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Nonlinear light dynamics in multi-core structures 

 Summary. This report presents the results of the research activities within the project FA9550-14-1-

0305. The project has led to a number of results, including introduction of the key mathematical 

models governing optical field propagation in the multiple-core structures (e.g. waveguides and 

fibers); study of the properties of light-bullets fully localized both in space and time that can be 

generated in continuous-discrete optical media such as multi-core optical fiber or waveguide 

arrays; localisation dynamics in a continuous-discrete nonlinear system. We present detailed 

theoretical analysis of the existence and stability of the discrete-continuous light bullets using a 

very generic model that occurs in a number of application, study of the steady state propagation 

regimes, study of the modulation instability in multiple-core fibers (MCFs), investigation of the 

nonlinear stage of the instability and energy transfer. We demonstrated numerically light pulse 

combining and pulse compression using wave collapse (self-focusing) energy localisation dynamics 

in a continuous-discrete nonlinear system, as implemented in a MCF using 1D and 2D core 

distribution designs. Large-scale numerical simulations were performed to determine the 

conditions of the most efficient coherent combining and compression of pulses injected into the 

considered MCFs. We demonstrated the possibility of combining in a single core 90% of the total 
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energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. A pulse 

compression factor of about 720 can be obtained with a 19-core ring MCF.  

 

 

1. Introduction 

Fast growing powers of modern optical devices make underlying dynamics and evolution of fields 

and beams essentially nonlinear. An important example is high-power fiber lasers. The fiber laser 

manufacturing has been greatly enhanced by the technologies developed in the telecom industry, 

but the recently emerged applications (and markets) include so different areas as medicine, 

metrology, defence, spectroscopy, industrial cutting, welding, with the list of new applications 

growing very fast. Fiber lasers hold a number of attractions including compactness, very good 

cooling characteristics and high quality of emitted light. Fiber lasers are widely considered now as 

promising technology of producing efficient high-power coherent light sources. However, fiber 

laser’s brightness is limited by the variety of nonlinear effects. As the power level of fiber sources 

increases, nonlinear effects become increasingly important. Understanding and controlling nonlinear 

effects in multi-core fiber holds the key to unlocking new techniques and technologies. A number of 

engineering and physical techniques are used to scale laser power up.  

 

Mathematical modelling plays a crucial role in building platform for new progress in this field. 

Nonlinear dynamics in discrete systems is an interdisciplinary research field that has links to a large 

number of areas of science and technology. This is both because matter itself is described by 

discrete models and also because many important engineering nonlinear systems are based on few 

interacting constituents or elements. Nonlinear discrete systems describe a variety of phenomena in 

condensed matter, nonlinear optics, biology and other fields; from energy transport in molecular 

chains and protein molecules to light propagation in waveguide arrays. A number of different 

physical systems can be effectively described by the same mathematical models. In this report we 

present generic and practically very important example of low-dimension nonlinear discrete systems 

– light propagation in multi-core fiber and demonstrate new features introduced by discrete multi-

core propagation. 

 

Structuring of light in space and time is a fascinating area of research and technology. In space, light 

can be localized and structured by using wave-guides that are formed by appropriate variations of 

the refractive index. Nonlinear optics gives another practical possibility to localize and control light 

both in space and time. The combination of these two features leads to a rich variety of 

interconnected methods to structure and manipulate spatial and temporal properties of light. In 

particular, advances in fiber optics technology over the past 30 years, has had an impact not only in 

numerous highly important applications, but it has also provided a laboratory to display nonlinear 

phenomena such as modulation instability, solitons formation and interactions, super-continuum 

generation, parametric amplification, optical wave turbulence and many others. In space, even 

earlier, the possibility of balancing diffraction with nonlinear self-focusing so that localized wave-

packets could propagate undistorted emerged as an important topic with broad applicability. 
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At that time, the theory of soliton formation and its instability in the 1+2 dimensional nonlinear 

Schrödinger equation (NLSE), 0||);,( 2 =+∆+ uuuzyxui Tz
σ∂ , proved that for the Kerr 

nonlinearity (σ=1), a 2-d spatial soliton is unstable in that it either collapses (for powers above 

critical) or diffracts. In this equation, u represents the envelope of the electric field; (x,y) are the 

spatial variables transverse to the direction of propagation z. At this so called critical (σd=2, 

d=transverse dimension), critical collapse is easily arrested by many additional terms in the model 

even if small. Most common examples are losses, nonlinear saturation. In particular if instead of a 

continuum field we have a discrete model with the corresponding discrete Laplacian, in the earlier 

seminal work [1,2] demonstrated in a particular rectangular geometry of waveguide arrays that 

stable bullets propagate in such model. Recent technological advances in photonic crystals and 

multi-core fibers made possible new demonstrations of light localization. While multi-core fiber 

technology was driven by major challenges in optical communication in providing methods and 

techniques capable to offer transmission capacity above the limitations of the single mode-fiber 

communication channels [3,4]. A multi-core fiber (MCF) allows one to implement spatial division 

multiplexing, enabling a scale-up in transmission capacity per-fiber and more recently, they were 

used for the experimental demonstration of Light Bullets (LB) in a multi-core optical array [5,6]. 

Furthermore, as the technology of multicore fibers continues to advance so are the possible 

applications of such arrays. Spatial de-multiplexing is also important in emerging applications of 

multi-core fiber is in the field of high-power fiber lasers [7,8]. The reason this technology has been 

instrumental in novel design of fiber lasers is the limitation in generating high power outputs in a 

single laser. The power transmitted through the single mode fiber is limited by the different non-

linear effects. To overcome this threshold and generate high powers, a promising approach is to 

coherently combine multiple amplifier outputs. Here, the use of multi-core fiber allows one to split 

the total high power into channels with power below any undesirable nonlinear effects. In other 

words, laser beams in each core may be transported safely being below the threshold of the 

detrimental nonlinear effects while the total coherently combined power can be high. In recent work 

[8] multi-core fibers in a hexagonal configuration was used to efficiently combine the output of 

multiple fiber amplifiers so that one can produce coherent output power that scales to the number 

of cores (equal to the number of amplifiers). We should emphasize that a critical component of the 

coherent beam combining scheme, is the ability to design of multicore structures with a geometrical 

configuration that has a more general coupling scheme that the simplest nearest neighbor. In this 

respect, our work presented here represents an important contribution to this application in that it 

studies for the first time the stability properties of LB under more general coupling schemes. Finally, 

this new multi-core fiber technology opens up new perspectives for the fascinating research on light 

bullets (see e.g. [9-15] and references therein) and can be a natural laboratory to study fundamental 

phenomena such as nonlinear Anderson localization, light filaments and vortices and optical rogue 

wave formation to name some. The MCF is a specific realization of fiber arrays with flexible mutual 

arrangement of cores. It is important to understand how the mutual arrangement of fibers will affect 

the existence the LB and their stability, which is the subject of present paper  

 

Given the importance of LB in nonlinear science and applications mentioned above, the main 

objective of this work was to analyze the optical bullet features in continuous-discrete optical media 

including their stability under the most general coupling schemes. Our focus is on the generic 

models that may be applied in various applications. This theoretical work we believe will provide a 
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framework in the design of multicore elements aiming at optimizing desirable and specific 

applications such as routing, switching and coherent beam combining.   

 

2.  MATHEMATICAL DESCRIPTION OF THE SYSTEM 

For arrays of waveguides where light propagates mainly in the central (core) region of the individual 

elements and for which transverse exchange of energy is due to tails of the field overlapping 

neighbor waveguides, the field is well approximated by a superposition 

E(x, y,z, t) = Unm (z,t)F(x − xn ,y − ym )e i(kz−ωt )

nm

∑ + cc  where we assume each waveguide is 

identical and supports a single mode F. The center of each waveguide is at location (xn ,ym ) .   

2.1 Basic equations 

 The equations, in dimensionless form, describing the propagation of the envelopes Unm (z,t)  

propagating in the fiber at site (n,m) read: 

i∂zUnm + (CU)nm + ∂
t 2
2 Unm + 2 |Unm |2 Unm = 0                                (1) 

where (CU)nm  represents the linear coupling profile at site (n,m). Two cases of interest are the 

uniform square and hexagonal geometries, for which the respective coupling operators are (see 

Figure 1) 

1, 1, , 1 , 1

1, 1 1, 1 , 2 , 2 1, 1 1, 1

( ) ( )                                                  (2 )

( ) ( ) (2 )

square
nm n m n m n m n m

hexagon
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CU c U U U U a
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− + − +

− − − + − + + − + +

= + + +

= + + + + +
 

This system has two known conserved quantities; the Hamiltonian 

dtUUUUNH nmnmt
nm

nm
)||||);(( 42 −+=∑∫ ∂  and the total power P = |Unm |2 dt∫

nm

∑ . 

The form of the discrete-continuous light bullets (that are extrema of the Hamiltonian under fixed 

total power P) 
zi

nmnm etAtzU λλ),(),( = is given by the equation: 

)3(0||2)()( 22
* 2 =+++−=+− nmnmnmtnmnm
nm

UUUUCUPH
U

∂λλ
δ

δ
 

 

 
 

Figure 1. Square and hexagonal waveguides structures  
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2.2 Localized bullet solutions 

Highly localized bullet solutions in some limits can be derived using an asymptotic approach. The 

consideration is that spatially most of the energy is concentrated in one site, (0,0) and small satellite 

pulses of decreasing amplitude propagate in subsequent layers. Mathematically, this means we seek 

solutions of the form 
zi

nmnm etAtzU λ)(),( =  with λ >>1, where each envelope has an expansion of 

the form Anm (t) = Anm
(0)(t;λ) + Anm

(1) (t;λ) + Anm
(2)(t;λ) + .... 

  

We only present the solutions for the central core and first layer: The functional form is the same for 

the central core, the second line gives the functional form for the first layer in the square array, 

while the third gives the form for the first layer of hexagonal array 

00 0 3/2 3/2

2 2
1,0 0, 1 1 5/2 5/2

2 2
0, 2 1, 1 1, 1 1 3/2 3/2

1 1
( ) ( ) ( ) ( )

cosh( )

1 1
( ) ( ) ( ) [ ln(1 ) ln(1 )] ( )

2
1 1

( ) ( ) ( ) ( ) ( ) [ ln(1 ) ln(1 )] ( )
2

t t t t

t t t t

A t a t O O
t

c
A t A a t O e e e e O

c
A t A t A t a t O e e e e O

λ λ λ λ

λ λ λ λ

λ
λ λλ

λ λλ

λ λλ

− −
± ±

− −
± ± − ±

= + = +

= = + = + + + +

= = = + = + + + +

   (4) 

These solutions fail to be uniformly valid beyond | t |≥ O(λ). In fact at the pulse tails, all waveguides 

have solutions of the same order Anm = O(λe−λ|t |), t ≥ λ . 

What follows are numerical simulations corresponding to these highly localized solutions as well as 

more general nonlinear states. 

2.3 Numerical simulations 

 

We calculate now numerically exact solutions describing continuous discrete light bullets in the 

equation (1) where we varied the number of elements in the array, which is an important 

consideration for practical systems where the number of cores is finite. The asymptotic functions 

)(),( 10 tata coincide with numerical solutions 00 ( )A t  and 1,0 0, 1( ) ( )A t A t± ±=  of the system (3) up 

to the order 3

1
( )O

λ
.  

 
Figure 2 Dependence numerical (color) and theory (black) peak powers vs the parameter λ in central 

(a) and closer neighbor waveguides (b) for 33x33 square and 65x33 hexagonal waveguides structures 
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Figure 3 Comparison of numerical solutions (solid) with their analytical approximations (dashed) for 

different λ in the central waveguide (top green) and closer neighbor waveguide (bottom) 

 

To fully assess the validity of the asymptotic analysis, we compared them with full numerical 

solutions for the case of a coupling constant с=1 and for the rectangular structure with NxN crossed. 

Figure 2 shows dependence numerical (color) and theory (black) peak powers versus the parameter 

λ in central (a) and closer neighbor waveguides (b) for 33x33 square and 65x33 hexagonal 

waveguides structures. As Figures 2 and 3 show, there is good correspondence between the theory 

and numerical modeling for large values of λ. Figure 3 shows comparison of the time domain 

structure of the light bullets for three different values of λ. As expected correspondence is good for 

value of λ equal to 14 and fails at λ= 7, thus the limiting value of λ for which the asymptotic state is 

valid is around 4≈cλ . Finally, global quantities of the LB such as power and the Hamiltonian are 

shown in Figure 4. Here we observed universal behavior for different number of fiber elements. 

Specific to the power dependence on λ, below we discuss how it relates to the stability properties of 

the LB.  

 

 
Figure 4 From left to right: dependence of the total power on the parameter λ; dependence of the 

Hamiltonian on the parameter λ; the Hamiltonian vs the total power 
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2.4 Stability analysis  

We now investigate the stability of solutions of the form 
zi

nmnm etAtzU λ)(),( =  by linearization 

zi
nmnmnmnm eigftAtzU λ))((),( ++= , leading to the system of linear equations 

−∂zgnm = −(C f )nm −∂
t 2
2 fnm + λfnm − 6 | Anm |2 fnm = (H− f )nm

∂z fnm = −(Cg)nm −∂
t 2
2 gnm + λgnm − 2 | Anm |2 gnm = (H+g)nm

 

or 

−∂
z 2
2 fnm = H+(H− f )[ ]nm

 

 

 

 For square arrays 

 

f ,H+ f ≡ fnm (H+ f∫ )nm dt = Anm
2 ∂t

fnm

Anm
( )( )2

dt
 
  

 
  ∫

nm

∑
nm

∑ + An,m−1

Anm
fnm − An,m

An,m−1
fn,m−1

 
 
  

 
 

2

dt
 
  

 
  

∫
nm

∑

+ An−1,m

Anm
fnm − An,m

An−1,m
fn−1,m

 
 
  

 
 

2

dt
 

  
 

  
∫

nm

∑
 

and for hexagonal arrays 

` 

f ,H+ f ≡ fnm (H+ f∫ )nm dt = Anm
2 ∂t

fnm

Anm
( )( )2

dt
 
  

 
  ∫

nm

∑
nm

∑ + An,m−1

Anm
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2

dt
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∫
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∑
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Anm
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 
 
  
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 

2

dt
 
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 
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nm

∑ + An+1,m+1

Anm
fnm − An,m
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fn +1,m +1

 
 
  

 
 

2

dt
 
  

 
  ∫

nm

∑

+ An+1,m−1

Anm
fnm − An,m

An+1,m−1
fn +1,m−1

 
 
  

 
 

2

dt
 
  

 
  

∫
nm

∑

 

 

 

In both cases and similar to the 1+1+1 case [16,17,18] the following properties of the linear 

operators  

hold:   

(i) f ,H+ f ≥ 0 and it is equal to 0 if fnm = 0or fnm = Anm . 

(ii)  There exist some F  for which F,H− F < 0, F, A = 0  

While we present two specific geometries, (i) and (ii) will be generally true for a large class of 

coupling schemes. 

 

Properties (i) and (ii) allows us to conclude that the existence of negative eigenvalues of the 

operator H− is a sufficient condition for instability of the nonlinear state A . Furthermore one can 

show this condition is equivalent to the Vakhitov-Kolokolov condition on the sign of 

d

dλ
P = d

dλ
A, A . 

 

For the highly localized solutions of the previous section, one finds that the power P(λ) = 2λ + K

λ3
, 

where the constant K depends on the coupling coefficient and the geometry. Observe that a 

minimum is achieved at 
4

1

2

3







= K
cλ , so that stability of the localized (λ>1) bullet is assured for 
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coupling strengths below some critical value 3/2=cK . This stability criterion is also in agreement 

with the known stability of one dimensional solitons which in this model corresponds to the 

limit K → 0 . As it was the case above, this result is consistent to that shown in figure 2c in [4]. 

 

 

So far, we have demonstrated the existence and stability of the LB localized in  several fibers. Now 

we will demonstrate that the LB can be formed during the propagation of an initial pulse lunched 

from the input faces of the array. Specifically, we simulate the propagation of a Gaussian pulse 

lunched in one fiber for the hexagonal geometry. Figure 5 summarizes the general picture: The left 

panel highlights the propagation for smaller input peak power and broader pulse, where according 

to our analysis, stable LB do not exist. One can observe fast diffraction (in space) and dispersion (in 

time) of the pulse. The energy in the central core vanishes after z = 2 being spread through the 

surrounding layers. For slightly higher peak power (right panel) we observe the formation of LB 

localized in central fiber and the surrounding layer. The temporal oscillation can be explained in the 

following way. The Hamiltonian is conserved in our system and in general the initial value of H and 

that of the LB are different. The adjustment of Hamiltonian takes place by the radiation in the 

outside cores carrying out the Hamiltonian difference. Oscillations indicate the residual differences. 

For reference, red spatio-temporal iso-surfaces correspond to the central core, blue ones to the first 

circle of neighbouring cores (with peak power values 50 times less than in the central core). 

 

 
Figure 5 Power iso-surfaces of weak linear (a) and powerful nonlinear (b) input Gaussian pulses with 

the same energy during propagating along the hexagonal waveguide geometry 

 

 

3.  Nonlinear light bullets combining and compression in multicore fibers 

 

The technology of optical multi-core fibers (MCFs) is one of the possible methods of implementing 

spatial-division multiplexing (SDM) for future high-capacity optical communications. A brute-force 

solution of the ever growing capacity problem is to deploy multiple communication systems over 

parallel fibers, in order to meet demand. However, the use of multiple systems over parallel fibres 

will lead to linearly scaled (with growing capacity) transmission costs and power consumption. The 

SDM technology might potentially enable a substantial reduction in cost-per-bit and improved 

energy efficiency. At the moment, however, SDM technology is in the research stage and major 

research activities worldwide are exploring and testing various MCF designs and this potentially 

disruptive new platform. In MCFs the optical pathways are defined by an array of physically-

distinct single-mode cores. In conventional optical communications, the nonlinear effects that 

occur during signal propagation in a fiber due to the proximity of other data transmission channels 

are typically undesirable. An obvious approach to limiting cross-talk between spatial channels is to 
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keep the fiber cores well-spaced. Laboratory experiments demonstrate the feasibility of MCF 

technology for Pb/s fiber transmission. 

The MCFs can also be used for very different, high power applications. At high signal 

power and coupling among cores, existing MCFs can be also considered as nonlinear discrete 

physical systems, interesting both for fundamental science and for various potential practical 

applications as nonlinear photonic devices. With a large number of cores, the continuous limit of 

discrete models in the form of the well-known nonlinear Schrödinger (NLS) equations can be used 

for a qualitative understanding of the system evolution. In particular, for propagation in MCFs with 

the so-called anomalous dispersion, the 2- and 3-dimensional NLS equations describe the well 

known effects of self-focusing and wave collapse. Specifically, pulse compression and 

concentration of the energy in a few fibers can be achieved. 

When the energy is concentrated in a single core, the problem becomes effectively one-

dimensional and the collapse stops. Hence the discreteness must limit the the combining and 

compression. The idea to use the collapse for pulse compression in fiber arrays was proposed 

more then 20 years ago, but to build the fiber arrays is an technological challenge. MCF is an 

example of a fiber array with a specific distribution of relatively low total number of cores in which 

the proposed ideas can be implemented. This type of nonlinear combining is substantially different 

from currently popular schemes of linear beam combining and can be advantageous for some 

other energy transfer and delivery applications. 

 

In this report we focus on a theoretical study of the key underlying models and their 

mathematical properties. We consider two types of MCFs. In the first, the cores are placed as a 

ring in the fiber cross section with each core interacting with two neighbors only (see Fig. 3.1). In 

this case, the continuous model is the 2D nonlinear Schrödinger equation. 

 

As a second example, we examine hexagonal or square positioning of the cores (2D core 

distribution, as shown in Fig. 3.2) with each core interacting with several (more than two, 

compared to the first case) neighbors, resulting in a stronger nonlinear interaction. The continuous 

model in this situation is the 3D NLSE. The evolution of NLSE collapsing solutions, both in 2D and in 

3D, has been studied in detail. Using these classical results, we can obtain insight into the 

optimization of the energy localisation process. 

 

In this project we have evaluated through numerical modelling optimal conditions for 

nonlinear pulse combining and compression in multi-core fibers. We demonstrated that the 

conditions for optimal combining and compression are substantially different. In the 7-core ring 

MCF we demonstrate a combining of 83.5% of energy into a single core and pulse compression 

over 300 times. In the 19-core ring MCF we find regimes with 80% energy combining and 720 

times compression. Numerical modelling established that a 7-core hexagonal MCF allowed us to 

combine 91.6% of energy and to compress an optical pulse up to 256 times. In the case of a 19-

core hexagonal fiber, we find regimes providing 80.9% energy combining and compression with a 

factor of 250. We demonstrate that the 2D distribution of the cores across the MCFs (see Fig. 3.2) 

increases the nonlinear interaction between the channels, but this does not result in improvement 

of the compression and combining efficiency compared to ring configurations. However, 2D 

placement of the cores greatly reduces the combining and compression length which can be useful 

and is an important feature for practical device design. Moreover, the combining and compression 

in a 2D MCF is more robust and insensitive to variation of the initial parameters. The analysis of 

the NLSE continuous limit helps us to understand these results. 

 

Finally, we summarize the results of the optimisation for the combining and compression, 

and we present the optimal (within the considered schemes) MCF design. We also briefly discuss 

the possible practical devices and their parameters. 
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3A.  Self-focusing and collapse in 2D and 3D 

 

Let us re-write basic models discussed above in the dimension units now. The 

electromagnetic field of optical pulses propagating along MCF with 1D core distribution can be 

well approximated by a superposition of modes  

  (3.1) 

  

 where  gives the spatial mode structure and  is the complex envelope of the electromagnetic 

field in core number . In the limit of a weak-coupling approximation one can derive a system of 

equations for the envelopes , i.e., the continuous-discrete nonlinear Schrödinger equation:  

  (3.2) 

 where ,  is the group-velocity dispersion parameter for the mode ,  is the Kerr 

parameter, and the quantities  are the coupling coefficients between the cores. Consider first, 

the ring cores geometry (Fig. 3.1). Taking into account the interaction between nearest neighbors 

only, we can simplify the analysis with the following assumption  

  (3.3) 

 and neglect all other coupling terms. We consider . 

 

   

 

 

 

 

 

 

 

 
 

 

Figure  3.1 : Schematic depiction of the considered MCF waveguide with 7 (left) and 19 

(right) cores arranged in a circle. 

   

It is convenient to introduce normalized variables: , where 

, , , . The dimensionless equations (omitting the 

primes) read:  

  (3.4) 

 

In the case of a 2D core distribution we have the system for the envelopes    

  (3.5) 
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 Consider two different geometries, the square and hexagonal lattices (Fig. 3.2). We introduce 

normalized envelopes  for the square geometry and 

 for hexagonal geometry, where  is the same for all the neighboring 

cores coupling coefficient (other couplings may be neglected), and dimensionless variables 

, , and , , the same as for the ring geometry. Finally, 

omitting the primes, the system of NLSE takes the form:  

  (3.6) 

 where  is the linear coupling profile at site . For the square and hexagonal core 

configurations, the combination  is given by expression  

  (3.7) 

  

  

 

 

 
 

Figure  3.2: Schematic depiction of the considered multi-core fiber with hexagonal and 

square geometry and 2D numbering of cores. 

   

The continuous-discrete NLSEs  conserve the total energy (normalized by )  

  (3.8) 

  

 and Hamiltonian  

  (3.9) 

  

  

  

 and the master equations have the Hamiltonian structure:  

  (3.10) 

 

The system (3.4) with a large number of cores and smooth intensity distribution that 

experiences only small changes between neighboring cores for the ring geometry (Fig. 1) is 

equivalent to the continuous 2D NLSE for :  

  (3.11) 

 with Hamiltonian  

  (3.12) 
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 Eq. (3.11) is equivalent to the NLSE that describes the self-focusing of light in various nonlinear 

media. The continuous analog can be used for insight in discrete system evolution. 

In the conventional theory of self-focusing governed by the NLSE, the initial wave 

distribution collapses into singularity when the Hamiltonian  is negative, or when the beam 

power exceeds the critical value . This value depends on the beam shape and is minimal for the 

Townes mode. In our case, the role of power is played by the total energy injected into the MCF 

. When the input energy exceeds the critical value , (for the Townes beam, 

, in terms of the dimensional variables ), making , the 

intensity distribution is self-compressed over  and . We can expect that the injected MCF pulses 

distributed over the cores with smooth maxima will be focused into a few cores around the 

maxima with simultaneous pulse compression. When the energy is concentrated into a few cores 

the discreteness of the cores arrests further compression. When the input energy , the 

distribution breaks into a few collapsing clusters with  (similar to filamentation in the 

continuum limit). In every cluster the compression and combining takes place, but the location of 

the peaks is difficult to predict and this situation is not practical for the goals of beam combining or 

pulse compression. 
The continuous version of the continuous-discrete 3D NSLE (Fig. 2) takes the form:  

  (3.13) 

 for , where the spatial variables  and  take the values of a certain bounded domain  

(e.g.  for a circle of radius ). The Hamiltonian in this case has the 

following form:  

  3.(14) 

 
An increase in the number of neighbours enhances the nonlinear interaction and makes 

collapse possible even for positive values of . In this case we can expect that the injected MCF 

pulses will be focused into a few central cores with simultaneous pulse compression. Nonlinear 

systems described by equation (3.13) have stronger collapsing features, and a MCF with 2D 

configuration of cores could demonstrate better compression results, which will be shown later. In 

the 3D situation, the collapse is ``weak'' and the energy involved in the compression processes 

decreases. In this case, the optimal compression and combining is reached in a transient regime 

and the choice of parameters is not universal. We will present the results of the modeling of 

compression and combining in both situations and will examine the selection of the optimal 

parameters. 
 

3B.  2D compression and energy combining in 7-core and 19-core ring MCFs 
 
First we consider pulse evolution in MCFs with the ring design shown in Figure 3.1. The 7-

core and 19-core MCFs with the cores arranged in a circle are considered. The analysis of pulse 

compression and combining in a MCF with 1D location of the cores was carried out for the initial 

conditions given by the same Gaussian pulses in each core:  

  (3.15) 

 where  is the modulation coefficient, and . The modulation  produces 

the smooth initial intensity modulation with a maximum in the designated core. This modulation 

accelerates the compression, and most importantly, makes it less sensitive to the perturbation of 

the initial parameters. On the other hand, the perturbation must be small enough for the efficient 

utilisation of each core ( ).Here we present the optimal parameters for the most efficient 

system performance for . 
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Figure 3. 3: Dependence of the percentage of total energy  combined in the core with pulse 

compression (a) and the pulse width compression factor (b) on the initial pulses [Eq. (3.15)] 

parameters  and  for 7-core MCF with ring core configuration and modulation coefficient 

. The isoline  is indicated by the yellow dots, the level  is depicted by 

white dashes. 
   
We perform simulation of light pulse propagation initially distributed according to Eq. 

(3.15) aiming at the optimisation of pulse compression and energy combining. The dependencies 

of the basic compression parameters are obtained for the range of parameters , 

 for the 7-core MCF and ,  for the 19-core MCF. 

Numerical modelling was performed by the split-step Fourier method with the Padé 

approximation with scaling and squaring for the matrix exponential. 
 
   

 

 

 
Figure  3.4: Evolution of the input Gaussian pulses [Eq. (3.15)] with the parameters  and 

 injected in all cores of ring 7-core MCF (a). Corresponding input intensity distribution in 

core 7 (red color) and the distribution at compression point (blue color) are shown in logarithmic 

(b) and normal (c) scales. 
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Figure  5: Evolution of the input Gaussian pulses [Eq. (3.15)] with the parameters 

 and  injected in all cores of ring 7-core MCF (a). Corresponding input intensity 

distribution in core 7 (red color) and the distribution at compression point (blue color) are shown 

in logarithmic (b) and normal (c) scales. 
   
The range of values of the initial pulse parameters  and  was discretized by  

nodes. For each parameter pair  of the grid, the simulation of the dynamics of optical pulses 

with the form (3.16) injected into every core of the appropriate MCF was made. We tracked the 

first peak power maximum of the propagating pulse to get the compression or energy conversion 

at the minimum possible distance along the fiber. In what follows we call such a distance an 

``optimal" one. Moreover, we took into account only those maxima at which peak power is 

increased by more than  times, where  is the number of cores ( ). This approach was 

applied to cut-off the situations when the peak power maximum is observed without the pulse 

compression. The value  was chosen empirically. When the energy  is comparable with , 

the particular initial distribution is not optimal and it can have a few oscillations before the 

collapse (here - sharp energy localisation to few cores). In this situation, even when strong 

compression and combining takes place, the position of peaks is sensitive to the initial 

perturbation and, for the purpose of this study, we consider the situation as not practical. The 

above procedure eliminates this type of dynamics. It is worth noting that in the general case the 

parameters for the optimal temporal pulse compression and maximum energy combining in a 

single core are different, and the distances along the fiber  of maximum compression and 

combining are also varying in modelling. 
The maps of combining and compression performance for the 7-core ring MCF are 

presented in Fig. 3.3. In Fig. 3.3a we see the coherent effective beam combining. For the optimal 
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choice of parameters, 83.5% of the initial energy is combined in one core at the distance 10.36 (in 

the dimensionless variable ). The combined pulse is smooth, and the side satellite peaks have an 

intensity of 4% of the peak intensity. The total energy in the wings is about 1.9%. Note that the 

region of the maximal combining lies close to the line . The map of the compression 

efficiency is quite different. The blue area denotes pairs of parameters  and , for which there is 

no pulse compression or the initial pulses (3.15) break into clusters as a result of the modulation 

instability. It is interesting that isolines of pulse compression factor in Fig. 3b correlate with isolines 

of the ratio of the dispersion length  and the nonlinear length . The 

zone of optimal compression is the stripe narrowing toward high total energies and is confined by 

the level . If , a large nonlinearity destroys a smooth pulse shape 

before the compression point. In the area of  and  values for which the compression occurs, the 

compression factor of up to 307 times can be obtained. The maximal compression is reached at 

the distance . 
The evolution of the peak intensities in the different cores in the case of optimal 

combining (83.5% of all energy combines in the single core) is presented in Fig. 3.4. We see that 

the combined pulse has a smooth temporal shape with low-intensity wings. The length of 

combining is about 10.36 in dimensionless units, due to the slow initial development. In the final 

stage, as one can see in Fig. 3.4a, the intensity growth is about exponential. The pulse compression 

is modest (about 6 times). 
The evolution of the intensity in the different cores for the case of maximal pulse 

compression is presented in Fig.3. 5. The pulse compressed over 300 times. The compressed pulse 

is still mainly smooth, with noticeable wings. In this case, only about 36% of the energy combined 

in the compressed pulse. The interesting feature of the compression is a long initial evolution 

which is consistent with high sensitivity to the initial conditions. 
To obtain insight for the optimal parameters for the compression and combining, let us 

use the continuous limit. For classical self-focusing the collapse takes place at . At powers 

well above , the beam breaks into filaments with a power close . Using the similarity of our 

problem with self-focusing, we can expect that for the optimal operation the total energy . 

For  we must have the undesirable filamentation, energy concentration in a few 

different cores, and temporal modulations of the pulses. The results of the combining modeling 

are consistent with the above arguments. The parameter area where pulse compression occurs is 

easily distinguishable and is confined near the line . For optimal combining, the size of the 

distribution over cores and the temporal width must be comparable. As a result, we can expect 

that the optimal pulse duration for the combining must increase proportionally to . The optimal 

combining corresponds to almost complete concentration in one core. The pulse compressed 

about 6 times, which indicates the collapse of the distribution as a whole. 
 

 
 

Figure  3.6: Evolution of the input Gaussian pulses [Eq. (3.15)] with the parameters 

 and  injected in all cores of the ring 19-core MCF (a). The input intensity 

distribution in core 19 (red color) and the distribution at compression point (blue color) are shown 

in logarithmic (b) and normal (c) scales. 

DISTRIBUTION A. Approved for public release: distribution unlimited.



 
Figure  3.7: Evolution of the input Gaussian pulses [Eq. (3.15)] with the parameters  

and  injected in all cores of the ring 19-core MCF (a). The input intensity distribution in 

core 19 (red color) and the distribution at compression point (blue color) are shown in logarithmic 

(b) and normal (c) scales. 
   

 
Figure  3.8: Dependence of the percent of total energy  combined in the core with pulse 

compression (a) and the pulse width compression factor (b) on the initial pulses [Eq. (3.15)] 

parameters  and  for the 19-core MCF with ring core configuration and modulation coefficient 

. The isoline  is indicated by the yellow dots; the level  is depicted by 

white dashes. 
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The maps of the efficiency of the combining and compression for the 19-core ring MCF are 

presented in Fig. 3.8. Qualitatively, the maps are similar to the case of 7 cores with higher 

sensitivity to the initial condition. The maximal efficiency of combining is about the same as for 7 

cores and qualitatively the behavior is similar (see Fig. 6), but the compression distance  is much 

larger, namely 65.9. For the maximum combining, the compression of the pulse is higher according 

the above discussion. 
The maximal compression was obtained by the initial pulses with  and 

approximately equals 720, and the compressed pulse has a smooth profile (see Fig. 3.7). With 

increase of the number of cores the optimal conditions for the maximal compression become 

more sensitive to the initial conditions. Also, the distance to the compression point increases and 

is equal to 141.08. 
 

3C.  Compression and combining in hexagonal and square MCF 
 
In this section we consider the optical MCFs with 2D core distribution design -- in nodes of 

square and hexagonal grid shown in Figure 2. Let us start with a discussion of the continuous limit, 

considering the evolution of the intensity distribution according [eq. (3.13)]. The collapse of the 

distribution in 3D (cores, coordinates, and time) takes place even for positive values of the 

Hamiltonian. It is clear that the boundary value of  corresponds to the -independent 

(``stationary") localized solution. The distributions with  collapsed. The collapse within the 

3D NLSE is weak, and the energy leaks from the collapse. This means that it is not beneficial to 

greatly increase the number of cores, and efficient combining and compression take place in the 

transient regime, sensitive to the boundary conditions. As was already mentioned above, the 

initial distribution is not optimal for the collapse. The optimum for the beam combining is different 

from the optimum for beam compression (analogue of 3D collapse). 
A comprehensive analysis of pulse compression and combining in MCF with 2D location of 

the cores was carried out for initial pulses having the same Gaussian profile in each core, namely  

  (3.16) 

 We compare the efficiency of a 7-core and 19-core MCF with hexagonal core distribution and 21-

core MCF with square core configuration. The dependencies of basic compression parameters are 

shown for the same range of parameters ,  as in the case of the ring MCFs. 
 
   

 

 

 
 

Figure  3.9: Dependence of the percent of total energy  combined in the core with pulse 

compression (a) and the pulse width compression factor (b) on the initial pulses [Eq. (3.15)] 

parameters  and  for 7-core hexagonal MCF without modulation. The level  is depicted 

by white dashes. 
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Figure  3.10: Evolution of the input Gaussian pulses [Eq. (3.15)] with the parameters  

and  injected in all cores of hexagonal 7-core MCF (a). The input intensity distribution in 

the central core (red color) and the distribution at compression point (blue color) are shown in 

logarithmic (b) and normal (c) scales. 

 
  Figure  3.11: Evolution of the input Gaussian pulses [Eq. (3.)] with the parameters 

 and  injected in all cores of hexagonal 7-core MCF (a). The input intensity 

distribution in the central core (red color) and the distribution at compression point (blue color) 

are shown in logarithmic (b) and normal (c) scales. 
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First, we consider the hexagonal MCFs. The maps of the pulse combining and compression 

for 7 cores case are presented in Fig. 3.9. The blue area denotes pairs of parameters  and , for 

which there is no pulse compression, or the initial pulses (3.15) with this parameters break into 

filaments or are compressed after the distance along the fiber where the first local maximum of 

peak power is located. Due to the symmetry of the problem, both combining and compression 

take place in the (0,0) core. We see that the optimal conditions for combining and compression are 

very different from the the results for the ring cores distribution (Fig. 3.3). The optimal parameters 

for the compression are very different from combining similar to the ring MCF. Efficient combining 

takes place in a much broader range of parameters in the vertical band, insensitive to the pulse 

duration. This indicates that collapse takes place mainly in the transversal direction. The efficiency 

of combining and compression is comparable with the ring MCF, but much less sensitive to 

variation of the initial parameters. The maximum combining efficiency for a 7-core hexagonal MCF 

is better and equals 91.6% (Fig. 3.10) at the distance . In contrast to the ring core 

configurations, a wide region in the plane of parameters  exists, where the part of the energy 

in the central core at the compression moment exceeds 70% of the initial energy . The presence 

of this region allows us to obtain well-compressed pulses having most of the total energy , which 

is of great practical importance. However, in this case a substantial part of the energy goes into 

the wings, rather than into the central peak of the compressed pulse. 
An increase in the number of cores to 19 (Fig. 3.14) does not qualitatively change the map, 

and the maximal efficiency of combining is about 80.9%. Optimal combining takes place in a 

vertical band of parameters. The independence of the combining efficiency form the pulse 

duration indicates a 2D collapse in  variables. Another indication of the 2D nature of the 

combining process is that the band of the high combining efficiency is limited by the line , 

which for long pulses coincides with the 2D collapse criteria. The distance along the 19-core 

hexagonal fiber to the point at which the best combining occurs equals . 
The distribution over cores can collapse even without pulse compression. In Figs. 3.9 and 

3.12 one can see that it is possible to obtain efficient combining practically without compression. 

In a 2D MCF, combining and compression typically go together with different rates. 
Using the 7-core fiber, a maximal pulse compression up to 256 times can be achieved (Fig. 

3.11). In contrast to the combining pattern, at the point of maximal compression a significant 

fraction of energy is left in the neighbor cores. The peak power increases greatly at the 

compression point. The best compression occurs in the case of a high power input pulse. Too 

much nonlinearity ( ) destroys the pulse shape before the compression point and 

confines the maximal pulse compression factor. On the other hand, it is difficult to define the 

optimal compression case in the presence of high nonlinearity. The pulse compression factor close 

to its maximal value can be obtained for different pairs of parameters  and the distance to 

these compression points decreases with growth of the parameter . The compression distance is 

sufficiently small for both the 7-core and the 19-core hexagonal MCFs (  and , 

respectively). 
The pulse shapes after compression and combining and the intensity evolutions are 

presented in Fig. 3.10—3.13. As in the ring cores geometry, the compressed pulse has a smooth 

shape and the energy is localized mainly in one central core. 
As we discussed, one can expect that the efficiency of combining and compression can 

degrade with increasing number of cores, but the total energy in the central cores continue to 

grow. The stronger nonlinear interaction for a 2D MCF does not increase the efficiency of 

compression (combining) but greatly reduces the required distance and increases the process 

robustness. 
Summing up, the 7-core hexagonal MCF offers a better combining than the 19-core ring 

MCF, but the latter one can provide higher level of compression. 
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Figure  3.12: Dependence of the percent of total energy  combined in the core with pulse 

compression (a) and the pulse width compression factor (b) on the initial pulses [Eq. (3.15)] 

parameters  and  for the 19-core hexagonal MCF without modulation. The level  is 

depicted by white dashes. 
   
 
 
 
 
 

 
 
  Figure  3.13: Evolution of the input Gaussian pulses [Eq. (3.15)] with the parameters 

 and  injected in all cores of a hexagonal 19-core MCF (a). The input intensity 

distribution in the central core (red color) and the distribution at compression point (blue color) 

are shown in logarithmic (b) and normal (c) scale. 
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Figure  3.14: Dependence of the percent of total energy  combined in the core with pulse 

compression (a) and the pulse width compression factor (b) on the initial pulses [Eq. (3.15)] 

parameters  and  for hexagonal 19-core MCF with modulation coefficient . The level 

 is depicted by white dashes. 
   
Furthermore, we have tried to improve the combining scheme using a 19-core hexagonal 

MCF, and we have also studied its stability against modulation. First, the effect of amplitude 

modulation of initial pulses on compression characteristics was considered (see Fig. 3.14). Initial 

conditions were given by the same Gaussian pulses in each core, but the amplitudes from core to 

core was slightly perturbed, depending on the distance to the central core:  

 
  (3.17) 

  

  

    Here  is the maximum modulus index of a core (  or ) and  is the modulation coefficient. For 

calculations the value  was chosen, as in the case of ring core configurations. The 

influence of modulation is not as dramatic as in the case of ring MCFs, but it still has the same 

features. The compression region in the plane of the parameters  is widened due to the 

increased robustness of the compression scheme. The absolute width of compressed pulses and 

pulse compression factor are less by % as compared with a case , as caused by lower 

level of the total energy. Also the peak power increase factor lessened by up 2 times. The distance 

to the point of compression is less by up to 20%. The portion of the total energy  combined at the 

central core and at the central peak of the pulse have approximately the same order (Fig. 3.14b). 
 

Let us now discuss the 2D core configuration with a square lattice and 21 cores. Our 

calculations showed that there is no noticeable difference between the square MCF and the 19-

core hexagonal MCF, so we do not present figures for this type of MCF. The pulse compression 

factor for the hexagonal MCF is slightly smaller compared to the square MCF, and the peak power 

increase factor is larger for the square MCF, but these two facts can be explained by the increased 

number of cores ( ) and larger value of the total energy . On the other hand, the 

maximum number of neighboring cores for the square MCF is less than for the hexagonal MCF (4 

rather than 6), so the distance to the compression point is larger for the square MCF. 
 

 

 

 

 

Table: Pulse parameters for maximum combining and maximum compression regimes for various 

types of MCFs. 
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MCF type and 

number of 

cores 

Maximum 

combining 

[%] 

Distance 

to the 

maximu

m 

combini

ng point 

Energy of 

combined 

pulse 

Reduction of 

combined 

pulse's 

duration 

(FWHM) 

Maximum 

compre

ssion 

(FWHM

) 

Distance to 

the 

maximum 

compressi

on point 

Duration of 

compressed pulse 

Ring 7 83.5 10.36 12.97 5.74 307.6 9.68 0.23  

Ring 13 75.4 14.79 14.78 16.1 569.0 47.32 0.42  

Ring 19 80.0 65.90 13.71 12.7 720.4 141.08 0.39  

Square 9 91.3 3.27 12.78 6.25     

Square 13 82.1 2.85 14.42 6.01    

Square 21 80.7 3.57 16.03 5.74    

Hex 7 91.6 1.78 15.13 6.37    

Hex 13 84.7 0.99 24.44 5.00    

Hex 19 80.9 2.07 20.49 7.30    

Hex 31 75.0 1.37 43.47 5.28    

Hex 37 70.7 1.47 58.67 4.87    

 

   

 

CONCLUSIONS  

In this report we presented results of study on a spatio-temporal continuous-discrete model of an 

optical medium consisting of a multi-core fiber or a general array of waveguides which as this and 

other recent work indicates, can be used in a variety of applications. We have put forward a solid 

theoretical framework based on asymptotics and stability conditions that not only validates  the 

existence of stable light bullets, representing light localization in space and time, but it  shows these 

are not only achieved for a particular array configuration and instead are generic and stable for a 

multitude of geometries. This can represent an opportunity to design array configurations whose 

topology is suitable for a particular application including preparing a LB for propagation in bulk Kerr-

media [19]. It can also be a starting point in the study other phenomena in nonlinear arrays when 

the model can be easily extended by incorporating additional effects. Two relevant examples that 

come to mind, are first the inclusion of higher order temporal effects which can be important for the 

most intense (and temporarily short) bullets. There is an additional time shift that is λ dependent 

(for λ large), then one should be able to verify it theoretically. Clearly such dependence would be 

quite useful for time delay lines and for efficient coherent pulse combining [20]. The second 

extension that comes to mind is coupling active fibers, where at first approximation we can add to 

the model linear gain and saturation. Finally we limited our work to the study of light bullets in the 

anomalous regime. A natural extension is to perform similar studies to discrete spatio-temporal 

vortices and other nonlinear modes. With respect to the normal regime, recent experimental results 

[21] demonstrate the existence of X-waves in 1d-semiconductor waveguide arrays. Theoretically, X-

waves carry infinite energy, so once a proper renormalization of Power and the Hamiltonian is done 

to the work presented here, an improved existence and stability analysis to 1d and 2d arrays n the 

normal dispersion regime could be done. The obtained theoretical results have been verified using 

numerical simulations.  

 

 
We have demonstrated that a MCF fiber can be effectively used for coherent wave 

combining and compression. The degree of compression can be continuously changed by varying 
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the incident beam parameters. We have demonstrated the possibility of compression exceeding a 

few hundred and coherent combining with efficiency over 80%. For a smooth distribution of 

energy, the evolution of the intensities in the cores is described by NLSE -- 2D for the ring cores 

distribution and 3D for the hexagonal and square cores structures. The well-studied collapse 

phenomena provide insight in the processes of beam combining and compression. We have 

demonstrated that the combining process is consistent with collapse phenomena. However, the 

maximal compression regime is qualitatively different from, and the maximal compression greatly 

exceeds, what one can expect from the collapse model. 
We have demonstrated that for the ring MCF the efficiency of compression and combining 

can grow with an increase in the number of cores, but the results becomes increasingly sensitive 

to the initial conditions. Also the length of interactions increases with the number of cores. 
For a hexagonal MCF, the efficiency of combining and compressing generally degrades 

with increasing number of cores, but the process is more robust and insensitive to the initial 

conditions. Also the interaction length is greatly reduced. This potentially makes the hexagonal 

MCF the best option among the considered ones for practical applications. 
The above results were presented in terms of dimensionless variables, so as to be generic. 

Let us discuss the results in dimensional variables, choosing some specific possible applications. 

The typical length of interaction is a , where  is the coupling coefficient. For a typical telecom 

 values for MCF  1/km and the typical length is about 64 m. The time scale 

 is about 0.8 ps. The typical scale of energy  pJ. 
A practical device can be based on the piece of MCF. It is technically difficult to make MCF 

with uniform coupling over the entire length (the effect of coupling spatial dependence will be 

discussed in the separate paper). To make a practical device, it is desirable to reduce the length of 

interaction. This means that one has to increase the coupling coefficient. The reduction of length 

to about one meter makes it easier to keep  uniform along the MCF. In this case, the typical scale 

of time is 100 fs and the typical energy is about nJ. We demonstrated that it is possible to combine 

pulses with energy  1 J. By changing the parameters, it is possible to compress pulses 

from ps to tens of fs. 
For the hexagonal MCF, it will be possible to effectively combine energy for a wider range 

of pulse durations. For the above parameters we can combine pulses with durations of a hundred 

femtoseconds to a few picoseconds. 
The compressions using the hexagonal MCF can shorten the pulse down to a femtosecond 

duration, with an intensity increase up to 270 times. For such a short pulse, of course, the Kerr 

model of nonlinearities ceases to apply and must be generalized to a temporally nonlocal one; the 

limits of compression would then require special studies. 
 

Management 

The payment on the project was delayed by more than nine months due to unknown reason, 

therefore, some change of the original plan was required. However, risk mitigation actions have 

been done and the project delivered all the research objectives. 
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