the unit effect computed. For the purpose of this thesis, the same 

perturbations used in the production of the firing table FT 155-AM-02 is used for the 

computations of the partials. These are summarized in Table 8.  

Suppose multiple firings over multiple occasions are done and records of the 

variations in muzzle velocity are made. Using a chi-squared test, we will observe that 

the muzzle velocity is normally distributed [4]. We can compute a standard deviation,

, and subsequently compute a standard deviation in range, , using the 

following equation. The quantity is known as the error budget.

( 47 )
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The combination of multiple factors on the range is the root sum squared of 

the factors.

Table 8.  Perturbations Used for Computing Ballistic Partials

Factors Perturbation
QE 50 mils
Muzzle Velocity 10 m/s
Ballistic Air Temperature 10%
Ballistic Air Density 10%
Range and Cross Winds 50 Knots

B. ERROR MODELS

1. Precision Error

The precision error is a measure of the dispersion of a group of rounds fired by 

a single gun about the mean point of impact on a single occasion. This model assumes 

that the muzzle velocity, drag and quadrant elevation are the three most significant 

factors that affect the range dispersion. The precision errors in range and deflection 

can be estimated using equations 48 and 49 respectively [4].

( 48 )

( 49 )

where Partial of range with muzzle velocity

Partial of range with air drag coefficient

Partial of range with QE
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a. Error Budgets in Precision Error Model

The error budget in muzzle velocity, , is dependent on the internal ballistics 

that affect the muzzle velocity. This includes factors related to the barrel, projectile 

and the charge. 

The error budget in ballistic coefficient, , is a measure of how well we 

know the Mach number vs Cd relationship. 

The error budget in QE, , is a measure of the variation between rounds in 

the true QE when the projectile leaves the barrel. This error can be caused by 

undesired barrel jumps, as explained in chapter 2, slight displacement of the gun 

platform due to recoil from continuous firing, or a mechanical error causing the 

elevation to slip slightly from continuous firing. 

In the computation of the partial in range with ballistic air drag coefficient,

, the variation in air density is used instead of the drag coefficient Cd. Since 

air density and directly proportionate to Cd, their partials are the same.

We assume the following error budgets in Table 9 as representative values.

Table 9.  Values of Error Budgets and Parameters Used for Precision Error 
Computations

Equation
Parameters

Values

v 0.92 m/s
Drag 0.65%

0.3 mils
0.52
2000

2. Mean-Point-of-Impact (MPI) Error

The Mean-Point-Of-Impact (MPI) error is a measure of the variability of the 

mean point of impact of a single gun, aiming at the same target coordinates, over 

multiple occasions. This means that the gun had to be re-aimed at the target between 

occasions, and therefore error budgets to account for this re-aiming error needs to be 



48

considered. The error budgets in QE and velocity are used to quantify this error. In 

addition, the target and gun location will also have some uncertainty associated with 

it. Since the amount of error in location accuracy has the same effect in the overall 

MPI range and deflection errors, the partials for location accuracies are unity. 

( 50 )

Unlike precision error, the MPI error is dependent on the technique used.

There exist different sets of equations applicable for the different techniques of firing. 

In this thesis, the error models will be based on the predict fire technique. The 

following equations presented are for the case of predicted fire using point detonating 

fuze.

( 51 )

( 52 )

where Partial in range with air density

Partial in range with air temperature

Partial in range with wind velocity

Partial in deflection with wind velocity

Partial in deflection with lift force, determined from [4]:
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( 53 )

where Drift is the drift in mils calculated from drift in meters as follows:

( 54 )

Partial in deflection with azimuth angle, determined from [4]:

( 55 )

a. Error Budgets in MPI Unadjusted Fire Model

The lift error budget, , is a measure of how well we know the relation of 

lift coefficient with Mach number.

The meteorological error budgets, , and are not fixed and depends 

on the duration from which the last met message was updated and the distance of the 

gun from the position where the met data was collected. These variables are referred 

to as the MET errors and they depend on the time and distance between measuring 

MET conditions and firing. The longer the staleness hour and/or separation distance, 

the more likely the meteorological data will be erroneous, hence higher error budgets. 

The variation in met error budgets with staleness hour and distance is shown in 

Appendix C.

The error budget in aiming error for QE and azimuth, and ,

accounts for the crew competency in aiming the gun, mechanical and instrumentation 

error of the gun between occasions. 

The error budget, and , is the measure of uncertainty in the 

target location. Target location may be obtained by map spotting, forward observers 

on the ground, or from UAVs with targeting sensors. Different techniques will have 

different accuracies associated with them. The most accurate method is to use a GPS 

on the target location to determine the coordinates. However, this is not practicable

and the next best method would be to have a forward observer nearby on the ground 

using an accurate laser range finder. 

d
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The error budget in location accuracy for range and deflection, and

, is a measure of the uncertainty in the gun location. Conventional methods use 

marked survey control points to ensure all pieces lie on common grid (i.e. common 

error). Modern Artillery pieces are positioned using GPS/INS systems that effectively 

reduce this error to a small amount.

Table 10 shows all the values of error budgets used for the MPI unadjusted 

fire error model.

Table 10.  Values of Error Budgets and Parameters Used for MPI Error 
Computations

Equation
Parameters

Values

LIFT 1
v 3 m/s
Drag 1%

0.5 mils
azimuth 1 mils
wind As accordingly
p As accordingly
T As accordingly
chart-X 0 m
chart-Z 0 m
Loc-X 15 m
Loc-Z 15 m

C. MEASURES OF DISPERSION

It is possible to calculate a mean and variance for range and deflection if we 

measure all range and deflection deviations of each round. However, this is only valid 

for a single gun. In a typical Artillery mission, a battery of 6 guns is used, firing up to 

10 rounds each. In order to more accurately define the errors, two quantities were 

introduced in chapter I; a dependent error, and an independent error, or MPI and 

Precision Error, otherwise known as aiming error and ballistic dispersion within the 

air community. The MPI error is the ability of the crew to aim the gun correctly at the 

target, whereas the precision error is attributed to round-to-round dispersion. We can 

define the range (x) and deflection (z) total miss distances from the desired impact 

point as follows:
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( 56 )

( 57 )

Since the precision and MPI errors are independent random variables, the 

root-sum-square of their standard deviation will give the standard deviation of the 

total miss distance [4].

( 58 )

( 59 )

D. PROBABLE ERROR

The Probable Error (PE) is a statistical quantity which is defined as the 

interval from the desired point of impact (DPI) which would encompass 50% of all 

projectiles fired aiming towards it. There are three ways of defining this metric in this 

thesis: 1) Range Error Probable (REP), 2) Deflection Error Probable (DEP), and 3)

Circular Error Probable (CEP).

The range and deflection probable error of a normally distributed random 

variable is related to the standard deviation by the following equation:

( 60 )

For certain applications, it may be more convenient to specify a single error 

probable value determined by the absolute miss distance from the DPI, rather than in 

terms of range and deflection. This value is the circular error probable, and can be 

computed using the standard deviations in range and deflection derived from 

equations 58 and 59 as follows:

( 61 )

Note that CEP is not a good measure of dispersion. Two different weapons 

can have the same CEP by one can be high in REP but low in DEP and the other can

be high in DEP but low in REP. They would result in very different fractional damage 

for different dimensions of area of target elements. Hence it is more useful to use the 
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accuracy metrics and , which characterizes the dispersion of the gun. 

The CEP metric is only meaningful if the distribution of the impact points is 

circularly normal.
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V. IMPLEMENTATION AND CASE STUDY

The trajectory and accuracy models described in Chapters III and IV were 

initially coded in MATLAB because of its computational capability and simple 

graphing techniques. In this chapter, a case study is demonstrated with the objective 

of answering the following question: “What is the accuracy (MPI and Precision) of an

M107 fired at a range of 15 km with a muzzle velocity of 684m/s ?”

A. MODEL SELECTION AND INPUTS

The IFDAP trajectory model described in Chapter III is selected for the 

implementation. The aerodynamic coefficients used are based on Table 11. This table 

represents a typical dataset of aerodynamic coefficients available for a projectile. 

Between each discrete value of Mach number, we interpolate the aerodynamic 

coefficients using the method described in Chapter III Section C Subsection 6.

Table 11.  Aerodynamic Coefficients of M107 (HE) Projectile. Source: [13].

The weapon data and general parameters required are shown in Table 12. The 

launch altitude of the weapon and target height are assumed to be at the same level,

and there is no wind simulated. A MET staleness of 0.5 hour is assumed.
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Table 12.  General Parameters and Weapon Data Used in Case Study

General Parameters Weapon Data

Time Step 0.01 s Twist Rate 20 Calibers/rev

g 9.81 m/s2 Ixx 0.1461 Kg.m2

Air Cp 1005 J/Kg.K Mass 43.091 Kg

Air Cv 718 J/Kg.K Projectile Diameter 0.155 m

Fl 0.9076

FT 1

F 1

B. QE FINDER

Given the QE, it is easy to find the range at impact using the IFDAP trajectory 

model. The opposite, however, is not trivial. In reality, target acquisition elements 

such as the FO obtain the range and direction to the target using a laser range finder 

and transmit this data to artillery elements. The fire control system has a database of 

the firing table and searches for the required QE to reach the required range. In the 

IFDAP, the required QE to reach the desired range is narrowed down through an 

iterative process. The user is first required to input four parameters: 1) a desired 

range, 2) muzzle velocity, 3) the required accuracy, i.e., how close to the desired 

range is acceptable to the user, and 4) the number of iterations. Using the desired 

range and muzzle velocity specified by the user, an initial QE is computed using the 

zero drag model from Equation (19). This zero drag QE is first used to compute the 

range using the IFDAP trajectory model. Using the QE found from the zero drag 

model on the IFDAP trajectory model will certainly result in the computed range 

falling short of the desired range due to drag; hence, a new QE(i+1) is generated using 

the following equation:

( 62 )
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where is the difference in desired range and computed range, and

dR/dQE is the partial in range with QE.

The new QE is input to the trajectory computer to calculate the new range. 

This loop continues as long as both of the following conditions are not met:

Did the range meet the required accuracy?
OR

Is the current number of iterations (i) more than specified?

Once either of the conditions is met, the QE Finder procedure ends, and the 

calculated range and QE are written in the output cells. A flow diagram of the QE 

Finder model is shown in Figure 30. 

Figure 30. Computation Flow Diagram of QE Finder Model
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C. ACCURACY MODEL

The overall model to compute the accuracy metrics is presented as a flow 

diagram in Figure 31. From a user input desired range and muzzle velocity, the QE 

Finder procedure searches for the required QE to reach that range. With the outputs

QE and muzzle velocity, the trajectory outputs are calculated with the IFDAP 

trajectory model. The outputs of the trajectory model from the user specified nominal

inputs are the nominal trajectory outputs. Next, the perturbations shown in Table 8 are 

applied to nominal inputs and generated as new inputs for the trajectory model. The

trajectory results for those perturbations are then re-computed. These results are used 

to calculate the ballistic partials necessary to calculate the MPI and Precision 

accuracies using the models described in Chapter IV. From the MPI and Precision 

Error metrics, the standard deviation in total range and total deflection, and the overall 

CEP are calculated using Equations 58, 59, and 61.

Figure 31. Trajectory, Ballistic Partials, and Accuracy Computation Flow

QE Finder

QE
Muzzle Velocity

Desired Range,
 Desired MV

Compute Nominal 
Trajectory

Obtain inputs for 
perturbations

Compute Trajectory Results 
for perturbations

Compute Partials

Compute Accuracy Metrics
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D. RESULTS

With the inputs of desired range, muzzle velocity, aerodynamic coefficients,

and general parameters from Table 11 and Table 12, the IFDAP generates the 

following outputs from trajectory and error computations shown in Table 13. In 

answering the question first asked in opening of this chapter, the standard deviation in 

range due to precision errors is 46.98 m and due to MPI errors is 112.47 m. The 

standard deviation in deflection due to precision errors is 14.78 m and due to MPI 

errors is 38.26 m. This equates to a total standard deviation in range of 121.89 m and 

total deflection of 41.01 m, with a resulting CEP of 95.9 m.

Table 13.  Trajectory and Error Computation Outputs from IFDAP for Case 
Study

Trajectory Outputs Error Computation Outputs (m)

QE 463.48 mils x,Prec 46.98

Range 15000.09 m z,Prec 14.78

Initial Velocity 684.00 m/s x,MPI 112.47

Impact Velocity 314.84 m/s z,MPI 38.26

Impact Angle 715.51 mils x,TOT 121.89

Drift(m) 234.11 m z,TOT 41.01

Drift(mils) 15.61 mils CEP 95.90

Max Ordinate 2540.68 m

Range at Max Ord 8474.57 m

Time of Flight 43.83 s

E. IMPLEMENTATION IN VISUAL BASIC

Following its successful coding in MATLAB, the IFDAP was subsequently 

coded in Microsoft Excel Visual Basic for distribution purposes. This is because most 

military users do not have MATLAB software, whereas Microsoft Excel is more 

readily available. Furthermore, various end users with different purposes may take 
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specific modules of the Visual Basic code and use them in their original state or 

modify them to suit the users’ specific needs. The IFDAP in the Visual Basic 

environment is coded in the following modules shown in Figure 32. The user 

interface of the overall model is shown in Figure 33 and the precision and MPI error 

computation spreadsheets are shown in Figure 34 and Figure 35. The complete Visual 

Basic code is included in Appendix D through Appendix J.

Figure 32. Computation Flow in Visual Basic Environment

Trajectory Computer: The trajectory computer module is the heart of the 

IFDAP trajectory model. It takes all the inputs gathered from the Nominal Trajectory 

and QE Finder trajectory modules and computes the output of range, impact velocity, 

impact angle, drift in mils and meters, max ordinate, and time of flight. This module 

implements the algorithms described in Chapter III Section C. 

QE Finder: This code finds the QE required for the desired range input by the 

user. First, it obtains the QE for a zero drag trajectory scenario, then inputs this QE 

into the QE Finder trajectory module as an input for the trajectory computer module 

to calculate the range. The value of the difference in the range divided by the unit 

effect of QE is added to the zero drag QE for a second iteration. This goes on until the 

desired accuracy has been met or the number of iterations has been fulfilled. This 

module implements the algorithms described in Section B of this chapter.

QE Finder Trajectory: This is an input gathering module for the QE Finder.

These inputs are fed into the Trajectory Computer Module.
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Nominal Trajectory: This is an input gathering module for a trajectory 

computation with the inputs specified by the user in the main graphical user interface 

(GUI) spreadsheet. This module calls the Trajectory Computer module to calculate 

the outputs and writes the outputs in the Nominal Trajectory Outputs section.

Partials Main: This is a main module that calls for two other modules for the 

computation of perturbed trajectory outputs for MPI Error and Precision Error 

computations.

Partials Precision Error: This module gathers the relevant perturbations 

specified by the user in the main GUI spreadsheet necessary to compute ballistic 

partials in the precision error model and calculates the inputs for the Trajectory 

Computer. The outputs are written into the Precision Error spreadsheet. This module 

implements the algorithms described in Chapter IV Section B Subsection 1.

Partials MPI Error Predicted: This module gathers the relevant 

perturbations specified by the user in the main GUI spreadsheet necessary to compute 

ballistic partials in the MPI error model and calculates the inputs for the Trajectory 

Computer. The outputs are written into the Precision Error spreadsheet. This module 

implements the algorithms described in Chapter IV Section B Subsection 2.
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VI. MODEL VALIDATION

A. COMPARATIVE STUDY CASES SELECTION

In Chapter V, one case study demonstrated the use of IFDAP and the outputs 

it can generate. In this chapter, the IFDAP model is validated against the FT 155-AM-

02 firing table for five different muzzle velocities with three ranges each representing 

short range, medium range, and long range firings. The results are compared and 

discussed in the next chapter. Since there are no public documents stating accuracies,

accuracy values are unable to be compared directly. However, we can calculate the 

accuracy metrics using the ballistic partials from the firing table and compare them to 

those generated from IFDAP using the same set of error budgets. The IFDAP 

developed in the Visual Basic environment is used to generate the trajectory and 

ballistic partials results for this comparative study.

The following cases are selected from FT 155-AM-02 for the comparative 

study using the 155mm M107(HE) Projectile (Table 14).

Table 14.  Comparative Study Test Cases on 155mm M107(HE) Projectile

Charge Muzzle Velocity (m/s) Selected Ranges (m)

4W 337 2000, 3000, 4000

5W 397 3000, 6000, 8000

6W 474 7000, 9000, 11000

7W 568 7000, 10000, 13000

8W 684 8000, 11000, 16000

B. TRAJECTORY RESULTS

For the selected ranges in Table 14, the first step was to use the QE Finder to 

generate the required QE to reach the desired range. This QE may differ from the FT

155-AM-02 by a small amount. Thus, the trajectory comparison is done at fixed 

ranges, and the values of QE are compared. The trajectory model of the IFDAP is 



64

subsequently used to compute the trajectory outputs and ballistic partials. The 

trajectory results for various muzzle velocities are shown in Table 15 through 

Table 19.

Table 15.  Trajectory Results Comparison for Muzzle Velocity of 337 m/s

Muzzle 
Velocity = 

337 m/s
(Charge 4)

Outputs 2000 m 3000 m 4000 m
IFDAP FT IFDAP FT IFDAP FT

QE (mils) 96.79 97.2 150.93 152 209.55 211.6
Range (m) 2000.56 2000 2999.45 3000 4000.67 4000

Impact Velocity 
(m/s) 303.22 300 293.83 290 285.90 281

Impact Angle (mils) 103.50 105 164.31 167 231.42 236
Drift(m) 3.38 3.2 7.97 7.8 15.25 15.2

Drift(mils) 1.69 1.6 2.66 2.6 3.81 3.8
Max Ordinate (m) 49.37 50 117.20 119 220.53 224
Time of Flight (s) 6.34 6.4 9.76 9.8 13.38 13.5

Table 16.  Trajectory Results Comparison for Muzzle Velocity of 397 m/s

Muzzle 
Velocity = 

397 m/s
(Charge 5)

3000 m 6000 m 8000 m
IFDAP FT IFDAP FT IFDAP FT

QE (mils) 118.00 118.1 279.28 280.4 417.05 420.6
Range (m) 2999.81 3000 5998.93 6000 8000.58 8000

Impact Velocity 
(m/s) 311.54 310 289.41 287 282.95 280

Impact Angle (mils) 138.72 140 334.48 338 497.88 506
Drift(m) 7.80 7.5 36.08 36.6 77.17 79.2

Drift(mils) 2.60 2.5 6.01 6.1 9.65 9.9
Max Ordinate (m) 95.55 96 473.33 477 975.94 988
Time of Flight (s) 8.78 8.8 19.43 19.6 27.95 28.2

Table 17.  Trajectory Results Comparison for Muzzle Velocity of 474 m/s

Muzzle 
Velocity = 

474 m/s
(Charge 6)

7000 m 9000 m 11000 m
IFDAP FT IFDAP FT IFDAP FT

QE (mils) 258.48 258.4 377.60 378.6 534.79 539.9
Range (m) 6999.67 7000 8999.67 9000 10999.28 11000

Impact Velocity 
(m/s) 299.03 298 294.51 293 296.92 294

Impact Angle (mils) 346.05 347 493.60 497 671.81 681
Drift(m) 45.19 45.5 86.61 88.2 163.11 169.4

Drift(mils) 6.46 6.5 9.62 9.8 14.83 15.4
Max Ordinate (m) 546.65 548 1054.00 1059 1897.70 1924
Time of Flight (s) 20.71 20.8 28.70 28.9 38.63 39.1
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Table 18.  Trajectory Results Comparison for Muzzle Velocity of 568 m/s

Muzzle 
Velocity = 

568 m/s
(Charge 7)

7000 m 10000 m 13000 m
IFDAP FT IFDAP FT IFDAP FT

QE (mils) 178.01 177.6 319.81 319.8 518.13 520.7
Range (m) 6999.25 7000 9998.69 10000 12999.52 13000

Impact Velocity 
(m/s) 314.33 313 302.80 302 309.17 307

Impact Angle (mils) 267.43 269 474.68 477 707.60 713
Drift(m) 36.81 37.1 92.58 94 205.64 211.9

Drift(mils) 5.26 5.3 9.26 9.4 15.82 16.3
Max Ordinate (m) 383.02 383 1052.85 1055 2318.26 2335
Time of Flight (s) 17.53 17.6 28.49 28.6 42.21 42.6

Table 19.  Trajectory Results Comparison for Muzzle Velocity of 684 m/s

Muzzle 
Velocity = 

684 m/s
(Charge 8)

8000 m 11000 m 16000 m
IFDAP FT IFDAP FT IFDAP FT

QE (mils) 143.52 141.6 251.98 248.4 534.82 525.3
Range (m) 7999.42 8000 10998.27 11000 16000.49 16000

Impact Velocity 
(m/s) 337.44 338 309.21 309 318.38 318

Impact Angle (mils) 229.83 228 430.65 427 791.87 785
Drift(m) 38.23 37.6 92.48 92.4 293.60 292.8

Drift(mils) 4.78 4.7 8.41 8.4 18.35 18.3
Max Ordinate (m) 357.04 352 943.53 930 3176.64 3116
Time of Flight (s) 17.03 17 27.18 27.2 49.06 48.9

C. BALLISTIC PARTIALS RESULTS

The ballistic partials results are shown in Table 20 through Table 24.  

Table 20.  Ballistic Partials Comparison for Muzzle Velocity of 337 m/s

Muzzle 
Velocity = 

337 m/s
(Charge 4)

Outputs 2000 m 3000 m 4000 m
IFDAP FT IFDAP FT IFDAP FT

dx/dV 7.80 7.50 10.18 9.80 12.49 12.00
-1.47 -1.4 -2.55 -2.7 -4.15 -4.4

dx/dQE 18.49 19.00 17.17 18.00 15.81 16.00
dx/dW 1.69 1.70 3.15 3.10 4.67 4.50
dz/dW 0.21 0.22 0.44 0.45 0.77 0.72
dx/dT 4.58 4.80 8.11 8.50 11.92 12.00
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Table 21.  Ballistic Partials Comparison for Muzzle Velocity of 397 m/s

Muzzle 
Velocity = 

397 m/s
(Charge 5)

3000 m 6000 m 8000 m
IFDAP FT IFDAP FT IFDAP FT

dx/dV 11.71 11.40 16.82 16.20 19.40 18.90
-4.59 -4.6 -10.58 -11.1 -16.58 -17.3

dx/dQE 20.30 21.00 15.72 16.00 11.89 12.00
dx/dW 2.35 2.20 8.20 7.70 12.40 11.60
dz/dW 0.63 0.63 2.17 2.04 3.50 3.28
dx/dT 3.57 3.70 17.65 17.30 25.89 25.40

Table 22.  Ballistic Partials Comparison for Muzzle Velocity of 474 m/s

Muzzle 
Velocity = 

474 m/s
(Charge 6)

7000 m 9000 m 11000 m
IFDAP FT IFDAP FT IFDAP FT

dx/dV 18.46 18.40 20.52 20.40 22.74 22.40
-18.10 -18.4 -24.08 -24.9 -31.98 -33.8

dx/dQE 17.80 18.00 14.33 15.00 9.37 10.00
dx/dW 6.80 6.40 11.10 10.40 15.50 14.50
dz/dW 3.06 2.94 4.80 4.50 6.80 6.38
dx/dT 8.76 8.90 17.98 17.70 25.33 25.00

Table 23.  Ballistic Partials Comparison for Muzzle Velocity of 568 m/s

Muzzle 
Velocity = 

568 m/s
(Charge 7)

7000 m 10000 m 13000 m
IFDAP FT IFDAP FT IFDAP FT

dx/dV 17.54 17.40 21.01 20.70 23.70 23.30
-23.04 -24.1 -34.09 -35.3 -46.35 -49

dx/dQE 23.31 25.00 17.44 18.00 11.20 12.00
dx/dW 4.20 4.00 9.70 9.10 16.30 15.30
dz/dW 2.68 2.66 5.60 5.30 9.15 8.58
dx/dT -2.65 -2.50 7.48 7.60 19.34 19.40

Table 24.  Ballistic Partials Comparison for Muzzle Velocity of 684 m/s

Muzzle 
Velocity = 

684 m/s
(Charge 8)

8000 m 11000 m 16000 m
IFDAP FT IFDAP FT IFDAP FT

dx/dV 16.91 16.70 20.54 20.20 24.45 24.50
-29.59 -31.6 -46.02 -48.2 -68.45 -72.5

dx/dQE 32.00 34.00 22.40 24.00 12.20 13.00
dx/dW 3.95 3.70 8.20 7.70 18.50 17.30
dz/dW 2.74 2.72 5.71 5.50 12.30 11.52
dx/dT -7.37 -7.30 -4.11 -4.30 14.04 13.40
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D. ACCCURACY RESULTS

The error budgets used in the generation of the accuracy metrics are those 

from Table 9 and Table 10. A MET staleness of 0.5 hour was assumed, and the 

corresponding MET error budgets are wind = 3.91, = 0.85, and T = 0.69. The 

equations presented in Chapter IV are used to calculate the results of the accuracy 

metrics shown in Table 25 through Table 29.  

Table 25.  Accuracy Comparison for Muzzle Velocity of 337 m/s

Muzzle 
Velocity 

= 337 
m/s 

(Charge 
4)

2000 m 3000 m 4000 m
IFDAP FT % Diff IFDAP FT % Diff IFDAP FT % Diff

x,Prec 9.12 9.00 1.38% 10.82 10.65 1.55% 12.72 12.37 2.80%
z,Prec 1.59 1.59 0.00% 2.46 2.46 0.00% 3.38 3.38 0.00%
x,MPI 30.25 29.67 1.97% 37.76 36.94 2.23% 46.06 44.68 3.08%
z,MPI 15.15 15.15 -0.02% 15.38 15.38 -0.02% 15.80 15.76 0.23%
x,TOT 31.60 31.00 1.94% 39.28 38.44 2.18% 47.78 46.36 3.05%
z,TOT 15.23 15.24 -0.04% 15.58 15.58 0.01% 16.16 16.12 0.23%

CEP 27.57 27.22 1.29% 32.30 31.80 1.57% 37.64 36.79 2.32%

Table 26.  Accuracy Comparison for Muzzle Velocity of 397 m/s

Muzzle 
Velocity 

= 397 
m/s 

(Charge 
5)

3000 m 6000 m 8000 m
IFDAP FT % Diff IFDAP FT % Diff IFDAP FT % Diff

x,Prec 12.73 12.59 1.07% 17.58 17.24 1.97% 21.15 21.02 0.63%
z,Prec 2.41 2.41 0.00% 5.28 5.28 0.00% 7.65 7.65 0.00%
x,MPI 41.13 40.27 2.13% 60.17 62.55 -3.80% 72.71 79.72 -8.80%
z,MPI 15.48 15.48 0.00% 17.17 16.92 1.45% 19.96 19.38 2.99%
x,TOT 43.05 42.20 2.02% 62.68 64.88 -3.39% 75.72 82.45 -8.16%
z,TOT 15.67 15.67 0.02% 17.96 17.73 1.30% 21.38 20.84 2.61%

CEP 34.57 34.06 1.49% 47.48 48.63 -2.37% 57.16 60.80 -5.99%

Table 27.  Accuracy Comparison for Muzzle Velocity of 474 m/s

Muzzle 
Velocity 

= 474 
m/s 

(Charge 
6)

7000 m 9000 m 11000 m
IFDAP FT % Diff IFDAP FT % Diff IFDAP FT % Diff

x,Prec 21.34 21.42 -0.37% 24.89 25.19 -1.18% 29.63 30.27 -2.12%

z,Prec 6.08 6.08 0.00% 8.40 8.40 0.00% 11.36 11.36 0.00%

x,MPI 65.18 67.82 -3.90% 76.82 83.05 -7.50% 91.30 101.22 -9.80%

z,MPI 18.40 18.11 1.62% 21.83 20.83 4.80% 28.70 27.19 5.57%

x,TOT 68.59 71.13 -3.57% 80.75 86.79 -6.96% 95.98 105.65 -9.15%

z,TOT 19.38 19.10 1.46% 23.39 22.46 4.14% 30.87 29.46 4.77%
CEP 51.79 53.12 -2.50% 61.31 64.31 -4.67% 74.68 79.54 -6.11%



68

Table 28.  Accuracy Comparison for Muzzle Velocity of 568 m/s

Muzzle 
Velocity 

= 568 
m/s 

(Charge 
7)

7000 m 10000 m 13000 m
IFDAP FT % Diff IFDAP FT % Diff IFDAP FT % Diff

x,Prec 23.10 23.62 -2.20% 29.87 30.30 -1.43% 37.34 38.56 -3.16%

z,Prec 5.82 5.82 0.00% 9.01 9.01 0.00% 13.28 13.28 0.00%

x,MPI 63.11 65.99 -4.36% 80.66 87.19 -7.49% 101.92 114.20
-
10.75%

z,MPI 17.98 17.94 0.24% 23.22 22.12 4.99% 33.83 31.46 7.52%

x,TOT 67.20 70.09 -4.12% 86.01 92.31 -6.82% 108.54 120.53 -9.95%

z,TOT 18.89 18.86 0.17% 24.90 23.88 4.26% 36.35 34.15 6.44%
CEP 50.68 52.36 -3.21% 65.30 68.40 -4.53% 85.30 91.06 -6.33%

Table 29.  Accuracy Comparison for Muzzle Velocity of 684 m/s

Muzzle 
Velocity 

= 684 
m/s 

(Charge 
8)

8000 m 11000 m 16000 m
IFDAP FT % Diff IFDAP FT % Diff IFDAP FT % Diff

x,Prec 26.36 27.60 -4.51% 36.00 37.13 -3.05% 49.98 52.38 -4.59%

z,Prec 6.52 6.52 0.00% 9.52 9.52 0.00% 16.53 16.53 0.00%

x,MPI 65.69 70.56 -6.90% 84.97 94.65
-
10.23% 120.32 139.23

-
13.58%

z,MPI 18.44 18.38 0.30% 23.83 23.06 3.33% 43.32 39.91 8.55%

x,TOT 70.78 75.77 -6.58% 92.28 101.67 -9.24% 130.29 148.76
-
12.41%

z,TOT 19.56 19.51 0.27% 25.66 24.95 2.85% 46.36 43.20 7.33%
CEP 53.18 56.09 -5.18% 69.43 74.54 -6.86% 104.00 113.00 -7.97%
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VII. DISCUSSION

A. TRAJECTORY ANALYSIS

The percentage errors of various trajectory output variables for the comparison 

between the IFDAP trajectory model and the FT 155-AM-02 firing table are shown in

Figure 36 to Figure 41. It is observed that, in general, the percentage errors tend to 

increase with increasing range for a given charge, and the maximum error occurs at 

the maximum range of each charge. This is explained by the fact that the decoupled 

and simple equations used to model the trajectory have a finite error at each 

computation step and are compounded with an increasing number of time steps. 

Hence, for firings with higher TOF, the errors observed are larger. Despite this,

maximum errors in trajectory outputs are kept to within 2 percent, with the exception 

of certain drift calculations that are explained later. Noting that conventional artillery 

is used for mass effects and not for missions where precise delivery is needed, the 

accuracy of the trajectory model is sufficient for most applications.

It is also observed that the high percentage errors in drift for short range 

firings is due to the comparison of small values resulting in high percentage errors. 

For example, for a short range firing with a muzzle velocity of 337m/s, the actual 

value of drift from FT 155-AM-02 for this case was 1.6 mils, whereas the IFDAP 

trajectory model calculated 1.69 mils. At a firing range of 2000 m, this difference is 

approximately only 0.18m, but 5.76 percent. Higher values of drift errors of up to 8

percent are also observed at the final 1000 m of the maximum range for each charge.

However, for most real world applications, a firing charge that would barely reach the 

desired range would not be chosen because of higher variability in the behavior of the 

projectile. For typical values of ranges and muzzle velocities, represented by values 

corresponding to medium range, the drift errors are kept to within 4 percent.
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Figure 36. Absolute Percentage
Error in QE

Figure 37. Absolute Percentage
Error in Drift

Figure 38. Absolute Percentage 
Error in Impact 

Velocity

Figure 39. Absolute Percentage 
Error in Impact 

Angle
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Figure 40. Absolute Percentage 
Error in Max 

Ordinate

Figure 41. Absolute Percentage 
Error in Time of 

Flight

B. BALLISTIC PARTIALS ANALYSIS

Unlike the trajectory model, errors in the ballistic partials do not have a 

similar trend although the ballistic partials are derived from the trajectory model. This 

is because the ballistic partials measure the gradient at the range specified by the 

perturbations input, and if the two trajectory models are not identical in the equations 

used, the gradient at specific points may have greater errors than the actual value of 

the variable, especially for small value variables such as the wind partials. In 

Table 30, supported by Figure 42, an example is shown using QE as the variable of 

interest. Between 8000 m and 9000 m, the gradient of the IFDAP line 1000/(175.5-

143.5) = 31.25 and for the FT line is 1000/(172-142) = 32.89. This corresponds to a 

percentage error in the dx/dQE gradient of (31.25-32.89)/32.89 = 5%, although the

percentage error in QE at 8000 m is only (143.5-141.6)/141.6 = 1.34%, and (175.23-

172.4)/172.4 = 1.64% at 9000 m.
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Table 30.  Absolute % Error in QE vs. Absolute % Error in dx/dQE

MV 

(m/s)

Average 

Absolute %

error in QE

Max 

Absolute %

error in QE

Average 

Absolute %

error in dx/dQE

Max Absolute %

error in dx/dQE

337 0.70% 0.97% 2.82% 4.63%

397 0.44% 0.84% 2.02% 3.36%

474 0.39% 0.95% 3.95% 6.30%

568 0.09% 0.49% 5.51% 6.77%

684 1.54% 1.81% 6.23% 6.67%

Figure 42. Difference in Gradient Causes Higher Percentage Error in Ballistic 
Partials Compared to the Corresponding Trajectory Variable
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The average and maximum errors for all ballistic partials of interest in the 

error models are shown in Table 31. The wind partials have the highest average and 

maximum percentage error due to the small magnitudes of the variables. The 

maximum error of all partials is less than 7 percent.

Table 31.  Average and Maximum Percentage Errors for Ballistic Partials

Ballistic Partials Average Error Maximum Error

dx/dV 2.05% 4.07%

4.34% 6.37%

dx/dQE 4.11% 6.77%

dx/dW 5.62% 6.94%

dz/dW 4.62% 6.94%

dx/dT 2.64% 6.00%

C. ACCURACY ANALYSIS

Similar to the trend seen in the trajectory model, the percentage error in the 

accuracy metrics increases with increasing range and muzzle velocities. From Figure 

43 and Figure 44, the absolute percentage error in range is less than 13 percent and in 

deflection, less than 8 percent. For typical firing range, represented by values 

corresponding to medium range, the absolute error in range is less than 10 percent and 

in deflection, less than 5 percent. The standard deviation in range, x,tot, is observed to 

be greater in magnitude than the corresponding deflection. This is because more 

partials are required to compute x,tot, and each partial’s error increases the total 

magnitude, resulting in a larger error.
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Figure 43. Absolute Percentage 
Error in x,tot

Figure 44. Absolute Percentage 
Error in z,tot

Note that not all partials have equal influence on the overall error metric. It 

depends on the relative magnitude of the partials and error budgets. A large partial 

with a significantly smaller error budget may have a small effect as compared to a 

small partial with a large error budget. The value of the error budgets depends on the 

weapon platform, firing charge, projectile, and MET staleness, and the partials depend

on the firing weapon, firing charge, and projectile. In the case of M198 firing 

M107(HE) 155mm, it is observed that the magnitude of the partials changes with 

range and muzzle velocity as shown in Figure 45. At short range and low muzzle 

velocity, the largest two partials in magnitude are dx/dQE and dx/dV. The value of 

dx/dV increases in magnitude with increasing range and eventually becomes larger 

than dx/dQE. At increasing muzzle velocities, the value of dx/d becomes more 

dominant. At short range and high muzzle velocity, dx/dQE and dx/d are most 

dominant. Similar to lower muzzle velocities, dx/dV increases with increasing range 

and surpasses dx/dQE, but dx/d increases more than the other two partials and 

becomes most dominant at long range and high muzzle velocity firings.
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Figure 45. Top Two Largest Partials for Various Muzzle Velocity and Range 
Combinations

D. EFFECT OF TIME STEP

The magnitude of the time step has an effect on the error observed. For all 

illustrations in this thesis, a time step of 0.01 seconds is chosen. This selection is 

based on an initial observation that the trajectory outputs had no significant difference 

with smaller time steps. As the magnitude of time step is reduced, the trajectory 

outputs and ballistic partials converge toward those in FT 155-AM-02. However, this 

is at the expense of computational speed, as shown in Table 32. If the accuracy 

metrics are computed using smaller time steps, the error is less than those found in 

Table 25 to Table 29.  



76

Table 32.  Effect of Time Step on QE and dx/dQE for Muzzle Velocity of 
684 m/s at 11,000 m

dt = 0.1 sec dt = 0.01 sec dt = 0.005 sec FT

QE (mils) 254.57 251.98 251.84 248.4

% error in QE 2.49% 1.44% 1.39% ---

dx/dQE 19.88 20.50 20.26 20.20

% error in 

dx/dQE -1.59% 1.50% 0.30% ---

Computation 

Time 3secs 30secs 80 secs ---
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VIII. CONCLUSIONS

This research successfully developed a program to quickly estimate the 

accuracy of unguided artillery projectiles through three intermediate steps:

1. Developing a simplified version of the modified point mass trajectory 
model,

2. Calculating ballistic partials using the developed trajectory model, and

3. Evaluating error metrics using well known error models for MPI and 
Precision Errors, and the appropriate error budgets associated with the 
method of fire and MET staleness.

The following important observations were made during the work of this 

thesis:

1. Accuracy computation can typically be achieved in under 30 seconds 
for most ranges and charges.

2. The smaller the magnitude of time step, the better the convergence of 
the trajectory and ballistic partials outputs.

3. The angle of attack is sufficiently small to be neglected.

4. The errors are the highest at the minimum and maximum range of a 
given charge.

5. By comparing with data from FT 155-AM-02 firing tables, maximum
error of trajectory outputs, except drift, are less than 2 percent and less 
than 4 percent for drift. Ballistic partials are less than 7 percent.

6. Using a common set of error budgets to compute the accuracy metrics 
using partials from FT 155-AM-02 and comparing them with those 
generated from IFDAP, the maximum error in the accuracy metric x,tot 

is less than 13 percent, and z,tot is less than 8 percent. For medium 
(typical) firing ranges, x,tot is less than 10 percent, and z,tot is less than 
5 percent.

7. Not all ballistic partials have equal weighting on error metrics. The 
three largest partials numerically are dx/dQE, dx/dV, and dx/d .
Depending on muzzle velocity and range, one of them would be 
largest. However, their weighting on accuracy would depend on the 
corresponding error budgets.
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APPENDIX B. MATLAB SCRIPT FOR POINT MASS, ZERO DRAG
MODEL

clear all, clc
theta = (456/3200)*pi; %input elevation
v0=684; %input projectile velocity

v0h = v0*cos(theta);
vh(1)=v0h; sh(1)=0;
v0v = v0*sin(theta);
vv(1)=v0v; sv(1)=0;

a=-9.81;
t = linspace(0,99);
[r c] = size(t);

for i=2:c
vv(i) = v0v+a*t(i);
sv(i) = v0v*t(i)+0.5*a*t(i)^2;

vh(i) = v0h;
sh(i) = v0h*t(i);

if sv(i)<0;
break

end

end

impactvelocity = sqrt(vh(i)^2 + vv(i)^2);
impactangle=atan(abs(vv(i)/vh(i)));
timeofflight=-(2*v0v)/a;
maxaltitude=max(sv);

plot(sh,sv)
xlabel('Range (m)'), ylabel('Altitude (m)');
axis([0 inf 0 inf]), title('Point Mass, Zero Drag Model')

fprintf('Range is %.2f m \n', sh(i))
fprintf('Impact Angle is %.2f radians \n', impactangle)
fprintf('Time of Flight is %.2f s \n', timeofflight)
fprintf('Impact Velocity is %.2f m/s \n', impactvelocity)
fprintf('Max Altitude is %.2f m \n', maxaltitude)
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APPENDIX C. MET ERROR BUDGETS
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APPENDIX D. VISUAL BASIC CODE (QE FINDER MAIN)

Option Explicit

Dim theta_zero, des_range, des_v0, g, i, iterations, accuracy, QE, calc_range

Sub QEfinderMain()

'----------------------------------------------------------------
' This code finds the QE required for the desired range input by the user. First,
' it obtains the QE for a zero drag trajectory scenario, then inputs this QE to the thesis
' model to calculate the range. The value of the difference in the range divided by
' the unit effect of QE is added to the zero drag QE for a 2nd iteration. This goes on
' until the desired accuracy has been met, or number of iterations has been fulfilled.
'----------------------------------------------------------------

'Clearing output cells
range("F27:F28").Select
Selection.clearcontents

' Getting General Parameters
g = range("B9")
des_range = range("B27")
des_v0 = range("B28")

' Calculating QE for zero drag trajectory
theta_zero = 0.5 * WorksheetFunction.Asin(g * des_range / des_v0 ^ 2)
QE = theta_zero / WorksheetFunction.Pi * 3200

' 1st iteration using QE from zero drag
Call QEFinderTrajectory(QE, calc_range)

' Iterating towards desired accuracy
iterations = range("B29")
accuracy = range("B30")

For i = 1 To iterations

If Abs(des_range - calc_range) > accuracy Then
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QE = QE + (des_range - calc_range) / (calc_range / QE)
Call QEFinderTrajectory(QE, calc_range)

End If

Next i

' Writing results to Nominal Trajectory Input Cells
range("F27") = QE
range("B4") = QE
range("F28") = calc_range
range("B3") = des_v0

End Sub
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APPENDIX E. VISUAL BASIC CODE (QE FINDER TRAJECTORY)

Option Explicit

Dim initialvelocity, QEradians, launchalt, tgtalt
Dim vx_AG, vz_AG
Dim frho, fT, fl
Dim g, m, d, Ixx, twist, s, k, R, tgt_ht, dt, i As Integer
Dim initialvx, initialvy, initialp

Dim projrange, impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, 
maxordrange, TOF

Sub QEFinderTrajectory(QE, calc_range)

'Getting Firing Inputs
initialvelocity = range("B28")
QEradians = QE / 3200 * WorksheetFunction.Pi
launchalt = range("B5")
tgtalt = range("B6")

'Getting Weapon Data
twist = Worksheets("Aerodata").range("B25")
Ixx = Worksheets("Aerodata").range("B26")
m = Worksheets("Aerodata").range("B27")
d = Worksheets("Aerodata").range("B28")

'Getting Wind Data
vx_AG = range("B15")
vz_AG = range("B16")

'Getting Form Factors
fl = Worksheets("Aerodata").range("B31")
fT = Worksheets("Aerodata").range("B32")
frho = Worksheets("Aerodata").range("B33")

'Getting General Parameters
dt = range("B9")
g = range("B10")
k = range("B11").Value / range("B12").Value
R = range("B11").Value - range("B12").Value
i = 0

'Initial Velocities



90

initialvx = initialvelocity * Cos(QEradians)
initialvy = initialvelocity * Sin(QEradians)
initialp = 2 * WorksheetFunction.Pi * initialvelocity / (twist * d)

'Reference Area
s = 0.25 * WorksheetFunction.Pi * d ^ 2

Call TrajectoryComputer(initialvelocity, QEradians, launchalt, tgtalt, twist, Ixx, m, d, 
vx_AG, vz_AG, fl, fT, frho, dt, g, k, R, i, initialvx, initialvy, initialp, s, projrange, 
impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, maxordrange, TOF)

' Output Results
calc_range = projrange

End Sub
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APPENDIX F. VISUAL BASIC CODE (NOMINAL TRAJECTORY)

Option Explicit

Dim initialvelocity, QEradians, launchalt, tgtalt
Dim vx_AG, vz_AG
Dim frho, fT, fl
Dim g, m, d, Ixx, twist, s, k, R, tgt_ht, dt, i As Integer
Dim initialvx, initialvy, initialp

Dim projrange, impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, 
maxordrange, TOF
Sub NominalTrajectory()

'Computation indicator switch to computing
range("E19").Interior.ColorIndex = 3
range("F19").Interior.ColorIndex = 2

'Clearing output cells
range("F2:F11").Select
Selection.clearcontents

'Getting Firing Inputs
initialvelocity = range("B3")
QEradians = range("B4") * WorksheetFunction.Pi / 3200
launchalt = range("B5")
tgtalt = range("B6")

'Getting Weapon Data
twist = Worksheets("Aerodata").range("B25")
Ixx = Worksheets("Aerodata").range("B26")
m = Worksheets("Aerodata").range("B27")
d = Worksheets("Aerodata").range("B28")

'Getting Wind Data
vx_AG = range("B15")
vz_AG = range("B16")

'Getting Form Factors
fl = Worksheets("Aerodata").range("B31")
fT = Worksheets("Aerodata").range("B32")
frho = Worksheets("Aerodata").range("B33")

'Getting General Parameters
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dt = range("B9")
g = range("B10")
k = range("B11").Value / range("B12").Value
R = range("B11").Value - range("B12").Value
i = 0

'Initial Velocities
initialvx = initialvelocity * Cos(QEradians)
initialvy = initialvelocity * Sin(QEradians)
initialp = 2 * WorksheetFunction.Pi * initialvelocity / (twist * d)

'Ref Area
s = 0.25 * WorksheetFunction.Pi * d ^ 2

Call TrajectoryComputer(initialvelocity, QEradians, launchalt, tgtalt, twist, Ixx, m, d, 
vx_AG, vz_AG, fl, fT, frho, dt, g, k, R, i, initialvx, initialvy, initialp, s, projrange, 
impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, maxordrange, TOF)

'Writing Outputs

range("F2") = QEradians * 3200 / WorksheetFunction.Pi
range("F3") = projrange
range("F4") = initialvelocity
range("F5") = impvelocity
range("F6") = impangle
range("F7") = totaldrift
range("F8") = totaldriftmils
range("F9") = maxord
range("F10") = maxordrange
range("F11") = TOF

'Computation indicator switch to computation complete
range("E19").Interior.ColorIndex = 2
range("F19").Interior.ColorIndex = 35

End Sub
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APPENDIX G. VISUAL BASIC CODE (PARTIALS MAIN)

Sub PartialsMain()

'Computation indicator switch to computing
range("E19").Interior.ColorIndex = 3
range("F19").Interior.ColorIndex = 2

If range("B7") = "Predicted" Then
PrecisionError
MPIErrorPredicted

End If

If range("B7") = "Adjusted" Then
PrecisionError
'MPIErrorAdjusted (not developed)

End If

'Computation indicator switch to computation complete
range("E19").Interior.ColorIndex = 2
range("F19").Interior.ColorIndex = 35

End Sub
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APPENDIX H. VISUAL BASIC CODE (PARTIALS MPI ERROR 
PREDICTED)

Option Explicit

Dim initialvelocity, QEradians, launchalt, tgtalt
Dim vx_AG, vz_AG
Dim frho, fT, fl
Dim g, m, d, Ixx, twist, s, k, R, tgt_ht, dt, i As Integer
Dim initialvx, initialvy, initialp

Dim projrange, impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, 
maxordrange, TOF
Sub MPIErrorPredicted()

'***********************************************************************
'Perturbation in Tailwind
'***********************************************************************

'Getting Firing Inputs
initialvelocity = range("B3")
QEradians = range("B4") * WorksheetFunction.Pi / 3200
launchalt = range("B5")
tgtalt = range("B6")

'Getting Weapon Data
twist = Worksheets("Aerodata").range("B25")
Ixx = Worksheets("Aerodata").range("B26")
m = Worksheets("Aerodata").range("B27")
d = Worksheets("Aerodata").range("B28")

'Getting Wind Data
vx_AG = range("B15") + range("J29").Value * 0.514444
vz_AG = range("B16")

'Getting Form Factors
fl = Worksheets("Aerodata").range("B31")
fT = Worksheets("Aerodata").range("B32")
frho = Worksheets("Aerodata").range("B33")

'Getting General Parameters
dt = range("B9")
g = range("B10")
k = range("B11").Value / range("B12").Value
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R = range("B11").Value - range("B12").Value
i = 0

'Initial Velocities
initialvx = initialvelocity * Cos(QEradians)
initialvy = initialvelocity * Sin(QEradians)
initialp = 2 * WorksheetFunction.Pi * initialvelocity / (twist * d)

'Ref Area
s = 0.25 * WorksheetFunction.Pi * d ^ 2

Call TrajectoryComputer(initialvelocity, QEradians, launchalt, tgtalt, twist, Ixx, m, d, 
vx_AG, vz_AG, fl, fT, frho, dt, g, k, R, i, initialvx, initialvy, initialp, s, projrange, 
impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, maxordrange, TOF)

' Writing Results
With Worksheets("MPI Error")

.range("D10") = QEradians / WorksheetFunction.Pi * 3200

.range("E10") = projrange

.range("F10") = initialvelocity

.range("G10") = impvelocity

.range("H10") = impangle

.range("I10") = totaldrift

.range("J10") = totaldriftmils

.range("K10") = maxord

.range("L10") = maxordrange

.range("M10") = TOF
End With

'***********************************************************************
'Perturbation in Crosswind
'***********************************************************************

'Getting Firing Inputs
initialvelocity = range("B3")
QEradians = range("B4") * WorksheetFunction.Pi / 3200
launchalt = range("B5")
tgtalt = range("B6")

'Getting Weapon Data
twist = Worksheets("Aerodata").range("B25")
Ixx = Worksheets("Aerodata").range("B26")
m = Worksheets("Aerodata").range("B27")
d = Worksheets("Aerodata").range("B28")
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'Getting Wind Data
vx_AG = range("B15")
vz_AG = range("B16") + range("J30").Value * 0.514444

'Getting Form Factors
fl = Worksheets("Aerodata").range("B31")
fT = Worksheets("Aerodata").range("B32")
frho = Worksheets("Aerodata").range("B33")

'Getting General Parameters
dt = range("B9")
g = range("B10")
k = range("B11").Value / range("B12").Value
R = range("B11").Value - range("B12").Value
i = 0

'Initial Velocities
initialvx = initialvelocity * Cos(QEradians)
initialvy = initialvelocity * Sin(QEradians)
initialp = 2 * WorksheetFunction.Pi * initialvelocity / (twist * d)

'Ref Area
s = 0.25 * WorksheetFunction.Pi * d ^ 2

Call TrajectoryComputer(initialvelocity, QEradians, launchalt, tgtalt, twist, Ixx, m, d, 
vx_AG, vz_AG, fl, fT, frho, dt, g, k, R, i, initialvx, initialvy, initialp, s, projrange, 
impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, maxordrange, TOF)

' Writing Results
With Worksheets("MPI Error")

.range("D12") = QEradians / WorksheetFunction.Pi * 3200

.range("E12") = projrange

.range("F12") = initialvelocity

.range("G12") = impvelocity

.range("H12") = impangle

.range("I12") = totaldrift

.range("J12") = totaldriftmils

.range("K12") = maxord

.range("L12") = maxordrange

.range("M12") = TOF
End With

'***********************************************************************
'Perturbation in air temperature
'***********************************************************************
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'Getting Firing Inputs
initialvelocity = range("B3")
QEradians = range("B4") * WorksheetFunction.Pi / 3200
launchalt = range("B5")
tgtalt = range("B6")

'Getting Weapon Data
twist = Worksheets("Aerodata").range("B25")
Ixx = Worksheets("Aerodata").range("B26")
m = Worksheets("Aerodata").range("B27")
d = Worksheets("Aerodata").range("B28")

'Getting Wind Data
vx_AG = range("B15")
vz_AG = range("B16")

'Getting Form Factors
fl = Worksheets("Aerodata").range("B31")
fT = (1 + range("J31").Value / 100) * Worksheets("Aerodata").range("B32")
frho = Worksheets("Aerodata").range("B33")

'Getting General Parameters
dt = range("B9")
g = range("B10")
k = range("B11").Value / range("B12").Value
R = range("B11").Value - range("B12").Value
i = 0

'Initial Velocities
initialvx = initialvelocity * Cos(QEradians)
initialvy = initialvelocity * Sin(QEradians)
initialp = 2 * WorksheetFunction.Pi * initialvelocity / (twist * d)

'Ref Area
s = 0.25 * WorksheetFunction.Pi * d ^ 2

Call TrajectoryComputer(initialvelocity, QEradians, launchalt, tgtalt, twist, Ixx, m, d, 
vx_AG, vz_AG, fl, fT, frho, dt, g, k, R, i, initialvx, initialvy, initialp, s, projrange, 
impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, maxordrange, TOF)

' Writing Results
With Worksheets("MPI Error")

.range("D14") = QEradians / WorksheetFunction.Pi * 3200

.range("E14") = projrange
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.range("F14") = initialvelocity

.range("G14") = impvelocity

.range("H14") = impangle

.range("I14") = totaldrift

.range("J14") = totaldriftmils

.range("K14") = maxord

.range("L14") = maxordrange

.range("M14") = TOF
End With

End Sub
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APPENDIX I. VISUAL BASIC CODE (PARTIALS PRECISION 
ERROR)

Option Explicit

Dim initialvelocity, QEradians, launchalt, tgtalt
Dim vx_AG, vz_AG
Dim frho, fT, fl
Dim g, m, d, Ixx, twist, s, k, R, tgt_ht, dt, i As Integer
Dim initialvx, initialvy, initialp

Dim projrange, impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, 
maxordrange, TOF
Sub PrecisionError()

'***********************************************************************
'Perturbation in Initial Velocity
'***********************************************************************

'Getting Firing Inputs
initialvelocity = range("B3") + range("J34")
QEradians = range("B4") * WorksheetFunction.Pi / 3200
launchalt = range("B5")
tgtalt = range("B6")

'Getting Weapon Data
twist = Worksheets("Aerodata").range("B25")
Ixx = Worksheets("Aerodata").range("B26")
m = Worksheets("Aerodata").range("B27")
d = Worksheets("Aerodata").range("B28")

'Getting Wind Data
vx_AG = range("B15")
vz_AG = range("B16")

'Getting Form Factors
fl = Worksheets("Aerodata").range("B31")
fT = Worksheets("Aerodata").range("B32")
frho = Worksheets("Aerodata").range("B33")

'Getting General Parameters
dt = range("B9")
g = range("B10")
k = range("B11").Value / range("B12").Value
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R = range("B11").Value - range("B12").Value
i = 0

'Initial Velocities
initialvx = initialvelocity * Cos(QEradians)
initialvy = initialvelocity * Sin(QEradians)
initialp = 2 * WorksheetFunction.Pi * initialvelocity / (twist * d)

'Ref Area
s = 0.25 * WorksheetFunction.Pi * d ^ 2

Call TrajectoryComputer(initialvelocity, QEradians, launchalt, tgtalt, twist, Ixx, m, d, 
vx_AG, vz_AG, fl, fT, frho, dt, g, k, R, i, initialvx, initialvy, initialp, s, projrange, 
impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, maxordrange, TOF)

' Writing Results
With Worksheets("Precision Error")

.range("E11") = QEradians / WorksheetFunction.Pi * 3200

.range("F11") = projrange

.range("G11") = initialvelocity

.range("H11") = impvelocity

.range("I11") = impangle

.range("J11") = totaldrift

.range("K11") = totaldriftmils

.range("L11") = maxord

.range("M11") = maxordrange

.range("N11") = TOF
End With

'***********************************************************************
'Perturbation in air density
'***********************************************************************

'Getting Firing Inputs
initialvelocity = range("B3")
QEradians = range("B4") * WorksheetFunction.Pi / 3200
launchalt = range("B5")
tgtalt = range("B6")

'Getting Weapon Data
twist = Worksheets("Aerodata").range("B25")
Ixx = Worksheets("Aerodata").range("B26")
m = Worksheets("Aerodata").range("B27")
d = Worksheets("Aerodata").range("B28")
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'Getting Wind Data
vx_AG = range("B15")
vz_AG = range("B16")

'Getting Form Factors
fl = Worksheets("Aerodata").range("B31")
fT = Worksheets("Aerodata").range("B32")
frho = (1 + range("J32").Value / 100) * Worksheets("Aerodata").range("B33")

'Getting General Parameters
dt = range("B9")
g = range("B10")
k = range("B11").Value / range("B12").Value
R = range("B11").Value - range("B12").Value
i = 0

'Initial Velocities
initialvx = initialvelocity * Cos(QEradians)
initialvy = initialvelocity * Sin(QEradians)
initialp = 2 * WorksheetFunction.Pi * initialvelocity / (twist * d)

'Ref Area
s = 0.25 * WorksheetFunction.Pi * d ^ 2

Call TrajectoryComputer(initialvelocity, QEradians, launchalt, tgtalt, twist, Ixx, m, d, 
vx_AG, vz_AG, fl, fT, frho, dt, g, k, R, i, initialvx, initialvy, initialp, s, projrange, 
impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, maxordrange, TOF)

' Writing Results
With Worksheets("Precision Error")

.range("E13") = QEradians / WorksheetFunction.Pi * 3200

.range("F13") = projrange

.range("G13") = initialvelocity

.range("H13") = impvelocity

.range("I13") = impangle

.range("J13") = totaldrift

.range("K13") = totaldriftmils

.range("L13") = maxord

.range("M13") = maxordrange

.range("N13") = TOF
End With

'***********************************************************************
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'Perturbation in QE
'***********************************************************************

'Getting Firing Inputs
initialvelocity = range("B3")
QEradians = (range("B4") + range("J33")) * WorksheetFunction.Pi / 3200
launchalt = range("B5")
tgtalt = range("B6")

'Getting Weapon Data
twist = Worksheets("Aerodata").range("B25")
Ixx = Worksheets("Aerodata").range("B26")
m = Worksheets("Aerodata").range("B27")
d = Worksheets("Aerodata").range("B28")

'Getting Wind Data
vx_AG = range("B15")
vz_AG = range("B16")

'Getting Form Factors
fl = Worksheets("Aerodata").range("B31")
fT = Worksheets("Aerodata").range("B32")
frho = Worksheets("Aerodata").range("B33")

'Getting General Parameters
dt = range("B9")
g = range("B10")
k = range("B11").Value / range("B12").Value
R = range("B11").Value - range("B12").Value
i = 0

'Initial Velocities
initialvx = initialvelocity * Cos(QEradians)
initialvy = initialvelocity * Sin(QEradians)
initialp = 2 * WorksheetFunction.Pi * initialvelocity / (twist * d)

'Ref Area
s = 0.25 * WorksheetFunction.Pi * d ^ 2

Call TrajectoryComputer(initialvelocity, QEradians, launchalt, tgtalt, twist, Ixx, m, d, 
vx_AG, vz_AG, fl, fT, frho, dt, g, k, R, i, initialvx, initialvy, initialp, s, projrange, 
impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, maxordrange, TOF)

' Writing Results
With Worksheets("Precision Error")
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.range("E15") = QEradians / WorksheetFunction.Pi * 3200

.range("F15") = projrange

.range("G15") = initialvelocity

.range("H15") = impvelocity

.range("I15") = impangle

.range("J15") = totaldrift

.range("K15") = totaldriftmils

.range("L15") = maxord

.range("M15") = maxordrange

.range("N15") = TOF
End With

End Sub
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APPENDIX J. VISUAL BASIC CODE (TRAJECTORY COMPUTER)

Option Explicit

Dim x(10000), y(10000), z(10000), p(10000), vx(10000), vy(10000), vz(10000), 
v(10000)
Dim vx_PA(10000), vz_PA(10000), v_PA(10000), vm(10000)
Dim vx_AG, vz_AG
Dim ax(10000), ay(10000), az(10000), ap(10000), rolldamp(10000)
Dim theta(10000), beta(10000), phi(10000), mach(10000)

Dim frho, fT, fl

Dim Cd_a0(10000), Cd_a1(10000), Cd(10000)
Dim CMa_a0(10000), CMa_a1(10000), CMa(10000)
Dim CLa_a0(10000), CLa_a1(10000), CLa(10000)
Dim Clp_a0(10000), Clp_a1(10000), Clp(10000)
Dim Temp_a0(10000), Temp_a1(10000), Temp(10000)
Dim rho_a0(10000), rho_a1(10000), rho(10000)

Dim g, m, d, Ixx, twist, s, k, R, t(10000), dt, i As Integer

Dim Fd(10000), Fdx(10000), Fdy(10000), Fdz(10000), Flz(10000)

Dim projrange, impangle, winddrift, totaldrift, totaldriftmils, maxord, maxordrange

Sub TrajectoryComputer(initialvelocity, QEradians, launchalt, tgtalt, twist, Ixx, m, d, 
vx_AG, vz_AG, fl, fT, frho, dt, g, k, R, i, initialvx, initialvy, initialp, s, projrange, 
impvelocity, impangle, winddrift, totaldrift, totaldriftmils, maxord, maxordrange, TOF)

v(0) = initialvelocity
theta(0) = QEradians
y(0) = launchalt
vx(0) = initialvx
vy(0) = initialvy
p(0) = initialp

While y(i) >= tgtalt Or x(i) < 500
i = i + 1
t(i) = t(i - 1) + dt

'Air Properties Interpolation
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Temp_a0(i - 1) = 
WorksheetFunction.Index(Worksheets("Airtable").range("C1:C23"), 
WorksheetFunction.Match(y(i - 1), Worksheets("Airtable").range("A1:A23")) + 1)

Temp_a1(i - 1) = 
WorksheetFunction.Index(Worksheets("Airtable").range("D1:D23"), 
WorksheetFunction.Match(y(i - 1), Worksheets("Airtable").range("A1:A23")) + 1)

Temp(i - 1) = fT * (Temp_a0(i - 1) + Temp_a1(i - 1) * y(i - 1))

rho_a0(i - 1) = 
WorksheetFunction.Index(Worksheets("Airtable").range("F1:F23"), 
WorksheetFunction.Match(y(i - 1), Worksheets("Airtable").range("A1:A23")) + 1)

rho_a1(i - 1) = 
WorksheetFunction.Index(Worksheets("Airtable").range("G1:G23"), 
WorksheetFunction.Match(y(i - 1), Worksheets("Airtable").range("A1:A23")) + 1)

rho(i - 1) = frho * (rho_a0(i - 1) + rho_a1(i - 1) * y(i - 1))

vm(i - 1) = Sqr(k * R * Temp(i - 1))                                   'speed of sound
vx_PA(i - 1) = vx(i - 1) - vx_AG                                                    'x-component 

relative velocity
vz_PA(i - 1) = vz(i - 1) - vz_AG                                                    'z-component 

relative velocity
v_PA(i - 1) = Sqr(vx_PA(i - 1) ^ 2 + vy(i - 1) ^ 2 + vz_PA(i - 1))   'total relative 

velocity
mach(i - 1) = v_PA(i - 1) / vm(i - 1)                                              'relative mach no

'Aero Coefficients Interpolation
Cd_a0(i - 1) = 

WorksheetFunction.Index(Worksheets("Aerodata").range("C2:C13"), 
WorksheetFunction.Match(mach(i - 1), Worksheets("Aerodata").range("B2:B13")) + 1)

Cd_a1(i - 1) = 
WorksheetFunction.Index(Worksheets("Aerodata").range("D2:D13"), 
WorksheetFunction.Match(mach(i - 1), Worksheets("Aerodata").range("B2:B13")) + 1)

Cd(i - 1) = Cd_a0(i - 1) + Cd_a1(i - 1) * mach(i - 1)

CMa_a0(i - 1) = 
WorksheetFunction.Index(Worksheets("Aerodata").range("H9:H19"), 
WorksheetFunction.Match(mach(i - 1), Worksheets("Aerodata").range("G9:G19")) + 1)

CMa_a1(i - 1) = 
WorksheetFunction.Index(Worksheets("Aerodata").range("I9:I19"), 
WorksheetFunction.Match(mach(i - 1), Worksheets("Aerodata").range("G9:G19")) + 1)

CMa(i - 1) = CMa_a0(i - 1) + CMa_a1(i - 1) * mach(i - 1)

CLa_a0(i - 1) = 
WorksheetFunction.Index(Worksheets("Aerodata").range("H2:H6"), 
WorksheetFunction.Match(mach(i - 1), Worksheets("Aerodata").range("G2:G6")) + 1)
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CLa_a1(i - 1) = 
WorksheetFunction.Index(Worksheets("Aerodata").range("I2:I6"), 
WorksheetFunction.Match(mach(i - 1), Worksheets("Aerodata").range("G2:G6")) + 1)

CLa(i - 1) = CLa_a0(i - 1) + CLa_a1(i - 1) * mach(i - 1)

Clp_a0(i - 1) = 
WorksheetFunction.Index(Worksheets("Aerodata").range("C16:C20"), 
WorksheetFunction.Match(mach(i - 1), Worksheets("Aerodata").range("B16:B20")) + 1)

Clp_a1(i - 1) = 
WorksheetFunction.Index(Worksheets("Aerodata").range("D16:D20"), 
WorksheetFunction.Match(mach(i - 1), Worksheets("Aerodata").range("B16:B20")) + 1)

Clp(i - 1) = Clp_a0(i - 1) + Clp_a1(i - 1) * mach(i - 1)

'Yaw of Repose (Side Slip Angle)
beta(i - 1) = 8 * Ixx * p(i - 1) * g * Cos(theta(i - 1)) / (WorksheetFunction.Pi * 

rho(i - 1) * d ^ 3 * CMa(i - 1) * v_PA(i - 1) ^ 3)

'Angle between velocity vector and x-axis
phi(i - 1) = Abs(Atn(vz(i - 1) / vx(i - 1)))

'Forces Computation
Fd(i - 1) = 0.5 * rho(i - 1) * v_PA(i - 1) ^ 2 * s * Cd(i - 1)
Fdx(i - 1) = Fd(i - 1) * Cos(theta(i - 1)) * Cos(phi(i - 1))
Fdy(i - 1) = Fd(i - 1) * Sin(theta(i - 1))
Fdz(i - 1) = Fd(i - 1) * Cos(theta(i - 1)) * Sin(phi(i - 1))
Flz(i - 1) = fl * 0.5 * rho(i - 1) * v_PA(i - 1) ^ 2 * s * CLa(i - 1) * Sin(beta(i - 1)) 

* Cos(phi(i - 1) + beta(i - 1))

'Equations of Motion
ax(i - 1) = -Fdx(i - 1) / m                     'equation (3.1)
ay(i - 1) = -g - Fdy(i - 1) / m                'equation (3.2)
az(i - 1) = -(Flz(i - 1) - Fdz(i - 1)) / m                    'equation (3.)

vx(i) = vx(i - 1) + ax(i - 1) * dt              'horizontal, equation (3.14)
vy(i) = vy(i - 1) + ay(i - 1) * dt               'vertical, equation (3.14)
vz(i) = vz(i - 1) + az(i - 1) * dt          'lateral, equation (3.14)

'computation of velocity and projectile angle at next time step
v(i) = Sqr(vx(i) ^ 2 + vy(i) ^ 2 + vz(i) ^ 2)           'equation (3.15)
x(i) = x(i - 1) + vx(i) * dt            'equation (3.16)
y(i) = y(i - 1) + vy(i) * dt                                     'equation (3.16)
z(i) = z(i - 1) + vz(i) * dt                                     'equation (3.16)
theta(i) = Atn(vy(i) / Sqr(vx(i) ^ 2 + vz(i) ^ 2))     'equation (3.21)
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'Angular deceleration and projectile spin at next time step
rolldamp(i - 1) = 0.5 * rho(i - 1) * v_PA(i - 1) ^ 2 * s * d * (p(i - 1) * d / v_PA(i -

1)) * Clp(i - 1) 'Equation (3.7)
ap(i - 1) = rolldamp(i - 1) / Ixx                                    'equation (3.8) For a steady 

torque (moment): change in angular velocity = (moment/inertia)*time
p(i) = p(i - 1) + ap(i - 1) * dt            'equation (3.14)

Wend

'Computing Outputs

projrange = Sqr(x(i) ^ 2 + z(i) ^ 2)                                            'Projectile Range
impvelocity = v(i)                                                                     'Impact Velocity
impangle = (Abs(theta(i)) / WorksheetFunction.Pi) * 3200       'Impact Angle
winddrift = vz_AG * (t(i) - projrange / v(0))                              'Drift due to wind only
totaldrift = Abs(z(i)) + winddrift                                               'Total drift in m
totaldriftmils = totaldrift / (projrange / 1000)                         'Total drift in mils

For k = 1 To i
If y(k) < y(k - 1) Then

maxord = y(k - 1)                                                            'Max ord
maxordrange = x(k - 1)                                                   'Range at Max ord
Exit For

End If
Next k

TOF = t(i)                'TOF

End Sub
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