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THE ZEROS OF A RANDOM
POLYNOMIAL

J. M. HAMMERSLEY
OXFORD UNIVERSITY

1. Introduction
If the coefficients of an algebraic equation are subject to random error, the roots of

this equation will also be subject to random error; and it is natural to enquire how the
latter errors depend upon the former. This is clearly a question of some practical impor-
tance. It arises not only when the coefficients result from experimental data, but also,
for example, when the coefficients are rounded off to some specified number of decimal
places before commencing a numerical solution. Yet it is a question which has so far re-
ceived rather scant attention, apart from the treatment of three special instances.

In the first of these special instances the equation is of a particular type, namely the
characteristic equation of a variance-covariance matrix pencil whose elements are real
and distributed in Wishart's form. Under these circumstances the roots are all real, and
their joint sampling distribution is well known. Amongst the several textbooks, which
discuss this question, the reader may consult Wilks [19].

In the second special instance the equation is linear and the coefficients are real and
distributed normally (though not necessarily independently). The distribution of the
root of this equation is therefore that of the quotient of two real correlated normal vari-
ates. Geary [9] gives the required result. This special instance arises in bio-assay work
under the name of Fieller's theorem (see pp. 27-29 in Finney [8]). The interpretation
of this theorem is, however, open to question, and I discuss this matter further in sec-
tion 9.

In the third special instance the equation is of general degree and its coefficients are
real and distributed independently and symmetrically about zero either

(i) normally, or
(ii) rectangularly, or
(iii) discretely into the pair of classes ± 1.

Littlewood and Offord [14], [15] enquired how many real roots on the average such a
random equation might be expected to have, and they gave asymptotic approximations
for the result valid for equations of large degree. Kac [12], [13] improved their results
by showing that the average number of real roots of an equation of degree n - 1 is

4f' 1 h2)1/2 214
(1.1) N = - dx<3logn+ -

where

(1.2) h_
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when (i) applies; and for both (i) and (ii) Nn - (2/r) log n as n -- c. For the
latest results, see Erd6s and Offord [20]. Littlewood and Offord noticed that the
three cases (i), (ii), and (iii) led to results which were (as far as they could tell
from their approximations) all of the same order of magnitude for large n. This is
not surprising in view of the result obtained in section 6 that the average number
of real roots depends only on the distribution of the real and imaginary parts of the
polynomial and its derivatives (regarding its argument as fixed); for by the central
limit theorem these four parts will (under wide conditions) be asymptotically normal.
However, as Kac [13] discovered, it is not easy to put this reasoning into rigorous terms;
and we shall not attempt it here.

Some quotations from the papers of Littlewood and Offord and of Kac indicate certain
differences of approach in the present article. From [15]: "In 'selecting' a random equa-
tion of a particular given degree n (for example, n = 10) it is natural to treat each coeffi-
cient on the same basis." This is a condensation of a longer passage in [14], where two
players are betting on the number of real roots of an equation selected by a referee, who
"would presumably treat each coefficient on the same basis." Similarly from [13]: ". . .

let [the coefficients] be independent random variables each having a(u) as its distribu-
tion function." It is, of course, reasonable to treat the coefficients as independent and
having the same distribution function when the problem is posed as one of pure mathe-
matics; and, even when entering upon a wider sphere than that of pure mathematics,
it is doubtless wise to regard the simple case of similarly distributed coefficients as a start-
ing point in one's investigations. But in a problem of applied mathematics it is far from
likely that the coefficients will be independent or have similar distributions. My own in-
terest in the problem sprang from a question put to me concerning the precision of an
estimate of the growth rate of an insect population, which growth rate is the root of an
algebraic equation whose coefficients are determined from experimental data in a manner
that certainly vitiates the assumption of independence. So in the present article I allow
the coefficients to be distributed in a quite general manner. Although I have been able
to determine a formal expression for the distribution of the roots in this general case, I
am still very far from having solved the practical problem; for my result involves the
parameters of the distribution function of the coefficients, and except in a trivial special
case I cannot at present see how to "Studentize" the result in such a way that these
parameters may be replaced by their estimates. Concerning this problem of "Studentiza-
tion," the reader may care to consider the papers by Creasy [41 and Fieller [7].

Another result of attacking the problem from the point of view of generally distributed
coefficients was to throw light upon certain essential points of difficulty in the problem.
In [13] Kac writes: "Upon closer examination it turns out that the proof I had in mind
[in [12]] . . . is inapplicable to the [case when the coefficients have a discrete distribu-
tion].... This situation tends to emphasize the particular interest of the discrete case,
which surprisingly enough turns out to be the most difficult." Something more than this
is in fact surprising: namely, that the simplest case arises when the coefficients are al-
lowed to assume complex values, the joint distribution of all real and imaginary parts
having a continuous frequency function with finite moments. When any discontinuities
are introduced into the distribution function of the coefficients, the corresponding distri-
bution of the roots is in danger of acquiring discontinuities as well. Thus when all real
and imaginary parts are distributed normally with strictly positive variances (that is
to say in nondegenerate multivariate Gaussian form) the distribution of the roots pos-
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sesses a frequency function over the complex plane; but when the coefficients are made
real (so that the distribution function of the imaginary part contains a step function) the
distribution function of the roots, instead of being a well-behaved surface distribution in
the complex plane, partly gathers itself up into a line distribution on the real axis, so
that a frequency function no longer exists over the whole complex plane. The results I
have just quoted upon normally distributed coefficients will be discussed in sections 8
and 9. Also in the case of normally distributed coefficients, I shall fulfill the requirement
in [12]: ". . . the problem of the exact determination of the average distribution of real
roots on the real axis will, of course, depend on a more delicate treatment."

In all these three special instances, cited above, the preoccupation is with real roots.
As soon as we attempt to tackle the more general enquiry, which embraces complex
roots as well, we come up against a difficulty. In order to give the joint distribution of a
set of roots it is necessary to keep track of each individual root. When the roots are real
we may do this (as is done in the first special instance) by arranging them in order of
magnitude. However, while it is possible to arrange complex numbers in an order of
magnitude by means of appropriate conventions, it seems difficult to arrange them in an
order which is continuous with respect to the geometry of the complex plane. It is con-
ceivable that, by some device or other, one might manage to label individual complex
roots in such a manner that their resulting joint distribution possesses a coherent and
useful interpretation; but I have not succeeded in doing this, and I am indeed doubtful
whether it is possible. Alternatively, one may abandon the conventional idea of a joint
distribution. In this article, I have replaced it by a somewhat similar concept, which I
shall call a condensed distribution. We shall see in due course that this concept leads to
a particularly simple solution of the problem.

Another branch of investigation, connected with the present problem, is followed by
Erdos and Turin [5]. They consider the uniformity of the distribution of the roots; they

prove that, if N(a, ,) denotes the number of zeros of g(z) = cjzi = 0 which lie in
i=o

the sector 0 _ a < arg z < ;3 _ 27r, then

(1.3) |N(a, )- a) n| <16 lnlog ]I 2r -\/T~~~~V cocn
2. Notation

Capital German letters will denote finite-dimensional Euclidean spaces. Small Ger-
man letters and small boldface letters will respectively denote subsets and points (col-
umn or row vectors) of these spaces. Capital boldface letters will denote matrices. Italic
letters will denote scalars (real or complex according to the context). It will be con-
venient sometimes to regard a complex scalar as a two-dimensional vector; and we utilize
the foregoing conventions by writing z = x + iy or z = {x, y} according to require-
ments. A dagger attached to a boldface letter will denote the transposed matrix or vec-
tor. A prime attached to a German letter will denote the complementary set (with re-
spect to the Euclidean space containing the set in question), while a prime attached to
an italic or boldface letter will denote a derivative. x will denote the length of a vector
x, while XI will denote the determinant of a (square) matrix X. An asterisk attached
to a letter will indicate that the quantity in question is a random variate.
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Sets of points will always be Borel sets, either by hypothesis or as the result of proofs.
Except when the contrary is explicitly stated, functions will always be single valued. All
many-valued functions will be finitely many valued. All functions will be Borel measur-
able (except when explicitly stated) either by hypothesis or as the result of proofs.

3. The extended Slutzky-Fr6chet theorem

The extended Slutzky-Fr6chet theorem is the principal tool of this paper. Before enun-
ciating it, we recall some familiar properties of one-valued random variates.
A random variate x* in a space 3E is defined by a real nonnegative countably additive

set function
(3.1) F [X] =Pr{x* E XI
defined for all Borel sets X of X and satisfying F[R] = 1. F[X] is called the probability
set function of x*. In the particular case when T consists of all points whose coordinates
do not exceed the corresponding coordinates of a prescribed point x, we write F[X] =
F(x), and call F(x) the cumulative distribution function of x*. Evidently F[X] uniquely
determines F(x), and the converse is a consequence of Lebesgue's theory of integration.
Thus we can uniquely specify a random variate by means of its cumulative distribution
function. If 4*, v = 1, 2,*- *, is a sequence of random variates in X specified by the re-
spective cumulative distribution functions F,(x), and if lim F,(x) = F(x) except per-

haps at the hyperplanes of discontinuity of the cumulative distribution function F(x),
we say that x*4 converges in distribution to x* and write dlim 4*v = x*. If y = y(x) is

a (one-valued Borel-measurable) function carrying points x of X into points y of another
space 2, thefunction of a random variate y(x*) is defined to be the random variate speci-
fied by Fr1(")], where y-1(p) is the set of all x satisfying y(x) E 1. Cram6r [3] gives
a proof that this is a consistent definition, that is, that F[yN-'()] is indeed a probability
set function on 2).
We now consider the terminology for many-valued functions of a random variate

which will be required in the extended Slutzky-Frechet theorem.
An n-valued function y(x) is a set of n points (not necessarily distinct) in 2J corre-

sponding to each given point x of X. An indexing of y(x) is a system of n one-valued
functions yj(x), j = 1, 2, * * *, n, such that, for every given x of X, the n points y(x) coin-
cide with the n points yj(x) with due regard to multiplicity. If there exists at least one
such indexing in which each yj(x) is a Borel-measurable function, then y(x) is called an
n-valued Borel-measurable function, and the indexing in question is called a Borel-meas-
urable indexing. Notice that an n-valued Borel-measurable function may possess, besides
this Borel-measurable indexing, other indexings which are not Borel measurable. The
n-valued function y(x) is said to be continuous at the point xo if, given any prescribed
e > 0, we can find

(i) an indexing y,(x) of y(x),
(ii) a number t7 = X (e, xo) > 0, and
(iii) a permutation Wi1, 7r2,* 7*r, of the integers 1, 2, n

such that

(3.2) YI (xo) -yrj (X) <e
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simultaneously forj = 1, 2, * *, n, whenever x satisfies x - xo < '. The permutation
in (iii) is allowed to depend on e, xo, and x. Then n-valued function y(x) is said to be
almost certainly continuous with respect to the one-valued random variate x* if there exists
a Borel set Fo satisfying F[go] = 1, where F is the probability set function of x*, such
that y(x) is continuous at each xo E 0o. If yj(x), j = 1, 2, * , n, is a Borel-measurable
indexing of an n-valued Borel-measurable function, and if x* is a one-valued random
variate with a probability set function F[g], the one-valued random variate in 2) speci-

n

fied by the probability set function n' S F[3Y/1()] is denoted by y(x*) and called the
i-i

condensation of the many-valued random variate y(x*). Evidently this definition is in-
dependent of the particular Borel-measurable indexing used therein.
We can now state the extended Slutzky-Frechet theorem.
THEoREm 3.1. If y(x) is a given n-valued Borel-measurable function which is almost cer-

tainly continuous with respect to a given random variate x*, then dlim x* = x* implies
dlim y(x*) =-(x*).

See Hammersley [10] for a proof of this theorem.'
The motive for condensing a many-valued random variate is to overlook its indexing,

since the indexing is an extraneous artifice for handling the different values. In some re-
spects, however, condensation is too drastic a way of disregarding the indexing. To ob-
tain a less extreme concept consider any given Borel set t in 2. For an indexing y,(x),
let n* = n(x*) denote the number of values of j such that yj(x*) E t. Clearly n* is
independent of the particular indexing used. The moment-generating setfunction is defined
to be M(t, j) = E[exp (tn*)]. The greater flexibility of this concept is paid for by in-
creased mathematical difficulties; for, although M(t, p) is a set function of P, it is not an
additive set function. The mathematical theory of nonadditive set functions is not well
explored.

The equation

(3.3) M(t, l) = + et f )]dG(yi, Y2, y.)

provides a formal expression for M. Here G is the joint cumulative distribution function
1 I take this opportunity of correcting a flaw in the proof of a preliminary lemma (theorem 1 of f10]).

The flaw is concealed by the notation used for the joint determination G, which in fact depends on v, 8,
and e. Instead of the final relation
(i) G[3o] > 1-6, Y 2 Po(6),
it would have been better to write
(ii) G(joly, 5, el > I -e, V _ Po(a, e) .

What had to be proved was the existence of some G, depending upon v but independent of a and e, such
that
(iii) G[joly] > 1 -e, v 2 vo(a, e) .

The original proof established (ii) but not (iii). However a reductio ad absurdum argument suffices to
yield (iii). For suppose the desired result false. Then there exist fixed strictly positive 8, e such that
(iii) is false for infinitely many v for every joint determination G. Since 6, e are fixed, (ii) provides the nec-
essary contradiction.
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for the indexing yi(x*), y2(x*), .* *, yn(x*); and the product of the integral signs is to be
expanded formally before integration. Thus for n = 2

(3.4) M(t, 1) = ffdG(yi, y2) + e' ffdG(yi, y2)
v,E ' ,E V1e'
Y2E 4' VY2E

+ e ' fJdG (yi, y2) + e2t ffdG(yi, Y2).

Y2E ' Y2E

Indeed, the justification of (3.3) is apparent as soon as the formal expansion is made.
Theorem 3.1 is a special case of
THEOREm 3.2. If y(x) is a given n-valued Borel-measurable function which is almost cer-

tainly continuous with respect to a random variate x*, if dlim x* = x*, and if M(t, p) and
p4 co

M,(t, p) are the moment-generating set functions of y(x*) and y(x*) respectively, then, for
every open set ), lim M,(t, t) = M(t, tq).

This theorem follows without difficulty from the result established by Hammersley
(see 1. 10, p. 256 in [10]). The requirement that p should be an open set can be relaxed
somewhat; roughly speaking, all that is needed is that M(t, j) should not be a discon-
tinuous function of p at p, but a precise formulation of this idea is rather cumbrous.

Evidently the probability set function of y(x*) is the coefficient of t in the expansion
of M(t, p)/n in powers of t.

4. Borel measurability and continuity of the zeros of a polynomial
In this section we prove that the zeros of a polynomial are Borel measurable and (with

a single exception) continuous functions of the coefficients of the polynomial.
LEMMA 4.1. There exists a fixed indexing z1, Z2, ** Zm of any given fixed set ofm distinct

points in the complex plane such that

(4.1) z- e'i/lI > Z2- ei/I >.. > Zm- ew/il >0

for all sufficiently large positive integers s, say s > So(ZI, Z2, * Zm).
In enunciating this lemma we make no attempt to claim that So is a Borel-measurable

function of ZI, Z2** Zm. The reason for this remark will appear during the proof of theo-
rem 4.1 below.
Lemma 4.1 effectively states that an ordering can be set up for the m points, and it is

therefore enough to consider the case m = 2. The result is obvious when zi and Z2 are at
different distances from z = 1. When z1 - 1 = Z2 - 1 X, z is the name given to the
point with the smaller imaginary part, except that, when the two imaginary parts are
equal, z1 is the name of the point with the larger real part.
THEOREm 4.1. There exists an indexing zl, Z2, z,n of the zeros of the polynomial

n

: cjzi, where cj= a, + ibj, such that,for each k = 1, 2, *, n, Zk = {Xk, yk} is a one-
i=o
valued Borel-measurable function of c = {ao, a,, an, bo, bil bn}. Moreover, for this
indexing Zk - I| is a nonincreasing function of k.

First and until further notice assume that c is fixed and cn = 1. Then the zeros of

cjzi are fixed and all finite. Suppose that there are m distinct zeros amongst them,
i-o
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and use the indexing of lemma 4.1 to name these distinct zeros zZ',* Zm. Since z1, Z2,
' * * Zm are uniquely determined by c, the function SO of lemma 4.1 is a function of c, say
So(zl, Z2Y * ** Zm) = S(c). We have not yet proved that z1, Z2,* *, Zm are Borel-measurable
functions of c, so that we cannot and do not assert that S(c) is a Borel-measurable func-
tion of c. This explains why we did not bother to prove that SO was a Borel-measurable
function of Zl, Z2,' "** Zm.

For each integer s = 1, 2,- define numbers C38 by means of the identity in z
n n

(4.2) E Cj ( Z+ evi/s) i = CjJ Zi.
i=O i=0

For t = 1, 2,-*, n let ut be an arbitrary real number satisfying 0 < ut < 1. For s, t =
1, 2, - define Z,t as a function of u = {ul, u2, , un by means of the recurrence rela-
tions

0 ut for t < n,

(4.3) Z.t n-I

E CjeZ., t-n+j for t>n.
Then define

(ZJTt+l for Z,t oOX
(4.4) U.t ={Z:t

t0 for Z. = 0.
Finally write

(4.5) f(c) = lim fJiflim (eti/+ Ut) du,du2 .. du,,.
a-+o fo o ..of t X_ xm

We shall prove that f(c) exists, is a Borel-measurable function of c subject to Cn = 1,
and equals z1.
By (4.2), c. = 1 implies Cn. = 1. Hence the linear difference equation (4.3) has the

solution

(4.6) Z.t= EPk(t) (Zk- ewi/)lt t 1, 2,
k=1

where Pk(t) is a polynomial in t whose coefficients are (not necessarily Borel measurable)
functions of u, for the distinct roots of the right-hand side of (4.2) are z = zk- exp
(rils), k = 1, 2,---, m. The polynomials Pk(t) have degree less than n and are all
identically zero if and only if u = 0. When u 0 0, let K be the smallest value of k such
that Pk(t) is not identically zero. Consider any fixed value of s _ S(c). By lemma 4.1

(4.7) | ZK- evl/J > ZK+1 - evi/l > ...> Zm elI >0

Hence, from (4.6),
ZKR- evi/l foru# O,

(4.8) lim U.t=
t >C t 0 foru=0.

Now K is a function of u, but we show that K = 1 for almost all u. From (4.3) and (4.6)

(4.9) U t = ,Pk(t) (Zk- eli/8) X t=1, 2,**, n.
k-I
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There are altogether n coefficients in all the polynomials Pk taken together. If any one
of these coefficients is zero, (4.9) shows that there is a linear relation between ul, u2,* * ,
u1; that is, u lies on a hyperplane. Hence, except perhaps when u lies on one or more of
n hyperplanes in the unit hypercube, none of the polynomials Pk is zero. Hence,
from (4.8),
(4.10) f J lim ( U, + eri/s) duidU2 * du, = z1, s5 2S(c).

fo o fo t.OD

By (4.5),f(c) exists andf(c) = z1 for each fixed c subject to c" = 1. It remains to prove
that f(c) is a Borel-measurable function of c. We therefore allow c to vary subject to
the restriction cn = 1. Evidently, by (4.2), the Ci8 are Borel-measurable functions of c
and s; hence, by (4.3) and (4.4), U8. is a Borel-measurable function of c, s, and u. The
result follows from (4.5), since the limit and the integral of Borel-measurable functions
are Borel measurable.

Next we remove the restriction cn = 1. If cn $4 0, we may divide all the coefficients of

cjzi by cn without affecting zi. If cn = 0, we definez1 = {+, + o,1. It follows that
i-o
Z= {xi, yi} is a Borel-measurable function of c without restriction upon c.

n-I
For the next zero, we repeat the foregoing process for the polynomial : yjzi, whose

i-o
n

zeros are those ofE c3 zi excepting one zero at z = zi. The yj are defined by
i-o

(0 for j=n
(4.11) z=

cj+l- z1yj+l for j=n-1, n-2, ,1, 0,

provided c. 0 0, and by yj = cj, j = 0, 1,*, n - 1, if c. = 0. Since a Borel-measur-
able function of a Borel-measurable function is Borel measurable, the yj are Borel-

measurable functions of c. Hence the next zero ofE cjzi is a Borel-measurable func-
i-o

tion of c.
Further repetition of this process provides the required indexing and shows that the Zk

are Borel-measurable functions of c; the method of procedure allied with lemma 4.1
shows that Zk- 1 is a nonincreasing function of k.
LEMMA 4.2. Let n be a given integer greater than zero, and let R and el be given real num-

bers satisfying 0< ei_ 2 < R < x. Define

(4.12) Ej+i ((2R) ' i=1,2, ,n.
Let

(4.13) Pn(z) e P,jzi= ° , Qn z) e qnjzi=0 Pnn= qnn= 1
i-O i-o

be two algebraic equations (with complex coefficients) having no roots outside the circle z =
R. Then, if
{A 14pAX - qn._ n 9 e+ j =.e- 1, I
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it is possible to arrange the roots a of Pn(z) = 0 and the roots ,B of Qn(z) = 0 into some set
of n pairs (aj, ,j) such that
(4.15) aj- 3jI<ej, j=1,2,--, n.

Since J _ el/2R = e2 > 0 it is clear from (4.12) that j >- 2 > E3 > . . . > e,+l > 0;
hence

(4.16) 2ej+1 < 2i-' (2ej+1) , jI= 1, 2, , n

IfX is any root of Pn(z) = Oor of Qn(z) = O we have I X < R, and hence

(4.17) XA : 2;5 Rk =i R <<2Ri
k-0 'k-0

since R 2.
Let P, be any specified root of Qn(z) = 0. Then

(4.18) | I(O.-aj) I=IP.(P.) I P.(P.) -Q.(P.) = - qj) pi

5en+1 OnIpn < 2e.+,R'n
i O

by virtue of (4.14) and (4.17). It follows that there is at least one root of P,n(z) = 0,
which we denote by a., such that

(4.19) 1P.- a.I < (2E,+D)l/IRR
Now define the polynomials Pn_1(z) and Q,n-l(z) by the identities

nt-l
P.(z) a Z - a.)P.-,(z) e Z - a.) p¢-1. jZz P.-1,-lI

i-O
(4.20)

Q.(z) = ( Z #n)Qn-l(z) a( Z n) qn-1, izi, qn-1,n-,=1
i-0

The roots of P,.1(z) = 0 and Qn.-l(z) = 0, being a subset of the roots of Pn(z) = 0 and
Qn(z) = 0, do not lie outside the circle z = R. Upon identification of the coefficients
in (4.20),

(4.21) (P,-,,j,- ,;) = (Pn j+1l qn, j+1) +an(Pn-li j+1 q,-j j+l)
+ (a.- .) qt-, i+

Now ± qn-1, j+1 is the sum of the products of the roots of Qn_l(z) = 0 taken n - j - 2
at a time, so

(4.22) |q- il5 ( .+ 1) R"-i-2.

Take the modulus of (4.21) and employ (4.14), (4.19), and (4.22) to yield
(4.2 3) IP.-i,, -q5--, 1 <e-.-,+RIP.-1 j+1- q-I, +iI

+ (2e.+,) '/"R ( )R-i-2.
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In this inequality write j + k for j, multiply through by Rk, and sum over 0 < k <
n - j - 2. This yields

n-;-2n-3

(4.24) z RkPk-1, j+k- qn-1, j+k < Rk+IPn-1, j+k+l %-l, j+k+1l
k-O k=0

n-j2 k(n- )+ 1:jnj +(c., /R--

the first sum on the right-hand side having the upper limit n - j - 3 instead of n -
j - 2 since Pn-1, n-I = qn-1, ,1 = 1. Cancelling like terms from each side of the in-
equality, we find

(4.25) IPn-1 i- qn-1, ji
<

en+lRk+(j- 1) (2-n+l) /nRn-i-

< :In+,, + k2 ++lI/R- n1
k-0

. 2En+l3n-2R + (2'En+l) I/n 2R)n-I

. 2,E+R-( (2Ee, I/n ( 2R) n- IR)nf/

upon using (4.17), (4.16), and (4.12). But (4.25) is simply (4.14) with n - 1 for n. Hence
we may repeat the process successively until, for any given order of the roots 13j, we have
picked out the roots a, in such an order that

(4.26) ,Bj-aji < (2Ej+D) /liR <ej
by virtue of (4.19), (4.12), and R > 2.

The proof given above follows the general lines of an earlier attack by Coolidge [2],
but care has been taken to ensure the pairing of the roots. For our purposes it would not
have sufficed to show that every root of Pn(z) = 0 is near some root of Qn(z) = 0 and
vice versa.

n

LE1M.A 4.3. None of the roots of the equation g(z) - cjzi = 0 lie outside the circle
i=o

Zz = 1+ M/L, whereL= Cn andM = max cj.
0O!j<n

For suppose, on the contrary, that g(zo) = 0 and H =zo > 1 + MIL > 1. Then

O0= | c;zoi _LHn-_M ,: Hi = LH--M (HSI- 1) /(HH-1) . SinceH > 1, we30i-o i-o
deduce 0 > L(H - 1) -M(1 -H-n) > L(H - 1) - M, and thence the contradic-
tionH 1+ M/L.

TirEoREm 4.2. The n-valuedfunction consisting of the zeros of the polynomialE c,zi = 0
i-0

is continuous at any point c such that cn #1 0 and Cn.1, C.-2,- *, co are finite.
Suppose e > 0 is prescribed. Consider any fixed c such that cn $- 0 and cn.1, C,2,

co are finite. Choose 5 > 0 so that
n-1

(4.27) e>5>O> I

cnl_i,aI Cjl<<a .
i=o
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Define
/4e+lyn!

(4.28) 17=17(e, c) =j3 (.24)
Let

n n
(4.29) g(z) = czi, h(z) = d,zi, Ic-dI <7 .

j-o i-o

Then

(4.30) Ic,-d,l<77.
In view of the definition of continuity in section 3, it is enough to show that the zeros of
g(z) and h(z) can be arranged in pairs such that the distance in the complex plane be-
tween the two members of any pair is less than 5.
Lemma 4.3, in conjunction with (4.27), (4.28), and (4.29), shows that none of the

roots of g(z) = 0 and h(z) = 0 lie outside the circle IzI = 1 + (&1 + tl)/(b - q) <
2/52. In the notation of lemma 4.2, we takeR = 2/62 and el = 6. This ensures 0 < el _
2 _ R < c. The roots of g(z) = 0 and h(z) = 0 lie inside the circle z = R. Write
pnj = Cj/Cn and qn, = djldn; so that pnn = qnn = 1, and Pn(z) = 0 has the same roots
as g(z) = 0 while Qn(z) = 0 has the same roots as k(z) = 0. Now, for 0 _ j _ n -1,

(4.31) Ipni-qnj -= cj [ cn+ (dn- cI -c. [c+ (dj- cj)]I ~c. [c.+ (d4- c.) I
< cj(dn- c,n) I di - c l
= cn[ c.+ (dn-cn) I c.+ (d -Cn)

<
-1

4 < 2X7
=5(6-17) -17= 53

by virtue of (4.30) and (4.27) and 5 _ . Finally, from (4.12),
(4.32) log ej+l = j log Ej- j2 log (2R) .

Multiply this equation by n!lj! and sum over 1 < j < n, to yield

(4.33) logen+,=n![loge,_ log(2R))} ( l!

2n! [log el- log ( 2R) -I(j-i1)! = n!1 [log el-2 e log ( 2R)]

2 n! log (24e ) = log (2a-)

The result now follows from (4.31), (4.33), and lemma 4.2, since the ej form a decreas-
ing sequence.

5. Real isomorphs of complex matrices

Any complex matrix Z can be expressed in the form Z = X + iY, where X and Y
are real matrices. We define the real isomorph of Z to be

(5.1) =(X -D1
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Wedderburn (see p. 100 in [18]) uses this device in the study of Hermitian matrices: a
matrix is Hermitian if and only if its real isomorph is symmetric. We use the word "iso-
morph" in view of the easily verified relations

(5.2) Z1+Z2 = Z1+Z2
z1z2 = Z1z2

which are valid in the sense that, when one side of one of the equations (5.2) exists, the
other side of that equation exists and the two sides are equal. The matrix identity

(5.3) (I I) (X - ) (I -il = (X+iY O i)
implies
THEOREm 5.1. If Z is a square matrix, the determinant of 2 equals the square of the

modulus of the determinant of Z.
We have already mentioned that the complex number z = x + iy may be regarded

as a vector z = {x, y}. Corresponding to the latter form, we shall write dz as an abbre-
viation for dxdy, while dz will represent the ordinary complex differential element. If a
multiple integral in a number of complex variables wi, W2, *, Wm is to be transformed
to an integral in the complex variables zi, Z2,' * zm by means of the relations

(5.4) w,=w3(zl, Z2) * - Zm), j= 1, 2, .. , m,

the appropriate Jacobian c(w1,- wm)/a(zi, * X Zm) will consist, in the usual way, of
the determinant whose elements are awjz/Azk. Let us suppose that, for eachj and k, wj is
an analytic function of Zk when z1, *Z,Zk1, Zk+l, ' , Zm are held fixed. The familiar
Cauchy-Riemann equations assert, for an analytic function w(z) = u(z) + iv(z), that

au d v dw av au dw
(5.5) ax ay dz' ax

=

y
-

dz'

where 9i and a denote the real and imaginary parts of the ensuing expression. From (5.5)
and (5.1), it follows that, if J is the Jacobian matrix of the transformation from dw1..
dwm to dzi... dzm, then J is the Jacobian matrix of the corresponding transformation
from dw... dwm to dzi. dzm. Hence, theorem 5.1 implies
THEOREm 5.2. If

(5.6) dwa ... dw 1=,(W17 ' W ) dz1 ... dZm,

then
(5.7) dw dw = I a (Zl, , Zn) I dzl ... dz.

Further than this, the isomorphism exhibited in (5.2) enables us to construct directly
the analogues of all the familiar theorems on Jacobians, which rest on the ordinary prop-
erties of matrix multiplication. For instance,
THEOREm 5.3. If the variables w * Wm are related to the variables zi, * Zm by analytic

equations
(5.8) F(w1, ,w,., z1, , zm) =0 , j=1 2,*, m,

then

(59) dw... dw = d (F* F.) /ad (F,, F.) dzl. . *m)dzla (Z,, * * * Z.m) d (wj, * I ,
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6. The moment-generating set function of the zeros of a polynomial with general-
ly distributed coefficients
We derive a formula for the moment-generating set function of the zeros of a poly-

n
nomial g*(z) = E c*zi, when the joint cumulative distribution function of the coeffi-

i-a
cients has the arbitrary form

(6.1) W(c) =W(ao, al, *--, an) boy b1, *--,bn),
We first obtain this moment-generating set function when certain restrictions are placed
on W, and then later invoke theorems 3.1 and 3.2 to relax these restrictions. Accordingly
we suppose until further notice that W possesses a continuous frequency function

(6.2) w(c) = Cna0aa*daWbb1c

and that all moments of c* exist.
Let (1 denote the (2n + 2)-dimensional Euclidean space consisting of points c, and 3

the complex plane. For p = 1, 2, , r let dzp be the small rectangle

(6.3) xp,<xxp+ dxp, yp<y<yp+dyp,

where zp = x, + iyp are prescribed. We are going to evaluate the probability that
g*(z) = 0 has precisely one root in each of the small rectangles dzp. The probability will
be written in the form

(6.4) P(z1,, z,)dz1 .dz7.
This expression corresponds to Ramakrishnan's product density [16], introduced in the
treatment of cosmic ray phenomena. However, in Ramakrishnan's work there was a
certain degree of independence between behaviours of distinct quanta; whereas in the
present context we do not enjoy any such simplification because, when one root of g* is
known, the conditional distribution of the remaining roots is affected.

For fixed z = x + iy, the equations

(6.5) 9?g(z) = ag(z) =0

define a 2n-flat fz in G. As z varies, the flats fz develop a twisted regulus r. The generator
of r lying in fz is a (2n - 2)-flat g, with equation
(6.6) 9Rg(z) = Sg(z) = ?g'(z) = 3g'(z) =0.

The Cauchy-Riemann equations provide the reason why gz is a (2n - 2)-flat and not
a (2n - 4)-flat, as one might at first sight imagine.

If g*(z) = 0 has at least one root in each of the rectangles dzp, p = 1, 2,* , r, then c*
must lie at the intersection of the r 2n-flats fe,. If, further, one of the rectangles dzp
(say dz,) contains more than one root of g*(z) = 0, then c* must also lie on ga,. Since
w(c) is supposed continuous, it follows that the probability that each of the dzp con-
tains precisely one root differs by terms of higher order than dz1... dz,. Hence

(6.7) P(zi, -zr)dzi . dzr=fw (c)dao" dandbo. dbn,

where c is the intersection of the fz, for z, E dzp. To evaluate (6.7), we transform from
the coordinate system (ao, a,) *, an, bo, bi,* - *, bn) to the coordinate system (XI, x2,'* * ,
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Xr, ar, ar+,*,* an, YI, Y2,X , Yr, br, br+i, ** bn). The relationships between these sys-
tems are

( 6. 8) g ( zp) = 0 , p = 1 , 2, **-,r .

Now this is the situation envisaged by theorem 5.3. The appropriate Jacobian is accord-
ingly
(6.9) I (g,* g) / O(g, -,g) 2

(*) ( z **, Zr) la ( Co, * I*C-)

g( Z1) 0 0 1 Z ... zr-1 2

o g'(Z2) 0 1 Z

0 0 *...g (zr) / 1 ..z.Zr1
r -I~~~~~~~~~~~~~

= 171 g'( zp) 12/ 1 Zp Z_12.
p=l lSp<q.r

In (6.9) the denominator is to be taken as unity if r = 1. Thus

Hl g'(z,) 12
(6.10) P(z1, , zr) = f p1 w(c)dcr.. dcn.

o(z,)=O; p=l,...,r 1| Zp- Zqj2
1.p<q.r

In (6.10) the conditions defining the range of integration are to be used to express co,*,
cr_i in terms of c, * * *, c. andz,*, z.. The integral (6.10) exists because all the moments
of w(c) are supposed to exist.
We now consider the important special case r = n. The integration in (6.10) will be

with respect to dcn only. Since
n

(6.1 1) g(z) = C. JJ (z-z,),

we have

(6.12) g (zp) = C.J7J ( zP- z,);
i#P

and hence
n

(6.13) pI g' (Z) 12 CcnI2n H Z'_- Z 14.
p 1 igp<q<n

Thus

(6.14) P(z1, Zn) = [ HI - ZqI2]fI c,j2fw(c)dc^.
1.p<q<n

In (6.14) it is supposed that the argument c of w(c) is expressed in the form

(6.15a\nr = 9? Cn Hr , bnr = -3(CnHr ) r = 1, 2, . n.
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where Hr is the sum of the products of -z-- Z2 , -Zn taken r at a time. Since there
are n! permutations of z1, Z2,** zn, we have on combination of (3.3) and (6.14)

(6-16) M(t, j) =f![JLLJ + el f t]P (zl, *--XZn) dzi . dZn.
z1E ' z,E

Another important special case of (6.10) is r = 1. We obtain

(6.17) P(z1) = I g'(z1) 12w(c) dci... dc
g(z,) =0

f g'124, (g, g') dg',
g(zl) =0

where ,6(g, g') is the joint frequency function of the real and imaginary parts of g*(zi)
and g*'(zl). However P(zl)dzi is the expected number of roots in the small rectangle dz1;
and therefore the condensed probability set function of the zeros of g*(z) is

(6.18) F(g) = JP(zi) dzi.

Finally we can remove the restrictions originally placed on c*. For we can find a se-
quence of random variables c*, v = 1, 2, * , such that each c*4 has moments of all order
and a continuous frequency function, and such that dlim c*= c*. Corresponding to

3'-+ "
c*, we can find M,(t, a) or F,(j) as in (6.16) or (6.18); and, when a is open,
(6.19) Mf(t,3) = lim M(t, a), F(3) = lim F (3)

which provides the required set functions corresponding to c*, in accordance with theo-
rems 3.1 and 3.2. In removing the restrictions on c*, we ought to assume (in order to avail
ourselves of theorems 3.2 and 4.2) that c* = 0 has not a positive probability. But if
c* = 0 has a positive probability, there is the same positive probability of an infinite
root of g* = 0; and we can work with the conditional probability given that c*, 0 0.

7. The characteristic functional
The characteristic functional

(7.1) C [0] =E[exp jiE (z) ]

offers a more general approach than the moment-generating set function and the method
of product densities considered in section 6. On the other hand it seems much less trac-
table, and I have been unable to derive any useful results from it; but I present it never-
theless in the hope that the reader may manage to manipulate it successfully. In (7.1),
@(z) is an arbitrary function of z, and z4 are the zeros of g*(z) = 0. We have to express

E 0(4) in terms of g*, and then take expected values in (7.1) with respect to the dis-
j-1

tribution of g*. The first part of this programme can be achieved, at least symbolically,
when 0 is an integral function by using Cauchy's theorem:
(7.2) C [0I =E [ lim exp { (27r) jl1 (z) d log g* (z)}].

R__+0 lIzl =R
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The second part of the programme is however harder, since g*(z) regarded as a function
of z is a deterministic random function whose value is known for all z as soon as it is
known for n distinct values , * . Thus, by Lagrange's formula,

(7.3) g*(kz)* JJ i 3;

can be inserted in (7.2) and the expected value taken over the n-dimensional joint dis-
tribution of g*(tj) for convenient fixed t,. But the manipulative difficulties seem severe.
The characteristic functional reduces to the moment-generating set function for a set

j if 9 is taken equal to -it times the indicator function of j. If g is bounded by a Jordan
curve and A3 log g*(z) denotes the variation of log g*(z) in describing this curve, we
may write
(7.4) M(t,a) =E[exp 2-.LAlog g*(z)

into which (7.3) may be substituted as before.

8. Normally distributed complex coefficients
We shall determine the condensed distribution of the zeros of g*(z) when the coeffi-

cients c* are normally distributed about a mean r with nondegenerate variance-covari-
ance matrix V. The frequency function of c* is thus

(8.1) (2,7r) - V ex/2exp { (c-)tV-l(cr) }

We require
LEMMA 8.1. Assuming conformable partitioning and the existence of the relevant inverses,

and provided A is symmetric,

(8.2) atA'a= atl at2) (All A12)Vl (a)'(A21 A22) a2)
= altAT1lai+ (a2 -A21A-lala)t (A22 -A21A jjA12) 11(a2-A21Aj1a1).

Let

(8.3) AB = (All A12) (B1l B12) =1'"A21 A22)k B21 B22]
so that
(8.4) (A1B1i +A12B21 A11B12 +A12B228 _I(

(8.) (A21B11 +A22B21 A21B12 +A22B22J
= I.-

The upper right-hand corner of (8.4) gives

(8.5) B12 = -AjlAl2B22,
and substitution of (8.5) into the lower right-hand corner of (8.4) gives

(8.6) B22= (A22 -A21A1'A12)Y'.
Similarly the upper right-hand corner of (8.4) gives A12 = - AlIB12B-2, which
substituted into the upper left-hand corner of (8.4) yields

(8.7) A_U' =Bl -B12B22'B21
Since A is symmetric, so is B; and (8.5) gives

(8.8) A21All'= (AlilA12)t= (-B-2BB221)t -B2-2'B21.
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From (8.2), (8.6), (8.7), (8.8)

(8.9) a'tA,l'ai+ (a2-A21AIl,al) t (A22-A21A11'Al2) ' (a2-A2,A,1'a1)
= at (B,,-B12 B2lB21) al+ (a2 +B22lB2al) tB22 (a2 +B2-2B2,al)
= atB lal+ 2altBl2a2 + a4B22a2 = atBa = atAl1a .

LEMMA 8.2. |A| = IA11| IA22 - A21Ai1A121.
This follows immediately from the identity

[I ° ( A11 A12' rA11 A12
(8.10)

-A2,A,,'1 I A21 A22 O A22 -A2,Aj1'A,2 .
Let z = x + iy be a fixed complex number, and define

ZO = (1, Z, Z2, , Z")
(8.11) q = (0, 1, 2z, *n.,z1)

{(zZ).
It is easy to verify that the column vector q defined by
(8.12) q= { Rg, mg', g, ag'J =zc;

and hence the real and imaginary parts of g*(z) and g*'(z) are normally distributed about
a mean 2r with variance-covariance matrix 2V2t. Here and elsewhere Zt denotes the
transpose of 2 and not the real isomorph of Zt. From (6.17) the condensed frequency
function of the zeros of g*(z) = 0 is

(8.13) P(Z) =412nf |g'1212V_ft 1-1/2
exp {- q(q-Zr) t (£VZt) -1 (q-Zy) } dg'

Now identify the matrix 2v2t with the matrix A of lemma 8.1, taking the partitioning
such that An is the variance-covariance matrix of the real and imaginary parts of g*.
Accordingly we take

(8.14) a,=-ioy, a2=g9'-21 ,

so that lemmas 8.1 and 8.2 yield

(8.1 5) P (z) = 4 An I 2 IA22 -A21Ai1A12 Iff (a2+ 21y) t (a2+ lT)
*exp {-lat,Ali1a,- (a2 -A2iA,I1al) t (A22 -A2iA,11`Ai2) -

* (a2 -A21Aj1'al) } da2 .

Put b = a2 - A21Ajja1. Then (8.6) gives, using results from Turnbull and Aitken (see
pp. 175-176 in [17]),

(8.1 6) P (z) = exp { 1-Ia,Ai1a, IB22I/227rnIAi,1I2/2
- f exp {-IbtB22b} (b+ 21y +A2nAl,'a,) t (b+ 2ly+A2,A11'a,) db

=exp t atiAlal I #trace ID)=exp -I4A11a}27rn IA,, Il/2'
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where

(8.17) D = B2-1 + (!,y +A2iAilal)t (zly +A2iAii'a,) .
Since
(8.18) All= 20V2i , A12=A21= 2oV t, A22= i1V21
we obtain
(8.19) D = 21V2- 2iV t (2oV2t) 1ioV

+ [z1Y - 2iV2t(2oV2t)-1oT] [ zi' - uVi0( 2oV20) 10] t

= [ii- (iV2to) (2oVit) -1 o0[HV+ rrtI[ 2l - ( uV2t) (2oVit) -1 io0 t
We have thus established
THEOREm 8.1. If the coefficients c* = Iat, al, , a*, b*, b* , b*} of the equation

(8.20) g* (z) = z (a' +ib;") (x+iy)i= 0
i=0

are distributed normally about a vector mean y with nondegenerate variance-covariance ma-
trix V, the condensed frequency function of the roots of g*(z) = 0 is

(8.21) p(z) p(x, Y) _ exp (io0)t(2oVitY-(20T)- trace (C t),(8.21) ~~~~~27rnjI 2oV2I1/2
where

( 8.2 2) Zo= ( 1 z, Z2 *..zn) z = (0O, 1, 2 z , * * -*, n z 1)),
and

(8.23) 2= i- (2iV 2t) (2oV2t) -12o,
and

(8.24) M=V++ t

is the matrix of second moments of c* about the origin.
In deriving this result we have assumed that V is nonsingular. However, in view of

theorem 3.1, theorem 8.1 remains valid provided 2oV2S is nonsingular.

9. Normally distributed real coefficients
The case of normally distributed real coefficients arises when c* is distributed normally

about a mean r = { cI'XO} with variance-covariance matrix

(9.1) V=( 0).
We shall assume that the distribution is nondegenerate in the sense that U is nonsingular.

As we have just remarked in section 8, the condensed distribution of the zeros is given
by theorem 8.1 provided 2oV2S is nonsingular. Accordingly we shall prove
THEoREm 9.1. If U is nonsingular and jy 62 > 0, theorem 8.1 holds.
Let

(9.2) xO= (1, x,x2,*--, x"), Xj= d'Xo j= 1, 2,",n.
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Set X= {xo, xI, ,X.}. Since X = 1, XUXt is positive definite. By the matrix
form of Taylor's theorem

(9.3) ~~~~~Zo=(II iy) i2y2 ** inyn)X.

Hence

(9.4) Z0 (YX -mX]
yIX yOX,

where yo+ iyl = (1, iy,i2y2,. inyn) and yo, y, are real. Since n > l and Iy > > 0,
neither yo nor yi is null, and there is an (n + 1) X (n + 1) nonsingular matrix Y whose
first and second rows are yo and yi. Thus

(9 5) ^ (U °] At (goXE tgO oxuxt ytl
°° yl~xuxtt Y,yxuxt ylt

is a minor on the leading diagonal of the positive-definite matrix YXUXtYt and is there-
fore positive definite itself.

There remains the interesting case y = 0. We shall show that the real axis supports a
line density of the condensed distribution of the zeros of g*. We write in place of (9.1)

(9.6) V = (o vlI < 6 = V7 < (17r) 1/2

and proceed to evaluate

(9.7) f (x) = lim f:P(z)dy,

which will then represent the required line density on the real axis, in view of theorem 3.1.
Define

(9.8) l~~~~ijk =Ikj = XjXk
(9.8) }t j, k=, 1, ,n.

Ujk =Ukj = xjTUXk
Put

(9.9) y=XV8, IyI_ 6=v,=XVI v-1.
Then
(9. 1o) zo-(= Xo 2V6x2,-X 8V1 )+08(v 21),

(1=XI - 3X2 v16X3 , - 2XV8X2 ~+ 0 V21).
(9.11) ( 2XV8X2 , XI- 32XS16X3)
Thus

(9.12) ioVzto = ( Uoo 2X2 v16 U02 X v 8Uo1 V21)(9.12)20V20 X V8Uo1 V'610 +X), 1 U)+0(v)
and

(9.13) ioVi01 =Av16+0(v
where
(9.14) \A = UooIoo++X2(U00U U21).
Hence

(9.15) (oV2t) - = -1UIOO+,2Ull v816Uoo-22U) +0(V6).
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It is evident that A > 0 since Uoo and

(9.16) u01 u11)

are minors on the principal diagonal of XUXt. Next write

(9.17) Ai = x;a , i 0, 1, 2,*, n

From (9.10) 216
(9.18) Zr= (Ao-Xv A2)++0v2).

Some straightforward algebra now gives

(9.19) -i(or) t (ioVitF) -1 (20)
1~ ~ ~ 2
= IooAo+X2(UuAo-2Uo,AoAi+ UooA') } +0(v'),

(9.20) trace( Mct) -A110( UooU01-U01) + Uo2(U0A, - Uo A)2+A (v').

Hence, from (8.21)

(9.21) P (z) = 21f Ioo ( UOOU1i - Uo) +Oo(UooA1-UojA
27rnv8 &/2 &5/2

*exp [-2[IooAo+ X2 ( UjA2- 2 Uo,AoA,+ UooA2)] t +O( v3).

The exponential term in (9.21) is never greater than unity, and the remaining terms in-
volving X are of the form A-8/2 and A-6/2. We have to integrate over -5 = -V7 < y =
XV' < V7 = 5. Hence we may multiply (9.21) by v8 and integrate over X from -v-1 to
r-1. Allowing v -- 0 + we obtain from (9.7)

(9.22) f (x) = 1 oo(UooU UO1) +I_O(UoOAl -Uo1Ao)2
irnl ( A"'2 AS/2

*exp E2 [IooAo U1,Ao-2Uo,AoA,+ UooA,2)] dx.

In (9.22) make the substitutions

(9.23) p= Uoo p21 q- (UooA,- Uo0Ao)2
( )2 ' 0 U0o

We get

(9.24) f(x) =_exp( AU 00 J (,+p)/2 1P+ (+pI

*exp d2(p p1 d}.
If q = 0, (9.24) gives

(9.25) f (X) = P!2 exp (-IAO/UOO)
irnUoo

If q j£ 0, we make the substitutions

,926cx =^; t=_i
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and find

(9.27) f (x) =q [pI( )A' UK)[ 1+K(r)],(27r) 1/2 nUoo
where
(9.28) K (r) = (2/ ) /f [t2-(1 + r2) ] e-"12dt.

The Hermitian integrals (see p. 590 in [11]) are defined by

(9.29) Hhm(r) = (t- r) e-t/2dt.rml
Thus

(9.30) K(r) = 2 {2Hh2(r) +2r Hh1(r) -Hho(r) I

(2/r) 1/2
H,r=- T Hh (r),

in view of the recurrence relation
(9.31) (m+ 1)Hhm+i(r) + rHhm(r) -Hhm-l(r) = 0.
We can now combine (9.25) and (9.27) into a single result and collect the results in
THEOREM 9.2. If the coefficients a* - (at, a1,"*, a*) of the equation

(9.32) g*(z) a*zi =0
i-o

are real and distributed such that the joint distribution of g*(x) and dg*(x)/dx is a non-
degenerate normal distribution for each fixed x, the condensed distribution of the roots of
g*(z) = 0 has a line-density frequency function on the real axis

(9.33) f() (UooUll- U) 1/2exp - 2Ao/Uoo)
(2w expUo [r\(2J1 r

where

(9.34) Ao=E[g*(x)I, A1=E [dg (x)]

(9.35) Uoo=var[g*(x)], Uo= COV [g*(x), dg*(x)]

Ul,=var [ d;x]'
and
(9.36) r - UooA,- Uo,Ao

[Uoo ( Uoo Ull -U21) ]I/2

Using the British Association tables [11, we may calculate table I. When r is
sufficiently large for K(r) to be negligibly small in comparison with unity, we have
from (9.27)

q1/2exp ~Ao2/Uoo) d- 1
(9.37) nf (x) dx g (2 dx)= U--'/2d-

where

(9.38) AoUoo /'
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is the expected value of g* divided by its standard error. It will then be a reasonable
approximation to take the percentile points2 of the real roots of g*(x) as the real roots
of the corresponding percentile points of g*(x). This fact was previously discovered by
Geary [9] for the particular case n = 1. Also in the particular case n = 1, (9.37) forms
the basis of Fieller's theorem [6] which is much used in bio-assay. In the usual textbooks
on bio-assay (for example, see pp. 27-29 in [8]), there seems to be no allowance for the
fact that (9.37) is an approximation involving the neglect of K(r). Fieller and Finney
use fiducial theory. I do not know on what logical foundations fiducial theory rests, but
I can imagine that Fieller's theorem might be correct within a framework resting on such
foundations (if they exist). The particular case when the coefficients a* are independ-

TABLE I

RK(v) r K(r)

0.0 X 1.2 0.0935 0408
0.1 7.0187 0662 1.4 0.0523 8306
0.2 3.0684 4636 1.6 0.0290 5246
0.3 1.7784 0828 1.8 0.0158 6176
0.4 1.1521 9418 2.0 0.0084 9070
0.5 0.7911 8623 2.5 0.0016 0331
0.6 0.5622 4244 3.0 0.0002 5477
0.7 0.4082 2679 3.5 0.0000 3342
0.8 0.3005 1809 4.0 0.0000 0357
0.9 0.2231 8031 4.5 0.0000 0031
1.0 0.1666 3094 5.0 0.0000 0002

ently and normally distributed about zero mean with unit variance is of interest. We have
U = I and a = 0, so Ao = A1 = 0 and (9.25) gives

(9.39) f(x) =
0 1/2 1.J![d ± logs X2]

WnIO = 2rn x dx I dx I I
(I _ h2 v

1/2

7rn(1-x2)

where hn is defined by (1. 1). Kac's result [12] follows at once on multiplication by n and
integration over - _ x _ c. Actually (9.39) contains more information than Kac's
formula, since it not only affords the average number of real roots but it also shows how
they are distributed along the real axis.
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