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1. Introduction
The theory of isotropic random vector fields was originated by H. P. Robertson [1]

in his theory on isotropic turbulence. He defined the covariance bilinear form of random
vector fields which corresponds to Khinchin's covariance function in the theory of sta-
tionary stochastic processes. Although in the latter theory the essential point was made
clear in connection with the theory of Hilbert space and that of Fourier analysis, we have
no corresponding theory on isotropic random vector fields.

Robertson obtained a condition necessary for a bilinear form to be the covariance bi-
linear form of an isotropic random vector field. Unfortunately his condition is not suffi-
cient; in fact, he took into account only the invariant property of the covariance bilinear
form but not its positive definite property. A necessary and sufficient condition was ob-
tained by S. It6 [2]. Although his statement is complicated, he grasped the crucial point.
His result corresponds to Khinchin's spectral representation of the covariance function
of stationary stochastic processes.

The purpose of this paper is to establish a general theory on homogeneous or isotropic
random vector fields, or more generally the homogeneous or isotropic random currents
of de Rham [3]. In section 2 we shall give a summary of some known facts on vector
analysis for later use. In section 3 we shall define random currents and random meas-
ures. The reason we treat random currents rather than random p-vector fields or p-form
fields is that we have no restrictions in applying differential operators d and a to random
currents. These operators will elucidate the essential point. In section 4 we define homo-
geneous random currents and give spectral representations. Here we shall explain the
relation between homogeneous random currents and random measures. In section 5 we
shall show a decomposition of a homogeneous random current into its irrotational part,
its solenoidal part and its invariant part. In the next section we shall give a spectral repre-
sentation of the covariance functional of an isotropic random current. The result here
contains S. Mt6's formula as a special case. The spectral measure in this representation is
decomposed into three parts which correspond to the above three parts in the decomposi-
tion of a homogeneous random current. This relation was not known to S. It6. In [4] we
have shown that the Schwartz derivative of the Wiener process is a stationary random
distribution which is not itself a process. A similar fact will be seen in section 7 with re-
spect to the gradient of P. Levy's Brownian motion [5] with a multidimensional param-
eter.

This work was supported by a research project at Princeton University sponsored by the Office of
Ordnance Research, DA-36-034-ORD-1296 RD, and at the University of California, Berkeley, under
contract DA-04,200-ORD-355.
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2. p-vector
We shall here summarize some known facts on vector analysis which will be used in

this paper. Let X = RI be the Euclidean n-space and {eii be an orthonormal regular
basis, that is,
(2.1) (ei,,e) = 6ij i, j= 1, 2, , n

and the vectors ei,***, e., in this order, give a positive orientation. Then any point x ofX
is expressed uniquely as

(2.2) x = xiei.

The tangent space T. and its dual space T*, that is, the space of differentials at any
point x of X, are both isomorphic to the space X itself by the following correspondence,

(2.3) 5a+ d xri -+ei, i= 1, 2, * ,n.ai

Therefore, we may identify both the space of p-vectors at x and that of p-forms with the
space X[P] of p-vectors with complex coefficients in X. X may be considered as a real
part of XM.
Any p-vector a, E X[P] is expressed uniquely as

(2.4) ap= I ail ... iei,. ^ ei.,1il
where the coefficients ail ... j, are complex numbers and [i] means that the summa-

tion sign z refers not to all systems of suffixes, but to those which satisfy ii < i2 < ...

< ip.
The following notation will often be used in this paper:

(2.5) 6 ( isI )
is equal to 1 or -1 according to whether {ij is an even or odd permutation of {i,), and
is equal to 0 in all other cases. We shall state the definitions of exterior product a, NP
adjoint multivector a,4 inner product (ap, ,Bp) and generalized inner product a. Pe,
which are independent of the choice of the orthonormal regular basis,

(2.6) a%,/\ = ail ...
i Pui*j .k. )j. etl *^ek,+,

(2.7) ap= z ai, *--i'Pjl *- ej" (g, . . kpXj-q)
(2.7) (ap,*, I) ail --.pi.. .eip=-j(a^ ) 2*,

(2.9) ap (-l ) (N-P) (n-q) (ap^ q q 2p-

The product v is dual to A in the following sense

(2.10) (a,v\ Pq, yq-p) = (Pq, apt7q_p) .
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Now we shall consider a p-vector field or equivalently a p-form field a(x). Although
a(x), in its proper sense, maps each point x of X respectively to a p-vector or p-form
at x, it is also considered as a mapping from X to X[P] by the correspondence (2.3).
Therefore, a(x) will be expressible as

)a (x) = ail ip (x) e, eip,

where the coefficients ai, i.(x) are complex-valued functions of x. The following oper-
ations are common in the theory of p-forms.

Differential operators d and 5,

(2.12) da,(x) = C%a2 ek ei eip,
k, [il]COXk

(2.13) Sa (x) = (-1)"P++I(da*) *.

Inner product,
(2 .14) < ap, Op> =frn (ap, #,) d xi ... d x^.

3. Random current and random measure

In this paper we shall treat only complex-valued random variables with mean 0 and
finite variance. The totality of such random variables constitutes a Hilbert space which
we shall denote by H. The inner product of two elements in H is the covariance between
them. We shall always refer to the strong topology in H.
A random current is an H-valued current of de Rham. Let _%p be the set of all

C., p-vector fields with a compact carrier. %o is nothing but the Schwartz
_ space.

.%, is isomorphic to the nCpth power of _%o, so that it is a linear topological space. A
random current of the pth degree is a continuous linear mapping from .%, into H. A
continuous random p-vector field Up(x) induces a random current of the pth degree as
follows,
(3.1) Up ()n-,) =fn (Up^, n-p) * dxl ... dxn.

A sequence of random currents I Upm) I is said to converge to Up if

(3.2) Up` (0n-p) Up (Onp) 0, En-X -p .

The operations on random currents are defined in the same way as in the case of the cur-
rents of de Rham,
(3.3) Up (4p) = (- 1),v(n-) U, (0,*)
(3.4) dUp (4n-p-1) = (-1)P+1 U, (d4n-p-1)
t3-5) 5 U= (1 ) np+n+l (d U)* *,
(3.6) aq (x) U, (- ( ) Pq Up () = A1On-pq)
(3.7) a, (x) v Up(n-,+,) = (-1) "(P q) U,(a,,\-0-q)
For a random current Up we shall define (U., ap) as a random Schwartz distribution,

(3.8) (Up, ap)(4) = Up( ap4) .
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A random Schwartz distribution M(+O) is called a random measure with respect to a
measure m if we have, for any pair X, 4, E .%,
(3.9) [M (s)), M (Oi ]H =fe (x) x (x) m (dx),

where [M(I), M(/')]H denotes the inner product in H. Putting M(E) = M(x,), where
Xzy is the characteristic function of the set E, we get a random set function which is
additive in E. Further, we have

(3.10) [M (E) , M (E') I H = m (E E') , M f+)= O (X) M (d x)-

Particularly, if m satisfies

(3.11) Ii (1+x') < +c

that is, m is slowly increasing, then M(+O) is also said to be slowly increasing. Under this
condition, any rapidly decreasing function 4 in Schwartz sense [6] belongs to L2(Rn, i),
so that M(+O) can be defined.
A random current M,(O),_) is called a random measure (of the pth degree) if there

exists a complex-valued locally finite measure m(dx; ap, b,) for every pair (a,, b,) such
that we have

(3.12) [ (M, a,) (4), CM,, bp) (4O)] H=rf4 (x) (x) m (dx; ap, b,) .

If m(dx; apa,) is a slowly increasing measure for every a, then M, is also said to be
slowly increasing.

4. Homogeneous random current: spectral representation
A translation r,T: x -+ x + h induces a translation o-, of p-vector fields in the follow-

ing usual way,

(4.1) (o, *&4p) (x) = dih [',O (x+ h)].
By the identification (2.3), we can easily see that dTh is just the identity mapping. Thus
we have

(4.2) (ch,*p) (x) =),(x+ h).
Let U, be a random current. Then we shall define erjU, by

(4.3) (O¢ Up) (4)n-,) = Up (°h )n-) = Up (a-h4n-p) -

The functional p(4),, 4',) = [UI()), UO(iPA)]H iS called the covariance functional of U,.
The function defined by
(4.4) p (4, ; a., b,) = [(U, a.) (4), (Up, b,) (O'] H

is called the covariance bilinearform of U, and is a generalization of the form Robertson
used in his theory of turbulence. If the covariance functional of OrhU. is independent of
h, then U, is said to be homogeneous. If this condition is satisfied, the covariance bilinear
form of achU, is independent of h. The converse is also true.

As in the theory of stationary stochastic processes we have the following theorem
of spectral representation.
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THEOREm 4.1. The covariance bilinear form of any homogeneous random current is
written as

(4.5) p (', 4A; a,, b1,) =f Vq4 (y) 64' (y) m (dy; ap, bp)

where m(A; ap, bp) is a positive definite bilinearform in (bp, ap) and m(A; ap, ap) is a slow-
ly increasing nonnegative measure. Conversely the p defined by (4.5) is the covariance bilinear
form of a homogeneous current.

Remark. #4 is the Fourier transform of 4, that is,

(4.6) (10) (Y) = fan -ilr(-T Y)+0(Y) dy.

For a p-vector field 0,(y), we define

(4.7) (4,,) (y) =§ ,, .... ,p(y) ei, A** eip.
[Iil

THEOREM 4.2. A homogeneous random current U, is the Fourier transform of a slowly
increasing random measure Mp, which is called the spectral measure of U,, that is,

(4.8) UP (IO-p) = Mp= Mp(04-,).
We can prove this theorem easily by remarking that (U,, a,)(4) is a stationary ran-

dom distribution [4] with a multidimensional parameter.

5. Homogeneous random current: canonical decomposition
In this section we shall discuss a decomposition of a homogeneous random current Up

into an irrotational current, a solenoidal current and an invariant current. This de-
composition will be called the canonical decomposition of Up. We shall start from the
spectral representation. By using this, we can show the existence of the limit

(5.1) MU,(0"_) = lim !f ..--bf q,,Up(,Op) dh1 ... dhR.
A -*,wAfA A_

We say that U, is invariant or unbiased according to whether MU, = Up or 0. An
unbiased homogeneous random current is called irrotational or solenoidal according to
whether dU, = 0 or 5U, = 0. We set

(5.2) M (A) =Mp(An 10)), M;(A) =M,(A-I0)}).
Then we have M#U, = A;MHp.
THEOREm 5.1.
(a) A homogeneous random current U is irrotational if and only if M,= 0 and

y A Mp(dy) = 0.
(b) U is solenoidal if and only if Mp = Oandy Mp(dy) = 0.
The essential point of the proof is as follows.

(5.3) d Up (n-,-1) = (-1) P+1 Up (dft_p-_) = (-1) '+'M, (qdfn-1-1)
= P 1Mp (i2s y &nl )

Now we shall introduce two random measures Mp and Mp by

4Mdy =
y I[y,IMp M(dy) =Y y I\pd
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THEoIEm 5.2. U, = 4Mi, Up = /Mp and Up = Mp = MU, are respectively
irrotational, solenoidal and invariant, and we have

(5.5) U,= Up+ Up+ Up.
By using the following identity

(5.6) a, = + '=Y (y va) + y v (y A ap)a, a'=0;

we can prove the theorem.
Now we shall define W,(4,._,) by the following procedure,

{e-2ir(, v)V-1 +2ir (x, y) if Iy < 1,

(5.7) G (x, y) y12

e-2'(x, v) if y 1 21;Iy12 ~ ~ i iI 1

(5.8) G (0p, y) = [fG (x, y) oi, *--ip (x) d x] ei, eip;

(5.9) Wp A+-)=4r2M [G (*bn2, Y) I -

THEOREm 5.3.

(5.10) d5W,= U, adWp= Up.
Therefore the canonical decomposition is written as

(5.11) Up= d bWp+ SdWp+ Up.

6. Isotropic random current

To begin with, we shall introduce some preliminary notation. Let G be the whole
group of orthogonal transformations (with determinant ± 1) in X = Rn. We can carry
out the same procedure for g E G as we did for the translation Th in section 4. Corre-
sponding to (4.1) we have

(6.1) (a-,,p) (X) = dgTo[p (g - X)].

Although dr, here is not the identity mapping, we can easily see that dr0 = g-. There-
fore, we have

(6.2) (ag - 00(x) = g- op(g X)s
where g-lq, is defined by

(6. 3) g-lsip =l oqi, ipg-I ei, g-I eip..
[il

Generalizing this transformation a,, we define a on a current up,
(6.4) (ugUp) (4-n-p) = up (ofagqb-,) = up [g40-I (g lx) I .

ao is clearly commutative with the differential operators d and b.
Now we shall define an isotropic random current. A homogeneous random current is

said to be isotropic, if the covariance functional of aoUp is independent of g E G. Even
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if we replace the covariance functional by the covariance bilinear form in the above
statement, we shall obtain an equivalent definition.

Let U, be an isotropic random current. Since U, is homogeneous, the covariance bi-
linear form is written as

(6.5) p (4, 4'; a,, bp) = fd04)q4'm (dx; ap, bp)

by theorem 4.1. Since U, is isotropic, we obtain

(6.6) m (g * d x; g * a, g - b,) =m (dx; a, b,) .

By making use of this property we obtain the following theorem.
THEoREm. 6.1. In an isotropic turbulence the m(dx; ap, b,) in (6.6) is expressible as

(6.7) m (dx; a,, b,) = (0, b,\ a,,) dOFi (d r)

+ (O ^ b,,O ".a,,) dO F,(dr) + (b, a,) Fo (dx)

where r = I x |, 0 = x/r, x # 0, dO is the surface element of the unit sphere, F1 and F2 are
both slowly increasing nonnegative measures on (0, o-), and Fo is a nonnegative measure
such that Fo(A) = Ofor 0 { A.

Conversely, p(o, 4'; a,, b,), if determined by m(dx; a,, b,) of the form (6.6), is the co-
variance bilinearform of a certain isotropic random current.

Remark. According to whether p = 0 or p = n, the first or the second term in (6.7)
will disappear.
We shall sketch the proof. First we consider the case in which m(dx; a,, b,) has a

continuous density f(x; ap, b,). Here f(x; ap, b,) is a positive definite bilinear form in
(b, a,) and is invariant in the sense f(gx; ga, gb,) = f(x; a,, b,). If we introduce
F(x; t,*,*, {p, r, -*, qp) = f(x; ti A ..* * A ,, ....A* 71,), for real 1-vectors ti, 7,,
we obtain a function which is linear in {i and in iqj and skew symmetric in each of I {i}
and n,). Since F is invariant under orthogonal transformations, it is a function of
(ti, i,), (ti, tij), (vi, ,), (x, (i), (x, vj) and (x, x). Using these properties we can prove
thatf can be written in a form similar to (6.7).
We can discuss the case of general measure by approximating it by measures with

continuous density in Helly's sense.
The following theorem shows that the decomposition in (6.6) corresponds to the

canonical decomposition (5.5).
THEoREm 6.2. In the case of an isotropic random current U,, Up, Up and U° are all iso-

tropic and orthogonal to each other in H. The m-measures corresponding to these three
parts are respectively the three parts in the decomposition (6.7).

7. The case of p = 1

In the case of p = 1, the decomposition (6.7) becomes simpler,

(7.1) m (dx; a, 9) =I 0,[ZzeRd0Fi (d r)+ ( v- 0,,A) F.(dr) +Fo(dx) I

where a = age, and , =j ,.ep.
In the case of isotropic 1-vector fields the measures Fi and F. will be bounded.
(a) Robertson's isotropic turbulence. This is an isotropic random 1-vector field in 3-
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space. Our decomposition (7.1) is essentially the same as S. It6's formula (2) but is some-
what simpler.

(b) The gradient of P. I2vy's Brownian motion with a multidimensional parameter.
Let B(x) be Levy's Brownian motion with an n-dimensional parameter [5]. Then we have
(7.2) [B(x),B(y)]H=I(lxl+lyI-Ix-Yl).
Therefore, by simple computation we can obtain the following expression of the covari-
ance bilinear form of the gradient dB of B,
(7.3)P 0Ca,P fp(+,A, as O Rn0 (X) -4if (x) m (d x; a, ,B),
where

(7.4) m (dx; a, ,) = C., a,,,@O,d Dr-("1) d r,
F. P

where r = |xI, e = xlr, and Cn is a positive constant. This is the special case of (7.1)
in which

(7.5) F,(dr) =C. r-("1-)dr, F.=Fo=°-
Since C.*r("1I)dr is an unbounded measure, dB is a random proper current, that is, a
random current that is not itself a random 1-vector field. Since F. = Fo = 0 we see that
dB is irrotational.
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