
Implicitly-Defined Neural Networks for Sequence Labeling ∗

Michaeel Kazi, Brian Thompson
MIT Lincoln Laboratory

244 Wood St, Lexington, MA, 02420, USA
{first.last}@ll.mit.edu

Abstract

In this work, we propose a novel, implicitly-
defined neural network architecture and de-
scribe a method to compute its components.
The proposed architecture forgoes the causal-
ity assumption previously used to formulate
recurrent neural networks and allow the hid-
den states of the network to coupled together,
allowing potential improvement on problems
with complex, long-distance dependencies.
Initial experiments demonstrate the new archi-
tecture outperforms both the Stanford Parser
and a baseline bidirectional network on the
Penn Treebank Part-of-Speech tagging task
and a baseline bidirectional network on an ad-
ditional artificial random biased walk task.

1 Introduction
Feedforward neural networks were designed to approx-
imate and interpolate functions. Recurrent Neural Net-
works (RNNs) were developed to predict sequences.
RNNs can be ‘unwrapped’ and thought of as very
deep feedforward networks, with each layer sharing the
same set of weights. Computation proceeds one step
at a time, like the trajectory of an ordinary differential
equation when solving an initial value problem. The
path of an initial value problem depends only on the
current state and the current value of the forcing func-
tion. In a RNN, the analogy is the current hidden state
and the current input sequence. However, in certain
applications in natural language processing, especially
those with long-distance dependencies or where gram-
mar matters, sequence prediction may be better thought
of as a boundary value problem. Changing the value of
the forcing function (analogously, of an input sequence
element) at any point in the sequence will affect the
values everywhere else. The bidirectional network ad-
dresses this problem by allowing information to flow in
both directions. However, each part can only consider

∗This work is sponsored by the Air Force Research Lab-
oratory under Air Force contract FA-8721-05-C-0002. Opin-
ions, interpretations, conclusions and recommendations are
those of the authors and are not necessarily endorsed by the
United States Government.

information from one direction. In practice many algo-
rithms require more than two passes through the data
to determine an answer. We provide a different mech-
anism than the bidirectional network, with the moti-
vation being a program which iterates over itself until
convergence.

1.1 Related Work

Bidirectional, long-distance dependencies in sequences
have been an issue as long as there have been NLP
tasks, and there are many approaches to dealing with
them.

Hidden Markov models (HMMs) (Rabiner, 1989)
have been used extensively for sequence-based tasks,
but they rely on the Markov assumption - that a hid-
den variable changes its state based only on its current
state and observables. In finding maximum likelihood
state sequences, the Forward-Backward algorithm can
take into account the entire set of observables, but the
underlying model is still local.

In recent years, popularity of the Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) and variants such as the Gated Recurrent Unit
(GRU) (Cho et al., 2014) has soared, as they enable
RNNs to process long sequences without the problem
of vanishing or exploding gradients (Pascanu et al.,
2013). However, these models only allow for informa-
tion/gradient information to flow in the forward direc-
tion.

The Bidirectional LSTM (b-LSTM) (Graves and
Schmidhuber, 2005), a natural extension of (Schuster
and Paliwal, 1997), incorporates past and future hid-
den states via two separate recurrent networks, allow-
ing information/gradients to flow in both directions of
a sequence. This is a very loose coupling, however.

In contrast to these methods, our work goes a step
further, fully coupling the entire sequences of hidden
states of an RNN. Our work is similar to (Finkel et al.,
2005), which augments a CRF with long-distance con-
straints. However, our work differs in that we extend
an RNN and uses Netwon-Krylov (Knoll and Keyes,
2004) instead of Gibbs Sampling.

2 The Implicit RNN (iRNN)
2.1 Traditional Recurrent Neural Networks
A typical recurrent neural network has a (possibly
transformed) input sequence [ξ1, ξ2, . . . , ξn] and initial
state hs and iteratively produces future states:

h1 = f(ξ1, hs)
h2 = f(ξ2, h1)
. . .
hn = f(ξn, hn−1)

The LSTM, GRU, and related variants follow this
formula, with different choices for the state transition
function. Computation proceeds linearly, with each
next state depending only on inputs and previously
computed hidden states.

Figure 1: Traditional RNN structure.

2.2 Proposed Architecture
In this work, we relax this assumption by allowing
ht = f(ξt, ht−1, ht+1)

1. This leads to an implicit set
of equations for the entire sequence of hidden states,
which can be thought of as a single tensor H:

H = [h1, h2, . . . , hn]

This yields a system of nonlinear equations. This setup
has the potential to arrive at nonlocal, whole sequence-
dependent results. We also hope such a system is more
‘stable’, in the sense that the predicted sequence may
drift less from the true meaning, since errors will not
compound with each time step in the same way.

There are many potential ways to architect a neural
network – in fact, this flexibility is one of deep learn-
ing’s best features – but we restrict our discussion to
the structure depicted in Figure 2. In this setup, we
have the following variables:

data X
labels Y
parameters θ

and functions:

implicit hidden layer definition H = F (θ, ξ,H)
loss function L = `(θ,H, Y)
input layer transformation ξ = g(θ,X)

Our implicit definition function, F , is made up of
local state transitions and forms a system of nonlin-
ear equations that require solving, letting hs and he be
boundary states:

1A wider stencil can also be used, e.g. f(ht−2, ht−1, . . .).

h1 = f(hs, h2, ξ1)
. . .
hi = f(hi−1, hi+1, ξi)
. . .
hn = f(hn−1, he, ξn)

Figure 2: Proposed iRNN architecture

2.3 Computing the forward pass
To evaluate the network, we must solve the equation
H = F (H). We computed this via an approximate
Newton solve:

Hn+1 = Hn − (I −∇HF)−1(Hn − F (Hn))

Since (I − ∇HF) is sparse, we apply Krylov sub-
space methods (Knoll and Keyes, 2004), specifically
BiCG-Stab method (Van der Vorst, 1992), since the
system is non-symmetric. This has the added advan-
tage of only relying on matrix-vector multiplies of the
gradient of F .

We also considered approximating the inverse via
a polynomial Pn(∇HF), using the geometric series
Pn(x) = 1 + x + x2 + . . . + xn, which converges
provided that ||∇HF || < 1. With n = 1, this proved
a reasonable approximation for Part-of-Speech tagging
(Section 3.2). For other tasks, however, we found the
eigenvalues were not as well-behaved with this approx-
imation scheme.

2.4 Gradients
In order to train the model, we perform gradient de-
scent. We take the gradient of the loss function:

∇θL = ∇θ`+∇H`∇θH

The gradient of the hidden units with respect to the pa-
rameters can found via the implicit definition:

∇θH = ∇θF +∇HF∇θH +∇ξF∇θξ
= (I −∇HF)−1 (∇θF +∇ξF∇θξ)

where the factorization follows from the noting that

(I −∇HF)∇θH = ∇θF +∇ξF∇θξ.

The entire gradient is thus:

∇θL =∇H`(I −∇HF)−1 (∇θF +∇ξF∇θξ)
+∇θ`

(1)

Once again, the inverse of I − ∇HF appears, and we
can compute it via Krylov subspace methods.

2.5 Transition Functions
Recall the original GRU equations (Cho et al., 2014),
with slight notational modifications:

final hidden ht = (1− zt)ĥt + zth̃t
candidate hidden h̃t = tanh(Wxt + U(rtĥt) + b̃)

update weight zt = σ(Wzxt + Uzĥt + bz)

reset gate rt = σ(Wrxt + Urĥt + br)

We make the following substitution for ĥt (which
was set to ht−1 in the original GRU definition):

state comb. ĥt = sht−1 + (1− s)ht+1

switch s =
sp

sp+sn

prev. switch sp = σ(Wpxt + Upht−1 + bp)
next switch sn = σ(Wnxt + Unht+1 + bn)

(2)

This modification makes the architecture both im-
plicit and bidirectional, since ĥt is a linear combination
of previous and future hidden states. The switch vari-
able s is determined by a competition between two sig-
moidal units sp and sn, representing the contributions
of the previous and next hidden states, respectively.

2.6 Implementation Details
We implemented the iRNN structure using
Theano (Bergstra et al., 2011). The product ∇HFv
for various v, required for the BiCG-Stab method,
was computed via the Rop operator. In computing
∇θL (Equation 1), we noted it is more efficient to
compute ∇H`(I − ∇HF)−1 first, and thus used the
Lop operator.

Batching the nonlinear solver was slightly tricky –
it was straightforward to perform the same BiCG-stab
computations across different elements in the batch, but
some elements converged significantly faster than oth-
ers. For this reason, we found it helpful to run BiCG
from two separate initializations for each element, one
selected randomly and the other set to the forward ap-
proximation of the GRU (omitting Equation 2). If ei-
ther of the two candidates converged, we took its value
and stopped computing the other.

3 Experiments
3.1 Biased random walks
We developed an artificial task with bidirectional
sequence-level dependencies to explore the perfor-
mance of our model. Our task was to find the point at
which a random walk, in the spirit of the Wiener Pro-
cess (Durrett, 2010), changes from a zero to nonzero

mean. We trained a network to predict when the walk
is no longer unbiased. We generated algorithmic data
for this problem, the specifics of which are as follows.
First, we chose an integer interval length N uniformly
in the range 1 to 40. Then, we chose a (continuous)
time t′ ∈ [0, N), and a direction v ∈ Rd. We pro-
duced the input sequence xi ∈ Rd, setting x0 = 0
and iteratively computing xi+1 = xi +N (0, 1). After
time t, a bias term of b · v was added at each time step
(b·v ·(t′−t)) for the first time step greater than t′. b is a
global scalar parameter. The network was fed in these
elements, and asked to predict y = 0 for times t ≤ t′

and y = 1 for times t > t′.
For each architecture, ξ was simply the unmodified

input vectors, zero-padded to the embedding dimension
size. The output was a simple binary logistic regres-
sion. We produced 50,000 random training examples,
2500 random validation examples, and 5000 random
test examples. The implicit algorithm used a hidden
dimension of 200, and the b-LSTM had an embedding
dimension ranging from 100 to 1000. b-LSTM dimen-
sion of 300 was the point where the total number of
parameters were roughly equal.

The results are shown in Table 1. The b-LSTM
scores reported are the maximum over sweeps from
100 to 1500 hidden dimension size. The iRNN outper-
forms the best b-LSTM in the more challenging cases
where the bias size b is small.

b iRNN Error b-LSTM Error

2.0 0.0226 0.0210
1.0 0.0518 0.0589
0.75 0.0782 0.0879
0.5 0.119 0.132
0.25 0.189 0.205

Table 1: Biased walk classification performance.

3.2 Part-of-speech tagging
We next applied our model to a real-world problem.
Part-of-speech tagging fits naturally in the sequence
labeling framework, and has the advantage of a stan-
dard dataset that we can use to compare our network
with other techniques. To train a part-of-speech tag-
ger, we simply let L be a softmax layer transforming
each hidden unit output into a part of speech tag. Ini-
tially, ξ consisted only of word vectors for 39,000 case-
sensitive vocabulary words. Next, we lowercased the
vocabulary words, but added a single feature indicat-
ing whether case appeared in the data. Third, we added
six additional ‘word vector’ components to encode the
top-2000 most common prefixes and suffixes of words,
for affix lengths 2 to 4. Finally, we added in other
(binary) features to indicate the presence of numbers,
symbols, punctuation, and more rich case data, as used
by (Huang et al., 2015).

We trained the Part of Speech (POS) tagger on the

Penn Treebank Wall Street Journal corpus (Marcus
et al., 1993), blocks 0-18, validated on 19-21, and
tested on 22-24, per convention. Training was done
using stochastic gradient descent, with an initial learn-
ing rate of 0.5, and a batch size of 20. Word vectors
were of dimension 200, prefix and suffix vectors were
of dimension 12. Hidden unit size was equal to feature
input size, so in this case, 280. Training took about 5
seconds per batch on a Tesla K40 GPU.

As shown in Table 2, the iRNN outperformed
baselines GRU, LSTM, b-LSTM, all with 500-
dimensional hidden layers, as well as the Stanford
Part-of-Speech tagger (Toutanova et al., 2003) (model
wsj-0-18-bidirectional-distsim.tagger
from 10-31-2016). Note that performance gains past
approximately 97% are difficult due to errors/incon-
sistencies in the dataset, ambiguity, and complex
linguistic constructions including dependencies across
sentence boundaries (Manning, 2011).

Architecture WSJ Accuracy

GRU 96.43
LSTM 96.47
Bidirectional GRU 97.28
b-LSTM 97.25
iRNN 97.37
Stanford POS Tagger 97.33

Table 2: Tagging performance relative to other recur-
rent architectures.

3.2.1 Visualizations
We visualized some of the outputs of the “switch” vari-
ables for various sentences. The switch is made up of
many features, and it does not necessarily always cor-
respond to human judgment, but by taking the aver-
age, one can get a sense of the flow of information.
In Figure 3, we see a visualization of the switch on a
very simple sentence, and in Figure 4 we see it in ac-
tion over a more complicated sentence. Interestingly,
phrasal structures emerge.

4 Conclusion and Future Work
We have introduced a novel, implicitly defined neural
network architecture based on the GRU and shown that
it outperforms a b-LSTM on an artificial random walk
task and slightly outperforms both the Stanford Parser
and a baseline bidirectional network on the Penn Tree-
bank Part-of-Speech tagging task.

In future work, we intend to consider implicit varia-
tions of other archetectures, such as the LSTM, as well
as additional, more challenging, and/or data-rich appli-
cations.

5 Acknowledgements
This work would not be possible without the support
and funding of the Air Force Research Laboratory. We

Figure 3: Visualization of the switch variable, with
True/Predicted POS tags. Positive values indicate a
right-to-left flow of information, while negative values
indicate left-to-right. Note how ‘Tokyo’ modifies ‘mar-
ket’, and information flows between them.

Figure 4: A more complicated example, more repre-
sentative of the WSJ corpus.

also acknowledge Nick Malyska, Elizabeth Salesky,
and Jonathan Taylor at MIT Lincoln Lab for interest-
ing technical discussions related to this work.

Cleared for Public Release on 29 Jul 2016. Originator
reference number: RH-16-115722. Case Number: 88ABW-
2016-3809.

References
James Bergstra, Frédéric Bastien, Olivier Breuleux,

Pascal Lamblin, Razvan Pascanu, Olivier Delalleau,
Guillaume Desjardins, David Warde-Farley, Ian
Goodfellow, Arnaud Bergeron, et al. 2011. Theano:
Deep learning on gpus with python. In NIPS 2011,
BigLearning Workshop, Granada, Spain.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. Syntax, Semantics and Structure in Statis-
tical Translation page 103.

Richard Durrett. 2010. Probability : theory and exam-
ples. Cambridge University Press, Cambridge New
York.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics.
Association for Computational Linguistics, pages
363–370.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works 18(5):602–610.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8):1735–
1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Dana A Knoll and David E Keyes. 2004. Jacobian-
free newton–krylov methods: a survey of approaches
and applications. Journal of Computational Physics
193(2):357–397.

Christopher D Manning. 2011. Part-of-speech tag-
ging from 97% to 100%: is it time for some lin-
guistics? In International Conference on Intelli-
gent Text Processing and Computational Linguistics.
Springer, pages 171–189.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics 19(2):313–330.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3) 28:1310–1318.

Lawrence R Rabiner. 1989. A tutorial on hidden
markov models and selected applications in speech
recognition. Proceedings of the IEEE 77(2):257–
286.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. Signal Processing,
IEEE Transactions on 45(11):2673–2681.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1. Association for Computational Linguis-
tics, pages 173–180.

Henk A Van der Vorst. 1992. Bi-cgstab: A fast and
smoothly converging variant of bi-cg for the solution
of nonsymmetric linear systems. SIAM Journal on
scientific and Statistical Computing 13(2):631–644.

