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1
Electromagnetics and Antenna
Theory

1.1 Introduction

Electromagnetics [1–14] and antenna technology [15–29] are well developed
and they have numerous practical applications. Radiofrequency (RF) elec-
tromagnetic waves can be produced by natural and manufactured processes.
There are numerous antenna designs that can be considered for radar and
communications applications depending on frequency band, type of platform
and many other considerations to be discussed in this book. This book
provides a detailed review of fundamental electromagnetics and antenna
theory and development of practical implementations of antenna technology
including phased arrays [30–47]. As part of the development of antenna
theory, detailed discussions of transmission lines and antennas as a load
impedance are provided. For some of the antennas described in this book,
details of impedance matching between the antenna and transmission line are
given based on well established methods.

An antenna is a transducer that can convert both an incident RF
electromagnetic wave to a time-varying signal voltage (or waveform) on a
transmission line and a time-varying signal voltage on a transmission line to a
transmitted polarized electromagnetic wave [1–28] as depicted in Figure 1.1.
An antenna can be characterized by a number of parameters including
bandwidth, impedance, scattering parameters, gain, directivity, beamwidth,
polarization, and sidelobes. A phased array antenna system [30–47] consists
of two or more antenna elements that typically transmit or receive signals
with a proper timing (phase relation) and amplitude relationship between
the elements. Arrays operate with analog or digital beamforming either
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2 Electromagnetics and Antenna Technology

Transmission line Antenna Electromagnetic fields

Figure 1.1 Simplified diagram showing a transmission line connected to an antenna
that can transmit and receive electromagnetic fields.

nonadaptively or adaptively [48–61] such that the combination of the array
elements provides desired radiation characteristics in particular directions
over a band of frequencies.

Antennas have applications over a broad range of frequency bands,
which have various designations. For example, frequency bands are defined by
the International Telecommunications Union (ITU), which is a United Nations
agency for information and communications technology. For example, as
defined by the ITU, the high-frequency (HF) band extends from 3 MHz to
30 MHz, very high-frequency (VHF) band extends from 30 MHz to 300
MHz, and the ultra-high-frequency (UHF) band covers the 300 MHz to 3
GHz frequency range. The ITU super-high-frequency (SHF) band covers the
range 3 to 30 GHz, and the extremely high-frequency (EHF) band covers 30
to 300 GHz. Frequency bands are also defined by the Institute for Electronic
and Electrical Engineers (IEEE). The IEEE definitions of the HF and VHF
bands are the same as the ITU definition, that is, 3 to 30 MHz and 30 to
300 MHz, respectively. The IEEE definition of UHF is from 300 MHz to
1 GHz, L band is from 1 to 2 GHz, S band is from 2 to 4 GHz, C band is
from 4 to 8 GHz, X band is from 8 to 12 GHz, Ku band is from 12 to 18
GHz, K band is from 18 to 26.5 GHz, and Ka band is from 26.5 to 40 GHz.
The broad term radiofrequency (RF or Rf) is typically used for frequencies
in the range of 3 kHz to 300 GHz. The term microwave is typically used for
frequencies in the range of 300 MHz to 30 GHz. The term millimeter wave is
used for frequencies in the range of 30 GHz to 300 GHz.

An antenna and the surrounding structures, in general, can consist of
electrically conducting materials, dielectric materials, magnetic materials, and
absorbing components, arranged in such a way as to provide desired trans-
mission and reception of electromagnetic fields over a specified bandwidth.
An antenna typically has the same transmit and receive characteristics except
when active electronics such as power amplifiers and low-noise amplifiers are
included in the antenna design. In the general development of a phased array
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antenna, the following topics often are important considerations as listed in
Table 1.2.

Table 1.1
Some important topics in electromagnetics and antenna technology

Antenna types
Transmission lines
Reflection coefficient, input impedance
Impedance matching
Maxwell’s equations
Electromagnetic simulations
Materials (conductivity, permittivity, permeability)
Bandwidth
Polarization
Radiation patterns, directivity, gain
Near field, far field
Resonant antennas
Electrically small antennas
Finite, infinite arrays
Periodic, random arrays, sparse arrays
Linear, planar, conformal arrays
Array mutual coupling
Beamforming
Grating lobes, Blind spots
Interference, Low sidelobes, Adaptive nulling
Direction finding
Subarrays, Phase centers
Electronic scanning
Passive electronically scanned array (PESA)
Active electronically scanned array (AESA)
Transmit/Receive modules
Phase shifters, time delays
High-power amplifiers, low noise amplifiers
Array design, fabrication, measurements
Array calibration
Radomes
Radar cross-section control
Field testing
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In developing antenna technology, a number of detailed design parame-
ters as well as testing methods need to be considered as listed below:

• Antenna system design and testing

– RF radiation parameters
∗ Field of view, scan sector, bandwidth (in-band, out-of-

band), polarization, gain, half-power beamwidth, sidelobe
level, front-to-back ratio, null depth, reflection coefficient,
noise figure, effective isotropic radiated power

– RF components
∗ Antenna radiating elements
∗ Beamformer: feed cables, transmission lines, connectors,

combiners, amplifiers, filters, couplers, circulators, switches,
attenuators, phase shifters, time-delay units

Table 1.2
Some common antenna types

Arrays (phased, broadside, endfire, lens, reflect)
Biconical (symmetric, asymmetric, solid surface, wire frame)
Dielectric rod
Dipole (linear, folded, vee, ultrawideband)
Discone (solid, wire frame)
Helix [axial mode (endfire), normal mode (broadside)]
Horn (pyramidal, conical, corrugated)
Lens (dielectric)
Log periodic
Long wire
Loop (circular, square)
Monocone (solid surface, wire frame)
Monopole (wire, sleeve, top loaded, blade)
Notch (flared Vivaldi, stepped)
Parasitic (Yagi-Uda)
Patch (circular, rectangular, triangular, microstrip, suspended)
Reflectors (corner, parabolic, shaped, dual)
Slot
Spiral (planar: Archimedean, equiangular; conical)
Subreflectors (parabolic, elliptical, hyperbola, shaped)
Waveguide (open-ended: rectangular, circular)
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– Mechanical parameters
∗ Antenna volume and mass budget, antenna durability/survivability,

fabrication technique(s) and materials, ground plane and
support structure

– Ground-based testing
∗ Anechoic chamber measurements (far-field [rectangular

chamber, tapered chamber, compact range], near-field [pla-
nar, cylindrical, spherical])
∗ Thermal chamber, vacuum chamber measurements
∗ Outdoor field testing

– Flight testing (airborne, spaceborne)
∗ In-flight radiation patterns and calibration

The rest of this chapter is organized as follows. Section 1.2 reviews
transmission line theory as it relates to antennas and provides various
definitions for bandwidth. In Section 1.3, the generation of electromagnetic
radiation and Maxwell’s equations are described. Since the goal of electro-
magnetic analysis often is to compute the radiation pattern of antennas, in
Section 1.4, a derivation of the fields radiated by current sources is given.
Boundary conditions for the relations between the field quantities at the
interface between two arbitrary media are derived in Section 1.5. Section
1.6 describes the wave equation and the complex propagation constant of
electromagnetic waves in conducting media. In Section 1.7, a derivation
of the electromagnetic wave energy flow and Poynting vector is given.
Section 1.8 considers the derivation of near-field and far-field expressions for
Hertzian (short) dipole and small loop antennas. In Section 1.10, discussion
of polarization of electromagnetic waves and receive antennas is given. The
topics of bandwidth and antenna quality factor are discussed in Section 1.11.
Section 1.12 discusses the topics of antenna radiation pattern directivity and
gain, with examples. Section 1.13 has a summary.

1.2 Some Basics: Transmission Lines and Antennas
as a Load

1.2.1 Introduction

As depicted earlier in Figure 1.1 at some point an antenna will be connected
to a transmission line. As far as transmission line analysis [62] is concerned,
the antenna behaves effectively as a frequency-dependent complex load
impedance. In order to provide efficient transfer of microwave signal between
the transmission line and an arbitrary load, an impedance matching network
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is often used as depicted in Figure 1.2. Similarly, an impedance matching
network can be inserted at a position along the transmission line to improve
the antenna performance in terms of the efficiency in transmitting and
receiving microwave signals as depicted in Figure 1.3. The impedance
matching network can take on a number of forms including ladder networks
of low-loss inductors and capacitors, stub tuners, line transformers, amplifiers,
and other circuits.

1.2.2 Transmission line impedance

A radiofrequency or microwave transmission line typically can be coaxial,
microstrip, twin-lead, or a general wave-guiding structure. A fundamental
frequency-dependent quantity is referred to as the antenna input impedance
ZA(f) which is a complex quantity with units of ohms defined at the terminals
of the antenna at frequency f with units of cycles per second. Let V (f) be the
complex voltage drop in volts across the terminals of the antenna and let I(f)
be the complex electric current in amperes flowing through the terminals of
the antenna, then the antenna complex input impedance is equal to the ratio of
the terminal voltage to current as

ZA(f) =
V (f)

I(f)
= RA(f) + jXA(f) (1.1)

Matching
network

Load

Figure 1.2 Simplified diagram showing a matching circuit connected to a load which
can be an antenna.

Matching
network

Antenna

Figure 1.3 Simplified diagram showing a matching network connected to an antenna
that receives and transmit electromagnetic fields.
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where RA in the input resistance (real part), j is the imaginary number, and
XA is the input reactance (imaginary part) of the antenna input impedance,
respectively. Note: if the antenna is located in a phased array of antennas,
then the antenna input impedance is also scan angle dependent as will be
considered in Chapter 2. The antenna complex input admittance YA with units
of Siemens is simply the inverse of the input impedance as

YA(f) =
1

ZA
= GA(f) + jBA(f) (1.2)

whereGA in the input conductance (real part) andBA is the input susceptance
(imaginary part) of the antenna input admittance, respectively. Note that it is
common to also define antenna parameters in terms of the radian frequency
(denoted ω) as

ω = 2πf (1.3)

with units of radians per second.
Consider now the general case of a transmission line connected to

an antenna represented by the complex load impedance ZL as shown in
Figure 1.4. The transmission line can, in general, be lossy and will be

Zo, α, β ZL

V(z), I(z)
z=-ℓ

VL

IL +

_

zz=0

Figure 1.4 Simplified diagram showing a transmission line connected to a frequency-
dependent complex load impedance.

described by the characteristic impedance Zo, attenuation constant α, and
phase constant β. The complex propagation constant (denoted γ) is expressed
in terms of the attenuation constant and phase constant as

γ = α+ jβ (1.4)

Assume that an RF source has generated voltage V (z) and current I(z) waves
along the transmission line. We seek to quantify the voltage and current at any
point z along the transmission line. The voltage and current waves on a lossy
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transmission line can be expressed in terms of waves traveling in the plus z
and minus z directions as

V (z) = V +
o e
−γz + V −o e

−γz (1.5)

I(z) = I+
o e
−γz + I−o e

−γz (1.6)

Assume now that the transmission line is lossless (zero attenuation versus
distance), that is, α = 0 so that γ = jβ, where β = 2π/λ, where λ is the
wavelength for the transmission line. For the lossless transmission line V (z)
and I(z) become

V (z) = V +
o e
−jβz + V −o e

−jβz (1.7)

I(z) = I+
o e
−jβz + I−o e

−jβz (1.8)

The characteristic impedance of the transmission line is computed from the
ratio of the voltage and current waves in the positive and negative traveling
wave directions as

Zo =
V +
o

I+
o

=
−V −o
I−o

(1.9)

which yields

I+
o =

V +
o

Zo
(1.10)

I−o =
−V −o
Zo

(1.11)

Note that the minus sign for the negative traveling current wave is required
due to the opposing vector orientation of the negative traveling current with
respect to the vector orientation of the positive traveling current. Using
Equations (1.10) and (1.11), the current wave I(z) in Equation (1.8) can be
expressed now as

I(z) =
V +
o

Zo
e−jβz +

−V −o
Zo

e−jβz (1.12)

Taking the ratio of the voltage wave given by Equation (1.5) and the current
wave given by Equation (1.12) at the load position (z = 0) yields

ZL =
VL(0)

IL(0)
=
V +
o + V −o
V +
o − V −o

Zo (1.13)

Solving for V −o yields

V −o =
ZL − Zo
ZL + Zo

V +
o (1.14)
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The complex voltage reflection coefficient Γ is defined as the ratio of the
voltage wave reflected from the load to the voltage wave incident at the load,
that is,

Γ =
V −o
V +
o

=
ZL − Zo
ZL + Zo

(1.15)

The voltage transmission coefficient Tv is defined as the voltage across the
load divided by the incident voltage as

Tv =
V +
o + V −o
V +
o

= 1 +
V −o
V +
o

= 1 + Γ (1.16)

Now the average incident and reflected powers are given by

P+ =
1

2
|V +
o |2/Zo (1.17)

P− =
1

2
|V −o |2/Zo (1.18)

The average power actually delivered to the load (same as the average power
accepted by the load or the average power actually transmitted by a lossless
antenna) is equal to the difference between the average incident power and the
average reflected power, that is,

PL = P+ − P− =
1

2
|V +
o |2/Zo −

1

2
|V −o |2/Zo (1.19)

Now dividing the average power delivered to the load by the average incident
power, which is referred to here as the transmission mismatch efficiency
ηtransmission mismatch, yields

PL/P
+ = ηtransmission mismatch =

|V +
o |2/Zo − |V −o |2/Zo
|V +
o |2/Zo

(1.20)

which reduces to

ηtransmission mismatch = 1− |V
−
o |2

|V +
o |2

= 1− |Γ|2 (1.21)

The parameter ηtransmission mismatch can be described as the mismatch efficiency
(with values ranging from 0 to 1) in transferring power from the transmission
line to the load or antenna, and it represents either power loss or gain loss,
depending on its use. The antenna mismatch loss (ML) or realized gain
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loss due to mismatch between the antenna load and the transmission line in
decibels (dB) is quantifed as

MLdB = 10 log10 ηtransmission mismatch (1.22)

Using Equation (1.15) in Equations (1.7) and (1.8) it follows that

V (z) = V +
o (e−jβz + Γejβz) (1.23)

I(z) =
V +
o

Zo
(e−jβz − Γejβz) (1.24)

It can be shown that the maximum and minimum voltages on the transmission
line are expressed as

Vmax = |V +
o |(1 + |Γ|) (1.25)

Vmin = |V +
o |(1− |Γ|) (1.26)

The voltage standing wave ratio (VSWR) is defined as

VSWR =
Vmax

Vmin
=

1 + |Γ|
1− |Γ|

(1.27)

Solving Equation (1.27) for the magnitude of the reflection coefficient yields

|Γ| = VSWR− 1

VSWR + 1
(1.28)

Next, using Equations (1.23) and (1.24), the input impedance Zin at any point
along the transmission line is now expressed as

Zin(−l) =
V (−l)
I(−l)

=
V +
o (ejβl + Γe−jβl)

V +
o (ejβl − Γe−jβl)

Zo =
1 + Γe−j2βl

1− Γe−j2βl
Zo (1.29)

Subsituting Equation (1.15) in Equation (1.29) yields after simplification

Zin(−l) = Zo
ZL + jZo tanβl

Zo + jZL tanβl
(1.30)

In the general case with frequency dependence, if an antenna with
complex input impedance ZA is connected to a transmission line with char-
acteristic impedance Zo, then the antenna’s frequency-dependent complex
reflection coefficient ΓA is given by

ΓA(f) =
ZA(f)− Zo(f)

ZA(f) + Zo(f)
(1.31)
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It should be noted that the characteristic impedance of a coaxial transmission
line or microstrip line is frequency independent, whereas in a rectangular or
circular waveguide the characteristic impedance is frequency dependent. In
this book, we concentrate primarily on antennas that are connected to a coaxial
transmission line.

Impedance matching is a critical technique that is used to improve the
performance of antennas. Figure 2 shows the situation in which a two-port
matching network is connected at a position along the transmission that is
connected to the antenna. To reduce impedance mismatch effects between
the transmission line and the antenna, the parameters of the matching device
can be adjusted so that the reflection coefficient magnitude is minimized. A
significant amount of impedance matching theory has been developed by prior
researchers. In this book, some general theory of impedance matching theory
is given as well as specific applied examples for narrowband and wideband
antennas.

1.2.3 Smith chart theory

In this book, impedance data are presented either in the form of a rectangular
plot with the horizontal axis the real part of the impedance and the vertical
axis the imaginary part of the impedance, or as in a Smith chart [63 – 66] as
is described in this section. In a Smith chart, the impedance data are typically
normalized by the charateristic impedance of a transmission line. A derivation
of the Smith chart equations is now given.

The derivation starts by normalizing the right-hand side of the voltage
reflection coefficient Equation (1.15) by Zo with the result

Γ =
zL − 1

zL + 1
(1.32)

where zL = ZL/Zo is the normalized impedance. Now solving Equa-
tion (1.32) for zL yields

zL =
1 + Γ

1− Γ
(1.33)

Expressing the normalized load impedance and the reflection cofficient in
terms of real and imaginary components as zL = rL + jxL and Γ = Γr + jΓi
Equation (1.33) becomes

zL = rL + jxL =
1 + Γ

1− Γ
=

(1 + Γr) + jΓi
(1− Γr)− jΓi

(1.34)

Now, multiplying the top and bottom of the right-hand side of Equation (1.34)
by the complex conjugate of the denominator, and then simplifying and
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equating real and imaginary components with rL and xL yields

rL =
(1− Γ2

r)− Γ2
i

(1− Γr)2 + Γ2
i

(1.35)

xL =
2Γi

(1− Γr)2 + Γ2
i

(1.36)

By rearranging terms and factoring, Equations (1.35) and (1.36) can be put
into the standard form for constant resistance circles as(

Γr −
rL

rL + 1

)2

+ Γ2
i =

(
1

rL + 1

)2

(1.37)

which is centered at
Γr =

rL
rL + 1

Γi = 0 (1.38)

and has radius
1

rL + 1
(1.39)

and for constant reactance circles as

(Γr − 1)2 +

(
Γi −

1

xL

)2

=

(
1

xL

)2

(1.40)

which is centered at
Γr = 1 Γi =

1

xL
(1.41)

and has radius
1

xL
(1.42)

Similarly, in a Smith chart, the admittance data are typically normalized
by the charateristic admittance of a transmission line. The derivation starts
by normalizing the right-hand side of Equation (1.15) by Zo and then using
zL = 1/yL with the result

Γ =
zL − 1

zL + 1
=

1/yL − 1

1/yL + 1
=

1− yL
1 + yL

(1.43)

where yL is the normalized impedance. Now solving Equation (1.43) for yL
yields

yL =
1− Γ

1 + Γ
(1.44)
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Expressing the normalized load impedance and the reflection cofficient in
terms of real and imaginary components as yL = gL + jbL and Γ = Γr + jΓi
Equation (1.44) becomes

yL = gL + jbL =
1− Γ

1 + Γ
=

(1− Γr)− jΓi
(1 + Γr) + jΓi

(1.45)

Now, multiplying the top and bottom of the right-hand side of Equation (1.45)
by the complex conjugate of the denominator, and then simplifying and
equating real and imaginary components with gL and bL yields

gL =
(1− Γ2

r)− Γ2
i

(1 + Γr)2 + Γ2
i

(1.46)

bL = − 2Γi
(1− Γr)2 + Γ2

i

(1.47)

By rearranging terms and factoring, Equations (1.47) and (1.35) can be put
into the standard form for constant conductance circles as(

Γr +
gL

gL + 1

)2

+ Γ2
i =

(
1

gL + 1

)2

(1.48)

which is centered at
Γr = − gL

gL + 1
Γi = 0 (1.49)

and has radius
1

gL + 1
(1.50)

and for constant susceptance circles as

(Γr + 1)2 +

(
Γi +

1

bL

)2

=

(
1

bL

)2

(1.51)

which is centered at
Γr = −1 Γi = − 1

bL
(1.52)

and has radius
1

bL
(1.53)

A standard Smith chart normalized by the characteristic impedance or
characteristic admitttance of the transmission line is shown in Figure 1.5.
This type of Smith chart is referred to here as a Z-type Smith Chart.
The same Z-type of Smith chart is repeated in Figure 1.6, but now with
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constant resistance (r = 0.3, 1, 2) and positive constant reactance (x =
1, 1.8, 3) circles highlighted. Figure 1.7 shows a standard normalized Smith
chart (Z-type) with VSWR circles 1.5, 2, and 3 highlighted. As mentioned,
the standard Z-type Smith chart can be used to analyze impedance and
admittance data. When impedance values are plotted in a Z-type Smith
chart, the corresponding admittance values are positioned 180◦ away from
the impedance values on a constant VSWR circle. An alternate method for
working with admittance values, is to physically rotate the Smith chart by
180◦. A 180◦ rotated Smith chart normalized by the characteristic impedance
or characteristic admitttance of the transmission line is shown in Figure 1.8.
This type of Smith chart is referred to here as a Y-type Smith Chart (some
authors [72] refer to this type of Smith Chart presentation as an overlay),
because the chart is used directly with the admittance circles. The same Y-
type Smith chart is repeated in Figure 1.9, but now with constant conductance
(g = 0.3, 1, 2) and constant susceptance (b = 1, 1.8, 3) circles highlighted.
Note: The MATLAB RF Toolbox (www.mathworks.com) provides Smith
charts of the following type: Z-type, Y-type, ZY-type (Z is the primary chart
with Y the overlay), and YZ-type (Y is the primary chart with Z the overlay).

1.2.4 Impedance Matching Circuit Elements

Impedance matching [67–75] is an important part of antenna technology, as
it can be used to improve the transmit and receive characteristics of antennas
over a bandwidth of interest. To improve the impedance match of an antenna
to a transmission line of characteristic impedance Zo, it is common to use one
or more inductors and/or capacitors in series or in parallel with the antenna.
These circuit elements are placed as close to the antenna terminals as possible
to reduce dispersive effects and allow improved impedance matching over a
given bandwidth. Let L be the inductance (typically in nH) of an inductor and
let C be the capacitance (typically in pF) of a capacitor. Let ZA be the antenna
input impedance. It follows then that

• A series inductor provides an impedance equal to jωL and a series
capacitor provides an impedance equal to 1/(jωC).

• A parallel inductor provides an admittance equal to 1/(jωL) and a
parallel capacitor provides an admittance equal to jωC.

Figure (1.10) summarizes the input impedance Zin for these four circuit
types with either a single inductor or single capacitor in series or parallel
to the antenna (load) impedance ZA. The corresponding Smith charts in
Figure (1.11) show the effect of tuning to a perfect match (|Γ| = 0) at a single
frequency with these four circuit types.
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Figure 1.5 Standard Smith chart (Z-type) normalized by the characteristic impedance
or characteristic admitttance of the transmission line. Copyright: IEEE
[106]

• With a series inductor, the impedance rotates clockwise along
circles of constant resistance on the impedance (Z-type) Smith Chart
(Figure (1.11a)).
• With a series capacitor, the impedance rotates counter-clockwise

along circles of constant resistance on the impedance (Z-type) Smith
Chart (Figure (1.11b)).
• With a parallel inductor, the admittance rotates counter-clockwise

along circles of constant conductance on the admittance (Y-type)
Smith Chart (Figure (1.11c)).
• With a parallel capacitor, the admittance rotates clockwise along
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x=1.8

1

r=1 20.3

Positive Reactance

Figure 1.6 Standard normalized Smith chart (Z-type) with a few positive constant
resistance (r = 0.3, 1, 2) and positive constant reactance (x = 1, 1.8, 3)
circles highlighted.

circles of constant conductance on the admittance (Y-type) Smith
Chart (Figure (1.11d)).

In Figure (1.12), the effect of two-stage tuning to a perfect match
(|Γ| = 0) at a single frequency with four series/parallel circuit types is shown.
In these four examples, since the first element is in series and the second
element is in parallel with the antenna load, first a Z-type Smith chart rotation
on a constant resistance circle is implemented which is then followed by a Y-
type Smith chart rotation on the g = 1 constant conductance circle. The input
admittance equation is indicated in each of the diagrams in Figure 1.12.

• With an initial series inductor L, the impedance rotates clockwise
along a circle of constant resistance on the impedance (Z-type) Smith
Chart. The rotation stops when the impedance reaches the point
indicated by a prime ′ on the g = 1 constant conductance circle. Then
with a parallel capacitor C and switching to the Y-type Smith chart
overlay the admittance rotates clockwise on the g = 1 circle to reach
the center of the Smith chart for a perfect match (Figure (1.12a)).
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Figure 1.7 Standard normalized Smith chart (Z-type) with VSWR circles 1.5, 2, and
3 highlighted.

• With an initial series capacitor C, the impedance rotates counter-
clockwise along a circle of constant resistance on the impedance
(Z-type) Smith Chart. The rotation stops when the impedance reaches
the point indicated by a prime ′ on the g = 1 constant conductance
circle. Then with a parallel inductor L and switching to the Y-type
Smith chart overlay the admittance rotates counterclockwise on the
g = 1 circle to reach the center of the Smith chart for a perfect match
(Figure (1.12b)).
• With an initial series inductor L2, the impedance rotates clockwise

along a circle of constant resistance on the impedance (Z-type) Smith
Chart. The rotation stops when the impedance reaches the point
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Figure 1.8 180◦ rotated Smith chart (Y-type) normalized by the characteristic
impedance or characteristic admitttance of the transmission line.

indicated by a prime ′ on the g = 1 constant conductance circle.
Then with a parallel inductor L1 and switching to the Y-type Smith
chart overlay the admittance rotates counterclockwise on the g = 1
circle to reach the center of the Smith chart for a perfect match
(Figure (1.12c)).

• With an initial series capacitor C2, the impedance rotates counter-
clockwise along a circle of constant resistance on the impedance
(Z-type) Smith Chart. The rotation stops when the impedance reaches
the point indicated by a prime ′ on the g = 1 constant conductance
circle. Then with a parallel capacitor C1 and switching to the Y-type
Smith chart overlay the admittance rotates clockwise on the g = 1
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Figure 1.9 180◦ rotated normalized Smith chart (Y-type) with a few positive
constant conductance (g = 0.3, 1, 2) and constant susceptance (b =
1, 1.8, 3) circles highlighted.

circle to reach the center of the Smith chart for a perfect match
(Figure (1.12d)).

In Figure (1.13), the effect of two-stage tuning (with so-called L-
sections) to a perfect match (|Γ| = 0) at a single frequency with four
parallel/series circuit types is shown. In these four examples, since the first
element is in parallel and the second element is in series with the antenna
load, first a Y-type Smith chart rotation on a constant conductance circle is
implemented which is then followed by a Z-type Smith chart rotation on the
r = 1 constant resistance circle. The input impedance equation is indicated in
each of the diagrams in Figure 1.13.

• With an initial parallel inductor L, the impedance rotates counter-
clockwise along a circle of constant conductance on the admittance
(Y-type) Smith Chart. The rotation stops when the admittance reaches
the point indicated by a prime ′ on the r = 1 constant resistance
circle. Then with a series capacitor C and switching to the Z-type
Smith chart overlay the impedance rotates counterclockwise on the
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r = 1 circle to reach the center of the Smith chart for a perfect match
(Figure (1.13a)).

• With an initial parallel capacitor C, the admittance rotates clockwise
along a circle of constant conductance on the admittance (Y-type)
Smith Chart. The rotation stops when the admittance reaches the
point indicated by a prime ′ on the r = 1 constant resistance circle.
Then with a series inductor L and switching to the Z-type Smith chart
overlay the impedance rotates clockwise on the r = 1 circle to reach
the center of the Smith chart for a perfect match (Figure (1.13b)).

• With an initial parallel inductor L2, the admittance rotates counter-
clockwise along a circle of constant admittance on the admittance
(Y-type) Smith Chart. The rotation stops when the admittance reaches
the point indicated by a prime ′ on the r = 1 constant resistance
circle. Then with a series inductor L1 and switching to the Z-type
Smith chart overlay the impedance rotates clockwise on the r = 1
circle to reach the center of the Smith chart for a perfect match
(Figure (1.13c)).

• With an initial parallel capacitor C2, the admittance rotates clockwise
along a circle of constant conductance on the admittance (Y-type)
Smith Chart. The rotation stops when the admittance reaches the
point indicated by a prime ′ on the r = 1 constant resistance circle.
Then with a series capacitor C1 and switching to the Z-type Smith
chart overlay the impedance rotates counterclockwise on the r = 1
circle to reach the center of the Smith chart for a perfect match
(Figure (1.13d)).

The examples shown in Figures 1.10 to 1.13 are ideal cases where
a perfect impedance match (|Γ = 0|) is achieved at a single frequency.
For practical antennas (loads) operating over a band of frequencies, a
perfect match is not feasible. Instead, the antenna impedance match will
provide a maximum allowed reflection coefficient magnitude or equivalently
a maximum allowed voltage standing wave ratio (VSWR) over the desired
frequency band. Impedance matching over a band of frequencies can be
achieved for example with L-section networks, pi networks, T networks,
and ladder networks consisting of multiple L, pi, and/or T networks, short-
circuit and open-circuit stub tuners, and line transformers. Specific examples
are given in later chapters. Impedance matching can be achieved using
graphical methods manually on a Smith chart, or by commercial software that
perform circuit synthesis and optimization such as the MATLAB RF Toolbox
(www.mathworks.com) or Optenni Lab (www.optenni.com). For simple L-
section networks, the values of the inductor(s) and/or capacitor(s) can be
computed in closed form by first deriving the input impedance equation for
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L
ZAZin

Zin = jωL+ZA

C
ZAZin

Zin = jωC+ZA
1

L YAYin

Yin = jωC+YA

C YAYin

Yin = jωL+YA
1

(a)

(d)(c)

(b)

Figure 1.10 Four single element circuit types for impedance matching an antenna
with input impedance ZA or input admittance YA. (a) Series inductor, (b)
Series capacitor, (c) Parallel inductor, and (d) Parallel capacitor.

the particular L-section network. Next, the real part of the input impedance
is set equal to the characteristic impedance of the transmission line, and
the imaginary part is set to zero. The resulting equation is then rearranged
and separated into real and imaginary terms which gives two simultaneous
equations. These two simultaneous equations are then solved for the values
of the two reactive circuit components. In practice, for implementation of
impedance matching with measurements and analysis of RF circuits, it is
necessary to consider S-parameters as discussed in the next section.

1.2.5 S-parameters

S-parameters, or scattering parameters [62, 76–79] are commonly used to
quantify the reflection and transmission of voltage and current waves in
networks or antennas. In general, the S-parameters are quantified for an N -
port system as an N ×N complex matrix. A network analyzer is typically
used in measuring S-parameters versus frequency. Consider Figure 1.14 which
shows a transmission line with a two-port network. Voltage waves a1 and a2

are incident on ports 1 and 2, respectively. Similarly, voltage waves b1 and
b2 are reflected from ports 1 and 2, respectively. In this case, the S-matrix or
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Figure 1.11 Series L or C circuits with corresponding Z and Y Smith chart diagrams.
(a) Series inductor, (b) Series capacitor, (c) Parallel inductor, and (d)
Parallel capacitor.

scattering matrix is a 2 x 2 complex matrix that is expressed as

S =

[
S11 S12
S21 S22

]
. (1.54)
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Figure 1.12 Series/parallel L-section matching circuits with corresponding Smith
chart diagrams in Z then Y overlay format. The initial matching element
is in series with the antenna load impedance ZA. (a) Series inductor
followed by parallel capacitor, (b) Series capacitor followed by parallel
inductor, (c) Series inductor followed by parallel inductor, and (d) Series
capacitor follwed by parallel capacitor.
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Figure 1.13 Parallel/series L-section matching circuits with corresponding Smith
chart diagrams in Y then Z overlay format. The initial matching element
is in parallel with the antenna load impedance ZA. (a) Parallel inductor
followed by series capacitor, (b) Parallel capacitor followed by series
inductor, (c) Parallel inductor followed by series inductor, and (d) Parallel
capacitor followed by series capacitor.
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where the S-parameters are related to the voltage waves as

b1 = S11a1 + S12a2 (1.55)

b2 = S21a1 + S22a2 (1.56)

Now when a2 = 0 it follows that S11 = b1/a1, and S21 = b2/a1, and when
a1 = 0 it follows that S12 = b1/a2, and S22 = b2/a2. In the case of a two-
port network, the scattering matrix S provides a relation between the reflected
wave parameters at the two ports and the incident wave paramters at the two
port. Figure 1.15 shows a signal flow diagram for the scattering matrix S.

Two-port
network
[S matrix]

Port 1 Port 2
a1 a2

b1 b2

Figure 1.14 Two-port network quantified by the scattering matrix S.

S11

S12

Port 1 Port 2S22

S21a1

b1 a2

b2

Figure 1.15 Signal flow diagram for the scattering matrix S.

Refer now to the previous Figure 1.3, where the matching network is
quantified by the scattering matrix S and the antenna (load) is quantified by
the reflection coefficient ΓL. Figure 1.16 shows a signal flow diagram for the
scattering matrix matching network where the load impedance characterized
by reflection coefficient ΓL has been added. We want to determine the
input reflection coefficient Γin = b1/a1. It is observed that two signal paths
contribute to the voltage wave at node b2. At node b2 the load reflection
coefficient acts as a feedback signal equal to S22ΓL Thus, the flow diagram
in Figure 1.16 can be reduced to the equivalent flow diagram shown in
Figure 1.17 and it follows that

b2 = a1S21 + b2S22ΓL (1.57)
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S11

S12

S22

S21a1

b1 a2

b2

ΓLΓin

Figure 1.16 Signal flow diagram for the scattering matrix S with load characterized
by reflection coefficient ΓL.

and solving for b2 yields

b2 = a1
S21

1− S22ΓL
(1.58)

It follows then that the flow diagram in Figure 1.17 can be reduced finally to
Figure 1.18. It immediately follows that the input reflection can expressed as

Γin =
b1
a1

= S11 +
S12S21ΓL
1− S22ΓL

(1.59)

S-parameters are very useful when only a single network is utilized in

b2

a2

a1

b1 S12

S11

 S21

S22 ΓL

S22 ΓL

Figure 1.17 Signal flow diagram for the scattering matrix S with the load reflection
coefficient included as a feedback loop at node b2.

matching a transmission line to a load. In the case where casecaded networks
are involved, it is necessary to convert the S-parameters to T-chain scattering
parameters as discussed in the next section.
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b2

a2

a1

b1 S12

S11

S21

1 – S22ΓL

ΓL

Figure 1.18 Final signal flow diagram for the scattering matrix S combined with the
load impedance characterized by the reflection coefficient Γ.

1.2.6 T-Chain Scattering Matrices for Cascaded Networks

T-chain (transfer) scattering matrices [77 – 79] can be used when multiple
networks are cascaded. A block diagram of a single T-chain scattering matrix
is depicted in Figure (1.19). The T-chain scattering matrix T provides a
relation between the incident and reflected waves (a1 and b1, respectively)
of the input port to the incident and reflected waves (a2 and b2, respectively)
of the output port. Figure (1.20) shows a block diagram where two T matrices
(TA and TB) are cascaded.

Two-port
network
[T matrix]

Port 1 Port 2
a1 a2

b1 b2

Figure 1.19 Block diagram for a T-chain scattering matrix.

The T-chain scattering matrix is related to the voltage wave parameters
as

a1 = T11b2 + T12a2 (1.60)

b1 = T21b2 + T22a2 (1.61)

The T-chain scattering matrix parameters can be determined from the S
parameters as follows. In the case where a2 = 0 it follows from Equa-
tions (1.55), (1.56), and (1.60) that

T11 =
1

S21
(1.62)
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Two-port
network
[T matrix]

a1 a2

b1 b2

A

A

AA

A

Two-port
network
[T matrix]

a1 a2

b1 b2

B

B

BB

B

Figure 1.20 Block diagram for cascaded T-chain scattering matrices.

T21 =
S11

S21
(1.63)

When a1 = 0 it follows from Equation (1.56) and (1.61) that

T12 = −S22

S21
(1.64)

T22 =
S12S21 − S11S22

S21
(1.65)

Similarly, the S parameters can be determined from the T-chain
scattering parameters as

S11 =
T21

T11
(1.66)

S21 =
1

T11
(1.67)

S12 =
T11T22 − T12T21

T11
(1.68)

S22 = −T12

T11
(1.69)

Referring now to Figure (1.20) the T-matrices TA and TB are expressed
in terms of voltage waves as[

aA1
bA1

]
=

[
TA11 TA12

TA21 TA22

] [
bA2
aA2

]
(1.70)
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[
aB1
bB1

]
=

[
TB11 TB12

TB21 TB22

] [
bB2
aB2

]
(1.71)

but since [
bA2
aA2

]
=

[
aB1
bB1

]
(1.72)

it follows that the cascaded T-chain matrices can be expressed as[
aA1
bA1

]
=

[
TA11 TA12

TA21 TA22

] [
TB11 TB12

TB21 TB22

] [
bB2
aB2

]
(1.73)

Thus, the cascaded T-matrix product is given by

TC = TATB (1.74)

Once the cascaded T-matrix product TC has been computed, the S-parameters
for the cascaded network can then be determined by Equations (1.66) to
(1.69).

1.3 Electromagnetic Radiation: Maxwell’s Equations

This section begins with a brief discussion of accelerated charges, time-
varying currents, and photons, with the goal of providing a fundamental
understanding of the mechanisms of electromagnetic radiation as described
mathematically by Maxwell’s equations.

Electromagnetic waves are known to be generated by accelerated elec-
tron charges or, equivalently, by time-varying currents [1-14]. For example,
the time-varying vector current density J(t) with units of amperes/m2 at a
particular cross section of an electrically conducting antenna can be expressed
in terms of the volume electric charge density ρ (coulombs/m3) and the
velocity v(t) (m/s) of the charge as

J(t) = ρv(t). (1.75)

Thus, the electric current density has units of coulombs per m2 per second.
In Equation (1.75), the local charge density is related to the electron charge
(denoted as qe) times the number of electrons (Ne) accelerated through the
local cross section of the antenna, that is,

ρ = qeNe. (1.76)
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Taking the derivative of J(t) with respect to time yields

dJ(t)

dt
= ρ

dv(t)

dt
= ρa(t) (1.77)

where dv(t)/dt = a(t) is the acceleration of the charge with units of m/s2.
Thus, the units of the time derivative of the current density are coulombs per
meters squared per second per second, and, as will be shown, radiation occurs
when the time derivative of the current density J is nonzero and equivalently
when the charge acceleration a is nonzero. The time derivative of the current
density and acceleration of charge are of interest in explaining the source of
the electromagnetic radiation for antenna systems.

A complete characterization of electromagnetic fields can be determined
by means of Maxwell’s equations. However, in the process of generating
electromagnetic waves, an intermediate process, referred to in the literature as
photon emission, occurs and ultimately produces the electromagnetic wave. A
photon can be described as a discrete packet of electromagnetic radiation that
includes X rays, visible light, and microwaves. The term ionizing radiation
refers to radiation that has enough energy to knock electrons out of atoms
and includes X rays, protons, heavy ions, and neutrons that are generated
by accelerators. Nonionizing radiation includes visible light, ultraviolet (UV)
radiation, infrared (IR) radiation, and microwaves. In the case of an antenna
receiving an electromagnetic wave, photon absorption and scattering occur
with some probability that produces accelerated charges or, equivalently, time-
varying currents on the antenna. Here, a brief discussion of the generation
and reception of photons and electromagnetic waves is given. A complete
mathematical treatment of photon emission and photon absorption is beyond
the scope of this book, and the reader is referred to other sources mentioned
in the paragraphs below. One situation in which photon/electron interaction
is important is in determining the effect of electromagnetic waves on human
tissues as a potential safety issue. When the electromagnetic wave frequency
is sufficiently high, as is the case for X-ray radiation, the energy in the
electromagnetic photons is large enough to break the atom-electron bond
and knock out electrons causing damage to the DNA of tissue. Low-level
(nonthermal) microwave energy does not contain sufficient photon energy
to knock out electrons from tissue, but if the power density is sufficiently
high and is applied for a sufficient time interval, it is capable of heating and
damaging tissues [96, 97]. The interaction of microwave energy and a wide
range of dielectric materials has been investigated in the literature [98].

For RF transmission, when a time-varying signal voltage (e.g., a
sinusoidal or pulsed waveform) on a transmission line is applied across the
terminals of an antenna, electrons (negatively charged particles) distributed
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across the metallic lattice portion of the antenna experience a time-varying
vector force, and they accelerate and generate a time-varying electric current.
An electron has a negative electric charge equal to qe = −1.602× 10−19

coulombs and a rest mass of moe = 9.109× 10−31 kg. The RF-induced
acceleration of the electrons alters their vector momentum and energy state,
which with some probability gives rise to the emission of RF photons,
which can be described in a dual nature as particles or waves with zero rest
mass (mop = 0) and zero electric charge (qp = 0), as described by Cohen-
Tannoudji [100, 101]. Each photon has an energy level E (equal to the change
in energy level between the excited state and the ground state of an electron)
as computed by

E = hf (1.78)

where h = 6.626× 10−34J-s is Planck’s constant and f is the frequency
in cycles per second or Hertz (Hz). For example, the energy of a single
microwave photon packet at 300 MHz is computed and rounded as

E = (6.626× 10−34J-s)(300× 106s−1) = 2× 10−25J. (1.79)

Suppose an antenna is radiating 1 watt or 1 joule per second of microwave
power, then the number of 300 MHz microwave photons generated per second
is computed as

Nphotons per second =
1J/s

2× 10−25J/photon
= 5× 1024. (1.80)

Microwave photons are polarized according to the design of the antenna,
which can be linear, circular, or elliptically polarized. In free space, RF
photons travel at the speed of light, and they have an energy-momentum vector
p with amplitude equal to

p =
h

λ
=
hf

c
(1.81)

where λ = c/f is the wavelength of the photon in free space. It should be
noted that the energy-momentum vector p has units of J-s/m.

As microwave power is continuously pumped into the antenna terminals,
RF photons are continuously generated and radiated outward from the
transmitting antenna. When a sufficient amount and spatial distribution of
photons are generated from the radiating antenna, a propagating wavefront,
described by an electromagnetic field, is created. Electromagnetic fields (and
photons) are characterized by Maxwell’s equations, and these fields travel at
the speed of light in vacuum and slower than the speed of light in a dielectric
medium.
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The characteristics of the electromagnetic-field wavefront, such as
the spatial distribution of amplitude and phase, signal bandwidth, power
density, and polarization, depend on the design of the antenna and the
characteristics of the transmitting source. The radiating field will produce a
force on any electrical charges that it may encounter. The total time-varying
electromagnetic force vector F (r, t) at vector position r and time t applied
to an electric charge q is given by the Lorentz force equation as described by
Jackson [102, p. 3]:

F (r, t) = qE(r, t) + qv(r, t)×B(r, t) (1.82)

where q is the charge of the particle (in this case an electron),E is the electric-
field vector, v is the vector velocity of the charged particle,B is the magnetic
flux density, and the symbol × means vector cross product. Such charges
will exist, for example, as electrons in a distant metallic receive antenna
for communications or within a metallic or other scattering target in a radar
application.

For RF signal reception, when a time-varying electromagnetic field is
incident on a metallic antenna, the electrons in the metal experience a time-
varying force, as computed by the Lorentz force equation, which accelerates
them according to the classical equation

F (t) = ma(t) (1.83)

or

a(t) =
F (t)

m
(1.84)

where a(t) is the acceleration as a function of time and m is the mass of
the particle. Equivalently, the photon particles in the incident electromagnetic
field are absorbed with some probability by the electrons in the metal, altering
the electron momentum and causing acceleration of the electrons. (The
interaction of the moving, drifting electrons in the metal is a complex process,
but here we only care about the net effect.) For low velocities (v << c), using
Equation (1.82), the force on the electrons in the metal can be approximated
by F (t) = qE(t), and in the case of a sinusoidally varying electric field
from Equation (1.84), the force and charge acceleration are time varying in
a sinusoidal fashion as well.

The acceleration of the negatively charged electrons induces a time-
varying electric current in the metallic antenna, which produces a signal
voltage across the antenna terminals connected to the transmission line that
is connected to a receiver. The time variation of the electric current in the
receive antenna tends to be matched to the time variation of the incident field,
depending on the design of the antenna.



Electromagnetics and Antenna Theory 33

The remainder of this section describes the mathematical foundation of
Maxwell’s equations for computation of electromagnetic fields of antennas.
In computing electromagnetic fields, the fundamental photon/electron inter-
action is not used, but rather the current distribution induced on the antenna
or scatterer is the required source of the fields.

To quantify the propagation of an electromagnetic wave from or to
an antenna, it is useful to review certain fundamental equations that govern
the field characteristics. Assume an isotropic medium that is characterized
by a permittivity, denoted ε, and a permeability µ. As described in many
textbooks on electromagnetic theory, electromagnetic fields can be analyzed
by Maxwell’s equations [1–14, 102, 103], which provide the relationships
between electric and magnetic fields, electric charge, and electric current.
Depending on the application, Maxwell’s equations can take on many
different forms, including differential, integral, source driven, and source free,
and take account of many different types of materials both isotropic and
anisotropic. An overview of the development of Maxwell’s equations is given
[4, pp. 45–55]. In time-dependent differential form in the general case for
antennas in isotropic media, Maxwell’s equations follow from Faraday’s law,
Ampere’s circuital law, Gauss’s law for electric fields, and Gauss’s law for
magnetic fields, respectively, as given by the following curl (denoted ∇×)
and divergence (denoted∇·) equations:

∇×E = −M − ∂B

∂t
(1.85)

∇×H = J +
∂D

∂t
(1.86)

∇·D = ρ (1.87)

∇·B = ρm (1.88)

where E = E(r, t) is the vector electric field with units of volts/meter, H =
H(r, t) is the vector magnetic field with units of amperes/meter, J = J(r, t)
is the electric current density with units of amperes/m2, M = M(r, t) is the
equivalent magnetic current density with units of volts/m2, ρ is the volume
electric charge density with units of coulombs/m3, and ρm is the equivalent
volume magnetic charge density with units of webers/m3, which is usually
taken to be zero since magnetic monopoles (charges) have not been observed
to date. Bold lettering or bold symbols are used here to represent vectors
or vector operations. Bold lettering with an overbar is used to refer to a
dyadic (tensor rank two) quantity. Vector and dyadic analyses presented
here make use of the theoretical work developed by prior researchers such
as summarized by Tai [109 – 112]. In Equation (1.86), the term ∂D/∂t
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was introduced as a displacement current density by Maxwell. The previous
Maxwell equations take into account the general properties of the linear
isotropic material, radiating sources, and fields, all of which can have both
spatial and time dependence. The inclusion (for mathematical convenience) of
the equivalent magnetic current density M and equivalent volume magnetic
charge density ρm allows for analysis of aperture fields and other general
electromagnetics problems requiring these equivalent quantities. In the prior
form of the Maxwell’s equations, the time dependence of the electromagnetic
fields is arbitrary. For arbitrary antenna geometries, this time-dependent form
of the Maxwell equations can be solved via numerical methods such as
the finite difference time domain technique. An overview of computational
methods for solving Maxwell’s equations for the electromagnetic fields is
given for example in [2]. For the case in which the material properties are
linear, isotropic, and nondispersive, the following constitutive relations hold:

D(r, t) = εE(r, t) (1.89)

where D is the vector electric flux density with units of coulombs/m2, and ε
is the permittivity of the material

B(r, t) = µH(r, t) (1.90)

where B is the vector magnetic flux density with units of webers/m2, and µ
is the permeability of the material. Equations (1.89) and (1.90) are referred to
as the constitutive relations, and in this isotropic case, D is parallel to E and
B is parallel to H . In general, the material properties ε and µ are frequency
dependent.

In the case in which the material is anisotropic, the constitutive relations
are expressed in terms of the material dyadic (tensor) quantities ε and µ to
convert the vector fields to vector flux densities as

D(r, t) = ε·E(r, t) (1.91)

B(r, t) = µ·H(r, t) (1.92)

where the overbar is used to indicate a dyadic quantity (refer to Section 1.6
for a detailed discussion of dyadics), and the symbol · means dot product. For
the anisotropic case, the vector directions of the vector flux densities D and
B can be different from the vector directions of the vector fields E and H ,
respectively.

In spherical coordinates, with A = Arr̂ +Aθθ̂ +Aφφ̂, the curl oper-
ation ∇×A is given in terms of the unit vectors r̂, θ̂, φ̂ in convenient
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determinant form as

∇×A =
1

r2 sin θ

∣∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂
∂
∂r

∂
∂θ

∂
∂φ

Ar rAθ r sin θAφ

∣∣∣∣∣∣∣ . (1.93)

Performing the determinant operation in Equation (1.93), the curl operation in
expanded form is then given by

∇×A = r̂
r sin θ

[
∂
∂θ (Aφ sin θ)− ∂Aθ

∂φ

]
+

ˆθ
r

[
1

sin θ
∂Ar
∂φ −

∂
∂r (rAφ)

]
+

ˆφ
r

[
∂
∂r (rAθ)− ∂Ar

∂θ

]
.

(1.94)
The divergence operation∇·A is given by

∇·A =
1

r2

∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(Aθ sin θ) +

1

r sin θ

∂

∂φ
(Aφ). (1.95)

Additionally, note that the vector cross product in spherical coordinates is
given by

A×B =

 r̂ θ̂ φ̂
Ar Aθ Aφ
Br Bθ Bφ

 . (1.96)

Substituting Equations (1.89) and (1.90) into Equations (1.85) and
(1.86), respectively, yields an alternate representation of Maxwell’s equations:

∇×E = −M − µ∂H
∂t

(1.97)

∇×H = J + ε
∂E

∂t
(1.98)

∇·D = ρ (1.99)

∇·B = ρm. (1.100)

An equation for expressing the continuity of electrical charge can
be derived by taking the divergence of Maxwell’s curl equation for the
magnetic field, (∇·∇×H), and applying Gauss’s law for electric fields
(Equation (1.99)), and using the property that the divergence of the curl of
any vector is zero, with the result

∇·J(r, t) = −∂ρ(r, t)

∂t
. (1.101)
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The continuity equation given by Equation (1.101) indicates that the
divergence of the electric current density J depends on the time rate of change
of the charge density. Similarly, an equation for expressing the continuity
of equivalent magnetic charge can be derived by taking the divergence of
Maxwell’s curl equation for the electric field, applying Gauss’s law for
magnetic fields, and using the property that the divergence of the curl of any
vector is zero, with the result

∇·M(r, t) = −∂ρm(r, t)

∂t
. (1.102)

The continuity equation given by Equation (1.102) indicates that the
divergence of the equivalent magnetic current densityM depends on the time
rate of change of the equivalent magnetic charge density ρm.

The electric current density J in Equation (1.98) can be composed of a
source current J source and a conduction current Jc as

J = J source + Jc. (1.103)

For a conducting medium with electrical conductivity σ having units of
siemens/meter (amperes per volt-meter), the conducting current density Jc
and electric field E are related as

Jc = σE, (1.104)

which is Ohm’s law for conducting current density. Note that electrical
conductivity is equal to the reciprocal of electrical resistivity. In free space,
it should be noted that σ = 0.

Similarly, the equivalent magnetic current densityM in Equation (1.97)
can be composed of an equivalent magnetic source current M source and an
equivalent magnetic conduction current expressed as

M c = σmH (1.105)

where σm is the magnetic conductivity that has units of ohms per meter.
Thus, in the case of a lossy dielectric material, the electric current

density can be expressed as

J = J source + σE. (1.106)

Similarly, in the case of a lossy magnetic material, the magnetic current
density can be written as

M = M source + σmH. (1.107)
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In summary, the source currents J source and M source produce the electromag-
netic fields, which then induce a corresponding conduction current density.

Substituting Equations (1.106) and (1.107) into Maxwell’s curl equa-
tions given by Equations (1.97) and (1.98) yields an alternate form of
Maxwell’s equations as

∇×E = −M source − σmH − µ
∂H

∂t
(1.108)

∇×H = J source + σE + ε
∂E

∂t
(1.109)

∇·D = ρ (1.110)

∇·B = ρm. (1.111)

The instantaneous electric and magnetic fields, as a function of spatial
position (x, y, z) or position vector (r) and time t, are real functions, and
for the time-harmonic case, they are sinusoidal (or cosinusoidal) and can be
expressed as

E(r, t) = |E(r)| cos(ωt+ ψ(r)) = |E(r)| cos(ωt− kr) (1.112)

H(r, t) = |H(r)| cos(ωt+ ψ(r)) = |H(r)| cos(ωt− kr) (1.113)

where ψ(r) = −kr is the spatial phase variation of the electric and magnetic
fields, with k = 2π/λ = ω

√
µε the wavenumber, and ω = 2πf is the radian

frequency, where f is the frequency. The time-harmonic fields can be extended
to most waveforms by utilizing standard Fourier transform techniques.
Equivalently, the instantaneous electric and magnetic fields can be written in a
more convenient exponential form in terms of the non-time-varying complex
electric and magnetic fields E(r) andH(r) as

E(r, t) = Re[E(r)ejωt] (1.114)

H(r, t) = Re[H(r)ejωt] (1.115)

where Re[·] indicates the real part. Note that the ejωt convention used here
throughout is common to the electrical engineering convention; however, in
cases for which the e−iωt convention would be used, the equations presented
here can be converted by simply interchanging jωt with −iωt. Similarly,
the instantaneous electric current density J and equivalent magnetic current
densityM can be written as

J(r, t) = Re[J(r)ejωt] (1.116)
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M(r, t) = Re[M(r)ejωt]. (1.117)

The time-dependent fields can also be expressed in terms of the
magnitude and phase of the fields as

E(r, t) = Re[|E(r)|ej(ωt+ψ(r))] (1.118)

H(r, t) = Re[|H(r)|ej(ωt+ψ(r))]. (1.119)

If the Re[·] operation in Equations (1.118) and (1.119) is dropped and the ejωt

factor is suppressed, then the following phasor designations for the electric
and magnetic fields can also be used:

E(r) = |E(r)|ejψ(r) (1.120)

H(r) = |H(r)|ejψ(r). (1.121)

In Equations (1.120) and (1.121), the magnitudes |E(r)| and |H(r)|
represent the envelope of the electric and magnetic fields, respectively.

In an electrically conducting medium, the electric flux densityD is given
by

D(r, t) = ε′E(r, t) (1.122)

where ε′ is the real part of the complex permittivity of the medium. Similarly,
in a magnetically conducting medium, the magnetic flux density B is given
by

B(r, t) = µ′H(r, t) (1.123)

where µ′ is the real part of the complex permeability of the medium.
With the prior relations, it is now possible to convert Maxwell’s

equations to a time-harmonic form as follows. This form of the Maxwell
equations is particularly amenable to solution via numerical methods such
as the method of moments. Substituting Equations (1.114), (1.115), (1.122),
(1.123), and (1.116) into Equations (1.97) and (1.98) yields

∇×Re[E(r)ejωt] = −Re[M(r)ejωt]− ∂

∂t
Re[µ′H(r)ejωt] (1.124)

∇×Re[H(r)ejωt] = Re[J(r)ejωt] +
∂

∂t
Re[ε′E(r)ejωt] (1.125)

and computing the partial derivatives, and noting that the real operation
commutes with the partial derivative operation, yields

Re∇×[E(r)ejωt] = −Re[M(r)ejωt]− Re[jωµ′H(r)ejωt] (1.126)
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Re∇×[H(r)ejωt] = Re[J(r)ejωt] + Re[jωε′E(r)ejωt]. (1.127)

The previous two equations can be simplified by dropping the real (Re)
operation and suppressing the exponential function ejωt that are common to
all terms, with the result for Maxwell’s equations in time-harmonic (frequency
domain) form

∇×E = −M − jωµ′H (1.128)

∇×H = J + jωε′E (1.129)

∇·D = ρ (1.130)

∇·B = ρm. (1.131)

In the prior Maxwell’s equations, the real part of the complex perme-
ability can be expressed as

µ′ = µ′rµo (1.132)

where µ′r is the relative permeability and µo is the permeability of free space.
The real part of the complex permittivity is expressed as

ε′ = ε′rεo (1.133)

where ε′r is the dielectric constant (relative permittivity) and εo is the
permittivity of free space. In free space, the speed of light c (also the speed of
electromagnetic wave propagation) is related to εo and µo as

c =
1

√
µoεo

(1.134)

and has a measured value of approximately 2.99792458× 108 m/s ≈ 3.0×
108 m/s. The value of εo can be measured by an experiment involving
Coulomb’s force law for two charges separated by a distance [4, p. 61]. The
established value for the permittivity of free space is εo = 1

36π × 10−9 =
8.8542× 10−12 farads/meter (farads have units of amperes-seconds/volts).
The established value for the permeability of free space is µo = 4π × 10−7 =
1.257× 10−6 henries/meter (henries have units of volts-seconds/ampere).

To determine the speed of electromagnetic wave propagation, consider
now Equations (1.112) and (1.113) and follow a constant phase point along
the electromagnetic wavefront. Then taking the derivative with respect to time
of the argument of the cosine function set equal to a constant yields

d

dt
(ωt− kr) = ω − kdr

dt
= 0 (1.135)
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or in free space
dr

dt
=
ω

k
=

ω

ω
√
µoεo

= c, (1.136)

which shows that the time-harmonic electromagnetic fields travel at the speed
of light.

For an electrically conducting medium, the electrical conducting current
density Jc and electric field E are related by Equation (1.104). When a
source J source is present, substituting Equations (1.103) and (1.104) into
Equation (1.129) yields

∇×H = J source + (σ + jωε′)E. (1.137)

In Equation (1.137), the quantity (σ + jωε′) can be expressed as a complex
electrical conductivity σc as

σ + jωε′ = σ′ + jσ′′ = σc (1.138)

where it is observed that the real part of σc is σ′ = σ and the imaginary part
is σ′′ = ωε′.

The electrical conductivity σ of the dielectric medium can be expressed
in terms of the imaginary component (denoted ε′′) of the complex permittivity
as

σ = ωε′′ = ωεoε
′′
r (1.139)

where ε′′r is the relative imaginary component of the complex permittivity.
Thus, using Equations (1.133) and (1.139), it follows that Equation (1.137)
can be expressed as

∇×H = J source + (jωεoε
′
r + ωεoε

′′
r)E, (1.140)

which can be written in an alternate form (by factoring the quantity jωεo) as

∇×H = J source + jωεo(ε
′
r − jε′′r)E. (1.141)

In Equation (1.141), the complex permittivity of the conducting medium can
be expressed in terms of real and imaginary components as

εc = ε′ − jε′′ = εo(ε
′
r − jε′′r). (1.142)

Similarly, the complex permeability can be defined in terms of real and
imaginary components as

µc = µ′ − jµ′′ = µo(µ
′
r − jµ′′r). (1.143)
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Thus, Equation (1.141) can be written in a simplified form in terms of the
complex permittivity given by Equation (1.142) as

∇×H = J source + jωεcE. (1.144)

By using the above mathematical development and a similar develop-
ment for equivalent magnetic current, an explicit representation of Maxwell’s
equations in time-harmonic (frequency domain) form can be written in terms
of source currents as

∇×E = −M source − jωµcH (1.145)

∇×H = J source + jωεcE (1.146)

∇·D = ρ (1.147)

∇·B = ρm. (1.148)

In the above form of Maxwell’s equations, the electric conduction current has
effectively been folded into the complex permittivity quantity.

By comparing the Maxwell curl of H equations given by Equa-
tions (1.137) and (1.146), the following relations can be determined:

jωεc = σ + jωε′ (1.149)

and solving for εc yields

εc = ε′ − j σ
ω

= ε′ − jε′′. (1.150)

Thus,
ε′′ =

σ

ω
(1.151)

and it follows from Equation (1.142) that

εc = εo(ε
′
r − j

σ

ωεo
), (1.152)

which can be rewritten as

εc = εoε
′
r(1− j

σ

ωεoε′r
) (1.153)

or as
εc = εoε

′
r(1− j

σ

ωε′
). (1.154)

Next, defining the loss tangent as

tan δ =
σ

ωε′
, (1.155)

the complex permittivity can be expressed as

εc = εoε
′
r(1− j tan δ). (1.156)



42 Electromagnetics and Antenna Technology

1.4 Fields from Time-Varying Electric and Magnetic
Current Sources

In this section, Maxwell’s equations (described in the previous section)
are used to formulate the radiated electromagnetic fields from time-varying
electric and magnetic current sources. A detailed derivation is given for the
case of electric current sources, and the result is simply stated for magnetic
current sources.

Maxwell’s equations as given by Equations (1.97–1.100) can be
expressed in the time domain in terms of the current densities J andM as

∇×E(r, t) = −M(r, t)− µ∂H(r, t)

∂t
(1.157)

∇×H(r, t) = J(r, t) + ε
∂E(r, t)

∂t
(1.158)

∇·D(r, t) = ρ (1.159)

∇·B(r, t) = ρm. (1.160)

It was mentioned at the start of the previous section that the source of
electromagnetic radiation is the time-varying current, which is equal to the
acceleration of charges. To demonstrate this fact, the following derivation can
be made by using Maxwell’s curl equations and a vector identity. Starting with
the curl of Maxwell’s curl ofE equation with the equivalent magnetic current
source equal to zero, that is, M source = 0 and the equivalent magnetic charge
equal to zero (ρm = 0), and assuming free space, that is, µ = µo, ε = εo,
σ = 0, and Jc = 0 so J = J source,

∇×∇×E = −µo
∂

∂t
∇×H (1.161)

and substituting Maxwell’s curl ofH equation expressed as

∇×H = J + εo
∂E

∂t
(1.162)

yields

∇×∇×E − µoεo
∂2E

∂t2
= −µo

∂

∂t
J . (1.163)

Now use the vector identity

∇×∇×E =∇(∇·E)−∇2E (1.164)
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where
∇2 =∇·∇ (1.165)

is the Laplacian operator, such that Equation (1.163) becomes

∇(∇·E)−∇2E − µoεo
∂2E

∂t2
= −µo

∂

∂t
J . (1.166)

It should be noted that the quantity ∇2E =∇·∇E yields a vector. The
quantity∇E yields a dyadic (tensor of order two), and then taking the diver-
gence of the dyadic yields a vector. The left-hand side of Equation (1.166)
contains expressions involving the electric field E and the right-hand side
is a function of the derivative of the time-varying current density J . Thus,
Equation (1.166) is inhomogeneous and it explicitly shows that the time
derivative of the electric current density J(t) is a source of electromagnetic
radiation. Substituting Equation (1.77) in Equation (1.166) yields

∇(∇·E)−∇2E − µoεo
∂2E

∂t2
= −µoρa, (1.167)

which explicitly shows that the charge ρ with acceleration a is a source
of electromagnetic radiation, as desired. Furthermore, in free space, using
Equation (1.134) in Equation (1.167) yields the following inhomogeneous
equation in terms of the speed of light with the accelerated charge as the
driving function for the operations on the electric field:

∇(∇·E)−∇2E − 1

c2

∂2E

∂t2
= −µoρa. (1.168)

When both ρ = 0 and J = 0, that is, there are no local sources,
Equations (1.166) to (1.168) reduce to the homogeneous wave equation form
as

∇2E − 1

c2

∂2E

∂t2
= 0, (1.169)

and similarly it can be shown that

∇2H − 1

c2

∂2H

∂t2
= 0. (1.170)

Equations (1.169) and (1.170) indicate that in free space the electromagnetic
field exists and is self-sustaining and propagating at the speed of light in the
absence of local driving sources.

While Equations (1.166) to (1.168) indicate a source of the electromag-
netic radiation, to compute the electromagnetic fields from the electric current
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density J for a practical antenna, it is necessary to determine an expression
for E in terms of J .

Consider now, in the frequency domain, the derivation of the electro-
magnetic fields caused by an electric current source J radiating in an infinite
space described by the complex parameters µ = µc and ε = εc (note: although
represented here as scalar quantities, µ and ε can also be dyadic [tensor]
quantities). There are two ways to arrive at the desired expression for E in
terms of a volume integral involving J . One way starts with the traditional
magnetic vector potential approach, as derived in the time-harmonic form
[2], and with this approach, the scalar Green’s function for isotropic media
is used. The other approach is to use the dyadic Green’s function approach
as described by Tai [109] and Kong [3]. The Green’s function characterizes
the response to a point source and essentially allows the current density
distribution to be integrated in such a way as to determine the electromagnetic
field distribution in the surrounding space. Both approaches using the scalar
Green’s function and the dyadic Green’s function are described, respectively,
in the next two sections.

1.4.1 Magnetic Vector Potential and the Scalar Green’s Function

Starting with the Maxwell divergence equation for the time-harmonic
magnetic field (Equation [1.131]) with the equivalent magnetic charge density
equal to zero yields

∇·B =∇·µH = 0, (1.171)

that is,
∇·H = 0. (1.172)

Since the divergence of the vector magnetic field is zero, the vector magnetic
field has only circulation and is called a solenoidal field, which can be
expressed in terms of the curl of another function by a vector identity. Now,
define the magnetic flux density B in terms of the curl of a magnetic vector
potential functionA as

B = µH =∇×A. (1.173)

Thus, the magnetic fieldH in terms ofA is just

H =
1

µ
∇×A. (1.174)

Substituting this result in Maxwell’s curl of E Equation (1.128) yields

∇×E = −jωµH = −jω∇×A, (1.175)
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which can be rewritten as

∇× [E + jωA] = 0. (1.176)

Making use of the general vector identity

∇×∇Φ = 0 (1.177)

where Φ is defined as the electric scalar potential, allows Equation (1.176) to
be written as

∇× [E + jωA] = −∇×∇Φ (1.178)

or as
E + jωA = −∇Φ, (1.179)

and solving for E as
E = −jωA−∇Φ. (1.180)

Now use the vector identity

∇×∇×A =∇(∇·A)−∇2A (1.181)

such that from Equation (1.173)

∇×(µH) =∇(∇·A)−∇2A (1.182)

and for a homogeneous medium

µ∇×H =∇(∇·A)−∇2A. (1.183)

Now using the Maxwell curl equation for the magnetic field, that is,

∇×H = J + jωεE, (1.184)

Equation (1.183) can now be written as

µJ + jωµεE =∇(∇·A)−∇2A. (1.185)

Substituting Equation (1.180) in Equation (1.185) yields

∇2A+ ω2µεA = −µJ +∇(∇·A+ jωµεΦ). (1.186)

Next, applying the divergence operation on the electric field vector in
Equation (1.180) as∇·E and using Maxwell’s equation∇·E = ρ/ε yields

∇2Φ + jω∇·A = −ρ/ε. (1.187)
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In order to uncouple, simplify, and produce a wave-equation form of
Equations (1.186) and (1.187), the Lorenz condition [102, p. 240] can be
invoked, that is,

∇·A = −jωµεΦ. (1.188)

It should be noted that the Lorenz condition is consistent with the conservation
of electric current and charge density as in the continuity equation from
Equation (1.101) expressed in time-harmonic form as (see the discussion
following Equation [1.201])

∇·J = −jωµρ. (1.189)

Substituting the Lorenz condition (Equation [1.188]) in Equation (1.186)
yields

∇2A(r) + ω2µεA(r) = −µJ(r), (1.190)

which is an inhomogeneous vector wave equation. Similarly, it follows that
substituting Equation (1.188) in Equation (1.187) yields

∇2Φ + ω2µεΦ = −ρ/ε, (1.191)

which is an inhomogeneous scalar wave equation. Again by using the Lorenz
condition given by Equation (1.188), Equation (1.180) becomes

E = −jωA− j

ωµε
∇(∇·A). (1.192)

Equation (1.192) is an exact relation between the vector electric field E and
the magnetic vector potential A and applies in the near field and far field of a
radiating source. Thus, to determine the vector electric fieldE, it is necessary
to determine the magnetic vector potentialA.

Consider now Figure 1.6, which shows the coordinate system for a
radiating source and field observation point. To solve the inhomogeneous
equation given by Equation (1.190), the Green’s function method is used
[113]. Let Lop be a linear differential operator such that

Lopy(x) = f(x). (1.193)

It is desired to determine the Green’s function G(x, x′) that is given by the
solution to

LopG(x, x′) = δ(x− x′) (1.194)

where δ is the delta function with δ(0) = 1 and δ is equal to zero otherwise,
and boundary conditions must be satisfied. A solution for y(x) is then

y(x) =

∫
G(x, x′)f(x′) dx′, (1.195)
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which follows since

Lopy(x) =

∫
LopG(x, x′)f(x′) dx′ =

∫
δ(x− x′)f(x′) dx′ = f(x)

(1.196)
where it is noted that δ(x− x′) acts as a sampling function andLop was moved
inside the integral since this operator depends only on unprimed coordinates.
Assume that the vector electric current source J is a function of the primed
coordinates (x′, y′, z′) and the position vectorR = r − r′ is a function of the
observation position (x, y, z) and the source coordinates. Then it follows from
Equation (1.195), which applies to each vector component in homogeneous
space solution of Equation (1.190) is

A(r) = µ

∫
V
J(r′)

e−jk|r−r
′|

4π|r − r′|
dv′ (1.197)

where
k = ω

√
µε (1.198)

is the wavenumber. Thus, in homogeneous space, the magnetic vector
potential A is collinear with the source current J , which allows the use of
the scalar Green’s function method to solve Equation (1.190). The magnetic
vector potential is also commonly expressed as

A(r) = µ

∫
V
J(r′)g(r, r′) dv′. (1.199)

φ'

θ'

θ

φ

z

x

y

(x,y,z)

r
rʹ

r–rʹ
(x ,́ y ,́ zʹ)

Figure 1.21 Coordinate system for radiating source at r′ and field observation point
at r.
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In Equation (1.199), the quantity

g(r, r′) =
e−jk|r−r

′|

4π|r − r′|
(1.200)

is referred to as the scalar Green’s function solution to the vector wave
equation (Equation [1.190]), which is derived later in section 1.6.2 (starting
with Equation [1.311]). By solving Equation (1.191) using the Green’s
function method, it can be shown that the electric scalar potential Φ is given
by

Φ(r) =
1

ε

∫
V
ρ(r′)g(r, r′) dv′. (1.201)

Note that by substituting Equations (1.199) and (1.201) into the Lorenz
condition given by Equation (1.188), it is clear that the continuity equation
(Equation [1.189]) is satisfied when multiplied by the scalar Green’s function
and integrated over a volume.

Using equation(1.197), Equation (1.192) can be written as

E = −jωµ
∫
V
J(r′)g(r, r′) dv′ − j

ωε
∇
[
∇·
∫
V
J(r′)g(r, r′) dv′

]
(1.202)

or as

E = −jωµ
∫
V
J(r′)

e−jk|r−r
′|

4π|r − r′|
dv′ − j

ωε
∇
[
∇·
∫
V
J(r′)

e−jk|r−r
′|

4π|r − r′|
dv′
]
,

(1.203)
which can be reduced to the following integral form

E = −jωµ
[∫

V
J(r′)

e−jk|r−r
′|

4π|r − r′|
dv′ +

1

k2
∇
[
∇·
∫
V
J(r′)

e−jk|r−r
′|

4π|r − r′|
dv′
]]

(1.204)
where k2 = ω2µε. Equation (1.204) can be expressed in a simplified form by
using a dyadic notation (discussed in Section 1.6.2) with I the identity dyadic
(refer to Equation [1.242]):

E(r) = −jωµ[I +
1

k2
∇∇]·

∫
V
J(r′)

e−jk|r−r
′|

4π|r − r′|
dv′, (1.205)

which is a general form of the electric field caused by an electric current
source J .

A similar wave equation can be derived in terms of the electric vector
potential F and the magnetic current densityM as

∇2F + ω2µεF = −εM (1.206)
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and for the magnetic fieldH in terms of F as

H = −jωF − j

ωµε
∇(∇·F ). (1.207)

The solution for F in terms ofM is given by

F (r) = ε

∫
V
M(r′)

e−jk|r−r
′|

4π|r − r′|
dv′. (1.208)

The fields radiated by an antenna are in general spherical waves. In the
far field, the spherical waves more closely resemble planar (plane) waves. The
far-field range distance R from an antenna is typically computed as

R = 2D2/λ (1.209)

whereD is the antenna diameter and λ is the wavelength. In the far field, using
spherical coordinates, it can be shown (see Equation [1.279]) that only the first
term in Equation (1.192) involving the θ̂ and φ̂ components is significant;
thus,

EFF = −jω
(
Aθθ̂ +Aφφ̂

)
. (1.210)

In the far zone in spherical coordinates, the radial component of the
electric and magnetic fields is zero, and the far-zone magnetic field can be
computed from the electric field in free space as (see Equation [1.281])

HFF =
r̂×EFF

ηo
(1.211)

where ηo is the wave impedance of free space as given by

ηo =

√
µo
εo
. (1.212)

Similarly, it can be shown that the far-zone magnetic field HFF can be
computed from the electric vector potential F , for example, in spherical
coordinates, as

HFF = −jω
(
Fθθ̂ + Fφφ̂

)
(1.213)

from which the far-zone electric field can be computed as

EFF = −ηor̂×HFF. (1.214)



50 Electromagnetics and Antenna Technology

Once the current density and field quantities have been determined, to
convert between frequency and time domains, the Fourier transform pairs can
be applied, for example, for J and E, as

J(r, ω) =

∫ ∞
−∞

J(r, t)e−jωtdt (1.215)

J(r, t) =
1

2π

∫ ∞
−∞

J(r, ω)ejωtdω (1.216)

E(r, ω) =

∫ ∞
−∞

E(r, t)e−jωtdt (1.217)

E(r, t) =
1

2π

∫ ∞
−∞

E(r, ω)ejωtdω. (1.218)

1.4.2 Dyadic Green’s Function

It was mentioned earlier in Section 1.6.1 that a direct dyadic relationship
between the source current and electric field can be determined. To see this
fact, Equations (1.192) and (1.197) can be combined and re-expressed by
using a dyadic notation as was given in Equation (1.205). In this section, the
dyadic Green’s function is derived. Some background on vector and dyadic
relations is necessary to derive the desired expression. Given two vectors, U
and V , their dot product is expressed as U ·V , which is also referred to as an
inner product. The inner product is equal to the product of a row vector UT

(U transpose) and a column vector V , which yields a scalar. Thus, U ·V =
UTV is a scalar quantity. The dyadic D = UV is an outer product of two
vectors and is the product of a column vector and a row vector, that is, UV
is interpreted as UV T . Thus, D·C = UV ·C = U(V TC), that is, a vector
weighted by a scalar. Let the unit vectors in a given coordinate system, such
as Cartesian, cylindrical, or spherical, be expressed as ê1, ê2, ê3. Now, let the
two vectors U and V be represented in terms of the unit vectors as

U = U1ê1 + U2ê2 + U3ê3 (1.219)

V = V1ê1 + V2ê2 + V3ê3, (1.220)

which can also be written as the column vectors

U =

 U1

U2

U3

 (1.221)
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V =

 V1

V2

V3

 . (1.222)

The dyadic matrixD = UV is formed as

D = UV T =

 U1

U2

U3

 [ V1 V2 V3
]

=

 U1V1 U1V2 U1V3

U2V1 U2V2 U2V3

U3V1 U3V2 U3V3

 .
(1.223)

The dyadicD = UV T can be expressed in terms of the unit vectors as

D =
∑
i

∑
j

UiVj êiêj (1.224)

and the summation can be expanded as

D = UV T = U1V1ê1ê1 + U1V2ê1ê2 + U1V3ê1ê3

+U2V1ê2ê1 + U2V2ê2ê2 + U2V3ê2ê3

+U3V1ê3ê1 + U3V2ê3ê2 + U3V3ê3ê3.
(1.225)

The product of a dyadicD and a vectorA yields another vectorX , that is,

D·A = X. (1.226)

Now the dyadicD can be written in matrix form as

D =

 D11 D12 D13

D21 D22 D23

D31 D32 D33

 . (1.227)

For the vectors U and V discussed earlier, in Equation (1.227), the dyadic
matrix elements (dyads) Dij are equal to UiVj . In general, the dyadic D can
be expressed in terms of the unit vectors as

D =
∑
i

∑
j

Dij êiêj . (1.228)

The vectorA above can be written as a column matrix as

A =

 A1

A2

A3

 (1.229)

and it can also be written in terms of the unit vectors as

A =
∑
k

Akêk. (1.230)
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It follows then that

D·A =

∑
i

∑
j

Dij êiêj

 · [∑
k

Akêk

]
(1.231)

or
D·A =

∑
i

∑
j

∑
k

DijAk [êiêj·êk] (1.232)

D·A =
∑
i

∑
j

∑
k

DijAk [êiδjk] (1.233)

where δjk is the Kronecker delta function, that is, δjk = 0, if j 6= k and
δjk = 1, if j = k. It follows then that

D·A =
∑
i

êi

∑
j

DijAj

 , (1.234)

which can be expressed as

D·A = ê1(D11A1 +D12A2 +D13A3)
+ê2(D21A1 +D22A2 +D23A3)
+ê3(D31A1 +D32A2 +D33A3).

(1.235)

For the spherical coordinate geometry under consideration, with coordinate
variables r, θ, φ, the unit vectors are ê1 = r̂, ê2 = θ̂, ê3 = φ̂. The metric
coefficients in the spherical coordinate system are 1, r, r sin θ. The mixed
dyadic/vector calculus needed to solve electromagnetic problems is clearly
more involved than vector calculus. In some cases, it is necessary to
differentiate the unit vectors, for example, in spherical coordinates, where
the nonzero partial derivatives are given by ∂r̂/∂θ = θ̂, ∂r̂/∂φ = sin θφ̂,
∂θ̂/∂θ = −r̂, ∂θ̂/∂φ = cos θφ̂, and ∂φ̂/∂φ = − sin θr̂ − cos θθ̂, and the
partial derivatives equal to zero are ∂r̂/∂r = ∂θ̂/∂r = ∂φ̂/∂r = ∂φ̂/∂θ =
0. These unit vector derivatives are readily derived by differentiating the
spherical unit vectors in terms of the rectangular unit vector components as
expressed as

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (1.236)

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ (1.237)

φ̂ = −x̂ sinφ+ ŷ cosφ. (1.238)
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Furthermore, the rectangular unit vectors can be expressed in terms of the
spherical unit vectors as

x̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ (1.239)

ŷ = r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ (1.240)

ẑ = r̂ cos θ − θ̂ sin θ. (1.241)

The identity dyadic I in spherical coordinates can be expressed in tensor
summation form as

I = r̂r̂ + θ̂θ̂ + φ̂φ̂ (1.242)

or in matrix form as

I =

 1 0 0
0 1 0
0 0 1

 . (1.243)

The product of the identity dyadic I and any vector, say A, is just the vector
A, that is,

I·A = A·I = A. (1.244)

Next, it is observed that the quantity ∇(∇·A) in Equation (1.192) is the
gradient of the divergence of A, which is a vector quantity. In spherical
coordinates, the vectorA is expressed as

A = Arr̂ +Aθθ̂ +Aφφ̂. (1.245)

Furthermore, the del operator in spherical coordinates is expressed as

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
. (1.246)

Special care must be used in evaluating mixed vector/dyadic expressions
involving the del differential operator ∇ [111]. From Tai [110], given an
orthogonal coordinate system with unit vectors ê1, ê2, ê3, coordinate vari-
ables v1, v2, v3, and metric coefficients h1, h2, h3, the gradient, divergence,
and curl differential operations for the vector function A are given by,
respectively,

∇A =
∑
i

êi
hi

∂A

∂vi
(1.247)

∇·A =
∑
i

êi
hi
·∂A
∂vi

(1.248)
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∇×A =
∑
i

êi
hi
×∂A
∂vi

. (1.249)

In spherical coordinates, the coordinate variables are v1 = r, v2 = θ, v3 = φ,
the unit vectors are e1 = r̂, e2 = θ̂, e3 = φ̂, and the metric coefficients are
h1 = 1, h2 = r, h3 = r sin θ.

It is worthwhile utilizing the del operator ∇ as follows. A dyadic such
as∇A can be formed either as a summation by Equation (1.247) or by matrix
operation as

∇A =∇AT =

 (r̂) ∂∂r
(θ̂)1

r
∂
∂θ

(φ̂) 1
r sin θ

∂
∂φ

 [ (r̂)Ar (θ̂)Aθ (φ̂)Aφ
]
. (1.250)

The nine terms of the tensor summation of Equation (1.250) are computed
using the chain rule for the unit vectors. For example, the r̂r̂ dyad term is
given by

(∇A)rr = r̂[r̂
∂

∂r
Ar +Ar

∂r̂

∂r
] (1.251)

and noting ∂r̂
∂r = 0. The remaining eight terms of Equation (1.250) are

computed similarly, with the result expressed as the tensor summation

∇A = ∂Ar
∂r r̂r̂ + ∂Aθ

∂r r̂θ̂ +
∂Aφ
∂r r̂φ̂

+(1
r
∂Ar
∂θ −

Aθ
r )θ̂r̂ + (1

r
∂Aθ
∂θ + Ar

r )θ̂θ̂ + 1
r
∂Aφ
∂θ θ̂φ̂

+( 1
r sin θ

∂Ar
∂φ −

Aφ
r )φ̂r̂ + ( 1

r sin θ
∂Aθ
∂φ − cot θ

Aφ
r )φ̂θ̂

+( 1
r sin θ

∂Aφ
∂φ + cot θAθr + Ar

r )φ̂φ̂.

(1.252)

Earlier it was stated (see Equation [1.205]) that the electric field caused
by the source current density J is given by

E(r) = −jωµ[I +
1

k2
∇∇]·

∫
V
J(r′)

e−jk|r−r
′|

4π|r − r′|
dv′ (1.253)

and now it is desired to solve this equation under far-field conditions. Using
the vector identity

(∇∇)·A =∇(∇·A), (1.254)

it follows that the gradient of the divergence of a vector functionA is [110, p.
126]

∇(∇·A) =
∑
i

êi
hi

∂

∂vi

∑
j

êj
hj
·∂A
∂vj

, (1.255)
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and then performing the partial derivative operation using the chain rule yields

∇(∇·A) =
∑
i

∑
j

êi
hi

[
∂

∂vi

(
êj
hj

)
·∂A
∂vj

+
êj
hj
· ∂

2A

∂vi∂vj

]
. (1.256)

Using the spherical coordinate parameters in Equation (1.256) yields for the
i = 1, j = 1 term

∇(∇·A)i=1,j=1 = r̂

[
∂

∂r
(r̂)·∂A

∂r
+ r̂·∂

2A

∂r2

]
, (1.257)

and since ∂r̂/∂r = 0, it follows that

∇(∇·A)i=1,j=1 = r̂r̂·∂
2A

∂r2
. (1.258)

Similarly, Equation (1.256) yields for the i = 1, j = 2 term

∇(∇·A)i=1,j=2 = r̂

[
∂

∂r

(
θ̂

r

)
·∂A
∂θ

+
θ̂

r
· ∂

2A

∂r∂θ

]
, (1.259)

and since ∂
∂r (θ̂/r) = −θ̂/r2, it follows that

∇(∇·A)i=1,j=2 = r̂θ̂

[
− 1

r2
·∂A
∂θ

+
1

r
· ∂

2A

∂r∂θ

]
. (1.260)

Next, for the i = 1, j = 3 term,

∇(∇·A)i=1,j=3 = r̂φ̂

[
− 1

r2 sin θ
·∂A
∂φ

+
1

r sin θ
· ∂

2A

∂r∂φ

]
. (1.261)

In solving for the far-zone radiation pattern function of an antenna, typically
only a 1/r variation is retained with all other terms involving 1/r2, 1/r3

ignored. All of the remaining terms of ∇(∇·A)i,j for i = 2, 3 have higher-
order dependence on inverse r and can be neglected. Thus, in the far field, the
gradient of the divergence of the magnetic vector potential can be expressed
as

∇(∇·A)FF = r̂r̂·∂
2A

∂r2
. (1.262)

The electric field given by Equation (1.192) can be written as

E = −jω[A+
1

k2
∇ (∇·A)] (1.263)
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where k2 = ω2µε. Now, using Equation (1.262) in Equation (1.263) yields an
expression for the far-zone vector electric field

EFF = −jω
[
A+

1

k2
r̂r̂·∂

2A

∂r2

]
. (1.264)

Repeating Equation (1.197) for the magnetic vector potential

A(r) = µ

∫
V
J(r′)

e−jk|r−r
′|

4π|r − r′|
dv′ (1.265)

and in computing the far field of a radiating source, Equation (1.265) can be
simplified by approximating |r − r′| in the exponential argument as

|r − r′| ≈ r − r̂·r′ (1.266)

and using
kr >> 1 (1.267)

such that the factor |r − r′| in the denominator can be replaced by r. Thus,
under far-field conditions, Equation (1.265) can be expressed as

AFF = µ
e−jkr

4πr

∫
V
J(r′)ejkr̂·r′ dv′. (1.268)

Define a far-field vector current moment f(θ, φ) in spherical coordinates
as the integral in Equation (1.268) as

f(θ, φ) = frr̂ + fθθ̂ + fφφ̂ =

∫
V
J(r′)ejkr̂·r′ dv′. (1.269)

Using Equation (1.269) in Equation (1.268) yields the far-field magnetic
vector potential as

AFF = µ
e−jkr

4πr
f(θ, φ). (1.270)

Now, comparing Equations (1.263) and (1.264), the contribution of
∇(∇·A) to the far-field vector electric field depends on the second partial
derivative of the free-space Green’s function. Performing the first partial
derivative operation, it follows that

∂

∂r

[
e−jkr

4πr

]
= −jke

−jkr

4πr
− e−jkr

4πr2
, (1.271)
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and then the second partial derivative is determined to be

∂2

∂r2

[
e−jkr

4πr

]
= −k2 e

−jkr

4πr
+ 2jk

e−jkr

4πr2
+ 2

e−jkr

4πr3
(1.272)

and in the far field, the 1/r2 and 1/r3 terms go to zero compared to 1/r, and
thus only the 1/r term contributes to the far-zone electric field. Thus, in the
far field,

∂2

∂r2

[
e−jkr

4πr

]
FF

= −k2 e
−jkr

4πr
(1.273)

and it follows that

∂2AFF

∂r2
=

∂2

∂r2

[
µ
e−jkr

4πr
f(θ, φ)

]
= −µk2 e

−jkr

4πr
f(θ, φ). (1.274)

Note: another derivative of the scalar Green’s function, in this case divided by
r, used subsequently in evaluating Equation (1.457), is given by

∂

∂r

[
e−jkr

4πr2

]
= −jke

−jkr

4πr2
− 2e−jkr

4πr3
. (1.275)

Substituting Equations (1.270) and (1.274) in Equation (1.264) yields

EFF = −jω
[
µ
e−jkr

4πr
f(θ, φ)− µe

−jkr

4πr
r̂r̂·f(θ, φ)

]
, (1.276)

which can also be expressed in dyadic/vector notation as

EFF = −jωµe
−jkr

4πr
(I − r̂r̂)·f(θ, φ) (1.277)

where
I − r̂r̂ = θ̂θ̂ + φ̂φ̂. (1.278)

Now using Equations (1.278) and (1.235) and performing the dyadic/vector
operations in Equation (1.277) yields the vector form of the desired expression
for the far-zone electric field as

EFF = −jωµe
−jkr

4πr
(θ̂fθ + φ̂fφ). (1.279)

Noting that
1

r

∂

∂r
(rEFF) = −jkEFF (1.280)
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the far-zone magnetic field is then computed using the far-zone electric field
(Equation [1.279]), the curl operation (1.94) and vector cross product (1.96)
as

HFF =
1

−jωµ
∇×EFF(r) =

kr̂

ωµ
×EFF(r). (1.281)

Performing the vector operation in Equation (1.281) yields

HFF = −jk e
−jkr

4πr
(φ̂fθ − θ̂fφ). (1.282)

Referring to Equation (1.399) and using Equations (1.279) and (1.281), the
time-average Poynting’s power density in the far zone is now computed as

< S >=
1

2
Re{E×H∗} = r̂

1

2

√
µ

ε

(
k

4πr

)2

(|fθ|2 + |fφ|2). (1.283)

Return now to the general form of the electric field given by Equa-
tion (1.205) and express the electric field in terms of the scalar Green’s
function g(r, r′) as

E(r) = −jωµ[I +
1

k2
∇∇]·

∫
V
J(r′)g(r, r′) dv′. (1.284)

Now the bracketed terms in front of the integral depend only on the unprimed
coordinates and can be moved inside the integral in Equation (1.284) and
rearranging yields

E(r) = −jωµ
∫
V

[
[I +

1

k2
∇∇]g(r, r′)

]
·J(r′) dv′. (1.285)

It is assumed here that the observation point is outside the source volume.
In cases where the observation point is within the source volume, additional
integration terms must be taken into account [116]. The dyadic Green’s
functionG(r, r′) can now be expressed in terms of the scalar Green’s function
g(r, r′) as

G(r, r′) = [I +
1

k2
∇∇]g(r, r′). (1.286)

Thus, Equation (1.285) can be rewritten in the more compact dyadic Green’s
function representation as

E(r) = −jωµ
∫
V
G(r, r′)·J(r′) dv′. (1.287)
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The dyadic and scalar Green’s functions are now examined in more
detail. Let us return now to the time-harmonic form of Maxwell’s equations
corresponding to Equations (1.145) and (1.146), that is,

∇×E(r) = −jωµH(r)−M(r) (1.288)

∇×H(r) = jωεE(r) + J(r) (1.289)

where µ and ε are assumed to be complex in general and the current densities
J and M are source currents. Assuming that the equivalent magnetic current
is zero, that is, M = 0, H(r) can be eliminated from Equation (1.288) by
taking the curl of the curl of E as

∇×∇×E(r) = −jωµ∇×H(r) (1.290)

and substituting Equation (1.289) yields

∇×∇×E(r) = −jωµjωεE(r)− jωµJ(r) (1.291)

and rearranging yields the following inhomogeneous wave equation forE(r),
that is,

∇×∇×E(r)− k2E(r) = −jωµJ(r). (1.292)

To solve Equation (1.292), the dyadic Green’s function method can be used
for an arbitrary response vector function y and source vector function f as
follows.

Let Lop be a linear differential operator such that

Lopy(r) = f(r). (1.293)

It is desired to determine the dyadic Green’s function G that is given by the
solution to

LopG(r, r′) = Iδ(r − r′) (1.294)

and boundary conditions must be satisfied. A solution for y(r) is then

y(r) =

∫
G(r, r′)·f(r′)dv′. (1.295)

Next, from Equation (1.287), in terms of the complex permeability µ, the
vector electric field can be expressed in terms of the dyadic Green’s function
as

E(r) = −jωµ
∫
V
G(r, r′)·J(r′) dv′ (1.296)

where it should be noted that, in addition, any boundary conditions must be
enforced. In Equation (1.292), it is desirable to express the source density in
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terms of the primed coordinate system. One way to achieve this transformation
from unprimed to primed coordinates is to make use of the three-dimensional
delta function δ(r − r′) as described by Kong [3, p. 496] as

J(r) =

∫
V
δ(r − r′)I·J(r′)dv′. (1.297)

Substituting Equations (1.296) and (1.297) in Equation (1.292) yields

−jωµ
∫
V ∇×∇×G(r, r′)·J(r′) dv′ + jωµk2

∫
V G(r, r′)·J(r′) dv′

= −jωµ
∫
V δ(r − r′)I·J(r′)dv′.

(1.298)
Since the integral operation involving J(r′) appears in each term of
Equation (1.298), it follows that the integral operation on J(r′) and the jωµ
quantity can be eliminated, which gives

∇×∇×G(r, r′)− k2G(r, r′) = Iδ(r − r′). (1.299)

Substituting Equation (1.286) in Equation (1.299 yields

∇×∇×
[
I +

1

k2
∇∇

]
g(r, r′)− k2

[
I +

1

k2
∇∇

]
g(r, r′) = Iδ(r − r′).

(1.300)
Now Equation (1.300) can be simplified by first observing that the curl of a
gradient of an arbitrary vector is zero, that is,

∇×∇V = 0, (1.301)

and recognizing that the gradient of the scalar Green’s function g(r, r′) is a
vector, it follows that

1

k2
∇×∇×∇∇g(r, r′) =

1

k2
∇×[∇×∇(∇g(r, r′))] = 0. (1.302)

Thus, Equation (1.300) reduces to

∇×∇×Ig(r, r′)− k2
[
I +

1

k2
∇∇

]
g(r, r′) = Iδ(r − r′). (1.303)

Next, using the dyadic identity

∇×∇×D =∇(∇·D)−∇2D, (1.304)

it follows that
∇×∇×Ig =∇(∇·Ig)−∇2(Ig); (1.305)
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but from the identity
∇·(φI) =∇φ (1.306)

it follows that
∇·Ig =∇g. (1.307)

Therefore,
∇×∇Ig =∇∇g − I∇2g. (1.308)

Substituting Equation (1.308) in Equation (1.303) yields

∇∇g(r, r′)− I∇2g(r, r′)− k2
[
I +

1

k2
∇∇

]
g(r, r′) = Iδ(r − r′),

(1.309)
and canceling like terms yields the simplified inhomogeneous wave equation

∇2g(r, r′) + k2g(r, r′) = −δ(r − r′). (1.310)

To determine the functional form of the scalar Green’s function g(r, r′) in
Equation (1.310), it is necessary first to solve the homogeneous form of the
equation and then invoke the boundary conditions in the inhomogeneous case.
To simplify the solution for g, shift the source position to the origin, which
means r′ = 0. Thus, Equation (1.310) can now be expressed as

∇2g(r) + k2g(r) = −δ(r), (1.311)

and it is observed that the solution for g(r) is independent of the spherical
coordinate angles θ and φ.

In spherical coordinates, the Laplacian of a scalar g that depends only
on r can be expressed as [3, p. 18]

∇2g(r) =
1

r2

∂

∂r

[
r2∂g(r)

∂r

]
=

1

r

∂2

∂r2
(rg(r)). (1.312)

Thus, Equation (1.311) can be rewritten as the inhomogeneous form

1

r

d2

dr2
(rg(r)) + k2g(r) = −δ(r). (1.313)

If the observation point is not at the origin, that is, r 6= 0, then Equa-
tion (1.313) reduces to the homogeneous differential equation

d2

dr2
(rg(r)) + k2rg(r) = 0. (1.314)
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The solution to the differential equation expressed by Equation (1.314) is an
outgoing wave of the form

g(r) = C
e−jkr

r
. (1.315)

To determine the constant C in Equation (1.315), it is necessary to satisfy
the boundary conditions at infinity and at the origin where the point source is
located. In the limit as r →∞ in Equation (1.315) g(r)→ 0, which satifies
the condition that the wave amplitude must attenuate to zero because of field
spreading loss. To satisfy the boundary condition at the origin, it is necessary
to integrate Equation (1.311) over an infinitesimal sphere of radius rs centered
at the origin and let the sphere radius tend to zero. Expressing the Laplacian
operation on the scalar g as

∇2g =∇·∇g (1.316)

and noting that the delta function acts as a sampling function, that is,∫
f(x)δ(x− xo) dx = f(xo) (1.317)

and substituting Equation (1.315) in Equation (1.311), the following integral
equation can be written as

C

∫
V
∇·
(
∇e
−jkr

r

)
dv + C

∫
V
k2 e

−jkr

r
dv = −

∫
V
δ(r) dv = −1. (1.318)

Now, applying the divergence theorem∫
V
∇·A dv =

∮
S
A·n̂ ds (1.319)

to the first term in Equation (1.318) yields

C

∫
V
∇·
(
∇e
−jkr

r

)
dv = C

∮
S
n̂·r̂ ∂

∂r

(
e−jkr

r

)
ds. (1.320)

The surface integral in Equation (1.320) is evaluated as follows. Noting that
for the assumed spherical volume n̂ = r̂ and ds = r2 sin θ dθ dφ, the surface
integral in the first term of Equation (1.318) becomes∮

S
d
dr

(
e−jkr

r

)
ds =

∫ 2π
0

∫ π
0

[
d
dr

(
e−jkr

r

)]
r2 sin θ dθ dφ

=
∫ 2π

0

∫ π
0

[
e−jkr(−jkr−1)

r2

]
r=rs

sin θ dθ dφ

=
∫ 2π

0

∫ π
0

[
e−jkr(−jkr − 1)

]
r=rs→0

sin θ dθ dφ

=
∫ 2π

0

∫ π
0 [−1] sin θ dθ dφ = −4π.

(1.321)
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Now the integral in the second term in Equation (1.320) is evaluated as∫
V k

2 e−jkr

r dv = k2
∫ rs
0

∫ 2π
0

∫ π
0
e−jkr

r r2 sin θ dr dθ dφ

= 4πk2
∫ rs→0
0 re−jkrdr

= 4πk2
[
e−jkr

k2
(−jkr − 1)

]rs→0

0
= 0.

(1.322)

Substituting the results of Equations (1.321) and (1.322) in Equation (1.318),
it follows that

C =
1

4π
, (1.323)

and substituting the result for the constant in Equation (1.315) yields the scalar
Green’s function as a function of r

g(r) =
e−jkr

4πr
. (1.324)

Since the radius r in Equation (1.324) is the distance between the source and
the observation point, it is possible to shift the source to the vector position r′,
and thus the transformed distance between the source and observation point
becomes |r − r′|. Therefore, the general form of the scalar Green’s function
is given by

g(r, r′) =
e−jk|r−r

′|

4π|r − r′|
. (1.325)

Substituting Equation (1.325) in Equation (1.286) yields the dyadic Green’s
function in terms of the scalar Green’s function as

G(r, r′) = [I +
1

k2
∇∇]

e−jk|r−r
′|

4π|r − r′|
. (1.326)

The electric field is then determined by using Equation (1.326) in Equa-
tion (1.296).

1.5 Boundary Conditions

In determining the solution of electromagnetic fields for a general antenna
or scattering problem, it is necessary to satisfy boundary conditions between
different media for the tangential and normal field components. The boundary
conditions depend on the type of media and also whether any charges
or currents are present at the interface between the media. To derive the
boundary conditions from Maxwell’s equations, two vector identities are
needed, namely the divergence theorem expressed as∫

V
∇·A dv =

∮
S
A· ds (1.327)
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and Stokes’ theorem expressed as∫
S

(∇×A)·ds =

∮
C
A·dl. (1.328)

To be completely general and allow for boundary conditions for antenna
apertures, it is necessary to include the contribution from the fictitious mag-
netic current density M in Maxwell’s curl of E equation as a mathematical
convenience, that is,

∇×E = −M − ∂B

∂t
. (1.329)

Note, the magnetic current density has units of V/m2.
The divergence theorem given by Equation (1.327) states that the volume

integral of the divergence of A is equal to the outward flux of the vector field
A through the surface S enclosing the volume V . Assuming that A and the
curl of A are continuous, Stokes’ theorem given by Equation (1.328) states
that the curl of A over the open surface S bounded by C is equal to the
circulation ofA around the closed path C.

Consider now Figure 1.7, which shows two media separated by an
interface surface that can be of arbitrary shape and can support surface charges
ρs and surface currents Js andM s. To determine the boundary conditions for
the normal field components, consider Figure 1.8. From Maxwell’s divergence
ofD equation and the divergence theorem, we can write∫

V
∇·Ddv =

∮
S
A·ds =

∫
V
ρdv (1.330)

where ρ is the volume charge density. In the limit where ∆h approaches zero,
only the top and bottom of the cylindrical box contribute, such that in vector
notation,

n̂·(D2 −D1) = ρs (1.331)

where ρs is the surface charge density. Similarly, it can be shown that

n̂·(B2 −B1) = 0. (1.332)

Now, referring to Figure 1.9 from Maxwell’s curl ofE equation including the
fictitious magnetic current density and Stokes’ theorem, we can write∫

S
(∇×E)·ds =

∮
C
E·dl = −

∫
S
M ·ds−

∫
S

∂B

∂t
·ds. (1.333)

As ∆h goes to zero, the term involving the integral of B goes to zero, and
now in vector form, Equation (1.333) becomes

(E2 −E1)×n̂ = M s (1.334)
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Figure 1.22 Electric charge, currents, and fields at a general interface between two
media.
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Figure 1.23 Electric charge and the normal components of electric flux density with
a closed surface for evaluation of boundary conditions.

whereM s is the fictitious magnetic surface current. Similarly, it can be shown
that

n̂×(H2 −H1) = Js. (1.335)

From Equations (1.334) and (1.335) for general media in the absence
of sources on the boundary (i.e., Js = 0 and M s = 0), the tangential
components of E and H are continuous across the boundary. When medium
1 is a perfect electric conductor (σ =∞), which means E1 = 0, from
Equation (1.334), the tangential component of E2 must be zero at the perfect
electric conductor.

1.6 Wave Equation for Conducting Media,
Propagation Parameters

Consider Maxwell’s equations given by Equations (1.145) and (1.146), but
now in a source-free conducting region with J source = 0 and M source = 0,
that is,

∇×E = −jωµcH (1.336)

∇×H = jωεcE (1.337)
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Figure 1.24 Magnetic current and tangential E fields with a closed contour for
evaluation of boundary conditions.

∇·D = 0 (1.338)

∇·B = 0. (1.339)

Taking the curl of Equation (1.336) and substituting Equations (1.149) and
(1.337) yields

∇×∇×E = −jωµcjωεcE = −jωµc(σ + jωε′)E (1.340)

or
∇×∇×E = −jωµcjωεcE = ω2µcεcE (1.341)

and defining the complex wavenumber k here as

k = ω
√
µcεc (1.342)

it follows that
∇×∇×E = k2E. (1.343)

By using the vector identity

∇×∇×E =∇(∇·E)−∇2E (1.344)

and noting that the divergence of E is zero by Equation (1.338), it follows
that

∇2E + k2E = 0, (1.345)

which is a form of the vector wave equation in complex media. A similar wave
equation involving the vector magnetic field is given by

∇2H + k2H = 0. (1.346)

The vector wave equations expressed by Equations (1.345) and (1.346)
are also commonly expressed as

∇2E − γ2E = 0 (1.347)
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∇2H − γ2H = 0 (1.348)

where γ is the complex propagation constant. The above vector wave
equations allow for spherical, cylindrical, and plane wave solutions.

For example, consider a ẑ-polarized plane wave propagating in the x̂
direction as given by the linearly polarized electric field

E(x) = e−γxẑ. (1.349)

The plane-wave function given by Equation (1.349) is a solution of Equa-
tion (1.347), which can be verified by observing that the wave equation can
be expressed in cartesian coordinates as

∇2E − γ2E =
∂2E

∂x2
− γ2E = 0 (1.350)

and then performing the partial derivative operation.
The relationship between the complex propagation constant γ and the

complex wavenumber k is

γ = jk = jω
√
µcεc. (1.351)

Thus,
γ2 = −k2 = −ω2µcεc. (1.352)

By using Equation (1.340), it follows that

γ2 = jωµc(σ + jωε′). (1.353)

Assume now an electrically conducting medium, and then it is readily shown
that the propagation constant can be expressed as

γ = ±
√
jωµ′(σ + jωε′) = ±jω

√
µ′ε′

√
1− j σ

ωε′
. (1.354)

Again, the quantity (refer to Equation [1.355])

σ

ωε′
=
ε′′

ε′
= tan δ (1.355)

is referred to as the electric loss tangent or dissipation factor. Both σ and
tan δ are used in tables of dielectric characteristics of materials. It is common
to express the complex propagation constant as

γ = α+ jβ (1.356)
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where α is the attenuation constant in nepers/meter and β is the phase constant
in radians/meter. Again, the complex wavenumber is expressed as

jk = α+ jβ (1.357)

and either way of analyzing the wave propagation provides the same results.
The units of nepers/meter can be converted to decibels by multiplying by the
factor 8.686. The units of radians/meter can be converted to degrees/meter by
multiplying by the factor 180/π = 57.296.

The constants α and β are found by setting Equation (1.354) equal
to Equation (1.356) and then squaring both sides, equating the real and
imaginary parts, and solving the pair of simultaneous equations, with the
result

α =
ω
√
µ′ε′√
2


√

1 +

(
σ

ωε′

)2

− 1


1/2

(1.358)

β =
ω
√
µ′ε′√
2


√

1 +

(
σ

ωε′

)2

+ 1


1/2

. (1.359)

The wavelength λ in the lossy dielectric is then computed from the phase
constant given by Equation (1.359) as

λ =
2π

β
. (1.360)

The intrinsic wave impedance η is related to the ratio of the electric and
magnetic fields and in lossy dielectric material is given by [8]

η =

√
µ

ε
=

√
jωµ′

σ + jωε′
=

√
µ′

ε′
1√

1− j σ
ωε′

. (1.361)

In free space, the electrical conductivity σ is equal to zero, and it follows from
Equation (1.361) that the free-space intrinsic wave impedance is

ηfree space =

√
µo
εo

= 120π = 376.99 ≈ 377 ohms. (1.362)

In the general media case, in which both electric and magnetic loss are
present, the constants α and β are determined from Equations (1.352) and
(1.356) using Equations (1.142) and (1.143), by solving the simultaneous
equations for the real and imaginary components with the result

α =
ω
√
µ′ε′√
2

{√
(1 + tan2 δe) (1 + tan2 δm)− (1− tan δe tan δm)

}1/2

(1.363)
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β =
ω
√
µ′ε′√
2

{√
(1 + tan2 δe) (1 + tan2 δm) + (1− tan δe tan δm)

}1/2

(1.364)
where

tan δe =
ε′′

ε′
=

σe
ωε′

=
σe

ωεoε′r
(1.365)

and

tan δm =
µ′′

µ′
=
σm
ωµ′

=
σm

ωµoµ′r
(1.366)

are the electric and magnetic loss tangents, respectively. For general lossy
media, the wave impedance is given by

η =

√
µ

ε
=

√
µ′ − jµ′′
ε′ − jε′′

=

√
µ′

ε′

√
1− j tan δm
1− j tan δe

. (1.367)

Taking account of boundary conditions as described in Section 1.7, for normal
angle of incidence of a plane wave, the reflection coefficient Γ for a uniform
plane wave traveling in medium 1 and reflecting at the boundary of medium 2
is given by

Γ =
η2 − η1

η2 + η1
, (1.368)

and the transmission coefficient T for a plane wave at normal incidence
transmitted into medium 2 is given by

T =
2η2

η2 + η1
(1.369)

where η1 is the impedance of medium 1 and η2 is the impedance of medium 2.
The more general cases of plane-wave incidence, including oblique incidence,
polarization effects, and different media, are covered by Balanis [2, pp. 173–
257].

It is convenient to have a simple equation for computing the wave
propagation between any two points in the near field of an isolated
transmitting antenna in conducting media. Consider a time-harmonic source
radiating a spherical wave into an infinite homogeneous conducting medium.
For an isotropic radiator and suppressing the ejωt time dependence where
ω = 2πf , the electric field as a function of range r can be expressed in phasor
notation as a spherical wave

E(r) = Eo
e−γr

r
(1.370)
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where Eo is a constant and γ is the propagation constant given by
Equation (1.354). For some cases in which the 1/r dependence can be
ignored, a plane wavefront approximation to Equation (1.370) can be used.
For example, a plane wavefront propagating along the x-axis can be expressed
as

E(x) = Eoe
−γx. (1.371)

Equation (1.370) or Equation (1.371) can be used in a simplified ray-tracing
analysis to compute the approximate electric field, generated by one or more
transmitting antennas, at any point in a homogeneous lossy dielectric. If
we let the electric field at the rectangular coordinates (x, y, z) due to the
nth transmitting antenna in an array of N transmitting antennas be denoted
as En(x, y, z), then the total electric field of the transmitting array can be
expressed as the following summation,

Etotal(x, y, z) =
N∑
n=1

En(x, y, z). (1.372)

For a transmitting point source at the origin, the amplitude of the electric
field at range r1 is given by

|E(r1)| = Eo
e−αr1

r1
(1.373)

and at range r2 by

|E(r2)| = Eo
e−αr2

r2
. (1.374)

The total propagation loss between ranges r1 and r2 is found by taking the
ratio of Equations (1.374) and (1.373) as

|E(r2)|
|E(r1)|

=
r1

r2
e−α(r2−r1). (1.375)

The field attenuation Aα in decibels from range r1 to range r2 caused by the
lossy dielectric is simply

Aα = 20 log10(e−α(r2−r1)). (1.376)

If we let d = r2 − r1, the above equation can be written in a convenient form
as

Aα = 20 log10(e−αd), (1.377)

which is the relative field attenuation as a function of distance d into a lossy
dielectric or transmission loss of a plane wave in decibels per meter. The
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attenuation constant α has units of nepers per unit length or typically in the
literature of nepers per meter (Np/m), where neper is dimensionless. If d is one
meter and α = 1 Np/m, then the field strength in decibels is 20 log10(e−1) =
20 log10 |0.368| = −8.686 dB. Thus, the attenuation in decibels per meter is
8.686 times the attenuation constant in nepers per meter. If the attenuation
constant is expressed in nepers/cm, then to convert to attenuation in decibels
per cm, the multiplying factor remains 8.686. Similarly, the 1/r attenuation
loss Ar in decibels is

Ar = 20 log10

r1

r2
. (1.378)

1.7 Electromagnetic Energy Flow

To demonstrate that an electromagnetic field can transfer electromag-
netic energy into an electrically conducting volume (e.g., soil as in a
ground-penetrating radar application), consider the following application of
Maxwell’s curl equations in the time domain in a source-free region where
J source = 0 and M source = 0. Starting with the curl of the instantaneous
magnetic field as in Equation (1.86), substitute Equations (1.104) and (1.122)
with the result

∇×H(r, t) = σE + ε′
∂E

∂t
. (1.379)

Next, the curl of the instantaneous electric field from Equation (1.85) is given
by

∇×E(r, t) = −µ′∂H
∂t

. (1.380)

Fundamentally, it is desired to derive a power-flow expression for the electric
and magnetic fields. The electric field has units of volts/meter and the
magnetic field has units of amperes/meter. The product of volts/meter and
amperes/meter produces watts/meter2, which is power density. There are two
possibilities for manipulating the electric and magnetic field expressions to
produce a relation for power density, either a dot product or a cross product
of the two field quantities. To produce a meaningful relation here, the cross
product is the desired vector operation on the electric and magnetic field
vectors. A vector identity will also be needed to convert to the desired field
relation. Of the available general vector identities, the one that applies here is

∇·(A×B) = B·(∇×A)−A·(∇×B). (1.381)

On the basis of the vector identity in Equation (1.381), it is observed that the
desired mathematical manipulations are to dot the electric field into the curl
of the magnetic field and to dot the magnetic field into the curl of the electric
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field. Once these manipulations are done, the desired cross product between
E andH will appear. Thus, from Equations (1.379), (1.380), and (1.381) and
by using J ·E = E·J , it follows that

E·(∇×H) = J ·E +E·ε′∂E
∂t

= J ·E +
1

2
ε′
∂E2

∂t
(1.382)

and

H·(∇×E) = −H·µ′∂H
∂t

= −1

2
µ′
∂H2

∂t
. (1.383)

Simplifying and subtracting Equation (1.382) from Equation (1.383) yields

E·(∇×H)−H·(∇×E) = J ·E +
1

2
ε′
∂E2

∂t
+

1

2
µ′
∂H2

∂t
(1.384)

or applying the vector identity Equation (1.381) in Equation (1.384) yields

∇·(E×H) = −J ·E − 1

2
ε′
∂E2

∂t
− 1

2
µ′
∂H2

∂t
(1.385)

and now integrating over a volume of media∫
V
∇·(E×H)dv = −

∫
V
J ·Edv − ∂

∂t

∫
V

[
1

2
ε′E2 +

1

2
µ′H2]dv. (1.386)

The divergence theorem for any vector A for a closed surface S enclosing
volume V is given by ∫

V
∇·Adv =

∮
S
A·n̂ds (1.387)

where dv is the elemental volume and ds is the elemental area perpendicular
to the outward unit normal n̂. Thus, applying Equation (1.387) to the left-hand
side of Equation (1.386) yields∫

V
∇·(E×H)dv =

∮
S

(E×H)·n̂ds. (1.388)

Finally, Equation (1.386) reduces to∮
S

(E×H)·n̂ds = −
∫
V
J ·Edv − ∂

∂t

∫
V

[
1

2
ε′E2 +

1

2
µ′H2]dv. (1.389)

The term on the left side of Equation (1.389) represents the net inward flux of
the vector

P (r, t) = E(r, t)×H(r, t). (1.390)
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In Equations (1.389) and (1.390), the vector quantityP (r, t) = E(r, t)×H(r, t)
is known as the instantaneous Poynting vector (due to J.H. Poynting
[104]) and can be interpreted as the instantaneous power-flow density in
watts/meter2 at each observation point (r) on the surface S, or equivalently
the power delivered to the volume V by external electromagnetic sources.
Equation (1.389) is referred to as the integral form of Poynting’s theorem
and describes conservation of energy for electromagnetic waves. From
Equation (1.104), it follows that

J ·E = σE·E = σ|E|2 (1.391)

where the dot product of the real vector E with itself is just the magnitude
of E squared. The first integral term on the right side of Equation (1.389)
involving J ·E = σ|E|2 represents the instantaneous ohmic losses within the
volume enclosed by the surface S. The integral in the second term on the
right side of Equation (1.389) is the total energy (with units of watt-seconds =
joules), due to electric and magnetic fields, stored within the volume V .

To understand the electromagnetic field energy transfer to conductive
media such as lossy dielectrics, it is necessary to determine the time-average
power delivered to and dissipated within the volume. The time-average
Poynting vector or time-average power density given by Equation (1.389) is
computed over one period T as

P ave(r) =
1

T

∫ T

0
E(r, t)×H(r, t) dt (1.392)

where the period is equal to
T = 2π/ω. (1.393)

Substituting the exponential forms given by Equations (1.114) and (1.115)
into Equation (1.392) yields

P ave(r) =
1

T

∫ T

0

[
Re[E(r)ejωt]×Re[H(r)ejωt]

]
dt. (1.394)

Making use of the relation

Re[AB] =
1

2
[AB +A∗B∗], (1.395)

it follows that

Re[E(r)ejωt]×Re[H(r)ejωt] =
1

2
[Eejωt +E∗e−jωt]×1

2
[Hejωt +H∗e−jωt].

(1.396)
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Expanding Equation (1.396) and using the relation (with * denoting conju-
gate)

Re[E×H∗] =
1

2
[E×H∗ +E∗×H] (1.397)

it can be shown that Equation (1.394) reduces to

P ave =
1

T

∫ 2π
ω

0

[
1

2
Re[E×H∗] +

1

4
E×Hej2ωt +

1

4
E∗×H∗e−j2ωt

]
dt.

(1.398)
It can be shown, by integration, that Equation (1.398) reduces to

P ave(r) =
1

2
Re[E×H∗], (1.399)

which is the desired expression for the time-average power density of the
electromagnetic field, or the time-average Poynting’s vector, which has units
of watts/meter2.

As an example, for the case of a plane wave propagating in a conducting
medium, the electric field is given by

E(r) = η n̂×H(r) (1.400)

and the magnetic field is given by

H(r) = n̂×E(r)/η (1.401)

and thus, by substituting Equation (1.401) in Equation (1.399), it follows from
a vector identity that the time-average Poynting vector for a plane wave is
equal to

P ave(r) = n̂
1

2
|E(r)|2/η (1.402)

where n̂ is the direction of propagation.
Next, it is desired to quantify the average power deposition in a lossy

dielectric because this quantity is needed to determine the absorption of
electromagnetic energy in any dielectric materials that the antenna might
be constructed from, or in the case in which the antenna is radiating in
the presence of such lossy materials. Referring to Equation (1.389), for the
first term on the right-hand side, the time-average power dissipation per unit
volume is computed over one period T as

Pd(r) =
1

T

∫ T

0
J(r, t)·E(r, t)dt. (1.403)
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Substituting Equations (1.114) and (1.116) into Equation (1.403) yields

Pd(r) =
1

T

∫ T

0

[
Re[J(r)ejωt]·Re[E(r)ejωt]

]
dt. (1.404)

Making use of the relation given in Equation (1.395), it follows that

Re[J(r)ejωt]·Re[E(r)ejωt] =
1

2
[Jejωt + J∗e−jωt]·1

2
[Eejωt +E∗e−jωt].

(1.405)
Using Equation (1.405) in Equation (1.404) and observing that the current
density J and electric field E are in phasor form, it follows that

J ·E∗ = σE·E∗ = σ|E|2 (1.406)

J∗·E = σE∗·E = σ|E|2 (1.407)

and it can be shown that

Pd =
1

T

∫ T= 2π
ω

0

[
1

2
σ|E|2 +

1

4
J ·Eej2ωt +

1

4
J∗·E∗e−j2ωt

]
dt. (1.408)

It also can be shown that Equation (1.408) reduces to

Pd(r) = Pave dissipated =
1

2
σ|E(r)|2, (1.409)

which is the desired expression for the time-average power dissipation per unit
volume of the lossy dielectric, which has units of watts/m3.

The specific absorption rate (SAR) [114] in the dielectric is the power
dissipated or absorbed per unit mass (W/kg) of the medium (lossy dielectric),
so from Equation (1.409), it follows that

SAR(r) =
Pd(r)

ρ
=

σ

2ρ
|E(r)|2 (1.410)

where ρ is the density of the medium in kg/m3. To estimate the initial linear
temperature rise ∆T versus time interval ∆t in a lossy dielectric that is
characterized by the specific heat cd with units of kJ/(kg-◦C), the following
calculation can be made:

∆T =
SAR ∆t

cd
(1.411)

where in Equation (1.411), it has been assumed that any thermal conduction
or thermal boundary conditions have been ignored.
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1.8 Fields of Short Electric and Magnetic Dipoles

1.8.1 Introduction

Arbitrarily shaped antennas can be considered to be composed of the
superposition of a number of short electric dipoles and/or magnetic dipoles
(electric loops) as depicted in Figure 1.10.

The closed-form expressions for the near-zone electromagnetic fields in
free space resulting from an electrically short (Hertzian) dipole of length l
with current Ie along the z axis are given by [10]

Edipole
r (r, θ) =

Iele
j(ωt−βr)

2πεo
cos θ

(
1

cr2
+

1

jωr3

)
(1.412)

E
dipole
θ (r, θ) =

Iele
j(ωt−βr)

4πεo
sin θ

(
jω

c2r
+

1

cr2
+

1

jωr3

)
(1.413)

H
dipole
φ (r, θ) =

Iele
j(ωt−βr)

4π
sin θ

(
jω

cr
+

1

r2

)
. (1.414)

Similarly, the near-zone electromagnetic fields for an electrically small
loop or short (small) magnetic dipole of length l with current Im along the z
axis are given by

H loop
r (r, θ) =

Imle
j(ωt−βr)

2πµo
cos θ

(
1

cr2
+

1

jωr3

)
(1.415)

H
loop
θ (r, θ) =

Imle
j(ωt−βr)

4πµo
sin θ

(
jω

c2r
+

1

cr2
+

1

jωr3

)
(1.416)

E
loop
φ (r, θ) =

Imle
j(ωt−βr)

4π
sin θ

(
jω

cr
+

1

r2

)
. (1.417)

Magnetic dipole or loopElectric dipole

θ

Ie
Im

r
θ

a

r

Figure 1.25 Geometry for short electrical dipole with length l and current Ie and short
magnetic dipole with length l and current Im (small electric current loop
with radius a).
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In the far field, the terms involving 1/r2 and 1/r3 can be neglected
relative to the 1/r term. Thus, the only significant far-field radiating
components of the short vertical electric dipole are Eθ and Hφ. For the small
horizontal loop antenna (short vertical magnetic dipole), the only significant
far-field radiating components are Eφ and Hθ. In each case, in the far field, it
can be shown that the ratio of the electric to magnetic field amplitude is equal
to the impedance of free space. That is,

E

H
= ηo. (1.418)

To derive the near-zone fields stated above, there are two approaches.
One approach is to compute the magnetic vector potential A from the source
current J , and then the magnetic field H can be computed. The electric
field E is then obtained from the magnetic field H by using Maxwell’s curl
equation. The other approach is to compute the electric field directly from the
source current J . Both approaches are discussed below.

In the first approach, the magnetic vector potential is needed and is given
by Equation (1.197), which is repeated below for general isotropic media:

A(r) = µ

∫
V
J(r′)

e−jk|r−r
′|

4π|r − r′|
dv′. (1.419)

Repeating Equation (1.174), the magnetic fieldH in terms ofA is given by

H =
1

µ
∇×A. (1.420)

1.8.2 Derivation of Fields for ẑ Hertzian Dipole

In the case of a ẑ Hertzian dipole, let the electric current density be given by

J(r′) = ẑIelδ(r
′) (1.421)

where the delta function δ(r′) is equal to unity when r′ = 0 and is equal to
zero elsewhere. Substituting Equation (1.421) in Equation (1.419) yields

A(r) = ẑ
µIel

4π

e−jkr

r
. (1.422)

To reduce the above equation, use the standard conversion from rectangular
components to spherical components, Ar

Aθ
Aφ

 =

 sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

 Ax
Ay
Az

 . (1.423)
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If the x and y components ofA are zero, the transformation reduces to

Ar = Az cos θ (1.424)

Aθ = −Az sin θ (1.425)

and note that the Aφ component is zero. Thus, from Equations (1.422),
(1.424), and (1.425), it follows that

Ar = µIel
e−jkr

4πr
cos θ (1.426)

Aθ = −µIel
e−jkr

4πr
sin θ (1.427)

Aφ = 0. (1.428)

Since the Aφ component is zero and the φ variation of Ar and Aθ is zero
for a z-directed current, referring to Equation (1.93), the magnetic field H in
spherical coordinates is reduced to

H =
1

µ
∇×A = φ̂

1

µr

[
∂

∂r
(rAθ)−

∂Ar
∂θ

]
. (1.429)

Performing the partial derivatives in Equation (1.429) yields the only nonzero
magnetic-field component

Hφ = jkIel sin θ

[
1 +

1

jkr

]
e−jkr

4πr
. (1.430)

In general, the Maxwell curl equation for the magnetic field in time-
harmonic form is Equation (1.146), which is repeated here as

∇×H = J source + jωεcE, (1.431)

and when the magnetic field is computed at a point removed from the source,
the magnetic field expression is reduced to

∇×H = jωεE (1.432)

where it is now assumed that the complex permittivity is denoted by ε.
Furthermore, using Equations (1.192) and (1.432), the electric field as a
function of the vector distance r from the source can be computed from either
the magnetic vector potentialA or magnetic fieldH as expressed below:

E(r) = −jωA− j

ωµε
∇(∇·A) =

1

jωε
∇×H. (1.433)
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Substituting either Equations (1.426) and (1.427) or Equation (1.430) into
(1.433) yields

Er(r, θ) = 2ηIel cos θ

[
1

r
+

1

jkr2

]
e−jkr

4πr
(1.434)

Eθ(r, θ) = jηkIel sin θ

[
1 +

1

jkr
− 1

(kr)2

]
e−jkr

4πr
(1.435)

Eφ = 0. (1.436)

The same near fields are computed for the ẑ Hertzian dipole using the
dyadic Green’s function approach described below. With this approach, the
electric field is computed directly, from which computation the magnetic
field can be computed using Maxwell’s ∇×E equation. Repeating Equa-
tion (1.205),

E(r) = −jωµ[I +
1

k2
∇∇]·

∫
V
J(r′)

e−jk|r−r
′|

4π|r − r′|
dv′ (1.437)

and substituting Equation (1.421) in Equation (1.437) yields

E(r) = −jωµ[I +
1

k2
∇∇]·ẑIel

e−jkr

4πr
(1.438)

or using spherical components (refer to Equation [1.241]) for ẑ as

E(r) = −jωµ[I +
1

k2
∇∇]·

[[
r̂Iel cos θ − θ̂Iel sin θ

] e−jkr
4πr

]
(1.439)

and then define

V =
[
r̂Iel cos θ − θ̂Iel sin θ

] e−jkr
4πr

= r̂Vr + θ̂Vθ. (1.440)

Next, use the following identity

(∇∇)·V =∇(∇·V ) (1.441)

and it follows that Equation (1.439) becomes

E(r) = −jωµ[r̂Vr + θ̂Vθ]− jωµ
1

k2
∇
[
∇·
[
r̂Vr + θ̂Vθ

]]
. (1.442)

Carrying out the vector operations in Equation (1.442) using Equation (1.256)
yields the E-field components given previously in Equations (1.434), (1.435),
and (1.436), which the reader can verify.
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1.8.3 Derivation of Fields for an Arbitrarily Polarized Hertzian
Dipole

The electric field produced by a source current density J with arbitrary
polarization unit vector p̂ in infinite homogeneous space can be determined
as follows [3, p. 506]. Assume a Hertzian dipole with vector electric current
Iel located at the origin, that is,

J(r′) = Ielδ(r
′) (1.443)

where
Iel = p̂Iel (1.444)

and Ie is the magnitude of the current. Repeating Equation (1.205)

E(r) = −jωµ[I +
1

k2
∇∇]·

∫
V
J(r′)

e−jk|r−r
′|

4π|r − r′|
dv′ (1.445)

and substituting in Equation (1.443) yields

E(r) = −jωµ[I +
1

k2
∇∇]·Iel

e−jkr

4πr
. (1.446)

Using the vector identity given by Equation (1.441) and

∇·ψA = ψ(∇·A) +A·(∇ψ) (1.447)

and from Equation (1.95), it is observed that

∇·Iel = 0, (1.448)

and it follows that

∇∇·Iel
e−jkr

4πr
=∇

[
e−jkr

4πr
(∇·Iel) + Iel·

(
∇e
−jkr

4πr

)]
=∇

[
Iel·

(
∇e
−jkr

4πr

)]
.

(1.449)
Next, use the vector identity

∇(A·B) = (A·∇)B + (B·∇)A+A×(∇×B) +B×(∇×A).
(1.450)

LettingA = Iel andB =∇(e−jkr/4πr) and using the vector identity

∇×(∇ψ) = 0 (1.451)
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and noting that∇Iel = 0 and∇×Iel = 0, it follows that the rightmost side
of Equation (1.449) reduces to

∇
[
Iel·

(
∇e
−jkr

4πr

)]
= (Iel·∇)∇e

−jkr

4πr
. (1.452)

Now the gradient operation in Equation (1.452) is evaluated to be

∇
(
e−jkr

4πr

)
= r̂

∂

∂r

(
e−jkr

4πr

)
= r̂

(
−jk − 1

r

)
e−jkr

4πr
. (1.453)

Next, using Equation (1.453) in the right-hand side of Equation (1.452) yields

(Iel·∇)∇e
−jkr

4πr
= Iel·∇∇

e−jkr

4πr
= Iel·

(
∇r̂

(
−jk − 1

r

)
e−jkr

4πr

)
.

(1.454)
To perform the gradient operation on the right-hand side of Equation (1.454),
it is observed that

∇(r̂ψ(r)) = r̂∇ψ(r) + ψ(r)∇r̂. (1.455)

Now let

ψ(r) =

(
−jk − 1

r

)
e−jkr

4πr
(1.456)

and compute the gradient of ψ(r) as

∇ψ(r) =∇
[(
−jk − 1

r

)
e−jkr

4πr

]
= r̂

[
−k2 +

2jk

r
+

2

r2

]
e−jkr

4πr
.

(1.457)
Using Equation (1.252) and the unit vector derivatives given below Equa-
tion (1.235), it follows that

∇r̂ =
1

r
θ̂θ̂ +

1

r
φ̂φ̂. (1.458)

Using the results of Equations (1.455), (1.456), (1.457), and (1.458), it follows
that the dyadic operation in Equation (1.454) is evaluated as

∇∇e
−jkr

4πr
= r̂r̂

[
−k2 +

2jk

r
+

2

r2

]
e−jkr

4πr
+
[
θ̂θ̂ + φ̂φ̂

] [
−jk
r
− 1

r2

]
e−jkr

4πr
.

(1.459)



82 Electromagnetics and Antenna Technology

Note: substituting Equation (1.459) in Equation (1.326) yields the explicit
dyadic Green’s function for a point source at the origin as

G(r) = r̂r̂

[
2j

kr
+

2

k2r2

]
e−jkr

4πr
+
[
θ̂θ̂ + φ̂φ̂

] [
1− j

kr
− 1

k2r2

]
e−jkr

4πr
.

(1.460)
Using Equations (1.459), (1.449), and (1.242) in Equation (1.446) yields the
near-zone electric field for an arbitrary polarized Hertzian dipole at the origin
as

E(r) = −jωµe
−jkr

4πr

[[
1− j

kr
− 1

k2r2

]
Iel + r̂ (r̂·Iel)

[
−1 +

3j

kr
+

3

k2r2

]]
.

(1.461)
The near-zone magnetic field is then determined from Maxwell’s curl of E
equation as

H(r) = − 1

jωµ
∇×E(r) =∇×

[
I +

1

k2
∇∇

]
·Iel

e−jkr

4πr
=∇×Iel

e−jkr

4πr
(1.462)

which follows from the identity that the curl of the gradient of any scalar is
equal to zero (Equation [1.451]). To solve Equation (1.462), the following
vector identity is used:

∇×(ΨA) = Ψ∇×A−A×∇Ψ. (1.463)

Noting that
∇×Ie = 0 (1.464)

and using Equation (1.453), it follows that the near-zone magnetic field for an
arbitrary polarized Hertzian dipole is expressed as

H(r) =∇×Iel
e−jkr

4πr
= −r̂×Ieljk

[
1− j

kr

]
e−jkr

4πr
. (1.465)

To compute the time-average power density of the electromagnetic field
generated by the arbitrary polarized dipole, first substitute Equations (1.461)
and (1.465) into the bracketed expression in Equation (1.399) using complex
power density denoted P c = E×H∗ with the result

P c=η
[
k

4πr

]2{
r̂(Il)2(1− j

k3r3
)− r̂(r̂·Il)2

[
1− 2j

kr −
3j
k3r3

]
− (r̂·Il)Il

[
2j
kr + 2j

k3r3

]}
(1.466)

from which it follows that the time-average power density of the arbitrary
dipole is

P dipole
ave (r) =

1

2
Re[E×H∗] =

1

2
Re[P c] = η

[
k

4πr

]2 [
r̂(Il)2 − r̂(r̂·Il)2

]
.

(1.467)
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In the case of a z-directed dipole, referring to Equations (1.475) to (1.478), it
can be shown that the complex power density is

P z-dipole
c = η

[
kIl

4πr

]2
{
r̂

[
1 +

(
j

kr

)3
]

sin2 θ + θ̂

[(
j

kr

)
−
(
j

kr

)3
]

sin 2θ

}
(1.468)

from which it follows that the time-average power density of the z-directed
dipole is

P z-dipole
ave (r) =

1

2
Re[E×H∗] =

1

2
Re[P c] = r̂

η

2

[
kIl

4πr

]2

sin2 θ. (1.469)

1.8.4 Duality and Fields for Hertzian Loop and Dipole Antennas

In the case of a Hertzian loop antenna with radius a centered at the origin
(Figure 1.10), the electric and magnetic fields can be readily found from
the Hertzian electric dipole antenna fields by utilizing the duality principle.
For a small circular loop of radius a that has area A = πa2, the magnetic
dipole moment m = IA = Iπa2, which has units of amperes meters squared.
The vector magnetic dipole moment can be expressed as m = mp̂, where
p̂ is the polarization unit vector for the magnetic dipole moment, which is
perpendicular to the plane of the loop. In terms of the electric current I flowing
in the small current loop, the vector magnetic dipole moment is expressed as

m = IAp̂. (1.470)

The relevant duality relationships with the following replacement of quantities
have been described by Kong [3, pp. 510, 511], that is, E →H , H → −E,
µ→ ε, ε→ µ, k → k, η → 1/η, D → B, B → −D, and Iel→ jωµm,
jωµm→ −Iel. Summarizing the near-zone fields of the Hertzian electric
dipole (referred to as dipole), we have from Equations (1.461) and (1.465)

Edipole(r) = −jωµe
−jkr

4πr

{[
1− j

kr
− 1

k2r2

]
Iel + r̂ (r̂·Iel)

[
−1 +

3j

kr
+

3

k2r2

]}
(1.471)

Hdipole(r) = −r̂×Ieljk
[
1− j

kr

]
e−jkr

4πr
. (1.472)

Using the above duality relationships, the fields for the Hertzian magnetic
dipole (referred to as electric current loop) are found to be

H loop(r) = k2 e
−jkr

4πr

{[
1− j

kr
− 1

k2r2

]
m+ r̂ (r̂·m)

[
−1 +

3j

kr
+

3

k2r2

]}
(1.473)
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Eloop(r) = −r̂×mωµk

[
1− j

kr

]
e−jkr

4πr
. (1.474)

From Equations (1.471) and (1.472), the near-field components for a
z-directed dipole are determined to be

H
NF, z-dipole
φ (r, θ) = jkIel sin θ

[
1 +

1

jkr

]
e−jkr

4πr
(1.475)

ENF, z-dipole
r (r, θ) = 2ηIel cos θ

[
1

r
+

1

jkr2

]
e−jkr

4πr
(1.476)

E
NF, z-dipole
θ (r, θ) = jηkIel sin θ

[
1 +

1

jkr
− 1

(kr)2

]
e−jkr

4πr
(1.477)

E
NF, z-dipole
φ = 0, (1.478)

which are the same as Equations (1.430), (1.434), (1.435), and (1.436),
respectively. The corresponding near-zone fields for a z-directed loop can be
determined by applying the duality relationshipsE →H ,H → −E, µ→ ε,
ε→ µ, k → k, η → 1/η, and Iel→ jωµm = jωµIA, to the fields of the z-
directed Hertzian dipole given by Equations (1.475), (1.476), (1.477), and
(1.478), and noting that

η = ωµ/k, (1.479)

leads to the simplified results as

E
NF, z-loop
φ (r, θ) = ηIA sin θ

[
k2 − jk

r

]
e−jkr

4πr
(1.480)

HNF, z-loop
r (r, θ) = 2IA cos θ

[
jk

r
+

1

r2

]
e−jkr

4πr
(1.481)

H
NF, z-loop
θ (r, θ) = IA sin θ

[
−k2 +

jk

r
+

1

r2

]
e−jkr

4πr
(1.482)

H
NF, z-loop
φ = 0. (1.483)

1.9 Far-Zone Fields of Arbitrary Dipoles and Loops

1.9.1 Introduction

The far-zone fields can be computed by ignoring the higher-order terms 1/r2

and 1/r3 as mentioned earlier. Thus, in the far field for arbitrary Hertzian
dipole current orientation, Equations (1.471) and (1.472) reduce to

EFF
dipole(r) = −jωµe

−jkr

4πr
[Iel − r̂ (r̂·Iel)] (1.484)
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HFF
dipole(r) = −r̂×Ieljk

e−jkr

4πr
. (1.485)

Similarly, using Equations (1.473), and (1.474), the far-zone fields for the
arbitrary Hertzian magnetic dipole (referred to as electric current loop) are
found to be

HFF
loop(r) = k2 e

−jkr

4πr
[m− r̂ (r̂·m)] (1.486)

EFF
loop(r) = −r̂×mωµk

e−jkr

4πr
. (1.487)

For a particular vector current polarization, Equations (1.239) to (1.241)
would be used in evaluating the field components.

1.9.2 Far-Zone Fields for ẑ Oriented Dipoles and Loops

For example, when the electric dipole moment has only a z orientation,
that is, Iel = ẑIel, and referring to Equation (1.241) ẑ = r̂ cos θ − θ̂ sin θ,
Equations (1.484) and (1.485) reduce to the far-field results

EFF
z-dipole(r) = θ̂jωµIel

e−jkr

4πr
sin θ (1.488)

HFF
z-dipole(r) = φ̂Ieljk

e−jkr

4πr
sin θ. (1.489)

The far-zone fields for the Hertzian magnetic dipole (electric current loop)
oriented with the axis in the z direction, that is, m = mẑ, where m = IA,
are found from Equations (1.488) and(1.489) using the duality relations given
in the previous section, and noting φ̂×θ̂ = −r̂, to be

HFF
z-loop(r) = −θ̂k2IA

e−jkr

4πr
sin θ (1.490)

EFF
z-loop(r) = φ̂IAωµk

e−jkr

4πr
sin θ. (1.491)

As discussed earlier, by taking the ratio of the magnitudes of the electric field
and magnetic fields, it is readily shown that the far-zone fields of the dipole
and loop in free space satisfy |E|/|H| = ηo, where ηo is the impedance of
free space. In the case of a multiturn small loop antenna with N turns, the
field expressions given in this section are generalized by simply replacing the
quantity IA with NIA such that the vector magnetic dipole moment is now
given by

m = NIAp̂. (1.492)
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Consider now an example of the near-zone electric field dependence
with range distance from a z directed Hertzian dipole antenna. For an
observation point in the xy-plane, using Equation (1.477) it can be shown
that the magnitude of the z component of the electric field is proportional to

|Ez(r)| ∝

√[
1

r
− 1

k2r3

]2

+

[
1

kr2

]2

(1.493)

Assume that the radiating frequency is 300 MHz, so that the wavelength is
λ = 1m and the corresponding wavenumber is k = 2π radians/m. The nor-
malized electric-field magnitude (envelope) versus near-field range distance
is shown in Figure (1.26). From Equation (1.112), the time variation of the
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Figure 1.26 Normalized electric-field magnitude (envelope) versus near-field range
distance for a z-polarized Hertzian dipole antenna radiating at 300 MHz.

electric field is given by

E(r, t) = |E(r)| cos(ωt− kr) (1.494)

and taking snapshots of just the cosine factor at fixed instants in time, say t =
0, t = 1ns with k = 2π radians/m, Figure (1.27) shows that the wave moves
to the right at the speed of light (0.3m per nanosecond). The wavelength 1m is
observed between two consecutive positive (or negative) peaks. Now, taking
a snapshot of the electric-field amplitude at t = 0, from Equation (1.494), the
spatial variation of the electric field is given by

E(r, 0) = |E(r)| cos(kr) (1.495)

and Figure (1.28) shows the decrease in the amplitude of the peaks and troughs
as the range increases. Next, the magnitude in dB of the instantaneous E-
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Figure 1.27 Instantaneous electric-field amplitude (ignoring the envelope factor)
versus near-field range distance for a z-polarized Hertzian dipole
antenna radiating at 300 MHz.
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Figure 1.28 Instantaneous electric-field amplitude (including the envelope factor)
|Ez(r)| cos(kr) versus near-field range distance for a z-polarized
Hertzian dipole antenna radiating at 300 MHz.

field at t = 0 versus range distance is shown in Figure (1.29) Finally, the
instantaneous phase versus range distance is shown in Figure (1.30), and the
phase is observed to rotate through 360 degrees every 1m (one wavelength in
this case) distance.
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Figure 1.29 Comparison of the electric-field envelope (dashed curve) and
instantaneous electric-field magnitude (solid curve) in dB (including
the envelope factor) versus near-field range distance for a z-polarized
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Figure 1.30 Electric-field phase versus near-field range distance for a z-polarized
Hertzian dipole antenna radiating at 300 MHz.

1.9.3 Far-Zone Fields for x̂ Oriented Dipoles and Loops

When the electric dipole moment has only an x orientation, that is, Iel =
x̂Iel, and referring to Equation (1.239) then Equation (1.485) reduces to

HFF
x-dipole(r) = −

[
θ̂ sinφ+ φ̂ cos θ cosφ

]
jkIel

e−jkr

4πr
. (1.496)
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Then, applying Equation (1.400), φ̂× r̂ = θ̂, and θ̂ × r̂ = −φ̂ yields

EFF
x-dipole(r) =

[
−θ̂ cos θ cosφ+ φ̂ sinφ

]
jkIelη

e−jkr

4πr
. (1.497)

By applying duality, the loop fields are given by

HFF
x-loop(r) =

[
θ̂ cos θ cosφ− φ̂ sinφ

]
k2IA

e−jkr

4πr
. (1.498)

EFF
x-loop(r) = −

[
θ̂ sinφ+ φ̂ cos θ cosφ

]
ηk2IA

e−jkr

4πr
. (1.499)

1.9.4 Far-Zone Fields for ŷ Oriented Dipoles and Loops

When the electric dipole moment has only a y orientation, that is, Iel = ŷIel,
and referring to Equation (1.240) then Equation (1.485) reduces to

HFF
y-dipole(r) =

[
θ̂ cosφ− φ̂ cos θ sinφ

]
jkIel

e−jkr

4πr
. (1.500)

Then, applying Equation (1.400), φ̂× r̂ = θ̂, and θ̂ × r̂ = −φ̂ yields

EFF
y-dipole(r) = −

[
θ̂ cos θ sinφ+ φ̂ cosφ

]
jkηIelη

e−jkr

4πr
. (1.501)

By applying duality, the loop fields are given by

HFF
y-loop(r) =

[
θ̂ cos θ sinφ+ φ̂ cosφ

]
k2IA

e−jkr

4πr
. (1.502)

EFF
y-loop(r) =

[
θ̂ cosφ− φ̂ cos θ sinφ

]
ηk2IA

e−jkr

4πr
. (1.503)

1.9.5 Image Theory for Electric and Magnetic Dipole Antennas

Image theory can be used to compute the fields caused by an electric dipole
or a magnetic dipole (electric current loop) over a perfect electric conductor
as depicted in Figure 1.15. The sign of the image can be determined by using
the exact electric field expresssions (as given in the previous section) for the
electric dipole and magnetic dipole and by enforcing boundary conditions that
the total tangential electric field be zero at the surface of the perfect electric
conductor. A horizontal electric dipole will have a negative image, whereas a
horizontal magnetic dipole will have a positive image. Additionally, a vertical
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electric dipole has a positive image, whereas a vertical magnetic dipole has a
negative image. For these cases, the dipole over a perfect electric conductor
is replaced by the equivalent situation of the original dipole and the dipole
image with the perfect electric conductor removed. Thus, the electromagetic
fields above the perfect electric conductor can be computed by analyzing a
two-element array with the proper phasing, as described for general arrays in
the next chapter.
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Figure 1.31 Image theory applied to electric and magnetic dipoles.

1.10 Electromagnetic Wave Polarization and Receive
Antennas

1.10.1 Wave Polarization Theory

In this section, a brief discussion of electromagnetic wave polarization in the
context of antennas is given based on standard IEEE definitions and electrical
engineering notation [106]. The polarization of an electromagnetic wave is
defined, with the antenna transmitting by the movement of the tip of the
electric field vector as a function of time at a fixed position in space. When the
E-field tip follows a straight line, the wave is linearly polarized. When the tip
follows a circle, the wave is said to be circularly polarized. In the general
case, the tip of the electric field will follow the shape of an ellipse. Two
orthogonal electric field components can be superimposed to form the total
electric field vector. The polarization state of the total electric field depends
on the amplitude and phase relations of these orthogonal field components.

Consider Figure 1.16, which shows examples of linear, circular, and
elliptical polarizations. In this figure, the wave is viewed as approaching along
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the positive z axis at z = 0. To characterize the polarization state of a general
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Figure 1.32 Depiction of linear, circular, and elliptical polarizations.

electromagnetic wave propagating along the positive z axis as depicted now in
Figure 1.17, we can write the complex electric field in terms of the complex
x component Ex, complex y component Ey, E-field amplitude E1 in the x
direction and E2 in the y direction in phasor form as

E(z) = Exx̂+ Eyŷ = E1e
−jkzx̂+ E2e

−jkzejδp ŷ, (1.504)

where δp is the relative phase shift between the two electric-field components.
Equation (1.510) can now be written in instantaneous form as

E(z, t) = Re[E1e
j(ωt−kz)x̂] + Re[E2e

j(ωt−kz+δp)ŷ]. (1.505)

In Equation (1.505), expressing the exponentials in terms of cosines and sines
and taking the real part yields

E(z, t) = Exx̂+ Eyŷ = E1 cos(ωt− kz)x̂+ E2 cos(ωt− kz + δp)ŷ.
(1.506)

Note that in Equation (1.506), the magnitudes Ex = E1 cos(ωt− kz) and
Ey = E2 cos(ωt− kz + δp) follow the tip of the electric-field vector as
a function of time and spatial position. For the case when z = 0, Equa-
tion (1.506) reduces to

E(t) = Exx̂+ Eyŷ = E1 cos(ωt)x̂+ E2 cos(ωt+ δp)ŷ. (1.507)
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Figure 1.33 Depiction of the general tilted polarization ellipse.

Referring to Figure 1.17, the angle γp is expressed in terms of E1 and
E2 as

γp = tan−1 E2

E1
. (1.508)

In Equation (1.508) we note that E1 and E2 are peak values and thus 0◦ ≤
γp ≤ 90◦. Furthermore, note that

|E| = E·E∗ = |Ex|2 + |Ey|2 = |E1|2 + |E2|2. (1.509)

At z = 0, Equation (1.510) reduces to

E(z = 0) = Exx̂+ Eyŷ = E1x̂+ E2e
jδp ŷ, (1.510)

Further, note that the amplitudes E1 = |E| cos γp and E2 = |E| sin γp, and
then the electric field unit vector can be expressed as

ê =
E

|E|
=
E1

|E|
x̂+

E2

|E|
ŷ (1.511)

which reduces to
ê = cos γpx̂+ sin γpe

jδp ŷ. (1.512)

For the case with z = 0, it is observed that Equation (1.510) can also be
expressed as

E(γp, δp) =
√
E2

1 + E2
2(cos γpx̂+ sin γpe

jδp ŷ) = |E|ê. (1.513)

In Equation (1.513), ê is the complex unit vector polarization state of the
electromagnetic wave.
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It is worth noting that the more general case of spherical coordinates for
a plane wave propagating in the radial direction r can be expressed as

E(r) = Eθθ̂ + Eφφ̂ = E1e
−jkrθ̂ + E2e

−jkrejδpφ̂, (1.514)

For the case with r = 0, it is observed that Equation (1.514) can be expressed
as

E(γp, δp) =
√
E2

1 + E2
2(cos γpθ̂ + sin γpe

jδpφ̂) = |E|ê. (1.515)

Now for an incident plane wave propagating in the negative radial
direction, note that the cross product of the unit vectors for theta and phi gives

θ̂ × φ̂ = −r̂ (1.516)

If we compare φ̂with x̂ and θ̂ with ŷ in Figure 1.33 and with Equation (1.512)
then it follows that the incident wave electric-field unit vector êinc or incident
polarization unit vector p̂inc in spherical coordinates is given by

êinc = p̂inc =
Eθ
|E|

θ̂ +
Eφ
|E|

φ̂ = sin γpe
jδp θ̂ + cos γpφ̂. (1.517)

Referring now to the upper left diagram of Figure 1.16, the wave shown
is slanted to the left, and it is linearly polarized. In contrast, in the upper right
diagram of Figure 1.16, the linearly polarized wave is slanted to the right. For
circularly polarized (CP) waves, the amplitude of the two orthogonal electric
field components will be equal, that is, E1 = E2, and the relative phase will
be δp = ±90◦. By the IEEE definition, for a left-hand CP wave approaching,
the relative phase will be δp = 90◦ and the tip of the electric field vector will
rotate clockwise as in the middle-left diagram in Figure 1.16. For a right-hand
CP wave approaching, δp = −90◦, and the tip will rotate counter-clockwise
as in the middle-right diagram in Figure 1.16.

For elliptically polarized (EP) waves, the amplitudes E1 and E2 will not
be equal. If the relative phase is δp = 90◦, then the wave will be left-hand
elliptically polarized (LHEP) with the major axis along the x-axis (lower left
diagram in Figure 1.16). If the relative phase is δp = −90◦, then the wave
will be right-hand elliptically polarized (RHEP) with the major axis also
along the x-axis (lower right diagram in Figure 1.16). For general elliptically
polarized waves, the relative phase δp will vary over ±180◦. The elliptical
polarization will be right-handed for−180◦ < δp < 0 and will be left-handed
for 0 < δp < 180◦.

For the general case of an elliptically polarized wave [106], the
polarization ellipse major axis will tilt away at the angle τp from the x axis
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as depicted in Figure 1.17. In Figure 1.17, the ratio of the major axis to the
minor axis is defined as the axial ratio (AR), that is,

AR = ±OA
OB

. (1.518)

The sign of the axial ratio is positive for right-hand polarization and negative
for left-hand polarization [106, p. 38]. The magnitude of the axial ratio varies
from 1 to infinity, that is, 1 ≤ |AR| ≤ ∞. The polarization ellipticity angle,
denoted εp, is expressed as

εp = cot−1(−AR). (1.519)

In decibels, the axial ratio is expressed as

ARdB = 20 log10 |AR|. (1.520)

The polarization state of a general electromagnetic wave can be
completely specified by either the pair of angles (εp, τp) or (γp, δp). The
transformation of the angles (εp, τp) to (γp, δp) is given by

γp =
1

2
cos−1(cos 2εp cos 2τp) (1.521)

δp = tan−1 tan 2εp
sin 2τp

. (1.522)

In Equation (1.522), the angle 2τp represents longitude and 2εp represents
latitude for a point on a sphere known as the Poincaré sphere [106].

Consider now the polarization efficiency (or antenna-wave coupling)
between transmit and receive linearly polarized antennas as depicted in
Figure 1.18. The transmit antenna produces the incident linear polarization
denoted p̂inc.

The polarization efficiency ηp is expressed as the magnitude squared
of the dot product of the unit vectors for the incident linear polarization and
complex conjugate of the receiving antenna’s unit vector polarization defined
under transmitting conditions (denoted p̂a), that is,

ηp = |p̂inc·p̂∗a |2 = cos2 ψ (1.523)

where ψ is the projected angle between the associated transmit and receive
linear-polarized antenna unit vectors, and the complex conjugate is required
to take account of the relative coordinate systems for the incident field and
the receive antenna (the propagation directions are opposite). That is, the
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Figure 1.34 Depiction of polarization efficiency for an incident wave and a receive
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polarization of the receive antenna p̂rec is the complex conjugate of the receive
antenna’s polarization when used to transmit

p̂rec = p̂∗a (1.524)

When two linearly polarized antennas are polarization aligned (co-
polarized), as in the left diagram in Figure 1.14, the angle ψ is zero, the
polarization efficiency is 100% (ηp = 1), and there is no signal loss. When
the antennas are rotated 45◦ with respect to each other (middle diagram in
Figure 1.14), the polarization efficiency is 0.5, and there is a 3 dB signal
loss. For the case in which the linear polarized antennas are orthogonal (right
diagram in Figure 1.14), there is complete signal loss. For the case where
a circularly polarized wave is incident on a linearly polarized antenna, the
signal loss is 3 dB. More general cases of polarization efficiency between
antennas with circular and elliptical polarizations are considered by Stutzman
[106]. It should be mentioned here that, in general, electromagnetic waves can
consist of completely and partially polarized waves. To quantify the general
polarization case, Stokes parameters (I,Q, U, V ) are used [106, p. 43].

It is useful to determine the open-circuit terminal voltage (denoted V )
induced when an electric field impinges on a receiving antenna. By using a
Thévinen equivalent circuit, the open-circuit induced voltage can then be used
as a generator together with the antenna input impedance ZA = RA + jXA to
determine the current I flowing through a load impedance ZL = RL + jXL

at a receiver. That is,

I =
V

ZA + ZL
. (1.525)
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Note that the real part of the antenna input impedance is equal to the antenna
radiation resistance (denoted Rr), that is, RA = Rr. The time-average power
PL delivered to the receiver, in terms of the resistive component RL of the
receiver load impedance, is given by

PL =
1

2
|I|2RL =

1

2
|V |2 RL
|ZA + ZL|2

(1.526)

and the complex voltage across the receiver load is given by

Vrec = V
ZL

ZA + ZL
. (1.527)

Utilizing the generalized antenna vector effective height (h), which has units
of meters, the induced open-circuit voltage across the terminals of an antenna
is given by

V = Einc·h∗ (1.528)

where
h = hp̂a (1.529)

and where h is the magnitude of the vector effective height. Now express the
incident electric field Einc with magnitiude Eo, phase ψo, with polarization
p̂inc as

Einc = Eoe
ψo p̂inc. (1.530)

A few examples of the induced open-circuit voltage given by Equation (1.528)
will now be considered.

Assume 45◦ slant-left and 45◦ slant-right linearly-polarized short
dipoles oriented in the yz-plane such that

p̂slant left =
−ŷ + ẑ√

2
(1.531)

p̂slant right =
ŷ + ẑ√

2
(1.532)

Assume plane wave incidence with vertical polarization at the arbitrary
position (x, y, z) as

Ev
inc = θ̂Eiθ(x, y, z) (1.533)

or horizontal polarization as

Eh
inc = φ̂Eiφ(x, y, z) (1.534)
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Substituting Equations (1.531), (1.532), (1.533), and (1.534) in Equa-
tion (1.528) yields

V v
slant left = Eiθ(x, y, z)θ̂ ·

[−ŷ + ẑ√
2

]
(1.535)

V v
slant right = Eiθ(x, y, z)θ̂ ·

[
ŷ + ẑ√

2

]
(1.536)

V h
slant left = Eiφ(x, y, z)φ̂ ·

[−ŷ + ẑ√
2

]
(1.537)

V h
slant right = Eiφ(x, y, z)φ̂ ·

[
ŷ + ẑ√

2

]
(1.538)

From Equations (1.237) and (1.238) and referring to Figure 2.4 it follows for
source incidence angles θ = θi and φ = φi that

θ̂·ŷ = cos θi sinφi (1.539)

θ̂·ẑ = − sin θi (1.540)

φ̂·ŷ = cosφi (1.541)

φ̂·ẑ = 0 (1.542)

It follows then that

V v
slant left = −Eiθ(x, y, z)

[
cos θi sinφi + sin θi√

2

]
(1.543)

V v
slant right = −Eiθ(x, y, z)

[
cos θi sinφi − sin θi√

2

]
(1.544)

V h
slant left = −Eiφ(x, y, z)

cosφi√
2

(1.545)

V h
slant right = Eiφ(x, y, z)

cosφi√
2

(1.546)

For plane-wave incidence with wavenumber k = 2π/λ at an arbitrary nth
position (xn, yn, zn), the electric field has a constant amplitude and a phase
that varies as

Ψi = k sin θi(xn cosφi + yn sinφi) + kzn cos θi (1.547)
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and the complex electric field is then

Ei(k, xn, yn, zn, θ
i, φi) = ejk[sin θi(xn cosφi+yn sinφi)+zn cos θi] (1.548)

It follows from Equations (1.523) and (1.528) that

|V | = Eoh|p̂inc·p̂∗a | = Eoh
√
ηp. (1.549)

Substituting Equation (1.549) in Equation (1.526) yields

PL =
1

2
|V |2 RL
|ZA + ZL|2

=
1

2
E2
oh

2ηp
RL

|ZA + ZL|2
. (1.550)

In the case where the receive antenna is connected to a conjugate-
matched load impedance (ZL = RA − jXA), it follows from Equation (1.550)
that the time-average power transferred to the resistive part (RA) of the
receiver load is given by

PL =
1

2

|V |2

4RA
=

1

8RA
E2
oh

2ηp. (1.551)

Now the magnitude of the time-average power density (denoted S) incident
on an antenna in free space is given by

S =
1

2

E2
o

ηo
(1.552)

where ηo is the impedance of free space. Next, in terms of effective receive
aperture (denoted Aeff), the time-average received power at the conjugate-
matched load can be expressed as

PL = ηpSAeff = ηp
1

2

E2
o

ηo
Aeff. (1.553)

Now, setting Equation (1.551) equal to Equation (1.553) yields

h = 2

√
RA
ηo
Aeff (1.554)

which is a general expression for the effective height of an antenna assuming
a conjugate matched load. Solving Equation (1.554) for the effective aperture
gives

Aeff =
h2ηo
4RA

. (1.555)
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Note, in the literature, the electric antenna factor (denoted AFe) with units
of 1/m is often used to convert the incident electric field magnitude (Eo) to
received voltage magnitude, that is,

|V | = Eo
AFe

, (1.556)

and it follows that the electric antenna factor and effective antenna height are
related as

AFe =
1

h
. (1.557)

Additionally, in the literature, the magnetic antenna factor (denoted AFm)
with units of 1/m is often used to convert the incident magnetic field
magnitude (Ho) to received voltage magnitude, that is,

|V | = Ho

AFm
, (1.558)

and it follows that the magnetic antenna factor and magnetic effective antenna
height are related as

AFm =
1

hm
. (1.559)

To quantify the maximum effective area given by Equation (1.555), it
is necessary to determine the radiation resistance Rr, or equivalently the
input resistance RA, for the antenna of interest, as discussed below for the
short dipole and small loop antenna. Since an antenna can be treated as a
load, the radiation resistance can be determined by quantifying the time-
average radiated power (denoted Pave) or equivalently the time-average power
delivered to the antenna, and using the relation

Prad =
1

2
I2
oRr (1.560)

and solving for Rr as

Rr =
2Prad

I2
o

. (1.561)

Now the time-average radiated power can be found by integrating the time-
average power density over the volume surrounding the antenna as the range
distance tends to infinity, that is,

Prad =

∫ 2π

0

∫ π

0
r̂·1

2
Re[E×H∗]r2 sin θdθdφ. (1.562)
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Repeating the general far-field Equations (1.279) and (1.282), we have

EFF = −jωµe
−jkr

4πr
(θ̂fθ + φ̂fφ) (1.563)

HFF = −jk e
−jkr

4πr
(φ̂fθ − θ̂fφ). (1.564)

To compute the far-zone electric (EFF) and magnetic (HFF) fields, it is
necessary to determine the vector current moment f(θ, φ) for the antenna
of interest.

1.10.2 Short Dipole Receive Characteristics

For an electrically short dipole with total length l in free space, the current
distribution has a triangular shape [121]. The maximum effective height is
determined by integrating the current over the dipole physical length divided
by the terminal current Io [1, p. 31], and for symmetrical currents,

h =
1

Io

∫ l
2

− l
2

I(z′)dz′ =
2

Io

∫ l
2

0
I(z′)dz′. (1.565)

A triangular current distribution is a good approximation for short dipoles of
total length l, that is,

I(z′) =
2Io
l

[
l

2
− |z′|

]
. (1.566)

Substituting Equation (1.566) in Equation (1.565) and integrating, the
effective height is found to be equal to one-half the physical length of the
short dipole with triangular current, that is,

hdipole =
1

2
l. (1.567)

Thus, the open-circuit voltage induced in a short dipole is determined by
substituting Equation (1.567) into Equation (1.549) with the result (ignoring
the radiation pattern) ∣∣Vdipole

∣∣ =
1

2
Eol
√
ηp. (1.568)

For the short dipole, the far-zone electric and magnetic fields can be
determined from the vector current moment given by Equation (1.269), and
using Equation (1.566) for the triangular current distribution, it follows that

J(r′) = ẑI(z′)δ(x′)δ(y′) = ẑ
2Io
l

[
l

2
− |z′|

]
δ(x′)δ(y′). (1.569)
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Now, using Equations (1.236) and (1.241), it follows from Equation (1.269)
that for the triangular current distribution that the vector current moment is

f(θ, φ) =

∫
V
J(r′)ejkr̂·r′ dv′ = −θ̂2Io

l
sin θ

∫ l
2

− l
2

[
l

2
− |z′|

]
ejkz

′ cos θdz′

(1.570)
where the only nonradial component in this case is the θ̂ component. For an
electrically short dipole, the phase term in Equation (1.570) can be ignored,
and thus the vector current moment for the triangular current distribution is
determined to be

fθ(θ) = − l
2
Io sin θ. (1.571)

Using the above expressions given by Equations ( 1.562), (2.33), (1.564), and
(1.571) the radiated power is now determined as

Prad = 2π

[
ηk2

(4π)2

]
1

2

∫ π

0
|fθ|2 sin θdθ = π

[
120πk2

(4π)2

]
l2I2

o

4

∫ π

0
sin3 θdθ

(1.572)
and noting that ∫ π

0
sin3 θdθ =

4

3
, (1.573)

it follows that the power radiated in watts is

P
dipole, triangular current
rad =

5

2
(kl)2I2

o . (1.574)

Thus, the radiation resistance of a short dipole with triangular current
distribution is

Rdipole, triangular current
r =

2Prad

I2
o

= 5(kl)2. (1.575)

Substituting Equations (1.567) and (1.575) in Equation (1.555) yields the
effective area of a short dipole with triangular current as

A
dipole, triangular current
eff =

h2ηo
4RA

=
l2

4 120π

4 · 5(kl)2
=

3λ2

8π
≈ λ2

8
. (1.576)

1.10.3 Small Current Loop Receive Characteristics

Consider now an N -turn loop antenna of arbitrary shape with physical area
A illuminated by a uniform magnetic flux density with magnitude Bo =
µoHo, where µo is the permeability of free space and Ho is the magnitude
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of the magnetic field. The magnitude of the open-circuit voltage is readily
determined, according to the time rate of change of magnetic flux density
through the loop, using Faraday’s law in time-harmonic form as∣∣Vloop

∣∣ =
∣∣−jωANBo√ηp∣∣ = ωANµoHo

√
ηp. (1.577)

For a plane wave, Ho = Eo/ηo, where ηo is the impedance of free space, and
noting ωµo/ηo = k = 2π/λ, it follows that the open-circuit voltage of the
loop is ∣∣Vloop

∣∣ = AN
ωµo
ηo

Eo
√
ηp = ANkEo

√
ηp (1.578)

and so setting Equation (1.578) equal to Equation (1.549), the maximum
effective height of an N -turn loop antenna with physical area A is

hloop = ANk. (1.579)

In the case of an N -turn small loop antenna with uniform current, from
Equations (1.490) and (1.491), the far-zone fields are

HFF
z-loop, N turns(r) = −θ̂k2NIA

e−jkr

4πr
sin θ (1.580)

EFF
z-loop, N turns(r) = φ̂NIAωµk

e−jkr

4πr
sin θ. (1.581)

Substituting Equations (6.11) and (6.12) in Equation (1.562) and evaluating
the integral yields the radiated power

P
loop, uniform current
rad = 10(k2NA)2I2

o . (1.582)

Thus, the radiation resistance of an N -turn loop antenna with uniform current
distribution and physical area A is

Rloop, uniform current
r =

2Prad

I2
o

= 20(k2NA)2. (1.583)

Substituting Equations (1.589) and (1.583) in Equation (1.555) yields the
effective area of an N -turn small loop antenna with uniform current as

A
loop, uniform current
eff =

h2ηo
4RA

=
(ANk)2120π

4 · 20(k2NA)2
=

3λ2

8π
≈ λ2

8
, (1.584)

and this result is identical to the result obtained for the short dipole (see
Equation (1.576).
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1.10.4 Ferrite-Loaded Small Current Loop Receive
Characteristics

Consider now a ferrite-loaded N -turn loop antenna [20]with physical area A
illuminated by a uniform magnetic flux density with magnitude Bo = µoHo,
where µo is the permeability of free space and Ho is the magnitude of the
magnetic field in free space. The N -turn loop is assumed to be wound around
a uniform ferrite core with relative intrinsic permeability of the unbounded
ferrite material denoted as µri ferrite core. The relative effective permeability of
the ferrite core is denoted as µre ferrite core, which is related to µri ferrite core as

µre ferrite core =
µri ferrite core

1 +D(µri ferrite core − 1)
(1.585)

where D is the static demagnetization factor. The static demagnetization
factor is geometry dependent, and for an ellipsoidal core with length L and
radius a (where L >> a), D is given by

D =

(
2a

L

)2 [
ln

(
L

a

)
− 1

]
(1.586)

The presence of the ferrite material increases the amplitude of the incident
magnetic field and open-circuit voltage linearly by the relative effective
permeability of the ferrite core as [20]

Ho ferrite core = µre ferrite coreHo (1.587)

and from Equation (1.578)∣∣Vloop
∣∣ = ANkµre ferrite coreEo

√
ηp (1.588)

and so setting Equation (1.588) equal to Equation (1.549), the maximum
effective height of an N -turn ferrite loop antenna with physical area A is

hloop = ANkµre ferrite core. (1.589)

The radiation resistance of an N -turn ferrite-loaded loop antenna, with
uniform current distribution and physical area A, increases by the square of
the relative effective permeability of the ferrite and is given by

Rferrite loop, uniform current
r =

2Prad

I2
o

= 20(k2NA)2µ2
re ferrite core (1.590)

or in terms of loop circumference C using A = C2/(4π) as

Rferrite loop, uniform current
r = 20π2

(
C

λ

)4

N2µ2
re ferrite core. (1.591)
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1.11 Bandwidth and Quality Factor

1.11.1 Introduction

Bandwidth (B) is defined as the difference between the highest f2 and lowest
f1 operating frequencies, that is,

B = f2 − f1 = ∆f. (1.592)

The terms highest and lowest operating frequencies usually refer to the radar
or communications system meeting some desired performance metric, such
as radiation pattern, gain, beamwidth, sidelobe level, reflection coefficient or
VSWR, transmit power level, sensitivity, and so on. In specifying a bandwidth
value, sometimes the −3 dB point is used, and sometimes a different level,
say the −10 dB point, is used; hence, it is important to define what is meant
by bandwidth. Fractional bandwidth (FBW) is defined as the ratio of the
bandwidth to the arithmetic mean center frequency fc, that is,

FBW =
f2 − f1

fc
=

∆f

fc
. (1.593)

The percent bandwidth (PBW) is computed as

PBW = FBW× 100% =
∆f

fc
× 100%. (1.594)

The ratio bandwidth (RBW) is defined as the ratio of the highest operating
frequency to the lowest operating frequency, or

RBW =
f2

f1
. (1.595)

Antennas that have ultrawideband (or wideband) characteristics have numer-
ous applications [80–93]. To quantify the bandwidth, consider an ultrawide-
band system that requires an antenna to operate from 30 to 3000 MHz. It
follows that the bandwidth B = 2700 MHz, the FBW = (3000− 30)/1515 =
1.96, the PBW = 196%, and the RBW = 3000 / 30 = 100. In the limit as
the bandwidth grows linearly, the FBW approaches 2, the PBW approaches
200%, and the RBW grows linearly. Each of the bandwidth definitions are
useful and are applied as appropriate to the desired application.

Bandwidth is important in radar systems requiring fine range resolution.
The time t it takes for an electromagnetic wave to travel a range distance r
between two points in free space is fundamentally related to the speed of light
c (measured value c = 2.99792458× 108 m/s ≈ 3.0× 108 m/s) as

t =
r

c
. (1.596)
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The wavelength of an electromagnetic wave in free space is expressed as

λ =
c

f
(1.597)

where f is the frequency of the wave. In a radar system application, the range
resolution ∆r in free space is given in terms of the radar pulse width τ as [47]

∆r =
cτ

2
. (1.598)

Since the bandwidth of the radar pulse is inversely proportional to the pulse
width, that is,

B =
1

τ
(1.599)

it follows that the range resolution can also be expressed as

∆r =
c

2B
. (1.600)

For example, a 1 µs pulse width has a bandwidth of 1 MHz; thus, the range
resolution is computed from Equation (1.600) to be 150 m. Similarly, a 10 ns
pulse width has a bandwidth of 100 MHz, which corresponds to a range
resolution of 1.5 m. In the case of an ultrawideband pulse with a bandwidth
on the order of gigahertz, the range resolution is on the order of centimeters
and Equation (1.600) can be written conveniently as

∆rcm =
30

2BGHz

. (1.601)

Thus, a radar with a pulse width of 1 ns, which has a bandwidth of 1 GHz,
will have a range resolution of

∆r =
30 cm

2
= 15 cm ≈ 6 inches. (1.602)

The terms ultrawideband[80-93] or wideband are used to refer to an antenna
that covers a large frequency range. As there is no standard definition for
ultrawideband antennas, we simply define that an ultrawideband antenna will
have a PBW typically 25% or more or a RBW of 1.25 or more as described in
the 2007 IEEE Standard for Ultrawideband Radar Definitions [80]. Over this
bandwidth, the antenna will have desired radiation characteristics and will not
have any significant amplitude degradation for the application of interest.

Ultrawideband array performance requirements are highly dependent on
the application [81]. For example, in a receive-only application with a strong
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signal, it might only be necessary to provide an antenna with a reflection
coefficient on the order of−6 dB or better with sufficient pattern gain to close
the link, but for a transmit application, the reflection coefficient requirement
might be on the order of −10 dB or better to avoid significant reflected
signal toward the transmitter and significant loss in effective isotropic radiated
power. For ground-penetrating radar or impulse radar applications [81, 82],
since targets are at very close range (1 to 2 m), it is important to design
the ultrawideband antenna with sufficient resistive attenuation to avoid signal
ringing effects [83–85].

The above definitions of bandwidth do not take into account the size of
the antenna aperture, which affects the time delay for transmitted and received
signals. For a transmitted or incident wavefront with either a pulsed, noise,
or other wideband spectrum, the phased array design and analysis must take
into account the time delay as will be described in the next chapter. The next
section quantifies bandwidth in terms of the antenna input impedance and
quality factor Q.

1.11.2 Derivation of Q Factor from Input Impedance

The impedance bandwidth for an allowed value of VSWR of an antenna can
be computed from a quantity known as the quality factor that depends on the
reactance and radian frequency derivatives of the resistance and reactance.
The so-called quality factor (denoted Q(ω) for an antenna tuned to have zero
reactance at the radian frequency ω is defined for example by Yaghjian and
Best [99] as

Q(ω) =
ω|W (ω)|
PA(ω)

(1.603)

where W (ω) is the internal energy and PA is the total power accepted by the
antenna. Assume that the antenna has an input impedance expressed as

ZA(ω) = RA(ω) + jXA(ω) (1.604)

whereRA(ω) andXA(ω) are the antenna input resistance and input reactance,
respectively. Tuning can be achieved at radian frequency ωo with a series
reactance, denoted Xs, for either a series inductor Ls or series capacitor Cs to
make the total reactance of an antenna equal to zero at a radian frequency ωo.
That is, the total reactance of the antenna plus series reactance is expressed
as,

XT (ω) = XA(ω) +Xs(ω) (1.605)

where

Xs(ω) =

{
ωLs if X(ωo) < 0
− 1
ωCs

if X(ωo) > 0
(1.606)
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Yaghjian and Best assume that after the antenna has been tuned at frequency
ωo, then the antenna is connected to a transmission line with characteristic
impedance equal to the antenna’s tuned input resistance (denoted Ro). Taking
the derivative of XT (ω) with respect to radian frequency yields

dXT (ω)

dω
=

{
dXA(ω)
dω + Ls if X(ωo) < 0

dXA(ω)
dω + 1

ω2Cs
if X(ωo) > 0

(1.607)

which can be written in simplifed form as

dXT (ω)

dω
=
dXA(ω)

dω
+
|X(ω)|
ω

(1.608)

Now, the power accepted by the antenna is given by

PA(ω) =
1

2
Re[Vo(ω)I∗o (ω)] (1.609)

where ∗ means complex conjugate. The power accepted by the antenna is also
expressed as the sum of the radiated power and any power lost due to the
material of the antenna as

PA(ω) = Pradiated(ω) + Ploss(ω) (1.610)

The radiated power is quantified by

Pradiated(ω) =
1

2
|Io(ω)|2Rr(ω) (1.611)

where Rr(ω) is defined as the radiation resistance. The power loss due to any
lossy material of the antenna is determined as

Ploss(ω) =
1

2
|Io(ω)|2Rloss(ω) (1.612)

where Rloss is defined as the loss resistance. Then, applying Maxwell’s
equations in a lengthy derivation by Yaghjian and Best [99, Equation 96],
an accurate approximate expression for the antenna quality factor (denoted by
the authors as Qz) is given by

QZ =
ω

2R(ω)

√[
dR(ω)

dω

]2

+

[
dX(ω)

dω
+

∣∣∣∣X(ω)

ω

∣∣∣∣]2

(1.613)

Furthermore, Yaghjian and Best have shown that another accurate approxi-
mate quality factorQB is expressed in terms of allowed VSWR and fractional
bandwidth (FBW) as

QB =
VSWR-1

FBW
√

VSWR
(1.614)
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~
Linear dipole

Figure 1.35 Center-fed linear dipole antenna.
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Figure 1.36 Moment method simulated input impedance versus frequency (50 MHz
to 2000 MHz) for a linear dipole with overall length 1 meter and wire
diameter 1 mm.

Yaghjian and Best have shown that the approximate relations given by Qz
and QB are in very good agreement with the exact calculation of Q, that
is Qz = QB = Q for engineering purposes, thus, solving for the fractional
bandwidth in terms of Q and allowed VSWR yields

FBW =
f2 − f1

fc
=

VSWR-1
Q
√

VSWR
(1.615)

1.11.3 Example: Q Factor for a Dipole Antenna

As in the paper by Yaghjian and Best [99], consider now an electromagnetic
simulation of a center-fed linear dipole antenna (Figure 1.35) having total wire
length 1m with a 1 mm wire diameter. This simulation is performed here using
the commercial FEKO software [117] with a method of moments solver – the
moment method technique is described in the next chapter. Figure 1.36 shows
the simulated complex input impedance (real and imaginary components) over
the frequency band 50 MHz to 2000 MHz. This antenna is one wavelength
long at 300 MHz and is thus one-half wavelength long at 150 MHz. Resonance



Electromagnetics and Antenna Theory 109

50 150 250 350 450
Frequency (MHz)

-2000

-1000

0

1000

2000

3000

In
pu

t I
m

pe
da

nc
e 

(o
hm

s)

Real
Imaginary

Dipole

Figure 1.37 Moment method simulated input impedance versus frequency (50 MHz
to 450 MHz) for a linear dipole with overall length 1 meter and wire
diameter 1 mm.

occurs at 13 frequencies where the imaginary component is zero. The first
resonance occurs at 144 MHz, which can be seen more clearly in Figure 1.37,
and this resonance is referred to as a natural resonance where the slope
of the imaginary component is positive. The second resonance occurs at
272 MHz where the slope of the imaginary component is negative and this
type of resonance is referred to as antiresonant. At each frequency where
the natural resonance with positive slope in the imaginary component occurs,
the corresponding real (resistive) component is low (starting at 72 ohms at
the first natural resonance and increasing gradually to about 200 ohms at
high frequencies). At each frequency where the antiresonance with negative
slope in the imaginary component occurs, the corresponding real (resistive)
component is very high (starting at about 2500 ohms at the first anti-resonance
and reducing gradually to about 1000 ohms for the antiresonance just below
1500 MHz . Taking 72 ohms as the reference impedance, the magnitude of
the reflection coefficient in dB is plotted versus frequency in Figure 1.38.
The reflection coefficient has a minimum at approximately 144 MHz. Since
the reflection coefficient magnitude is very low, the corresponding VSWR at
144 MHz is approximately equal to 1 (Figure 1.39). Figure 1.40 shows the
quality factor QZ computed using Equation (1.613) over the band 50 MHz
to 450 MHz. The derivatives for the column vectors of real and imaginary
impedances in Equation (1.613) were computed by utilizing the MATLABTM

difference function [diff()]. Using percent bandwidth PBW equal to 100×
FBW, Figure 1.41 shows the percent bandwidth achieved by Equation (1.615)
assuming allowed VSWR values equal to 1.5, 2, and 3. The peak value of
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Figure 1.38 Moment method simulated reflection coefficient versus frequency
(130 MHz to 160 MHz) for a linear dipole with overall length 1 meter
and wire diameter 1 mm. The reference impedance is 72 ohms
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Figure 1.39 Moment method simulated VSWR versus frequency (130 MHz to 160
MHz) for a linear dipole with overall length 1 meter and wire diameter
1 mm. The reference impedance is 72 ohms.

PBW occurs near the first antiresonance, where the corresponding resistive
component of input impedance is very high. If we assume that the antenna
would be driven with a transmission line with a low characteristic impedance,
say 72 ohms, then the frequency at the first natural resonance would be used as
the center frequency. We can now compare the percent bandwidth observed in
the method of moments simulated VSWR versus frequency plot in Figure 1.39
with the percent bandwidth computed using Equation (1.615). The results are
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Figure 1.40 Quality factor QZ calculated from moment method simulated input
impedance versus frequency (50 MHz to 450 MHz) for a linear dipole
with overall length 1 meter and wire diameter 1 mm.
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Figure 1.41 Calculated percent bandwidth based on quality factor QZ and assumed
values of VSWR (1.5, 2, and 3) versus operating frequency (50 MHz
to 450 MHz) for a linear dipole with overall length 1 meter and wire
diameter 1 mm. The quality factor was calculated from the moment
method simulated input impedance.

tabulated in Table 1.2 and good agreement between the bandwidth calculated
from the simulated input impedance data using Equation (1.613) and directly
from the reflection coefficient.
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Feed
~

Loop antenna

Figure 1.42 Circular loop antenna with single feed point.

1.11.4 Example: Q Factor for a Circular Loop Antenna

Consider now an electromagnetic simulation of a circular loop antenna with
a single feed point as shown in Figure 1.42. The loop antenna is assumed
to have a circumference equal to 1m and has a 1 mm wire diameter as in
the article by Yaghjian and Best [99]. Again, the simulation is performed
here using the commercial FEKO software with a method of moments solver.
Figure 1.43 shows the simulated complex input impedance up to 2 GHz.
Similar to the dipole, resonance occurs at 13 frequencies where the imaginary
component is zero. The first resonance occurs at 144 MHz, which can be
seen more clearly in the expanded scale plot in Figure 1.44, but unlike the
dipole this first resonance is an antiresonance where the slope of the imaginary
component is negative. The second resonance occurs at 317 MHz and it is a
natural resonance where the slope of the imaginary component is positive.
At each frequency where the natural resonance occurs, the corresponding
real (resistive) component is low (starting at 140 ohms at the first natural
resonance and increasing gradually to about 266 ohms at the high frequencies

Table 1.3
Comparison of quality factor computed from Equation (1.613) and from the method of
moments simulation for a 1m linear wire dipole with 1 mm wire diameter operating at

a 144 MHz center frequency.

Percent Bandwidth for Wire Dipole
Allowed VSWR QZ , Eq. (1.613) FEKO (Method of Moments)

1.5 4.9% 4.9%
2.0 8.5% 9.0%
3.0 14.0% 14.6%
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Figure 1.43 Moment method simulated input impedance versus frequency (50 MHz
to 2000 MHz) for a circular wire loop antenna with circumference 1 meter
and wire diameter 1 mm.
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Figure 1.44 Moment method simulated input impedance versus frequency (50 MHz
to 450 MHz) for a circular wire loop antenna with circumference 1 meter
and wire diameter 1 mm.

shown). At each frequency where the antiresonance occurs, the corresponding
real (resistive) component is very high (starting on the order of 40,000 ohms
at the first anti-resonance and reducing quickly down to the range of about
500 to 1000 ohms for the antiresonances below 2000 MHz. Assume now
that the loop antenna is driven with a transmission line with a characteristic
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Figure 1.45 Moment method simulated reflection coefficient versus frequency
(270 MHz to 360 MHz) for a circular wire loop antenna with
circumference 1 meter and wire diameter 1 mm. The reference
impedance is 140 ohms

impedance equal to 140 ohms corresponding to the input resistance at the
first natural resonance. Taking 140 ohms as the reference impedance, the
magnitude of the reflection coefficient in dB is plotted versus frequency
in Figure 1.45. The reflection coefficient has a minimum at approximately
317 MHz. The corresponding VSWR is shown in Figure 1.46. Figure 1.47
shows the quality factor QZ computed using Equation (1.613) over the
band 50 MHz to 450 MHz. Figure 1.48 shows the percent bandwidth
achieved by Equation (1.615) assuming allowed VSWR values equal to 1.5,
2, and 3. For this loop antenna, the peak value of PBW occurs near the
first natural resonance. The percent bandwidth observed in the method of
moments simulated VSWR versus frequency plot in Figure 1.46 with the
percent bandwidth computed using Equation (1.615). The results are tabulated
in Table 1.3 and good agreement between the bandwidth calculated from the
simulated input impedance data using Equation (1.613) and directly from the
reflection coefficient.
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Figure 1.46 Moment method simulated VSWR versus frequency (270 MHz to 360
MHz) for a circular wire loop antenna with circumference 1 meter and
wire diameter 1 mm. The reference impedance is 140 ohms.
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Figure 1.47 Quality factor QZ calculated from moment method simulated input
impedance versus frequency (50 MHz to 450 MHz) for a circular wire
loop antenna with circumference 1 meter and wire diameter 1 mm.

1.12 Antenna Directivity

The radiation intensity of an antenna can be computed from the antenna
radiation pattern, denoted P (θ, φ), as

U(θ, φ) = |P (θ, φ)|2 = P (θ, φ)P ∗(θ, φ) (1.616)
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Figure 1.48 Calculated percent bandwidth based on quality factor QZ and assumed
values of VSWR (1.5, 2, and 3) versus operating frequency (50 MHz
to 450 MHz) for a circular wire loop antenna with circumference 1 meter
and wire diameter 1 mm. The quality factor was calculated from the
moment method simulated input impedance.

where ∗ denotes conjugate. The directivity of an antenna is a function of the
radiation intensity normalized by the average radiation intensity as

D(θ, φ) =
U(θ, φ)

Uave
(1.617)

where

Uave =
1

4π

∫ π

θ=0

∫ 2π

φ=0
U(θ, φ) sin θdθdφ. (1.618)

Table 1.4
Comparison of quality factor computed from Equation (1.613) and from the method of

moments simulation for a circular wire loop antenna with 1m circumference and
1 mm wire diameter operating at a 317 MHz center frequency.

Percent Bandwidth for Wire Loop
Allowed VSWR QZ , Eq. (1.613) FEKO (Method of Moments)

1.5 6.0% 6.0%
2.0 10.3% 10.4%
3.0 16.9% 17.7%
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The antenna directivity,D(θ, φ), relative to an isotropic radiator, depends only
on the shape of the radiation pattern of the antenna and does not depend on
power delivered to the antenna. The antenna directivity in decibels relative to
an isotropic radiator (dBi) is computed by evaluating 10 log10D(θ, φ).

1.12.1 Hertzian Dipole or Electrically Small Loop Directivity
Pattern

Consider now the far-field radiation pattern of a z-directed Hertzian (elec-
trically short) dipole antenna (refer to Figure 1.25), which has a θ electric
field component that varies in observation angle only as sin θ according
to Equation (1.488). Now for the Hertzian dipole, since U(θ) = | sin θ|2,
it follows from Equation (1.618) that Uave = 2

3 . Substituting this value of
average radiation intensity into Equation (1.617), it follows that the angular
dependence of the Hertzian dipole directivity is expressed as

D(θ) =
3

2
| sin θ|2 (1.619)

The electrically-short dipole normalized 3D radiation pattern in decibels is
shown in Figure 1.49, and it is observed that the pattern is a figure of
revolution about the z axis, with a null along the z axis. From Equation (1.619)
the half-power (−3 dB) beamwidth is 90◦. A polar diagram of the absolute

Relative Gain (dB) z

x
y

Figure 1.49 3D radiation pattern for a z-directed Hertzian dipole in free space.

directivity pattern (θ component) as a function of θ is shown in Figure 1.50,
where the peak directivity of 1.76 dBi is observed to occur at θ = 90◦.
An electrically small loop antenna (Figure 1.25) has the same sin θ angular



118 Electromagnetics and Antenna Technology

dB

θ

Hertzian
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Figure 1.50 Polar directivity pattern Dθ for a z-directed Hertzian dipole antenna.

dependence, so it has the same 3D radiation pattern and the polar directivity
patterns as in Figures 1.49 and 1.50, respectively.

1.12.2 Crossed Hertzian Dipoles (Turnstile Antenna) Directivity
Pattern

Crossed dipole antennas have a number of applications including operation
for independent dual linear polarization, circular polarization, and nearly
omnidirectional coverage with horizontal polarization depending on the phase
relation between the dipoles. Consider the crossed Hertzian (short) dipoles
in the xy-plane in free space as shown in Figure 1.51. As an example of

x

z

yφ

θ

Figure 1.51 Crossed Hertzian (short) dipole antennas in free space.

circular polarization on transmit, let the y-polarized dipole be transmitting
with a −90◦ phase shift with respect to the x-polarized dipole. This antenna
configuration is referred to as a turnstile antenna [118]. By the right-hand
rule, this quadrature phase relation between the two dipoles generates peak
RHCP gain at θ = 0◦ and peak LHCP gain at θ = 180◦. Figure 1.52 shows a
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polar diagram of the moment method simulated circularly polarized elevation
radiation patterns for these crossed-dipole antennas in free space. These

θ

RHCP

LHCP

Figure 1.52 Simulated circularly polarized elevation radiation patterns for crossed-
dipole antennas phased for RHCP in the upper hemisphere.

radiation patterns are a figure of revolution about the z axis. For example,
the LHCP directivity pattern in three dimensions is shown in Figure 1.53.
Peak RHCP directivity 1.76 dBi and half-power beamwidth 131◦ occurs in
the forward hemisphere at θ = 0◦. Figure 1.54 shows a polar diagram of the
corresponding linearly polarized elevation radiation patterns, and again these
patterns are a figure of revolution. The φ̂ polarized component has a constant,
omnidirectional, gain at the level of−1.24 dBi as a function of elevation angle
θ. As expected for the linearly polarized component, this constant value of
−1.24 dBi is 3 dB below the peak circularly polarized directivity. The linearly
polarized θ̂ component has the same radiation pattern (same peak directivity
and same beamwidth) as in Figure 1.50

1.13 Antenna Gain, Realized Gain, and Transmit
Power

The antenna directivity discussed in the previous section does not take into
account any losses in the antenna and its surroundings. The terms antenna
gain and antenna realized gain are used to take into account both the radiation
pattern (directivity) as well as certain losses as summarized in Figure 1.55 and
is discussed below.
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Figure 1.53 Simulated 3D LHCP radiation pattern for crossed-dipole antennas in free
space.

Eφ

Eθ

θ

Figure 1.54 Simulated linearly polarized elevation radiation patterns for RHCP
crossed-dipole antennas in free space.

Terminology in the literature regarding antenna gain and power can be
vague in some instances, so a brief discussion here is appropriate. Transmitter
power, transmit power, available power, power accepted by the antenna, input
power, power input to the antenna, and power radiated by the antenna are
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Figure 1.55 Comparisons of the relative magnitude for antenna directivity, gain, and
realized gain with respect to an isotropic antenna.

terms found in the literature. The terms directive gain (replaced by the term
directivity), power gain, effective gain, gain loss due to impedance mismatch,
gain loss due to polarization mismatch, gain loss due to mutual coupling, and
gain loss due to power absorbed by the antenna or surrounding structures
are found in the literature. In antenna electromagnetic modeling analysis or
measurements, it is important to clearly define these terms.

Consider now a transmission line with a transmitter source of a given
power level attached at one end of the transmission line. At the other end of
this transmission line, which will be the attachment point to the transmitting
antenna, a power meter (matched to the transmission line) is attached and
registers a power level of Po watts. Thus, the amount of incident power that is
connected to the antenna is accurately known. Now the transmitting antenna
element can be mismatched to the transmission line, resulting in reflected
power into the transmission line (assumed to be terminated in a resistive load
matched to the characteristic impedance of the transmission line) that will be
completely absorbed back at the transmitting source location. This reflected
power reduces the realized antenna gain and can be quantified and referred
to as impedance mismatch loss, transmission mismatch loss, or gain loss.
In the case where there are antennas that surround the transmitting antenna
(forming an array of antennas), there will be mutual coupling between array
elements and, as discussed in Chapter 2, some of the power radiated by the
transmit element will be received and consumed (additional power loss or
additional gain loss) by the surrounding array elements. The net effect of the
gain loss mechanisms will be a reduced transmitted power density (watts per
meter squared) at a near-field or far-field position from the array.

The antenna gain, relative to an isotropic radiator with the same input
power, can be expressed as

G(θ, φ) =
4πU(θ, φ)

Pin
(1.620)
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where Pin is the input power, that is, the power at the end of the transmission
line that will be connected to the antenna. As a result of losses from
antenna impedance mismatch and losses attributed to components between the
transmitter and the antenna terminals, the power transmitted by the antenna is
less than the input power. For electrically small antenna elements, the finite
resistive loss of the antenna element itself can significantly reduce both the
efficiency and gain of the antenna. The antenna gain in dBi is computed by
evaluating 10 log10G(θ, φ).

Assuming that the antenna, with input impedance Zin, is connected to
a transmission line with characteristic impedance Zo, the voltage reflection
coefficient Γ is given by

Γ =
Zin − Zo
Zin + Zo

. (1.621)

The reflection coefficient in dB is computed as

ΓdB = 20 log10 Γ. (1.622)

The reflection coefficient in dB is also referred to in the literature as return loss
(a reflection coefficient of zero is the same as a minus infinity dB return loss or
a perfect match usually to 50 ohms). In antenna designs, it is often desirable to
provide an impedance matching network to improve the return loss [71]. The
loss in antenna gain resulting from antenna input impedance mismatch alone
is computed from the impedance mismatch efficiency, denoted η Z mismatch
(same as transmission mismatch efficiency given by Equation (1.21)),

η Z mismatch = 1− |Γ|2. (1.623)

By using Equation (1.623), the mismatch loss ML (or gain loss) in dB as a
positive value is computed as

MLdB = −10 log10 η Z mismatch. (1.624)

The radiation loss efficiency factor ηL of an antenna can be calculated
as follows [23, pp. 43-48]. The radiation loss efficiency of an antenna is
expressed as

ηL = Rr/RA (1.625)

where Rr is the radiation resistance and

RA = Rr +Rohmic (1.626)

is the total input resistance of the antenna. For example, the ohmic resistance
for an electrically short dipole of length L and diameter d is given by

Rohmic =
LRs
3πd

(1.627)
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where
Rs =

√
πfµ/σ (1.628)

is the surface resistance of the dipole, which depends on the frequency f ,
permeability µ, and electrical conductivity σ of the dipole material. Thus,
since the ohmic resistance is inversely proportional to the dipole diameter, the
efficiency can be increased by using a larger-diameter dipole.

The realized antenna gain, denoted as Grealized, takes account of
impedance mismatch and efficiency loss. The realized antenna gain and
directivity are related by the following expression

Grealized(θ, φ) = D(θ, φ)ηLη Z mismatch (1.629)

where ηL is the antenna efficiency loss factor, which includes resistive losses
in the antenna. For a 100% efficient (lossless) antenna with ηL = 1, and with
no mismatch loss, the gain is equal to the directivity. For a transmitting
antenna, the effective isotropic radiated power (EIRP(θ, φ)) is equal to the
product of the power incident on the antenna Po and the realized gain
Grealized(θ, φ), that is

EIRP(θ, φ) = PoGrealized(θ, φ). (1.630)

Alternately, if the impedance mismatch loss is included in the power budget,
then the transmit power accepted by the antenna is denoted as Pt and then the
EIRP is equal to the following product

EIRP(θ, φ) = PtGt(θ, φ) (1.631)

where Gt(θ, φ) is the gain of the transmit antenna, which includes any
resistive losses associated with the antenna and its surroundings.

The far-zone power density Pd (with units of W/m2) at a distance r from
the aperture (one-way path) is given by

Pd =
PtGt
4πr2

. (1.632)

Based on a receive antenna’s maximum effective aperture, denoted Aem, the
aperture collects incident power density and converts it to an output power.
Thus, the received power Pr of an antenna aperture can be expressed as

Pr = PdAem. (1.633)

Furthermore, the receive antenna gain is expressed as

Gr = 4πAem/λ
2, (1.634)
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and solving for Aem yields

Aem = Grλ
2/(4π). (1.635)

Thus, it follows that

Pr =
PtGtGrλ

2

(4πr)2
. (1.636)

Equation (1.636) can be rearranged to express the mutual coupling power ratio
(Pr/Pt) between two antennas as

Pr
Pt

=
GtGrλ

2

(4πr)2
. (1.637)

1.14 Summary

The theory given in this chapter can be used to gain some basic insight into
the fundamental radiation properties of antennas. In the case of an array of
antennas, the radiation properties of one array antenna element have an effect
on the surrounding array antenna elements, and thus the interaction between
the array antenna elements must be taken into account in any detailed analysis.
Some methods for computing the performance of phased array antennas
taking account of mutual coupling effects are discussed in Chapter 2.
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2
Phased Array Antennas

2.1 Introduction

In Chapter 1, electromagnetic theory for antennas was reviewed in detail. In
this chapter, the subject of phased array antennas [1–60] is briefly reviewed.
Development of phased array radar technology is described by Fenn et al.
[24]. The concept of a phased array and early experiments were presented
over 100 years ago in a 1909 Nobel Prize lecture by Braun [54]. A history of
phased arrays has been reviewed by Mailloux [55]. Delaney [56] has reviewed
the development and deployment of operational phased array radars, with an
emphasis on achieving a goal of a solid state phased array. Solid-state phased
arrays are now being utilized in many applications as described by Brookner
[57]. Herd and Conway [58] have described the evolution of low-cost solid-
state phased arrays that utilize high-volume commercial manufacturing and
packaging technologies that implement a modern tile array architecture.
Millimeter-wave phased arrays have been mass produced for automotive radar
systems for collision avoidance [59]. Millimeter-wave phased arrays are being
investigated for fifth generation (5G) communications systems for high-data-
rate applications [60-62].

This chapter begins with basic phased array theory in Section 2.2. To
take into account the simulated effects of array mutual coupling, equivalence
principles (Section 2.3), the reciprocity theorem (Section 2.4) and reaction
integral equation (Section 2.5) are reviewed, from which the method of
moments (Section 2.6) is derived. The method of moments is used in
many of the electromagnetic simulations of antennas presented in this book.
Section 2.7 provides examples of broadside and endfire linear arrays of
Hertzian (short) dipoles. An example of mutual coupling effects on the
embedded element pattern in a two-dimensional array of linear dipoles is
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shown in Section 2.8. For wide-angle scanning, swept-back dipole antenna
elements are used in a number of phased array applications. Swept-back
dipole array measurements and simulations are presented in Section 2.9.
Simulations of the scanned radiation patterns for a linear array of rectangular
waveguides are presented in Section 2.10. Section 2.11 has a summary.

2.2 Phased Array Basics

2.2.1 Introduction

Antenna systems are often required to have apertures with significant
radiated power levels, sensitive receive capability, rapid beam scanning, wide
bandwidth, and durability. Phased array antennas have been deployed on many
ground based systems, automobiles, ships, aircraft, and satellites. Phased
array antenna systems with just a few antenna elements or with hundreds or
thousands of individual radiating antenna elements can provide electronically
controlled beam agility and graceful degradation. Antenna arrays can be used
to adaptively suppress interference [63–78], such as jamming, and to suppress
radar clutter (background scatter). Antennas that can operate with desired
performance characteristics over very wide bandwidths are desirable in many
applications. An antenna design that performs well over very wide bandwidths
avoids the situation of having to develop multiple, different antenna designs
to cover multiple bands spanning a large frequency range.

Figure 2.1 depicts a phased array aperture with multiple antenna
elements (represented as dots) that produces a narrow-beam gain radiation
pattern that can be electronically scanned over some field of view. In
general, the phased array aperture can be composed of radiating and/or
receiving antenna elements that are located on a planar or conformal surface.
Figure 2.2 shows an N -element two-dimensional planar phased array with
a beamforming network that produces a phase coherent combined main

Phased array

Figure 2.1 Phased array aperture radiating from a general surface that produces an
electronically steerable narrow-beam radiation pattern.
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channel. In this diagram the antenna array is located on a rectangular ground
plane. Depending on required gain, beamwidth, sidelobe levels and other
requirements, the antenna elements can be located in a periodic lattice,
either rectangular or triangular, or they could be sparsely or randomly
positioned on the ground plane. The amplitude and phase of RF signals to
and from the antenna elements are electronically adjusted using complex
element weighting as W = (W1,W2, · · · ,WN )T , where the superscript T
means transpose. The combiner is used to provide a phase coherent summing
junction with either uniform amplitude combining or with a fixed taper. The
combiner is typically an RF component, although if the element signals are
digitized the combiner can be accomplished by digital summation of the data.
When the antenna element signals are coherently combined, the resulting
radiation pattern will have a main lobe scanned to some desired angle and
there will be a number of sidelobes formed away from the main beam. An
adaptive beamformer as shown can be added to this architecture if desired
for providing adaptive sidelobe cancellation of interference. In this case,
M auxiliary antenna element channels are provided with complex adaptive
nulling weights denoted asw = (w1, w2, · · · , wM )T . These auxiliary antenna
elements can be separate antennas or they could use signals coupled from the

Output

Auxiliary antenna 
element channels

Adaptive
beamformer

Main channel

Adaptive
weights

Electronic
Scanning

Element
weights

Antenna elements Phased
array aperture

Sidelobes

D

x

z
Ground plane     

Scanned array radiation patternMain lobe

W1 W2 W3 WN

y

w1 w3 wMw2

Combiner

Combiner

Figure 2.2 Two-dimensional phased array antenna aperture with a beamforming
network that electronically scans a narrow-beam radiation pattern.
Auxiliary antenna elements and adaptive weights provide adaptive nulling
capability.
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Figure 2.3 Phased array antenna aperture in the spherical coordinate system.

antenna elements used in the phased array aperture.
A sketch of a phased array antenna aperture in spherical coordinates is

shown in Figure 2.3. In this diagram, the aperture of the array is oriented
parallel to the yz plane. As such, the positive z axis could point to zenith
and the angle φ could represent azimuth. The angle θ = 90◦ would be taken
as the horizontal plane, and the angle 90◦ − θ would then be the elevation
angle with respect to the horizon. In the far field, depending on the array
element design and antenna orientation, one or both of two orthogonal
electric-field components (Eθ, Eφ) can be produced, and in the near field,
a radial component of the electric field (denoted Er) can also be generated
or received. If the array elements are, for example, linear dipoles oriented in
the ẑ direction, then only an Eθ far-field component would be transmitted or
received. If the linear dipole elements are tilted away from the ẑ direction, then
in general both Eθ and Eφ far-field components will be produced. Besides
dipoles, many other types of antennas such as monopoles, waveguides, slots,
horns, patches, log periodics, spirals, helix antennas, Yagi-Uda antennas,
biconical antennas, reflector antennas, and lenses, have been used in phased
array applications [4].

Some of the key parameters that are involved in phased array antenna
design are bandwidth, polarization, scan sector, beamwidth, antenna gain,
reflection coefficient, and peak and average sidelobe levels. Additional design
parameters involve volume, mass, power, thermal/cooling, complexity, and
cost for the antenna array system, which need to be addressed for each
unique application. Transmit/receive (T/R) modules containing phase shifters
to steer the main beam, amplifiers (power amplifiers for transmit and low-
noise amplifiers for receive) to provide the desired signal level and noise
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figure, and attenuators for generating low sidelobe radiation patterns are used
in many phased arrays.

Electronic scanning of the array antenna main beam is effected by means
of phase shifters and/or time delays connected to individual array elements
or subarrays (groups) of elements. A phased array can be used to transmit
or receive a focused electromagnetic wavefront for plane waves or spherical
waves as discussed in the next section.

2.2.2 Wavefront Basics

Consider now an electromagnetic wavefront incident on an array of antennas.
The source generating the wavefront can be located at close range, producing a
spherical wave, or the source could be located sufficiently far from the antenna
so that a plane wave is incident upon the array. In this book, we will be dealing
primarily with the plane wave, far-field source case, such as for a radar antenna
with a target at a range distance of many kilometers. An example of a source
producing a spherical wave impinging on an array could be the case of a close-
range target in a ground-penetrating radar application or a source of near-field
scattering or interference.

The contrast between plane wave incidence and spherical wave inci-
dence [15, 68] is depicted in Figure 2.4. The amount of wavefront dispersion
(time delay multiplied by bandwidth) observed by the antenna is a function of
the antenna length, angle of incidence, and bandwidth. Dispersion can also
be introduced by reflections and other frequency-dependent characteristics
within the antenna beamformer or by dispersive materials used in the
antenna construction. Wavefront dispersion can cause significant signal
distortion unless time-delay weighting across the array antenna is used.
Interference wavefront dispersion is an effect that can limit the depth of null
(or cancellation) achieved by an adaptive antenna [65–67] To compensate
for wavefront dispersion, the adaptive array process can include multiple
auxiliary antenna element channels and tapped-delay line weighting. In the
case of a pulsed radar system, if the pulse width is narrower than the amount
of time delay across the aperture, then to properly transmit or receive the radar
waveform, time delay must be provided in the beamformer. Basic time delay
or dispersion models for spherical wave incidence and plane wave incidence
can be made by considering only the wavefront time delay or dispersion
observed by the end points of an array [68].

Consider first a plane wave arriving from infinity and a linear array of
length L as shown in Figure 2.4(a). The far-field time delay ∆τFF of the
wavefront across the array is given by

∆τFF =
L

c
cos θi =

L

c
βFF (2.1)
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Figure 2.4 Geometry for far-field and near-field wave incidence for a linear array. (a)
Plane wavefront, and (b) spherical wavefront.

where
βFF = cos θi (2.2)

will be referred to as the far-field dispersion multiplier, c is the speed of light,
and θi is the angle of incidence with respect to the axis of the array. Note
that the time delay is maximum for endfire incidence (θi = 0) and is zero for
broadside incidence (θi = π/2). The dispersion for this case is denoted γFF
and is computed according to the product of bandwidth and time delay as

γFF = B∆τFF =
BL

c
cos θi =

BL

c
βFF (2.3)

where B is the waveform bandwidth.
Next, consider the same array and now a point source, at range r =

ri and angle θ = θi, which produces a spherical wavefront as depicted in
Figure 2.4(b). The near-field time delay ∆τNF is given by

∆τNF =
L

c
βNF (2.4)
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where the quantity βNF denotes the near-field dispersion multiplier, which,
from the difference between the path lengths ri1 and riN , is expressed as

βNF =

√
α2 + α cos θi +

1

4
−
√
α2 − α cos θi +

1

4
(2.5)

where
α =

F

L
(2.6)

and where F is the focal length of the array such that the source range is equal
to the focal distance, that is, ri = F . The near-field dispersion, denoted γNF ,
is given by

γNF = B∆τNF =
BL

c
βNF (2.7)

where, again, the quantity βNF denotes the near-field time-delay or dispersion
multiplier in this case. In comparing Equation (2.3) and Equation (2.7),
it is seen that the far-field and near-field dispersions differ only by their
respective multipliers βFF and βNF . Figure 2.5 shows a plot of βFF and
βNF versus angle of incidence for values of α = 0.2 to 2 (i.e., focal lengths
0.2L to 2L). From this figure, it is seen that the near-field dispersion
approaches the value of the far-field dispersion for source range distances
greater than approximately one aperture diameter (α ≥ 1). Clearly, at source
range distances such that α ≤ 0.5 (one-half aperture diameter), the near-field
dispersion is significantly different from the far-field dispersion. Thus, for
this simple dispersion model, it is expected that near-field dispersion will
be similar to far-field dispersion at source range distances greater than one
aperture diameter.

For a phased array system with a large instantaneous bandwidth, to keep
the scanned beam pointing angle fixed, it is necessary to use true time-delay
phase shifters. Under far-field conditions, for a linear array with element
spacing d and scan angle θs as measured from the axis of the array, the
electrical phase shift between elements is given by

∆Φelements =
2π

λ
d cos θs =

2πf

c
d cos θs. (2.8)

To compensate for the linear phase shift versus frequency that occurs from
the element spacing and scan angle, the time-delay unit must provide a linear
phase shift versus frequency. A time-delay phase shifter can be designed using
coaxial lines controlled by diodes. For example a six-bit time-delay phase
shifter provides the following phase states for each of the bits: (0◦, 180◦),
(0◦, 90◦), (0◦, 45◦), (0◦, 22.5◦), (0◦, 11.25◦), and (0◦, 5.63◦). It is desired to
provide an interelement time delay, denoted ∆L as computed below. In a
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Figure 2.5 Dispersion multiplier as a function of source incidence angle for various
source range distances.

coaxial transmission line, the effective electrical phase shift of the line ∆Φline
is expressed in terms of the physical length and the relative dielectric constant
εr of the material filling the coaxial region as

∆Φcoaxial line =
2πf

c
∆Lelectrical =

2πf

c
∆Lphysical

√
εr. (2.9)

Setting Equation (2.9) equal to Equation (2.8) yields

2πf

c
∆Lphysical

√
εr =

2πf

c
d cos θs (2.10)

It follows that the required physical length of true-time-delay coaxial line to
compensate for the element spacing d and scan angle θs from the axis of the
linear array is given by

∆Lphysical =
d
√
εr

cos θs. (2.11)

The next section describes a number of phased array beamformer architec-
tures.

2.2.3 Beamformer Architectures

Consider Figure 2.6, which shows a linear phased array antenna that generates
a radiation main beam at an angle θs that can be scanned over a field
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Linear Array

θs

Field of view

Figure 2.6 Example linear array antenna with the main beam steered to the angle θs.

of view. Depending on the spacing in wavelengths between the antenna
elements and the phase progression along the array, the scan angle θs can
vary from 0◦ (broadside direction) to ±90◦ (endfire direction). The broadside
array will typically use one-half wavelength spacing, whereas the endfire
array will typically use one-quarter wavelength spacing. The challenge in
phased array antenna development is to design the array so that main beam
scanning can be achieved, with desired radiation characteristics such as gain,
power density on transmit, sensitivity on receive, beamwidth, sidelobe levels,
polarization, and reflection coefficient. A block diagram showing an active
beamformer arrangement for a transmitting linear phased array antenna is
depicted in Figure 2.7. An RF source has its signal divided into a number
of paths by using a power divider circuit. Each output port from the power
divider is connected to a phase shifter device that applies a linear phase
shift from element to element such that the array main beam is scanned to
a desired angle. In this transmitting phased array example, prior to the divided
and phase-shifted signal reaching each of the antenna radiating elements,
amplification is applied such that a desired power level is achieved at each
array element. With this beamforming architecture where an RF amplifier is
connected to each antenna element, the antenna is referred to as an active
electronically scanned array (AESA). If an amplifier at each element is not
present, the antenna architecture is referred to then as a passive electronically
scanned array (PESA). The phase-steered and amplified RF signal from
each antenna element is coherent and additive in the scan angle direction.
However, as a consequence of typical one-half-wavelength spacing between
the array antenna elements, a portion of the signal from each array element is
electromagnetically coupled (curved arrow in Figure 2.7) into the surrounding
array elements, and the coupled signal generally becomes stronger/weaker
as the distance to the coupled element decreases/increases, respectively. This
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Figure 2.7 Block diagram for a transmitting active electronically scanned array
(AESA) antenna. The main beam is steered using phase shifters.

coupled signal is referred to as array mutual coupling, which is a complex
quantity.

If phase shifters with constant phase versus frequency are used to
steer the main beam, then the main beam pointing angle will be frequency
dependent. In a phased array application in which wideband waveforms are
involved, time delays with linear phase delay versus frequency need to be used
as depicted in Figure 2.8. Time delays can be implemented at intermediate

Controls Time delay units

Amplifiers

Antenna
elements

∆1

Power divider

∆2

RF source

∆N

Scan angle

Mutual
coupling

θsTime delay
steered array

Figure 2.8 Example beamformer for time-delay steered linear array.

frequencies (IF), radio frequencies (RF), or optical frequencies (OF).
The contrast between an active electronically scanned array (AESA)

and a passive electronically scanned array (PESA) is shown in Figure 2.9.
In Figure 2.9a, a transmit/receive (T/R) module is connected to each antenna
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Figure 2.9 Example array beamforming architectures. a) Active electronically
scanned array (AESA). b) Passive electronically scanned array (PESA).

element. The T/R module contains amplifiers, phase shifters, and other
components including switches, circulators, and filters. In a large phased
array aperture with thousands of antenna elements, if a T/R module (or a
small percentage of modules) fails to operate properly, the array experiences
only a minor degradation in performance. In Figure 2.9b, only a phase
shifter is connected to the antenna elements. The PESA requires a high-
power transmitter that represents the possibility of a single-point failure. The
duplexer can be implemented by either a high-power switch or a circulator
and represents another possible single-point failure for a PESA. In Figure 2.9,
both types of arrays shown are corporate fed with transmission lines that
can be, for example, coaxial cables, microstrip lines, or waveguides. In some
phased arrays, to eliminate the RF transmission lines a space-fed beamformer
approach is used.

Consider Figure 2.10 that shows two types of space-fed phased
array architectures [47, p.13.47], namely, a space-fed lens and a space-fed
reflectarray. In Figure 2.10a, a horn antenna generates a spherical wavefront
that illuminates a passive lens phased array aperture with phase shifters
located between the front and back antenna elements. The phase shifters
are calibrated and adjusted to remove the spherical wavefront curvature and
generate a flat wavefront to steer the radiation to a desired scan angle. In
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Figure 2.10 Beamforming architectures. a) Space-fed lens array. b) Reflectarray.

Figure 2.10b, the reflect array has a single group of antenna elements facing
the feedhorn. In this case, the spherical wavefront illuminates the antenna
elements and the received signals pass through a calibrated phase shifter, and
then these signals are reflected by a short circuit. The reflected signal passes
backward through the phase shifter and the resultant wavefront is now flat and
steered to a desired scan angle.

A fully digital beamforming receive array architecture is shown in
Figure 2.11. With this digital architecture, the RF signals received by the



Phased Array Antennas 145

antenna elements are downverted to a lower intermediate frequency (IF)
(and possibly to a lower baseband frequency) where analog to digital (A/D)
converters are used to digitize the received signals. Digital signal processing
is used to detect and analyze received signals as well as to provide adaptive
nulling to reduce jamming effects. A hybrid analog/digital beamforming
phased array architecture is shown in Figure 2.12. In this case, RF phase
shifters are used as part of several RF subarrays where the subarray RF output
is then downconverted and digitized.
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Figure 2.11 Example fully-digital array beamforming architecture.
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Figure 2.12 Example hybrid analog/digital phased array beamforming architecture.



146 Electromagnetics and Antenna Technology

To achieve a large aperture phased array that can electronically scan a
beam over a large field of view, say ±60◦, normally a large number (many
thousands) of antenna elements is often required. An alternate geometry is
to have a smaller phased array feed a single reflector or series of reflectors
[82–ref:fenn-richardson-1980], which can provide limited electronic scanning
of a few degrees. For example, Figure 2.13 shows an example of an offset
Gregorian reflector system with confocal paraboloids and a planar phased
array feed, which has been investigated by Fitzgerald in [83]. This dual
reflector geometry allows the aperture of the phased array to be magnified
by the ratio of the primary to secondary reflector focal lengths. As the phased
array scans from broadside, to avoid subreflector spillover the subreflector
diameter must be oversized.

Parabolic main

Parabolic subre�ector

Planar phased 
array feed

Focal point

Figure 2.13 Example offset Gregorian reflector system with confocal paraboloids and
planar phased array feed. Redrawn from Fitzgerald [83].

In some applications, multiple phase centers are desired for example in
displaced phased center antenna (DPCA) designs for radar clutter cancellation
[43–47] as in Figure (2.14). In this DPCA architecture, there are two
independent beamformers that generate two movable phase centers. The phase
center spacing is varied by using attenuators in the receive modules to shut off
received signals from groups of antenna elements. In general, the DPCA array
will contain a total of N antenna elements that are used to form the receive
main channel. In addition to these N elements, a guard band of passively
terminated elements can be used to provide impedance matching to the active
elements and/or isolation from ground plane edges to improve radiation
pattern match between the displaced phase centers. For this two phase center
example, the received RF signal output from each of the array antenna
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elements is first split into two paths that are weighted and then summed in
separate power combiners to form two independent subarray main channels
(or moveable phase centers). In each element channel is a transmit/receive
module, which has amplitude and phase control. The amplitude control can
be used to provide a desired low-sidelobe array illumination function as
well as to achieve phase-center displacement. The modules utilize phase
shifters, which are used to steer the main beam to a desired angle. Let
WA = (WA

1 ,W
A
2 , · · · ,WA

N )T and WB = (WB
1 ,W

B
2 , · · · ,WB

N )T , where T

is transpose, denote the array element weight vectors (including quantization
and random errors) of phase centers A and B, respectively (superscript T
means transpose). To effect phase center displacement, a portion of each
subarray is turned off by applying a large value of attenuation for a group
of antenna elements. This amplitude weighting will essentially move the
electrical phase center to the center of gravity for the remaining elements.
Thus, there is an effective number of elements actually used in receiving
signals in phase centersA andB and are denoted asNA andNB , respectively.
Let a wavefront (either planar or spherical) due to the jth source (either clutter
or jammer), be impressed across the array, which results in a set of array
element received voltages denoted as the complex vector v = vj1, v

j
2, · · · , v

j
N .

The channel covariance matrixR consisting of clutter and jamming signals is
formed from the correlation of the received voltage vector as v†v, where † is
complex conjugate transpose, from which adaptive array weights (amplitude
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Figure 2.14 Example beamformer design for a displaced phased array antenna with
adaptive signal processing to cancel both radar clutter and interference.
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and phase) are generated. The number of adaptive channels per phase center
is denoted M . For a sidelobe canceller M = 1 +Naux where Naux is the
number of auxiliary channels in each phase center. This adaptive system has
M degrees of freedom in each phase center and, thus, a total of 2M degrees
of freedom.

A simplified block diagram for an example transmit/receive (T/R)
module is shown in Figure 2.15. By means of switches and proper timing, the
phase shifter shown is used for both transmit and receive. In this diagram, the
switches are adjusted for the transmit mode. To protect the low noise amplifier
(LNA) the combination of a circulator and a switched-in load provides high
isolation from the high-power transmit signal. Many different architectures
exist for T/R modules, which are designed based on the system requirements.
For example, in some radar applications the T/R modules must allow for dual
polarization and multiple phase center operation.

Recently, there has been considerable research in the area of multiple-
input multiple-output (MIMO) arrays [63-65]. Figure 2.16 shows an artist’s
concept where a MIMO antenna system uses multiple transmit antennas and
multiple receive antennas to help mitigate multipath effects in communica-
tions and radar applications.
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Figure 2.15 Example transmit/receive (T/R) module block diagram.

Now that a number of beamforming architectures have been described,
the next section describes basic array theory, which considers phased arrays
composed of isotropic antenna elements.
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Receive SignalsTransmit Signals

Transmit Antenna Array

Figure 2.16 Artist’s concept of a MIMO array system that consists of multiple transmit
antennas and multiple receive antennas.

2.2.4 Arrays of Isotropic Antenna Elements

Consider the case of a two-dimensional N -element phased array of isotropic
radiating antenna elements with the ejωt time-harmonic dependence of the
currents suppressed, where ω = 2πf is the radian frequency, t is time, and
f is the frequency. Referring to the geometry in Figures 2.2 and 2.3, the
far-field array radiation pattern, or array factor (AF) in this case, in terms
of spherical coordinates (θ, φ), can be expressed by superposition of the N
radiating currents as

AF(θ, φ) =
N∑
n=1

ine
jΨn (2.12)

where in is the complex current induced in the nth radiating element,
(xn, yn, zn) are the coordinates of the nth array element, and

Ψn = k sin θ(xn cosφ+ yn sinφ) + kzn cos θ (2.13)

where k = 2π/λ is the wavenumber with λ denoting the wavelength. In order
to electrically scan the main beam to a particular scan angle (θs, φs), the
phasing Ψns of the element currents is set to be the negative value (phase
conjugate) of Ψn evaluated at (θs, φs), that is,

Ψns = −k sin θs(xn cosφs + yn sinφs)− kzn cos θs. (2.14)

The array currents in are expressed in complex form as

in = Ane
jΨns (2.15)
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where An is the current amplitude illumination of the nth array element.
Equation (2.15) is general in the sense that amplitude and phase quanti-
zation and random errors of the transmit/receive modules can be included.
Furthermore, Equations (2.13) and (2.14) allow errors in element positioning
(∆xn,∆yn,∆zn) to be taken into account. The array factor for the electrically
scanned array can be written as

AF(θ, φ) =
N∑
n=1

Ane
j(Ψn+Ψns). (2.16)

If the current amplitudes are assumed to be uniform with unity amplitude,
that is, An = 1, then when the observation angles (θ, φ) are equal to the scan
angles (θs, φs), it follows from Equations (2.13) and (2.14) that Ψn + Ψns =
0 and the array factor is evaluated as

AF(θs, φs) =
N∑
n=1

1 = N (2.17)

That is, for uniform illumination at scan-angle direction (θs, φs) the amplitude
of the array factor is equal to the number of array elements.

For a linear array oriented along the x axis, both yn and zn are zero. Then
with φ = 0◦ using Equations (2.13) and (2.14), Equation (2.16) simplifies to

AF(θ, θs) =
N∑
n=1

Ane
jkxn(sin θ−sin θs). (2.18)

It should be noted that for the array factor given by Equation (2.18), since φ
was set to zero, the angles θ and θs are allowed to take on positive and negative
values.

A number of phased array illumination functions [5] can be used to
control the sidelobe levels and beamwidth of phased array antennas. Some
common phased array illumination functions include uniform, binomial,
triangular, cosine, Dolph-Chebyshev [89–91], and Taylor [92]. For example,
uniformly illuminated arrays are typically used for transmit applications and
have a narrow beam with high first sidelobes (on the order of −13 dB relative
to the main beam maximum value). Compared to uniform illumination, the
binomial illumination has a broader beam with no sidelobes. The Dolph-
Chebyshev illumination has low sidelobes at a constant, prescribed, level. The
Taylor illumination generates a narrow beam with controlled low sidelobes.
Amplitude and phase quantization and random errors in the illumination
function can cause the sidelobes to degrade.
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Figure 2.17 Linear array antenna of isotropic elements (point sources) spaced along
the x axis.

Consider now a linear array with isotropic elements (point sources)
that have spacing d along the x axis as shown in Figure 2.17. For the
uniform illumination case An = 1, let the element position be quantified by
xn = (n− 1)d and then let

u = kd(sin θ − sin θs). (2.19)

Equation (2.18) can now be simplified and then expanded as

AF(u) =
N∑
n=1

ejnu = 1 + eju + ej2u + · · ·+ ej(N−1)u (2.20)

Now multiply both sides of Equation (2.20) by eju which yields

AFeju = eju + ej2u + ej3u + · · ·+ ejNu (2.21)

Subtracting Equation (2.21) from (2.21) and rearranging yields

AF =
ejNu − 1

eju − 1
(2.22)

Factoring the exponentials in the numerator and denominator and converting
from exponentials to sines yields

AF = ej(N−1)u/2 sin(Nu/2)

sin(u/2)
(2.23)

The maximum value of the array factor occurs at the main beam peak,
which occurs when the denominator goes to zero, and this condition exists



152 Electromagnetics and Antenna Technology

when u = 2mπ for m = 0,±1,±2, · · ·. Applying L’Hôpital’s rule to the
ratio of the sine terms in Equation (2.23), evaluated at u = 2mπ, yields the
maximum value of N for the array factor, which can be used to normalize
AF to unity. Calculated radiation patterns for linear arrays with uniform,
Dolph-Chebyshev, and Taylor illumination functions are shown below. Note:
the MATLAB Phased Array System Toolbox (http://www.mathworks.com.)
provides tapered array illumination functions for one and two-dimensional
arrays. For example, the MATLAB statement <taper=chebwin(N,SLLdB)>
generates the Dolph-Chebyshev illumination for an N-element linear array
with sidelobe levels equal to SLLdB. Similarly, in MATLAB the Taylor
illumination statement for N elements is <taper=taylorwin(N,nbar,SLLdB)>,
where nbar is a parameter that affects the number of transition sidelobes
adjacent to the main beam. A typical value of nbar is equal to five (5) that
provides an illumination that is readily implemented in practice.

As an example of the array factor for an ideal uniformly illuminated
array, consider an eight-element linear array of isotropic array elements with
λ/2 element spacing, as depicted in Figure 2.18. For this eight-element

λ/2Array

z

x

θ

r

Figure 2.18 Example eight-element linear array antenna with isotropic elements.

array, using Equation (2.18), the array factors for uniform illumination for
scan angles of θs = 0◦ and θs = 45◦ are shown in Figure 2.19. Next, the
normalized array factor magnitude for a larger, 16-element linear array of
isotropic antenna elements with uniform amplitude illumination scanned to
θ = 30◦ is shown in Figure 2.20, and the corresponding phase of the array
factor is shown in Figure 2.21. It is observed that the phase alternates between
0◦ and 180◦ as the angle varies across the sidelobes. Since the phase center
of the array is located at the origin x = 0, the far-field phase is flat over the
main beam. Note that there are N − 2 number of sidelobes for the N element
linear array. The uniformly illuminated array has high sidelobe magnitudes,
starting with the first sidelobe which is at the −13 dB level. To reduce the
sidelobes to a constant level, the Dolph-Chebshev taper for −40 dB uniform



Phased Array Antennas 153

Angle (deg)

 Scan  = 0°
 N  = 8

 Scan  = 45°
 N  = 8

(a)

R
el

at
iv

e 
am

p
lit

ud
e 

(d
B

)

–20

–10

0

–40

–30

30–30–60–90 60 900
Angle (deg)

(b)

R
el

at
iv

e 
am

p
lit

ud
e 

(d
B

)

–20

–10

0

–40

–30

30–30–60–90 60 900

Figure 2.19 Calculated array factor for an eight-element linear array antenna with
isotropic elements. (a) Scan angle 0◦, and (b) scan angle 45◦.
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Figure 2.20 Calculated array factor magnitude for a 16-element linear array antenna
with isotropic elements. Uniform amplitude illumination with θs = 30◦.

sidelobes was applied to the 16-element linear array and the radiation pattern
is shown in Figure 2.22. In this case, to achieve lower sidelobes with the
Dolph-Chebyshev taper, the far-field main beam has broadened compared
to the radiation pattern for the uniformly illuminated array in Figure (2.20).
Again for a 16-element array, the case of a Taylor taper (−40 dB, nbar=5) is
shown in Figure 2.23, which is very similar to the Dolph-Chebyshev pattern
except for the first few sidelobe levels. If the array elements are not isotropic
radiators, but instead have a radiation pattern that depends on angle, then the
array radiation pattern P (θ, φ) can be expressed as the product of the array
factor and the element radiation pattern (denoted pe(θ, φ)) as

P (θ, φ) = pe(θ, φ)AF (2.24)

where it is assumed that all array elements have the same radiation pattern.
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Figure 2.21 Calculated array factor phase for a 16-element linear array antenna with
isotropic elements. Uniform amplitude illumination with θs = 30◦.
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Figure 2.22 Calculated array factor magnitude for an sixteen-element linear array
antenna. Dolph-Chebyshev taper (40 dB) with scan angle θs = 30◦.

2.2.5 Polarized Array Far-Zone Electromagnetic Fields

The previous section considered the far-field radiation for isotropic elements
and the theory ignored polarization. In this section, the effect of polarization
of the elements is included in the theoretical formulation. In Equation (1.269),
the far-field vector current moment f(θ, φ) was defined in spherical coordi-
nates in terms of a volume integral of the source current J(r′) as

f(θ, φ) = frr̂ + fθθ̂ + fφφ̂ =

∫
V
J(r′)ejkr̂·r′dv′, (2.25)

Referring generally to Figure 2.2, consider now a two-dimensional
periodic array case, in which the array antenna elements are Hertzian (short)
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Figure 2.23 Calculated array factor magnitude for an sixteen-element linear array
antenna. Taylor taper (40 dB, nbar=5) with scan angle 30◦.

electric dipoles of length l and arbitrary polarization p̂ that are located in a
rectangular lattice parallel to the xy plane at z = zo. Assume that the array has
Nx elements in the x direction with interelement spacing dx and Ny elements
in the y direction with interelement spacing dy. The total number of elements
is equal toN = NxNy. Referring to Equation (2.14), let the electrical phasing
of the nth Hertian dipole array element with position (xn, yn, zo) for the scan
direction (θs, φs) be given by

Ψns = −kxn sin θs cosφs − kyn sin θs sinφs − kzo cos θs. (2.26)

In this case, the current density function J(r′) can be expressed in terms of
the array element amplitude An = Inl and phase shift Ψns as

J(r′) = p̂
N∑
n=1

Inle
jΨnsδ(x′ − xn)δ(y′ − yn)δ(z′ − zo). (2.27)

The propagation unit vector in terms of the spherical coordinate angles (θ, φ)
is given by

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (2.28)

and the source vector r′ is given by

r′ = x̂x′ + ŷy′ + ẑz′. (2.29)

The dot product of the propagation direction unit vector and the source vector
is equal to

r̂·r′ = x′ sin θ cosφ+ y′ sin θ sinφ+ z′ cos θ (2.30)
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Substituting Equation (2.27) into Equation (2.25) yields

f(θ, φ) =

∫
V
p̂

N∑
n=1

Inle
jΨnsδ(x′ − xn)δ(y′ − yn)δ(z′ − zo)ejkr̂·r

′
dv′

(2.31)
and using Equation (2.30) yields

f = p̂
N∑
n=1

Ane
jk[xn(sin θ cosφ−sin θs cosφs)+yn(sin θ sinφ−sin θs sinφs)+zo(cos θ−cos θs)]

(2.32)
The far-zone electric and magnetic fields in terms of the far-field vector
current moment f are determined from Equations (1.279) and (1.282) as

EFF = −jωµe
−jkr

4πr
(θ̂fθ + φ̂fφ) (2.33)

HFF = −jk e
−jkr

4πr
(φ̂fθ − θ̂fφ). (2.34)

The electric and magnetic fields are then computed for elements with a
particular polarization p̂ by evaluating Equation (2.32) and substituting the
result in Equations (2.33) and (2.34), respectively. To obtain the desired
spherical components of f , the unit vector p̂ is dotted into the spherical unit
vectors θ̂ and φ̂. In the general case, where the nth element current density
has an arbitrary distribution, the volume integral in Equation (2.25) can be
evaluated either in closed form or by numerical integration to yield the desired
far-field vector current moment f , from which the electric and magnetic fields
can be computed. When the array is a linear array along the x axis at zo = 0,
Equation (2.32) simplifies to

f(θ, φ, θs) = p̂
N∑
n=1

Ane
jkxn(sin θ cosφ−sin θs). (2.35)

2.2.6 Array Mutual Coupling Effects

Array mutual coupling, or electromagnetic field coupling between array
elements, as depicted in Figure 2.24, is an important effect that can strongly
influence the radiation pattern of the individual array elements and the overall
array patterns. In this diagram, an input signal is transmitted by one antenna
element and this signal is received by the surrounding antenna elements.
In a large array with periodic element spacing, each antenna element will
have a gain that is related to the element unit cell area. Early developments
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Figure 2.24 Diagram depicting an array with one element driven, with coupling to the
surrounding elements.

of phased array radiating-element technology were conducted from 1959
to 1967. Beginning in 1959, there were numerous contributions to the
theoretical understanding of phased arrays, particularly the effects of array
mutual coupling on the performance of various configurations of dipole and
waveguide arrays; for example, the reports and articles by Allen et al. [23–35].
Array mutual coupling is defined as the ratio of the coupled signal voltage in
a surrounding array element relative to the input signal voltage in a reference
element, when the surrounding elements are terminated in loads matched
to the impedance of the transmission line. Letting Son denote the complex
mutual coupling between the reference element and the nth array element, the
scan reflection coefficient for a planar phased array is calculated as [6, p. 22]

Γo(θs, φs) =
∑
n

Sone
Ψns(xn,yn,0) =

∑
n

Sone
−jk sin θs(xn cosφs+yn sinφs)

(2.36)
where (xn, yn) are the coordinates of the nth array element.

The scanned array impedance mismatch efficiency denoted η Z mismatch
is expressed in terms of the reflection coefficient as

η Z mismatch = 1− |Γo(θs, φs)|2. (2.37)

The scan mismatch loss (ML) in dB can be computed as

ML(θs, φs) = −10 log10 η Z mismatch = −10 log10

[
1− |Γo(θs, φs)|2

]
.

(2.38)
When a single antenna element is driven in a passively terminated array

(also referred to as an embedded element), the fractional dissipated power
(denoted Fp relative to the input power to the element) caused by array mutual
coupling is computed as the summation of the magnitude squared of the
mutual coupling coefficients, that is [6, p. 22],

Fp =
∑
n

|Son|2. (2.39)
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This fractional dissipated power is the fractional power lost to the terminating
loads in the transmission lines connected to the array elements. The array
element gain ge(θ, φ) is then the product of the element directivity De(θ, φ)
and the quantity (1− Fp), that is,

ge(θ, φ) = De(θ, φ)(1−
∑
n

|Son|2). (2.40)

The maximum gain (relative to an isotropic radiator) of an antenna
aperture of arbitrary shape is given by the following expression:

Gmax = 4πAem/λ
2 (2.41)

where Aem is the antenna maximum effective aperture area in square meters
and λ is the wavelength in meters. As the frequency increases, the wavelength
is reduced according to the following expression,

λ = c/f (2.42)

where c is the speed of light and f is the frequency. Thus, for a fixed aperture
dimension in meters, ideally the gain will increase as the frequency increases.
However, for a practical antenna aperture, the surface tolerances and, in the
case of a phased array, T/R module errors will introduce phase errors and will
cause a reduction in antenna gain and an increase in sidelobe levels.

In decibels, the maximum gain of an antenna aperture is given by

Gmax, dB = 10 log10Gmax. (2.43)

The element gain pattern for an infinite array (or very large finite array)
is a function of the unit-cell area, the scanned array impedance mismatch
efficiency, and the projected aperture [6, pp. 23-25]. The projected aperture
will vary as cos θ, where θ is the angle from broadside. For a general array in
the xy plane, the element gain pattern is given by

ge(θ, φ) =
4πAe
λ2

[
1− |Γ(θ, φ)|2

]
cos θ (2.44)

where Ae is the unit-cell area occupied by the element. For a rectangular grid
array, the element gain pattern is given by

ger(θ, φ) =
4πdxdy
λ2

[
1− |Γ(θ, φ)|2

]
cos θ (2.45)

where dx and dy are the element spacings in the x and y directions,
respectively. For an equilateral-triangle (hexagonal) array lattice, the element
gain is expressed as

geh(θ, φ) =
2π
√

3b2

λ2

[
1− |Γ(θ, φ)|2

]
cos θ (2.46)
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where b is the side of the equilateral triangle for the element spacing. The
scanned radiation pattern, including mutual coupling effects of a large array
of thousands of array elements, can be calculated in an approximate manner
by first computing the element gain pattern in a large or infinite array and then
multiplying it by the array factor given by Equation (2.18).

One of the fundamental challenges in designing a phased array is that
significant portions of the microwave field transmitted by one element of
the array can be received by the surrounding array antenna elements. This
mutual coupling effect, can sometimes lead to surface waves and result in
a substantial or total loss of transmitted or received signal in a desired scan
direction, which depends on the coherent combination of all of the mutual-
coupling signals in the array. This loss of antenna gain is referred to as a
blind spot, as is depicted conceptually in Figure 2.25. In this figure, assume
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Figure 2.25 Conceptual diagram demonstrating blind spots for a phased array
antenna. (a) Element gain pattern and (b) scan reflection coefficient.

that the phased array is designed for maximum gain at broadside (0◦ scan
angle); however, in this artist’s concept element gain pattern nulls (minima)
are formed at ±45◦. Thus, the full scan sector ±60◦ cannot be covered. The
ideal shape of the element gain pattern is a cosine function of the scan angle,
when it is assumed that the reflection coefficient amplitude is zero (refer to
Equation (2.44) with |Γ| = 0). When these element gain pattern nulls occur,
there will be corresponding peaks occuring in the scan reflection coefficient
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amplitude. A phased array blind spot can be described as either a null in
the element gain pattern or as a peak tending toward unity in the scanned
array reflection coefficient. The amplitudes and phases of the array mutual-
coupling signals depend primarily on the type (shape) of the radiating antenna
elements, the electrical spacing between the array elements, and the number
of surrounding radiating elements. Numerous studies have investigated many
different array element designs, taking into account mutual-coupling effects.

In many phased array designs, it is desirable to provide linear-polarized,
dual-polarized, or circularly polarized scan coverage with peak gain at
broadside and constant gain for any azimuthal (φ) angle, as depicted in
Figure 2.26.

Scan sector

Element

60°–60°

0°
θ

φ

Figure 2.26 Conceptual polar diagram showing an element gain pattern covering a
scan sector, with peak radiation at broadside to the plane of the element.

When all of the phase shifters of an array are properly aligned, the
array produces a main beam in the desired pointing direction. Generally, the
corporate feed (for example, the power divider in Figure 2.7) is designed with
minimal crosstalk between channels. However, once the signals have reached
the radiating antenna elements, a significant amount of crosstalk in the form of
array mutual coupling occurs. As discussed above, the amplitudes and phases
of these mutual coupling signals can significantly impact the performance of
the phased array. If the array element spacing is around one-half wavelength,
substantial amounts of mutual coupling can occur. The mutual coupling
amplitude tends to increase as the electrical spacing is reduced. This coupling
manifests itself in changes in the element’s gain radiation pattern and its scan
reflection coefficient. Unless care is taken in the design of the array, undesired
blind spots in the scan sector can occur. These blind spots occur at angles
where the element gain pattern has a null and the reflection coefficient of the
array has a peak close to unity, as was depicted in Figure 2.25. At these blind
spots, the transmitted or received signal is significantly reduced in amplitude.

In some applications, it is desirable to place an intentional blind spot or
null in directions where it is undesirable to transmit or receive energy [36].
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For example, Figure 2.27 shows an example of a broadside-null radiation
pattern that could be generated by either a monopole or a uniform-current loop
antenna element in an array environment over a ground plane. These types of

Circle (azimuth)
“Omnidirectional”

Shaped
(elevation)

θ

φ

z

x y

Figure 2.27 Artist depiction of a monopole-type radiation pattern for an element in a
phased array antenna.

elements could be useful when broadside radiation is undesirable, such as in
reducing broadside clutter and jamming in the case of a spaceborne radar [45,
46]. As the radar beam is steered away from θ = 0◦ (broadside) toward θ =
60◦, the conventional broadside-peak-type element radiation pattern drops off,
but the broadside-null-type element radiation pattern increases to a peak at
about θ = 45◦ to 50◦.

2.2.7 Power Density and Array Gain

The effective isotropic radiated power, denoted EIRP, of an aperture is given
by the product of the antenna gain Gmax and the transmitter power Pt
delivered to the antenna as

EIRP = PtGt. (2.47)

Note that the power transmitted by the antenna is usually less than the power
delivered by the generator feeding the antenna. This difference in power is
attributed to any RF losses between the generator and the antenna, as well
as any mismatch loss resulting from the reflection coefficient at the antenna
terminals.

If the overall antenna aperture is assumed to be an array of identical
elements, the aperture can be divided into element apertures, which are also
referred to as element unit cells (see Figure 2.24). For a largeN -element array
with an effective aperture Aem, the unit cell area is equal to Aem/N . If the
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embedded element gain patterns are either computed or measured, the array
gain can be computed as follows. At range distance r, the embedded-element
radiated power density, denoted Pde, resulting from the element transmit
power (input power to the element) and embedded-element gain is given by
[15]

Pde =
Ptege(θ, φ)

4πr2
(2.48)

and solving for ge,

ge = 4πr2Pde
Pte

. (2.49)

In the far field, the plane-wave power density of the element is given in terms
of the array-element electric field intensity Ee(θ, φ) as

Pde =
|Ee(θ, φ)|2

120π
. (2.50)

Substituting Equation (2.50) in Equation (2.49) and simplifying yields

ge(θ, φ) =
r2

30

|Ee(θ, φ)|2

Pte
. (2.51)

Thus, it follows that

|Ee(θ, φ)| =
√

30

r

√
ge(θ, φ)

√
Pte. (2.52)

The element gain pattern, ge(θ, φ) includes the effect of array mutual coupling
and mismatch losses.

The transmit power of the nth element is proportional to A2
n, and using

this relation in Equation (2.52) yields

|Een(θ, φ)| =
√

30

r

√
gen(θ, φ)An. (2.53)

To compute the maximum gain of an array at a particular scan angle
(θs, φs), by superposition the electric-field contributions for the embedded
elements can be summed as

Earray, max =

√
30

r

∑
n

√
genAn. (2.54)

Now, following along the lines of Equation (2.51), the array gain can be
expressed as

Garray, max =
r2

30

|Earray, max|2

Pt, array
(2.55)
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where

Pt, array =
N∑
n=1

A2
n. (2.56)

Substituting Equations (2.54) and (2.56) in Equation (2.55) and simpli-
fying yields

Garray, max =
|
∑N
n=1
√
genAn|2∑N

n=1A
2
n

. (2.57)

For the case of a large array with uniform array illumination (with unity
amplitude at each array element), it can be assumed that all of the elements
have the same element gain pattern (i.e., gen = ge) and Equation (2.57)
reduces to

Garray, max(θs, φs) = ge(θs, φs)N. (2.58)

For uniform illumination, the array gain is equal to the element gain times the
number of array elements. If the array illumination is not uniform, then a taper
efficiency must be included in computing the array gain from the element gain.

To compute the array gain pattern from the element electric field
versus angle (θ, φ), the element phase pattern Ψen(θ, φ) (either calculated
or measured) must be used, that is,

Een(θ, φ) = |Een(θ, φ)|ejΨen(θ,φ). (2.59)

The array pattern Earray is then obtained by the superposition of the
individual array element patterns with the desired array amplitude taper and
with proper phasing of the array to steer the main beam in a desired direction.
Thus,

Earray(θ, φ) =
∑
n

Een(θ, φ)ejΨns (2.60)

or from Equation (2.59)

Earray(θ, φ) =
∑
n

|Een(θ, φ)|ej(Ψen+Ψns) (2.61)

and using Equation (2.53) yields

Earray(θ, φ) =

√
30

r

∑
n

√
gen(θ, φ)Ane

j(Ψen+Ψns). (2.62)

The array gain as a function of angle can then be computed from the electric
field as

Garray(θ, φ) =
r2

30

|Earray(θ, φ)|2

Pt, array
. (2.63)
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Substituting Equations (2.56) and (2.62) in Equation (2.63) yields the array
gain in terms of the element gain and element phase functions and the array
illumination, that is,

Garray(θ, φ) =
|
∑
n

√
gen(θ, φ)Ane

j(Ψen+Ψns)|2∑
nA

2
n

. (2.64)

In designing phased array antennas, the maximum electrical spacing d
between the elements of a phased array is usually chosen to avoid grating
lobes (multiple peaks) according to the following condition [9]

d

λh
<

1

1 + sin |θs|
(2.65)

where λh is the wavelength at the highest frequency and θs is the scan angle
from broadside. This equation is readily derived by setting the exponential
argument of the array factor in Equation (2.18) equal to −2π and using a
positive scan angle and taking the observation angle as the endfire angle−90◦,
where the grating lobe first occurs, and then solving for d/λ. Typically, the
maximum array-element spacing d is more tightly constrained to keep the
first null of the endfire grating lobe at the edge of visible space. In practice,
the endfire grating lobe should be kept at least one half-power beamwidth
away from visible space. For many wide-angle scanning phased arrays, the
electrical spacing is often chosen to be close to one-half wavelength for
elements on a rectangular or triangular grid.

The next four sections describe methods that are used in computing
electromagnetic fields of antennas, including array mutual coupling effects
and scattering from obstacles. The discussion begins with a description of
electromagnetic field equivalence principles in Section 2.3. In the subsequent
section, the reciprocity theorem for antennas is derived. To determine the
mutual coupling between an antenna and surrounding antennas in an array or
interaction with surrounding structures, a generalized integral equation known
as the reaction integral equation is then developed in Section 2.5, which is
based on the equivalence principle and the reciprocity theorem for antennas.
The reaction integral equation is used in analyzing antennas and phased arrays
by the method of moments, which is discussed in Section 2.6.

2.3 Equivalence Principles

To describe the various forms of equivalence principles, assume an antenna
with arbitrary impressed electric and magnetic currents, J i and M i, respec-
tively, in free space (region 1) radiating in the presence of a homogeneous
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object (region 2), such as depicted in Figure 2.28(a). For convenience, assume
that all currents and fields are time harmonic and the ejωt time dependence
is suppressed. The surface of the homogeneous object is denoted S and the
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Figure 2.28 Depiction of the surface equivalence principle.

unit normal to the surface is denoted n̂, which points from region 2 (internal
region) to region 1 (external region). Region 2 is assumed in general to
have permittivity ε and permeability µ, or the surface of region 2 can be
a electric conductor with conductivity σ. These impressed currents (J i and
M i) are assumed to radiate known electric and magnetic fields Ei and H i,
respectively, in free space without the homogeneous object present. Also, in
the presence of the object, the total electric and magnetic fields generated
by the impressed currents are E and H , respectively. In the exterior region
(region 1), the total electric and magnetic fields are equal to the summation
of the incident fields and the fields Es and Hs scattered by the object. In the
interior region (region 2), if the object is not a perfect electric conductor then
internal electric and magnetic fields will exist as well.
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Equivalent situations can be developed by using surface equivalence
principles such as described by Love [94], Schelkunoff [95], Harrington [96],
Mautz [97], Arvas [98], and Jakobus [99]. If the electric and magnetic fields
are known over the entire surface of a homogeneous object, the object can
be replaced by electric and magnetic surface currents radiating in free space,
which will produce the correct fields external to the object. For example, if
only the fields external to the object are desired, the homogeneous object
is equivalently modeled as in Figure 2.28(b) with equivalent electric and
magnetic surface currents Js andM s placed on the surface S, that is,

Js = n̂×[H1 −H2] (2.66)

M s = [E1 −E2]×n̂ (2.67)

where the superscripts 1 and 2 on E and H indicate the side of S in which
the fields are evaluated. In Figure 2.28(c), the same surface currents from
Figure 2.37(b) produce the desired scattered fields Es and Hs in the exterior
region and the negative of the incident fields in the interior region.

In the case of a perfect electrically conducting object, the equivalent
magnetic surface current is zero (M s = 0), since the total electric field is zero
at the surface by the boundary condition. As depicted in Figure 2.28(d), the
equivalent electric surface current Js is assumed to generate scattered fields
Es andHs as

Es = E −Ei (2.68)

Hs = H −H i. (2.69)

In the interior region of a perfect conductor, the total vector electric and
magnetic fields must be zero; thus, the following relation must hold:

Es = −Ei (2.70)

Hs = −H i. (2.71)

In this case, where the scatterer is a perfect electric conductor, the total
tangential electric field on the outer surface is zero (Etan = 0), and the
total tangential magnetic field on the outer surface is equal to the induced
current density H tan = Js. On the outer surface of the perfect conductor,
the tangential components of the incident and scattered magnetic fields are
equal (Hs

tan = H i
tan). In the technique known as physical optics, the induced

electric surface current density is determined from Equation (2.66) as Js =
2n̂×H i [5, pp. 337–338]. The scattered electric field can then be computed
from the surface currents Js over the illuminated region of the surface by
using Equation (1.205) as a surface integral. Finally, consider the case where
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the object is a homogeneous lossy medium as depicted in Figure 2.28(e).
In this case, the negative of the equivalent currents produce the desired
fields inside the object in which the dielectric and magnetic properties of the
material must be used in computing the internal fields. Now that the necessary
equivalence conditions have been described, the next step in developing a
method of moments formulation is to derive the reciprocity theorem.

2.4 Reciprocity Theorem

Let there be two sets of electric and magnetic sources Ja, Ma and J b, M b,
which produce the fields Ea, Ha and Eb, Hb, respectively. The Lorentz
reciprocity theorem [5] is derived in the following manner starting with
Maxwell’s equations in time-harmonic form as:

∇×Ea = −Ma − jωµ′Ha (2.72)

∇×Ha = Ja + jωε′Ea (2.73)

∇×Eb = −M b − jωµ′Hb (2.74)

∇×Hb = J b + jωε′Eb (2.75)

Now, take the divergence of the difference between the vector cross products
of the fields from the a and b sources and apply the vector identity

∇·(A×B) = B·(∇×A)−A·(∇×B). (2.76)

which yields after eliminating the terms involving the dot products of the
vector fields

−∇·(Ea×Hb −Eb×Ha) = Ea·J b −Ha·M b −Eb·Ja +Hb·Ma

(2.77)
which is the Lorentz reciprocity theorem in differential form. Now, taking the
volume integral of both sides of Equation (2.77) and applying the divergence
theorem to the left-hand side yields∫

V
∇·Adv =

∮
S
A·ds (2.78)

yields
−
∮
S∇·(Ea×Hb −Eb×Ha)·ds =∫

V (Ea·J b −Ha·M b −Eb·Ja +Hb·Ma)dv
(2.79)

which is the integral form of the Lorentz reciprocity theorem.
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The integral form of the Lorentz reciprocity theorem in a source-free
region is expressed as∫∫

S
(Ea×Hb −Eb×Ha)·ds = 0. (2.80)

That is, if the surface S does not enclose sources, the volume integral on the
right side of Equation (2.79) is zero. Next, consider the case of a radiating
antenna with source currents contained within a finite volume. In this case,
if the surface S is allowed to extend to infinity, the antenna radiated fields
at infinity in the surface integral are attenuated to zero and now the left side
of Equation (2.79) is zero. Thus, the reciprocity theorem for antennas can be
expressed as∫∫∫

V
(Ea·J b −Ha·M b −Eb·Ja +Hb·Ma)dv = 0 (2.81)

where the volume integration extends over all space including the antenna
source currents in the constrained finite volume.

2.5 Reaction Integral Equation

The generalized reaction integral equation is derived from the reciprocity
theorem for antennas expressed by Equation (2.81). By definition, the reaction
of field a on source current b is given by [101, 102, p. 118]

< a, b >=

∫∫∫
V

(Ea·J b −Ha·M b)dv. (2.82)

By reciprocity, the reaction of field a on source current b is the same as the
reaction of field b on source current a, that is,

< a, b >=< b, a > . (2.83)

Let a test source with currents Jm and Mm be placed within the
scatterer volume, which has now been replaced by the original ambient
medium. These currents radiate the fields Em and Hm in the ambient
medium. It is desired to compute the reaction between the test source currents
with the total electric and magnetic fields within the volume within the surface
S. Since the total electric and magnetic fields are equal to zero within the
scatterer, the reaction between the test source and total fields is zero. Thus, we
can write ∫∫∫

m
Jm·(Es +Ei)dv = 0 (2.84)
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∫∫∫
m
Mm·(Hs +H i)dv = 0. (2.85)

To be consistent with the minus sign in the reciprocity theorem, the difference
between Equations (2.84) and (2.85) is taken, which results in∫∫∫

m
(Jm·Es −Mm·Hs)dv +

∫∫∫
m

(Jm·Ei −Mm·H i)dv = 0 (2.86)

where the volume integration is over the volume of the test source. In terms
of surface integrals and surface currents, Equation (2.86) becomes∫∫

S
(Jms·Es −Mms·Hs)ds+

∫∫
S

(Jms·Ei −Mms·H i)ds = 0 (2.87)

where m = 1, 2, 3, · · · , N , Jms is the mth electric surface current, andMms

is the mth magnetic surface current. Equation (2.87) is the desired reaction
integral equation. The next section shows how Equation (2.87) can be solved
using the method of moments.

2.6 Method of Moments

The reaction integral equation expressed by Equation (2.87) can be solved
using the method of moments for the vector currents, from which quantities
such as the antenna input impedance and gain radiation patterns can be
computed. In general, when one is applying the method of moments, each
antenna analysis geometry requires special considerations [102–109]. By
using the equivalence principle as shown in Figure 2.28, the moment method
solution is considerably simplified for antenna problems involving only
electric conductors and, thus, only vector electric currents J are assumed
nonzero, andM = 0.

In the method of moments, the unknown vector electric surface current
density Js is expressed initially as a summation of n surface currents Jn
where

Jn = inBn (2.88)

in which the current coefficients in are complex in general and they are
the N unknown coefficients to be determined, and there are N vector basis
functions bn (also referred to as expansion or interpolation functions). Thus,
the unknown vector surface current density can be expressed as

Js =
N∑
n=1

Jn =
N∑
n=1

inbn. (2.89)
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It is desired to react an mth vector testing current source tm (also referred
to as a vector weighting source) with the radiated field from the nth basis
function bn. The electric field from the nth basis function can be expressed
as the scattered field Es

n(Jn), where it is understood that the electric field is
determined by an integral operating on the nth electric-current function Jn.
This integral operation can be expressed as

Lop(Jn) = Es
n(Jn) (2.90)

where Lop is the integral operator. For example, the electric field Es
n(Jn)

can be determined using a two-step approach in which the integral in
Equation (1.197) is evaluated and is then substituted into Equation (1.192).
The integral operation on the current is a linear operator, that is, superposition
applies and scalar quantities within the integral can be factored out of the
integral. It is noted that the total scattered field is given by

Es =
N∑
n=1

Es
n(Jn). (2.91)

Thus, it follows from Equation (2.87) that

N∑
n=1

∫∫
S
tm·Es

n(Jn)ds+

∫∫
S
tm·Eids = 0, (2.92)

which is the electric-field integral equation (EFIE), which is valid for open
and closed surfaces. Using Equations (2.89) and (2.91) and the linearity of the
integral operator, it follows that Equation (2.92) can be rewritten as

∫∫
S
tm·Eids = −

N∑
n=1

in

∫∫
S
tm·Es

n(bn)ds (2.93)

where the nth complex current coefficient in has been factored out of the
double integration. The basis functions bn can be chosen typically to have
an overlapping piecewise sinusoidal or triangular amplitude distribution, and
these basis functions are known to provide an accurate representation of
currents that flow on antennas and surrounding structures. In the case of a
piecewise-sinusoidal basis function of arbitrary unit vector orientation p̂ along
an arbitrary p axis (for example, p could be the z axis), the basis function takes
the following form [83, 85],

bn(p) = p̂n
sin k(p− pn−1)

sin k(pn − pn−1)
pn−1 ≤ p ≤ pn (2.94)
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bn(p) = p̂n
sin k(pn+1 − p)
sin k(pn+1 − pn)

pn ≤ p ≤ pn+1 (2.95)

where k is the wavenumber. Similarly, triangular basis functions have the
following form

bn(p) = p̂n
p− pn−1

pn − pn−1
pn−1 ≤ p ≤ pn (2.96)

bn(p) = p̂n
pn+1 − p
pn+1 − pn

pn ≤ p ≤ pn+1 (2.97)

Figures 2.29 and 2.30 show examples for the case where there are 5 nodes and
3 overlapping (piecewise) sinusoidal and triangular basis functions along the
p axis, respectively. The coefficient an that multiplies each basis function bn
is determined by solving a set of simultaneous equations as described below.
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Figure 2.29 Depiction of the piecewise sinusoidal basis functions for the case of 5
nodes.
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Figure 2.30 Depiction of the piecewise triangular basis functions for the case of 5
nodes.

Now, define the general mth element of the voltage matrix as

Vm =

∫∫
S
tm·Eids (2.98)

and the general mnth element of the mutual impedance matrix as

Zmn = −
∫∫

S
tm·Es

n(bn)ds. (2.99)
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Note: since the testing and basis functions are typically normalized by
dividing by the terminal current, the units of the voltage matrix and impedance
matrix are in volts and ohms, respectively. A Galerkin’s formulation is
obtained by using testing functions t that are equal to the basis functions b. It
now follows that

Vm =
N∑
n=1

inZmn m = 1, 2, . . . , N (2.100)

where Vm is the voltage excitation and Zmn is the open-circuit mutual
impedance between current elements m and n, expressed as the matrix Z.
These expressions can be combined in terms of the applied voltage excitation
vector V , the impedance matrix Z, and unknown current vector i to give the
matrix equation

V = Zi; (2.101)

that is,

V1 = Z11i1 + Z12i2 + · · ·+ Z1N iN

V2 = Z21i1 + Z22i2 + · · ·+ Z2N iN

.

. (2.102)

.

VN = ZN1i1 + ZN2i2 + · · ·+ ZNN iN .

The unknown current coefficients in, n = 1, 2, . . . , N are found by matrix
inversion from

i = Z−1V (2.103)

or by lower-triangular/upper-triangular (LU) matrix decomposition, for exam-
ple. For phased array antenna analysis, the current responses for multiple
beam-steering voltage vectors are readily computed since the impedance
matrix inversion or LU decomposition needs to be performed only once for a
given antenna geometry.

The voltage source model chosen at the antenna terminals is typically a
delta gap generator. This model assumes that the impressed electric field exists
only at the antenna element terminals. In this case, the voltage generators can
be defined to be one volt in amplitude at the terminals of each array element.

If a general skew-symmetric lattice is assumed for the dipole array as
depicted in Figure 2.39, then the required steering phase for an element in the
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pth row and qth column of the array is related to the main beam scan direction
(θs, φs) by

ψx = kqdx sin θs cosφs (2.104)
ψy = k(pdy + q∆y) sin θs sinφs (2.105)

so
V g
pq = e−j(ψx+ψy) (2.106)

defines the generator voltages. Note: in Figure 2.31, an artist’s concept of an
example of three overlapping dashed piecewise triangles, superimposed on the
upper right dipole, represent the basis functions that can be used to determine
the unknown current coefficients.

Dipole
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dx

∆y

φ
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x x'

y
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Figure 2.31 Dipole phased array antenna arranged in a two-dimensional skew-
symmetric lattice.

In the present form, Equation (2.106) assumes a uniform amplitude
excitation. It should be noted, however, that any amplitude taper can be used.
To generate low sidelobes, some common array amplitude tapers include
Taylor, Chebyshev, cosine, and triangular [5]. The various tapers would be
implemented by multiplying the pqth array element terminal voltage of the
voltage matrix by the appropriate amplitude coefficient Apq.

The array elements are assumed to be excited by constant incident-power
sources. This type of feeding is referred to as free excitation because the
complex voltage across the terminals of the array element can vary according
to the scan conditions [11]. The equivalent circuit for the mth element port
(m = 1, 2, . . . , N ) is shown in Figure 2.32. The effect of the generator (or
load) impedance (denotedZg) is included in the driven elements in the voltage
excitation matrix, that is,

Vm = V g
m − imZg. (2.107)
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Figure 2.32 Equivalent circuit model for the mth array element port.

For an electrically scanned phased array, all generators are on; hence,
every V g is nonzero. For a single-element excited array, only one voltage
generator is nonzero, which can be assumed equal to one volt. For both types
of arrays, the value of Zg can be chosen to be 50 ohms, corresponding to
the generator impedance, which is the same as the characteristic impedance
of the feedline (usually 50 ohms). The unknown currents in, n = 1, 2, . . . , N
are determined from

i = [Z ′]−1V g (2.108)

where
Z ′ = Z + IZgm (2.109)

where I represents the identity matrix. The current coefficients in determined
from the method-of-moments solution are used in the computation of the array
radiation patterns. Recent improvements in the speed and reduced memory
requirements for moment method analysis has been achieved using the fast
multipole method [109, pp. 209–253, 110]

In the case of the mth array element, the input impedance, denoted Zmin ,
is computed from

Zmin =
Vm
im

(2.110)

where Vm is the voltage across the terminals of the array antenna element and
im is the current at the terminals of themth element determined by the method
of moments. Equations (2.18) to (2.20) can be used to determine the radiated
fields from the moment method basis functions. The far-zone electric field
can be computed from the superposition of the radiated electric fields from
the moment-method-determined currents computed from Equation (2.108).

The scanned array reflection coefficient is obtained from the scanned
array input impedance by the use of the following equation,

Γ(θs, φs) =
Zin(θs, φs)− Zc
Zin(θs, φs) + Zc

(2.111)

where (θs, φs) is the scan direction, and Zc is the characteristic impedance of
the feed line.
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2.7 Broadside and Endfire Linear Arrays of Hertzian
Dipoles

The radiation pattern of a single z-directed Hertzian dipole in free space was
shown in Figure 1.49. Referring now to Figure 2.33, consider two 5-element
array cases in which the antenna elements are z-directed Hertzian dipoles
where the arrays are designed for either broadside beam direction or endfire
beam direction. Figure 2.34 shows the FEKO moment method simulated 3D

d

Hertzian Dipole Array

z

x

θ

y

Figure 2.33 Linear array of Hertzian dipole antennas with spacing d along the x axis.

relative gain pattern for a 5-element broadside array of z-directed Hertzian
dipoles with λ/2 element spacing along the x axis, and Figure 2.35 is a polar
diagram of the radiation pattern in the xy plane. Figure 2.36 is the moment
method simulated 3D relative gain pattern for a 5-element endfire array of
z-directed Hertzian dipoles with λ/4 element spacing along the x axis, and
Figure 2.37 is a polar diagram of the radiation pattern in the xy plane.
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Figure 2.34 Moment method simulated 3D relative gain pattern for a 5-element
broadside array of z-directed Hertzian dipoles with λ/2 element spacing
along the x axis.



176 Electromagnetics and Antenna Technology

dB

φ

B
ro

ad
si

de
 

Array 

Figure 2.35 Moment method simulated polar absolute gain pattern in the xy plane
for a 5-element broadside array of z-directed Hertzian dipoles with λ/2
element spacing.
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Figure 2.36 Moment method simulated 3D relative gain pattern for a 5-element
endfire array of z-directed Hertzian dipoles with λ/4 element spacing
along the x axis.

2.8 Example of 2D Array Mutual Coupling Effects

Consider now a single λ/2 dipole oriented along the z axis in free space as
shown in Figure 2.38. The moment method simulated normalized 3D gain
pattern (vertically polarized, θ component) for this dipole antenna is shown
in Figure 2.39. To show the effect of array mutual coupling on the element
gain pattern, let the same dipole now be embedded in an 11× 11 resistively
terminated array as depicted in the FEKO model shown in Figure 2.40.
Due to array mutual coupling, in Figure 2.41 the moment method simulated
normalized gain pattern (vertically polarized, θ component) of the center
dipole element now has the peak gain shifted symmetrically upward and
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φ

dB

Array Endfire 

Figure 2.37 Moment method simulated polar absolute gain pattern in the xy plane for
a 5-element endfire array of z-directed Hertzian dipoles with λ/4 element
spacing.

downward from the xy plane, and thus has reduced relative gain in the xy
plane. There is a natual null in the direction of the z axis, which means the
dipole element in this orientation has a natural blind spot.

x
y

z

Figure 2.38 Moment method model for a λ/2 dipole in free space.

2.9 Swept-Back Dipole Array Measurements and
Simulations

2.9.1 Introduction

Dipole phased array antennas are commonly used in radar and communica-
tions applications, and these elements have been researched extensively in
the literature [23–26, 32–34, 48, 111–116]. Linear dipoles can be designed to
radiate or receive linear polarization. Crossed-dipoles can operate with dual
polarization or circular polarization. Dipoles typically have straight arms that
are parallel to a conducting ground plane; however, for wide-angle pattern
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Figure 2.39 Moment method simulated normalized 3D gain pattern (Gθ component)
for a single λ/2 dipole in free space.
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Resistively loaded dipoles

Figure 2.40 Moment method model for an 11×11 array of λ/2 dipoles with the center
element driven and the surrounding elements terminated in resistive
loads.

coverage for a single element, or wide-angle scanning for an array, the dipole
arms can be swept downward toward the ground plane forming a V-shaped
antenna [21, 43 p.300, ]. The element gain pattern for finite phased arrays
of dual-polarized crossed V-dipole (pronounced Vee dipole) antennas above
a ground plane is addressed in this chapter, both with computer simulation
and by measurements. The method of moments is used to compute the center
element gain pattern of a finite array of V-dipoles. An experimental 19-
element passively terminated planar array is described, and mutual coupling,
center element scanned array reflection coefficient, and center-element gain
pattern measurements are described here.
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Figure 2.41 Moment method simulated normalized 3D gain pattern (Gθ component)
for an 11 ×11 array of λ/2 dipoles with the center element driven and
the surrounding elements terminated in 100Ω resistive loads.

It is known that for certain radiating elements blind spots [1] can occur
in large planar phased-array antennas. In phased-array antenna applications,
a blind spot is identified with an array element pattern null (minimum) or
a scanned array reflection coefficient with amplitude equal to unity. For
example, a blind spot has been observed in a balun-fed straight-arm dipole
phased array [5, 6]. A center-fed straight dipole with balun is shown in
Figure 2.42(a). The dipole has a half length denoted l, with strip width w, and
is located a distance h above a conducting ground plane. The balun in this case
is a balanced two-wire line that is shorted at the ground plane, which for a one-
quarter wavelength transmission line, appears as an open-circuit at the feed
terminals to restrict current flow on the balun. When this element is situated
in a large phased array with the main beam steered away from broadside,
the illumination of the balun from the array elements is not symmetrical, and
unbalanced currents can flow on the balun. The presence of induced currents
flowing on the balun can radiate and in some cases cancel the primary field
of the dipole in a certain direction, creating the blind spot. This effect can be
reduced or eliminated by tilting the dipole arms toward the ground plane at an
angle α forming a V-shaped element [7-9] (see Figure 2.42(b)).

It can be inferred that the tilted arms of the V-dipole act to reduce the
amplitude of currents that flow on the balun stubs. If this inference is true,
then it can be assumed that the balun and feedline scattering can be ignored in
a theoretical analysis of the element gain pattern.

The radiation pattern of a single V-dipole antenna in free space can be
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dipole. c© 1988 IEEE [9].

computed as follows. Schelkunoff and Friis have given an expression for the
radiation pattern of a dipole arm with sinusoidal current distribution [10]. If
it is assumed that the dipole arm is oriented in the z′ direction, the radiation
field pattern is expressed as

Eθ =
j30it
sin kl

ejkl cos θ′j cos θ′ sin kl − cos kl

sin θ′
(2.112)

where k = 2π/λ, and λ is the wavelength. From the diagram shown in
Figure 2.43 for a V-dipole in free space, the pertinent angles θ′L for the left
half dipole and θ′R for the right half of the V-dipole, in terms of the angles θ
and α, are given by
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Figure 2.43 V-dipole element in free space.

θ′L =
π

2
− (θ + α) (2.113)

and
θ′R =

π

2
− (θ − α) (2.114)

The total electric field due to the left and right halves of the V-dipole
antenna is given by

Eθ = EθL + EθR (2.115)

Using (2.113) and (2.114) for the left and right halves of the V-dipole
in (2.112) can be combined to yield the total E-field for the V-dipole in free
space as

Eθ =
j30it

sin(kl)
(
ejkl sin(θ+α) − j sin(θ + α) sin(kl)− cos(kl)

cos(θ + α)

+
e−jkl sin(θ−α) + j sin(θ − α) sin(kl)− cos(kl)

cos(θ − α)
) (2.116)

If the V-dipole is located above a conducting ground plane, the method of
images can be used to include an image V-dipole forming a two-element
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array in free space, from which the combined primary plus image V-dipole
radiation pattern can be determined. The radiation patterns of an array of V-
dipole antennas can be computed by using the appropriate array factor.

To include the complete effects of the balun feed and dipole arms a
general-purpose moment method solver such as FEKO [12] can be used to
compute the V-dipole input impedance and element gain patterns.

Several infinite array analyses for dipole radiators with feedlines have
been developed [6, 10, 11]. In [6], straight-arm dipole arrays with feedlines
were analyzed in terms of the transverse magnetic (TM) feed region modes.
It was shown that the dominant TM mode can go into cut-off, producing
a blindspot, prior to the onset of grating lobes. This mode cut-off effect
was presented in terms of the propagation constant of the TM mode. The
theoretical results presented in [11] indicate the presence of blind spots in
the active scan impedance for straight dipole elements with feedlines. For
swept-back dipoles with feedlines it was demonstrated that a blind spot does
not tend to occur. It is desirable to be able to predict the V-dipole element
gain pattern in a finite array, including the effects of mutual coupling. Many
phased-array antennas are designed to scan up to about 60◦ from broadside.
The purpose of the next section is to show that over this ±60◦ scan sector
embedded element gain pattern simulations are accurate for V-dipole arrays
using a simplified method of moments model. Only the current flowing on
the dipole arms is included in the moment method model. Balun or feedline
effects are not considered here, but the effects of a finite ground plane are
included. Crossed dipole elements are useful in generating circular or dual-
linear polarization. Dual linearly polarized center-element gain patterns are
considered here. Passively terminated arrays are convenient for determining
the element gain pattern [5]. In this situation a single element is driven, usually
the center element, and the surrounding elements are terminated in resistive
loads.

2.9.2 Dipole Element Prototypes

A dipole array element design for straight and V-dipoles is discussed in this
section. The desired operating band of interest here is 1.2-1.4 GHz (15.4
percent bandwidth). At the center frequency (1.3 GHz), the dipole terminals
are located approximately λ/4 above the ground plane. Both straight-arm and
V-dipole elements were fabricated, for comparing their measured radiation
patterns when each element is mounted above a conducting ground plane.
A photograph of the crossed straight-arm dipole antenna used in these
measurements is shown in Figure 2.44. The dipole arms (l = 5.461 cm,
w = 0.356 cm, h = 5.588 cm were etched on a double-sided printed circuit
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(PC) board. Two of these PC boards are notched and interleaved, forming the

Figure 2.44 Photograph of a crossed straight-arm dipole antenna.

desired crossed dipole antenna. The crossed dipoles are fed by two separate
RG-141 (0.358 cm diameter) coaxial cables (with 50-ohm characteristic
impedance), which provide independent orthogonally polarized signals. The
balun/feedline is made from a section of RG-141 semi-rigid coaxial cable
and a solid brass rod (0.358 cm diameter). Electrical connections at the pair
of dipole terminals are facilitated by the use of a double-sided printed circuit
board. The balun feedlines (stubs) form a two-wire balanced line with spacing
0.754 cm. For the given line diameter and spacing, the balun characteristic
impedance is 165 ohms [14].

The crossed V-dipole element used in these experiments was fabricated
in the same manner, but with the arms swept down toward the ground plane
at a 45◦ angle, as shown in Figure 2.45 (l = 5.461 cm, w = 0.356 cm,
h = 5.588 cm, α = 45◦. Nineteen such V-dipoles were fabricated for array
testing. The ground plane used for the single element and V-dipole array
measurements was a 3.175 mm sheet of aluminum with dimensions 1.22m
× 1.22m square.

2.9.3 Measured and Simulated Results

To compare dipole designs, straight-arm and crossed V-dipole antennas were
mounted at the center of a 1.22m square aluminum ground plane, and linearly
polarized radiation patterns were measured in an anechoic chamber. The
measured E-plane and H-plane patterns are shown in Figures 2.46 and 2.47,
respectively.

In the measured E-plane patterns (Eθ component) shown in Figure 2.46,
as expected the V-dipole has a wider angular pattern coverage compared to
the straight-arm dipole. For angles greater than about 45◦ from broadside, the
E-plane radiation patterns of the straight and V-dipoles differ significantly.
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Figure 2.45 Photograph of a crossed V-dipole antenna.
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Figure 2.46 Measured E-plane radiation patterns for crossed straight-arm and
crossed V-dipole antennas.

For example, at an angle 60◦ from broadside, the V-dipole gain is about
5 dB higher than the straight dipole gain. This wider pattern coverage should
allow wider scanning coverage compared to the straight-arm dipole, which
is a motivating factor for tilting the dipole arms. In the measured H-plane
patterns (Eφ component) shown in Figure 2.47, the radiation patterns of the
straight-arm and V-dipole single elements are approximately the same.

A layout for the finite array of 19 V-dipole antenna elements on a 1.22m
square ground plane is shown in Figure 2.48. For wide-angle scanning the
V-dipole element spacing in the array is chosen as 12.7 cm (corresponding
to 0.55λ at the center frequency of 1.3 GHz) on a hexagonal lattice. This
lattice spacing allows scanning without the formation of grating lobes in any
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Figure 2.47 Measured H-plane radiation patterns for crossed straight-arm and
crossed V-dipole antennas.
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Figure 2.48 Layout for 19-element crossed V-dipole array. c© 1988 IEEE [118].

plane out to 60◦ from broadside. A photograph of the array of 19 V-dipoles
is shown in Figure 2.49. For center element gain pattern measurements and
moment method simulations, the center element is driven and 50-ohm resistive
loads are assumed at the terminals of each surrounding passively terminated
dipole element. For array mutual coupling (S parameter) measurements, the
center element is driven and all elements except the receive dipole element are
terminated in 50-ohm resistive loads. Center element return loss and mutual
coupling data were measured for the 19-element V-dipole array, and these data
are given in Figure 2.50. At 1.3 GHz (center frequency) the measured return
loss (20 log10 |S11|) was −8.5 dB. In the E-plane (φ = 0◦), the measured
coupling to the nearest neighbor was −25.5 dB. In the H-plane, the measured
coupling to the nearest neighbor was −19.7 dB. These measured complex
mutual coupling data can be summed according to Equation (2.36) to compute
the array scan reflection coefficient for the center element versus scan angle in
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Figure 2.49 Photograph of 19-element crossed V-dipole array.
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Figure 2.50 Measured return loss and mutual coupling for 19-element crossed V-
dipole array.

both E- and H-planes, as depicted in Figure 2.51. Based on these calculations,
the array scan mismatch loss ranges from about 0.5 dB to 1 dB over scan
angles from 0◦ to 60◦, respectively.

Measured and FEKO moment method simulated center element gain
patterns, in the passively terminated array, at 1.2, 1.3, and 1.4 GHz are
presented in Figures 2.52 (E-plane) and 2.53 (H-plane). The patterns indicate
peak gain (approximately 5 to 6 dBi) occurring in the vicinity of broadside
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Figure 2.51 Calculated scan reflection coefficient versus scan angle as computed

from measured mutual coupling data (Figure 2.49) for the 19-element
crossed V-dipole array.

and no more than 4 dB amplitude taper at 60◦ from broadside. Also, there is
no evidence of a blind spot. Over the 15.4% bandwidth shown, the measured
and simulated gain patterns are in good agreement.

2.10 Rectangular Waveguide Array Example

Open-ended rectangular or circular waveguide elements are commonly
suggested for phased array applications. Single open-ended rectangular and
circular waveguide antennas are analyzed in detail in Wolff [119]. The
behavior of planar arrays of open-ended rectangular waveguides has been
investigated by a number of authors [120–135]. Borgiotti [120] obtained a
mutual admittance expression between two identical radiating apertures in the
form of a Fourier transform of a function related to the power radiation pattern
of the element. Mailloux [121] used the method of moments and a single-
mode approximation to the aperture field to analyze the coupling between
two closely spaced open-ended waveguide slots. Mailloux [122] also analyzed
the coupling between collinear open-ended waveguide slots by expanding the
aperture field in a Fourier series. Bird [123] has analyzed the coupling between
rectangular waveguides of different sizes. An approximation to the behavior of
a finite array of rectangular waveguides was obtained by Amitay, Galindo, and
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Figure 2.52 Measured and moment method simulated center element gain patterns
for 19-element V-dipole array. Feeding xz dipole, E-plane, φ = 0◦ cut. (a)
1.2 GHz, (b) 1.3 GHz, and (c) 1.4 GHz.

Wu [6] by using infinite array techniques with finite array excitation. Wu also
analyzed a finite array of parallel plate waveguides [124] Cha and Hsiao [125]
and Hidayet [126] investigated the reflection coefficients of planar waveguide
arrays of size up to 13× 13 for a rectangular grid. Hidayet also analyzed
a 7× 7 planar array arranged in triangular grid. Luzwick and Harrington
[127] investigated the coupled power between elements of 7× 7 rectangular
and triangular grid arrays. Wang [128] investigated the measured E-plane
radiation patterns for the center element of a 3× 41 array of rectangular
waveguides and performed an infinite array analysis of both rectangular and
ridged waveguide arrays.

Consider now an example 7-element linear array of rectangular waveg-
uide elements, which is analyzed by the FEKO method of moments solver.
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Figure 2.53 Measured and moment method simulated center element gain patterns
for 19-element V-dipole array. Feeding yz dipole, H-plane, φ = 0◦ cut. (a)
1.2 GHz, (b) 1.3 GHz, and (c) 1.4 GHz.

Figure 2.54 shows the array meshed geometry in which the elements
operate at 1.3 GHz and have dimensions a =16.51 cm by b =4.064 cm
(6.5 inches by 1.6 inches) are arranged along the y axis with center-to-
center spacing 10.922 cm (4.3 inches). The elements radiate through a
perfectly conducting rectangular ground plane with dimensions 76.454 cm
by 60.96 cm (30.1 inches by 24.0 inches). Each of the seven elements are
fed by a rectangular waveguide section 10.16 cm (4.0 cm) long operating in
the dominant TE10 mode excitation. The TE10 mode cutoff frequency fc for
these waveguide elements is determined by the following equation

fc = c/(2a) (2.117)

where c is the speed of light and a is the waveguide broadwall width.
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Substituting a =16.51 cm in Equation (2.117) yields a wavguide cutoff
frequency for the TE10 mode equal to 0.908 GHz. The automatically meshed
model in Figure 2.54 uses 5278 metallic triangular patches.

x

z

y

Figure 2.54 Moment method meshed model of a 7-element rectangular waveguide
phased array.
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Figure 2.55 Moment method simulated scanned directivity patterns for a 7-element
rectangular waveguide phased array.

2.11 Summary

This chapter, together with Chapter 1, has reviewed the important foundation
of electromagnetic theory for application to phased array antenna develop-
ment. In this chapter, basic array theory, the reaction integral equation, method
of moments, and infinite-array theory were reviewed in detail to allow the
analysis of phased array antennas, including the effects of mutual coupling
between the antenna elements. In the following chapters, the practical design
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and development of ultrawideband array antennas is described. The method
of moments is used in designing and analyzing the performance of these
prototype antennas.
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3
Line Transformer Matching of a
Dipole Antenna

3.1 Introduction

Dipole antennas are commonly used as single elements, as a feed for reflector
antennas, or in arrays for communications and radar applications [1-32].
Crossed dipole antennas can be used for example for dual linearly polarized
or circularly polarized applications. The RF performance of an antenna is
often quantified by the reflection coefficient (also referred to as return loss)
or VSWR at the input port to the antenna. For example, the magnitude of the
reflection coefficient of an antenna is a critical design parameter that must be
minimized for providing maximum realized antenna gain or efficient power
transmission between the antenna and the transmission line connected to the
antenna.

Impedance matching is a well established technique for improving the
reflection coefficient of antennas over a band of frequencies [33-44]. Dipoles
are sometimes fed in a balanced (differential) mode by using a folded balun
design [44, 45]. In this chapter, an impedance matching example for a folded
balun-fed dipole antenna is described in detail. Besides impedance matching,
to provide an increased amount of inherent bandwidth, the dipole arms are
designed to be cylindrical tubes rather than thin wires. In Figure 3.1, the
tubular dipole arms have length l and diameter d. The folded balun section
consists of two vertical tubes with center-to-center spacing s and height H .
The balun tubes are assumed to have outer diameter D and they are short
circuited to the ground plane, forming a short-circuit stub in parallel with
respect to the dipole feed terminals. In this antenna design, the arms are
swept-back at a 45◦ angle to increase the E-plane beamwidth as discussed in
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Chapter 2. An electrically conducting feed tab connects the center conductor
to the dummy (passive metal tube) portion of the folded balun. The coaxial
port connects to an inner conductor of diameter d1 and a surrounding tube with
inner diameterD (an infinitesimal wall thickness is assumed here). The values
of d1 and D are adjusted typically to provide a 50Ω characteristic impedance.
In practice, the coaxial port is fed typically with a microwave connector
such as type N or SMA depending on RF power handling requirements and
operating frequency. The parallel balun tubes form an open-wire transmission
line with characteristic impedance given by [44]

Zo =
120
√
εr

cosh−1 s

D
(3.1)

The characteristic impedance of the coaxial feed line is given by [44]

Zo =
138
√
εr

log10
D

d1
(3.2)

Figure 3.1 Diagram showing a swept-back dipole with coaxial folded balun over a
ground plane.

In [33–35], the theory for impedance matching using line transformers,
series networks, and parallel networks is provided. This chapter provides
a detailed discussion and simulations of a line transformer for providing
wideband matching for the input impedance of an example UHF swept-
back dipole antenna. In practice, the impedance matching approach discussed
here would involve the design of the feeding structure, which in this case
would be a stepped coaxial transmission line transformer contained within
the balun as depicted in Figure 3.2. In this case, the coaxial feedline
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contains an impedance transformer section with an inner conductor with
diameter d2 adjusted for a desired characteristic impedance to match the
input impedance of the dipole. Chapter 1 reviewed transmission line theory
in detail. The next section (Section 3.2) provides a brief review as it relates
to the derivation of the line transformer matching theory (Section 3.3). An
application of the line transformer matching theory to designing a wideband
swept-back dipole is described along with simulated moment method results
in Section 3.4. Section 3.5 describes a comparison between simulated and
measured mismatch loss results for a prototype swept-back dipole. Section 3.6
simulates the radiation patterns for the wideband swept-back dipole feeding a
parabolic reflector antenna. Section 3.7 has a summary.

Figure 3.2 Diagram showing a swept-back dipole with line transformer section with a
coaxial folded balun over a ground plane.

3.2 Basic Transmission Line Theory

In this section, a brief review of basic transmission line theory is provided as it
relates to the line transformer impedance matching theory [33-35]. Referring
to Figure 3.3, consider first a length l of transmission line with a characteristic
impedance Zo. Assume that the transmission line’s attenuation constant α
is equal to zero. The electrical length is given by the quantity βl, where
β = 2π/λ is the wavelength-dependent phase propagation constant of the
transmission line. Assume that an antenna has a complex load impedance
denoted as ZL. At a distance l along a lossless transmission line with
characteristic impedance Zo and phase propagation constant β, the input
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Zo, α, β ZL

V(z), I(z)
z=-ℓ

VL

IL +

_

zz=0

Zin

Figure 3.3 Transmission line with characteristic impedance Zo and length l
connected to a load impedance ZL.

impedance Zin as function of position is then given by

Zin = Zo
ZL + jZo tanβl

Zo + jZL tanβl
(3.3)

and in terms of its complex conjugate

Z∗in = Zo
Z∗L − jZo tanβl

Zo − jZ∗L tanβl
(3.4)

The input admittance Yin is given by

Yin = 1/Zin (3.5)

Solving Equation (3.3) for ZL yields

ZL = Zo
Zin − jZo tanβl

Zo − jZin tanβl
(3.6)

In the case where the load is a short circuit (ZL = 0) or an open circuit
(ZL =∞), respectively, Equation (3.3) reduces to

Zsc
in = jZo tan(βl) (3.7)

Zoc
in = −jZo

1

tan(βl)
(3.8)

The product of Equations (3.7) and 3.8 leads to an expression for the
characteristic impedance in terms of the short-circuit and open-circuit input
impedances as

Zo =
√
Zsc

in × Z
oc
in (3.9)
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The reflection coefficient in terms of the load impedance ZL and
transmission line characteristic impedance Zo is given by

Γ =
ZL − Zo
ZL + Zo

(3.10)

and in normalized form in terms of zL = ZL/Zo as

Γ =
zL − 1

zL + 1
= |Γ|ejφ (3.11)

It follows from Equation (3.11) that the normalized load impedance is
expressed as

zL =
1 + Γ

1− Γ
(3.12)

Rearranging Equation (3.10), the load impedance in terms of the reflection
coefficient is given by

ZL = Zo
1 + Γ

1− Γ
(3.13)

The voltage standing wave ratio (VSWR) is expressed as

VSWR =
1 + |Γ|
1− |Γ|

(3.14)

Having reviewed some of the fundamental equations that quantify the input
impedance, load impedance, reflection coefficient, and VSWR, the next
section addresses line transformer impedance matching theory.

3.3 Line Transformer Impedance Matching Theory

In the impedance matching procedure that follows, electromagnetic simula-
tions (or measurements) would be used to determine the input impedance
at the antenna terminals of the swept-back crossed dipole antenna depicted
in Figure 3.1. The dipole arms and geometry and height of feed terminals
with respect to the ground plane are designed based on simple theory
and using prior experience, which is discussed later in this chapter. In
the electromagnetic field simulations and line transformer calculations that
follow, the dipole antenna is fed initially (before matching) with a standard
Zo = 50Ω coaxial feedline, which is not expected to provide the desired
final reflection coefficient magitude or VSWR. A voltage source is located
at the input port of the 50-ohm coaxial feedline (located at the ground
plane), and the input impedance of the antenna simulated at the ground plane
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reference position is determined. (Note: the same approach can be applied
for measurements). The next step is to transform the input impedance at
the ground plane to the complex load ZL at the antenna terminals using
Equation (3.6). This antenna terminal input impedance (load impedance)
becomes the starting value for impedance matching. Next, a series transformer
transmission line with derived values of characteristic impedance and length
is introduced to improve the reflection coefficient. The input impedance
matching technique discussed in this chapter is as follows:

• Plot the antenna load impedance (input impedance) in Cartesian
coordinates, where the horizontal axis is resistance and the vertical
axis is reactance,
• Define a target maximum allowed VSWR (plotted as a circle) at an

input port located on a standard 50-ohm transmission line,
• Draw an outer boundary circle (OBC) encompassing the input

impedance data at the antenna terminals and tangent to the target
VSWR circle,
• Compute the required characteristic impedance of the line trans-

former Z ′o using the square root (geometric mean) of the product
of the resistance minimum (denoted ROBC

min and resistance maximum
ROBC

max on the resistance axis intersecting the OBC, that is,

Z ′o =
√
ROBC

min ×ROBC
max (3.15)

• Compute and plot the family of transformation circles that ensures
impedance values versus frequency will transform to within the
desired target VSWR (target circle).
• Select a critical frequency in this case where the antenna load

impedance intersects the outer boundary circle, and locate the
corresponding transformation circle that encompasses the impedance
data point at this frequency, From the electrical length βl of the
corresponding transformation circle, solve for the transformer critical
length l = lc using β = 2π/λwhere λ is the wavelength at the critical
frequency.
• Tabulate the electrical line length of the transformer section over

the frequency band of interest, and verify that the input impedance
at the terminals of the dipole antenna tracks within the series of
transformation circles.
• Transform the antenna load impedance to the input impedance

and reflection coefficient looking into the line transformer with
characteristic impedance Z ′o and critical length lc.
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• Normalize the reflection coefficient data to the final characteristic
impedance (50Ω) of the feedline attached to the transformer, and plot
as the matched input impedance.

3.3.1 Target Circle for Maximum Allowed VSWR

Consider first a target circle, which is also referred to by some authors as a
definition circle [33-35]. The target circle defines the maximum allow VSWR,
and is expressed mathematically and visually in the Cartesian complex
impedance coordinate system. Letting Zin = Rin + jXin, the equation for the
target circle is given by

(Rin − a)2 +X2
in = b2 (3.16)

where Rin is the input resistance, Xin is the input reactance, a is the offset of
the center of the target circle from the value of zero input resistance, and b is
the radius of the circle. The a and b parameters are expressed in terms of the
target transmission line characteristic impedance Zo and the VSWR as

a =
Zo
2

(
VSWR +

1

VSWR

)
(3.17)

b =
Zo
2

(
VSWR− 1

VSWR

)
(3.18)

and note that
a2 − b2 = Zo (3.19)

Equation (3.16) is now expanded as

R2
in − 2aRin +X2

in = b2 (3.20)

Noting for an arbitrary impedance Z that

Z = R+ jX (3.21)

Z∗ = R− jX (3.22)

and
Z + Z∗ = 2R (3.23)

Z − Z∗ = j2X (3.24)

it follows that
ZZ∗ = R2 +X2 (3.25)
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Using these impedance relations (Equations (3.21) to (3.25)), Equation (3.20)
can be expressed as

ZinZ
∗
in − a(Zin + Z∗in) = b2 − a2 (3.26)

Equation (3.26) is the desired expression for the target circle in terms of the
input impedance Zin and VSWR matched to the input transmission line. The
next section derives a series of transformation circles that will ensure that the
terminal impedance of the antenna will be matched to the target VSWR on the
input transmission line.

3.3.2 Transformation Circle Derivation

Refer now to Figure 3.4, which shows a line transformer with characteristic
impedance Z ′o and an antenna load impedance ZL. The input impedance Zin
at the port defined by nodes 1 and 2 is expressed as,

Zin = Z ′o
Z ′L + jZ ′o tanβl

Z ′o + jZL tanβl
(3.27)

and in terms of its complex conjugate

Z∗in = Z ′o
Z∗L − jZ ′o tanβl

Z ′o − jZ∗L tanβl
(3.28)

At the port defined by nodes 1 and 2, the input impedance can be normalized

Zo, β ZL

z=-ℓ

VL

IL +

_

zz=0

ZinZo, β ’

1

2

Transformer section

Figure 3.4 Transmission line with characteristic impedance Zo followed by a
transformer section with characteristic impedance Z′o and length l
connected to a load impedance ZL.

either by Z ′o or by Zo, depending on which side the input impedance is being
computed.
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Substituting Equations (3.27 and (3.28) into Equation (3.26) yields(
Z ′o

ZL+jZ′o tanβl
Z′o+jZL tanβl

) (
Z ′o

Z∗L−jZ
′
o tanβl

Z′o−jZ∗L tanβl

)
−a

[(
Z ′o

ZL+jZ′o tanβl
Z′o+jZL tanβl

)
+
(
Z ′o

Z∗L−jZ
′
o tanβl

Z′o−jZ∗L tanβl

)]
= b2 − a2 (3.29)

In the book by Reich [33], it is shown that Equation (3.29) can be expressed
in the standard form of the equation of a circle center on the resistance axis at
R and on the reactance axis at X with radius r as

(RL −R)2 + (XL −X)2 = r2 (3.30)

where

R =
a(1 + tan2 βl)

1 + a2−b2
(Z′o)

2 tan2 βl
(3.31)

X =
Zo tanβl

(
a2−b2
(Z′o)

2 − 1
)

1 + a2−b2
(Z′o)

2 tan2 βl
(3.32)

r =
b(1 + tan2 βl)

1 + a2−b2
(Z′o)

2 tan2 βl
(3.33)

Equation (3.30) is the desired transformation circle that forms a bilinear
transformation to the target circle for a line transformer with characteristic
impedance Z ′o and electrical length βl. In other words, load impedance values
ZL that are located within the transformation circle will be transformed
to impedance values within the desired target circle with characteristic
impedance Zo. To derive Equations (3.31) to (3.33) it is necessary first to mul-
tiply all terms in Equation (3.29) by the expression (Z ′o + jZL tanβl)(Z ′o −
jZ∗L tanβl). Next, the relations given by Equations (3.23) to (3.25 are used to
express the equation in terms of RL and XL. Next, bring all terms involving
RL and XL to the left side and the remaining terms to the right side. By
completing the square for the RL and XL terms, and a considerable amount
of algebraic manipulations, the desired results Equations (3.31) to (3.33) are
obtained.

By referring to Equation (3.19) a further simplification of the transfor-
mation Equations (3.31) to (3.33) is achieved, that is, replace a2 − b2 with Zo,
so that

R =
a(1 + tan2 βl)

1 + Zo
(Z′o)

2 tan2 βl
(3.34)
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X =
Zo tanβl

(
Zo

(Z′o)
2 − 1

)
1 + Zo

(Z′o)
2 tan2 βl

(3.35)

r =
b(1 + tan2 βl)

1 + Zo
(Z′o)

2 tan2 βl
(3.36)

3.4 Wideband V-Dipole Antenna Simulation

3.4.1 Dipole Design and Moment Method Simulation Model

Consider now a computer simulation model of a wideband dual-polarized
crossed dipole antenna with swept-back arms. A V-dipole antenna of this
type could be mounted on a small ground plane and could be used in this
configuration for example as a wideband gain calibration antenna or as a
wideband feed for an instrumentation parabolic reflector antenna. Figure 3.5
shows an example of a linearly polarized swept-back (V-shaped) dipole
antenna feeding a reflector antenna.

Figure 3.5 Example prototype linearly polarized V-dipole antenna as a feed for a
reflector antenna.

A dual-polarized dipole antenna over a ground plane in free space is
now designed here for wide bandwidth within a portion of the arbitrarily
chosen octave frequency range 400 MHz to 800 MHz. At an assumed center
frequency of 600 MHz, the free-space wavelength is 50 cm. For this example,
consider a dual-polarized swept-back dipole antenna with folded balun over
a perfectly conducting finite ground plane that is modeled with the FEKO
moment method solver (www.feko.info) as shown in an isometric view in
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Figure 3.6. A side view of the antenna is shown in Figure 3.7. The dipole

Figure 3.6 Simulation model of a crossed V-dipole antenna. Isometric view.

Ground plane

17.9 cm
13.4 cm

1.42 cm diameter
dipole arms and balun

3.81 cm 1.27 cm

Figure 3.7 Simulation model of a crossed V-dipole antenna. Side view.

arm length was chosen as 13.4 cm, which is 0.268λ at 600 MHz (center
frequency). The dipole arms and balun sections are modeled as 1.42 cm
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diameter (D in Figure 3.1) perfectly conducting tubes. The dipole height is
chosen as 17.9 cm (H in Figure 3.1) so that at the center frequency, the
height at the midpoint of the dipole arm is approximately λ/4 over the ground
plane. The square ground plane side dimension was 45.72 cm. The folded
balun tubes are spaced 3.81 cm center to center (s in Figure 3.1), which by
Equation (3.1) provides a 197Ω characteristic impedance transmission line.
The folded balun provides mechanical support of the dipole arms and is short
circuited at the ground plane. Electrically, this balun behaves as a purely
reactive impedance in parallel with the dipole feed terminals. One of the balun
tubes contains a uniform diameter perfectly conducting rod that provides
a 50Ω characteristic impedance coaxial transmission line. This coaxial line
is connected to the dipole terminals using a crossover connection located
1.27 cm (h in Figure 3.1) above the top of the folded balun. A top view of
the antenna is shown in Figure 3.8, where the side length of the ground plane
in this example is noted to be 0.46m.

0.46m

Ground plane

Figure 3.8 Simulation model of a crossed V-dipole antenna. Front view.

3.4.2 Impedance Matching Procedure for the Wideband Dipole

The impedance matching procedure in this example is as follows:

• Plot the dipole antenna load impedance (at the dipole terminals) in
Cartesian coordinates, where the horizontal axis is resistance and the
vertical axis is reactance,
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• Define a target maximum allowed VSWR=2 (plotted as a circle) at an
input port located on a standard 50-ohm transmission line,
• Draw an outer boundary circle (OBC) encompassing the antenna

load impedance data and tangent to the target VSWR=2 circle at the
minimum resistance value,
• Compute the required characteristic impedance of the line trans-

former Z ′o using the square root (geometric mean) of the product
of the resistance minimum (denoted ROBC

min and resistance maximum
ROBC

max on the resistance axis intersecting the OBC, that is,

Z ′o =
√
ROBC

min ×ROBC
max (3.37)

• Compute and plot, as an overlay on the impedance data, the
transformation circles, from 15◦ to 165◦ in 15◦ steps. Construct
additional transformation circles for finer resolution as needed.
• Select a critical frequency in this case where the antenna load

impedance intersects the outer boundary circle, and locate the
corresponding transformation circle that encompasses the impedance
data point at this frequency, From the electrical length βl of the
corresponding transformation circle, solve for the transformer critical
length l = lc using β = 2π/λwhere λ is the wavelength at the critical
frequency.
• Tabulate the electrical line length of the transformer section over

the frequency band of interest, and verify that the input impedance
at the terminals of the dipole antenna tracks within the series of
transformation circles.
• Transform the antenna load impedance to the input impedance

and reflection coefficient looking into the line transformer with
characteristic impedance Z ′o and critical length lc.
• Normalize the reflection coefficient data to the final characteristic

impedance (50Ω) of the feedline attached to the transformer, and plot
as the matched input impedance.

3.4.3 Impedance Matching Simulated Results for the Wideband
Dipole

Before matching, the simulated input impedance and reflection coefficient
versus frequency at one of the terminals of the crossed dipole, with the other
port 50Ω resistively loaded, is shown in Figures 3.9, 3.10 and 3.11. In this
moment method simulation, a voltage source was applied at the input port
to the 50Ω coaxial feed line at the ground plane, and then the computed
input impedance at the ground plane was transformed to the dipole terminals
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using Equation (3.6). The input impedance has a first natural resonance at
approximately 440 MHz, and is antiresonant at approximately 560 MHz. The
antenna has a second natural resonance at approximately 720 MHz. The same
simulated input impedance data are plotted in a Smith chart in Figure 3.10.
The corresponding reflection coefficient magnitude versus frequency is shown
in Figure 3.11. It is observed that the reflection coefficient magnitude in dB
has minima occuring near the two natural resonant frequencies. The reflection
coefficient magnitude has a peak occuring at the antiresonant frequency as
well as large values occuring at the edges of the 400 MHz to 800 MHz band.

Assume now that it is desired to improve the reflection coefficient
performance, such that a voltage standing wave ratio (VSWR)≤ 2 is achieved
over a large bandwidth. To start the impedance matching procedure, in
Figure 3.12 the complex (real, imaginary) input impedance is plotted as
reactance versus resistance. Let the desired upper frequency arbitrarily be
chosen as 780 MHz. Then, construct the outer boundary circle (OBC) to
encompass the impedance data such that the OBC (solid circle) is tangent
to the VSWR=2 circle (dashed circle) where the minimum resistance value is
25Ω, as shown in Figure 3.12. The minimum and maximum resistance values
of the outer boundary circle are 25Ω and 260.5Ω, respectively. Then from
Equation (3.37) the required line transformer has a characteristic impedance

Z ′o =
√

25Ω× 260.5Ω = 80.7Ω (3.38)

which is rounded here to Z ′o = 81Ω.
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Figure 3.9 Simulated input impedance versus frequency at the terminals of a crossed
V-dipole antenna before matching.
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Figure 3.10 Simulated input impedance (Smith chart) at the terminals of a crossed
V-dipole antenna before matching.
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Figure 3.11 Simulated reflection coefficient magnitude in decibels versus frequency
at the terminals of a crossed V-dipole antenna before matching.
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Having determined the line transformer characteristic impedance Z ′o =
81Ω, the next step is to construct the corresponding series of transformation
circles (refer to Equations (3.29 and 3.34 to 3.36)) from 15◦ to 165◦,
which are shown in Figure 3.13. The input impedance data at the dipole
terminals are then overlayed with the transformation circles in Figure 3.14. To
determine the required length (l) of the impedance-matching line transformer,
it is necessary to select the so-called critical frequency, in this case where
the upper frequency (780 MHz) load impedance intersects with one of the
transformation circles. The impedance data at 780 MHz is at the edge of the
βl = 120◦ circle. Since β = 2π/λ, then l = 12.7 cm is the length of the line
transformer to be considered. Table 3.1 shows the electrical length of the 81Ω
line transformer at several frequencies. Comparing these electrical lengths
with the transformation circles and data shown in Figure 3.14, it is observed
that the impedance data points fall within, or lay just outside, transformation
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Figure 3.12 Simulated input impedance (solid curve with diamond markers) at the
terminals of a UHF crossed V-dipole antenna fed with a 50-ohm coaxial
transmission line in a folded balun arrangement. The target circle
(dashed curve) corresponds to a VSWR=2 on a 50-ohm characteristic
impedance line. An outer boundary circule has been constructed to
define the region of the input impedance that will be impedance matched
to the target circle region.
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Figure 3.13 The family of transformation circles for a line transformer of 81-ohm
characteristic impedance for electrical lengths 15◦ to 165◦. The target
circle (dashed curve) corresponds to a VSWR=2.

circles that impedance match to the target VSWR=2 circle (dashed circle).
That is, as the complex input impedance varies with frequency as shown in
Figure 3.14, the data approximately track within the diameter of one of the
transformation circles.

Having determined the desired parameters of the line transformer,
that is, characteristic impedance Z ′o = 80.7Ω and line length l = 12.7 cm,
Equation (3.3) can be used to compute the dipole antenna input impedance
at the end of the line transformer. Figure 3.15 shows the before and after
impedance matching results where it is observed that the impedance-matched
data generally fall within the target VSWR=2 circle, except (as expected) at
the band edges. The simulated VSWR before and after matching is shown
in Figure 3.16. The target VSWR=2 has generally been achieved over a
wide bandwidth as desired. Note that the VSWR increases to just under
2.2 in the vicinity of 480 MHz. Due to impedance matching, the overall
improvement in VSWR is observed to be significant, by about a factor of
two over the middle portion of the frequency range. The simulated reflection
coefficient magnitude before and after matching is shown in Figure 3.17, and
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Figure 3.14 Simulated input impedance (solid curve with diamond markers) at
the terminals of a UHF crossed V-dipole antenna fed with a 50-ohm
coaxial transmission line in a folded balun arrangement. The target
constant VSWR=2 circle is shown as a dashed curve. The impedance
transformation circles from 15◦ to 165◦ are shown

the corresponding transmission mismatch loss is shown in Figure 3.18. The
transmission mismatch loss before matching has a maximum value of about
2.4 dB occuring near 560 MHz. After impedance matching the mismatch loss
is less than about 0.6 dB from 420 MHz to 780 MHz – due to impedance
matching the realized gain would be within 0.6 dB of the ideal antenna
directivity with no mismatch loss. For example, with the 81-ohm coaxial line
transformer section simulated in FEKO, at the center frequency of 600 MHz
the simulated boresight directivity of the swept-back dipole over ground plane
was 6.45 dBi and the realized gain was 6.0 dBi – for this case the simulated
mismatch loss was 0.45 dB. Prior to matching with the line transformer
section, for the constant 50-ohm coaxial feed at 600 MHz the simulated
boresight directivity was 6.45 dBi, but the realized gain was only 4.27 dBi
due to the mismatch loss being 2.18 dB. Thus, with the line transformer
design, at the center frequency the swept-back dipole realized gain increased
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Figure 3.15 Simulated input impedance of a UHF crossed V-dipole antenna before
and after impedance matching with an 81-ohm series line transformer.

by 1.75 dB compared to the case where the coaxial feedline had a constant
50-ohm characteristic impedance.

3.5 Comparison with Measurements

A dual-polarized swept-back dipole prototype was fabricated using metal
tubing based on the dimensions shown in Figure 3.7. The prototype dipole
used a stepped coaxial center conductor matching section to implement the
81-ohm series line transformer. The prototype antenna reflection coefficient
was measured and was converted to mismatch loss referenced to 50 ohms. A
comparison of the simulated and measured mismatch loss over the 400 MHz
to 800 MHz band is shown in Figure 3.19 and good agreement is evident.

3.6 Swept-Back Dipole Feeding a Parabolic Reflector

In this section, a simulation of the swept-back dipole (designed in Section 3.4)
feeding a 4.57m diameter parabolic reflector with focal distance to diameter
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Figure 3.16 Simulated VSWR for a UHF crossed V-dipole antenna before and
after impedance matching with an 81-ohm series line transformer. The
reference impedance is 50 ohms. The target VSWR was 2.0.

Table 3.1
Line transformer electrical length βl as a function of frequency to match the input
impedance to achieve the target VSWR<2 for a crossed V-dipole antenna. The

critical frequency is taken as 780 MHz where the electrical length of the line
transformer is 120◦.

Frequency Electrical length of line transfomer (βl)
420 MHz 65◦

450 MHz 69◦

500 MHz 77◦

550 MHz 85◦

600 MHz 92◦

650 MHz 100◦

700 MHz 108◦

750 MHz 115◦

780 MHz 120◦

ratio (f/D) equal to 0.4 is described. In this simulation the dipole was assumed
to be linearly polarized similar to the dipole shown in the photograph in
Figure 3.5. Figure 3.20 shows the simulated dipole/reflector model. In this



Line Transformer Matching of a Dipole Antenna 221

400 500 600 700 800
Frequency (MHz)

-30

-20

-10

0

10

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t (

dB
)

50Ω Reference

Before Matching
After Matching

Figure 3.17 Simulated reflection coefficient magnitude for a UHF crossed V-dipole
antenna before and after impedance matching with an 81-ohm series
line transformer. The reference impedance is 50 ohms.
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Figure 3.18 Simulated transmission mismatch loss for a UHF crossed V-dipole
antenna before and after impedance matching with an 81-ohm series
line transformer. The reference impedance is 50 ohms.

case, the angle from the focal point of the reflector to the rim of the reflector
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Figure 3.19 Comparison of simulated and measured mismatch loss for a UHF
crossed V-dipole antenna before and after impedance matching with an
81-ohm series line transformer. The reference impedance is 50 ohms.

Figure 3.20 Parabolic reflector fed with a V-dipole antenna at the focal point.

is 64◦. The method of moments simulated wideband swept-back dipole far-
zone E-plane and H-plane directivity patterns are shown in Figures 3.21 and
3.22, respectively, and wide-angle coverage is observed. The FEKO physical
optics solver was used to compute the far-field E-plane and H-plane radiation
patterns of the reflector antenna (Figures 3.23 and 3.24). The simulated
reflector peak directivity is 24.7 dBi, 27.4 dBi, and 28.6 dBi at 420 MHz,
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600 MHz, 780 MHz, respectively. Wideband performance is observed with
this type of dipole feed.
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Figure 3.21 Simulated wideband V-dipole E-plane directivity patterns.
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Figure 3.22 Simulated wideband V-dipole H-plane directivity patterns.

3.7 Summary

This chapter has reviewed the line transformer theory and method for
impedance matching a complex antenna load to a target VSWR over a
wide band of frequencies. The input impedance of an example UHF crossed
swept-back dipole antenna was simulated using the method of moments. The
line transformer impedance matching method was applied to the simulated
antenna and a wide-band match was achieved. This impedance matching
technique can be applied readily to other antennas. This type of dipole
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Figure 3.23 Simulated E-plane directivity patterns for wideband V-dipole feeding a
parabolic reflector.
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Figure 3.24 Simulated H-plane directivity patterns for wideband V-dipole feeding a
parabolic reflector.

antenna has wide-angle pattern coverage and was shown to provide wideband
performance as a feed for a parabolic reflector antenna.
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