
DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

TRAC-M-TM-17-010
January 2017

Enhancement of the
Logistics Battle Command

Model

Architecture Upgrades and Attrition
Module Development

U.S. Army TRADOC Analysis Center-Monterey
700 Dyer Road, Room 176

Monterey, California 93943-0692

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

TRAC-M-TM-17-010
January 2017

 Enhancement of the
Logistics Battle Command

Model

Architecture Upgrades and Attrition
Module Development

Nathan Parker
Arnold Buss

U.S. Army TRADOC Analysis Center-Monterey
700 Dyer Road, Room 176

Monterey, California 93943-0692

This study cost the

Department of Defense approximately

$191,000 expended by TRAC in

Fiscal Years 15-17.

Prepared on 20170106

TRAC Project Code # 060119

iii

This page left intentionally blank.

iv

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for
Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding
any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control
number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

Technical Memorandum
3. DATES COVERED (From - To)

May 2015 – October 2016

4. TITLE AND SUBTITLE

Enhancement of the Logistics Battle Command Model

Architecture Upgrades and Attrition Module Development

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Nathan Parker

Arnold Buss

5d. PROJECT NUMBER
060119

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

TRADOC Analysis Center - Monterey

700 Dyer Road

Monterey, CA 93940

8. PERFORMING ORGANIZATION
REPORT NUMBER
TRAC-M-TR-17-010

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
TRADOC Analysis Center - Lee

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This project enhances the capabilities of the Logistics Battle Command (LBC) model in two key areas:

updating the underlying software architecture from 32-bit Java (1.6) to 64-bit Java (1.8) and the development

and implementation of a dynamic attrition module.

15. SUBJECT TERMS

Logistics, attrition, discrete event simulation, Simkit, LBC

16. SECURITY CLASSIFICATION OF:

Unclassified

17. LIMITATION
OF ABSTRACT

U

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE
PERSON

Nathan Parker
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER
(include area code)

(831) 656-7580

v

This page left intentionally blank.

vi

Table of Contents

Table of Contents ... vi

Introduction ... 1

Appendix A – Study Plan ... 1

Problem Statement .. 1

Project Team ... 1

Constraints, Limitations, and Assumptions .. 2

Methodology ... 3

Project Timeline .. 3

Appendix B - Architecture Updates .. 1

Upgrading LBC to Latest 64-Bit Java Version ... 1

Issues ... 1

Open Source JDBC Driver for MS Excel and MS Access ... 1

Upgrading Dependent Libraries .. 1

Unit Tests .. 1

Javadoc .. 1

Appendix C - Dynamic Attrition Methodology .. 1

Overview ... 1

Literature Review.. 1

Conceptual Development .. 2

Red Force Representation ... 2

Blue Force Representation .. 4

Model Component Integration .. 4

Attack Adjudication Methodology ... 4

Determining Attack Type ... 5

Calculating Combat Power ... 6

Determine Loss for each Engagement Step .. 7

Post-Attack Actions .. 7

Iterative Engagement Sequence .. 7

Appendix D – An Example Implementation of the Engagement Adjudication Methodology in

Python ... A-8

Overview ... C-1

Attrition Functions .. C-1

vii

Execution Code ... C-5

Calling the Execution Code from the Command Line.. C-7

Appendix E - References .. D-1

Appendix F - Glossary ... E-1

.

1

Introduction

1. Purpose. The purpose of this memorandum is to provide documentation of the project

conducted for the TRADOC Analysis Center, Lee (TRAC-LEE) by the TRADOC Analysis

Center, Monterey (TRAC-MTRY). This project seeks to enhance the capabilities of the

Logistics Battle Command (LBC) model in two key areas: updating the underlying software

architecture from 32-bit Java (1.6) to 64-bit Java (1.8) and the development and

implementation of a dynamic attrition module.

2. Background. The LBC model is a low-resolution, object oriented, stochastics, and discrete

event model programmed in Java building largely on the Simkit library. The primary

purpose of the LBC model is to support sustainment modeling for supply consumption,

distribution, and demand in order to support analytic efforts routinely conducted by TRAC-

LEE. The original development of LBC occurred in 2006 as research project lead by TRAC-

MTRY in collaboration with TRAC-LEE and the Naval Postgraduate School.

3. Methodology. We separate the enhancement of the Logistics Battle Command model into

two separate problems sets. The first problem set is to upgrade the underlying software

architecture. Appendix B covers the methodology we use for these upgrades. The second

problem set is the development and implementation of a dynamic attrition module.

Appendix C covers the development and mathematical implementation of our attrition

model. In Appendix D, we present an example software implementation of the adjudication

portion of the attrition module in the Python coding language.

4. Results. We deliver the results of this project as a web accessible software repository

available to the project sponsor. Additional individuals or organizations desiring access to

the latest version of the Logistics Battle Command software and user manual should contact

the TRADOC Analysis Center – Lee or TRADOC Analysis Center – Monterey.

Study Plan

Problem Statement

To enhance the capabilities of the Logistics Battle Command (LBC) model in two key areas:

updating the underlying software architecture from 32-bit Java (1.6) to 64-bit Java (1.8), and the

development and implementation of a dynamic attrition module.

Project Team

Sponsor Agency: Morris Hayes

TRADOC Analysis Center – Lee

morris.g.hayes.civ@mail.mil

 TRAC Lead: Nathan Parker

 MAJ, AV/FA49

 TRADOC Analysis Center – Monterey

2

 nathan.l.parker8.mil@mail.mil

 NPS Faculty: Dr. Arnold “Arnie” Buss

 Modeling, Virtual Environments and Simulations Institute

 Naval Postgraduate School

 abuss@nps.edu

Constraints, Limitations, and Assumptions

 Constraints

 The project must be completed NLT 30SEP16.

 The final attrition model will be Unclassified.

 Software tools will be free and open source.

 The upgraded LBC software will to run on Windows 7 and current MAC

operating systems as a minimum specification.

 The upgraded LBC software will accept Excel and MS Access as minimum input

options.

 Limitations

 None

 Assumptions

 Free, open source software tools are sufficient to upgrade the LBC architecture.

 By adjusting threat density and type in the input parameters, the dynamic attrition

module can represent the full array of combat environments.

 Excel and MS Access data tables are sufficiently large to meet all future Scenario

requirements.

3

Methodology

Figure A-1. Project Methodology.

Project Timeline

 May 2015 – Receipt of funds.

 June 2015 – Initial IPR – Review current LBC capabilities.

 September 2015 – IPR #1 – Review architecture upgrade status.

 December 2015 – IPR#2 – Review upgrades and attrition module requirements.

 January 2016 – Conduct literature review on attrition methods and code initial model.

 February 2016 – IPR #3 – Review attrition methodology development.

 March 2016 – Test the attrition model on an array of mock combat scenarios.

 May 2016 – Integrate attrition model in the LBC construct.

 August 2016 – Final IPR – Deliver project requirements.

4

This page left intentionally blank.

A-1

Appendix A - Architecture Updates

Upgrading LBC to Latest 64-Bit Java Version

The previous released version of LBC, 3.15.0 only ran on 32-bit Java, which limits the size of

the scenarios that LBC can execute. Furthermore, it uses on an outdated version of Java (1.6).

Therefore, the first task is to upgrade LBC to the latest 64-bit Java (1.8).

Issues

The upgrade to 64-bit Java exposed several problems, the most serious of which was the fact that

LBC had been using Java’s JDBC-ODBC bridge to connect with input files, particularly MS

Excel and MS Access. However, Java 1.8 removed the JDBC-ODBC bridge, requiring us to

locate a different implementation of the database connectivity (JDBC).

The next issue is that Java 1.8’s Javadoc processing implements doclint, which produces errors

for non-HTML-compliant comments. Many of the Javadoc comments in LBC now fail doclint

and require correction. Additionally, these discrepancies cause Java to throw thousands of

warnings in addition to the outright errors that in turn cause LBC to crash.

A number of LBC’s dependent libraries are out-of-date and require updating. This is particularly

important for the JDOM package that parses XML files. LBC 3.15.0 uses the old JDOM library,

whereas JDOM2 is the most recent version and contains a number of important features,

including use of generics in processing collections of XML elements. Other libraries that require

upgrades include the NpsTracCommons library.

Finally, many unit tests in LBC 3.15.0 fail, even when running in the older 32-bit mode. These

errors should have been corrected prior to the release of LBC 3.15.0 and will require correction

prior to the release of our updated version LBC.

In summary, we accomplish the following tasks in order to bring LBC into full compliance with

Java 1.8:

1. Convert to Open Source JDBC Driver and update input processing to reflect stricter case-

sensitivity compliance.

2. Upgrade all the dependent libraries to the latest versions of each, updating LBC code

where necessary to reflect the new versions.

3. Fix all failing unit tests - modifying those necessary to be in full compliance and

removing those that depend on the JDBC-ODBC bridge.

4. Fix all Javadoc errors and warnings resulting from Java’s doclint program being stricter

about HTML compliance.

A-2

Open Source JDBC Driver for MS Excel and MS Access

A constraint on the LBC upgrade is that all external libraries be Open Source. Therefore, while

several commercial JDBC drivers exist for accessing MS Excel and MS Access files they are not

available for use. Two Open Source libraries for JDBC access to Excel: xlSQL and SQLSheet.

While each of these libraries provides some of the desired functionality, ultimately neither one is

adequate for LBC’s needs.

A third Open Source JDBC driver is available from in a separate project by the developer, titled

movesDB. This pure-Java JDBC driver supports reading both Excel spreadsheets as well as

Access database files. While it currently does not support writing via JDBC, that functionality is

not necessary for LBC purposes. Therefore, we select movesDB as the replacement JDBC driver

for the obsolete JDBC-ODBC bridge.

One consequence of this change is increase in the case-sensitivity of table names and column

names. Therefore, we will modify the JDBCtoXML class in LBC, which converts inputs to XML

format, to reflect this case sensitivity. Table and column names must match those listed in the

LBC User Manual exactly, up to and including case.

Subsequently, we will add a ColumnLint program to LBC in order to identify and correct table

and column names that are correct except for case. For example, the table “ScenarioData” is a

required one, but if a table named “scenarioData” is present instead, it will produce an error. The

ColumnLint program, when run on that input, will identify the error and write the correct version

of the input file in a separate location.

Upgrading Dependent Libraries

We upgrade the following libraries: JDOM (to JDOM2), NpsTracCommon, Simkit, and

TracBayes. Additionally, we will insert the latest version of Simkit, which requires only minor

updates.

Unit Tests

The upgrade to Java 1.8 will cause a significant number of the unit test to fail due to their

dependency on the JDBC-ODBC bridge. Each of these individual unit tests will require

modification prior to our release of the updated version of LBC.

Javadoc

The Javadoc errors mostly consist of replacing certain symbols with the corresponding HTML

code. For example, in Javadoc comments an ampersand (&) must be replaced by & and

greater-than/less than signs (> and <) replaced with > and ≤, respectively.

The warnings mostly consist of missing Javadoc for parameters and/or return values for methods.

Since there are thousands of these, it will require a significant amount of time to correct them.

These modifications are necessary to ensure the Javadoc for the upgrade version of LBC is

compliant with general standards.

B-1

Appendix B – Dynamic Attrition Methodology

Overview

The second portion of this project focuses on the development of a dynamic attrition

methodology and the subsequent implementation within the Logistics Battle Command (LBC)

model.

Literature Review

Two historic attrition methodologies and a current model proposed by analysts at TRAC – Fort

Leavenworth (TRAC-FLVN) inform the development of the dynamic attrition methodology we

propose for LBC. Each of these methodologies or models contributes a specific part to the

logical development of our dynamic attrition methodology.

The first historic attrition methodology we consider is the Lanchester Equations, specifically the

variation proposed by Deitchman.
1
 This work provides an initial option for modeling attrition

between two very imbalanced forces such as an ambush style attack. However, the deterministic

and continuous nature of the Lanchester equations makes them incompatible with the discrete

event construct of LBC. Bullard further advances this methodology by developing a stochastic

variation of the Lanchester equations.
2
 The primary concept we adopt from the combination of

these theories is the ability to use a ratio of relative combat power scores to determine the

transition probability in a discrete Markov process.

The second historic attrition methodology we consider is the Hughes Salvo equations. While

these equations find their widest use in the naval warfare community, we observe several

features that can inform our dynamic attrition methodology. The Hughes Salvo equations

consider each warship as a discrete entity with multiple attribute including staying power,

striking power, defensive capability, and more depending on the embellishment under

consideration.
3
 From the Hughes Salvo equations, we draw the concept of treating the attacking

and defending forces as holistic entities. Additionally, the calculation a relative combat power

for each step of the engagement sequence is an independent event.

We also consider the Attrition Distribution Tool (ADT), developed by TRAC-FLVN, since one

of its intended purposes is to develop attrition distributions for use in non-combat models such at

LBC. Our primary concern with carrying the ADT forward as a primary component of our

dynamic attrition model is the high-resolution inputs the model requires. We find it unlikely that

future modelers, especially those conducting logistic analysis, will have access to fidelity of data

necessary to population the model. These complexities also make any sensitivity analysis or

scenario excursions more difficult. The ADT developers propose a zone construct for modeling

1
 S. J. Deitchman. A Lanchester Model of Guerrilla Warfare. Operations Research 10(6):818-827. http://

dx.doi.org/10.1287/opre.10.6.818, 1962.
2
 L. Billard. Stochastic Lanchester-type Combat Models I. Technical Report Naval Postgraduate School.

http://hdl.handle.net/10945/30208, 1979.
3
 W.P. Hughes Jr. Two Effects of Firepower: Attrition and Suppression. Military Operations Research. Vol. 2, No. 1,

Winter 1996.

B-2

the array of enemy forces through the different battlefield areas logistic type elements are likely

to operate. We find this construct extremely useful and plan to use it in our methodology.

We believe that the primary method of attack against a logistics element is an ambush style

attack. Two different types of ambush style attacks, the annihilation ambush and the harassing

ambush, will form the basis for how we model enemy actions in our dynamic attrition model.
4

In the annihilation ambush, the attacker’s primary objective is to exact maximum damage on the

convoy so they will risk becoming decisively engaged. In the harassment ambush, the attacker’s

primary objective is to maintain combat power so they will not risk becoming decisively

engaged.

Conceptual Development

Our goal is to provide a dynamic attrition model that sufficiently represents the impacts of

attrition on logistics operations and has the following characteristics: uses level of resolution

similar to that of LBC, uses input data readily available to TRAC-LEE analysts, has a low

computational overhead and is easy to understand for both analysts and warfighters. In addition

to the literature discussed above, the model development will draw heavily on the combat

experience of the TRAC-MTRY analysts for both conceptual development and face validation.

Red Force Representation

We will represent the area of operations as a series of zones within which the enemy elements

will execute attacks against convoys. To best match LBC’s level of resolution we will model

attrition at the vehicle level for blue (friendly) elements and the crew served weapon (CSW) for

red (enemy) elements. We leave the specific definition of a CSW up to the analyst using the

model but we envision the definition including medium and heavy machine guns, rocket

propelled grenades, anti-tank rockets, and improvised explosive devices. We also implement an

aggression level parameter for each zone that will control the mixture of annihilation and

harassing type ambushes allowing the model to cover an array of enemy force objectives. Figure

C-1 provides a depiction of this implementation concept.

4
 Headquarters Department of the Army. Opposing Force Tactics. Training Circular 7-100.2. Government Print

Office, Washington D.C. 2011.

B-3

Figure C-1. Concept sketch for the array for Red Force elements.

We use a simple discrete event construct to model the red forces cycle of attack emplacement,

execution and recovery for each red force element. Each red force element has five parameters:

the number of CSW in the element, the element’s effectiveness level [0-1], the mean recovery

time if the element’s previous action is not the execution of an ambush, the mean recovery time

in the element’s previous action is the execution of an ambush, and the mean time the element

will spend in an attack position before it withdraws. Each attack element randomly chooses an

arc, from the arc set of their zone, on which to set up their ambush each time they become active.

The event graph in Figure C-2 depicts this process.

Figure C-2. Event Graph for the generation of Red Force attacks.

B-4

Blue Force Representation

The existing LBC model has the capability of representing multiple vehicle types within the blue

force structure. We leverage this capability and add a Blue Escort Vehicle type. Similar to the

Red CSW concept, we leave the definition of what is an Escort Vehicle up to the model user.

Here we envision an armored vehicle with a crew served weapons system whose sole

responsibility is to provide security for the logistics convoy. We include functionality in the

model to allow the model user to define the force structure of the Escort Vehicles and to

establish business rules regarding the requirements for Escort Vehicles in each convoy.

Model Component Integration

The red and blue force representations discussed above, along with the attack adjudication

methodology we will develop later in this paper, each correspond to separate model components.

At the software implementation level we employ a loosely coupled, modular design using the

Java event listener construct to integrate these separate components. This modular design

provides flexibility for further development and customization since it is easy to switch out one

or more modules as along as the input and output formats remain the same. Figure C-3 depicts

the simplicity of this modular design.

Figure C-3. Modular framework for individual model components.

Attack Adjudication Methodology

To limit the computational complexity our attack adjudication method invokes the Markov

property so that the outcome of any step of the attack sequence depends only on the current

conditions. We use a relative comparison of the current red and blue combat powers, along with

a random number draw, to determine who suffers the loss in each step. To further limit

complexity, we do not model the time component within the attack sequence, since the

magnitude of time passage in an ambush style attack is insignificant given LBC’s level of

resolution. Figure C-4 depicts the inputs, process, and outputs steps of the attack adjudication

sequence. Subsequence sections will develop each process step in additional detail.

B-5

Figure C-4. Concept sketch of the attack adjudication methodology.

Determining Attack Type

We determine the attack type, annihilation or harassment, using the aggression level parameter

from the associated zone and a random number draw from a uniform distribution. Equation 3-1

shows how we determine each attack type.

Agression Level
Annihilation,

Attack Type 100

Harrassment, otherwise

 Where [0,1]

X

X U




 



 (C-1)

We employ a generalized concept of each attack type to develop the engagement sequence and

stopping conditions associated with each type. These concepts originate from the Opposing

Force Tactics training circular with further refinement and validation from the TRAC-MTRY

military analysts. We provide a brief explanation of each attack type in the sections below along

with a consolidated reference in Figure B-5. The limitations and structures we place on each

attack type are somewhat arbitrary and future users may desire to modify these features to fit

individual needs.

B-6

Harassment Attack Type

For the harassment attack, we assume that the red force will immediately disengage if the blue

force returns effective fire. For the attack sequence, we assume that the attacker will target the

logistic elements of the convoy to maximize the impacts on the logistics system. Additionally,

we assume that the attacker is not subject to attrition but rather use the determination of a red

force loss as a stopping condition without actually enforcing the loss. We limit the maximum

amount of damage that the red force can inflict to represent their intent to quickly withdraw from

the engagement area and not risk decisive engagement. The two stopping conditions for the

harassment attack are if Blue losses reach the maximum allowable level or if an engagement

outcome is a Red loss (though the loss is not enforced).

Annihilation Attack Type

For the annihilation attack, we assume that the red force is seeking a decisive engagement and

will press the attack until they expend all their ammunition, wipe out the Blue convoy or loss

half of their force. For the attack sequence, we assume that the attacker will target the escort

elements of the convoy first to eliminate their ability to mount an effective defense. We limit the

number of blue vehicles that the red force can destroy to represent limitations in ammunition

supply and the limited kill zone that a given size force can establish. The three stopping

conditions for the annihilation attack are if Blue losses reach the maximum allowable level, if the

Blue convoy is annihilated or if the Red losses reach the maximum allowable level.

Figure C-5. Summary of attack type engagement sequence and stopping conditions.

Calculating Combat Power

We use the concept of combat power to represent the capability of each force, red and blue, to

attrite the other element. The Red’s crew served weapon systems and Blue’s escort vehicles

provide the base input for each calculation. For the blue combat power (BlueCP) calculation

(Equations C-2 and C-3), we account for both the overall force effectiveness and the effect of the

dispersion of escort vehicles within the convoy. For the red combat power (RedCP) calculation

(Equations C-4 and C-5), we only adjust for the overall effectiveness. Here we use a random

effectiveness coefficient from a triangular distribution using one user-defined parameter. We use

B-7

this distribution as an example to show how one might add additional distributional data to the

adjudication methodology.

 * CP Escorts EffectivenessBlue Blue Blue Vehicle Ratio  (C-2)

 Escorts

Escorts Logistic Vehicles

Blue
Vehicle Ratio

Blue Blue



 (C-3)

 *CP CSW EffectivenessRed Red Red (C-4)

  min (.2, .2,),1Effectiveness Mode Mode ModeRed Tri Red Red Red   (C-5)

Determine Loss for each Engagement Step

We determine the loss for each engagement step using a ratio of the red and blue combat powers

and a random draw from a uniform distribution. Equation C-6 shows how we determine the loss

for each engagement step.

Blue,
Engagement Loss

Red, otherwise

 Where [0,1]

CP

CP CP

Red
X

Red Blue

X U




 



 (C-6)

Post-Attack Actions

The last step in our attrition adjudication methodology is to determine the post attack actions for

the convoy. We use a simple logic flow based on the collective combat experience of the

TRAC-MTRY analysts. If the attack occurs in the last 35% of the route then the convoy with

continue mission not matter the outcome of the attack. If the attack occurs in the first 65% of the

route, then the convoy must have at least two escort vehicles and greater than 50% of its original

logistic vehicle to continue mission, otherwise the convoy will return to base.

Iterative Engagement Sequence

We treat each step of the engagement sequence as an independent event so that the probability

that the next loss is red or blue depends only on the current force structure and the parameters

that remain constant for the engagement sequence. Figure C-6 shows all possible iterative steps

and outcomes for both the annihilation and harassment attack examples. The asterisk on the

right branches of the harassment attack example indicates that the loss of the Red CSW is

notational and serves only as a stopping condition.

B-8

Figure C-6. Two examples of the attack adjudication sequence.

C-1

Appendix C – An Example Implementation of the

Engagement Adjudication Methodology in Python

Overview

This appendix contains commented Python code for an example implementation of the

engagement adjudication methodology discussed in Appendix C. This adjudication

implementation requires the following six inputs: number of Blue logistics vehicles, number of

Blue escort vehicles, number for Red crew served weapons, Red’s aggression level, Blue’s

effectiveness level, and the mode of Red’s effectiveness level. From these inputs the

methodology produces the following outputs: remaining Blue logistic vehicles, remaining Blue

escort vehicles, remaining Red crew served weapons and Blue’s post attack actions.

The first section below documents the various functions that serve as the base for the

adjudication implementation. The second section includes the code necessary to run the

implementation from command lining using a comma separated value file to provide the inputs.

Attrition Functions

The Python code we include below contains the various functions that form the foundation of

this implementation of the adjudication methodology. Where appropriate, the code references

the associated equitation or figures from Appendix C.

1. #Import the math and random libraries.
2.
3. import random
4. import math
5.
6.
7. def getBlueCombatPower(blue_veh, blue_escort, blue_eff):
8. """Calculate the Blue Combat Power at each state."""
9. #Calculate escort to log veh ratio (Equation C-2).
10.
11. veh_ratio = blue_escort/float(blue_veh + blue_escort)
12.
13. #Calculate Blue Combat Power (Equation C-3).
14.
15. BlueCP = blue_escort * blue_eff * veh_ratio
16.
17. return BlueCP
18.
19.
20. def getRedCombatPower(red_csw, red_eff):
21. """Calculate the Red Combat Power at each state."""
22. #Calculate Red Combat Power (Equation C-4).
23.
24. RedCP = red_csw * red_eff
25.
26. return RedCP
27.
28. def getRedEff_2(red_eff):
29. """Simplified version using only the mode as input.
30. Still use tri dist with low, high calc'd off the mode."""

C-2

31. #Calculate Red Effectiveness (Equation C-5).
32. low = red_eff - .2
33. high = red_eff + .2
34.
35. redEffOut = random.triangular(low, high, red_eff)
36.
37. if redEffOut > 1:
38. redEffOut = 1
39. else:
40. pass
41.
42. return redEffOut
43.
44.
45. def whoLost(BlueCP, RedCP):
46. """Determine if loss for a given state change is Red or Blue
47. based on the relative combat powers."""
48. #Calc probability that loss is blue (Equation C-6).
49.
50. pBlueLoss = RedCP/float(RedCP+BlueCP)
51.
52. #Pull random ~U(0,1)
53.
54. roll = random.random()
55.
56. if roll <= pBlueLoss:
57. loss = "Blue"
58. else:
59. loss = "Red"
60. return loss
61.
62.
63.
64.
65. def getAttackType(aggression):
66. """Determine whether attack is harrass or annihiliation based on aggression coeff."

""
67. #Equation C-1
68.
69. roll = random.random()
70.
71. if roll <= aggression:
72. attack = "Annihilation"
73. else:
74. attack = "Harrass"
75.
76. return attack
77.
78.
79. def harassAttack(blue_veh, blue_escort, red_csw, blue_eff, red_eff):
80. """Assumptions:
81. - Red is targets Log Vehicles first.
82. - Loss of Blue Log Vehicles limited to ceiling(1.5 x red_csw).
83. - Red not susceptible to attrition.
84. - Stopping conditions:
85. - Red "Loss".
86. - Max attrition reached.
87. """
88. #Figure C-5.
89.
90. i_blue_veh = blue_veh

C-3

91. i_blue_escort = blue_escort
92.
93. blue_veh_lost = 0
94. blue_escort_lost = 0
95.
96. max_blue_loss = math.ceil(1.5 * red_csw)
97.
98. while (blue_veh_lost + blue_escort_lost) < max_blue_loss:
99.
100. r_blue_veh = i_blue_veh - blue_veh_lost
101. r_blue_escort = i_blue_escort - blue_escort_lost
102.
103. BlueCP = getBlueCombatPower(r_blue_veh, r_blue_escort, blue_eff)
104. RedCP = getRedCombatPower(red_csw, red_eff)
105.
106. loss = whoLost(BlueCP, RedCP)
107.
108. if loss == "Blue":
109. if r_blue_veh > 0:
110. blue_veh_lost += 1
111. elif r_blue_escort > 0:
112. blue_escort_lost += 1
113. else:
114. break
115. else:
116. break
117.
118. f_blue_veh = i_blue_veh - blue_veh_lost
119. f_blue_escort = i_blue_escort - blue_escort_lost
120.
121. outcome = (f_blue_veh, f_blue_escort, red_csw)
122.
123. return outcome
124.
125. def annihilationAttack(blue_veh, blue_escort, red_csw, blue_eff, red_eff):
126. """Assumptions:
127. - Red targets Escorts first.
128. - Red is susceptible to attrition.
129. - Stopping conditions:
130. - Red loss = floor(.5 * red_csw)
131. - Max attrition reached - attrition limited to 3 x red CSW
132. *Captures ability of blue veh outside kill zone to avoid attack
133. - Blue wiped out.
134. """
135. #Figure C-5.
136.
137. i_blue_veh = blue_veh
138. i_blue_escort = blue_escort
139. i_red_csw = red_csw
140.
141. blue_veh_lost = 0
142. blue_escort_lost = 0
143. red_csw_lost = 0
144.
145. ##If, then acception for when initial CSW = 1
146. if i_red_csw == 1:
147. max_red_loss = 1
148. else:
149. max_red_loss = math.floor(.5 * red_csw)
150.
151. max_blue_loss = min(3* i_red_csw, i_blue_veh + i_blue_escort)

C-4

152.
153. while (((blue_veh_lost + blue_escort_lost) < max_blue_loss) and (red_csw_los

t < max_red_loss)):
154.
155. r_blue_veh = i_blue_veh - blue_veh_lost
156. r_blue_escort = i_blue_escort - blue_escort_lost
157. r_red_csw = i_red_csw - red_csw_lost
158.
159. BlueCP = getBlueCombatPower(r_blue_veh, r_blue_escort, blue_eff)
160. RedCP = getRedCombatPower(r_red_csw, red_eff)
161.
162. loss = whoLost(BlueCP, RedCP)
163.
164. if loss == "Blue":
165. if r_blue_escort > 0:
166. blue_escort_lost += 1
167. elif r_blue_veh > 0:
168. blue_veh_lost += 1
169. else:
170. break
171. else:
172. red_csw_lost += 1
173.
174. f_blue_veh = i_blue_veh - blue_veh_lost
175. f_blue_escort = i_blue_escort - blue_escort_lost
176. f_red_csw = i_red_csw - red_csw_lost
177.
178. outcome = (f_blue_veh, f_blue_escort, f_red_csw)
179.
180. return outcome
181.
182. def getPostAttackAction(i_blue_veh, r_blue_veh, r_blue_escort):
183. """Determine if convoy continues mission (CM) or returns
184. to base (RTB). If attack occurs after .65 of route covered then
185. always CM. If in the first .65 convoy must retain >=.5 of original
186. logistics vehicles and at least 2 escorts to CM."""
187.
188. loc_roll = random.random()
189.
190. if loc_roll >= .65:
191. action = "CM"
192. elif r_blue_escort < 2:
193. action = "RTB"
194. elif (r_blue_veh/float(i_blue_veh)) < .5:
195. action = "RTB"
196. else:
197. action = "CM"
198.
199. return action
200.
201.
202. def runAttack(blue_veh, blue_escort, red_csw, aggression, blue_eff, red_mode):
203. ####Using simplied function for red_eff, only requires red_mode input.
204. red_eff = getRedEff_2(red_mode)
205.
206. attackType = getAttackType(aggression)
207.
208. if attackType == "Annihilation":
209. outcome = annihilationAttack(blue_veh, blue_escort, red_csw, blue_eff, r

ed_eff)
210.

C-5

211. else:
212. outcome = harassAttack(blue_veh, blue_escort, red_csw, blue_eff, red_eff

)
213.
214. action = getPostAttackAction(blue_veh, outcome[0], outcome[1])
215.
216. output = ((blue_veh, blue_escort, red_csw), outcome, action)
217.
218. return output

Execution Code

This section contains the Python code necessary to run our implementation from the command

line. This execution code expects to receive a comma separated value (csv) file containing the

model inputs. The csv file should have a header row and have columns in the following order:

Blue logistic vehicles, Blue escort vehicles, Red crew served weapons, Red’s aggression level,

Blue’s effectiveness level, and the mode of Red’s effectiveness level triangular distribution.

Figure D-1 shows an example of an appropriately formatted input file.

Figure D-1. Example format for the input comma separated value file.

1. #Import the sys and csv libraries.
2. import sys
3. import csv
4. ## Attrition_Part1_v1 is the .py file containing the functions.
5. import Attrition_Part1_v1 as AttritionFunctions
6.
7. ## initial set input parameters for cmd line running
8. # the below if/else statement serve as a logic check
9. # if the user fails to enter the proper number of arguments in the command line
10. if len(sys.argv) != 4:
11. sys.stderr.write('expecting Command Line Arguements: input_filename, output_filenam

e, number of iterations')
12. sys.exit(1)
13.
14. else:

C-6

15.
16. input_filename = sys.argv[1]
17. output_filename = sys.argv[2]
18. iterations = int(sys.argv[3])
19.
20. row_cnt = 0
21.
22. result_list = []
23.
24. with open(input_filename, 'r') as f:
25. r = csv.reader(f)
26.
27. #skip header row
28. r.next()
29.
30. #read in file line by line
31. for row in r:
32.
33. row_cnt += 1
34.
35. #Assign values to variables
36. blue_veh = int(row[0])
37. blue_escort = int(row[1])
38. red_csw = int(row[2])
39. aggression = float(row[3])
40. blue_eff = float(row[4])
41. red_mode = float(row[5])
42. #red_high = float(row[6])
43. #red_mode = float(row[7])
44.
45. #Run the specified number of iterations
46. for i in range(iterations):
47.
48. result = AttritionFunctions.runAttack(blue_veh, blue_escort, red_csw, aggre

ssion, blue_eff, red_mode)
49.
50. result_list.append(result)
51.
52. output = open(output_filename , 'wb') #establish output.csv file with handle
53.
54. #Write Header
55. output.write('Index,Design Point, Blue_Veh,Blue_Escort,Red_CSW,r_B_v,r_B_e,r_R_csw,Post

_Attack_Action\n')
56.
57. for i in range(len(result_list)):
58.
59. output.write(str(i) +',')
60. output.write(str(result_list[i][0][0]) + '_' + str(result_list[i][0][1]) + '_'

+ str(result_list[i][0][2]) + ',') #Write string of design point (Blue Veh, Blue_E
scort,Red_CSW)

61. output.write(str(result_list[i][0][0]) +',') #write inital Blue Veh
62. output.write(str(result_list[i][0][1]) +',') #write inital Blue Escort
63. output.write(str(result_list[i][0][2]) +',') #write inital Red CSW
64. output.write(str(result_list[i][1][0]) +',') #write final Blue Veh
65. output.write(str(result_list[i][1][1]) +',') #write final Blue Escort
66. output.write(str(result_list[i][1][2]) +',') #write final Blue CSW
67. output.write(str(result_list[i][2]) +'\n') #write Post Attack Action
68.
69. output.close() #always close

C-7

Calling the Execution Code from the Command Line

To call the execution code from the command line the following structure is required:

python Attrition_Part2_v2.py test_design.csv output.csv 1000

After identifying the program used this command line call includes the python file contain the

execution code as the first argument. The second and third arguments are the input and output

csv files, respectively. The forth agreement is the number of iterations being run.

C-8

This page left intentionally blank.

D-1

Appendix D - References

L. Billard. Stochastic Lanchester-type Combat Models I. Technical Report Naval Postgraduate

School. http://hdl.handle.net/10945/30208, 1979.

S. J. Deitchman. A Lanchester Model of Guerrilla Warfare. Operations Research 10(6):818-

827. http://dx.doi.org/10.1287/opre.10.6.818, 1962.

W.P. Hughes Jr. Two Effects of Firepower: Attrition and Suppression. Military Operations

Research. Vol. 2, No. 1, Winter 1996.

D-2

This page left intentionally blank.

E-1

Appendix E - Glossary

ADT Attrition Distribution Tool

CSW Crew Served Weapon

FLVN Fort Leavenworth

LBC Logistics Battle Command

MTRY Monterey

TRAC TRADOC Analysis Center

