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1. Introduction
A crystalline solid is generally considered to be an assembly of almost periodically-

spaced atoms or molecules. A set of periodic atomic equilibrium positions is postu-
lated to exist such that no net force acts on any atom when all are at their equilib-
rium positions. Thermal excitation (or quantum mechanical zero point energy at
low temperatures) causes the atoms to vibrate about these equilibrium positions.
The atoms interact with each other through the much-studied interatomic forces

so that, if a single atom is displaced from its equilibrium position, a force acts on the
others (and indeed a restoring force acts on the displaced atom). The magnitude of
this force decreases rapidly with an increase in the interatomic distance. It is gener-
ally assumed that the displacements of atoms from their equilibrium positions are
so small that the interatomic forces between a pair of atoms is proportional to the
deviation of their separation distance from its equilibrium value. The force constant
is largest for nearest neighbor pairs in the crystalline lattice, and becomes very
small for more distant neighbors. In view of this Hooke's law approximation to
interatomic forces, a crystal can be visualized as a periodic array of coupled springs
and masses. Such a system of coupled oscillators has a set of normal modes of vi-
bration in terms of which all motions of the system can be described.
The theory of lattice vibrations has become of considerable importance for several

reasons. The thermodynamic properties of a crystal depend on the manner in which
its lattice vibrations are excited by its thermal energy. The optical properties of
ionic crystals are determined by the character of the excitation of lattice vibrations
by electromagnetic waves. The electrical properties of superconductors and semi-
conductors seem to be influenced by lattice vibrations.

In the past few years considerable progress has been made in the detailed under-
standing of lattice vibrations through the investigation of simplified models and
general topological theorems [ 1 ] through [61]. We shall concern ourselves here with
the analysis of a model of a simple cubic lattice with interactions between nearest
neighbors only; "cubes" of 1, 2, 3 and a very large number of dimensions will be
discussed. It is well known that noncentral forces must be included in this model if
it is to be stable against shear. The distribution function of the vibrational frequen-
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210 THIRD BERKELEY SYMPOSIUM: MONTROLL

cies of normal modes of oscillation of this model has been investigated by Rosen-
stock and Newell [6] who revived interest in the model. This model has the unde-
sirable property that displacements of atoms in the directions of the various coordi-
nate axes are independent of each other. It has the advantage that most of its
interesting properties can be described in relatively simple analytical forms, a
feature that is difficult to duplicate in more complicated models.
The first problem to be considered here is the determination of the number of

normal modes in a given frequency interval. This quantity is required in the calcu-
lation of the thermodynamic properties of a crystal.
The second problem discussed is the distribution function of the location of a

given atom with respect to its equilibrium position. This problem has been examined
by Peierls [ 7 ], and briefly by Wigner [ 8 ]. We shall show that this distribution func-
tion is Gaussian, and find analytical expressions for the dispersion in terms of
dimensionality, temperature, and interatomic forces. In the early days of X-ray
crystallography, Debye [9] investigated the effect of this Gaussian distribution on
the broadening of X-ray spots or lines.
The third problem to be mentioned is the effect of local disturbances, such as

impurities, holes, etc., on lattice vibrations. A method will be outlined for handling
these situa:tions.

Finally we shall give a brief calculation of the quantum mechanical zero point
energy of our lattice model.
Many of the mathematical problems discussed here also appear in the theory of

random walks on discrete lattices and in the theory of the tight binding approxi-
mation of electrons in solids.

Since, in our model the x, y, and z vibrations are independent, we can obtain our
required results by considering the vibrations of lattices with one degree of freedom
associated with each lattice point.

2. Normal modes, Slater's sum and thermodynamic quantities
Let us consider a set of identical particles of unit mass (the mass can be inserted

in final formula to make the units come out correctly), each having one degree of
freedom and each being coupled to its nearest neighbors on a n-dimensional simple
"cubic" lattice with (N + 2) particles along each edge of the n dimensional cube.
We choose all the force constants in a direction parallel to a given "cube" axis to
have the same value and postulate the potential energy of interaction to be

(2.1) = 1i7 (U,n1,m2,m3, ...1.1.m2.... )

+ 472 E (Uml,m2,m3,. Um ,m2+1-...) +
m l t2, -O

The constant yi will generally be used to represent the central force constant, and
the other y,'s the noncentral ones which are generally smaller in value. We have
chosen Uml.,2m, ... to be the deviation of the configuration of the particle at the
(ml, M2, . . ., mn)-th lattice point from its equilibrium value. We shall choose the
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boundary conditions to be such that all particles on the cube faces are fixed:

(2.2a) UO,m22,m3,** = UN+1,m2 ,m3...** 0,

(2.2b) Um1,O,m3,..- Un1,N+1,m3,... = 0, etc.

All u's with a subscript 0 or N + 1 are chosen to be zero. We shall be interested in
systems in which N is very large, say, 0(1023), and in the limit as N .

Since the kinetic energy of our system of particles is

(2.3) T = 2 EZUinm2,mi,...

the Hamiltonian H = T + V and the Lagrangian L = T - V are quadratic forms.
They can be diagonalized through the introduction of the normal coordinates
w8l , ..which are defined so that

(2.4) U1,-2m2,.

( 2 n/2 N . 7rmiS . 7rm282
VN+ 178 Ils 2... nl1l2-S+ sin +1.F, , sin i

If we write
N

(2.5) Si= m (UtnI,2 -'-mI--- - uml 2' n- +
mI ,m2,-O--

and use the fact that
N . Ms . Tms' N M Trms'

(2.6) EsmN + 1 smmN+ 1 = 1COS 1 c2N11

and
7rM8 ___TM_

(2.7) cos 0sin ,
m-0 N+1 N+1

we see that

(2.8) S=2 ( cos 82

and hence that
N

(2.9) E 22 62

where

(2.10) 2,... =2 N )

Frequently we let

(2.11) oi 7rsjl(N + 1), Sj 1, 2, * ,N .

The largest value of W 2 iS

(2.12) L= 4(zy1 + 'Y2 + + 'Yn) -
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The Hamiltonian of our system is, in normal coordinates
N

(2.13) H = +S2-..2 - ]2

This Hamiltonian leads to the Schroedinger equation

(2.14) h . .C 2 77 2.I
1 2 072"I82'+ (2ES18... 88... 82. =0

with
N

(2.15) E= E Es
81-2- - .-1

The variables separate. A typical wave function with its associated energy level is
N

(2.16a) {,12..}1 `22= 12

(2.16b) E=, h 2...(n',,2.. +±

with

(2.16c) x2 =..j.7 '2"
The brackets {n0182... } and {Isls,2... } represent the sets of all n's and 77's which refer
to all states and coordinates of particles. The function*,,'(x) is defined as

(2.17) e,_/2,S'2 H (x)
(2"n !7rl/2)1/2

Hn(x) being the nth Hermite polynomial.
The position distribution function of a system of particles at equilibrium at

temperature T is proportional to the Slater sum

(2.18) S(u) = E [In(u)[2 exp (-En/kT)
n

where {In(u) } is the set of wave functions of our lattice and {En, } the set of asso-
ciated energy levels. The Slater sum of our system of interest is the product of Nn
factors of which the (si, s2, * * *)-th is

(2.19) S,1,,2,...(X8182. ) = E 1n (x,182...)exp {2-(n+ 1)&12.../kTl
n=

rWxl2' -1/l2 hw.1 1,12 ...
= 27r sinh kT J exp {W-s1s2--- '712 ...h-1 tanh(2 kTh )}

(this summation is given by Titchmarsh [10]). This expression was derived in an
interesting manner by Bloch [ 11 ].
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The logarithm of the partition function of our system of particles, being the
logarithm of the integral of the Slater sum, is

N 1 1 h___2..
(2.20) log Z = ]log csch 2

8182."-.1 2 ~ 2 kTj

The various thermodynamic properties of our system can be derived from log Z.
When the number of degrees of freedom becomes large the frequencies become dense
and one can introduce a frequency distribution function, or frequency spectrum,
g(v) (where 27rv = c) with the property that fvvg(v)dv is the number of frequencies
between vi and V2. The log Z is expressed in terms of g(v) as

(2.21) log Z = , g(v) log 1 sech (I h)} dv

where VL iS the largest frequency.
The first statistical problem associated with lattice vibrations that we shall con-

sider here is the determination of the distribution of frequencies, or frequency
spectrum of our model.

3. Frequency spectrum

We have found the circular frequencies co,1... of our model to be given by'

(3.1) c2 =2 j (1 - cos N 1 4 E jsin2i

with s; = 1,2*2 ,N and j = 1, 2, *,N.
The values of W2 are finite in number, but as N becomes large, the random variable

co2 has a limiting density Gn. That is, if we let HN(a) be the number of choices of s,
such thatw'12,,...-< a, then

(3.2) lim n Hn (a) = f G7(x)dx .

The density Gn can be computed by the method of characteristic functions. Con-
sider (l/Nn)HN' as a cumulative distribution function. Then the characteristic
function

(3.3) fn (a) = E(e w)
N

E exp {2ia E yj(1- cos 7rsj/[N + 1])}
8182--.-I

In the limit as N * , this sum reduces to the integral

(3.4) fn(Ca) = f ffexp {2ia E yj(l - cos j} dcl . . . dn.

We have considered the set of all frequencies generated by (3.1) to represent a
1 The energy levels of electrons in simple cubic lattices also satisfy this formula when one uses

the tight binding approximation and considers only interactions between nearest neighbors. Hence
Gn(E) represents the energy distribution function.
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population in which each set of s,'s has the same probability of occurring. The
function G.(cw2) is the probability density function of a "large number" of squares
of circular frequencies chosen at random from our population.
The function G.(cw2) is related to the g(v) defined above (2.21) by

(3.5) g(v) = 47rwN1G((w2) .

Since the Bessel function Jo(x) has the integral representation

(3.6) Jo(x) = 1r4 e ixco8sdo

205I I

6 2a5-

5 2.0-
Z

O4 1.5

a~~~~~~~~~~~~~~~~~~~~-
3 1.0

2 0.5I
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

f = (W/W) f
FIGURE 1

Frequency spectrum of a 1-D lattice

we can rewrite (3.4) as

(3.7) fn(a) = I exp (2ia7j)Jo(2ayj).
j=1

Hence (see also [ 12])

(3.8) G (w2) = - fb e-2 TI {Jo(2cy,)e2iai)da.27r _,, j=l

The largest frequency corresponds to 40 =02= 7r and has the value

(3.9) 4w= 4(1 + Y2 + + X
where we define 3,B by

(3.10) n.Bj yl + y2j + + yn'
We see that

(3.11) G(W2) = 0 if w2>co2=4n, or 2 <0 .

We shall now find explicit analytical expressions for Gn(CO2) when n = 1, 2, and 3,
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and an asymptotic form for large n. We abbreviate the phrase n-dimensional by
n - D and the words frequency spectrum by FS.

(a) n = 1. The 1 - D expression for (3.5) is

(3.12) Gi(w2) = (27r)-1 exp [-ia(w2 - 2,y)]Jo(2-ryj)da

117rw(W2 2)1/2 2 2- <W

[/@XL _()/ if 'W < WL{0 ~~~~~~~220 if w > WL

Equation (3.5) implies the following FS (see figure 1)

(3.13) vLg(v) = 2N-F'(1 _ f2)-12 with f = /"IL,

where, if we admit a nonunit mass M,

(3.14) VL = (2ir)-1(4'y/M)"12
At low frequencies

(3.15) g(v) - 2N(M/y ) /2-
(b) n = 2. The 2-D frequency density function is

(3.16) G2(W2)= 1 f eia(w'-2j-272) J0(20rY)J0(2aY2)da
When

(3.17) Jo(2xyl) Jo(2x-y2) = 1 f Jo(2x[l + 2 2-yliy2 cos )do

is substituted into (3.16) and the formula

(a2- b2)-1/2 if a > b
(3.18) fJo(at) cos bt dt =

10 if a < b
is applied, it is found that

2 fr dO
712 'O [2(2 - 2) - l6Y1Y2 cos2 1 ]1/2

if 2(2 - W2) > l'1Y

if Co CL - ))>167172
(3.19) G2(W2) =

- fr, do
,r2 8 [.2(,2 - 2) - 61Yo2 4011/2

if 2(2 - 2) < 16yl'Y2
where

(3.20) cos 2 G0 = W2(wL -2)/l67Y72 -
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G2(W2) is immediately expressible as a complete elliptic integral of the first kind
in both ranges. We. have

(3.21) G2(cW2) = 2 K 4(zyz2) )
2(2 _ 2)1/2 -

_ W2)

if Xc(oL - 2)> 167172,

(3.22) G2(W2) = 1 K (WL(w5 _ 2)1/2)
21(71Y2)1/2 4(-y1-Y2)1/2

if 0 <W (CL -2) < 16'lYi2-

10~ ~ -
8

z

06 2 .4 .6 .8 1.0 0 .2 .4 .6 .8

§ 4
-IN~

2~~~~~~~~~

0
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 LO

f (W/W)' t V/VL
FIGuRE 2

Frequency spectrum of a 2-E lattice with y2/yl = 1/9. Logarithmic singularities
occur at f = 0.316 and 0.948.

The inequality associated with (3.21) is equivalent to (W2 - 4,y) (W2 - 472) . 0.
Hence (3.21) is valid when 472 < w2 < 4yi (we assume 72 < yi). Similarly (3.22) is
valid when ci2 > 4-y or ca2 < 472. It is to be noted that in the limit as 72 0,
equation (3.21) approaches the one-dimensional result (3.12). We have plotted
G2(co2) and g(v) in figure 2. As wc, 0 (3.22) becomes G2(cW2) - [47r(YlY2)1/2]-1 so that

(3.23) g(v) 27rvN2(M2/l-2) 12

G3(cW2) has a logarithmic singularity at cw2 = 472 and one at W2 = 47i.
(c) n = 3. The 3-D frequency density function is

(3.24) Gs(.2) = I f' e-ia(W2-2-y272-23) Jo(2rY)Jo(20Y2)Jo(2a-y3)dx -

The function G3(w2) was first computed by Bowers and Rosenstock [2] for the case
7Y = 72 = 73. Other cases have been given by Rosenstock and Newell [6]. The
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integral can be expressed in terms of generalized hypergeometric functions of three
variables, which in the range of convergence has the series representation
(3.25) Fs(a; 6,, ,B2, 03; Yl) 72, 73; Zly Z2y Z3

mlm2... (;Yi)mV(7Y2)m2y(s)ma mI Im2 Im3 I 12 3

Here (a), = r(a + v)/r(a). We use the formula (see [ 13])

(3.26) J e-a J0(cq)J(cMY2)Jo(-ya)dc

- 1 F3 1; 1, 1, 1; l, 1, 1; 2i-yi 2i'y2 2iysy
p + jLiU, 2

i)p +, iZ,2 p +jji2 2}

to obtain

(3.27) G3(w2) = F3(1; , 1, ; 1, 1, 1; 2-yic2, 2Y2w2, 2v3w2)

+ 1 3Fa(1; 2, 2, i; 1, 1, 1; 2Yl(WL_2)1W 2 L2(w Lw2)1 2
2ri(,02 _2)

Hence G3(W2) is symmetrical with respect to w2 = I2 . Since the required properties
of these F3 functions have never been discussed we shall find it more instructive
to analyze our frequency spectrum from a slightly different point of view.
We apply Parseval's theorem to the integration of (3.24). It is to be recalled

that if

(3.28) f(y) =
J F(a)e"'"da and g(y) =

J G(a)ea"da(27r) 12(27rI /2

then

(3.29) f F(a)G' (a)das = f f(y)9* (y)dy.

Hence, if we let

(3.30) G(a) = Jo(2a-yi) exp ia(W2 - 2y- 2 -y2-2y)
and

(3.31) F(a) = Jo(2aT2)Jo(2aY3),
we find

(3.32) G3(w2) = ff f(y)g*(y)dy,

where f(y) and g(y) are determined as follows.
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We have

(3.33) g(y) = (21r)12 f_ Jo(2ay1) exp [ia,(y + W2 - 2y - 272 - 2-y3)]da .

This integral is of the same form as that of the 1-D frequency density function and
has the value

( (2/)/112[(y + W2 _ -2)(W2_ W2 _ 2 _-)-1/2

(3.34) 2ifW2 _ W2 2
_

2
_

2
(3-34) g(y) ~~if 3Ca

< Y<CP3L W0
if (y +W22 _2 +W22)(y+ 22-_ )>O

where

(3.35) WI = 2(71 + 72), W2 = 2(yi + a3), and W3 = 2(72 + 73) .

We postulate yj _ 72 _ y3 SO that w1 _ W2 _ W)3-
We find f(y) in the same manner that the frequency spectrum of a 2-D lattice

was determined:
0 if y2 > W3,

1(2/ir 2723)1/2ff(4[ 3K _- y2)/-y2732)

(3.36) f(Y) = if 4(72 _ ) < 2 <

/2(-4_ y2)1/2(4[432/( y2)]1/2)

if y2 < 4(72 - 3)2
The function g(y) is sketched for a typical value of w in figure 3 while f(y) is

sketched in figure 4. Since the integral G3(W2) is the integral of the product of these

I C~~~~urve Isdis-
to le t " 4CyL- 4y

aas JIncreases l

g(y) f(y)

Y Y
2 '-

0~~~~~
3 O~~~3L W-(.4oY,.:

y y
FIGUREs 3 AND 4

The 3-D frequency spectrum is proportional to the integral of the product of g(y) and f(y). The
functions f(y) and g(y) are sketched here. f(y) is independent of w while g(y) moves to the left
as W2 increases.

two functions, only that range of y for which neither f(y) nor g(y) vanish contributes
to G3. Notice that the nonvanishing range of g(y) is to the right of CoW when W2 = 0,
and is to the left of -_W when W2 > D2 . Hence G3 = 0 when W2 < 0 or > c42asis
required by equation (3.11).
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f(y)~ ~ ~~gy

E~~~~~~~~~~~

-4r -27 0 2y 4Y 6Y
FIGURE 5

The shaded area in this figure represents an example of the overlap of
f(y) and g(y) when YI = 2= 7= Y-

6. 6c

c A A C B

fg fg

B

6b 0 72y3y 4y 6d -y 2y 3y-A,C B A B

fg fg

0 y 23 4y -2y-y ° y 2y 3y 4y
y y

FIGuRE 6
Variations in f(y)g(y) with w2. The area under the various fg curves is proportional

to the frequency distribution which corresponds to the appropriate value of w2.
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When c2 is very small a slight nonvanishing overlap of f(y) and g(y) occurs in
the neighborhood of y = c2 . The main contribution to G3(Co2) then comes from the
1-D type of peak in g(y) at y = C02 -_2. Hence in the limit as X -X- O we replace the
elliptic integral (3.36) by its asymptotic value 2Ir and we replace the factor
()2- co2 _- c2 - y) in (3.34) by '2 - 2X23 = 4,Yi to find

(3.37) Ga(W2) ' [87r2(Qyi /2]-y) J 3 dy/(y + c,2 _ 2 1/2

- /4(r(123)1/2

2.0
3.0-

1.5 ~~~~~~2.5 -

1.0 .

3 Ca
3 ~~~~~~~~~~1.0

0.5
0.5

0 ~~~~~~~0
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

t w/U) f =w /wL
FIGURE 7

Frequency spectrum of a 3-D lattice with y' = 'Y2 = y3 = y. Here WL = 12y.

Hence the frequency distribution function approaches [ see equation (3.8)]

(3.38) g(v) 47rv2N3(M3fyiY2_y3)112 as v O .

Since G3(Ci2) = G3('2 - Ci2) in our model, we also have

(3.39) g(v) - 82L,rN3(M3/'yiy2-y.) /2[1 - (V/PL)2]12 as v -4 V .

This shows that g(v) has a vertical tangent at v = VL as has been predicted by
van Hove [4] .

In order to get a qualitative picture of the entire FS let us first consider the case
7Y = 72 = ys = y- Then the two peaks in figure 4 coincide at y = 0 (see figure 5).
If we slide g(y) to the left along the y axis (this corresponds to increasing ci2) as
sketched in figure 5 the nonvanishing range of y in the product fg increases (see
figures 6a and 6b) and hence G3(ci2) increases. Furthermore, the peaks A and C
come together so that G3(ci2) increases very rapidly. This rapid rise stops abruptly
at c2 = 4-y for two reasons. First, the end of the nonvanishing part of g(y) passes
the end of f(y) at 4y. Hence the total length of the nonvanishing y range of f(y)g(y)
stops increasing linearly with c2 and remains constant. Secondly, the peaks A and
C no longer reinforce each other. As a moves further to the left (figure 6c) the de-
crease in the contribution of values of y in the neighborhood of A is compensated
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by an increase from the neighborhood of B [B gets multiplied by the rising part of
f(y) ]. On this basis G3(W2) remains quite constant until the point B passes C (when
c2= 8y) and A passes E. Then both the effective range in y starts to decrease and
the reinforcement of B and C diminishes. Hence G3(W2) drops rapidly at w 2 = 8-y.
The complete G3(w2) curve is plotted in figure 7a, while that of g(v) is given in

figure 7b.
The above argument is immediately generalized to the case y3 = 72 < 7-. Here

the distance between A and B in g(y), being 4'yi, exceeds that between C and D in
f(y), 4-y3. Hence although the G3(W2) curve flattens abruptly at 2 = @3 when A
and C coincide, it drops suddenly when B passes D (at W2 = 47y) only to rise to a
new peak when B comes in contact with C at W2 = 42 - wl. The second peak is a
reflection of the first about the line co2 = 2@22. Hence the final G3(02) curve is of the
form given in figure 8a with the corresponding FS given in figure 8b.

i.5 3

1.0~~ ~ ~ ~ ~ 'z2
3~~~~~~~~
CD~~~~~~~~~~~~C
0.5 ~

0 I I0
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

f2 ( 2f /@ vvf(co/WL) f W/WL: I/i/ L
FIGUREs 8a AND 8b

Frequency spectrum of a 3-D spectrum with 72 = y3 = Y and y = 8y

When 73 < 72 = 7y the 2-D type factor f(y) has two peaks instead of one as in
figure 4 and the reader can easily verify that the G3(W2) curve is of the form given
in figure 9. In the most general cases 73 < 7y2 < 7y, singularities occur at w2 -
2o 2c L-COA1c, co C 2, and WL-@3- However, the detailed shape of G3(c2)23L IL 2~ WL - 3
depends on various other inequalities which might exist between the y's.
The procedure described above can be generalized for the deduction of a 4-D

frequency density function from a 3-D one. The main result is that a new set of
corners appear and that the angles of approach to corners need not be so steep.
This increase in the number of corners persists as n becomes larger, until in the
limit as n co, G.(,W2) becomes Gaussian under a wide set of conditions on the
force constants.
The function (l/Nn)HZ can be considered as the distribution of the sum of n

independent random variables. Hence Gn is the density of the sum of n independent
random variables and in general

(3.40) Gn+1(w2) = f Gn(y)Gi(co2 - y)dy.
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Since G. is symmetric about w2w',. = 2(,yi + + y.), this becomes

(3.41) GG+1(w2) = f Gn(,wLn-y)Gi(w2 - y)dy

- f GGn(y + Xwl.n)Gi(y + w2 _ L .

(d) n very large. We shall now give a set of conditions under which G(W2) be-

I I I
2.0 -

1.6

1.2

0.8 -

0.4

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

FIGuRE 9
The frequency spectrum in a 3-D lattice with 1y:= = 9'y and y3 = Ty

comes Gaussian in the limit of large n. The deviations of the square of the normal
mode frequencies from their average value is

n

(3.42) WI - 2(-11+ Y2 + * * * + ) = -2 , -y; Cos o, .
j-1

This quantity can be considered as a sum of random variables xi = -2-y, cos Oi,
j = 1, 2, * *, n; with first and second moments

(3.43) E(x,) = -(2-y,/7r) f cos Oj dO 0= 0,
0

(3.44) E(x2,) = (4y2y,/7r) f Cos2 0 do, = 2ry2

Since the xi's are independent, the dispersion of Co2 from its mean value is

(3.45) Bn = E[(.2 - 2nj31)2] = E 2-ym = 2n62
j-1
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We can now find a set of conditions under which Gn is approximately Gaussian for
large n. By the Lindeberg-L6vy form of the central limit theorem [14], if E =
maxi-,,.... (2-y/ /2n,), then the difference between G. and the Gaussian distribu-
tion is small in the sense that

(3.46) G"(co2)dc,2 - j(W2)d,2 < 6E4

where $ is the density of the normal distribution with the same mean dispersion as
Ga.

In the special case-y1 = 72 = = = 7', 2 = y2 andc2 = 4n-y so that

(3.47) Gn(W2) = 2y[ ]1/2 exp [-4n(f2 - 1)2], (f = -/-L = P/PL)

which means that the frequency density function approaches a d-function with its
peak atf2 = as n co . The frequency spectrum becomes

(3.48) PLg(V) = 4(n/7r) 12fNn exp [-4n(f2 - 2

The behavior of G.(W2) for very small values of cw can be determined by noting
that small values of w81..2,... are associated with small values of 41, 2^, * * - So that
w8,.. - [.r/(N+ 1) ] 2EyjS2 The fraction of frequencies with o.,.... < X (c small)
is then proportional to 2-n times the volume of the ellipsoid E (s/la )2 = w2, with
a1 = [(N + 1)/XrJy112or

(N + 1)2 [1( +P0)]2 (71 2)In

\ 2_7r / r(i + Inf) (7172 * **Yn)' 12

The proportionality constant is (rIN + 1)2, the volume of one unit cell in the lattice
whose lattice points are {7rs1/N + 1 . Hence the frequency density function becomes

(3.49) Gn(W2) 2 2(1 +2n)f(2)2* as w2 ..+ 0
2ri+ in)(7i7y2 - )1

The reader can easily verify that this checks with the special case n = 1, 2, 3
examined above. Since Gn(02) = G,( 24 - c 2) we also have

2n (11r12)l(2 - 2)12n 2 2

(3.50) G.(.')as( +(L2 r(1 + 2n)(7172 . . . ,n)1I2 asX/2WL-

We close this section with a few remarks about the distribution of characteristic
values of the n-dimensional Laplace difference operator D2. When n = 1, D2 is
defined by D2Um = um+l - 2um + ur-i. The characteristic values X which satisfy
D2u + Xu = 0 under the boundary conditions (2.2) are given by (2.10) with
1i= 2 = * = 1:

N/
(3.51) X.1.82,.. = 2 E 1 - cos NW+ 1) sSi = 1, 2, *.*. , N

1w82erejas N +1o
whereas those of the corresponding differential operator V2 with V2u + XU = 0 are



224 THIRD BERKELEY SYMPOSIUM: MONTROLL

(3.52) X882..* = (r2/L2)(sl + s2 + + Sn), s, = 1, 2, 3,

if u vanishes on the boundary of an n dimensional cube with sides of length L.
It is well known that the number of characteristic values X.... between X and

X + dX is c-1+n'2dx. In our discrete problem, in the limit as N -- o this number is
NnG.n(X) with Gn(X) being given by (3.8) and with yl = 72 = 73 = 1. As has been
discussed above various peaks and singularities occur.
The manner in which the distribution function of the discrete lattice degenerates

into that of the continuum is clear if we let N = aL in (3.51), a being the lattice
spacing, and rewrite Du + Xu = 0 as a-2D2u + Xu = 0. Then (3.51) becomes

(3-53) Xss... a-2 E 1 co, 7raL j)

The largest value of X, 2/a2 approaches infinity as a i 0. The characteristic value
which corresponds to a fixed set of s,'s approaches (3.52) in this limit. All the peaks
and singularities recede to infinity as a - o so that the density function has its
continuum form proportional to X-1+n/2 in any preassigned finite region. Of course,
in the limit as a - 0, a-2D2 V2.

4. LocaJizability of particles on a lattice
We shall now determine the distribution function of a given particle about its

equilibrium position in our lattice. If the dispersion becomes large compared with a
lattice spacing, we can no longer associate a particle with a given lattice point and
therefore cannot consider a periodic lattice to exist. This question of dispersion due
to heat energy in a crystal was first considered by Debye [9] who asked if the
general character of an X-ray diffraction pattern of a crystal was affected by
lattice vibrations.
We can express the characteristic function of the displacement um,n,,,... of the

(ml, "2, - * *)-th lattice point from equilibrium as the following integral over the
Slater sum:

N

J12. 3lsI S.112 .(u.182 ...) 8182...

(4.1) Hm1m2 * *(a) =(a

f - fJlJrCI S8182. l(us12. ...)du.182
8182.-.

In view of (2.4), (2.19), and the formula

(4.2) f 'eb"e'Xd,7 = (7r/a)' exp (-b2/4a),

we find that um,m2... has a Gaussian characteristic function

(4.3) Hm1m2 ...(a) = exp (2am2m2..a2),
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and hence the Gaussian probability density function

(4.4) F.,2. .. (u) = (27ra1-m2 ...).' exp /2¢7l^2...
where

* lrsimi 2 7rs2m2 *2 irs5nmn
N sin2 1rj sin27M2 sin2r8M

(4-5) ¢ mlm2 .= hN2-Ns N+ 1 N+ 1 N+ 1
8182 -"ie 81a2

8182. . tanh - kT

Since we are concerned only with limit results that are appropriate for very large
lattices we let N -o c and find the following integral representation for Ot2-m

rvr II~~sin2,ojmjd, . . don
(4.6) 2 = fJ fJ in2&mjd4i

amlmV-

~v(+ **. *w(Ol 0)tanh(i
h kT0. )

The author has been unable to express this multiple integral as a simple function.
However, high and low temperature expansions are obtainable without too much
difficulty.

(a) High temperature expansion. When x is small (x < 7r),

(4.7) coth x = x 1 +
1 x2- x4+ 2 _ *

Hence at high temperatures with hvL/2kT < ir,

(4.8) u -2...=2kTF m(i2 . 4- 2(- 4+01n1n2 SL 12" -3 \2lcT/ S12.' 45 \2kT Smm2
where

(4.9) Sn . =r-n ..J nsin2 4uiM, sin2 2m2".. sin2 n
SIn1) 2.. 2 E yj(1 - cos,0)

d04 . 0

(4.10) Smm2... = f...fsin2 61m1 sin2 '2m2 ... sin2 Onmnd4 ... do*n = (2Do

(4.11) S(m2.. = 27r-ff*fsin2,msin24l2M2 ... sin2sinMn

n rx~~
= 27K-(1r)n -1 jf (1 cos 4) sin2 mn1dc

t11n
= (2)'f_ = ( L)f,+1, etc.

i-1
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The integral S,(,) ... can be reduced to quadratures by noting that Z-1= fcOe-Zz dx
so that it can be written as

(4.12) Sml2- dx II J sin2 n 2... e .

Since

(4.13) sin2 m4 exp (x'y cos 0)d4 = 2f (1 cos 2m4) exp (xy cos4O)dq

= - [Io(xy) -I2m(YX)]
we have

(4.14) St°)1m2... = 2-(n+l) eTz7i I {Io(x-yj) - I2mj(X'Yj)}dX

The form of these integrals is so sensitive to the value of n that we shall not write a
general expression for S(O) (even though one can be written in terms of generalized
hypergeometric functions). We shall rather find S'°' when n = 1, 2, 3.

(i) Linear chains, n = 1. Here

(4.15) lf=f e [Io(x-y) - I2m(x-y)]dx

= k lim [ CeVZ Io(x)dx - U eP I2m(x)dxl
4-yp-1 Lfo f

= lim (p2 - 1)-1 [1 - (p + V/p2 - 1)2m]

= m/2-y.

Hence the one-dimensional high temperature expansion for C2 for a particle of
massM is

2 kT hL~2 I .h9~
(4.16) am = 4r2Mv2 4m + 3
This series converges when hvL/2kT < 7r. If we choose m to be larger than 104 all
temperature dependent terms in the bracket can be neglected and

2 _mkT(4.17) am M2 2 if hvL/2kT < 7r.

(ii) Square lattice, n = 2. Here

(4.18) j`°712**2= 8 e'(8) [Io(x7y) - 12m 1(xyl)][Io(x2) - I2m2(x y2)]dX

The formula (see [ 13])
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(4.19) I,,,= f e'po I2p(x7Y)I2p(xY2)dx

ly 2'7r(j+j,+,)r(1+A+P) ff4('+is+P, l+p4+v, 2, +1, 2v+1, -Y7/p2, '2 /p2)
l/2pl+2r+2vP(1+21A)r(1+2v)

where 94 is a generalized hypergeometric function

(4.20) 54(a, #; Y, y'; X, y) = E (a)m+nG()m+,X,Yn(,y)m&Y)nm !n!X
with (a),, = r(a + n)/r(a) allows us to write

D) 1
(4.21) Sm°l)m2 = 8 ,0 - Io,2m2- I2m,O + 12m1,2M2.

Since asymptotic formulas for generalized hypergeometric functions in the limit
of large ,u and v have not been discussed in the literature, we shall write S (,M) as a
form more appropriate for the range of large ml and m2. We can determine the
qualitative behavior of im,i2 for points far from the boundaries of our square lattice
by letting ml = m2= m. Then

(4.22) S?M = f{f e-Zxt+Y2) [Io(x'y)Io(x'y2) - I2m(XYi)12m(XY2)]dX

+ f ex('"+8'2) I2m(ZXl)[I2m(ZY2) - Io(XY2)]dX

+ f e''('+-2) I2m(XY2)[I2m(X-Y) -Io(x72)]dx}

The asymptotic behavior of the second two integrals is discussed in appendix I
where it is shown that they are negligible compared with the first when m is large.
The first integral converges but if it is separated into the difference of two integrals
each of those does not. However, if we introduce the integrating factor exp (-,ye)
both converge. Then we have as the value of the difference (see [131)

(4.23) lim {f xe-('l+72+t) Io(x7Y1)Io(x7Y2)dx- efe(l+'2+) I2(X'Yl)I2m(X'Y2)dx}

=lim 1 [r I('Yl+7Y2+eI-,Yi 2 _ (&+Y2+e)2Y2 1 2

=_. -Or(-Yl'Y2)'12 LY \12 - 2y'Y2r

where the Q's are Legendre functions of the second kind. Since (see [15]) Q,(Z)
-i log (5E) - - I(v + 1), where Z = 1 + e and e -- 0, y = 0.57721, and
'1(n + x) -I(x) = l/x + l/(x + 1) + * * + l/(x + n- 1), our integral
becomes

(4.24) 1Y2)112{ + 3 + 5 + * + 2m-1} 7r( * )112 log 2m .

Hence as m - -
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(4.25) S( ' - [8ir(&ylY2)]12 log 2m .

If we introduce a massM for the particles, the term ('y1'y2)1/2 becomes (-yI'y2/M2)1/2,
v2 = (71 + -y2)/7r2M and our desired dispersion becomes

2 kT i F(,yl+,Y2)21 1 (hL2 1 (hvL'~4(4.26) rn,r 2MvX_ L Y1+2 J log 2m +- \2kT/ 90-2kT+*

where the series converges if hvL/2kT < 7r. Hence as long as log 2m >> 7r (m >> 12)
we can neglect the temperature dependent terms in the bracket to find

(4.27) r2m kT)1/2 log 2m if hvL/2kT < m .

(iii) Simple cubic lattice, n = 3. In this case S,( )2m2 is a sum of four integrals over
products of the Bessel functions [see equation (4.14)]. In the limit of large ml, m2,
mi3 (lattice points far from the boundaries of the cube) one can apply the asymptotic
results of Appendix III (equation III-6) to find that those terms with at least one
large subscript become negligibly small. Then one finds

(4.28) S(MO)2r3 2- Io(x'YI)Io(xY2)Io(X-y3)dx =S(°)

as mi, M2, M3 -*- c. The case of main physical interest is one with two of the y's
equal, say 72 = 7y3. Then one finds from equation II-20 and equation II-17 that
Sm1m2m3 is independent of the mi's as they become large and that

s (O) __ 1

S() = smlm2m3 = 4,7r2(yy2)112 {(1 + y)' - (-y - 1)'}K(k3)K'(k3)
(4.29)

= 161 I(['Y/Y2] 2)

where -y = (3,yi + 4'Y2)/,y1, k3 = 2[ (.y - 1)y/2- (y - 3)1/2] II( + 1)1/2 - (y _ 1)1/2]
and K(k3) corresponds as usual to the elliptic function of the second kind and
K'(k3) = K([ 1 - k]21/2). The integral I(a) is discussed in Appendix II and plotted
in figure 13.
When noncentral forces are weak (when Yl»>> 72), equation (4.29) simplifies to

(4.30) S2m2m3 (47r2 )y- Y21/2- 1) as Y1/Y2 0.

This result, being independent of (ml, M2, M3), implies that at all lattice points far
from the boundaries of our cube

(4.31) 2= 8r2v2M {[(Yl+2-Y2)/Y2]I(-Yl/-Y2)+ 6 (hvL/2kT)2-180 (hvL/2kT)4 +

This expression differs from the analogous 1-D and 2-D results in that it depends
only on the temperature, particle masses and force constants.
We now proceed with the
(b) Low temperature expansion. When x is large coth x = 1 + 2e2z + 2e-4 +

2e-6x + - * * so that
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(4.32) 1nj2-...- jf r- [1+2 E exp (- ij )] sin2 1.. do.
The asymptotic low temperature limit can be reduced to quadratures through the
introduction of

(4.33) z-1 = (2/r112) f- e-XZ dx

and a repetition of the argument used in the derivation of (4.14). We then have

(4.34) aP (2fxbe i H {Io(x'Y) - I2.,(xyj)} dx

where, as before, Im(x) is the nth Bessel function of purely imaginary argument.
We shall now find 4mi,m,,-- for 1, 2, and 3 dimensions.
(i) n = 1, one-dimensional lattice.

5) 2 1(2 '(4.35) am h4h I;) j x-* e- [Io(x'y) -I2m(Xy)]dX

= lim{fl x- e-zIo(x)dx-f x- e-ZI2m(x)dx)
_hy -"

r lim {Q1(p) - Q2.-i(P)}27r ,_1

where Qn(x) is the nth Legendre function of the second kind. It has a singularity at
x = 1. The asymptotic expression in the neighborhood of x = 1 is (see [15])

(4.36) Q(x) -2-Ilog (x-1)/2-y-(1+ v) + O(x-1)

where y is Euler's constant 0.57721... and where for integral n

(4.37) (Z + n)- P(Z) = z+ l + + 1 -

We finally obtain the low temperature limit

2 h(4.38) amn 2ry1' ['(2m + -'(D]h/(2rY')

h

4_>2[1 + 3 + 5 + + 4m1]7ryl/2 [3 5 ~ m -

The sum has the asymptotic value a log m when m is large. We can introduce the
particle mass M and use this asymptotic relation to find

(4.39) crm = 1(h/M2LW2) log m.
(ii) n = 2, square lattice.
We apply (4.34) with n = 2 to obtain

(4.40) Um1j2 = 8- h7-{Foooi,'y2)-Fo,2m2(yl) 'Y2)-F2mo,0('Y1, 7Y2)+F2mj,2m2(Y1, 'Y2)1
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where (see [131)

Fa&,(71, 7y2) = f x- e-z(7l+y2) I.(xyj)I#(x-y)dx
(4.41) 0

= (1yYY2)14 r(a + / + 2)Pg, (r2)P.1 (F)

(4.42) rI,= [(Q1+±2)/1'Yfl2, j= 1,2;

6.0 ThI- |T T

5.5-

*5.0-

0

JI 45

4.0 I I
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'1? c log,2 (y/y2
FIGURE 10

Variation of the integral .,LFoo (-y1-y2); (see equation 4.41) with (71/Y2) = 2".

and P,,(Z) is the Legendre function of the first kind. In the special case a = 03= 0,
we have

(4.43) Foo(Qy', 72)

_ 8 1
1w312(y1y2)l14 [(F1 + 1)(F2 + 1)]112 K [(r2- 1)(72/7Y)']K[(r -1)('yl/Y2)']

where as usual K(k) is a complete elliptic integral of the first kind. We have plotted
this function in figure 10.

It is shown in Appendix IV that when -yr mI2 + 'y lm2 is large

(4.44) F2m1,2m2(yl, 'y2) = 4 (T ) /(-y m2 ± 2ym2)-

Hence as mi and m2 - ,

(4-45) amr,r2
2 MI Foo(7y, 72)

independently of ml and M2. Furthermore when 72 << Y1, Foo has the asymptotic form

(4.46) Foo(-yi, 72) (27r-yi)-1 log (6471/72)
-Hence the dispersion gets large as 72 -.

(iii) 3-D lattices.
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The 3-D expression for the low temperature a2 which is analogous to (4.40) con-
tains six integrals of products of three Bessel functions. Those integrals with Bessel
functions of order mi, m2, or m3 can be expected to approach zero with increasing
ml, m2, and ms even faster than those of products of two Bessel functions. Hence
for those atoms far from the boundaries, we have the asymptotic low temperature
dispersion (see equation (4.34))

2 _21h exflf2-)(4.47) co0 16- f x1 ez(7+72+f3)IO(x7Y)IO(xY2)IO(xy3)dx.
A series expansion can easily be obtained for this integral when 72 = 73 (it is to be
recalled that 72 << yl in interesting physical cases). We have

(4.48) c2 h2i C" (y+ 27 2r2 + 1)(4.48) 90 = 1x6, exz( -1+272)Io(xyl) (IX)2mF(2in dxT6;~~~U 0 .~-O mn![r(1 + in)]3

After interchanging the order of integration and summation and applying a formula
on p. 196 of Tables of Integral Transforms [13 ] we find

2Afl __ .. '- 8 m(7 (4mn+ l)2449_o= {PiZ)+ d lIJ2L(in P16[Y2(1Y+7Y2)] 1 4WI1 2 r

in-I ) r(\m+l)4 pn21

(4.50) Z = i(7i + 272)/[Y2(Yl + 72)]1
where Pn(Z) represents the nth order Legendre polynomial. When m is large
(see [16])

(4.51) P2m-- (2[ 2(Y7i)]+ ) (iryl) (4m- 1)(I [Y2)m[ Y) +7)1/4

and

(4.52) r(4m)/[r(m + 1)]4 r2M)h/228m
Hence the mth term approaches

[72(71 + 72)]'
2(r2M2(2y3) 1/2

so that the series can be expected to converge fairly rapidly.
A good approximation can be obtained for cr2 by using (4.53) when m >_ 4 and

using the exact terms when m < 4. We have

(4.54) E m-2 = (ir2/6) - (49/36)
4

and

(4.55)~~ zl+7 )-4[(eY +Y2)i-Y2t[Y2(Yl+'Y2)] K([(y,+'Y2)2 21]Y/

(4.56) pi ( yl+2Y2 )=2 (,yl+-y,'/'E(fyl/[y+Y]1' )2['Y2('Yl+'Y) 7r

where K and E are elliptic integrals of the first and second kind. The Legendre
functions P3,2, P7,2, and P,1/2 can be expressed as
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(4.57) P3/2(Z) =
4 ZPI/2(Z) - 1P_(Z)

1 1~~~
(4.58) P7/2(Z) = 10- (384Z3 - 208Z)P1/2(Z) - 1 (96Z2 - 25)P-j(Z)105 ~~~~~105

(4.59) P11/2(Z) = 10395 {(122,880Z - 129,024Z3 + 25,668Z)PI,/2(Z)

- (30,720Z4 - 23,616Z2 + 2025)P_.,(Z)j .

We have plotted the asymptotic value of a20M'12al2/h as a function of 72/11 in
figure 11 as the temperature approaches 0°K.
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FIGURE 11

Variation of the dispersion 002 of a given atom (in a 3-D lattice) from its equilibrium position
at absolute zero temperature as a function of the ratio of central to noncentral force constants
(71/y2). The parameter n is chosen so that 71/72 = 2n.

In the limit as 'y2/,y1 -- 0, the parameter Z [see (4.50)] approaches 2('y2/'Y1)112 so

that (see [15])

(4.60) P2=_j(Z) ' r(2m)(+y D

so that the series in (4.43) becomes

(4.61) 2r(&2/1)E14 2gsm r(2m)r(4m + 1) = 00666 &2/y1)14
r,~(2m + 1)[r(m + 1)]4

while P-1/2(Z) becomes ! (7 ) log (16 -yl/'y2). Hence, in the limit as Y1/72-s --'

and T -X 0

(4.62) a
2 h167r(yiM)2 log (1671/72) -

This differs from the corresponding 2-D expression (4.46) by having the factor 16
rather than 64 in the logarithmic term.
A good approximation to the first temperature dependent term in the expansion

of a2 [see equation (4.32) ] as a power series in (kT) can be obtained as follows.
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In the limit as T 00 the main contribution of the integrand of

(4.63) 7f-3fff& E exp (-jhw/kT)d4id12d03
0

comes at small value of w. However, the relation between X and the ¢'s in this range
3

iS w2 E Ayj42. Since each of the exponentials is a rapidly decreasing Gaussian
j=1

function in this approximation, the upper limits of integration can be extended to o
and one can introduce spherical polar coordinates (after letting x = f"y112, etc.).
Then the integral becomes

4.64) 13&vyy)'/2 El J-O 4A exp (-jhw/kT)d4,

_ 4(kT)2 *-2 _ 2 (kT/h)2
2h2(-y17273) 1/2 3 (717273) 112

The first two terms in a low temperature expansion of the dispersion is (in the
symmetrical lattice withY2 = 73)

(4.65) T2 0a + 3( )1/2 (h-)2(+ 22) +

We see that as the effect of noncentral forces diminishes (that is, as 72/y1 - 0) the
zero point dispersion increases and the temperature dependent dispersion becomes
effective at lower temperatures. The next order terms in the expansion would come
from the 44 terms in the expansion of W2.
The dispersion can be obtained from an integration over the frequency distribu-

tion function at all temperatures

(4.66) ~~~~2= 163JL g(v)dv
v tanh (- kT)

We can summarize the results of this section as follows. Every particle in our
lattice has a Gaussian distribution about its equilibrium position. The value of a2 in
the distribution depends on temperatures, force constants, and dimensionality.

In a linear chain a2 is proportional at high temperatures to the distance of the
particle of interest from a fixed end of the chain; at low temperatures, to the
logarithm of that distance. Hence those atoms far from the ends of a long chain
might vibrate over distances long compared with the lattice spacings.
A particle on a 2-D lattice has a a2 which is independent of its equilibrium position

at low temperatures provided that it is far away from lattice boundaries. At high
temperatures o2 iS proportional to kT times the logarithm of its distance from the
boundaries. Hence, at low temperatures a particle is localized at a given unit cell,
while in a system of a sufficiently large number of particles a particle sufficiently far
from a boundary may at high temperatures lose its localization.
The particles in a three-dimensional lattice with harmonic forces are localized at

all temperatures. We have plotted a2 (figure 12) as a function of temperature for
typical particles far from boundaries. Curves are given for various values of y2/7y.
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As is to be expected the dispersion increases as the strength of the noncentral force
constant diminishes.

It is to be recalled that in our nearest neighbor interaction model the above-
discussed values of a2 correspond to the components of displacements from equi-
librium in the direction of only one of the crystal axes. The total dispersion is the
sum of that over all three directions. When more distant neighbor interactions are
included the displacements in different directions are correlated. In a highly aniso-
tropic lattice the dispersions from equilibrium are greatest in the direction of
weakest intermolecular forces.
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FIGuRE 12
Variation of the dispersion a2 with temperature in a 3-D lattice

The joint distribution function of the displacements of a pair of particles from
equilibrium is the double Fourier transform of the characteristic function

(4.67) G({m}, {m + .); ai, a2) = E(exp -ialUml,ms2,-- + a2Um1+M1,--J])

Here {m} -(ml, m2, ** *, m,,) represents the coordinates of one of the particles,
and {m + ,u} those of the other. Various values of the displacements are weighted
by the Slater sum. One finds the characteristic function (4.67) to be Gaussian with
the formula

(4.68) exp [- (-aa + 2rala20lacmm+M + a2So+,)]
where the a's are given by (4.6) and

n
f rf H cosOji - cos 0j(2mj + .j))}

(4.69) ramom+, = djJtanh 1 n)
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Here r is the correlation coefficient between particles separated by the vector A.
Since the characteristic function (4.68) is Gaussian, its Fourier transform is also
Gaussian and the joint distribution function is

(4.70) F(u,, um+#)

1 J 1 F(Um\ Um Um +,&(Um+ATl- 2112~~~exp - ~--2r-)g27ramo+M,((-r12)1/2exl2(1-r2) LWm am2 +p\-mAJ
High and low temperature limits of r (defined in (4.69)) are obtained in the same

way as they were found in the discussion of a. We shall merely list these results for
the 1-D case and high temperature asymptotic results for the 3-D lattice.

In the 1-D case the high temperature limit of (4.69) is

(4.71) ramc,m+p = mkT/Lr2MvL

This equation combined with (4.16) yields

(4.72) r = [1 + (,u/m)]-112.

Hence, as u-o for fixed m, the correlation coefficient vanishes. At low tempera-
tures (and finally large values of ,u for fixed m)

(4.73) ramo+p,, = (h/MvL7r2) {2M + 1 + 2 + 3 + + + - 1)}

(h/2wr2MVL) log (1 + 2m,u1) - hm/7r2MPVL .

We combine this with (4.39) to obtain the asymptotic result as ,u-A for fixed m,

(4.74) r - 2(m/A)/[ (log m) (log A) ]112.

A direct application of equation III-2 in Appendix III gives the 3-D high tem-
perature result (which is independent of m) when ,u and m are large

kT 22 1 2 -1 2-(4.75) = 8ir(y1y2y8)112s'12M' s = ys-l + P272 + 31.3

Since am and am+, are both proportional to (kT) 12, we find that r is proportional to
8-1/2. The value of the proportionality constant depends on the particle mass and
force constants but not on the temperature.
A quantity of importance in X-ray diffraction is the distribution function of

(um+,, - ur). This is obtained from the characteristic function (4.67) when a, =
- a2 = a. Hence (4.68) reduces to

(4.76) exp [- ca2(a2 - 2ramam+ + a2+a)]
Hence our required distribution is Gaussian with a dispersion

2 2 2
am+}m = am - 2ramam+A + aT+;,

In three-dimensional lattices 2rarm-am+, vanishes for large values of A and am - ,+,
so that in this range am 2a2am. However, in one-dimensional lattices 2ramUm+
might become large. In this case we have
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(4.77) am = I.kT/7rIYIPL
at high temperatures, and

2 h lo(4.78) Um+p,m 22 2M lg
L

at low.

5. Effect of local disturbances on lattice vibrations
In this section we shall outline a procedure which can be used to discuss the effect

of local disturbances in a lattice on its lattice vibrations. By a local disturbance we
mean a foreign atom at a lattice point, a hole, etc. We shall restrict our analysis to
3-D lattices but the method is applicable to those of any number of dimensions.
The difference equations from which we obtained the characteristic frequencies

of our normal modes W2 in section 2 are

(5.1) 'y[IUmj+i,m2,m3 - 2U l,m2,m3 + Uml-i,m2,m3]

+ 'Y2[UMl,m2+l,m3 - 2U41,M2,M3 + UM1 ,m2-1 in3]

+ a[um1 in2,m3+1 - 2u1^m2mi3 + U1in2^,m3-1] + MI2U-m1m2m3 = 0

Here ml, M2, M3 range through 1, 2, * * *, N. For convenience we shall change our
notation to let the m's range from -N/2 to N/2. When the boundary conditions
(2.2) are chosen the normal mode frequencies (2.10) result. Now suppose that some
masses or force constants are different from the others. Then the coefficients of the
certain u's are different from those given above. Indeed, if we let D represent the
difference operator which acts on Um,m2,m,to yield the above equations, that is, if

(5.2) Dum12`3= 0,

then our new equation, which would show the effect of local disturbances, would be
(the total displacement of an atom from its equilibrium position is the sum of the
original unperturbed displacement plus the solution of the following)

(5.3) DU 1r2m3 = E wf (ml + j, M2 + k, m3 + l)Un1+,j,2+k,rn3+1
j,k, I

Ml, M2, M3 = 0, ±1,2, +* *, ,

where the functions wi,k, (Ml + j, M2 + k, m3 + 1) would characterize the dis-
turbance. For example, if we merely change the mass of the particle at (a, b, c) to M'
and leave all force constants fixed

(5.4) wk (Ml + j, M2 + k, m3 + I)-0

unless j, k and 1 are zero and ml = a, m2 = b and m3 = c. Then

(5-5) w°' °'(a, b, c) = (M -M),02
If the force constants between a single atom at (a, b, c) and its neighbors are changed
all w's would be zero except w °O.°(a -4 1, b, c); wo° AlO(a, b i 1, c); w0 0 .1(a, b, c i 1);
w°IA'(a, b, c).
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The set of equations (5.3) can be solved through the use of Green's functions. We
shall follow the ideas used in the paper of R. T. Duffin on discrete potential theory
1171 . Since we are interested only in local disturbances let N - c and first con-
sider the Green's function g(ml, M2, M3) which is the solution of

(5.6a) Dg = 1 for mI = M2 = M3 = 0

(5.6b) Dg = 0 otherwise

(5.6c) g_ 0 as Ml + M2 +m3 - c.

The Green's function can easily be verified to be

(5.7) g(Mi, M2, M3)

1 ffr ei(lm1+02m2+03m3)dC 2¢3
-(27)3 JJJ M -2 712yl(1-cos 4 l)-272(1-COS 4)2)-2y3(1-COS ¢3)

-Ir

e -aM 22(ijl+f2+Y3)] (1 JST eioimi e-2yiCOSi d4)}

Jf e II{i' e Z Jm_(2aiy,)} dct

where as usual Jm(ila) is a Bessel function of imaginary argument. This integral
converges when MW2 > 4E ys = MUL or Mw2 < 0. It can be represented as a
generalized hypergeometric function of three variables (see equation (3.27) of this
article and [ 13], p. 184). The function g(0, 0, 0) has been tabulated by M. Tikson
[18] when yi = 72 = 73. Since these integrals occur in many problems in which
cubic lattices appear (ferromagnetism, electrons in metals, random walks on lat-
tices, etc.) their tabulation would be a worthwhile project. Asymptotic expressions
for large m's are easily obtained by following the method discussed in appendix III.
Now that the Green's function is known, it is easily verified that

(5.8) Umjm2m3 E E g(mi + j-nnl,iM2+ k-n2, M3 + I-n3)
jkl mlm2m3

* wk '(ni, n2, n3)unln2n3-

The application of the D operator and the use of (5.6) immediately yield (5.3). An
important feature of this result is that it is exact (no perturbation calculation is
made). A similar result has been obtained by Slater and Koster [ 19] in their appli-
cation of Wannier electronic wave functions to the problem of an impurity in a
semiconductor. It has also been discussed by Lax [ 23 ]. The effect of holes on lattice
vibrations has been treated by perturbation theory by Stripp and Kirkwood [20].
Although several detailed applications of (5.8) will be discussed in another paper

we shall indicate the approach to the simple problem of a change of mass of a single
atom without the change in force constants. This will give the spirit of the method
of using (5.8). Suppose the impurity atom is at the origin so that w°°°(0, 0, 0) =
(M - M')w2 and all other w's are zero. Then,

(5.9) Utm1m2m3 = g(mlM2M3)CO)2(M- M')uooo.
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The new normal mode frequency c2 would be determined by setting ml, m2, m3 = 0
and solving the transcendental equation

(5.10)
1

= 9( 0)W2(M - M)=g0 ,0

for w02. When ay = 72 = 'y, Tikson's tables are very helpful in obtaining the solu-
tion. This value of X2 lies outside the continuum of frequencies which we discussed
in section 3. With this value of W2, the vanishing of the disturbance to the normal
lattice vibrations with increasing distance from the impurity can be discussed
through (5.9).

In cases of more complicated sources of disturbance one sometimes has to solve
a set of simultaneous equations to find u,,,,m, and the impurity frequencies O2.

6. Zero point energy
We finish this report with a brief discussion of the quantum mechanical zero

point energy of our model

(6.1) Eo = ah Ewi

(2M)1/2 h(N/fr) -f *j'{ , yj(l - cos X,)}1/ d * * *

This expression can be reduced to quadratures by employing the following represen-
tation of x112:

(6.2) x 2 1j2 foX(l-2a2)
Then

(6.3) EOh=N a22(27rM)"2 (Lr ) 0 a da f.. [1 - e-a2ZYj(_-co86,)] d4, . . .

2(27rM)1/2i [ f { f }

f7M'2 bV3'e2 - Io(by,))] db

An integration by parts finally yields

(6.4) Eo hNn
n

yj 0 b-1/2 e b2-i [Io(b'yl) . Io(byn)]2(27rM)"2 j_=i fo
* [lo(b7y) - Ii(byj)]/Io(b-y)db

The zero point energy of a 1-D lattice is [see discussion under (4.34)]

(6.5) Eo= hNy
1/2 I b-1/2 e-by [Io(by) - Ii(by)]db2(27rM)"2fo

hN hN ('y\1/2=-2(Mel/ ['I2(3/2) - 1(1/2)] = (

Since the zero point energy of 2-D and 3-D lattices involves four and six integrals,
respectively, we shall not write them down explicitly here. We merely point out that
each of these integrals is of the form dealt with in the discussion of the asymptotic
low temperature expression of U2 [see (4.34) ].
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APPENDIX I. ON THE INTEGRATION OF

(I-1) f exp [-x(yi + Y2)]Im1(XY1)Im2(XY2) - 1m3(Xf)I)m4(XY2)ldx
WHEN

2 2 1/2 2 -12 22-1/2 2 -1/2ki = Mi-Yj72 + m2y2 and k2 = Mrn-112 + M42-2
ARE BOTH LARGE

This integral appears in equation (3.23). We shall show that it can be neglected
when compared to one in which one of the k's is small. For this purpose it is desirable
to go backwards and rewrite the required integral as (we shall be interested only in
the case of even values of m)

11

(2 - ei(ml0l`22) ei(m31+m402)
(I-2) ~47r2 JJYl + 72 - 'Y COS 01 -72 COS 02 12-

We shall not be too rigorous in the following, but this as well as several integrations
of later appendices can be put on a more rigorous basis by following a method
developed by Duffin [17] . When the m's are large the integrand in the neighborhood
of (4i, +2) = 0 gives the main contribution to the integral. Hence if we introduce
the factor Jo(aR) with ca very small and R = if y'/2 + jo2l/2 or R2 = 02z1 + f2

_Y1,02-+ '22
replace the denominator of the integrand by 2 14 + 21722, allow the integration
to extend over the entire real (+0, 02) space, and transform to polar coordinates,
our integral becomes

(I-3) 2712(y12)12 f 2RJo(aR) dR [f eiRk coB d0 - eiRk' cOs
'

do]

where k and k' are the vectors

k=m -1/2ii+m2' 1/2 j k' =M3y 1/2 i+ M4,- 1 i2j

and 0 and 0' are the polar angles between the vectors R and k and R and k'. The
integrals with respect to 0 are again Bessel functions of order zero. The desired
expression becomes

(I-4) ( 141/2 f Jo(cR) [Jo(kR) -Jo(k'R)]dR

= (1y2)1/2 {f Jo( R) [1 -Jo(Rk')]dR Jo(R) [1 - Jo(Rk)]dR}
Since both of the integrals in the bracket are "Bateman integrals" (see Watson
[22]), the entire expression becomes

(I-5) = ( 1 )l/2 [log k'/a - log k/a] log (k /k)7r('Yly2)'1/2 107r&1Y'Y2)1/2 lg(k

1 {ylog2m3_+ 2m24
w(y172)1/2 \y2rnl + 2rn/
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a result independent of the value of the small number a which was introduced in the
integrating factor Jo(aR).
The case of interest for equation (3.24) in the text is mi = M2 = m3 = 2m and

M4 = 0. Our required integral reduces to

(1-6) gr1T2)112 log(- 2 +2

which for fixed -yi and 72 iS small compared to [7r(-Yl'Y2)112] -' log 2m as m co .

APPENDIX II. GENERALIZATION OF AN INTEGRAL OF WATSON

Let
Ir

(II-la) I(a) = -3 (41d429-d3fJJJ (2 + a2) - COS401 - COS 02 - af2 cos4.3
0

_ 1 rrd4ild¢2dq+3(II-lb) - 27iri JfJJ sin2 1 i + sin2202 + a2 sin2 3a-

The special case a = 1 has been discussed by Watson [21]. We shall follow his
technique here. If one introduces a set of Cartesian variables xi = tan 10, X2
tan 2+2 and x3 = a tan +3, then transforms these to spherical polar coordinates,
and finally replaces the angle 4 by = 2', the integral (II-lb) reduces to

(II-2) I(a)

4a fi7rr sc sin 0 drd0d1
T3J 0 Jo Jo a2 +r2sin2 o['a2sin22sin2*+ (1 +a2)cos2 0]+ lr4(2+a2)sin44cos2 Osin2*'

The integration with respect to 0 can be carried out in an elementary manner if
r is replaced by a new variable t which is defined as t21/2 = r sin 0 (for fixed 0) and
the order of integration is interchanged. Then

(II-3) I(a)

= w8; dtjo d''j a2+ t2[a2sin2Osin12tI+2(1 +a2)cos20] +(2+a2)t4cos2Osin2'1'

2 \/2 dc T/2 dtdIr 2 0 0 l

7r2 J0 -\/(l+t2 sin22T)[a2 + 2t2(l + a2)+(2+a2)t4 sin 2T]

The integral over t can be reduced to an elliptic integral if we replace I by a new
variable r which we define by tan 4' = t/(1 + t2)1/2.
Again we interchange the order of integration. We find
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(II-4) I(a)
3/2 -2 r d dt22-2 (1+ 2)12J {(1+ t2)[a2(1+ .2)+ t2(r2(2+ca2)+2(1 +a2))]} 1/2

= 2r2 f (+d)12[r2+(2+a2)+2(l +a2)]1/2 K' L[2(2+a2)+2(1+a2)] )-

The transformation r = tan x leads to

(II-5)(a!)--2 dx Kt/1\
a1r2 fo [2(l+a2) 1/2 [2(1+a2) _ X

a2
- sin2XI a2

- sin /X
If we substitute

(II4) 2irK'(k) _ [d r12(n + 2 + e)k2n+2e1
de n!r(n+ 1+2E)J =

into (II-5) and interchange the order of integration and summation, we find

(II-7) I(a) = - [ n !1'(n+1+2fj L [2(1+a2)a-2sin2X]n+1/2+E]e...-
We perform this last integration by choosing c to be the smallest root of

(II-8) c2-2-c+1 =0

with

(II-9) = (4 + 3a2)/a2

Then

(II-10) 4c{2(1 + a2) - 2 X} = (1 + Ce2ix)(1 + ce-2 iX)

If we substitute this expression into (II-7) and expand the integral in a power
series in c we find

r/2
(II-11) J [2(1 + a2)2 - sin2 X]-n-1/2_e dx

= i1r(4c)n+1/2+e 2F1 (n + I + E, n + I + e; 1; c2)

where 2F1 is the hypergeometric function of the four arguments given in the paren-
theses.
The integral (II-7) can be expressed in terms of a hypergeometric function of two

variables if (II-11) is substituted into (II-7) and the definition of 34 is applied. We
obtain

(II-12) I(a) = - 21 {~-[(4c)l/2+E r24((&23E,4+e; 1+2e, 1; 4c,C2)]
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where 54 denotes the fourth kind of Appell's hypergeometric function of two vari-
ables [see equation (4.20) ]. It has been shown by Bailey that 54 can be factored
into a product of two ordinary hypergeometric functions of one variable (see also
p.238,[15])

(II-13) 5F4[U, v + V -U -1;v, v';X(l- Y), y(l -x) ]

= 2F1(u, v + v' - u - 1; v; x) 2F, (u, v + v' - u - 1; v'; y)

provided that x + y < 1 and

(II-14) {I x(1 - Y))1l2 + { y(1 - x) }112 < 1.

The values of the significant parameters in our case are

(II-15) u = + e

(II-16) v 1 + 2e, v' = 1

(II-17) v+v'-u-1 =I +e= a

(II-18) x(1 - y) = 4c while y(l - x) = c2.

The explicit values of x and y are the roots of this pair of equations for which
(II-14) is satisfied. The value of c, the positive root of (II-8), is.
(II-19) c = - (72 - 1)1/2.

Since the square root of c is

(II-20) c1/2 = 2-1/2{ ( -+ 1)1/2 - (e - 1)1/21

we see that

(II-21) { lx(1 - y)IlP/2 + {I y(l -x)I 11/2 - 1 =2c/2 + c- 1

= 21/21(7 + 1)1/2 - (-y 1)1/21 + (y -1)1/2[(y - 1)1/2 - (ey + 1)1/21
--[ (ey- 1)1/2 - 21/21 (ey + 1)1/2 - (- 1)1/2] -

As long as a is real [see equation (II-9)] y = 3 + 4a-2 > 3, and (II-21) is negative
as is required by (II-14).
The roots of (II-18) with the property x + y < 1 are x = 1- = (k3)2 and

y = k2 = 1 - (k )2, where

(II-22) k3 = 1[(y- 1)1/2 + (,y - 3)1/2] [(ey + 1)1/2 - (,y _ 1)1/2]

(II-23) k2 = i[ (-y - 1)I/2 - (e - 3)1/2] [(e + 1)1/2 - ( _ 1)1/2]

Our required integral then takes the form

(II-24) I(a) - 21/2air2

Thequantt iside t c+kE) Fi+e,o +e, 1+2ek3g2)F(oL+rE, tL+e, 1,cr

The quantity inside the bracket is of the same general form as the corresponding
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quantity treated by Watson in his analysis of (II-1) with a = 1. We employ his
result and find

(II-25) I(a) = 2'2k2k3K(k2)K(k )/a7r2
where K(k) is the complete elliptic integral of the second kind. Various relations
are easily shown to exist between k2, k3, k', and k'. For example,

k2k3 = 2(k2k3)12
(II-26)

(k3/k2) = 2(VY _ 3 + V/v - 1)2
Equation (II-13) reduces to Watson's result when a = 1 (and hence Y = 7) for

then k2 and k3 agree with Watson's value for these quantities.
Equation (II-25) can also be written as

(II-27) I(a) = 4[ (y +1)1/2 -(l y - 1)1/217r2a'K(k2)K(ka3).
Two limiting forms exist for I(a) in the range of very small and large a. As a 0,

(II-28) I(a) log (2

I I I 111 1I III

1.0

0.8
I (a)

0.6

0.4

0.2

0
.1 .2 .4 .6 1 2 4 6 8 10 15

a
FIGuRE 13

Variation of the generalized Watson integral (equation II-la) with a.
The Watson value 0.505 corresponds to a = 1.

while as a -> X

2 /2(1/ 11/2(II-29) I(a) 2/(2 - 1) fK(2"2- 1)12 = 0.633a&-

We have plotted I((a) as a function of a in figure 13.
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The function I(a) is related to the integral (4.28) through

(II-30) f e- (2y2+'Yl) Io(xYl)[Io(xY2)]2dx

" rfff (2'y2+Yl)--y cos 01-Y2 COS q2-Y2 COS0=
0

APPENDIX III. ASYMPTOTIC FORM OF

(III-1) 1 rrr ~~e'(-1'01+-202+-303) 41X24+3
0 Z 7j(l - cos )

AS
2 2m 1 2 -1 2 -1s Myi + M2y2 + M3Y3m33 o

This type of integral has been evaluated by Duffin [17] when yi = 72 = y3. We
note that when k is large the main contribution comes in the range of small values
of the O's. The integration can, without significant change, be extended over the
entire range of positive 4's. One introduces a radius vector R = iflyl/2 + ji2112 +
k0371/2 so that the polar coordinate representation of the integral becomes

(III-2) 1 7r3(77273)12 f f 27re i,R Cos0Sin OdRdO

where s is the vector s = iml-yj112 + jm22-y1/2 + km3'Y-'12, and 0 is the polar angle
between R and s. After integration with respect to 0 we have

(III-3) 1 sin~mR dR= 1
72(y12Y3)17 2 fO Rs 27rs(y1Y2Y3)1/2

with

III-4) s = (mij1' + m272 + m373)1.

This asymptotic form to (III-1) is equivalent to

rcD 1
(III-5) j e- (1+y2+y3)z Im(X7yi)Im2(X7Y2)Im3(xy73)ddx

as s - co. Here the I's are Bessel functions of purely imaginary argument.

APPENDIX IV. ON THE INTEGRATION OF

IV-1) Fa.#(Yl, 72) = J 1/2e-x(Yl'y2) I.(X'yl)l(XY2)dX

AS

(021 + , Y2 )a
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We use the double integral representation of F

(IV-2)
f - cosa1)+ d41d4>247r_/2ff ['Y(l - cos Y1)+ Y2(l - cos 02)]"2
_T

When a and # are large the main contribution to the integral comes from the region
of small 01 and 42. Hence if we introduce the integrating factor exp (-JuR) (here ,A is
small number), with R2 = 7i'2 + 2742, we can extend the range of integration over
the entire real plane. We then have, after a reduction to polar coordinates,

(1V4)Fa,j (y, 72) I2/ /J2 J R-'{exp (-,uR + ikR cos 0)I 2RdRdO,

where k2 = a271 + P2-y-1.
Hence

1 i \1/2 JRcx,2 )-/(IV-4) F) '' 1\) J2 eMyJo(kR)dR = (2V7iy1y2Y (2 +k2)

In the limit of large k and small I we find

(IV-5) Fa,(yi, 7Y2) - (27r)-l/2(a272 + f2,yl)-1/2
This result could also have been obtained by applying various asymptotic forms
for Legendre functions to (4.41).

In conclusion, the author wishes to thank Mr. J. Bradley for his aid with the
calculations that were required for the construction of the various figures.
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