AD

Award Number: W81XWH-10-1-0391

TITLE: A System Solution for Voice Applications

PRINCIPAL INVESTIGATOR: Dr. Gregory Gadbois

CONTRACTING ORGANIZATION: Handheld Speech, LLC

Amesbury, MA 01913

REPORT DATE: December 2011

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of the Army position, policy or decision
unless so designated by other documentation.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
01-12-2011 Final

3. DATES COVERED (From - To)
7 Jul 2010 - 6 Nov 2011

4. TITLE AND SUBTITLE
A System Solution for Voice Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

W81XWH-10-1-0391
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Dr. Gregory Gadbois

E-Mail: greg@handheldspeech.com

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Handheld Speech, LLC
Amesbury, MA 01913

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This project was the first implementation of a system of speech applications sharing the recognition resource (via a Multi-Voice
architecture). There were improvements in the recognition engine for more efficient running of multiple recognizers and to suppori

the coordination of system level resources.

15. SUBJECT TERMS
a system solution of speech applications using Multi-Voice recognition

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT
a. REPORT b. ABSTRACT c. THIS PAGE
u U U uu

18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF PAGES USAMRMC

19b. TELEPHONE NUMBER (include area
12 code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Brittany.Jackson
Typewritten Text
This project was the first implementation of a system of speech applications sharing the recognition resource (via a Multi-Voice architecture). There were improvements in the recognition engine for more efficient running of multiple recognizers and to support the coordination of system level resources.

Brittany.Jackson
Typewritten Text
a system solution of speech applications using Multi-Voice recognition

Brittany.Jackson
Typewritten Text
A System Solution for Voice Applications

Brittany.Jackson
Typewritten Text
Dr. Gregory Gadbois

Brittany.Jackson
Typewritten Text
Handheld Speech, LLC
Amesbury, MA 01913

Brittany.Jackson
Typewritten Text
W81XWH-10-1-0391

Brittany.Jackson
Typewritten Text
7 Jul 2010 - 6 Nov 2011

Brittany.Jackson
Typewritten Text
Final

Brittany.Jackson
Typewritten Text
01-12-2011

Brittany.Jackson
Typewritten Text
greg@handheldspeech.com

Brittany.Jackson
Typewritten Text

Brittany.Jackson
Typewritten Text
12

Table of Contents

Background — Multi-Voice Speech Recognition............c..coveiviivmnnnennnn.
ELINIFIX ... e b e
The Low Bandwidth Communication Application..........ocvvviiniieniiinnnns
The Map Application........cccoiiiin
The Evolution of the Recognition System Services........c.occvvvvviiiiiiinas
Key Research Accomplishments..............ooii
Reportable' OUICOMES .. e
COoNCIUSION.o e e P

== 11 T

Introduction:

HandHeld Speech invented a new speech recognition architecture we call Multi-Voice. The
Multi-Voice recognition architecture allows a simple design for a system service supporting
multiple simultaneous speech applications. A recognition service of that design was created.
But prior to this project that Multi-Voice service had only been used with applications running
singlely {not muitiple simuitaneously applications). Until this new service is used with
simuitaneous applications there will be uncorrected oversights in functionality and APl's, The
service will be immature until a real use of simultaneous speech applications is explored. The
purpose of this project was to do that exploration. And as expected, there were oversights in
functionality discovered and inefficiencies corrected. '

The project needed multiple applications, the choice of applications was irrelevant from a
research point of view. But, the more useful the applications are, the more they show how
such a system solution is crucial for the future. So choosing relevant applications mattered.
Making prototypes of real solutions to real problems underlines the strength of the Multi-Voice
architecture. We partnered with Elintrix to improve the user interfaces of their mesh network
radios. We chose two applications to run on their mobile devices, a map application and a low
~ bandwidth communication application.

This project has been an engineering research project. It is an exploration of user interface
ideas. The basic technology had been developed earlier. In this project we made that

technology work.

Body:
Background — Multi-Voice Speech Recognition:

Prior to the Multi-Voice architecture, all speech recognition system services have been
modeled on the keyboard service. With the keyboard service, one particular application has
the focus. To illustrate the keyboard service, suppose there are two programs running, one a
word processor and the other, an email client. And suppose one is currently writing an email.
When an X' is typed, the 'x' goes into the email being written, not into to the word processor
window. The email composition window has the “focus”. To select the word processor
window, that window must be tapped, bringing it to the foreground, giving it the “focus”, before
the typing will go into that window. The window with the focus gets the keyboard input.

In a similar manner, only one application at a time had the recognition engine's “focus”. The
application with the focus got all the recognition events. If two applications are alive and they
both want to interact with the speech recognition service, only one of them wins, the one with
the “focus”. You must tap the window of the other application, bringing it to the foreground,
allowing it to capture the “focus”, making it the new destination for speech input. If the wrong
application had the focus, when the user speaks, things go awry. Worse some applications,
periodically set the speech focus back to themselves, just in case they had lost it. Multiple
voice aware applications don't “play well together” (they fight over the resource). Except for

our new Multi-Voice service, that is the current state of speech recognition services.

In a completely different domain, we at HandHeld Speech were trying to find a better solution
for speaker independence. We developed a new architecture for a speech recognition
engine. We designed a solution where we run multiple recognizers in parallel. Each
recognizer is speaker dependent (they only model one speaker's voice). [f we have a catalog
of models covering the spectrum of voices, using all of them simultaneously, we achieve
speaker-independent recognition. When a speaker says something, all the recognizers run in
parallel, the models that best fit the speaker “wins”, and accurate recognition results.

The clever part of this process was to do it efficiently. We use competition to limit the
computation. The recognizers must be normalized so that they compete fairly. To illustrate,
suppose there are two recognizers running, two sets of voice models, a deep male voice and
a high female voice. Suppose the speaker says a four word command. As he begins
speaking, both recognizers are getting data. If the speaker actually has a deep male voice,
by the time he finishes saying the first word, there is a hypothesis using the deep male
modeis that is scoring very well. By comparison, there are no hypotheses using the female
models that score anywhere close to the “good” deep male hypothesis. We prune
hypotheses that are scoring very much worse than the “best” hypothesis. Very quickly all the
hypotheses using the high female voice models, die. When the last hypothesis is pruned, we
prune the whole recognizer. In this way we can start recognition with an array of recognizers
running. Assuming one of them accurately models what is being spoken, the “correct”
modeling will prune all the competing recognizers. Very quickly (in the first couple syllables)
all the recognizers but one will be pruned. The process is very efficient. We can run our
recognizer in this manner on small hardware {for example the hardware of a smariphone).
The best detailed explanation of our Multi-Voice recognize is our patent, see reference 1.

Returning to the main point, after inventing this architecture, we realized there was a user
interface innovation to explore. If we developed a system service that could “talk to" multiple
programs simultaneously, we could allow each program to set up its own recognition problem,
allocate as many recognizers it wanted to use, and then let them all run simultaneously. The
recognizers would compete, the best modeling solution would win. When an utterance is
spoken, we can ook at the winning hypothesis and determine which application won, an
notify that application of the recognition results. This is a new architecture to the recognition
system service.

We compare this new architecture to the keyboard service. You may be running many
programs that can accept keyboard input. When you type an 's', the keyboard service can't
look at the value being typed (oh! this is an 's'} and decide which application to give the letter
to. But a speech recognition service can. It can decide very late, which application should
receive the result. When you give a command to a GPS map application, it won't make sense
as a medical diagnostic (competing with a medic form filling application). Similarly when you
say “blood pressure 140 over 707, that won't be a sensible map command. The results of the
recognition can be used to decide which program should receive those results. '

This opens the door to making the speech recognition service a task switcher. The user

- selects which application he has in the foreground by what he says. By talking, he pulls the
application that he wantis to use to the foreground. The user can launch a collection of
applications and speak to any of them at any time. The “right” application comes alive when it
hears the command that is relevant to it. The recognition service insulates the application
from commands that are not relevant to it. Better still, no application needs to "know” about
the others. They can be written as if they are the only application alive that is using the
recognition service. The applications are self contained and modular.

We envision a system solution where the user launches a "swarm” of applications. In the
process of doing a job he speaks and the right application in the “swarm” surfaces and
responds to his input. Different people may have different sets of applications in their
“swarms” depending on their jobs.

The new elements of the user interface is hands free task switching and seamless
simultaneous voice access to multiple applications. This is a new form of multitasking.

The next step was to create this system service and a small “swarm” of applications to test
this use. This brings us to the current project. For this project we partnered with Elintrix to
create a map application and a low bandwidth communication application to run on their
mesh network radios.

Elintrix:

Elintrix had developed low power mesh-network radios. Their original purpose was to monitor
the health of soldiers during training exercises. The monitors could non-intrusively monitor
things like pulse rate, respiration, and the drinking of fluids. it would periodically send a block
of measurements over the mesh-network to the instructor. On the instructor's device, alarms
would be set so that should a soldier have unhealthy measurements, the instructor would be
notified. The amount of data being sent through the mesh-network would be small. The
required bandwidth would be low. As such, the moniters could be made very low power and
have very long battery life. Devices of this type were designed. They had very low
bandwidth. They were quite small with no video screen and at most a couple buttons to
interact with.

At that point, it was conceived that these health monitors would be more useful if the mesh-
nétwork could also be used for communication. The low bandwidth of the radios precluded
their use as walkie-talkies. The next idea was to use speech recognition and text fo speech
as a means of reducing bandwidth. This is where HandHeld Speech joined the development
effort. They wished for a low bandwidth communication application. Our requirement was for
at least two speech applications. So they then suggested there was also a map application
which the instructor uses to keep track of his soldiers. They suggested it would be good to
enhance that application's user interface with speech commands.

So this project was formally initiated with a speech enabled Map application and a Low
Bandwidth Communication application as its goal. Making the two applications work well
together would prove the Multi-Voice swarm of apps muititasking architecture. And in addition
we would create a prototype device solution compelling in its own right.

The Low Bandwidth Communication Application:

The mesh-network was intentionally created to only support moving small amounts of data.
With the low bandwidth came low power and long battery life. By the original specification,
there is not enough bandwidth to support the streaming audio of a walkie-talkie.

The initial idea was that when the instructor had something to say to one of his soldiers:
1) he would just say it, then _
2) the speech recognizer would create the text of what he said, next
3) the text would be shipped over the mesh-network to the soldiers monitor, there
4) a text to speech engine would recreate a verbal command.

This idea did not take into account that the speech recognition is taking place outdoors; that
the speech recognition is not happening in a pristine quiet office environment. Accurate open
recoghition in noise on a mobile device is beyond current state of the art. We must limit the
application to a fixed set of commands. Given a fixed command set, the challenges of the
application changes. The biggest hurdles will be providing the “right” set of commands and
also having those commands be “learn-able” by the instructor. In general, the command set
must be small otherwise it becomes difficult for the instructor to learn. Also, a small command
set improves recognition accuracy.

The communication application we wrote attempts to address these issues. Everything is
operable by either touch or voice. The commands are the text on the screen. You can select
a command by speaking it or by touching it. When you are new to the application, you
operate it by touch. Then as you become familiar with it you can operate it (eyes and hands
free) by voice.

There remains the problem of having the “right” command set. We did not work too hard to
create the “right’ commands in this iteration. Rather we set up the application so that it would
be easy to change the command set to whatever would be required. The application runs
after loading the command set from an easily editable text file. If you change the text file, you
change the command set. The hope is that we will empower the people close to the real use,
so that they can create the proper command set.

The text file allows the definition of a state machine. The command set is envisioned as a set
of questions and their answers. There is an initial question and a set of accepted answers.
The recognizer will be listening for those answers. When a particular answer is accepted, the

text file defines what the next question will be. The {ext file can be thought of as defining a
system of menus and sub-menus. In this prototype, someone wanting to change the
command set/state machine will have to become familiar with the syntax of the text file. In the
future, we can imagine graphical tools that would allow a naive user to edit the command set.

We give a brief discussion of the current CommApp.tsv (the text file driving the command
set). The purpose of this explanation is to show the current command set and to suggest how
it is easily changed. it is not meant to be a user's manual.

There are currently only two states. The 'start’ state only allows you to select the radio that
will be the recipient of following commands. Transitioning from the 'start’ state is the
'‘command' state where all the commands are active (including selecting a different radio). All
the comands of the 'command' state transition to the 'command’ state. Below is an excerpt
from the commApp.tsv file:

q1i "radio” ' "which radio"

a "all radios” g2 setAllRadios
a "radio &XXX" q2 setRadio

g2 "command" "what command or which radio”

a "all radios" q2 setAllRadios
a "radio &XXX" q2 setRadio

a "drink [more] water [and acknowledge]" q2 outRadio

a "break for {5 10} [and acknowledge]" g2 outRadio

a "stop [and acknowledge]” q2 outRadio’

a "head {north south east west} [and acknowledge]" g2 outRadio

The app always starts with q1 (question 1). There are 2 strings associated with any question,
a short version of the command and a long version of the command. There are options in the
app to play these strings so that the operator can “hear where he is” and so know what type
of answers the app is expecting. Following the question are the expected answers.

An answer has a string that is the words of the answer. There are some special symbols
accepted in these strings. The {... } means an alternative, any one of the things in curly
braces. The [...] means an optionally sequence. Following that string is the question id of
the next state. And last is the action associated with this answer.

The &XXX is a place holder for the list of radio id's. The app builds and rebuilds that list
automatically as the set of known radio id's changes. For example if radios 123, 456 and 291

are in the net, &XXX becomes { 123 456 291 } (where they are spoken as digit strings, 123 is
pronounced one two three).

There is one last set of special symbol accepted in the answers they are (...). These allow a
sequence of words to be taken as a whole. For example, the { north south east west } in the
last answer might be replaced with { east west (north [{eastwest}]) (south [{eastwest}]
) 3. Then in addition to north south east and west, northeast and northwest, southeast and

southwest are accepted answers.

There are some automatic CommApp commands that do not need to be set up by the
command.tsv file. They are:

“Short Questions”
“Long Questions”

“No Questions”

“Train Last Command”
“Echo On”

“No Echo” |

“Send It”

The Map Application:

Elintrix had already written there own map application. The challenge was to retrofit it with
speech recognition. The hope was to change it as little as possible and to return the code
base back to Elintrix empowering them to evolve it as they saw fit. We needed to keep the
speech part as modular as possible and to change the architecture of the map application as
little as possible. When we surrendered the code base back to the Elintrix developers, they
would see the changes and could continue development.

The things they wished to voice enable were to change the view or to show a particular
soldier on the map on demand. For example, suppose an alarm goes off saying soldier 123’
is getting dehydrated. The instructor doesn't want to have to look all over the map to try to
figure out where that soldier is. He uses the voice command *focus-on 123" and application
shows him that soldier.

This part of the project is very much a success. The Elintrix developers are in charge and are
evolving the application as they see fit. They are adding their own voice commands. Less
and less are we being contacted to ask how to do something. Better still they are getting a
feel for what should be voice driven and what is better to leave to the touch interface.

The challenge of disturbing the existing map code base as little as possible was a key
constraint. It caused important evolution to the “swarm of applications” functionality.

The Evolution of the Recognition System Services:

The CommApp was written first and was designed similar to previous single-tasking
applications (see reference 2 for another such application). It was in retrofitting the MapApp
that we were forced to think about a real evolution of the system services. What drove the
evolution was the desire to add as little code as possible to the MapApp code base. The
code base needed to be returned to the Elintrix engineers with as few changes as possible. -

The first piece of code purposely excluded from the MapApp was model selection and
enrollment. 1t would add whole modules that hadn't existed in their code base. Instead a
stand-alone enroliment app is loaded on demand, and goes away when finished. Having it be
a separate application lowers the total memory footprint of running multiple apps (an
important feature for small hardware) With a small number of command line arguments, the
launching application controls the enroliment application. The most important argument is the
name of a text file containing the prompts to use during enrollment. With that, an app
specifies the enrollment vocabulary. To communicate success, the enrollment app must
return the successfully enrolled models. Instead of trying to capture a return value from the
process, it made more sense to allow the recognition service itself to own a set of “default
user models”.

In many instances, applications don't have a particular need for “special” models, in fact if
there are some known “good” models, it makes the most sense if all applications “share” the
same best set of models. It will use less memory (not creating multiple copies of the same
models) and there is also a computational efficiency during recognition if models are shared
across applications. So an array of DefualtUser] | models was added to the system service,
initially loaded with nulls. An application can ask for default user models at a particular index
and will receive either a null or a pointer to models. An application can also tell the demon to
load a set of models to a particular default model index. If models already exist at that
location, they will be trampled, otherwise new models will be created and loaded. We
suggest in the documentation that the Language Id be used for the index. For example,
because ENGLISH_LANGID = 1, if an application would like to use the default English
language models, he should ask for the default models at index 1. If he would like to set
English default models, he should set them at index 1. An argument to the enroliment app is
the index of where the newly enrolled defauit models should be stored. So when an app is
launched it can look for existing English models, if there are none, it can launch the EnrolApp
with a prompt file and the index '1' (telling it to store created models as the default English
models). Then when enroliment finishes, the app can look for the new models at index 1. If
they exist it can load them, if it finds a null, it can abort knowing enrollment was aborted.
Using this facility when a swarm of applications is launched, if the first application sets up
default models, the next apps have the choice of using those default models or not. If a 'next’
app has a generic need for models, it should use the defaults. If it has a specialized purpose
with a need for specific models, it can load its own private models. After creating this

functionality for the MapApp, the CommApp was simplified to use it too.

Separate from enroliment, when retrofitting speech into the MapApp, we realized there were a
number of other minor functionalities being duplicated in the CommApp and MapApp. The
solution was to create a utility application that had those feature exposed once and for all.

For example, it is important to surface a control for running half-duplex, but it need only be
exposed once. Half-duplex is critical for some devices, some devices don't simultaneously
support both and sound in and sound out. The mic must be toggled arcund playing .wav files.
If half-duplex is selected, the service will automatically toggle the mic when a .wav file is to be
played. Also when the mic is too close to a speaker, the mic will pick up the speaker output
and think the user is speaking. Selecting half-duplex solves this unintended feedback
problem. -

Another functionality that is important that the system have is the facility of putting the speech
recognition into hibernation, of being able to say “go to sleep”. It is very irritating when
applications spontaneously do things when you are not talking o them (talking to someone
else instead). If done correctly, a “sleeping” functionality need only be implement by one app
and all the other apps are freed from implementing separate versions.

These two functionalities are in the current utility app. The main apps [aunch the utility app
after they start up. The utility app will detect if it is already running and a second copy will
immediately quit if it is multiply launched. We added support to the recognition service so that
the utility app registers with the recognition service as a utility. When the last main app exits,
the recognition service tells the utility app to quit. So, transparent to the user, the utility
comes up with the main apps and goes away when the last app exits.

What remains in the both the MapApp and the CommApp is just the recognition of their
respective command sets and the live training (adaptation) of those commands, The task for
the developer is much more focused. He doesn't need to implement a lot of ancillary
functionality anymore.

The utility app is a general place to put shared system level functionality. We can imagine
more functional control of the recognition engine may one day be exposed through it. But we
will await clear needs before new features are added.

Key Research Accomplishments:

Multiple applications are simultaneously defining speech recognition problems and sharing a
speech recognition service. They are running as efficiently as if they were a single
application. But the key feature is that the writing of these applications is simple. The
application developer doesn't have to concern himself with the other apps. Each app is
designed as if it were the only consumer of speech. The recognition engine does all the

housekeeping, insulating each app from all the others. The system is simple and expandable.
A monolithic speech application that “knows the world” is not required. The concept of “a
swarm of apps” is proven. The computer's user interface has taken a big step forward.

Reportable Ouicomes:

There are three distinct reportable outcomes for this project.

The first is that the two apps, the CommApp and the MapApp run seamlessly together. And
they run efficiently together. The concept of “the swarm of apps” is a reality. Because there
now exists separate enrollment and utility apps, the developer's task is smaller and more
focused. Building speech recognition into application user interfaces has gotten simpler.

The other key accomplishment is that the Elintrix programmers were empowered. They
easily grasped how to run the speech engine and how to change the source code to do
additional speech commands. It is a success for the coherency and simplicity of the API's.
The system is transferable.

Finally the addition of the voice driven example tasks to the Elintrix mesh-network hardware
will make the Elintrix health monitors a compelling solution in its own right. The ease of use in
their real tasks, and the ease that they provide an expandable open system will be critical to
their winning deployment.

Conclusion:

The Conclusion is little different from the “Key Research Accomplishments” and “Reportable
Outcomes”. The primary conclusion is that “the swarm of applications” concept for the user
interface has taken a big step forward. The only thing stopping us from launching a dozen
apps and having them share the speech recognition service is there does not exist a dozen
apps written to these APl's.

The secondary conclusion is that it is not that difficult to write these apps. We have
successfully transferred the knowledge of writing them to the Elintrix team. And they found

that instruction not difficult.

References:
Greg Gadbois (2011) “Multi-Voice Speech Recognition”. US patent 7899669.

Greg Gadbois (2011) “Developing Mulfi-Voice Speech Recognition Confidence Measures and
Applying them to AHLTA-Mobile". Final report of contract W81XH-09-2-0158 to the U.S. Army
Medical Research and Materiel Command.

