
ARL-TR-7956• FEB 2017

US Army Research Laboratory

Producing aData Dictionary froman Extensible
Markup Language (XML) Schema in the Global
Force Management Data Initiative

by Frederick S Brundick

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-
ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-7956• FEB 2017

US Army Research Laboratory

Producing aData Dictionary froman Extensible
Markup Language (XML) Schema in the Global
Force Management Data Initiative

by Frederick S Brundick
Computing and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704 0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD MM YYYY) 2. REPORT TYPE 3. DATES COVERED (From To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Feb 2017 Technical Report

Producing a Data Dictionary from an Extensible Markup Language (XML) Schema
in the Global Force Management Data Initiative

Frederick S Brundick

ARL-TR-7956

Approved for public release; distribution is unlimited.

May 2012–October 2012

R.0010376.8

US Army Research Laboratory
ATTN: RDRL-CII-T
Aberdeen Proving Ground, MD 21005-5066

primary author’s email: <frederick.s.brundick.civ@mail.mil>.

A data dictionary is a document that describes the schema of a database—its tables, fields, datatypes, and allowable
values—plus additional instructions regarding its use. Traditionally the data dictionary is used to construct the database.
However, when the Global Force Management (GFM) Data Initiative (DI) information exchange data model (IEDM) was
migrated from Structured Query Language (SQL) to Extensible Markup Language (XML), the new XML Schema Definition
(XSD) files were maintained in parallel with the data dictionary. Over time the XSD and data dictionary diverged so an
application was written to construct the data dictionary in Hypertext Markup Language (HTML) from the XSD files.
This report documents the transformation script that was written, how it works, and the elements that were added to the XSD to
facilitate the generation of the data dictionary. It concludes with suggestions for additional applications of this technique to
extract information for use by other programs.

XML, XSD, XSLT, HTML, SQL, database, data dictionary

38

Frederick S Brundick

410-278-8943Unclassified Unclassified Unclassified UU

ii

Approved for public release; distribution is unlimited.

Contents

List of Figures v

1. Introduction 1

2. Background 2
2.1 Documenting XML 2

2.2 Transforming XML 3

3. Processing the XSD 3
3.1 Desired Output 3

3.2 Terminology 4

3.3 Data Sources 5

3.4 New Elements 6

3.5 Missing Documentation 8

3.6 New Documentation 8

3.7 Dictionary Changes 8

3.8 XSLT Script 9

3.8.1 Language Versions 9

3.8.2 Basic Approach 9

3.8.3 Documented Code 12

3.9 HTML Output 23

4. Discussion 24

4.1 Data Dictionary Differences 24

4.2 Documentation Revisions 25

4.3 Future Enhancements 25

5. Conclusion 26

6. References 27

iii

Approved for public release; distribution is unlimited.

List of Symbols, Abbreviations, and Acronyms 29

Distribution List 30

iv

Approved for public release; distribution is unlimited.

List of Figures

Fig. 1 Enumerated value with documentation element2

Fig. 2 Enumerated value with appinfo element added3

Fig. 3 Spreadsheet data dictionary ...4

Fig. 4 Addition of name element ..6

Fig. 5 Addition of fmid element ..7

Fig. 6 Addition of ewid element ..7

Fig. 7 Addition of dibr element ..7

Fig. 8 Definition of ACFT_TYPE_TBL element9

Fig. 9 Definition of Aircraft Type fields .. 10

Fig. 10 Definition of txt_optional_100 datatype .. 10

Fig. 11 Definition of DS336_acft_type_cat_code 11

Fig. 12 Row counts for Aircraft Type... 17

Fig. 13 HTML data dictionary fragment ... 24

Fig. 14 Date/time group definitions ... 24

v

Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

vi

Approved for public release; distribution is unlimited.

1. Introduction

The Global Force Management (GFM) Data Initiative (DI)1 uses an information
exchange data model (IEDM) to ensure that producers and consumers may share
force structure data. The original GFMIEDM was designed using ERwin,2 a tool
for creating entity-relationship (E-R) diagrams. ERwin was used to produce a data
dictionary in the form of an Excel spreadsheet from the E-R data. This spreadsheet
was then manually edited to make it easier to read and to add more information
such as business rules.

Since ERwin was designed to produce Structured Query Language (SQL) code, it
does not have any Extensible Markup Language (XML) features. When the GFMIEDM
was manually converted to an XML Schema Definition (XSD)3,4 replacing the SQL
schema, the data dictionary had to be maintained by hand. As the XSD evolved over
time, the schema and data dictionary began to diverge.

The decision was made to write an eXtensible Stylesheet Language: Transforma-
tions (XSLT)5 script to produce a data dictionary in Hypertext Markup Language
(HTML) directly from the XSD files. This effort would have 2 major benefits:

1) The XSD and data dictionary would remain synchronized, and

2) The XSD would contain additional information to aid a GFM DI developer
who had access to only the XSD files.

Some of the information displayed in the spreadsheet could not be derived from the
XSD, so additional, machine-readable elements had to be added.

This report contains a discussion of the XSLT script that was written, how it works,
and the elements that were added to the XSD to facilitate generating the data dic-
tionary.

1

Approved for public release; distribution is unlimited.

2. Background

2.1 Documenting XML

All programming languages, including XML, allow comments to be inserted in the
code to provide explanations to the person who is reading the code. The hierar-
chical design of XML enabled the designers of XSD to include both human- and
machine-readable documentation elements directly inside the schema elements that
they describe. Figure 1 shows how an enumerated value was defined prior to the
new GFM DI additions.

<xs:enumeration value="NTF">
<xs:annotation>
<xs:documentation>Naval Task Force: A multi-mission maritime
force that is a temporary grouping of units, under one
commander, formed for the purpose of carrying out a specific
operation or mission.</xs:documentation>

</xs:annotation>
</xs:enumeration>

Fig. 1 Enumerated value with documentation element

The critical information is the enumerated value NTF. The optional annotation
element may be placed inside of any XSD element, and it in turn may contain 2
standard elements: documentation and appinfo.

The former is intended to hold human-readable documentation; applications such
as XML editors generally extract this element and display it separately. The latter
may contain any valid XML, and it is the responsibility of the schema’s designer
to provide details on how its contents are to be processed. Some of the custom
appinfo elements of the GFMIEDM XSD are shown in bold in Fig. 2.

Notice that even though the appinfo contents are designed to be processed by
applications, they are still readable by humans. All of the GFM DI appinfo ele-
ments are described in Sections 3.3, 3.4, and 3.6.

2

Approved for public release; distribution is unlimited.

<xs:enumeration value="NTF">
<xs:annotation>
<xs:documentation>Naval Task Force: A multi-mission maritime
force that is a temporary grouping of units, under one
commander, formed for the purpose of carrying out a specific
operation or mission.</xs:documentation>
<xs:appinfo>

<app:change-request>11-0025</app:change-request>
<app:package>

<app:number>2</app:number>
<app:date>2012-10-01</app:date>

</app:package>
</xs:appinfo>

</xs:annotation>
</xs:enumeration>

Fig. 2 Enumerated value with appinfo element added

2.2 Transforming XML

An elegant feature of XML is that all related languages are written in XML. Any
application that processes XML data may also manipulate XSD and XSLT files.
XSLT scripts are often used to transform XML data from one schema to another or
to make them easier to read by producing HTML versions of the data. The XSLT
script described in Section 3 generates an HTML file from a set of XSD files. This
data dictionary contains all of the information that was produced by ERwin as an
Excel spreadsheet. Unlike the spreadsheet, it requires no manual editing.

3. Processing the XSD

3.1 Desired Output

Part of the original spreadsheet is shown in Fig. 3. The next sections describe the
contents of each cell and how it is obtained from the XSD.

The first column displays an attribute counter for easy reference. The second and
third columns (ELEMENT and ATTRIBUTE) both contain the logical (English)
name, the physical name(s) used by XSD, and a definition. The fourth column
(Business Rules) contains guidance for the data developer; these comments were
manually added to the spreadsheet.

3

Approved for public release; distribution is unlimited.

ELEMENT
Name / Abbreviation / Definition

ATTRIBUTE
Name / Abbreviation / Definition
(JC3IEDM / GFM-specific / FMIDS)

Business Rules and
Guidance for GFM DI

Valid Value Display
Value

Valid Value
Data Value

ATTRIBUTE Valid Value Definition
MANDATORY / OPTIONAL /
IDENTIFIER

VALIDATION
Names Used in XSD

6 Aircraft Type ID
(ACFT_TYPE.acft_type_id)

The equipment-type-id of a specific
AIRCRAFT-TYPE (a role name for
objecttype-id).

Rotary wing AIRRW A machine or device capable of
atmospheric flight and dependent on
rotating blades for lift.

DS336_acft_type_cat_code

Fixed wing FIXWNG A manned machine or device capable
of atmospheric flight and dependent
on wings for lift.

DS336_acft_type_cat_code

AIRCRAFT TYPE
(ACFT_TYPE)

An EQUIPMENT-TYPE that is
designed to fly.

MANDATORY IDENTIFIER CODE:
NUMERIC (20)

UID Value inherited from FMID OBJ_TYPE.obj_type_id:

ACFT_TYPE.acft_type_id = EQPT_TYPE.eqpt_type_id =
MAT TYPE.mat type id = OBJ TYPE.obj type id

7 Aircraft Type Category Code
(ACFT_TYPE.acft_type_cat_code)

The specific value that represents the
class of AIRCRAFT-TYPE.

MANDATORY CODE: VARCHAR (6)

Fig. 3 Spreadsheet data dictionary

The next 3 columns are collapsed into a single column with an indication if the at-
tribute is mandatory or optional, the SQL datatype, and the type’s definition. All 3
columns are used for enumerated values where they contain the logical name, enu-
merated value, and definition. The final column contains the rule (datatype) name
for enumerations. (This column was incorporated into the previous 3 columns in
the new data dictionary.)

3.2 Terminology

Terms used in the data dictionary have different meanings than the same words used
in XML. The GFMIEDM XSD stores all data values in XML elements. Only secu-
rity markings (which are ignored in this report) are stored in XML attributes. The
ELEMENT column in the data dictionary corresponds to a table in SQL, and the
ATTRIBUTE column contains SQL field names. SQL terms are used in reference
to the XSD in the following sections.

The globally unique values in GFM DI are called Enterprise-wide Identifiers (EwIDs).
A subset of these values are Force Management Identifiers (FMIDs). The data
model is object-oriented, with EwIDs joining the elements that make up the gener-
alization hierarchy. The EwID at the “top” of a hierarchy is an FMID. Simple tables
also have FMIDs as their primary key to uniquely identify each record.

4

Approved for public release; distribution is unlimited.

3.3 Data Sources

The XSD is the implementation of the GFMIEDM physical model. Data dictio-
nary cells that contain logical elements of the model were derived when possible;
otherwise, additional information had to be added to the XSD.

Element. The XSD names each table type instead of defining each table in place.
The table type names are in mixed case, and the XSLT script adds a space before
each capital letter to make the names more readable. (The name in the spreadsheet is
in all capitals.) For example “AircraftType” becomes “Aircraft Type.” The Element
Abbreviation is the physical table name in parentheses, and the definition is taken
from the documentation element.

Attribute. The logical name was not in the XSD and had to be added via an
appinfo element. The Abbreviation is the table name, a period, and the field
name, all surrounded by parentheses. (The field names in the XSD are in all capi-
tals and converted into lower case for readability.)

Business Rules. This column is an example of new information that was added to
the XSD, making it easier to understand. While the Data Implementation Business
Rules (DIBR) document6 describes the proper ways to produce GFM DI data, the
data dictionary contains reminders of some of the main rules.

Datatype. Every datatype cell spans 3 columns. The first line indicates if the field
is mandatory or optional along with a term which describes the datatype (Text,
Number, Identifier, etc.). The next line names the XSD datatype, replacing both
the Oracle7 datatype and the validation column in the spreadsheet data dictionary.
The third line contains the datatype definition. Fields that are EwIDs also contain
the full names of fields that they reference in other tables. When a field contains
enumerated values, additional lines display the display name of the value, its XSD
value, and a description. All of these values are obtained directly from the XSD.

5

Approved for public release; distribution is unlimited.

3.4 New Elements

Many of the changes to the XSD involved adding new text to existingdocumenta-
tion elements. However, logical names, FMID flags, EwIDs, references, and busi-
ness rules had to be inserted in new appinfo elements.

Attribute. Every field required the addition of an appinfo element inside of its
existing annotation element. There are GFM DI guidelines for how to create
a field name, but there are exceptions and it would have been harder to write a
comprehensive set of conversion rules than to add the logical names to the XSD.

Figure 4 shows the ACFT_TYPE_ID field. An appinfo element with a child
app:name element has been added to hold the logical field name. (All new ele-
ments that were added for the data dictionary belong to the app namespace.)

<xs:element name="CAT_CODE" type="DS336_acft_type_cat_code">
<xs:annotation>
<xs:documentation>The specific value that represents the
class of AIRCRAFT-TYPE.</xs:documentation>
<xs:appinfo>

<app:name>Aircraft Type Category Code</app:name>
</xs:appinfo>

</xs:annotation>
</xs:element>

Fig. 4 Addition of name element

The data dictionary denotes fields that are FMIDs. All EwID fields, whether they
are primary (i.e., FMIDs) or refer to other attributes, use the datatype identifier20 or
index20. Since there is nothing unique about FMIDs in the XSD, an empty element
named app:fmid was added to mark these fields as shown in Fig. 5.

Other identifiers are foreign keys that refer to other elements. They are denoted with
app:ewid elements that contain the table and field names of the primary key. The
aircraft type identifier in Fig. 6 refers to the object type identifier field in the object
type table.

Business Rules. The new dibr element, shown in Fig. 7, contains additional
notes that are displayed in the Business Rules column of the data dictionary.

6

Approved for public release; distribution is unlimited.

<xs:element name="ADDR_ID" type="identifier20">
<xs:annotation>
<xs:documentation>The unique value, or set of characters,
assigned to represent a specific ADDRESS and to distinguish
it from all other ADDRESSs.</xs:documentation>
<xs:appinfo>

<app:fmid/>
<app:name>Address Identifier</app:name>

</xs:appinfo>
</xs:annotation>

</xs:element>

Fig. 5 Addition of fmid element

<xs:element name="ACFT_TYPE_ID" type="identifier20">
<xs:annotation>
<xs:documentation>The equipment-type-id of a specific
AIRCRAFT-TYPE (a role name for object-type-id).
</xs:documentation>
<xs:appinfo>

<app:name>Aircraft Type Identifier</app:name>
<app:ewid>OBJ_TYPE.obj_type_id</app:ewid>

</xs:appinfo>
</xs:annotation>

</xs:element>

Fig. 6 Addition of ewid element

<xs:element name="CAT_CODE" type="DS4138_addr_cat_code">
<xs:annotation>
<xs:documentation>The specific value that represents
the class of ADDRESS. It serves as a discriminator that
partitions ADDRESS into subtypes.</xs:documentation>
<xs:appinfo>

<app:name>Address Category Code</app:name>
<app:dibr>This is for the optional PHYADR of the facility
that serves as the homestation of the organisation or the
organisation’s homestation mailing address.</app:dibr>

</xs:appinfo>
</xs:annotation>

</xs:element>

Fig. 7 Addition of dibr element

7

Approved for public release; distribution is unlimited.

3.5 Missing Documentation

The Joint Consultation, Command and Control IEDM (JC3IEDM),8 which was the
basis for the GFMIEDM, contains the logical name of each enumerated value at
the beginning of the documentation element as shown in italics in Fig. 2. The
logical name was manually copied from the data dictionary into the XSD for every
enumerated value that was missing the name.

3.6 New Documentation

Modifications to the GFMIEDM XSD are approved by the Configuration Control
Board (CCB), and each update is given a Change Request (CR) number. In late
2011 the CRs were combined into “packages” with an implementation date for
each package. New elements app:change-request and app:packagewere
added to the XSD. As shown in Fig. 2, app:package contains child elements
app:number and app:date. These elements are provided for the GFM DI de-
velopers and are currently ignored by the XSLT script.

3.7 Dictionary Changes

During the development of the XSLT script, the spreadsheet version of the data
dictionary underwent a lot of scrutiny and some changes were submitted to the
CCB. (The addition of appinfo elements was also a CR.) Spelling mistakes and
other errors were not fixed in the spreadsheet, but the changes were applied to the
XSD files and incorporated into the XSLT script.

The JC3IEDM was written using ERwin with Oracle as the target relational database
management system, and the definitions explicitly named the Oracle datatypes.
These definitions were copied into the JC3IEDM XSD. The GFMIEDM has spec-
ified XML as the target, and the XSD datatypes should be sufficient. As part of
the trend to move away from SQL and provide all documentation in XML terms,
the Oracle datatype was deleted from the fifth column. It was replaced with the
XML datatype as defined by the GFM DI XSD. The VALIDATION column of the
spreadsheet was deleted because it was redundant; the enumeration rule’s name is
the same as the datatype.

8

Approved for public release; distribution is unlimited.

3.8 XSLT Script

3.8.1 Language Versions

XPath 1.09 started as a sublanguage of XSLT 1.0.10 While both languages have
evolved into version 2.0, many tools support only the earlier version, and the XSLT
script was written using XSLT 1.0 and XPath 1.0. However, the version 2 features
are used in this report because they are shorter, clearer, and easier to understand.
The version 2.0 code is typeset in san serif in the program listings.

3.8.2 Basic Approach

The GFMIEDM XSD consists of 7 XSD files, 5 of which describe the data schema.
Only 3 of these are required to produce the data dictionary.

GFMIEDM353tables.xsd defines each table element which consists of the table
name and its type. The element for the Aircraft Type table is shown in Fig. 8.

GFMIEDM353relatTableTypes.xsd defines the documentation and all of the
fields inside of each table. As shown in Fig. 9, each field consists of a name, type,
definition, and app:name with the logical name.

GFMIEDM353simpleTypes.xsd defines all of the datatypes. The only information
needed in a simple type are the name and definition as highlighted in Fig. 10. The
enumerated type in Fig. 11 adds a value and definition for each enumeration.

<xs:element name="ACFT_TYPE_TBL">
<xs:complexType>
<xs:sequence>

<xs:element name="ACFT_TYPE" type="AircraftType"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Fig. 8 Definition of ACFT_TYPE_TBL element

9

Approved for public release; distribution is unlimited.

<xs:complexType name="AircraftType">
<xs:annotation>
<xs:documentation>An EQUIPMENT-TYPE that is designed
to fly.</xs:documentation>

</xs:annotation>
<xs:sequence>
<xs:element name="ACFT_TYPE_ID" type="identifier20">

<xs:annotation>
<xs:documentation>The equipment-type-id of a specific
AIRCRAFT-TYPE (a role name for object-type-id).
</xs:documentation>
<xs:appinfo>
<app:ewid>OBJ_TYPE.obj_type_id</app:ewid>
<app:name>Aircraft Type Identifier</app:name>

</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="CAT_CODE" type="DS336_acft_type_cat_code">

<xs:annotation>
<xs:documentation>The specific value that represents
the class of AIRCRAFT-TYPE.</xs:documentation>
<xs:appinfo>
<app:name>Aircraft Type Category Code</app:name>

</xs:appinfo>
</xs:annotation>

</xs:element>
...

</xs:sequence>
</xs:complexType>

Fig. 9 Definition of Aircraft Type fields

<xs:simpleType name="txt_optional_100">
<xs:annotation>
<xs:documentation>100-character string.</xs:documentation>

</xs:annotation>
<xs:restriction base="ascii_string">
<xs:maxLength value="100"/>

</xs:restriction>
</xs:simpleType>

Fig. 10 Definition of txt_optional_100 datatype

10

Approved for public release; distribution is unlimited.

<xs:simpleType name="DS336_acft_type_cat_code">
<xs:annotation>
<xs:documentation>Datatype for the validation rule
DS336_acft_type_cat_code</xs:documentation>

</xs:annotation>
<xs:restriction base="xs:string">
<xs:enumeration value="AIRRW">

<xs:annotation>
<xs:documentation>Rotary wing, manned: A machine or
device capable of atmospheric flight and dependent on
rotating blades for lift.</xs:documentation>

</xs:annotation>
</xs:enumeration>
<xs:enumeration value="FIXWNG">

<xs:annotation>
<xs:documentation>Fixed wing, manned: A manned machine or
device capable of atmospheric flight and dependent on wings
for lift.</xs:documentation>

</xs:annotation>
</xs:enumeration>
...

</xs:restriction>
</xs:simpleType>

Fig. 11 Definition of DS336_acft_type_cat_code

11

Approved for public release; distribution is unlimited.

3.8.3 Documented Code

The transformation engines used to run the script on the XSD files are the free
version of Saxon11 and the commercial product XMLSpy12 which was also used to
locate stray portions of XPath 2.0 code. Both products operate on a single input file
so the XPath document function was used in the script to load the other 2 files.

Initialize. The script begins with the standard xsl:stylesheet root element.
The highlighted text shows the addition of the app: namespace. Since the output
will be an HTML file, the output method is declared to be HTML 4.0. (Technically,
XSLT uses XHTML because the tags must have matching end tags.)

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:app="urn:us:gov:dod:gfmdi:appinfo">

<xsl:output method="html" version="4.0"

doctype-public="-//W3C//DTD HTML 4.0 Transitional//EN"

doctype-system="http://www.w3.org/TR/REC-html40/loose.dtd"

indent="yes"/>

The other 2 XSD files are loaded into variables. This is practical because they are
relatively small.

<!-- load all required XSD files into variables -->

<!-- the file GFMIEDM353tables.xsd has already been loaded -->

<xsl:variable name="relat"

select="document(’GFMIEDM353relatTableTypes.xsd’)"/>

<xsl:variable name="simple"

select="document(’GFMIEDM353simpleTypes.xsd’)"/>

As is the case in most XSLT scripts, the template that matches the root element is
the main driver. Any elements that are not XSLT elements are assumed to be HTML
tags and are written to the output file verbatim.

<!-- root writes general HTML wrapper and processes all data -->

<xsl:template match="/">

<html>

<head>

<title>Data Dictionary for GFMIEDM 3.5.3</title>

12

Approved for public release; distribution is unlimited.

Color coding is used in the data dictionary to denote GFM DI tables and fields,
FMID and EwID fields, and mandatory fields. Cascading Style Sheets (CSS)13 are
used to provide this functionality. The comments in the style definitions explain the
color specifications.

<!-- colors and other details are defined in CSS styles -->

<style type="text/css">

body, th, td {

font-family: verdana, arial, helvetica, sans-serif;

font-size: small;

color: black;

}

<!-- align all table elements vertically for multiple-line

descriptions and collapse all borders to eliminate

white lines

-->

table { border-collapse: collapse; }

table, th, td { border: 1px solid black; }

th, td { padding: 5px; vertical-align: top; }

<!-- header has grey background -->

th { background-color: #C0C0C0; text-align: left; }

<!-- table separator has black background -->

th.sep { background-color: black; height: 8px; }

<!-- GFM table names are white text on green -->

td.gfm-table { background-color: green; color: white; }

<!-- FMID field names are blue text on white -->

td.fmid-field,

span.fmid-field { color: blue; }

<!-- GFM field names are green text on white -->

td.gfm-field,

span.gfm-field { color: green; }

<!-- FMID field types are black text on light blue -->

td.fmid-type { background-color: #CCFFFF; }

span.fmid-type { color: #CCFFFF; }

<!-- Mandatory field types are black text on light green

--> td.man-type { background-color: #CCFFCC; }

span.man-type { color: #CCFFCC; }

<!-- Optional field types are black text on light yellow

-->

td.opt-type { background-color: #FFFF99; }

span.opt-type { color: #FFFF99; }

</style>

13

Approved for public release; distribution is unlimited.

The final part of the HTML header is a block of JavaScript14 code that declares a
variable and defines a simple function. It is used to generate the attribute numbers
in column one when the file is viewed in a browser.

<!-- JavaScript to implement a row counter -->

<script type="text/javascript">

rowCount = 0;

function inc()

{

return ++rowCount;

}

</script>

</head>

The initialization ends with the start of the body of the HTML file. A big HTML
table is used to construct the rows and columns of the data dictionary. The first row
(tr = table row) builds the table headers (th); the span elements show how the
CSS styles are invoked.

<body>

<h1>Data Dictionary for GFMIEDM 3.5.3</h1>

<!-- the entire HTML file is one giant table -->

<table>

<tr>

<!-- Row Number -->

<th>#</th>

<!-- Element = Table -->

<th>

ELEMENT

Name / Abbreviation / Definition

</th>

<!-- Attribute = Field -->

<th>

ATTRIBUTE

Name / Abbreviation / Definition

(JC3IEDM /

 GFM-specific /

 FMID)

</th>

<!-- Business Rules from the DIBR -->

<th>Business Rules and Guidance for GFM DI</th>

<!-- datatype spans 3 columns for enumerated values -->

14

Approved for public release; distribution is unlimited.

<th>Valid Value Display Value</th>

<th>Valid Value Data Value</th>

<th>

ATTRIBUTE Valid Value Definition

 Mandatory /

 Optional /

 Identifier

</th>

</tr>

A for-each loop examines each element that corresponds to a table type defini-
tion. The element name is saved as the full table name, while the short table name
is extracted from the nested sequence element. Elements which define hierarchical
tables (i.e., full table names that contain the string “_OO_”) are ignored.

The file GFMIEDM353relatTableTypes.xsd, now stored in the variable relat, de-
fines each table type as an XSD complexType. The next template is invoked with
the element that defines the current table type and the short table name.

A black row to visually separate the tables is written before the loop ends.

<!-- each table -->

<!-- the pattern matches the tables in the file

GFMIEDM353tables.xsd -->

<xsl:for-each select="/*/xs:element">

<!-- remember the table name with and w/o the suffix -->

<xsl:variable name="full-table-name"

select="@name"/>

<xsl:variable name="short-table-name"

select="*/*/xs:element/@name"/>

<xsl:choose>

<xsl:when test="contains($full-table-name, ’_OO_’)">

<!-- ignore object-oriented (hierarchical) tables -->

</xsl:when>

<xsl:otherwise>

<!-- remember the table type -->

<xsl:variable name="table-type"

select="*/*/xs:element/@type"/>

<!-- process the table type from the "relat" XSD file -->

<xsl:apply-templates

select="$relat//xs:complexType[@name=$table-type]">

15

Approved for public release; distribution is unlimited.

<xsl:with-param name="table-name"

select="$short-table-name"/>

</xsl:apply-templates>

<!-- separate Elements with a black row -->

<tr>

<th class="sep" colspan="8"/>

</tr>

</xsl:otherwise>

</xsl:choose>

</xsl:for-each>

The template ends by terminating the open elements in the HTML file.

</table>

</body>

</html>

</xsl:template>

Table Processing. The table processing template defines several variables to sim-
plify the rest of the code. To properly nest the table cells, the number of rows re-
quired to display each datatype used by the table must be computed. The variable
enum-counts is a temporary tree that has an element for each table type with the
number of enumerated values (plus one for the type itself). The counts for the Air-
craft Type table are shown in Fig. 12. The total number of rows is stored in the
variable num-rows. The variables table-class, prefix-count, and suffix are explained
in the following when they are used by the script.

<!-- this template is invoked with each table type -->

<xsl:template match="//xs:complexType">

<xsl:param name="table-name"/>

<!-- count number of enumerations in each field type plus 1

and store them in a tree fragment

-->

<xsl:variable name="enum-counts">

<blk>

<xsl:for-each select=".//xs:element/@type">

<xsl:variable name="type-name" select="."/>

<val>

<xsl:attribute name="type">

<xsl:value-of select="$type-name"/>

</xsl:attribute>

16

Approved for public release; distribution is unlimited.

<xsl:value-of

select="count($simple//xs:simpleType[@name=$type-name]/*/

xs:enumeration) + 1"/>

</val>

</xsl:for-each>

</blk>

</xsl:variable>

<!-- compute number of rows needed by all types and their

enumerations -->

<xsl:variable name="num-rows">

<xsl:value-of

select="sum($enum-counts/blk/val)"/>

</xsl:variable>

<xsl:variable name="table-class"
select="if (starts-with(@name,’GFM’)) then ’gfm-table’"/>

<!-- prepare to break table name apart at each capital letter -->

<!-- how many initial letters must be skipped? -->

<xsl:variable name="prefix-count">
select="if (starts-with(@name,’GFM’)) then 3 else 0"/>

<xsl:variable name="suffix" select="substring(@name,

$prefix-count + 1)"/>

<blk>
<val type="identifier20">1</val>
<val type="DS336_acft_type_cat_code">7</val>
<val type="DS4365_acft_type_arfrm_dsgn_cd">12</val>
<val type="DS4366_acft_type_manning_code">6</val>
<val type="DS4367_acft_type_mil_civ_code">4</val>
<val type="DS4368_acft_type_main_purp_cd">62</val>
<val type="DS4372_acft_type_train_cat_cd">4</val>
<val type="DS4204_acft_type_toff_land_cd">6</val>
<val type="GF001_acft_type_eng_ind_code">3</val>

</blk>

Fig. 12 Row counts for Aircraft Type

Field Processing. The template loops through the fields in the table, performing
the same kinds of actions that were done for the table. The field-class and fmid-
man-opt-class variables are assigned CSS class names to apply the proper styles to
the text of the field name and type, respectively. The field contains an FMID if the
fmid element is present, or it is defined for GFM DI if the name starts with GFM.
The field type is an FMID if the fmid element is present; it is optional if the XSD
attribute minOccurs=’0’ is present; it is an FMID if the datatype is identifier20

17

Approved for public release; distribution is unlimited.

or index20; otherwise it is mandatory. The number of enumeration rows is extracted
from the variable enum-counts as before.

To minimize duplicate code, the last 2 variables store HTML text. The text for
the field type cell is stored in td-type where the contents are the logical name, the
physical table and field names, and the field definition. (If the logical name is absent,
the physical name is used. The HTML tag td = table detail and br produces a line
break.) The variable td-dibr contains the optional business rules.

<!-- each field -->

<xsl:for-each select=".//xs:element">

<xsl:variable name="type-name" select="@type"/>

<!-- is this an FMID or GFM field? -->

<xsl:variable name="field-class"
select="if (xs:annotation/xs:appinfo[app:fmid]) then ’fmid-field’

else if (matches(@name,’^GFM’)) then ’gfm-field’"/>
<!-- is this field an FMID, optional, or mandatory? -->

<xsl:variable name="fmid-man-opt-class" select="
if (xs:annotation/xs:appinfo[app:fmid]) then ’fmid’
else if (@minOccurs=’0’) then ’opt’
else if (matches(@type,’^identifier20$’)) then ’fmid’
else if (matches(@type,’^index20$’)) then ’fmid’
else ’man’"/>

<!-- we need to span multiple enumerations -->

<xsl:variable name="num-enums">

<xsl:value-of

select="$enum-counts/blk/val[@type=$type-name]"/>

</xsl:variable>

<!-- save TD element with field and definition contents -->

<xsl:variable name="td-type">

<td class="$field-class" rowspan="$num-enums">

<xsl:value-of select="
if (xs:annotation/xs:appinfo[app:name])
then xs:annotation/xs:appinfo/app:name
else @name"/>

<xsl:text>(</xsl:text>

<xsl:value-of select="$table-name"/>

<xsl:text>.</xsl:text>

<xsl:value-of select="lower-case(@name)"/>

18

Approved for public release; distribution is unlimited.

<xsl:text>)</xsl:text>

<xsl:value-of select="xs:annotation/xs:documentation"/>

</td>

</xsl:variable>

<!-- save TD element with DIBR instruction -->

<xsl:variable name="td-dibr">

<td class="$field-class" rowspan="$num-enums">

<xsl:value-of

select="xs:annotation/xs:appinfo/app:dibr"/>

</td>

</xsl:variable>

The rest of the loop produces output for the HTML file. The initial cell contains
a snippet of JavaScript code to number each field for future reference. The first
row in the HTML table is special because the schema table cell must span all of the
field rows. The number of cells has already been computed and stored in num-rows,
while the table-class variable contains the class name to apply the GFM DI format-
ting style (if appropriate). (An empty argument is ignored by the web browser.)

The first prefix-count characters of the name are capital letters, and they are placed
into the cell. The remaining characters have a blank inserted in front of each remain-
ing capital letter. (For example, GFMCrewPlatformType becomes GFM�Crew�Plat-
form�Type.) The next line of the cell has the table name in parentheses, while a
blank line precedes the table’s definition.

<tr>

<!-- insert row counter -->

<td>

<script type="text/javascript">

document.write(inc());

</script>

</td>

<!-- insert table’s logical name, physical name, and definition

-->

<td rowspan="$num-rows" class="$table-class">

<xsl:value-of select="substring(@name, 1,

$prefix-count)"/>

<xsl:value-of select="replace($suffix, ’([A-Z])’, ’�$1’)"/>

19

Approved for public release; distribution is unlimited.

<xsl:text>(</xsl:text>

<xsl:value-of select="$table-name"/>

<xsl:text>)</xsl:text>

<xsl:value-of select="xs:annotation/xs:documentation"/>

</td>

The first field in the table is treated differently than the rest because its row has
already been created, and the first 2 cells have been filled. For the remaining rows,
a new row is created and the JavaScript counter is inserted in the first cell. The sec-
ond cell may be ignored because the rowspan attribute was used. In both cases,
the type and business rule cells are printed from their variables, and a template is in-
voked for the field’s datatype using the contents of the file GFMIEDM353simple-
Types.xsd.

<!-- first row is different than other rows in table -->

<xsl:choose>

<xsl:when test="position() = 1">

<xsl:copy-of select="$td-type"/>

<xsl:copy-of select="$td-dibr"/>

<xsl:apply-templates

select="$simple//xs:simpleType

[@name=current()/@type]">

<xsl:with-param name="css-name"

select="$fmid-man-opt-class"/>

<xsl:with-param name="field-class"

select="$field-class"/>

</xsl:apply-templates>

</xsl:when>

<xsl:otherwise>

<tr>

<td rowspan="$num-enums">

<script type="text/javascript">

document.write(inc());

</script>

</td>

<xsl:copy-of select="$td-type"/>

<xsl:copy-of select="$td-dibr"/>

<xsl:apply-templates

select="$simple//xs:simpleType[@name=current()/

20

Approved for public release; distribution is unlimited.

@type]">

<xsl:with-param name="css-name"

select="$fmid-man-opt-class"/>

<xsl:with-param name="field-class"

select="$field-class"/>

</xsl:apply-templates>

</tr>

</xsl:otherwise>

</xsl:choose>

</xsl:for-each>

The template ends by terminating the row.

</tr>

</xsl:template>

Type Processing. This template produces the contents of the cell that spans all
3 cells of field’s datatype. The text Mandatory or Optional is printed based
on the CSS class name. To avoid adding more metadata to the XSD, the prefix of
each datatype (or the entire type name) is examined to produce the corresponding
text. If the field is not an enumerated type, the type’s definition is printed. The next
template is invoked to generate the text for the enumerated values of the field.

<!-- this template is invoked with each field -->

<xsl:template match="//xs:simpleType">

<xsl:param name="css-name"/>

<xsl:param name="field-class"/>

<td colspan="3" class="$css-name-type">

<xsl:choose>

<xsl:when test="$css-name = ’man’ or $css-name = ’fmid’">

<xsl:text>Mandatory </xsl:text>

</xsl:when>

<xsl:otherwise>

<xsl:text>Optional </xsl:text>

</xsl:otherwise>

</xsl:choose>

<xsl:choose>

<xsl:when test="starts-with(@name, ’cnt_’)">

<xsl:text>Number</xsl:text>

</xsl:when>

<xsl:when test="starts-with(@name, ’dttm_’)">

21

Approved for public release; distribution is unlimited.

<xsl:text>Date-Time-Group</xsl:text>

</xsl:when>

<xsl:when test="starts-with(@name, ’qty_’)">

<xsl:text>Number</xsl:text>

</xsl:when>

<xsl:when test="@name = ’identifier20’ or

@name = ’index20’">

<xsl:text>Identifier</xsl:text>

</xsl:when>

<xsl:when test="starts-with(@name, ’txt_’)">

<xsl:text>Text</xsl:text>

</xsl:when>

<xsl:when test=".//xs:enumeration">

<xsl:text>Code</xsl:text>

</xsl:when>

</xsl:choose>

<xsl:value-of select="@name"/>

<xsl:if test="not(.//xs:enumeration)">

<xsl:value-of select="xs:annotation/xs:documentation"/>

<xsl:if test="string-length($ewid-text) > 0">

<xsl:text>UID value inherited from </xsl:text>

<xsl:value-of select="$ewid-text"/>

</xsl:if>

</xsl:if>

</td>

</xsl:template>

Enumerated Values. The last template uses variables to make the code more legi-
ble. The writers of the JC3IEDM XSD put the logical name in front of the definition
for each enumerated value. Logical names were manually inserted into each defini-
tion in the XSD that did not already have its name.

A row is produced with 4 cells consisting of the logical (display) name, enumerated
value, definition, and the datatype name. The preceding cells in the row are ignored
because the rowspan attribute was used. This section of code clearly shows how
CSS classes are used to apply a particular style to the cells.

22

Approved for public release; distribution is unlimited.

<!-- this template is invoked with each enumerated value -->

<xsl:template match="//xs:enumeration">

<xsl:param name="field-class"/>

<xsl:variable name="display"
select="

if (matches(xs:annotation/xs:documentation, ’: ’))
then substring-before(xs:annotation/xs:documentation, ’: ’)

else ’***MISSING***’"/>
<xsl:variable name="definition"

select="
4 (matches(xs:annotation/xs:documentation, ’: ’))

then substring-after(xs:annotation/xs:documentation, ’: ’)
else xs:annotation/xs:documentation"/>

<tr>

<td class="$field-class">

<xsl:value-of select="$display"/>

</td>

<td class="$field-class">

<xsl:value-of select="@value"/>

</td>

<td class="$field-class">

<xsl:value-of select="$definition"/>

</td>

<td class="$field-class">

<xsl:value-of select="$type-name"/>

</td>

</tr>

</xsl:template>

3.9 HTML Output

A fragment of the output produced by the script, as displayed by a web browser, is
shown in Fig. 13.

23

Approved for public release; distribution is unlimited.

Fig. 13 HTML data dictionary fragment

4. Discussion

4.1 Data Dictionary Differences

A primary goal for creating the data dictionary from the XML schema was to
use existing information from the XSD files when possible. The definitions in the
datatypes are more detailed than the corresponding cells in the Excel spreadsheet.
In the case of date/time groups, the required format is described in the field’s defini-
tion in the spreadsheet and in the field’s type definition in the HTML file. Figure 14
shows how the format has moved from the field definition (upper text) to the field
type definition (lower text). The highlighted text is the same in both dictionaries.

GFM Address Termination DTG
(ADDR.gfm_addr_t_dtg)
End DTG defining the termination of the viable time interval
of this data.
Use XML dateTime option requiring 20 characters:
YYYY-MM-DDTHH:MM:SSZ.
Example: 2007-09-12T14:58:59Z

Mandatory Date-Time-Group
The designation of a specific year, month, day, hour, minute,
second and milliseconds. Format is YYYY-MM-DDTHH:MM:SSZ. This
is based on ISO-8601.

Fig. 14 Date/time group definitions

24

Approved for public release; distribution is unlimited.

When an element is part of a generalization hierarchy (i.e., it is a component of an
Object Type or Object Item) the identifiers that make up the chain are listed in the
field type’s definition. This is shown in Fig. 3. The text was manually added to both
the spreadsheet and the XSD. While it may be possible for the script to derive the
text, it is unlikely that the values will change.

4.2 Documentation Revisions

A thorough review of both the Excel spreadsheet and the XSD was required to en-
sure that all of the necessary information was present in the XSD files. The parts of
the XSD that were written for JC3IEDM had never been modified (a basic tenet of
GFM DI), and some mistakes were discovered. All of the XSD documentation

elements were spell checked and errors were corrected. The JC3IEDM writers pre-
fixed some of the documentation elements with “Definition: ”. This text is re-
dundant and it was deleted from the XSD files.

A minor change was expanding ID to Identifier for each field’s logical name.

4.3 Future Enhancements

The Excel spreadsheet has an important feature that is currently missing from the
HTML data dictionary—the column headers stay at the top when the user scrolls
through the data. This ability will be added to the next version of the HTML data
dictionary along with hardwired column widths.

A table of contents may be added at the top of the HTML file with hyperlinks to the
tables. Additional links will allow the user to easily explore the data dictionary. For
example, FMIDs or CR packages could be chained together.

A second script could be written to extract information about desired CRs or pack-
ages because a developer may need to know how the current XSD differs from the
previous schema. As an alternative, the script could highlight changes in the data
dictionary for a given package number.

25

Approved for public release; distribution is unlimited.

A condensed dictionary may be desired without all of the enumerated values. The
users of the new data dictionary will probably request new features as they become
accustomed to the HTML version.

The long-term goal is to define the GFMIEDM in Unified Modeling Language
(UML)15 in place of the ERwin E-R diagram. The UML model will be used to
produce both the XSD schema and the data dictionary.

5. Conclusion

Generating a data dictionary from an XML schema is possible with minor additions
to the schema files. The documentation added to the schema enhances the under-
standing of a developer who reads the schema files. The HTML file produced by the
XSLT script contains all of the information that is in the current Excel spreadsheet,
and it may be viewed in any web browser. When the schema is modified, the script
may be run to produce an updated data dictionary, preventing the divergence that
occurs when distinct files must be maintained manually.

This work has also demonstrated how an XSD may be parsed to supply informa-
tion in a different form. For example, the IChart force structure viewer and editor
application16 could extract the definition of each enumerated value and present it to
the user. When users are prompted to choose a weapon type they will not have to
remember what ATGRLC stands for and how an ATGRLH differs from an ATGRLL.

Additional information could be added to the XSD to be extracted for other pur-
poses.

26

Approved for public release; distribution is unlimited.

6. References

1. Chamberlain SC, Boller M, Sprung G, Badami V. Establishing a community
of interest (COI) for global force management. In: Proceedings of the 10th
International Command and Control Research and Technology Symposium;
2005 June; McLean, VA.

2. Computer Associates. ERwin. 2012 April [accessed 2012 Jun 11].
http://erwin.com/.

3. W3C. XML schema part 1: Structures. 2004 October [accessed 2009 Aug 20].
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

4. W3C. XML schema part 2: Datatypes. 2004 October [accessed 2009 Aug 20].
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

5. W3C. XSL Transformations (XSLT) version 1.0. 1999 November [ac-
cessed 2009 Aug 20]. http://www.w3.org/TR/1999/REC-xslt-19991116/.

6. Global force management data initiative (GFM DI) data implementation busi-
ness rules (DIBR) for GFM XSD v3.5.2. 2011 December [accessed 2015 Oct
19]. https://inteldocs.intelink.gov/inteldocs/page/document-details?nodeRef=
workspace://SpacesStore/b5dc19f1-9cab-4afa-9893-4a8b7fd969f4.

7. Oracle. Oracle database documentation library. [accessed 2009 Aug 20].
http://www.oracle.com/pls/db111/homepage.

8. MIP. JC3IEDM browse representation. 2007 December [accessed 2009
Aug 20]. http://www.mip-site.org/publicsite/04-Baseline_3.0/JC3IEDM-
Joint_C3_Information_ Exchange_Data_Model/HTML-Browser/index.html.

9. W3C. XML path language (XPath) version 1.0. 1999 November [ac-
cessed 2009 Aug 20]. http://www.w3.org/TR/1999/REC-xpath-19991116/.

10. Kay M. XSLT 2.0 programmer’s reference (programmer to program-
mer). Hoboken (NJ): Wrox; 2004.

11. Kay M. Saxon-B 9.0.0.4J. 2008 March [accessed 2009 Aug 20].
http://www.saxonica.com/.

27

Approved for public release; distribution is unlimited.

12. Altova. XMLSpy. 2008 [accessed 2009 Aug 20].
http://www.altova.com/products/xmlspy/xml_editor.html.

13. W3C. Cascading style sheets level 2 revision 1 (CSS 2.1) specification.
2011 June [accessed 2012 May 7]. http://www.w3.org/TR/2011/REC-CSS2-
20110607/.

14. Mozilla. JavaScript Reference. 2011 October [accessed 2012 May 15].
https://developer.mozilla.org/en/JavaScript/Reference.

15. Object Management Group. UML resource page. 2011 February [ac-
cessed 2009 Aug 20]. http://www.uml.org.

16. Brundick FS, Hartwig GW Jr, Chamberlain SC. IChart: a graphical tool to
view and manipulate force management structure databases. Aberdeen Proving
Ground (MD): Army Research Laboratory (US); 2008 Sep. Report No.: ARL-
TR-4610.

28

Approved for public release; distribution is unlimited.

List of Symbols, Abbreviations, and Acronyms

CCB Configuration Control Board
CR Change Request
CSS Cascading Style Sheet
DI Data Initiative
E-R entity relationship (diagram)
EwID Enterprise-wide Identifier
FMID Force Management Identifier
GFM Global Force Management
HTML Hypertext Markup Language
IEDM information exchange data model
JC3 Joint Consultation, Command and Control
SQL Structured Query Language
UML Unified Modeling Language
XML eXtensible Markup Language
XSD XML Schema Definition
XSLT Extensible Stylesheet Language: Transformations

29

Approved for public release; distribution is unlimited.

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

2
(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL CIO L
IMAL HRA MAIL & RECORDS MGMT

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

4
(PDF)

DIR USARL
RDRL CII T

R HOBBS
F BRUNDICK
T HANRATTY
M MITTRICK

30

