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RANDOM ERGODIC THEOREMS AND
MARKOFF PROCESSES WITH A

STABLE DISTRIBUTION
SHIZUO KAKUTANI

YALE UNIVERSITY

1. Introduction
The purpose of this paper is to discuss the relations between random ergodic

theorems and Markoff processes with a stable distribution. Random ergodic theo-
rem concerning a finite number of measure preserving transformations was ob-
tained by S. M. Ulam and J. von Neumann. This result was announced in ab-
stract form [6] but the proof has never been published. In the present paper we
shall first give a proof of random ergodic theorem concerning a family of (infinitely
many) measure preserving transformations with a probability distribution on it.
We shall then discuss the condition of ergodicity for a family of measure preserving
transformations and its consequence in random ergodic theorems. It turns out
that the theory of Markoff processes with a stable distribution which was pre-
viously discussed by J. L. Doob [2], [3], K. Yosida [8], and the author [4] has a very
close connection with our problem. It will be shown that to any family 4' of meas-
ure preserving transformations with a probability distribution there corresponds
a Markoff process P(s, B) with a stable distribution in such a way that the ergodic
theorems concerning the Markoff process P(s, B) which were obtained in [8] and
[4] are nothing but the "integrated form" of random ergodic theorems concerning
the family 4) of measure preserving transformations. Further, the conditions of
ergodicity for P correspond exactly to those for (D. It is, indeed, by making use of
this fact that we prove the equivalence of various conditions of ergodicity for the
family 4) of measure preserving transformations.

In case 4) consists of a finite number of measure preserving transformations, our
ergodic theorem is reduced to that of S. M. Ulam and J. von Neumann [6]. If, in
particular, the space on which the measure preserving transformations act is finite
(and hence the measure preserYing transformations are reduced to a permutation)
our theory is reduced to that of H. Anzai [1] on the relationship between the ran-
dom ergodic theorem concerning a finite number of permutations and the theory
of Markoff process with a finite number.of possible states.
We do not discuss it in our present paper, but it is an interesting problem to in-

vestigate the conditions of (weak or strong) mixing for a family 4) of measure pre-
serving transformations and for the corresponding Markoff process P with a stable
distribution.
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2. Random ergodic theorems
Let (S, 0, m) be a measure space: S = {s} is a set of elements s, ! = {B} is a

a-field of subsets B of S, and m(B) is a countably additive measure defined on S8.
We assume that m(S) = 1. A subset B of S which belongs to e is called 23-meas-
urable and m(B) is called the m-measure of B. A Q3-measurable subset N of S
with m-measure zero is called a !-m-null set. A property P(s) of an element s of S is
said to hold !-m-almost everywhere on S if there exists a 0-m-null set N such that
P(s) holds for all s E S - N. A real valued function f(s) defined on S is called 0-
measurable if the set {s I a < f(s) < :} is QB-measurable for any real numbers
a, ,B with a < ,. The m-integrability of a !B-measurable function f(s) is defined as
usual, and the m-integral off(s) on S is denoted by

(2.1) ff(s) m(ds).
s

Let (X, (, ,u) be another measure space: X = {x} is a set of elements x, ( =
{E} is a a-field of subsets E of X, and ,I(E) is a countably additive measure defined
on (. We also assume that ,u(X) = 1. Let (S X X, eB3® , m X ,4) be the
direct product measure space of (S, 0, m) and (X, (, ,u): S X X is the set of all
pairs of elements (s, x), s E S, x E X; eB ® e is the a-field of subsets of S X X
generated by sets of the form: B XE = {(s, x)|s E B, x E E}, B C 0, E ;
and m X ,u is a countably additive measure defined on e 0 e such that
(m X u)(B X E) = m(B),u(E) for any B ,EEC .
A one to one mapping v of S onto itself is called a dB-m-measure preserving trans-

formation if B E LB implies (p(B) E L, 0--o(B) E LB and m[*p(B)] = m[o-1(B)] =
m(B). Let 4) = {v x E XI be a family of d-m-measure preserving transforma-
tions sio, defined on S with a parameter x E X. 4' is called (LB, ()-measurable if
B L!B implies { (s, x) j|.oZ(s) E B} E LB (® . We also say that 4' is a family of
LB-m-measure preserving transformations with a probability distribution (X, L, lu).
This condition is equivalent to saying that, for any L-measurable functionf(s) de-
fined on S, the composite function f(s, x) = f[(o_(s)] is a (L (X) )-measurable
function defined on S X X. Further, it is easy to see that the one to one mapping
<, of S X X onto itself defined by
(2.2) sp (s, x) = kP. (s) , x]
is a (LB ® (Y)-(m X ,u)-measure preserving transformation defined on S X X.

Let (Q, (Y*, ,u*) be the two sided infinite direct product measure space of

(X., e, IA.sn) = (X, (Y, IA), n = 0, +1 +2, ... . This means that Q = pX
n--o

is the set of all two sided infinite sequences

(2.3) co= {xnIn = 0, +1, +2....
where xn = xn(co) (= the n-th coordinate of c) C Xn = X, n = 0, + 1, + 2,

= p (2En is the a-field of subsets of Q generated by sets of the
n--co

form: p En, @Xn(w) E E,x n = O, + 1, +2, .... .}, where En E (yn =(Y
n=-ao
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CO

t= 0,+1 2, . ..; and A* = r1 U7 is a countably additive measure de-

fined on V such that* ( p En) = rJ A.(En) = Ht j,(E.) for any En E n
n=- n-X n=-co

= , n = O, ± 1, + 2,...
A one to one mapping it defined on Q by

(2.4) xnt,6(W)] = Xn+l(c)
[this means that the n-th coordinate of Vt(w) is equal to the (n + 1)-st coordinate
of w], n = 0, + 1, ± 2, . . . is called the shift transformation. It is clear that Vt is
an *-A,*-measure preserving transformation defined on U.

For any p _ 1, let LP(S) = LP(S, 23, m) be the LP-space of all real valued
d3-measurable functions f(s) defined on S with

(2.5) 1I f 11 P(S)= (j I f (s) IPm (d s))1 < co

as its norm. Two functions from LP(S) which coincide with each other 23-m-almost
everywhere on S are identified.

The random ergodic theorem of S. M. Ulam and J. von Neumann [61 may be
stated as follows:
THEOREM 1. Let (S, S8, m) and (X, (, ,i) be two measure spaces with m(S) =

,u(X) = 1. Let 4 = {.pzjx E X} be a (3, i)-measurable family of I-m-meas-
ure preserving transformation (p, defined on S. Then, for any function f(s) E LP(S)
(p _ 1), there exists an (**-,u*-null set N* of Q such that, for any w E Q- N*, there
exists a function f.(s) E LP(S) such that

(2.6) lim -Z f[kPzk-l(W) . ..* S(o) ((S)] (s) | =

and
i n-1

(2 . 7) lim-E f Ox(k-c(W) . ..*Pzo(') (S)] = J" (s)
n- >x n k=O

0-m-almost everywhere on S.
Remark. The 23-m-null set N. on which the convergence (2.7) does not hold

may depend on w, and it might happen that the union u WEU-JN*N. of all N. is
no more a Q3-m-null set.

PROOF. Let us consider the direct product measure space (S X Q, e3(S) ,
m X ,u*) of (S, 93, m) and (Q,(*, ,uA*): S X Q is the set of all pairs (s, w), s E S,
w E Q; ;8 0® is the a-field of subsets of S X Q generated by sets of the form:
B X E* = {(s, w)s E B,w E E*}, B E 'i, E* E d*; and m X ,u*isacountably
additive measure defined on e 36* such that (m X ,u*)(B X E*) =
m(B),u*(E*) for any B E $, E* E *.

Let us put
(2.8) (p* ( s, w) = So(s) , 6' (X)]
where xo(co) is the 0-th coordinate of w and 4t is the shift transformation defined
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by (2.4). It is easy to see that so* is a (d3 V*)-(m X uA*)-measure preserving
transformation defined on S X Q, and it is clear that

(2 .9) (p*n ( 5,) [,p.n-(<z) * * *({)) ( 5) I 4X)]n
for n = 1, 2, ...

Let LP(S X Q) = LP(S X Q, el3® , m X u*) be the LP-space of all e ® (*
measurable real valued functionsf*(s, co) defined on S X Q with

(2.10) Iif*11 LV(SXfQ) = (f./1nI f* (s, c) |Pm (ds) * (dw) )/p <
as its norm. For any function f(s) E LP(S), let us put f*(s, w) = f(s). Then it is
easy to see that f*(s, w) E LP(S X Q). If we apply the ordinary mean and indi-
vidual ergodic theorems to f*(s, co) and 5a*, then we see that there exists a func-
tion f*(s, c) E LP(S X Q) such that

In1taP-i(2.11) lim | f I(.,w) . .. P.zo(.) (s)] -* (s, &) =0
n"+0 - LP(SX D)

and
1n-1

(2.12) lim 1 f [(Pxk-,(w) ... (PIO(') (S) P (sI

(d3 ® (*)-(m X ,u*)-almost everywhere on S X Q2. It is easy to see that theorem
1 follows from (2.11) and (2.12) by Fubini's theorem.

It is interesting to note that the limit function fM(s) = J*(s, w) depends ordi-
narily on X and is in general not equal to a constant S-m-almost everywhere
on S. jf(s) = f*(s, w) will be equal to a constant (5 q)® *)-(m X u*)-almost
everywhere on S X. Q if *p* is ergodic on (S X Q, e8 (D V, m X u*). In order to
discuss this problem we introduce the notion of ergodicity for the family 4' =
kpz, x E XI of 5-m-measure preserving transformations .po defined on S.

Given a (d, C)-measurable family 4' = { ofzIx E X} of d-m-measure preserv-
ing transformations 50. defined on S, a Q9-measurable subset B of S is called
(P-invariant if m[soz(B)A(B)] = 0 for 9-u-almost all x E X, where AAB denotes
the symmetric difference of A and B. 4' is called ergodic if every 4)-invariant 63-
measurable subset B of S satisfies either m(B) = 0 or m(S - B) = 0. This means
that, if a subset of S X X of the form: B X X, B E 3, is invariant under the
(Z ® ()-(m X ,u)-measure preserving transformation defined by (2.2), then
either m(B) = 0 or m(S - B) = 0. It is easy to see that, in case X consists of
a single element, that is, in case 4' consists of a single B-m-measure preserving
transformation s, our definition of ergodicity for 4' coincides with the usual defini-
tion of ergodicity for sp.

Further, it is to be noticed that, in case X contains an tE-measurable sub-
set E with ,U(E) > 0 and UA(X - E) > 0, sp cannot be ergodic on (S X X, eZ ® y,
m X u). In fact, the set S X E is invariant under and clearly satisfies
(v. X A)(S X E) > 0 and (m X M)(S X X - S X E) > 0.

It is, however, possible to prove that the ergodicity of 4' = { P.|jx E X} is
equivalent to the ergodicity of a (Z 3 2*)-(m X u*)-measure preserving trans-
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formation so* defined on S X Q by (2.8). It is easy to see that the ergodicity
of p* on (S X Q, e (g) *, m X ,*) implies that of4 = {sozIx G X} on (S, , m)
with respect to (X, L, ,u), but the converse is not obvious. This will be proved in
theorem 3.

3. Markoff process with a stable distribution

Let (S, 3, m) be a measure space with m(S) = 1. A real valued nonnegative
function P(s, B) of two variables s, B defined for s E S, B E Z, is called a Markoff
process uith a stable distribution m(B) if the following conditions are satisfied:
(i) for any fixed s E S, P(s, B) is a countably additive set function of B defined on
eZ and satisfies P(s, S) = 1, (ii) for any fixed B E iB, P(s, B) is a 53-measurable
function of J defined on S and satisfies

(3.1) JfP (s, B) m (d s) = m (B).

Similarly, a real valued nonnegative function R(B, s) defined for B E !0, s E S is
called an inverse Markoff process uith a stable distribution m(B) if (i) for any
s E 5, R(B, s) is a countably additive set function of B defined on e0 and satis-
fies R(S, s) = 1, (ii) for any fixed B E Z, R(B, s) is a d-measurable function of
s on S and satisfies

(3.2) JR(B, s)m(ds) =m(B).

P(s, B) and R(B, s) are said to be associated with each other if

(3.3) JP (s, B) m (d s) = JfR (A, s) m (d s)
AB

for any A E 5B, B E i, and this common value is denoted by Q(A, B).
Remark. In case (S, S3, m) is the Lebesgue measure space [that is, a measure

space in which S = {s} is the set of real numbers s, 0 < s < 1; e = {B} is the
a-field of all Lebesgue measurable subsets B of S, and m(B) is the ordinary
Lesbesgue measure of B with the normalization mr(S) = 1], it is easy to see that, for
any Markoff process P(s, B) with the stable distribution m(B), there exists an in-
verse Markoff process R(B, s) with the same stable distribution m(B) which is
associated with P(s, B). In fact, if we put

(3.4) Q(A,B) = JP(s,B)m(ds)

for any A, B E iB, then, for any fixed A, Q(A, B) is a countably additive set func-
tion of B defined on e which satisfies Q(A, B) _ Q(S, B) = m(B) for all B E Q3.
Hence, by Radon-Nikodym's theorem, for any A E Q3, there exists a 5-measur-
able function R(A, s) of s such that 0 _ R(A, s) _ 1 for all s E S and

(3.5) Q (A, B) =fR (A, s) m (d s)

for all B E t3. By a well known argument due to J. von Neumann [5] and J. L.
Doob [2], in case (S, B, m) is a Lebesgue measure space, we can find a solution
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R(A, s) of (3.5) which is countably additive on Q3 as a set function of A for almost
all fixed s E S. This R(A, s) clearly is an inverse Markoff process with a stable
distribution m(B) which is associated with P(s, B). Conversely, starting from
R(A, s) we can easily obtain P(s, B) by similar arguments.

Let LP(S) = LP(S, 3, m) (p _ 1) be the LP-space defined on the measure
space (S, 3, m) as in section 2. It is easy to see that (compare [9])

(3.6) Af (s) = fJP(s, d!) f (t)

is a bounded linear transformation of LP(S) into itself such that

(3.7) f _ 0 implies Af > 0,
where f _ 0 means that f(s) _ 0 d-m-almost everywhere on S. It is also easy to
see, because P(s, S) = 1 for all s E S, that the constant function f(s) = 1 is in-
variant under A: A(1) 1.

Similarly, we see that
(3.8) rf (s) = Jsf (t)R (dt, s)

is a bounded linear transformation of LP(S) into itself such that

(3.9) f > 0 implies rf _ 0 and r (1)--1 .

Let further V(Q3) be the Banach space of all real valued countably additive
set functions F(B) defined on e with
(3.10) IIF I (e) = total variation IF (B)

as its norm. It is then easy to see that

(3.11) A*F(B) =f F(ds)P(s,B)
S

is a bounded linear transformation of 9D(3) into itself such that

(3.12) F _ 0 implies A*F> 0 ,

where F > 0 means that F(B) _ 0 for all B C V.. We observe that (3.1) means
that m(B) is invariant under A*. Let now Vo(13) be the closed linear subspace of
WI(!B) consisting of all F(B) which are absolutely continuous with respect to m(B).
Then it is easy to see that A* maps 90o(e) into itself [follows easily from (3.11)].
On the other hand, it is well known (by Radon-Nikodym's theorem) that 91lo(0)
is isometrically isomorphic with the LI-space L'(S) = L1(S, B, m) by means of
the correspondence F(B) +f(s), where f(s) E L1(S) is the derivative of F(B) E
9&0(O) with respect to m(B), or, in other words, F(B) C 9&0(3) is the indefinite
integral off(s) e LI(S). Thus A* may be considered as a bounded linear transfor-
mation of L1(S) into itself:
(3.13) A*f (s) =g (s) :f)g (s) m (d s)

= f (s)P(s,B) m(ds)

=ff (s)Q(ds,B)
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for all B G 8 or

(3.14) A*f ( s) ff(s) Q (d s, B).

It is now easy to see that this bounded linear transformation A* defined on
L'(S) is exactly the same as the bounded linear transformation r defined on L'(S)
by (3.8).

Similarly, if we consider a bounded linear transformation r* defined on 9N (I3) by

(3.15) r*F (B) =fR (B, s) F (d s),

then m(B) is invariant under r*, and r* may be considered as a bounded linear
transformation of 90(e) into itself. Further, the bounded linear transformation
obtained on L1(S) from r* by means of the isometric isomorphism F(B) +-+f(s)
between 90(e) and L'(S), is exactly the same as the bounded linear transforma-
tion A defined on LI(S) by (3.6).
We now notice that the iterations An and rn of A and r are given by

(3.16) Anf(s) =f P(n)(s, dt) f (t),

(3.17) rnf (s) = f (t)R( f) (dt, s),

respectively, where p(n) (s, B) and R(nl (B, s) are defined recurrently by

(3.18) p(n) (s, B) =fP(n1) (s, dt)P(t,B)

= fP (s, dt) p(n-l) (t, B)

(3.19) R(n) (B, s) = fiR(n-1) (B, t)R (di, s)

= JfR (B, t) R (n-1) (dt, s)
s

n =2, 3, It is easy to see that

(3.20) fP(n) (s,B) m (d s) = f.R n) (A, s) m (d s)

for all A, B E Q3. This common value is denoted by Q(n) (A, B).
The following result concerning Markoff processes with a stable distribution

is known:
THEOREm 2. Let P(s, B) be a Markoff process with a stable distribution m(B). Let

R(B, s) be an inverse Markoff process with the same stable distribution m(B) which
is associated with P(s, B). Let A and r be the bounded linear transformations defined
on LP(S) (p _ 1) by (3.6) and (3.8). Then for any function f(s) E LP(S) (p 2 1)
there exist two functionsf(s), f(s) E LP(S) such that

(3.21) lim 1 kf (S) -f(s) =0,
n,,+0 n k-0 LV(S)
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In-i1(3.22) lim ||- Fkf (s) -f(s) = .

Iffurther, f(s) is bounded, then

1n-I
(3.23) lim - E Aklf (s) = (S)

i n-1

(3.24) lim - rkf (s) = f (s)
n n k=O

d3-m-almost everywhere on S.
These results were obtained by K. Yosida [8] and the author [4], and are called

the mean and individual ergodic theorems concerning Markoff process with a stable
distribution. It is interesting to observe that the individual ergodic theorems (3.23),
(3.24) were proved only whenf(s) is bounded. It was proved lately by J. L. Doob [3]
that we have (3.23) and (3.24) iff(s) E LP(S) (p > 1) or if lf(s) log+ lf(s) E L'(S).
This follows from the fact that individual ergodic theorems in theorem 3 are the
"integrated form" of individual ergodic theorems in an infinite product space and
that the "integration" of individual ergodic theorems is permitted only when we
have Wiener's dominated ergodic theorem [7].

Let P(s, B) be a Markoff process with a stable distribution m(B). A Q-meas-
urable subset B of S is called P-invariant if (i) P(s, B) = 1 for !B-m-almost all
s E B and (ii) P(s, B) = 0 for 0-m-almost all s E S - B. It is easy to see that the
conditions (i), (ii) are equivalent. Further, B is P-invariant if and only if the
characteristic function XB(S) of B is invariant under the bounded linear transforma-
tion A defined by (3.6).

Similarly, we can introduce the notion of R-invariance for an inverse Markoff
process R(B, s) with a stable distribution. A s-measurable subset B of S is called
R-invariant if (i) R(B, s) = 1 for !-m-almost all s E B, and (ii) R(B, s) = 0 for
d-m-almost all s E S - B. Again these two conditions are equivalent. Further,
B is R-invariant if and only if the characteristic function XB(S) of B is invariant
under the bounded linear transformation r defined by (3.8).
We observe that, in case P(s, B) and R(B, s) are associated with each other, the

notion of P-invariance and that of R-invariance are equivalent. This follows from
the observation that each of these invariance conditions is equivalent to

(3.2 5) Q (B, B) =JP( s, B) m (d s) =fJR (B, s) m (d s) = m (B) .

A Markoff process P(s, B) with a stable distribution m(B) is called ergodic if P-
invariant V-measurable subset B of S satisfies either m(B) = 0 or m(S - B) = 0.
Similarly, an inverse Markoff process R(B, s) with a stable distribution m(B) is
ergodic if every R-invariant s-measurable subset B of S satisfies either m(B) = 0
or m(S - B) = 0. It is clear that in case P(s, B) and R(B, s) are associated with
each other, these two conditions of ergodicity are equivalent.

Further, we can introduce the notion of ergodicity for bounded linear transfor-
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mations: A bounded linear transformation A (or r) of LP(S) into itself is ergodic if
constant functions are the only functions which are invariant under A (or r). In
case the mean ergodic theorem holds for A (or r), that is, in case An (or rn) are

uniformly bounded and A" (or -! rk) converges strongly to A (or r),
k=0 =

this condition means that A (or r) is a projection to a one dimensional subspace
of LP(S) consisting only of constant functions. Thus, in case our A [or r] is ob-
tained from P(s, B) [or R(B, s)] by (3.6) [or (3.8)], theorem 2 implies the follow-
ing result: A (or r) is ergodic if and only if, for any f(s) E LP(S), the correspond-
ing limit function f(s) [or f(s)] in theorem 2 is a constant d-m-almost everywhere
on S. Further it is clear that the ergodicity of A (or r) implies that of P(s, B)
[or R(B, s)], but the converse is not so obvious. This will be proved in theorem 3.

4. Random ergodic theorems and Markoff process with a stable distribution

Let (S, 3, m), (X, CY, u) be two measure spaces with m(S) = ut(X) = 1. Let
= {zJIx E XI be a (B, Y)-measurable family of -r-m-measure preserving trans-

formations p. defined on S. Let us put, for any s E S and for any B E ,

(4.1) P(s,B) = 0{xJIP.(s)EB}

= JXB [(PZ (s) I IA (dx ),

where XE(S) is the characteristic function of B. It is then easy to see that P(s, B)
is a Markoff process with a stable distribution m(B). In fact,

(4.2) JP(s,B) m(ds) =fm(ds)fxB [(p (s) I IA (dx)

= JAu (dx) JXB [(P. (S) ] m (d s)fx s

fjA (dx) JXB (s) m (d s)

=I,(X) m (B) = m (B)

for all s E S and for all B E Q0. P(s, B) is called the Markoff process with a stable
distribution m(B) induced by 4 = {soxIx E X}.

Similarly, if we put

(4.3) R(B, s) =.{xJ(p-'(s)EB}

fXB[EP. I (S) I A (dx),

then R(B, s) is an inverse Markoff process with a stable distribution m(B) which is
associated with P(s, B). In fact,
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(4.4) JR(B, s) m (d s) =fm (d s)fXB (s) ](dx)

ffAx (dx) JXB [f21(s)] m (ds)

J. (dx) fxB (s) m (d s)
-u(X) m (B) = m (B)

for all s E S and for all B E 0; and further

(4.5) JP (s, B) m (ds) = fm (ds) fJXB kP. (S) I A (dx)

= .J(x/(dx) JfXB [h2 (s) I m (d s)

JX u (dx) f, X,1,(B) (s) m (d s)

=fm[Anflq 1 (B) ] ,u.(dx)

ffm [2 (A) nB] A (dx)

1fI(dx)fx( 4A) (s)mn(ds)

J(,l (dx)fXA [12(z'S) m (d s')

- f(m (d s) fXXA [,p '(s) ] .(dx)

=fR(A, s) m(ds)
B

for all A, B E 0. The relation:

(4.6) Q(A,B) =j P(s,B) m (d s)

=fJR (A, s) m (d s) =f m[,c(A) nB] , (dx)

is useful in the later arguments.
For each x E X, let V. be a bounded linear transformation defined on LP(S)

(p 2 1) by
(4.7) V-f(s) = f[.ox(s)]
Then it is easy to see that the bounded linear transformation A defined on LP(S)
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(p 2 1) obtained from P(s, B) by (3.6) is given by

(4.8) Af (s) =ff[fkoz(s) I u (dx)

=f Vzf (s) it,(dx)
or, symbolically,

(4.9) A f V2i (d x) .

Similarly, the bounded linear transformation r defined on LP(S) (p> 1) ob-
tained from R(B, s) by (3.8) is given

(4.10) rf (s) = f f[ 1 (dx)

x=-.'f (s) (dx)

or, symbolically,
(4.11) r= fV-',,(dx) ,

where V;-1 denotes the inverse transformation of V_ for each x E X.
We also notice that the iterations An and rn of A and r are given by

(4.12) Anf (s) = fr f [V * 2 (s) ] A (dxl) . IA(dx. )

= f.p(n) (s, di) f (t),
s

(4.13)~~~*|rn .S.=J f [,p1p'*07 ( s) I IA ( dxl) ..*I* (dx )

=f f (t)R(11) (dt, s) ,

where P(n)(s, B) and R(N (B, s) are obtained recurrently from P(s, B) and R(B, s)
by (3.18) and (3.19), respectively. It is easy to see that

(4.14) P (11) ( s J *= X,B [ .* * * ,,z (S) I , (dx l)j.. . ) (dIx()

(4.15) R(n) (B, s) =J.. .jXB[(Z1'... "o; 1(s)1]j(dx,)... IA (dXn)
and
(4.16) Q(n) (A,B) =JfP(n) (s,B) m (ds)

=BR(n) (A, s) m (d s)

fo fX rx p... (A) nBA, B (dxl) . .. A (dXn)

for any A, B E t
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THEOREm 3. Let (S, iB, m) and (X, (;, IA) be two measure spaces with m(S) =
,u(X) = 1. Let 4) = {,o.Ix E X} be a (Z, (g)-measurable family of !6-m-measure
preserving transformations sp. defined on S. Then thefollowing conditions are mutually
equivalent:

(a) 4a = { e Ix E X} is ergodic, that is, every ()-invariant s-measurable sub-
set B of S satisfies either m(B) = 0 or m(S - B) = 0.

(b) The induced Markoff process P(s, B) with a stable distribution m(B) de-
fined from 4) = { i* I x E X} by (4.1) is ergodic, that is, every P-invariant 59-meas-
urable subset B of S satisfies either m(B) = 0 or m(S - B) = 0.

(c) The induced inverse Markoff process R(B, s) with a stable distribution
m(B) defined from (P = I (P. x E XI by (4.3) is ergodic, that is, every R-invariant
!-measurable subset B of S satisfies either m(B) = 0 or m(S - B) = 0.

(d) The bounded linear transformation A defined on LP(S) (p _ 1) by (4.8) is
ergodic; that is, if a function f(s) E LP(S) is invariant under A, then f(s) is equal
to a constant Z-m-almost everywhere on S.

(e) The bounded linear transformation r defined on LP(S) (p _ 1) by (4.10)
is ergodic; that is, if a function f(s) E LP(S) is invariant under F, then f(s) is con-
stant Z-m-almost everywhere on S.

(f) The ( (X) *)-(m X ,u*)-measure preserving transformation (p* defined
on the product space S X Q by (2.8) is ergodic on (S X Q, e ® V, m X I*),
that is, every (5 () 1*)-measurable subset B* of S X Q which is invariant under
s* satisfies either (m X ,u*)(B*) = 0 or (m X ,A*)(S X Q- B*) = 0.

PROOF. It suffices to show that (a) -* (b) -+ (d) -. (f) -+ (a). In fact the impli-
cations (a) -- (c) -f (e) -* (f) -+ (a) can be proved similarly.

Proof of (a) -- (b). Assume that 4) = {ozjx E .( is ergodic. If P(s, B) is not
ergodic, then there exists a s-measurable subset B of S with m(B) > 0,
m(S - B) > 0 which is P-invariant. From (3.25) and (4.6) follows

(4.17) m (B) = Q (B, B) =fmL P[ 2(B) nB] u (dx).

Since the integrand is _m(B) for all x E X, this shows that m[(p.(B) n B] = m(B)
for Y-u-almost all x, that is, m[4oz(B)AB] = 0 for 9-M-almost all x. This is a con-
tradiction to the assumption that (P = { so, Ix E X} is ergodic.

Proof of (b) -- (d). Assume that P(s, B) is ergodic. If A is not ergodic then there
exists a function f(s) E LP(S) (p _ 1), not equal to constant d-m-almost every-
where on S, such that

(4.18) f (s) =JP(s, dt) f (t)

Z-m-almost everywhere on S. If we put f+(s) = max [f(s), 0], then, by (3.7), it
is easy to see that

(4.19) f+ (s) <JP(s, dt) f+ (t)

5-m-almost everywhere on S. If the inequality in (4.19) holds on a d-measurable
set of positive m-measure, then we would have the inequality:
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(4.20) ff+(s) m(ds) <fm(ds)JP(s, dt) f+(t)fs ss

= ff+(t) m(ds)P(s, dt)
s fs

jf+ (t) m (dt)
which is a contradiction. Thus we must have

(4.21) f+ (s) = fJP (s, dt) f + (t)

3-m-almost everywhere on S. Similarly, if we putft(s) = max [-f(s), 0], then

(4.22) f-(s) =fP(s, dt) f- (t)
fs

53-m-almost everywhere on S. By similar argument we have

(4.23) f. (S) =fJP(s, dt) f.",(t)
3-m-almost everywhere on S, for any real numbers a, 13 with a < ,B, where

( 1 if f (s) _,

(4.24) f(s) = () - if a <<f(s) <,8

O if f (S) __ a .

Sincef(s) is not equal to a constant S-m-almost everywhere on S, there exists a
real number 1 such that the set B = {slf(s) > 13} satisfies m(B) > 0 and

m(S - B) > 0. Let us put a, = 13--in (4.23) and let n-- o. Then, since
n

fa,.0 (S) - XBE(S) for all s E S and since all functions fQ,s(s) are uniformly bounded,

(4.25) XB (S) =fP(S, dt) XB (t) =P (s, B)
s

d-m-almost everywhere on S. This shows that B is P-invariant. This is a contra-
diction to the assumption that P(s, B) is ergodic. Thus A must be ergodic.

Proof of (d) -- (f). It suffices to show that under the assumption that

in-1
(4.26) lim _1 (Akkf, g) = (f, 1) (1, g)

n-a+00 k=O

for any functions f(s), g(s) E L2$), where (f, g) denotes the inner product off, g
in L2(S), we have

1 n-1
(4.27) lim - (Wkf*, g*) = (f*, 1) (1, g*)

for any f*(s, w), g*(s, w) E L2(S X Q), where (f*, g*) denotes the inner product
of f*, g* in L2(S X Q) and W is the unitary transformation defined on L2(S X Q)
by
(4.28) Wf* ( S,c) = f* [,P*( Sco) I= f* r eS)..............(s).(co))1.
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Let f*(s, w), g*(s, w) be of the form:
b- 1

(4.29) f* (S' Wi) = fi (S) r1 fi [xi ((i)) I
'-a

d- 1

(4.30) g*(s, W) = g(s) 11 gj[xj(w) I,
j=c

where f(s), g(s) E L2(S); a, b, c, d are integers, a < 0 < b, c _< 0 < d; fi(x) E
L2(X), i = a, . . . , b - 1; g;(x) C L2(X),j = c, . . . , d - 1. Since the linear com-
binations of such functions are everywhere dense in L2(S X Q), it suffices to prove
(4.27) only for the case when f*(s, w), g*(s, w) are of the forms (4.29), (4.30). In

o ~~~ ~ ~~~n-1n-1

this case we have note that we take the sum instead of )
k=d-a k=O

n-1 n-1 b-

(4.31) _ ~E (Wkf*, g*) E m (ds) II fi Xk+i
k=d-a = d-i=a

d- 1
x gj[gxj (w) I f so(() ] g (s) M* (dcW)

i=C

n-i b-I d-1

=- (ik2Nak-Iv f,ggx,)

_d-a

where A is a bounded linear transformation defined on L2(S) by (4.8) and

(4- 3 2 ) Alf ( s ) ./
b-

* |fi( b-,l***0z S)]
X IA (dxb-l). . . A (dXa),

(4.33) A2f(S) =f...* rjgf (xi) f Izd l.*.. (S)

X A (dxd-.,) . .. (dxc).

Thus, denoting by A* the adjoint operator of A2 in L2(S), we have

1 n-i 1 n-1
(4.34) lim - z (Wkf*, g*) = lim - E (A2Aa+k2dAfa g

n" n k-d-a n- o nk=d-a

1 n-1

= lim - E (Aa+k-dA1f, A*g)
w e wntk=d-a
= (AIf' 1) (II A*2) = (fol, )(, 1)}

where we used the assumption (4.26) in the third equality, and the fourth equality
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follows from

(4.35) (Alf, 1) = m (ds) r1 fJ(Xi)

b-1

riJX , (x,) A (dXb -) . .. IA (dx.)

and
(4.36) ( 1, A g) = (A\21, g)

=fg(s)m(ds) . (dx) (d)

f nf.fiJgJ(xDsdxddD.Xb 1(...

= (1,g=5)
Proof of (f) -*(a). Assume that &p*is ergodic on (S X Q2, e ®>*, m X ,u*).

If 4) = { ,oJ x E X} is not ergodic, then there exists a 4-invariant t-measurab1e
subset B of S such that m(B) > 0 and m(S -B) > 0. Let us put B* = B X Q.
Then B* is a (Sd fg*)measurable subset of S X Q with (m X ,u*)(B*) > 0,
(m X ,uL*)(S X Q2- B*) > 0 and it is easy to see that (m X bt*)kO*(B*)AB*] = 0.
This is a contradiction to the assumption that so* is ergodic on (S X Qi, m X *,
m X A*)-

This completes the proof of theorem 3.
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