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Introduction:

This project serves to address the urgent need for marked improvement in prostate cancer (PCa)
detection and diagnosis via the use of multimodal imaging for (a) biopsy planning and
guidance, (b) PCa grading and staging, (c) active surveillance, and (d) treatment targeting and
monitoring; due to severe limitations with current clinical protocol. For example, in May 2012
the US Preventive Task Force issued a recommendation against PSA based screening for PCa,
concluding that it causes more harm than good. Current prostate biopsy procedures which
primarily use conventional ultrasound (US) only have an estimated sensitivity of approximately
50%, with 90% of US-guided biopsies being negative. Similarly, focal therapy to treat PCa is
gaining interest as a mean of reducing toxic side effects, but it is unlikely to gain favor unless a
reliable mean of imaging and subsequently validating presence and extent of PCa is
forthcoming.

A novel elastography tool, Prostate Mechanical Imaging (PMI) developed by Artann Labs, is
newly FDA approved for PCa screening. Unlike conventional B-mode US, PMI allows for the
measurement of gland volume and mechanical stress patterns on the gland surface through the
rectal wall with pressure sensor arrays. However, PMI lacks the high spatial resolution of
Magnetic Resonance Imaging (MRI). Multi-Parametric MRI1 (T2W, T1W, Diffusion, and DCE)
has recently shown great promise for improving screening and detection of PCa as it provides
significant structural and functional parameters for disease characterization. This project is to
develop novel computerized fusion methods for precise registration of MRI and PMI in order to
enable improved PCa detection in vivo compared to using either PMI or MRI alone. This
research will have an impact on development of reliable and practical clinical means of imaging
PCa for improved (1) biopsy planning and guidance, (2) grading and prognosis formulation, (3)
active surveillance, (4) treatment planning, (5) disease targeting, and (6) treatment monitoring.
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Accomplishments

Summary of Progress to Date:

The project has resulted in 3 peer reviewed abstracts, 1 ongoing journal article, and 1 approved
patent. We are currently on track to complete all the remaining tasks proposed in this project by
the end of the project period. Below, we describe the specific progress performed under each of
the original specific aims and also describe the pending tasks for each specific aim.

Milestone supposed to achieve in the 12" month
- Conference such as SPIE Medical Imaging or International Symposium in Biomedical
Imaging
o Three abstracts were accepted on

1- 24" International Society for Magnetic Resonance Medicine (ISMRM), 7-13
May 2016, Singapore.

2- American Society of Clinical Oncology (ASCO) Annual Meeting, Jum 3-7
2016, Chicago, IL.

3- 102" Scientific Assembly and Annual Meeting of Radiological Society of
North America (RSNA), Nov 27- Dec 3, Chicago, IL.

- Aclinical imaging analysis journal such as Journal of Urology.
o A journal on evaluating the computer extracted radiomics for discriminating the
cancer from benign infection (Specific Aim 2, Task 1,2 and 3) submitted to
Nature Scientific Report
o A journal paper is in preparation on using the statistical shape model for the
prostate segmentation (Specific Aim 1, Task 1)

- Registration techniques to align MRI, PMI, histology.
o An algorithm is developed and presented on 24th International Society for
Magnetic Resonance Medicine (ISMRM), 7-13 May 2016, Singapore.

- Methods to map cancer extent from histology (ground truth) onto radiology/mechanical
imaging data to define signatures on in vivo imaging
o An algorithm is developed and presented on 24th International Society for
Magnetic Resonance Medicine (ISMRM), 7-13 May 2016, Singapore.

- Fusion and integrated visualization of mechanical and multi-parametric imaging data.
o American Society of Clinical Oncology (ASCO) Annual Meeting, Jum 3-7 2016,
Chicago, IL.
o 102nd Scientific Assembly and Annual Meeting of Radiological Society of North
America (RSNA), Nov 27- Dec 3, Chicago, IL.
o An algorithm is developed and presented on 24th International Society for
Magnetic Resonance Medicine (ISMRM), 7-13 May 2016, Singapore.



Research-Specific Major Tast 1: Employing co-registration tools to align MP-MRI, PMI,

ex vivo histologic sections

e Aim 1-Task 1: Pre-processing of MP-MRI and histology, Acquisition of multi-protocol in
vivo MRI prostate data (T2w, DCE, DWI), prostate mechanical imaging data, with corresponding
whole-mount histological (WMH) data from our collaborators.

My co-mentor, Dr. Lee Ponsky, Urologist and Professor at the University Hospital Cleveland
Medical Center (UHCMC), Case Western Reserve University accepted the primary
responsibility to select cases for this project. Besides, Dr. Nicolas Bloch in Boston University
School of Medicine, Boston, Massachusetts helped us by providing MRI and ultrasound of the
prostate images. To develop the co-registration methodology for MRI-PMI fusion, we employed
MRI-TRUS fusion algorithm. Table 1 shows the data we used in MRI-TRUS-WMH fusion.

Table 1: Acquired data for MRI-TRUS-WMH registration

) Transrectal Whole Mount
Modality MRIT1 MRI T2 Ultrasound Histological
Number of Studies 12 15 31 6

The main part of pre-processing of the acquired data was focused on the prostate segmentation in
the transrectal ultrasound. Pl employed the statistical shape model for the prostate segmentation.
A brief description and the results of employed method are as follows. The ongoing paper is
attached in the appendices.

e Using statistical shape model for the prostate segmentation in the transrectal ultrasound

Image

An accurate detection of the prostate volume and boundary is influential on diagnosis, treatment,
and follow up of CaP. Within this framework, prostate segmentation on TRUS imagery is
performed via introduced spatial statistic aware segmentation paradigm. The spatial prior
probability is calculated in the training phase, and is used to estimate the texture feature
parameters corresponding to the prostate and the background. Estimated parameters is employed
to represent an alternative probabilistic presentation of the prostate in TRUS. Results show the
3D prostate capsule is more pronounced in the new representation which ultimately results in
more accurate segmentation. Modified active shape model (ASM) is introduced and applied in
the new 3D TURS representation for prostate segmentation. Figure 1 demonstrates the
framework of the employed method.

Prostate segmentation in TRUS is a challenging task mainly due to the high inherent noise of the
ultrasound images. On the other side, the proficiency of the texture features in the prostate
segmentation is already investigated. We employed the power of the texture features in
presenting the prostate in the ultrasound images and also the spatial statistics information to
introduce an alternative representation. Figure 2 demonstrates the heatmap of the prostate and
the background for Haralick features of the TRUS image, in which the prostate capsule is more
pronounced in compare to the original TRUS image. We named it the TRUS-HeatMap
Representation.
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Figure 1. Schematic of four steps used for generating the foreground and background heat-map
per texture feature.
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Figure 2. The probability heatmap of (a) the foreground probability and (b) the background
probability.

e Method used for PMI images:
Prior to each PMI examination the probe is automatically calibrated by placing it into the
calibrator. After this, a protective disposable sheath is placed over the PMI transrectal probe
including the probe handle. A patient is asked to bend at a 90-degree angle at the hip for the PMI
examination. The calibrated PMI probe covered by the sheath is lubricated and gently inserted
into the anal canal with sensor surface facing downward. The probe is then gently inserted
beyond the anal canal and into rectum until the axial projection of the prostate is visualized on




the computer screen. The prostate scan is performed through a set of multiple manual
compressions. The pressure sensor array, in response to input applied pressure, produces a
pressure response map on a rectal wall covering the prostate, analogous to that sensed by the
physician’s finger palpating the prostate during DRE. The PMI provides 3-D pressure mapping
of the prostate. This 3-D prostate map/image may be visualized and analyzed after the
examination. Figure 3A demonstrates the real time cross-sectional images of the prostate
obtained by PMI, and 3B is an actual prostate image of a patient obtained by PMI.
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Figure 3. (A) Real time cross-sectional images of the prostate of a patient obtained by 5
successive pressings of the probe over the prostate at different location as shown in the picture.
Patent data: PSA - 7.9; DRE - medium size asymmetrical prostate, left sided nodule, firm,
immobile. PMI findings: hard nodule located at the prostate base in the left lobe. (B) An example
of mechanical image of prostate of a patient.

e Aim 1, Task 2: Co-registration of PMI with MP-MRI
Subtask 1: Obtain a segmentation of the prostate on MP-MRI using the methodology Extract a

set of features from the PMI capable of distinguishing between prostate tissue and non-prostate
tissue.

The ROI was segmented in the previous step. A total of 645 2D texture and 24 3D-shape features
were extracted from the segmented area. Texture features were extracted in 2D instead of 3D,
since the available retrospective volumes were all anisotropic. After extracting per voxel based
features within the nodule of interest, five statistics relating to mean, variance, minimum,
maximum and the entropy were calculated. All feature calculations were implemented using
MATLAB® 2014b platform (Mathworks, Natick, MA). The description of the extracted texture
features and shape features can be found in Table 2 and Table 3.



Table 2: Texture features evaluated in this work.

Feature category

Descriptor

Intuitive Description

Haralick features
(Repeated occurrence of grey
level configuration in the
texture represented via the
grey-level co-occurrence
matrix (GLCM), which varies
rapidly with distance in fine
textures and slowly in large
textures)

Inverse Difference
Moment (IDM)

IDM is a reflection of the presence or
absence of uniformity, and hence is a
measure of local regions of homogeneity
High IDM: Higher presence of locally
uniform windows in GLCM
Low IDM: Higher presence of locally
heterogeneous windows in GLCM

Correlation

Quantifies the linear patterns in an image
based on the distance parameter.

Sum Entropy

Measure of GLCM relationship to
distribution of intensity with respect to
entropy. Entropy is the measure of
disorder.

Sum Variance

Measure of GLCM relationship to
distribution of intensity with respect to
variance
High sum variance: greater standard
deviation of sum average
Low sum variance: low standard deviation
of sum average

Laws features

E5, L5, S5,W5,R5
(combination in
both X and Y
directions)

E- Edges
L- Level
S- Spots
W- Wave
R- Ripple

Laplacian pyramids

Multi-resolution filters capture edges at
different levels

Gray level features

The basic, intensity based features
including mean, median, range and
standard deviation.

Gabor Features

Oriented textures via changes in direction
and scale; capture microarchitectures

Gradient Features

Represent the directional change in the
intensity values of pixels in the ROI

Local Binary Pattern

Thresolding the window with the center
pixel value.
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Table 3: Shape features evaluated in this work.

Subtask 2 and 3: Calculate a probabilistic model to estimate the prostate location on PMI and

Features Description
Size Including Width, Height, Depth of bounding box
Area from 2D slices of each nodule
Perimeter from 2D slices of each nodule
Eccentricity foci of the ellipse and to major axis length
Extend ratio of pixels in the region to pixels in the total bounding box
Compactness ratio of the perimeter squared to the product of 4x and arca

Radial distance

distances from center of each slice to contour points

Roughness perimeter of slices divided by convex perimeter
Elongation from major and minor axis

Convexity from convex hull

Equivalent Diameter of circle with same area of slices
Diameter

Sphericity 3D compactness

Apply an elastic registration to maximize the overlap between the MP-MRI segmentation and the

PMI probabilistic model.

Elastic registration methods developed by the mentor of the PI, at Case Western Reserve
University, yield a mapping of prostate cancer extent from ex vivo pathology on to corresponding
MP-MRI, by allowing for recovery of non-linear deformations between the template and target
images. Pl extended our previous approaches by inclusion of additional imaging data to facilitate
the registration: (1) block face photos of the ex vivo pathology, and (2) ex vivo MRI of the

excised RP. The main steps are:

Module 1: Reconstruct the 3D volume of the histopathology specimen, Path3D. This was
involved (a) aligning the WMH slices to the block face section photos using 2D
deformable registration, (2) applying groupwise registration to align block face pictures
to each other; (3) implicitly reconstructing the 3D volume and providing a 3D volume for
the tumor (see Figure 4).
Module 2: 3D histology, Path3D, is aligned to the ex vivo MRI using 3D deformable co-
registration. We then co-registered ex vivo to in vivo MRI using 3D deformable
registration methods, such as finite element modeling (FEM). The transformation was
constrained to physically meaningful deformations. Our approach determined optimal
deformation forces that maximize similarity metrics based on MRI intensities. This will
allow for mapping of CaP annotation from histology on in vivo MRI. Figure 4 shows the
result of registering WMH (IHC and H&E) to in vivo MR via this technique.

11




Module 1: Histology 3D reconstruction Module 2: Histology — MRI fusion

Figure 4: (1) 3D Reconstruction of ex vivo
pathology via alignment with block-face photos;
(2) Mapping CaP extent from pathology onto MRI;
(3) PMI — MRI fusion to map CaP onto PMI.

e Aim 1, Task 3: Evaluating PMI/MP-MRI/Histology registration.

To provide an optimize tool for MRI/PMI/WMH registration, Pl developed MRI/TRUS/WMH
registration algorithm. The method was published and presented in the 24" International Society
for Magnetic Resonance Medicine (ISMRM), 7-13 May 2016, Singapore. The published abstract
and the presented poster is attached in the appendices.

Our study design comprised 12 2D planar images obtained from the MRI and US scans of 3
patients, all of whom had biopsy confirmed prostate cancer and scheduled for a radical
prostatectomy. A 3D B-mode ultrasound scan was performed followed by a 3 Tesla MRI prior to
surgery. Following surgery and histologic sectioning of the gland via a microtome, the H&E
stained whole mount histologic (WMH) sections were digitized via a whole slide scanner and the
regions of cancer annotated by an expert pathologist. Deformable co-registration methods were
used to spatially align the in vivo MRI, TRUS, and ex vivo histology. In particular, we used fully
automatic Multiattribute probabilistic prostate elastic registration (MAPPER) approach to fusion
of ultrasound and MRI. We also manually delineated corresponding landmarks between MRI
and WMH for deformable co-registration of WMH to MRI. A total of 129 image features
including Haralick, Gabor, Law, LBP, Laplacian features were extracted from both the prostate
MRI and TRUS. Each of the computer extracted MRI and ultrasound features were then ranked
via the Fisher criteria to identify the features that best identified the region of cancer. Figure 5
illustrates the MRI-TRUS-WMH registration and mapping of the cancer extent on MRI and
TRUS.

The top 3 features for each modality and corresponding Fisher criteria values are shown in Table
4. The classification is per region of interest (ROI), i.e. the texture features for the cancerous part
of the prostate is compared to the texture features of the noncancerous confounding regions. Top
three texture features, contrast variance, contrast entropy, and contrast inverse moment were
selected by the theoretical linear discriminant analysis (LDA) classifier for MRI and yielded an
area under the receiver operating characteristic curve (AUC) of 0.83, 0.77 and 0.70 for
identifying cancerous ROIs in MRI. By comparison, top three most predictive features identified

12




for TRUS were contrast inverse moment, contrast variance, and contrast entropy. These features
yielded an AUC of 0.75, 0.69, and 0.66, respectively. By combining the top two texture features
on MRI and the most informative texture feature on TRUS, the LDA based predictor yielded an
AUC of 0.88 in predicting presence of prostate cancer. Figure 6 illustrates the scatter plot of the
prostate cancer versus the non-cancer cases in three dimensional most informative texture feature
space.

Figure 5: Registration of MRI, TRUS and WMH: Two 2D planar images of (a),(g) WMH and (b),(h)
corresponding MRI. (c),(i) WMH and MRI checkerboard overlays showing alignment between the two modalities.
(d),(j) MRI with cancer annotation obtained from WMH (green). (e),(k) TRUS with cancer annotation obtained
from WMH (green). (f),(I) Fused MRI-TRUS images shown as checkerboards with cancer annotation obtained from
WMH (green).

13
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Figure 6: Scatter plot of three most discriminative texture features

Table 4: Top 3 features of MRI and TRUS, and their AUC values

Features for MRI Contrast Variance Contrast Contrast.
Entropy Inverse
Moment
AUC 0.83 0.77 0.70
Features for TRUS Contrast. Inverse Moment Contrast Contrast
Variance Entropy
AUC 0.75 0.69 0.66

Training Specific Aims: Training and educational development in prostate cancer
research.

Subtask 1: Mechanical Imaging Training session in Artann Labs (Two weeks in the first year and
two weeks in the second year). The Pl scheduled the first training session for the middle of
December 2016.

Subtask 2: Seminars

- Pl had weekly mentor lab meeting, in the Center for Computational Imaging and
Personalized Diagnostics (CCIPD) at Case Western Reserve University.

- Plis participating weekly Prostate Imaging Reporting and Data System meeting in the
Department of Radiology, Case Medical Center University Hospital with PI’s mentor,
clinical co-mentor and radiology collaborators.

- Plis participating the Biomedical Image Analysis Literary Guild (LG) seminar, Case
Western Reserve University. Hosted by PI’s mentor.

- Plis participating the majority of Imaging Hour meeting, Department of Biomedical
Engineering, Case Western Reserve University.

14



- Plis participating the majority of monthly Cancer Center Seminar Series, Case
Comprehensive Cancer Center.
Subtask 3: Course works

PI studied the course materials of “Cancer Biology, Immunology, and Pathology”, and
“Biostatistics”.

Subtask 4: Attending a scientific meeting in relevant scientific field
- Pl participated and also presented his works on
o American Society of Clinical Oncology (ASCO) Annual Meeting, Jum 3-7 2016,
Chicago, IL.

o 102" Scientific Assembly and Annual Meeting of Radiological Society of North
America (RSNA), Nov 27- Dec 3, Chicago, IL.

15



Impact

A novel elastography tool, Prostate Mechanical Imaging (PMI) developed by Artann Labs, is
newly FDA approved for PCa screening. Unlike conventional B-mode US, PMI allows for the
measurement of gland volume and mechanical stress patterns on the gland surface through the
rectal wall with pressure sensor arrays. However, PMI lacks the high spatial resolution of
Magnetic Resonance Imaging (MRI). Multi-Parametric MRI (T2W, T1W, Diffusion, and DCE)
has recently shown great promise for improving screening and detection of PCa as it provides
significant structural and functional parameters for disease characterization. This project
developed novel computerized fusion methods for precise registration of MRI and PMI in order
to enable improved PCa detection in vivo compared to using either PMI or MRI alone. This
research have an impact on development of reliable and practical clinical means of imaging PCa
for improved (1) biopsy planning and guidance, (2) grading and prognosis formulation, (3) active
surveillance, (4) treatment planning, (5) disease targeting, and (6) treatment monitoring.
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Changes/Problems
Nothing to report
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Products

Accepted and presented abstracts:

Mahdi Orooji, Mehdi Alilou, Rachel Sparks, Mirabela Rusu,B Nicolas Bloch, Ernest
Feleppa, Dean Barratt, Lee Ponsky, Anant Madabhushi, “A Combination of Radiomic
Features from MRI and Ultrasound Appears to better predict presence of prostate cancer:
Validation against whole mount pathology”, 24th International Society for Magnetic
Resonance Medicine (ISMRM), 7-13 May 2016, Singapore.

Orooji, M., Rakshit, S., Beig, N., Velcheti, V., Madabhushi, A., "Computerized textural
analysis of lung CT enables quantification of tumor infiltrating lymphocytes in NSCLC",
American Society for Clinical Oncology (ASCO) Annual Meeting, Chicago, IL, 2016

Rakshit, S., Orooji, M., Beig, N., Velcheti, V., Madabhushi, A., “Use of radiomic
features on baseline CT scan to predict clinical benefit for pemetrexed based

chemotherapy in metastatic lung adenocarcinoma”, American Society for Clinical
Oncology (ASCO) Annual Meeting, Chicago, IL, 2016

Mahdi Orooji, Mehdi Alilou, Niha Beig, Sagar Rakshit, Prabhakar Rajiah, Michael Yang,
Frank Jacono, Robert Gilkeson, Philip Linden, Vamsidhar Velcheti, Anant Madabhushi,
“A combination of shape and texture features enables discrimination of benign fungal
infection from non-small cell lung adenocarcinoma on chest CT”, 102nd Scientific
Assembly and Annual Meeting of Radiological Society of North America (RSNA), Nov
27- Dec 3, Chicago, IL.

Ongoing Journal Article:

Mahdi Orooji, Mehdi Alilou, Lee Ponsky, Anant Madabhushi, “Spatial Statistic Aware
Segmentation Paradigm: Application on the Prostate Segmentation in the Transrectal
Ultrasound Images”, is going to submit to IEEE Transaction on Medical Imaging.

US Patent

Madabhushi, Anant (Shaker Heights, OH, US), Rusu, Mirabela (Cleveland, OH, US),
Orooji, Mahdi (Cleveland, OH, US), Alilou, Mehdi (Cleveland, OH, US), “Textural
Analysis of Lung Nodules”, United States Patent Application 20160155225.
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Participants & Other Collaborating Organizations.

e What individuals have worked on the project?
PIl: Mahdi Orooji, PhD: No change
Mentor: Anant Madabhushi, PhD: No change
Co-mentor: Lee Ponsky, MD: No change
Collaborator: Pingfu Fu, PhD: No change
Collaborator: Vikas Gulani, MD: No change
Collaborator: Raj Paspulati, MD: No Change
Collaborator: Armen Sarvazian, PhD: No change
Collaborator: Gregory MacLennan, MD: No change

e Has there been a change in the active other support of the PD/PI(s) or senior/key
personnel since the last reporting period?
Nothing to Report

e \What other organizations were involved as partners?
Nothing to Report
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Special Reporting Requirements
Nothing to report
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Appendices

Part 1: Accepted Papers

Abstract #171681

Computerized textural analysis of lung CT to enable quantification of tumor
infiltrating lymphocytes in NSCLC.

Mahdi Orooji, Sagar Rakshit, Niha Beig, Anant Madabhushi, Vamsidhar Velcheti;
Biomedical Engineering, Case Western Reserve University, Cleveland, OH; Cleveland
Clinic Foundation, Cleveland, OH; Case Western Reserve University, Cleveland, OH;
Cleveland Clinic, Cleveland, OH

Abstract Text:

Background: Tumor infiltrating lymphocytes (TILsS) are a part of the dynamic immune
microenvironment. Clinical trials with immune checkpoint inhibitors report significant
increase in TILs in responders in follow up tumor biopsies. Monitoring TILs on treatment
using radiomic features extracted from routine follow up computed tomographic (CT)
images can be a non-invasive surrogate to biopsy to detect early response. We
conducted a proof of concept study to find out if radiomic features extracted from CT
images can identify patients with high and low TILs in non-small cell lung cancer
(NSCLC).

Methods: A cohort of 50 consecutive patients who underwent lobectomy for early stage
NSCLC were identified and TIL were characterized using routine hematoxylin and eosin
(H&ESs) slides. TILs were quantified on a previously reported scale of 0 to 3 based on
intensity of TIL. Of the 50 cases 17 outliers who had high TILs (3+) or low TILs (0) were
identified. The study team was provided with CT images from 4 patients with ‘0’ TILs, 8
tumors with ‘3+’ TILs and 5 tumors were blinded. Corresponding pre-surgical CT scans
were annotated on slicer-3D software. A total of 669 radiomic (textural and shape)
features of the lung nodule were investigated. These features were evaluated and
ranked in their ability to discriminate TIL extent using a linear discriminant classifier,
both in terms of univariate and multivariate analysis.

Results: Sphericity, a shape based feature was the most discriminating
feature. Standard deviation and Laws were ranked as the most promising texture based
features. Of the 5 blinded tumors, 4 were classified correctly leaving only one
misclassified case.

Conclusions: Computerized textural analysis using shape and texture features
extracted from the lung nodule on CT images could be used to identify tumors with high
TILs. Further validation of these findings in larger independent cohorts is required.
These novel imaging based biomarkers could be a useful diagnostic tool for predicting
response and monitoring patients on immunotherapy.
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Abstract #171139

Evaluation of radiomic features on baseline CT scan to predict clinical benefit for
pemetrexed based chemotherapy in metastatic lung adenocarcinoma.

Sagar Rakshit, Mahdi Orooji, Niha Beig, Mehdi Alilou, Nathan A. Pennell, James
Stevenson, Marc A. Shapiro, Anant Madabhushi, Vamsidhar Velcheti; Cleveland Clinic
Foundation, Cleveland, OH; Biomedical Engineering, Case Western Reserve University,
Cleveland, OH; Cleveland Clinic, Cleveland, OH; Case Western Reserve University,
Cleveland, OH

Abstract Text:

Background: Many patients receiving standard of care pemetrexed based platinum
doublet followed by maintenance pemetrexed for lung adenocarcinoma do not receive
clinical benefit. Currently there are no clinically validated biomarkers to identify patients
who benefit from these treatments. We conducted a retrospective proof-of concept
study to identify predictive computer extracted image features from pre-treatment
computed tomographic (CT) scans.

Methods: Pre-chemotherapy CT scans were obtained for 105 lung adenocarcinoma
patients treated with pemetrexed based chemotherapy at the Cleveland Clinic from
2004-2010. Clinical benefit was defined as patients with an objective response or more
than 12 cycles of pemetrexed therapy. We identified and annotated CT images in 2
groups- 46 with clinical benefit and 59 without clinical benefit. After adjusting for image
quality and CT filters, 32 and 33 patients remained for final analysis in the 2 groups
respectively. A total of 1108 radiomic features including both textural and shape
features of the lung nodule as well as the peritumoral region were investigated. The
features were evaluated and ranked in their ability to discriminate between the 2 groups
in conjunction with a linear discriminant classifier, both in terms of univariate and
multivariate analysis.

Results: Two of the top 3 ranked features were from within the nodule and the third
was from within the peritumoral area. Mean of Sum Average, a co-occurrence based
texture measure within the nodule was the most discriminating feature. Combination of
features within and around the nodule yielded even higher AUC values (See Table for
combination of best features).

Conclusions: Texture and shape features extracted from within and around the lung
nodule on CT images could identify patients who could potentially benefit from
pemetrexed based chemotherapy. Further validation in a larger retrospective, multi-
institutional cohort is needed.

Feature Vector Area Under ROC Curve + Standard Deviation
Mean of Intratumoral Sum Average(1) 69.5% + 3.0%
1+Minimum of Intratumoral Law L5XE5(2) 75.2% + 3.2%
1+2+Mean of Peritumoral Law S5xW5(3) 77.6% + 1.9%
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Synopsis:

To evaluate whether the combination of computer extracted or radiomic image
parameters from two complementary modalities, MRI-Transrectal Ultrasound (TRUS)
can enable better prediction of presence of prostate cancer compared to either modality
individually. In order to evaluate the ability of the radiomic features from MRI and
ultrasound and the combination of MRI and ultrasound radiomic features in predicting
the presence of prostate cancer we considered 3 patients who underwent MRI,
transrectal ultrasound prior to radical prostatectomy. Deformable co-registration
methods were used for spatially aligning the pre-operative in vivo MRI and ultrasound
with the ex vivo whole mount radical prostatectomy specimens to establish the “ground
truth” for cancer extent on the imaging. A combination of texture features from US and
MRI yielded the best separability between cancer and non-cancer regions with an Area

under the operating characteristic curve of 0.88.

PURPOSE:
Recently there has been a great deal of interest in developing computer aided diagnosis

systems for identifying prostate cancer presence in vivo on MRI and ultrasound
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separately’3, no work we are aware of has attempted to address the issue of fusing
computer derived features from MRI and ultrasound to create the best possible
predictor of cancer in vivo. In this work we attempt a systematic and quantitative
evaluation of the discriminability of computer extracted MRI and ultrasound features in

terms of cancer detection in patients undergoing radical prostatectomy.

METHODS:

Our study design comprised 12 2D planar images obtained from the MRI and US scans
of 3 patients, all of whom had biopsy confirmed prostate cancer and scheduled for a
radical prostatectomy. A 3D B-mode ultrasound scan was performed followed by a 3
Tesla MRI prior to surgery. Following surgery and histologic sectioning of the gland via
a microtome, the H&E stained whole mount histologic (WMH) sections were digitized
via a whole slide scanner and the regions of cancer annotated by an expert pathologist.
Deformable co-registration methods were used to spatially align the in vivo MRI, TRUS,
and ex vivo histology. In particular, we used fully automatic Multiattribute probabilistic
prostate elastic registration (MAPPER) approach to fusion of ultrasound and MRI4. We
also manually delineated corresponding landmarks between MRI and WMH for
deformable co-registration of WMH to MRI. A total of 129 computer extracted image
features including Haralick, Gabor, Law, LBP, Laplacian features were extracted from
both the prostate MRI and TRUS. Each of the computer extracted MRI and ultrasound
features were then ranked via the Fisher criteria to identify the features that best
identified the region of cancer. Figure 1 illustrates the MRI-TRUS-WMH registration and
mapping of the cancer extent on MRI and TRUS.

RESULTS AND DISCUSSION

The top 3 features for each modality and corresponding Fisher criteria values are shown
in Table.1. The classification is per region of interest (ROI), i.e. the texture features for
the cancerous part of the prostate is compared to the texture features of the
noncancerous confounding regions. Top three texture features, contrast variance,
contrast entropy, and contrast inverse moment were selected by the theoretical linear
discriminant analysis (LDA) classifier for MRI and vyielded an area

under the receiver operating characteristic curve (AUC)of0.83, 0.77 and 0.70
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for identifying cancerous ROIs in MRI. By comparison, top three most predictive
features identified for TRUS were contrast inverse moment, contrast variance, and
contrast entropy. These features yielded an AUC of 0.75, 0.69, and 0.66, respectively.
By combining the top two texture features on MRI and the most informative texture
feature on TRUS, the LDA based predictor yielded an AUC of 0.88 in predicting
presence of prostate cancer. Figure 2 illustrates the scatter plot of the prostate cancer
versus the non-cancer cases in three dimensional most informative texture feature

space.

CONCLUSION:

We presented a framework to rank the performance of computer extracted MRI and
ultrasound features in terms of their ability to identify prostate cancer. Our results in a
small cohort suggests that we may be able to combine the MRI and ultrasound radiomic
features to create a better classifier for prostate cancer detection compared to MRI or

ultrasound alone.
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Medical Physics, 42, 1153-1163 (2015),
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Figure 1: Registration of MRI, TRUS and WMH: Two 2D planar images of (a),(g) WMH and (b),(h)
corresponding MRI. (c),(i) WMH and MRI checkerboard overlays showing alignment between the two
modalities. (d),(j) MRI with cancer annotation obtained from WMH (green). (e),(k) TRUS with cancer
annotation obtained from WMH (green). (f),() Fused MRI-TRUS images shown as checkerboards with
cancer annotation obtained from WMH (green).
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Figure 2: Scatter plot of three most discriminative texture features

Table 1: Top 3 features of MRI and TRUS, and their AUC values

Entropy Inverse Moment
AUC 0.83 0.77 0.70
Features for TRUS Contrast. Inverse Moment Contrast Contrast
Variance Entropy
AUC 0.75 0.69 0.66
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Spatial Statistic Aware Segmentation Paradigm:
Application on the Prostate Segmentation in the
Transrectal Ultrasound Images
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Abstract—Prostate needle biopsy guided by transrectal ultra-
sound (TRUS) is the current gold standard for prostate cancer
(CaP) detection. An accurate detection of the prostate volume
and boundary is influential on diagnesis, treatment, and follow
up of CaP. Within this framework, prostate segmentation on
TRUS imagery is performed via introduced spatial statistic
aware segmentation paradigm. The spatial prior probability is
calculated in the training phase, and is used to estimate the
texture feature parameters corresponding to the prostate and
the background. Estimated parameters is employed to represent
an alternative probabilistic presentation of the prostate in TRUS.
Results show the 3D prostate capsule is more pronounced in the
new representation which ultimately results in more accurate
segmentation. Modified active shape model (ASM) is introduced
and applied in the new 3D TURS representation for prostate
segmentation.

Index Terms—Prostate Segmentation, Texture Feature
Heatmap, Parameter Estimation, Expectation-Maximization,
Maximum Likelihood Estimation, Active Shape Model

I. INTRODUCTION

Prostate cancer (CaP) is the second-leading cause of cancer
deaths in men and leading cause of cancer deaths men over
age 50 in the United States. It is estimated 450,000 new CaP
case swill be detected by 2015. Predictions also suggest one
fourth of new CaP cases will be in men less than 65 years
of age which emphasizes the necessity of early detection and
localization of CaP. Prostate needle biopsy guided by transrec-
tal ultrasound (TRUS) is the gold standard for CaP diagnosis.
Determining the prostate volume and identifying the prostate
capsule plays a crucial role in needle targeting. Due to the
importance in delineating the prostate on TRUS, semi and fully
automated prostate segmentation methods for TRUS imagery
have been developed. Despite recent advances in transducer
design, resulting in improved spatial and temporal resolution,
TRUS image segmentation is still heavily influenced by the
quality of data [1], [2]. Additionally, TRUS segmentation is
vulnerable to variety of artifacts, such as, different levels
of signal attenuation, shadowing artifacts, and speckle. Low
contrast between areas of interest is another difficult problem
in prostate segmentation on TRUS.

Previous prostate segmentation algorithms for TRUS im-
age have focused on incorporating prior knowledge such as
prostate shape [3] or prior spatial probability [4]. Recently, 2D
or 3D boundary extraction methods have been developed based

on probabilistic data association filters [2]. However, these
approaches assume prior information for the prostate shape
(such as concavity) and/or need manually placed initial seed
locations inside the prostate [5]. Recently, active contour-based
approaches have been used for prostate segmentation. These
methods assumed prior spatial properties [6], or needs some
initial points on [7] or near [8] the prostate boundary. These
methods have also been employed to fuse multi-modal images
of the prostate [9]. Our method is a fully automated semi-
supervised segmentation algorithm that uses only the spatial
prior probability for parameter estimation. Feature parameter
estimation considers all voxels in an image; however, segmen-
tation is performed on each voxel independently. Considering
joint probability of extracted features and other criteria such
as restricted maximum distance of voxels in the segments or
morphology of the segments [10], the presented method can
be generalized to exploit prior particular available knowledge.

In this work, we formulize a spatial statistic aware seg-
mentation paradigm, and applied it for 3D segmentation of
the prostate in the TRUS. Using introduced paradigm, a
distribution parameters of 129 texture features in TRUS is
estimated and the prostate/background probability heatmap
is generated via using estimated distribution. A more infor-
mative alternative representation of the prostate in TRUS is
introduced, and modified active shape model is applied on
it for automatic annotation of the prostate boarder. The rest
of the article is organized as follows. After the introduction
in the first section, to increase the readability, in the second
section the assumptions are described, the parameters are
defined, and the problem of matter is formulized. The spatially
aware distribution parameter estimation is elevated in the
third section. Estimated distribution is employed in the forth
section to introduce a new TRUS HeatMap Representation
(THR). In section five, a modified adaptive active shape model
is introduced and applied on THR. The performnce of the
method is evaluated in section six and the paper is concluded
in section seven.

II. ASSUMPTIONS AND PROBLEM FORMULATION

As a problem statement, the goal is to segment the prostate
in a TRUS image slide denoted by 7. Note that, I is a
2D axial section of a 3D prostate gland. The 3D capsule
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would be reconstructed by stacking the estimated prostate
capsule. To increase the readability of the manuscript, we
summarize the notation we used in the following. Here and
subsequently, @, Ay x, Af, and |A| imply a is a vector,
A is a matrix with Y rows and X columns, a transpose of
matrix A, and determinant of matrix A, respectively. Suppose
N denotes the total number of voxels of /. By extracting L
features from the original intensity image, we can reconstruct
an observation matrix, Dy = [d1,da,- -+ ,dy]" where the
vector d, = {d1,dpo, "+ dnp} for n € {1,2,--- N}
is a feature vector corresponding to each voxel of . To
keep the generality of approach, I is desired to be seg-
mented into K distinct sets of voxels, S;,---,Sk such
that the union of all segments cover the entire image, i.e.,

U,\ 1Sk = I and ﬂk .Sk = 0. The set of parameters
of each segment that needs to be estimated is denoted by
© = {M,A} in which Mgy, = [, fia, - ,jir]T, for
A = {1, k2 s ke, L} is the mean of the kth segment.
A =35 E2LxL -, Yk7 ;] is the set of covariance
matrices of each segments where %% = [047 ;]. Table II lists
the notations used throughout this paper.

A. Spatial Prior Probability

Enxk = (&), referred to as the Spatial Prior Probability,
is the likelihood of the nth voxel belonging to kth segment,
just based on its spatial information relative to the center of the
ultrasound probe in an axial TRUS image. So, Zk 1&nk =1,
for any given n. = is calculated from a set of J training studies,
where for each study the prostate has been segmented by an
expert. The origin for each study is set as the center of the
TRUS probe, so that the location of voxels have a consistent
position relative to the TRUS probe across all studies. g9 =i
for voxel n of jth training image belonging to class & where
k = 1 represent prostate and & = 0 represent background.
So, each element of the spatial prior probability matrix is
calculated by averaging over all training images as:

Z g (1)

Hence &, ; is the frequency of the nth voxel being located in
the prostate across .J training images.

The prostate is divided into three regions, the apex, the
midgland and the base such that they have equal length in
the sagittal axis. Two disjoint spatial prior probability was
calculated corresponding to the region of interest, one for
midgland and another one for the union of the apex and the
base.

fn.k =

B. Feature Set Probability

Py(d,;©) is the probability distribution function (PDF) of
a set of features associated with voxel n, given the parameters
(which are unknown). Without loss of generality, we assume
Py(d,: ©) is modeled as a multivariate Gaussian distribution
[4]. Note that even the intensity of the ultrasound image
is Rayleigh distributed [11], [12]; however, considering the
central limit theorem under weak dependence condition, the

Gaussian distribution of the extracted texture features is a valid
assumption [13].

Matrix of Segments: To make the feature set parameters
estimation problem tractable, we define an auxiliary (latent)
variable Zy x x = [2.x], @ Matrix of Segments, such that any
arbitrary nth row of Z has only one element of 1 at kth column
which implies nth voxel of I belongs to Sy, and the rest of
the elements of the nth row are zero.

Parameter estimation is the solution of the following max-
imum likelihood equation:

6 = argmax P(D|©,E)
3
- argénax;log (P(D|Z.(—),:.)P(Z|(—),:)). (2

The conditional distribution of the observation matrix given ©
and Z is given by:
1\7

I P(dn1z.8) = ®)

n=1

I [ sy o (1~ ' 5 w))]w

n=1k=1

P(D|Z,0,5) =

The matrix of segments is independent of the distribution
parameters and its probability value is a function of spatial
prior probability matrix as follows:

N

K
[TII s @

n=1 k=1

P(Z|8,E) = P(Z|5) =
One should note that for other feature distributions rather than
Gaussian (such as the distribution of the intensity in TRUS
images which is Rayleigh distribution [11], [12]), (3) needs to
be substituted by a proper corresponding distribution function.

ITI. SPATIAL AWARE DISTRIBUTION PARAMETER
ESTIMATION

It is assumed that the TRUS image is consist of two
segments, the prostate and the background. Constrained to the
calculated prior spatial probability in (1), we employed an
iterative expectation-maximization algorithm to estimate the
parameters associated with the prostate and the background
in the TRUS for each individual texture feature. In the other
words, for a given observation matrix 1), we estimate the ma-
trix of parameters, {M, A?}. Using the estimated parameters,
we introduced a new representation of the TRUS in section
Iv.

It is guaranteed that the expectation-maximization algorithm
converges to the local maximum likelihood, however, the
convergence of it to the global maximum and the legitimacy
of the results is very reliant on the initialization [14].

To improve the parameter estimation, we introduced param-
eter estimation method, namely Decoupled Maximum Like-
lihood (DML), that employed the spatial prior probability
for a sub-optimum maximum likelihood estimation. The sub-
optimum estimated parameters are used an initial estimation
of the parameters in the expectation-maximization algorithm.
Our assessments shows the introduced method converges to
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TABLE 1
DESCRIPTION OF NOTATION USED THROUGHOUT THIS PAPER.

Notation Description Notation Description
I TRUS image scene. O = {M,A} Set of actual parameters.
N Total number of pixels. O = {M,A} Set of estimated parameters.
L Total number of extracted features. A = [pralixL Vector of actual means of kth segment.
K Assumed number of segments. ik = [fralixr Vector of estimated means of kth segment.
DnxL Matrix of observations. Zf = [agi_i]LxL Set of actual covariance matrix of kth segment.
dn Features vector of nth voxel. 32 = [&,fi.j JLxr | Set of estimated covariance matrix of kth seg-
ment..
= = [€n.k]Nx Kk | Spatial prior probability matrix. 17(0) Fisher Information of parameter 6.

the global maximum with less number of the iterations and
does not trap on the local maximum.

A. Decoupled Maximum Likelihood (DML) Approach for Ini-
tial Estimation of the Parameters

By substituting corresponding values from (3) and (4) into
(2), one can note that the maximum likelihood problem does
not have an analytical closed form solution. When the analyt-
ical solution does not exist, generalized maximum likelihood
ratio test (GLRT) is proposed [15]. GLRT is not an optimum
solution, because instead of maximizing the likelihood ratio,
independently treats the nominator and the denominators of
the likelihood ratio and maximize them separately [16]. So, it
results in the sub-optimum answer. Using GLRT algorithm, we
introduced the decoupled maximum likelihood to estimate the
parameters of the nominator (corresponding to the prostate)
and the denominator (corresponding to the background) sepa-
rately. The algorithm is as follows.

The parameters of kth segment is denoted by 6, = {si, ©7}
for k = 1 and 2 corre§g)onding to the background and
the prostate, respectively. 6, ML) are estimated parameters of
kth segment obtained by and decoupled maximum likelihood
approach. So,

éfPML) =argmax P(D|0;,Z), for 1<k< K (5)
O
From (5), it is implied that the parameter estimation problem

for each segment is decoupled to become tractable. To solve
(5) we have,

P(D|by.,5)

i

n=1

(6)
lm exp ((Jn —~ Bt (ds - ’_‘k))r”

After some manipulation one can show that the solution of
DML parameter estimation from (6) is given by:

19) _ R N i
e Zn:l £n.k
N 7 ES
3 n,k Lm_ ~2
i2P(D|0;€,E) =0 E% — Zn:] 5NA (( ,ka)
azk §:n=1§nk
®)

The estimated mean and variance from (7) and (8) are
employed as an initial mean and variance in the next step.

33

B. Parameters Estimation Per Individual Texture Feature

The solution of the Maximum Likelihood (ML) Ratio Test
for each texture feature is the optimum unsupervised parameter
estimation approach [15], [17]. However, ML is too compli-
cated to be derived analytically. Hence, we employ an iterative
algorithm, inspired by the Expectation-Maximization (EM)
mixture model parameter estimation approach, to estimate
values of ©. EM is a powerful iterative algorithm to estimate
the parameters of the mixture models when the associated log-
likelihood maximization problem is too complicated to solve
analytically. Using the same approach, we modified the two

steps of Expectation and Maximization as follows:
Expectation Step:: Current and revised estimation of © are

denoted by ©°P and ©NEW respectively. The conditional ex-

pectation of log P(D, Z|©) given D and the current estimation

of © is given by,
Q(;0%P) = Ez [log P(D, Z|0)]

N K
= Z ZEZ [zn.k

n=1k=1

©)

D, @ow] %

L = =
(Iogg,,‘k = log 27 — log |X| + (d,, — ﬁk)72;2(dn = ﬁk))

where E.[.|z] is the conditional expectation given x, respect
to z. After some manipulation one can show that:

Yok = Ez [z,,_k ‘ D. @OLD] un
EnpP ((In g,l.k’(_)OLD)

i BanP (ri,, zn.k‘(—)OLD)

Maximization Step:: It has been shown in [18] that the log-
likelihood function is the monotone increasing function of the
number of EM iteration steps. So, regardless of the initial value
of ©, EM converges. ONEW | the new values of parameters, are
the solution of:

ONEW _ arg max Q ((—), (-)OLD)
S

(11)

By calculating the partial derivative of (9) and (10) respect to
i and Y, one can show that



N
Y =1 Ynkdn,t

feg = N 3 (12)
Zn:l Tn,k
~2 ZN—l In k(dn 1 — Mk l)2
62, = L= Tkl — i, (13)
Zn:l In,k

IV. TRSU HEATMAP REPRESENTATION (THR)

Prostate segmentation in TRUS is a challenging task mainly
due to the high inherent noise of the ultrasound images [19].
On the other side, the proficiency of the texture features in
the prostate segmentation is already investigated [20]. We
employed the power of the texture features in presenting
the prostate in the ultrasound images and also the spatial
statistics information to introduce an alternative representation
of the TRUS image, in which the prostate capsule is more
pronounced in compare to the original TRUS image. We
named it the TRUS-HeatMap Representation (THR) .

To generate the THM representation, we need to generate
the heatmap probability of the foreground and the background
per feature. To do so, the first step is calculating the spatial
prior probability by substituting the prostate capsule annota-
tions in (1). Because the size of the prostate capsule in the
apex and the base are close and it is relatively smaller than
the size of the prostate in the midgland [21], so, we generated
two disjoint spatial prior probability model for two sets of the
apex/based and midgland.

In the second step texture features were extracted for a given
TRUS image. In this articled we employed total of 129 texture
features which described in Table II. Considering the spatial
prior probability, in the third step we employed the Spatiall
Aware Distribution Parameter Estimation Method introduced
in section III to answer which segments in conjunction with
which set of parameters are going to maximize the likelihood
of observed extracted texture features of a TRUS image. To
improve the proficiency of EM-based parameter estimation
method, as it was described in the subsection III-A, we
included the Decoupled Maximum Likelihood approach for
initial estimation of the parameters in the third step.

And finally in the fourth step, the estimated distribution pa-
rameters corresponding to the foreground and the background
for each feature is used to generate the foreground and the
background probability heatmap. Figure 1 demonstrates the
heatmap generation schematic for a texture feature. Figure 2
demonstrates the heatmap of the prostate and the background
for Haralick features [22].

A. Adaptive Combination of the Texture Feature's Heatmaps
to Generate THR

After calculating the probability heatmap of the foreground
and the background for each feature, we need to find which
feature in the foreground and which feature in the background
has the highest capability of the prostate segmentation. To
do so, we need to define a proficiency metric for foreground
heatmaps and the background heatmaps.

é ZVn Z"»prr(d")

®pr (14)
Z‘v’n %n,1
“n, L= fP" dn
Qka 'y ZVn 0( f ( )) (15)
ZVH #n,0

By combining the estimated probability of the prostate and
the estimated probability of the background, we generated
the prostate probability heat-map. Defined proficiency metric
is employed to find the most proficient texture features for
discriminating the prostate from the background. So, we added
the proficiency weighted heatmaps to obtain the final prostate
heatmap. Finally, AAM is applied on the prostate probability
heatmap from the previous step for prostate segmentation in
TRUS. Figure 3 demonstrates the prostate heatmap.

B. Calculating the Heat-map

Estimated features parameters, O, induce maximum likeli-
hood image segmentation regardless of the parameter estima-
tion approach (DML or ML). The prostate heat-map is defined
as the conditional probability (given estimated parameters) that
a voxel n belongs to the prostate which would be:

P(2zn,1 =1/6) (16)
1

g5 (6P (@l i, 52) + 600 (1= P (@] o, 57)) |

where P is a normalization factor to guarantee that the heat-
map values are in the range of 0 to 1.

V. ADAPTIVE ACTIVE SHAPE MODEL ON TRUS
HEATMAP

VI. EXPERIMENTAL RESULTS
A. Dataset

The presented EM-based segmentation method was applied
on 3D Transrectal Ultrasound (TRUS) images for six patients.
TRUS images was acquired using a bi-planer side-firing tran-
srectal probe. A prostate boundary on TRUS was manually
delineated by an expert radiologist. To correct for the possible
TRUS attenuation artifacts (due to the fact that pixels closer
to the probe appear brighter), we employed the method in [4].
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TABLE 11

DESCRIPTION OF THE TEXTURE FEATURES USED FOR PROSTATE SEGMENTATION IN TRUS.

Feature category

Descriptor

Intuitive Description

Haralick features
(Repeated occurrence of
grey level configuration
in the texture represented
via the grey-level co-
occurrence matrix
(GLCM), which varies
rapidly with distance in
fine textures and slowly
in large textures)

Inverse Difference
Moment (IDM)

Correlation

IDM is a reflection of the presence or absence of uniformity, and hence is a
measure of local regions of homogeneity
High IDM: Higher presence of locally uniform windows in GLCM
Low IDM: Higher presence of locally heterogeneous windows in GLCM

Quantifies the linear patterns in an image based on the distance parameter.

Sum Entropy

Measure of GLCM relationship to distribution of intensity with respect to entropy.
Entropy is the measure of disorder.

Sum Variance

Measure of GLCM relationship to distribution of intensity with respect to variance
High sum variance: greater standard deviation of sum average
Low sum variance: low standard deviation of sum average

Laws features
Laplacian pyramids

ES5, LS, S5

Combining E- Edges, L- Level and S- Spots in both X any Y directions
Multi-resolution filters capture edges at different levels

Gray level features

The basic, intensity based features including mean, median, range and standard
deviation.

Gabor Features
Gradient Features
Local Binary Pattern

~ Oriented textures via changes in direction and scale; capture microarchitectures

Represent the directional change in the intensity values of pixels in the ROI
Thresolding the window with the center pixel value.

Test Image

Training Annotations
Spatial
Prior
Probability
Estimator
-------
[ Step-2 [""Texture Feature
; ' Generate
foreground
DML and
> (initial SpAEM L background
estimation) HeatMap
per Feature

Fig. 1. Schematic of four steps used for generating the foreground and background heat-map per texture feature.
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(57) ABSTRACT

Methods, apparatus, and other embodiments associated with
classifying a region of tissue using textural analysis are
described. One example apparatus includes an image acqui-
sition logic that acquires an image of a region of tissue dem-
onstrating GGO nodule pathology. a delineation logic that
distinguishes GGO nodule tissue within the image from the
background of the image, a texture logic that extracts a set of
texture features from the image, a phenotype signature logic
that computes a phenotypic signature from the image, a shape
logic that extracts a set of shape features from the image, and
a classification logic that classifies the GGO nodule tissue
based, at least in part, on the set of texture features, the
phenotypic signature, or the set of shape features. A prognosis
fora patient may be provided based on the classification of the
image.
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TEXTURAL ANALYSIS OF LUNG NODULES

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application 62/085.616 filed Nov. 30, 2014.

BACKGROUND

[0002] Variations of lung nodule invasiveness and mor-
phology relate to prognosis and patient outcomes. One
approach for diagnosing cancer is histopathological exami-
nation of biopsy tissue. The examination may produce a diag-
nostic profile based on attributes including cell morphology,
cytoplasmic changes, cell density, and cell distribution.
Visual characterization of tumor morphology is, however,
time consuming and expensive. Visual characterization is
also subjective and thus suffers from inter-rater and intra-rater
variability. Conventional visual characterization of lung nod-
ule morphology by a human pathologist may therefore be less
than optimal in clinical situations where timely and accurate
classification can affect patient outcomes.

[0003] Computerized tomography (CT) is used to image
nodules in lungs. Chest CT imagery may be used to detect and
diagnose non-small cell lung cancer. However, conventional
approaches have been challenged when defining radiographic
characteristics that reliably describe the degree of invasion of
early non-small cell lung cancers with ground glass opacity
(GGO). For example, conventional CT imagery based
approaches may find it difficult, if even possible at all, to
reliably discriminate nodules caused by benign fungal infec-
tions from non-small cell lung cancer nodules.

[0004] The degree of invasion of a lung nodule is correlated
with prognosis. For example, patients suffering from mini-
mally invasive nodules may have higher disease free survival
rate at five years compared to patients with nodules demon-
strating frank invasion. Since radiologists may be challenged
to reliably distinguish the level of invasiveness of lung nod-
ules in situ using conventional CT approaches in clinically
optimal or relevant time frames, invasive procedures that may
be performed that ultimately result in a negative diagnosis.
These invasive procedures take time, cost money, and put a
patient at additional risk.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The accompanying drawings, which are incorpo-
rated in and constitute a part of the specification, illustrate
various example apparatus, methods, and other example
embodiments of various aspects of the invention. It will be
appreciated that the illustrated element boundaries (e.g.,
boxes, groups of boxes, or other shapes) in the figures repre-
sent one example of the boundaries. One of ordinary skill in
the art will appreciate that in some examples one element may
be designed as multiple elements or that multiple elements
may be designed as one element. In some examples, an ele-
ment shown as an internal component of another element may
be implemented as an external component and vice versa.
Furthermore, elements may not be drawn to scale.

[0006] FIG. 1 illustrates an example method of character-
izing a GGO nodule in a region of lung tissue.
[0007] FIG. 2 illustrates an example method of character-
izing a GGO nodule in a region of lung tissue.
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[0008] FIG. 3 illustrates an example method of distinguish-
ing invasive tumors from non-invasive tumors in chest CT
images.

[0009] FIG. 4 illustrates an example apparatus that classi-
fies a region of tissue in an image.

[0010] FIG. 5 illustrates an example computer in which
example methods and apparatus described herein operate.
[0011] FIG. 6 illustrates textural features of a C'T image of
a granuloma and a carcinoma.

[0012] FIG. 7 is a boxplot of CT intensities of a CT image
of a minimally invasive GGO nodule and a frank invasive
GGO nodule.

[0013] FIG. 8 is a boxplot of CT contrast variance of a CT
image of minimally invasive GGO nodule and frank invasive
GGO nodule.

DETAILED DESCRIPTION

[0014] Variations in tumor invasiveness and morphology
may be related to patient prognosis and outcome. In particu-
lar, a GGO nodule’s level of invasion is strongly correlated to
patient prognosis. Conventional methods of diagnosing can-
cer include visual histopathological examination of a biopsy
to create a diagnostic profile based on variations in tumor
morphology. However, invasive biopsy may not always be a
convenient or appropriate method for assessing GGO nod-
ules. Invasive biopsies cost money, take time, and put a patient
at additional risk. A non-invasive approach that provided
improved accuracy compared to conventional CT based
approaches would reduce the number of unnecessary inter-
ventions, reduce the dependency on repetitive or higher reso-
lution CT exams, offer a non-invasive means of assessing
response to targeted therapies, and improve patient outcomes.
Thus, a timely, non-invasive procedure that results in more
accurate discrimination between minimally invasive and
frank invasive nodules would offer reduced risk to patients
while providing economic benefits to the health care system.
[0015] CT imagery is conventionally used to differentiate
malignant GGO nodules from other, non-cancerous GGO
nodules. Conventional methods of visually assessing GGO
nodule invasiveness based on CT imagery are subjective and
yield intra and inter-reviewer variability. In one example, of a
group of baseline CT chest scans, 51% were found positive
for lung nodules. However, only 12% of those lung nodules
were found to be malignant. The remainder were determined
to be granulomas due to a prior histoplasmosis infection.
Conventional CT approaches may focus exclusively on detec-
tion of lung nodules, or exclusively on diagnosing malig-
nancy via CT scans. Example apparatus and methods dis-
criminate granulomas caused by fungal infection from
carcinomas. Distinguishing fungal infection from carcinoma
facilitates reducing surgical interventions that ultimately
result in a diagnosis of histoplasmosis.

[0016] Example methods and apparatus more accurately
distinguish malignant GGO nodules from benign nodules.
Since a more accurate distinction is made, example apparatus
and methods thus predict patient outcomes in a more consis-
tent and reproducible manner. Example methods and appara-
tus predict patient outcomes more accurately than conven-
tional methods by employing computerized textural and
morphologic analysis of lung CT imagery to distinguish
granulomas due to fungal infection from malignant tumors. A
GGO nodule may be segmented from an image background.
Features may be automatically extracted from the segmented
GGO nodule image. Example methods and apparatus may
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extract texture features and shape features from the GGO
nodule image. Example methods and apparatus may also
extract tortuosity features from the GGO nodule image.
Malignant lung tumors may induce irregular changes to ves-
sel shapes. Example methods and apparatus detect and quan-
tify vessel tortuosity abnormalities on a tumor neighborhood.
A subset of extracted features may be selected using principal
component analysis (PCA) and then a classification of the
GGO nodule image may be generated using linear discrimi-
nant analysis (LDA) or quadratic discriminant analysis
(QDA).

[0017] Carcinomas may have a more chaotic cellular archi-
tecture than granuloma. The chaotic cellular architecture may
be correlated to an energy feature in an image. The energy
feature may be represented as a texture feature or a shape
feature. In some embodiments, the energy feature is more
pronounced ina CT heatmap of a cancerous GGO nodule than
in a CT heatmap of a granuloma because of the more chaotic
cellular architecture of the cancerous GGO nodule. FIG. 6
illustrates this property of cancerous GGO nodules compared
with granuloma GGO nodules that were caused by benign
fungal infections. The chaotic cellular architecture may also
be correlated to tortuosity features of vessels associated with
a tumor or a GGO nodule.

[0018] FIG. 6 illustrates, at 610, a CT scan image of a
cancerous GGO nodule identified as a carcinoma. FIG. 6 also
illustrates, at 620, a CT scan image of GGO nodule identified
as a granuloma. FIG. 6 illustrates, at 630, an energy textural
feature extracted from intensity values of image 610 of the
cancerous GGO nodule. The energy of a textural feature
measures local homogeneity within the image, illustrating
how uniform the texture is. FIG. 6 also illustrates a textural
feature image 640 of the energy extracted from the image of
the benign granuloma 620. The energy feature image 630 of
the cancerous GGO nodule displays a more pronounced
energy feature than the benign granuloma texture feature
image 640, which demonstrates the more chaotic cellular
architecture of a cancerous GGO nodule. FIG. 6 also illus-
trates, at 650, a heatmap of a Gabor feature of the cancerous
GGO nodule. The Gabor feature represents texture using a
sinusoidal plane wave modulated Gaussian kernel function.
FIG. 6 further illustrates, at 660, a heatmap of a Gabor texture
feature of the benign granuloma.

[0019] Example methods and apparatus may also employ
3-fold cross validation where N=46 for training a classifier
and N=16 for testing a classifier. Example methods and appa-
ratus may train a classifier or test a classifier with other,
different numbers of subjects. For example, a human patholo-
gist may manually delineate and classify one hundred GGO
nodules for a training set and thirty nodules for a testing set.
Example methods and apparatus may classify the GGO nod-
ule image as a carcinoma, adenocarcinoma, or as a granu-
loma. Example methods and apparatus may also classify the
GGO nodule image as non-invasive, minimally invasive, or
frank invasive. Other classifications may be employed.
[0020] Example methods and apparatus thus improve on
conventional methods by more accurately distinguishing
between pathological and benign lung nodules.

[0021] Example methods and apparatus distinguish granu-
loma from carcinoma with an accuracy of at least 92% area
under the curve (AUC) when using texture features and shape
features with a linear discriminant analysis (LDA) classifier.
Example methods and apparatus distinguish frank invasive
GGO nodules from non-invasive or minimally invasive GGO
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nodules with an accuracy of at least 78% AUC when using
three texture features selected by PCA with a quadratic dis-
criminant analysis (QDA) classifier. In contrast, conventional
approaches using just Laws feature achieve accuracies of
approximately 0.61 AUC, while conventional approaches
using just Gabor features achieve accuracies of approxi-
mately 0.68 AUC. In these examples, a minimally invasive
GGO nodule is defined as a GGO nodule with 5 mm or less
invasion, and a frank invasive GGO nodule is defined as a
GGO nodule with more than S mm invasion. In other embodi-
ments, minimally invasive GGO nodules and frank invasive
GGO nodules may be defined on other dimensions.

[0022] By increasing the accuracy with which malignant
GGO nodules are distinguished from benign lung GGO nod-
ules, example methods and apparatus produce the concrete,
real-world technical effect of reducing the time required to
evaluate medical imagery while increasing the accuracy of
the evaluation. Additionally, example apparatus and methods
increase the probability that at-risk patients receive timely
treatment tailored to the particular pathology they exhibit.
Example methods and apparatus may also reduce the number
of invasive procedures needed to accurately characterize
GGO nodules. The additional technical effect of reducing the
expenditure of resources and time on patients who are less
likely to suffer recurrence or disease progression is also
achieved. Example methods and apparatus thus improve on
conventional methods in a measurable, clinically significant
way.

[0023] Some portions of the detailed descriptions that fol-
low are presented in terms of algorithms and symbolic rep-
resentations of operations on data bits within a memory.
These algorithmic descriptions and representations are used
by those skilled in the art to convey the substance of their
work to others. An algorithm, here and generally, is conceived
to be a sequence of operations that produce a result. The
operations may include physical manipulations of physical
quantities. Usually, though not necessarily, the physical quan-
tities take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared, and other-
wise manipulated in a logic, and so on. The physical manipu-
lations create a concrete, tangible, useful, real-world result.

[0024] It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits,
values, elements, symbols, characters, terms, numbers, and
so on. It should be borne in mind, however, that these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, it is
appreciated that throughout the description, terms including
processing, computing, calculating, determining, and so on,
refer to actions and processes of a computer system, logic,
processor, or similar electronic device that manipulates and
transforms data represented as physical (electronic) quanti-
ties.

[0025] Example methods may be better appreciated with
reference to flow diagrams. While for purposes of simplicity
of explanation, the illustrated methodologies are shown and
described as a series of blocks, it is to be appreciated that the
methodologies are not limited by the order of the blocks, as
some blocks can occur in different orders and/or concurrently
with other blocks from that shown and described. Moreover,
less than all the illustrated blocks may be required to imple-
ment an example methodology. Blocks may be combined or
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separated into multiple components. Furthermore, additional
and/or alternative methodologies can employ additional, not
illustrated blocks.

[0026] FIG. 1 illustrates an example computerized method
100 for characterizing a GGO nodule in a region of lung
tissue. Method 100 includes, at 110, accessing an image of a
region of lung tissue. Accessing the image may include
accessing a C'T image of the region of lung tissue. The CT
image may be stored, for example, in a computer memory or
may be provided across a computer network. In one embodi-
ment, the CT imageisa | mm to 5 mm thick, no-contrast chest
CT image. In another embodiment, other images sizes or
other imaging techniques may be employed.

[0027] Method 100 also includes, at 120, delineating a
GGO nodule in the image. The GGO nodule may be auto-
matically delineated by distinguishing GGO nodule tissue
within the image from the background of the image. The
GGO nodule tissue may be automatically distinguished using
threshold based segmentation, deformable boundary models,
active-appearance models, active shape models, graph based
models including Markov random fields (MRF), min-max cut
approaches, or other image segmentation approaches.
[0028] Method 100 also includes, at 130, extracting a set of
texture features from the image of the GGO nodule. The setof
texture features includes a gray-level statistical feature, a
steerable Gabor feature, a Haralick feature, a Law feature, a
Law-Laplacian feature, a local binary pattern (L.BP) feature,
inertia, a correlation feature, a difference entropy feature, a
contrast inverse moment feature, or a contrast variance fea-
ture. In one embodiment, the set of texture features includes
at least sixty three texture features. In another embodiment,
the set of texture features includes at least one hundred texture
features. For example, a set of one hundred texture features
may include 13 Haralick features, 4 gray features, 13 gradient
features, 19 Gabor features, 1 LBP feature, 25 Law features,
or 25 Law-Laplacian features. In other embodiments, other
numbers or types of texture features may be extracted.
[0029] Method 100 also includes, at 140, selecting a subset
of texture features from the set of texture features. In one
embodiment, the subset of texture features is selected by
reducing the set of texture features using a PCA. The PCA of
the set of texture features selects a subset of texture features
from the set of texture features. The subset of texture features
achieves a threshold level of discriminability. For example,
the PCA may select one energy feature and one Gabor feature
that are the most discriminative, based on a particular set of
CT images, for distinguishing carcinoma from granuloma.
The subset of texture features may include as few as two
texture features. The level of discriminability may be user
adjustable. For example, ina first clinical situation, a subset of
texture features that achieves 0.8 AUC accuracy in distin-
guishing carcinoma from granuloma may be acceptable. A
feature may be considered to have a desirable level of dis-
criminability when the means of two separate classes are
more than a threshold distance from each other, and where the
variance of a class is less than a threshold distance, in com-
parison to the distance between the means. In one embodi-
ment, the Fisher criterion, which is the squared difference of
the means divided by the sum of the variances, may be used to
quantitatively establish a desirable level of discriminability.
[0030] FIG. 7 is a boxplot of CT intensities of a CT image
of a minimally invasive GGO nodule and a frank invasive
GGO nodule. In FIG. 7, the Y-axis indicates the normalized
value of the average Hounsfield unit within a nodule in the CT

Jun. 2,2016

image. FIG. 7 illustrates the challenge involved with classi-
fying GGO nodules using conventional CT imagery
approaches. FIG. 7 demonstrates that the CT intensities of a
minimally invasive GGO nodule and frank invasive GGO
nodule overlap significantly. In this example, the median of
the CT intensity for the minimally invasive GGO nodule is
within a threshold distance from the median of the frank
invasive GGO. Thus, an attempt to classify a GGO nodule
based on just CT intensity is unlikely to be acceptably accu-
rate.

[0031] FIG. 8 is a boxplot of CT contrast variance of a CT
image of a minimally invasive GGO nodule and a frank inva-
sive GGO nodule. In FIG. 8, the Y-axis indicates the normal-
ized value of the average Hounsfield unit with a nodule in the
CT image. FIG. 8 demonstrates how texture features, like
contrast variance, may have a more desirable level of discrim-
inability. In this example, the median of the CT contrast
variance for the minimally invasive GGO nodule is more than
a threshold distance from the median of the CT contrast
variance for the frank invasive GGO.

[0032] Method 100 also includes, at 150, generating a phe-
notypic signature for the nodule. In one embodiment, the
phenotypic signature is generated using Fisher criteria rank-
ing. In another embodiment, the phenotypic signature is gen-
erated using other techniques.

[0033] Method 100 also includes, at 160, controlling a
computer aided diagnosis (CADX) system to generate a clas-
sification of the GGO nodule in the image. The classification
may be based, at least in part, on the subset of texture features
or the phenotypic signature. In one embodiment, the CADx
system generates the classification of the image of the GGO
nodule using a QDA classifier. In another embodiment, the
CADx system may generate the classification using other,
different types of classifier. The classifier may be trained and
tested on a set of images of pre-classified GGO nodules. In
one embodiment, the image is of a region of tissue demon-
strating adenocarcinoma pathology. Controlling the CADx
system to generate the classification of the GGO nodule
based, at least in part, on the subset of texture features and the
phenotypic signature, includes classifying the image of the
GGO nodule as frank invasive adenocarcinoma or minimally
invasive adenocarcinoma.

[0034] Example methods and apparatus facilitate more
accurate characterization of GGO nodules found in CT
images than conventional approaches. Example methods and
apparatus thus improve on conventional methods by charac-
terizing GGO nodules as frank invasive, non-invasive, or
minimally invasive, or as carcinomas, adenocarcinomas, or
granulomas with greater accuracy and with less subjective
variability than conventional methods. Example methods and
apparatus therefore facilitate more judicious application of
biopsies and surgical resection ina population undergoing CT
screening for lung cancer.

[0035] Using a more appropriately determined and applied
treatment may lead to less therapeutics being required for a
patient or may lead to avoiding or delaying a biopsy, a resec-
tion, or other invasive procedure. When regions of cancerous
tissue, including GGO nodules detected in CT scans, are
more quickly and more accurately classified, patients with
poorer prognoses may receive a higher proportion of scarce
resources (e.g., therapeutics, physician time and attention,
hospital beds) while those with better prognoses may be
spared unnecessary treatment, which in turn spares unneces-
sary expenditures and resource consumption. Example meth-
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ods and apparatus may thus have the real-world, quantifiable
effect of improving patient outcomes.

[0036] While FIG. 1 illustrates various actions occurring in
serial, it is to be appreciated that various actions illustrated in
FIG. 1 could occur substantially in parallel. By way of illus-
tration, a first process could delineate a GGO nodule ina CT
image, a second process could extract texture features from
the CT image, and a third process could extract shape features
from the CT image. While three processes are described. it is
to be appreciated that a greater or lesser number of processes
could be employed and that lightweight processes, regular
processes, threads, and other approaches could be employed.
[0037] FIG. 2 illustrates an example method 200 for char-
acterizing a GGO nodule in a region of lung tissue. Method
200 is similar to method 100 but includes additional actions.
Method 200 includes actions 210, 220, 230, 240, and 250
which are similar to actions 110, 120, 130, 140, and 150
described above with respect to method 100.

[0038] Method 200 also includes, at 260, extracting a set of
shape features from the image of the GGO nodule. The set of
shape features includes a location feature, a size feature, a
width feature, a height feature, a depth feature, a perimeter
feature, an eccentricity feature, an eccentricity standard
deviation, a compactness feature, a roughness feature, an
elongation feature, a convexity feature, an extend feature, an
equivalent diameter feature, or a sphericity feature. The loca-
tion feature describes the spatial information of a pixel in the
image of the GGO nodule, the size feature describes the
number of pixels within the segmented image of the GGO
nodule, and the perimeter feature describes the distance
around the boundary of the segmented GGO nodule. The
eccentricity feature describes the eccentricity of an ellipse
that has the same second moments as the nodule. The com-
pactness feature describes the isoperimetric quotient of the
nodule. The roughness feature describes the perimeter of a
lesion in a slice of the image of the GGO nodule divided by
the convex perimeter of the lesion. The elongation feature
describes the ratio of minor axis to the major axis of the image
of the GGO nodule, and the convexity feature describes the
ratio of a tumor image slice to the convex hull of the tumor.
The extend feature describes the ratio of pixels in the tumor
region to pixels in the total bounding box. The equivalent
diameter feature describes the diameter of a circle having the
same area as a tumor image slice, and the sphericity feature
describes the three-dimensional compactness of the nodule.
In one embodiment the set of shape features includes at least
twenty-five shape features. In another embodiment, the set of
shape features may include other numbers of shape features,
orother, different shape features. A feature may be calculated
in three dimensional (3D) space, or in two dimensional (2D)
space. For example, width, height, depth, or sphericity fea-
tures may be calculated in 3D space.

[0039] Method 200 also includes, at 270, selecting a subset
of shape features from the set of shape features. In one
embodiment, the subset of shape features includes eccentric-
ity, eccentricity standard deviation, or elongation features. In
another embodiment, the subset of shape features may
include other, different shape features. The subset of shape
features may be selected from the set of shape features using
PCA.

[0040] Method 200 also includes, at 280, controlling the
CADx system to generate the classification of the image of
the GGO nodule as a carcinoma or a granuloma. The classi-
fication may be based, at least in part, on the subset of texture
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features and the subset of shape features. Basing the classifi-
cation on both the subset of texture features and the subset of
shape features improves on conventional approaches by
equivalent diameter feature, or a sphericity feature. The loca-
tion feature describes the spatial information of a pixel in the
image of the GGO nodule, the size feature describes the
number of pixels within the segmented image of the GGO
nodule, and the perimeter feature describes the distance
around the boundary of the segmented GGO nodule. The
eccentricity feature describes the eccentricity of an ellipse
that has the same second moments as the nodule. The com-
pactness feature describes the isoperimetric quotient of the
nodule. The roughness feature describes the perimeter of a
lesion in a slice of the image of the GGO nodule divided by
the convex perimeter of the lesion. The elongation feature
describes the ratio of minor axis to the major axis of the image
of the GGO nodule, and the convexity feature describes the
ratio of a tumor image slice to the convex hull of the tumor.
The extend feature describes the ratio of pixels in the tumor
region to pixels in the total bounding box. The equivalent
diameter feature describes the diameter of a circle having the
same area as a tumor image slice, and the sphericity feature
describes the three-dimensional compactness of the nodule.
In one embodiment the set of shape features includes at least
twenty-five shape features. In another embodiment, the set of
shape features may include other numbers of shape features,
orother, different shape features. A feature may be calculated
in three dimensional (3D) space, or in two dimensional (2D)
space. For example, width, height, depth, or sphericity fea-
tures may be calculated in 3D space.

[0041] Method 200 also includes, at 270, selecting a subset
of shape features from the set of shape features. In one
embodiment, the subset of shape features includes eccentric-
ity, eccentricity standard deviation, or elongation features. In
another embodiment, the subset of shape features may
include other, different shape features. The subset of shape
features may be selected from the set of shape features using
PCA.

[0042] Method 200 also includes, at 280, controlling the
CADXx system to generate the classification of the image of
the GGO nodule as a carcinoma or a granuloma. The classi-
fication may be based, at least in part, on the subset of texture
features and the subset of shape features. Basing the classifi-
cation on both the subset of texture features and the subset of
shape features improves on conventional approaches by
increasing the accuracy with which the image of the GGO
may be classified. In one embodiment, the CADX system
generates the classification of the image of the GGO nodule
using a LDA classifier or a QDA classifier. In one embodi-
ment, an LDA classifier using a median textural feature and
eccentricity standard deviation shape feature achieves an
accuracy of at least 0.92 AUC. The LDA classifier or the QDA
classifier may be trained and tested on a set of GGO images
pre-classified as carcinoma or granuloma.

[0043] Inoneembodiment, method 200 may also automati-
cally segment vessels associated with the nodule. Method 200
may identify a centerline of a vessel and branching points
associated with the vessel. Method 200 calculates the torsion
for a vessel segment using a distance metric. The torsion of a
vessel segment is defined as 1-(Distance/Length) where dis-
tance is the Euclidean distance of the start and end point of the
segment, and where length is the number of voxels along the
vessel segment. Method 200 also extracts the curvature of a
vessel segment. Curvature at a voxel of a vessel segment is
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proportional to the inverse of an osculating circle’s radius.
The osculating circle is fitted to a collection of three neigh-
boring points along the centerline of a vessel. For a plurality
of points along the center line of a vessel, method 200 fits a
circle to compute the curvature of a specific point. Method
200 then computes mean and standard deviation of the cur-
vature for points along the vessel.

[0044] Method 200 may then extract a set of tortuosity
features from the image of the GGO nodule. The tortuosity
features describe vessels associated with the GGO nodule.
The set of tortuosity features includes the mean of torsion of
a vessel segment, or the standard deviation of torsion of a
vessel segment. The set of tortuosity features also includes the
mean and standard deviation of the mean curvature of a group
of vessel segments. The set of tortuosity features also includes
the mean and standard deviation of the standard deviation of
a vessel segment curvature and a total vessel segment length.
In one embodiment, the set of tortuosity features includes at
least seven tortuosity features. In another embodiment. the set
of tortuosity features may include other numbers of tortuosity
features, or other, different tortuosity features. Method 200
may also select of subset of tortuosity features from the set of
tortuosity features. Method 200 may also include controlling
the CADX system to generate the classification of the image
of the GGO nodule based, at least in part, on the subset of
tortuosity features, the subset of texture features and the sub-
set of shape features.

[0045] FIG. 3 illustrates an example method 300 for distin-
guishing invasive tumors from non-invasive tumors in chest
CT images. Method 300 includes, at 310 accessing an image
of a region of tissue demonstrating cancerous pathology. In
one embodiment, the image is a 1 mm to 5 mm thick, no-
contrast chest CT image. Inanother embodiment, other image
types or image dimensions may be used. Accessing the image
may include retrieving electronic data from a computer
memory, receiving a computer file over a computer network,
or other computer or electronic based action.

[0046] Method 300 also includes. at 320, segmenting a
tumor in the image from the background of the image. Seg-
menting the tumor in the image from the background of the
image involves identifying the portion of the image that rep-
resents the tumor to distinguish that portion from the back-
ground. In one embodiment, the tumor is automatically seg-
mented from the background of the image. In another
embodiment, a human pathologist manually delineates the
tumor from the background of the image. In another embodi-
ment, vessels associated with the tumor are also segmented.

[0047] Method 300 also includes, at 330, selecting a set of
texture features from the segmented image. In one embodi-
ment, the set of texture features may include a gray-level
statistical feature, a steerable Gabor feature, a Haralick fea-
ture, a Law feature, a Law-Laplacian feature, an LBP feature,
an inertia feature, a correlation feature, a difference entropy
feature, a contrast inverse moment feature, or a contrast vari-
ance feature. In another embodiment, other, different texture
features may be selected. The inertia feature describes the
contrast or local intensity variation of the segmented image.
The correlation feature describes the correlation of the inten-
sity of values within the segmented image. The difference
entropy feature describes the disorder of the difference
between a pair of pixel intensities within the segmented
image. The contrast inverse moment feature describes the
inhomogeneity within a region of interest in the segmented
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image. The contract variance feature describes the variance of
the difference between a pair of pixel intensities.

[0048] Method 300 also includes, at 340, selecting a set of
shape features from the segmented image. The set of shape
features may include a location feature, a size feature. a
perimeter feature, an eccentricity feature, an eccentricity
standard deviation, a compactness feature, a roughness fea-
ture, an elongation feature, a convexity feature, an equivalent
diameter feature, a radial distance feature, an area feature, or
a sphericity feature. The radial distance feature describes the
radial distance from the center of mass of the tumor to a point
on the defining contour of the tumor.

[0049] Method 300 also includes, at 345, selecting a set of
tortuosity features from the segmented image. The set of
tortuosity features may include the mean of torsion of a vessel
segment, or the standard deviation of torsion of a vessel
segment. The set of tortuosity features may also include the
mean and standard deviation of the mean curvature of a group
of vessel segments. The set of tortuosity features may also
include the mean and standard deviation of the standard
deviation of a vessel segment curvature and a total vessel
segment length. In one embodiment, the set of tortuosity
features includes at least seven tortuosity features. In another
embodiment, the set of tortuosity features may include other
numbers of tortuosity features. or other, different tortuosity
features.

[0050] Method 300 also includes, at 350, generating a clas-
sification for the tumor based, at least in part, on the set of
texture features, the set of shape features, and the set of
tortuosity features. In one embodiment, the classification is
made based on the set of texture features. In another embodi-
ment, the classification is based on the set of shape features. In
still another embodiment, the classification is based on a
subset of the set of texture features, a subset of the set of shape
features, and a subset of the set of tortuosity features. The
subset of the set of texture features may be selected from the
set of texture features using PCA. The subset of the set of
shape features may be selected from the set of shape features
using PCA. The subset of the set of tortuosity features may be
selected from the set of tortuosity features using PCA. The
subset of shape features, the subset of texture features, or the
subset of tortuosity features may be selected to achieve a
threshold level of accuracy when classifying tumors. In one
embodiment, method 300 classifies the tumor as a carcinoma
or a granuloma. In another embodiment, the tumor is classi-
fied as frank invasive, minimally invasive, or non-invasive.
The classification may be made by a CADx system using a
QDA classifier or an LDA classifier.

[0051] Method 300 also includes, at 360, providing a prog-
nosis prediction based on the classification. For example,
method 300 may, at 360, provide a probability that a patient
will experience a lower five year survival rate if the tumor is
classified as frank invasive. Method 300 may alternately pro-
vide a probability that a patient will experience a higher five
year survival rate if the tumor is classified as non-invasive.
[0052] In one example, a method may be implemented as
computer executable instructions. Thus, in one example, a
computer-readable storage medium may store computer
executable instructions that if executed by a machine (e.g.,
computer) cause the machine to perform methods described
or claimed herein including method 100, method 200, and
method 300. While executable instructions associated with
the listed methods are described as being stored on a com-
puter-readable storage medium, it is to be appreciated that
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executable instructions associated with other example meth-
ods described or claimed herein may also be stored on a
computer-readable storage medium. In different embodi-
ments the example methods described herein may be trig-
gered in different ways. In one embodiment. a method may be
triggered manually by a user. In another example, a method
may be triggered automatically.

[0053] FIG.4 illustrates an example apparatus 400 for clas-
sifying a region of tissue in an image. Apparatus 400 includes
a processor 410, a memory 420, a set of logics 440, and an
interface 430 that connects the processor 410, the memory
420, and the set of logics 440. The set of logics 440 includes
an image acquisition logic 441, a delineation logic 443, a
texture logic 445, a phenotype signature logic 446, a shape
logic 447. and a classification logic 449. In one embodiment,
the functionality associated with the set of logics 440 may be
performed, at least in part, by hardware logic components
including, but not limited to, field-programmable gate arrays
(FPGAs), application specific integrated circuits (ASICs),
application specific standard products (ASSPs), system on a
chip systems (SOCs), or complex programmable logic
devices (CPLDs). In one embodiment, individual members of
the set of logics 440 are implemented as ASICs or SOCs.
[0054] Image acquisition logic 441 acquires an image of a
region of tissue. The image may be acquired from, for
example, a CT apparatus. The region of tissue may be a
section of tissue demonstrating cancerous pathology in a
patient. The image of the region of tissue may include an
image of'a GGO nodule. In one embodiment, the image is a 1
mm to 5 mm thick, no-contrast chest CT image. Other imag-
ing approaches may be used to generate and access the image
accessed by image acquisition logic 441. Other image dimen-
sions may also be used.

[0055] Delineation logic 443 automatically delineates the
GGO nodule by distinguishing GGO nodule tissue within the
image from the background of the image. Delineation logic
443 automatically delineates the GGO nodule using threshold
based segmentation, deformable boundary models, active-
appearance models, active shape models, graph based models
including Markov random fields (MRF), min-max cut
approaches, or other image segmentation approaches.
[0056] Texture logic 445 extracts a set of texture features
from the image. The set of texture features may be extracted
from the image of the delineated GGO nodule. In one
embodiment, the set of texture features includes a gray-level
statistical feature, a steerable Gabor feature, a Haralick fea-
ture, a Law feature, a Law-Laplacian feature, an LBP feature,
inertia, correlation, difference entropy, contrast inverse
moment, or contrast variance. The texture logic 445 may also
select a subset of texture features from the set of texture
features. Texture logic 445 may select the subset of texture
features based on, at least in part, a PCA of the set of texture
features.

[0057] Phenotype selection logic 446 computes a pheno-
typic signature of the delineated GGO nodule in the image.
Phenotype selection logic 446 may compute the phenotypic
signature using a Fisher criteria ranking.

[0058] Shape logic 447 extracts a set of shape features from
the image. The set of shape features may include a location
feature, a size feature, a perimeter feature, an eccentricity
feature, an eccentricity standard deviation, a compactness
feature, a roughness feature, an elongation feature, a convex-
ity feature, an equivalent diameter feature, or a sphericity
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feature. Shape logic 447 also selects a subset of shape features
from the set of shape features based, at least in part, ona PCA
of the set of shape features.

[0059] Classification logic 449 classifies the GGO nodule
tissue based, at least in part, on the set of texture features, the
phenotypic signature, or the set of shape features. In one
embodiment, classification logic 449 logic classifies the
GGO nodule tissue as a carcinoma or a granuloma using an
LDA of the subset of texture features and the subset of shape
features. In another embodiment, classification logic 449
classifies the GGO nodule tissue as minimally invasive or as
frank invasive using a QDA of the subset of texture features.
In still another embodiment, classification logic 449 may
classify the GGO nodule tissue using other analytical tech-
niques.

[0060] In another embodiment, classification logic 449
may control a CADx system to classify the image based, at
least in part, on the classification. For example, classification
logic 449 may control a lung cancer CADX system to classify
the image based, at least in part, on the set of texture features
and set of shape features. In other embodiments, other types
of CADx systems may be controlled, including CADX sys-
tems for distinguishing GGO nodules among oral cancer,
prostate cancer, colon cancer, brain cancer, and other diseases
where disease classification and prognosis prediction may be
based on textural or shape features quantified from CT images
of a GGO nodule.

[0061] In one embodiment of apparatus 400, the set of
logics 440 also includes a tortuosity logic. The tortuosity
logic identifies a vessel associated with the GGO nodule. The
tortuosity logic identifies the centerline and a branching point
of the vessel associated with the GGO nodule. The tortuosity
logic computes a torsion for the segment of the vessel. The
tortuosity logic also computes a curvature of a voxel of a
vessel segment, where the curvature is proportional to the
inverse of an osculating circle’s radius. The tortuosity logic
extracts a set of tortuosity features from the image. The set of
tortuosity features may include the mean of torsion of a vessel
segment, or the standard deviation of torsion of a vessel
segment. The set of tortuosity features also may include the
mean and standard deviation of the mean curvature of a group
of vessel segments. The set of tortuosity features also may
include the mean and standard deviation of the standard
deviation of a vessel segment curvature and a total vessel
segment length. The tortuosity logic also selects a subset of
tortuosity features from the set of tortuosity features based, at
least in part, on a PCA of the set of tortuosity features. The
subset of tortuosity features may include at least three tortu-
osity features. In this embodiment, the classification logic
449 classifies the GGO nodule tissue based, at least in part, on
the set of tortuosity features, the set of texture features, the
phenotypic signature, or the set of shape features.

[0062] In one embodiment of apparatus 400, the set of
logics 440 also includes a display logic. The display logic
may control the CADx system to display the classification,
the texture features, or the shape features on a computer
monitor, a smartphone display, a tablet display, or other dis-
plays. Displaying the classification or the features may also
include printing the classification or the features. The display
logic may also control the CADX to display an image of the
region of tissue demonstrating a GGO nodule. The image of
the region of tissue demonstrating a GGO nodule may include
a delineated or segmented representation of the GGO nodule.
By displaying the features and the image of the GGO nodule,
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example apparatus provide a timely and intuitive way for a
human pathologist to more accurately classify pathologies
demonstrated by a patient, thus improving on conventional
approaches to predicting cancer recurrence and disease pro-
gression.

[0063] FIG. 5 illustrates an example computer 500 in which
example methods illustrated herein can operate and in which
example logics may be implemented. In different examples,
computer 500 may be part of a CT system, may be operably
connectable to a CT system, or may be part of a CADx
system.

[0064] Computer 500 includes a processor 502, a memory
504, and input/output ports 510 operably connected by a bus
508. In one example, computer 500 may include a set of
logics 530 that perform a method of characterizing a GGO
nodule in a region of lung tissue. Thus, the set of logics 530,
whether implemented in computer 500 as hardware, firm-
ware, software, and/or a combination thereof may provide
means (e.g.. hardware, software) for characterizing a GGO
nodule in a region of lung tissue. In different examples. the set
oflogics 530 may be permanently and/or removably attached
to computer 500. In one embodiment, the functionality asso-
ciated with the set of logics 530 may be performed, at least in
part, by hardware logic components including, but not limited
to, field-programmable gate arrays (FPGAs), application spe-
cific integrated circuits (ASICs), application specific stan-
dard products (ASSPs), system on a chip systems (SOCs), or
complex programmable logic devices (CPLDs). In one
embodiment, individual members of the set of logics 530 are
implemented as ASICs or SOCs.

[0065] Processor 502 can be a variety of various processors
including dual microprocessor and other multi-processor
architectures. Memory 504 can include volatile memory and/
or non-volatile memory. A disk 506 may be operably con-
nected to computer 500 via, for example, an input/output
interface (e.g., card, device) 518 and an input/output port 510.
Disk 506 may include, but is not limited to, devices like a
magnetic disk drive, a tape drive, a Zip drive, a flash memory
card, or a memory stick. Furthermore, disk 506 may include
optical drives like a CD-ROM or a digital video ROM drive
(DVD ROM). Memory 504 can store processes 514 or data
517, for example. Disk 506 or memory 504 can store an
operating system that controls and allocates resources of
computer 500.

[0066] Bus 508 can be a single internal bus interconnect
architecture or other bus or mesh architectures. While a single
bus is illustrated, it is to be appreciated that computer 500 may
communicate with various devices, logics, and peripherals
using other busses that are not illustrated (e.g., PCIE, SATA,
Infiniband, 1394, USB, Ethemet).

[0067] Computer 500 may interact with input/output
devices via 1/0 interfaces 518 and input/output ports 510.
Input/output devices can include, but are not limited to, digi-
tal whole slide scanners, an optical microscope, a keyboard, a
microphone, a pointing and selection device, cameras, video
cards, displays, disk 506, network devices 520, or other
devices. Input/output ports 510 can include but are not limited
to, serial ports, parallel ports, or USB ports.

[0068] Computer 500 may operate in a network environ-
ment and thus may be connected to network devices 520 via
1/O interfaces 518 or I/O ports 510. Through the network
devices 520. computer 500 may interact with a network.
Through the network, computer 500 may be logically con-
nected to remote computers. The networks with which com-
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puter 500 may interact include, but are not limited to, a local
area network (LAN), a wide area network (WAN), or other
networks.

[0069] References to “one embodiment”, “an embodi-
ment”. “one example”, and “an example” indicate that the
embodiment(s) or example(s) so described may include a
particular feature, structure, characteristic, property, element,
or limitation, but that not every embodiment or example nec-
essarily includes that particular feature, structure, character-
istic, property, element or limitation. Furthermore, repeated
use of the phrase “in one embodiment™ does not necessarily
refer to the same embodiment, though it may.

[0070] “Computer-readable storage medium”, as used
herein, refers to a medium that stores instructions or data.
“Computer-readable storage medium” does not refer to
propagated signals. A computer-readable storage medium
may take forms, including, but not limited to, non-volatile
media, and volatile media. Non-volatile media may include,
for example, optical disks, magnetic disks, tapes, and other
media. Volatile media may include, for example, semicon-
ductor memories, dynamic memory, and other media. Com-
mon forms of a computer-readable storage medium may
include, but are not limited to, a floppy disk, a flexible disk, a
hard disk, a magnetic tape, other magnetic medium, an appli-
cation specific integrated circuit (ASIC). a compact disk
(CD). other optical medium, a random access memory
(RAM), a read only memory (ROM), a memory chip or card,
a memory stick, and other media from which a computer, a
processor or other electronic device can read.

[0071] “Logic™, as used herein, includes but is not limited
to hardware, firmware, software in execution ona machine, or
combinations of each to perform a function(s) or an action(s),
orto cause a function or action from another logic. method, or
system. Logic may include a software controlled micropro-
cessor, a discrete logic (e.g., ASIC), an analog circuit, a digi-
tal circuit, a programmed logic device, a memory device
containing instructions, and other physical devices. Logic
may include one or more gates, combinations of gates, or
other circuit components. Where multiple logical logics are
described, it may be possible to incorporate the multiple
logical logics into one physical logic. Similarly, where a
single logical logic is described, it may be possible to distrib-
ute that single logical logic between multiple physical logics.
[0072] To the extent that the term “includes” or “including”
is employed in the detailed description or the claims, it is
intended to be inclusive in a manner similar to the term
“comprising” as that term is interpreted when employed as a
transitional word in a claim.

[0073] Throughout this specification and the claims that
follow, unless the context requires otherwise, the words
‘comprise’ and ‘include’ and variations such as ‘comprising’
and ‘including’ will be understood to be terms of inclusion
and not exclusion. For example, when such terms are used to
refer to a stated integer or group of integers, such terms do not
imply the exclusion of any other integer or group of integers.
[0074] To the extent that the term “or” is employed in the
detailed description or claims (e.g.. A or B) it is intended to
mean “A or B or both”. When the applicants intend to indicate
“only A or B but not both™ then the term “only A or B but not
both™ will be employed. Thus, use of the term “or” herein is
the inclusive, and not the exclusive use. See, Bryan A. Garner,
A Dictionary of Modern Legal Usage 624 (2d. Ed. 1995).
[0075] While example systems, methods, and other
embodiments have been illustrated by describing examples,
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and while the examples have been described in considerable
detail, it is not the intention of the applicants to restrict or in
any way limit the scope of the appended claims to such detail.
It is, of course, not possible to describe every conceivable
combination of components or methodologies for purposes of
describing the systems, methods, and other embodiments
described herein. Therefore, the invention is not limited to the
specific details, the representative apparatus, and illustrative
examples shown and described. Thus, this application is
intended to embrace alterations, modifications, and variations
that fall within the scope of the appended claims.

What is claimed is:

1. A non-transitory computer-readable storage medium
storing computer executable instructions that when executed
by a computer control the computer to perform a method for
characterizing a ground glass (GGO) nodule in a region of
lung tissue, the method comprising:

accessing an image of a region of lung tissue;

delineating a GGO nodule in the image:

extracting a set of texture features from the GGO nodule;

selecting a subset of texture features from the set of texture

features:

extracting a set of shape features from the GGO nodule;

selecting a subset of shape features from the set of shape

features:

generating a phenotypic signature for the nodule: and

controlling a computer aided diagnosis (CADx) system to

generate a classification of the GGO nodule in the image
based, at least in part, on the subset of texture features,
the subset of shape features, or the phenotypic signature.

2. The non-transitory computer-readable storage medium
of claim 1, where accessing the image of the region of lung
tissue includes accessing a computed tomography (CT)
image of the region of lung tissue, where the CT image is a
no-contrast chest CT image.

3. The non-transitory computer-readable storage medium
of claim 1, the method comprising automatically delineating
the GGO nodule by distinguishing GGO nodule tissue in the
image from the background of the image.

4. The non-transitory computer-readable storage medium
of claim 1, where the set of texture features includes at least
sixty three texture features.

5. The non-transitory computer-readable storage medium
of claim 1, where the set of texture features includes a gray-
level statistical feature, a steerable Gabor feature, a Haralick
feature, a Law feature, a Law-Laplacian feature, an LBP
feature, an inertia feature, a correlation feature, a difference
entropy feature, a contrast inverse moment feature, a gradient
feature, or a contrast variance feature.

6. The non-transitory computer-readable storage medium
of claim 1, where selecting the subset of texture features from
the set of texture features includes reducing the set of texture
features using principal component analysis (PCA).

7. The non-transitory computer-readable storage medium
of claim 1, where the phenotypic signature is generated using
Fisher criteria ranking.

8. The non-transitory computer-readable storage medium
of claim 1, where the CADx system generates the classifica-
tion of the image of the GGO nodule using a quadratic dis-
criminant analysis (QDA) classifier.

9. The non-transitory computer-readable storage medium
of claim 1, where the image is of a region of adenocarcinoma
tissue, and where controlling the CADx system to generate
the classification of the image of the GGO nodule based, at
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least in part, on the subset of texture features and the pheno-
typic signature, includes classifying the image of the GGO
nodule as frank invasive adenocarcinoma or minimally inva-
sive adenocarcinoma.

10. The non-transitory computer-readable storage medium
of claim 1, where the set of shape features includes a location
feature, a size feature, a width feature, a height feature, a
depth feature, aradial distance feature, a perimeter feature, an
eccentricity feature, an eccentricity standard deviation, a
compactness feature, a roughness feature, an elongation fea-
ture, a convexity feature, an equivalent diameter feature, or a
sphericity feature.

11. The non-transitory computer-readable storage medium
of claim 10, where the subset of shape features includes an
eccentricity feature, an eccentricity standard deviation fea-
ture, or an elongation feature.

12. The non-transitory computer-readable storage medium
of claim 11, the method comprising controlling the CADx
system to generate the classification of the image of the GGO
nodule as a carcinoma or a granuloma based, at least in part,
on the subset of texture features and the subset of shape
features.

13. The non-transitory computer-readable storage medium
of claim 12, the method further comprising:

segmenting a vessel associated with the image of the GGO

nodule into a plurality of vessel segments;

computing a torsion for a vessel segment;

computing a curvature for the vessel segment, where the

curvature is proportional to the inverse of the radius of an
osculating circle;
selecting a set of tortuosity features from the image of the
GGO nodule, where the set of tortuosity features
includes a mean of torsion of the vessel segment, a
standard deviation of torsion of the vessel segment, a
mean of the mean curvature of the plurality of vessel
segments, a standard deviation of the mean curvature of
the plurality of vessel segments, a mean of the standard
deviation of the curvature of the vessel segment, a stan-
dard deviation of the standard deviation of the curvature
of the vessel segment, a total length of a vessel segment,
or a total length of the plurality of vessel segments;

selecting a subset of tortuosity features from the set of
tortuosity features using a PCA of the set of tortuosity
features; and

controlling a computer aided diagnosis (CADx) system to

generate a classification of the GGO nodule in the image
based, at least in part, on the subset of tortuosity features,
the subset of texture features, the subset of shape fea-
tures, or the phenotypic signature.

14. The non-transitory computer-readable storage medium
of claim 1, where the CADX system generates the classifica-
tion of the image of the GGO nodule using a linear discrimi-
nant analysis (LDA) classifier or a quadratic discriminant
analysis (QDA) classifier.

15. The non-transitory computer-readable storage medium
of claim 14, where the LDA classifier classifies the image of
the GGO nodule with an accuracy of at least 0.92 area under
the curve (AUC).

16. A method for distinguishing tumors in a medical image,
the method comprising:

accessing an image of a region of tissue demonstrating

cancerous pathology:

segmenting a tumor in the image from the background of

the image;
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selecting a set of texture features from the segmented

image;

selecting a set of shape features from the segmented image;

generating a classification for the tumor based, at least in

part, on the set of texture features and the set of shape
features: and

providing a prognosis prediction based on the classifica-

tion.

17. An apparatus for classifying a region of tissue in an
image, comprising:

a processor;

amemory:;

an input/output interface;

a set of logics: and

an interface to connect the processor, the memory, the

input/output interface and the set of logics, where the set

of logics includes:

an image acquisition logic that acquires an image of a
region of tissue demonstrating ground glass (GGO)
nodule pathology:

adelineation logic that distinguishes GGO nodule tissue
in the image from the background of the image:

atexture logic that extracts a set of texture features from
the image;

a phenotype signature logic that computes a phenotypic
signature from the image:

ashape logic that extracts a set of shape features from the
image; and

a classification logic that classifies the GGO nodule
tissue based, at least in part, on the set of texture
features, the phenotypic signature, or the set of shape
features.

18. The apparatus of claim 17, where the set of texture
features includes a gray-level statistical feature, a steerable
Gabor feature, a Haralick feature, a Law feature, a Law-
Laplacian feature, a gradient feature, a local binary pattern
(LBP) feature, an inertia feature, a correlation feature, a dif-
ference entropy feature, a contrast inverse moment feature, or
a contrast variance feature, and where the texture logic selects
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a subset of texture features from the set of texture features
based on, at least in part, a principal component analysis
(PCA) of the set of texture features.

19. The apparatus of claim 18, where the set of shape
features includes a location feature, a size feature, a width
feature, a height feature, a depth feature, a radial distance
feature, a perimeter feature, an eccentricity feature, an eccen-
tricity standard deviation feature, a compactness feature, a
roughness feature, an elongation feature, a convexity feature,
an equivalent diameter feature, or a sphericity feature, and
where the shape logic selects a subset of shape features from
the set of shape features based on, at least in part, a PCA of the
set of shape features.

20. The apparatus of claim 19,

where the classification logic classifies the GGO nodule

tissue as a carcinoma or a granuloma using a linear
discriminant analysis of the subset of texture features
and the subset of shape features, or

where the classification logic classifies the GGO nodule

tissue as minimally invasive or as frank invasive using a
quadratic discriminant analysis of the subset of texture
features.

21. The apparatus of claim 20, the set of logics comprising
atortuosity logic that extracts a set of tortuosity features from
the image. the set of tortuosity features including a mean of
torsion of the vessel segment, the standard deviation of tor-
sion of the vessel segment, a mean of the mean curvature of
the plurality of vessel segments, a standard deviation of the
mean curvature of the plurality of vessel segments, a mean of
the standard deviation of the curvature of the vessel segment,
a standard deviation of the standard deviation of the curvature
of the vessel segment, a total length of a vessel segment, or a
total length of the plurality of vessel segments.

22. The apparatus of claim 21, where the classification
logic classifies the GGO nodule tissue based, at least in part,
on the set of tortuosity features, the set of texture features, the
phenotypic signature, or the set of shape features.
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