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ABSTRACT

Final Report: The Development, Implementation and Application of Accurate Quantum Chemical Methods for 
Molecular Structure, Spectra and Reaction Paths

Report Title

A number of new developments in coupled-cluster theory and their implementation into the massively parallel ACES 3 and 4 systems were 
accomplished. Studies were made of the singlet-triplet energy separations in di-radicals using the recently developed DIP/DEA-EOM-CC 
which is a straight-forward approach to classes of multi-reference problems in coupled-cluster (CC) theory. As a target for future multi-
reference problems, transition metal multiplets were also studied with single reference coupled-cluster, subject to a variety of orbital choices. 
In particular, the use of fractionally occupied orbitals termed ‘template’ orbitals were introduced, which could then be occupied however 
necessary to describe a multiplet state, depending upon CC theory to fix the orbitals as part of the calculation. The length at which an all-
trans alkane-like C18H38 can turn on itself to form a hairping  was also investigated. The formation of such a kink requires only 0.5 
kcal/mol, so very high accuracy is demanded. The coupled-cluster methods in ACES III make such a study possible. The decomposition of 
RDX has been studied in detail to assess the energetics of the gas phase decomposition paths. Comparison to HMX and CL20 have been part 
of the study. 
Another study focused on the sway a strong bond link in oxalate can be broken by manganese containing enzymes. The intermediate steps 
involved the formation of either a radical or radical anion. In this way the activation barrier could be reduced from 36 kcal/mol to less than 
10.
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Scientific Progress and Accomplishments:
In the last three years we have done many things with ARO support, resulting in 14 publications, and multiple presentations, the 
latter in Germany, Hungary, New Zealand, and various sites in the US. In particular more than a dozen presentations were 
made at various universities in Germany while RJB was on a Humboldt Research Award. We will address some of the 
highlights in the following.

Multi-reference coupled-cluster theory.
One objective was to develop our proposed multi-reference coupled-cluster method, MIP/MEA-EOM-CCSD, which means multi-
ionization potential, multi-electron attached, equation of motion coupled-cluster (CC) theory.  For the double IP and double EA 
(DIP/DEA) case, the basic idea is that by doing a CC calculation for a doubly ionized or doubly electron attached system, the 
full multi-reference character for the most common, 2x2 problem can be easily introduced. Then, one will have 4 orbitals that 
can be occupied by 2 electrons in any possible way, as shown below.

Insert fig 1

So for cases where the single reference (SR-CC) is inadequate, because C0 is far from 90%, the fact that we can obtain the 
mixing values, C2, C1, and C3 from the EOM-CC equations enables us to apply this method easily and in a straight-forward 
way. The method has several attractive features that make the approach worth pursuing.  These include the following:

The ansatz has a global extensive part, exp¿(T^(n±2) ) |n±2> based on a closed shell n ± 2 reference vacuum and a local 
correlation intensive part, whose wave function is | |¿>=R^(n±2)  exp¿(T^(n±2) ) |n±2>, where R^(n±2) is the CI-like right-hand 
eigenvector in EOM-CC.  This has the advantage that instead of asking a fully extensive MR-CC method to account for dynamic 
and non-dynamic correlation effects, the intensive part allows one to target the usually local multi-reference behavior.

As long as the |n±2> reference is a closed-shell, the target states are automatically spin-eigenfunctions.  The guarantee of 
a spin-eigenfunction is not always achievable in most SR-CC or MR-CC methods.

The DIP/DEA-EOM-CC wavefunction is operationally single reference making it as easy to apply as single-reference CC, 
with no decisions for the user but basis set, level of correlation, and a choice of the one spatial active orbital to doubly occupy in 
the n + 2 vacuum (usually the LUMO), or to un-occupy in the n - 2 vacuum (usually the HOMO).

The DIP/DEA-EOM-CC is invariant to active orbital rotations by virtue of the active orbitals being in either the occupied or 
the unoccupied space.

Multiple states can be obtained from the EOM matrix diagonalization providing excited states as well as the ground state. 
So in the event that other occupied orbitals in DIP or virtuals in DEA interact strongly with the chosen active orbital, then that 
solution occurs as well, and will appear as one of the eigenvectors.  This helps to confirm the particular orbitals that manifest 
MR character and if there are more than two, might suggest a subsequent three (TIP/TEA) or four (QIP/QEA) calculation.  The 
price paid for these attractive features is that each stage of the calculation has to be converged: first the SR-CC solution for the 
n±2 closed shell system, then the DEA/DIP-EOM solution itself. Because of orbital dependence in these calculations, the DIP 
solution in particular can sometimes be difficult to converge.
An accurate study of the singlet-triplet separations in di-radical molecules depends upon a correct description of the multi-
reference character. The problem is the prototype for 2 electrons in two orbitals, I and A, where the four determinants IaIß, 
AaAß, IaAß and IßAa, could have major weight in a description of the singlet state, that is not recovered by a single reference 
calculation based upon IaIß.  The triplet can often be adequately described by a single reference description based upon IaAa, 
which is equivalent to the triplet coupling of the two IaAß determinants.  But the singlet has no alternative solution. 
Consequently, we applied our DIP/DEA MR methods for this two electron two-orbital problem. 
The prototype for all such diradicals is methylene, while more complicated systems like the three forms of benzyne, tri-
methylene methane (TMM), and the interesting molecule (CO)4 were also studied in this paper dedicated to Isaiah Shavitt [1]. 
See below for an illustration of the benzyne isomers. 
 Ortho-, meta- and para-benzyne singlet-triplet splittings (in kcal/mol)1.  


cc-pVDZ cc-pVTZ cc-pVQZ 3-4 Extrap.
Ortho 
CCSD 28.6 30.6 31.3 31.8
CCSD(T) 33.8 37.0 37.4 38.0
¿CCSD(T) 33.4 36.6 36.9 37.1
DEA-EOM-CCSD 33.5 36.1 36.9 37.5
DEA-STEOM-CCSD 30.6 34.3 34.2 34.0
DIP-EOM-CCSD 37.5 42.6 46.3 49.0
Experiment-ZPE-core 37.4±0.3
37.5±0.5
Meta 
CCSD 9.9 10.5 10.7 10.8
CCSD(T) 20.4 22.1 22.4 22.7
¿CCSD(T) 20.9 23.1 20.9 19.3
DEA-EOM-CCSD 17.1 18.3 18.4 18.5
DEA-STEOM-CCSD 14.0 15.3 18.4 20.6
DIP-EOM-CCSD 18.0 19.7 18.3 17.3



Experiment-ZPE-core 20.5±0.3


Para 
CCSD -17.8 -19.2 -19.5 -19.7
CCSD(T) 4.0 3.6 3.5 3.4
¿CCSD(T) 1.9 2.3 2.4 2.5
DEA-EOM-CCSD 3.0 3.4 3.4 3.4
DEA-STEOM-CCSD 4.9 4.6 4.3 4.0
DIP-EOM-CCSD 3.9 4.4 N/C 
Experiment-ZPE-core 4.4±0.3

2.7±0.4

Our answers are good, but there is still an issue with the optimum choice of the orbitals to use in such calculations.  In some 
cases, like in methylene, the DIP-EOM-CCSD method tends to diverge when basis sets are very large. In other words, the 
underlying description of the di-anion suffers from an admixture of the continuum. The same issue pertains to the lack of 
convergence in para-benzyne. This does not happen for the DEA-EOM based upon the double cation. Even for the DIP-EOM 
this divergence does not happen for the di-radical isomers TTM  or (CO)4, but this is indicative of a problem that needs to be 
solved to develop a truly robust method. Orbital optimization would be one approach; constraining potentials another.

Multiplets Transition Metal and Template Orbitals
Transition metal multiplets are a prototype of another type of multi-reference problem. The five d-orbital degeneracy plus the 
close lying 4s orbital leads to many different states (multiplets) depending upon their electron occupancy. Consequently, the 
small energy separations among these mutiplets are a sensitive measure of the ability of a quantum chemical method to handle 
complicated degeneracies and spin states. We addressed this issue and applied high-level single reference coupled-cluster 
methods to define a benchmark. At the CCSDT-3 level we obtained excellent results [2] and demonstrated that the results were 
insensitive to a variety of different orbital choices, including Brueckner orbitals and fractionally occupied SCF orbitals. The latter 
in particular is our new, ‘template orbital’ approach that offers many attractive aspects. 

By fractionally occupying the orbitals in an SCF calculation, like describing a state with up to 6 d electrons by putting 3/5 of an 
electron in each spatial orbital, and then doing an SCF calculation to define the set of orbitals to use in subsequent CC 
calculations. This set of ‘template’ orbitals is then occupied to accommodate any occupation of d and s electrons that can occur 
in the atom’s multiplets. Thus one set of orbitals is used for all multiplet states that correspond to different occupancies for the 
3d4s orbitals. Such orbitals are not variationally optimum as they would be if determined from separate SCF. calculations, but 
unlike the latter, which would constitute a different calculation for every multiplet state,; our template approach exploits the fact 
the CCSD and beyond will rotate the orbitals as the calculations require, regardless of their lack of optimum property for a given 
state. Furthermore, this assists in the ‘relative’ energies of the multiplets being improved. To the contrary, using different 
calculations to define a reference complicate the interpretation of the multiplet separations, since different orbitals are used for 
different reverence functions. 


The kind of results we obtain are shown below. The difference in using ‘fractional occupation number’ (FON) orbitals, which are 
the template orbitals for all these systems, differ only by the quantity in () from results using the most optimum set.

FON
CCSD CCSD(T) ¿CCSD(T) CCSDT-3 EXP


Fe 5D( d6s2) 0.00 0.00 0.00 0.00 0.00

5F( d7s1) 0.972
(0.131) 1.068
(-0.075)1.019
(-0.044)0.949
(0.005) 0.87

Fe+6D( d6s1) 7.673
(0.018) 7.846
(-0.006)7.841
(-0.013)7.839
(-0.001)7.90

4F( d7) 8.103
(0.071) 8.365
(-0.156)8.336
(-0.144)8.194 
(-0.001)8.15






Co 4F( d7s2) 0.00 0.00 0.00 0.00 0.00

4F( d8s1) 0.480
(0.201) 0.688
(-0.154)0.616
(-0.111)0.493
(-0.014)0.42


Co+ 5F( d7s1) 8.066
(0.01) 8.316
(-0.087)8.325
(-0.107)8.230
(-0.002)8.28

3F( d8) 8.055
(-0.158)8.210
(-0.305)8.167
(-0.283)8.023
(-0.138)7.85


Ni 3D (d9s1) -0.319
(0.2751) 0.110
(-0.278)0.001
(-0.211)-0.076
(-0.059)-0.03

3F (d8s2) 0.00 0.00 0.00 0.00 0.00

Ni+ 4F (sd8) 8.143
(-0.006)8.349
(0.001) 8.346
(-0.009)8.460
(-0.009)8.67

2D(d9) 7.149
(0.162) 7.504
(-0.151)7.437
(-0.115)7.455
(-0.028)7.59



Cu 2S (d10s1) -1.554
(0.346) -0.966
(-0.417)-1.112
(-0.322)-1.355
(-0.104)-1.49

2D(d9s2) 0.000 0.000 0.000 0.000 0.000


2P(d10p1) 2.277
(0.261) 2.711
(-0.274)2.625
(-0.227)2.315
(0.00) 2.295



Cu +

3D ( d9s1) 8.828
(-0.013)8.963
(0.011) 8.967
(0.00) 8.975
(0.001) 9.04

1S (d10) 6.036
(0.213) 6.476



(-0.239)6.392
(-0.19) 6.255
(-0.049)6.23





Long chain hydrocarbons and their folding.
We studied the issue of what length a long-chain hydrocarbon can turn on itself to form a hairpin [3]. In this case, we studied 
alkanes from C8H18 to C18H38. The accuracy required is extreme as each possible gauch rotation from the standard all trans 
form requires only 2kj/mol. The calculations were only made possible by our development of the massively parallel ACES III 
program and our earlier introduction of frozen natural orbitals (FNO’s) that allows us to eliminate about 40% of the virtual space 
in any large scale correlated calculation. The figures attached summarize the work. All geometries were optimized at the CCSD 
level. As seen from the figures there is no loss in accuracy due to the FNO’s. 
Fig 2
Fig 3
Fig 4


Studies of nitramines and their decomposition pathways

Fig 5
                 Fig 6
                 Fig 7

The mechanism of RDX decomposition, in any phase, is uncertain. The three above, NN hemolysis, HONO elimination, and the 
so-called ‘triple’whammy’ decomposition, are of particular interest. Computational prediction of the gas-phase mechanism has 
been hindered by methods that are insufficiently accurate to compare energetically close mechanisms. We are in a position to 
describe the barrier to RDX decomposition in the gas phase with unprecedented accuracy using coupled cluster theory, the 
computational method against which other methods, like DFT, are compared against for reliability. 
We have recently reported the electronic and free energy barriers to RDX decomposition using CCSD(T)/CBS (complete basis 
set) electronic energies with MBPT(2)/cc-pVTZ structures and partition functions using Eyring transition state theory. We 
investigate all major considered mechanisms for decomposition and subsequent decomposition pathways associated therein, 
including NN homolysis, HONO elimination, triple whammy, and NONO isomerization. We find that the dominant mechanism is 
HONO elimination; there is not a competition between HONO elimination and NN homolysis, as DFT predictions previously 
predicted. We further show the adjustability of the HONO barrier to chemical substitution, providing a proof-of-principle of how 
one may adjust RDX, chemically, to change its shock-sensitivity value. 
The decomposition mechanism of RDX has been studied for about 70 years without a decisive specific conclusion. There are 
many challenges to establishing the mechanism. It is currently not possible to reconcile all the conclusions from different 
experiments, as they are mutually exclusive. Some of the challenges to analysis include:

a) RDX has closely related molecular cousins, HMX and CL-20. To what extent do the experimental results of these very 
similar compounds apply to RDX?
b) In which phase does the reaction begin? Evidence exists for solid, liquid, and gas.
c) Independent of the phase in which the reaction begins, in which phase does the chemical reaction most proceed?
d) Does the evidence gathered by a specific experimental mean relate to the “natural” RDX decomposition? It is possible that 
some of the evidence is not in contradiction, but that mass spectrometry vs. UV-VIS excitation vs. dropping an anvil on RDX vs. 
heating all inherently induce different mechanisms.
e) Which small-molecule gaseous products are observed first? Studies focus on CO2, NO2, NO, N2O, H2O, HCN, and many 
others as clues to the mechanism.
f) Do multiple mechanisms occur simultaneously?
g) Is the mechanism of initiation the dominant mechanism of propagation?
h) What computational methods have the accuracy to estimate energy barriers of transition states accurately?
i) Independent of speculating on quasi non-observables (the “mechanism” itself is not an observable), how does one 
reconcile the extreme disagreement in clear observables, like activation energy?

We are in a unique position to provide clarity to a complex problem. Computational modelling provides unambiguous results 
in terms of meaning; we do not need to divine complex phenomena from isolated points in time of one physical property alone. 
There is no speculation to be had about what is being said. We are, however, restricted in the realism of our modelling. 
Modelling liquid or solid systems requires simulation of many particles; modelling of the gas-phase, however, is very 
straightforward. It is our intention to solve the gas-phase decomposition of RDX. 
This has three purposes:
1) In this way, experimentalists may gauge which techniques reproduce the gas-phase results, and then apply those 
techniques to the much more complex liquid and solid phases.
2) To a first-order approximation, condensed-phase mechanisms are well described by gas-phase kinetics. There are some 
notable exceptions in which the potential energy surface is qualitatively different between condensed and gas-phase, but at 



worse, the gas-phase mechanism provides significant guidance (especially for a molecular crystal, whose intermolecular forces 
are weak).
3) In establishing the mechanism, we have insight into how to may adjust the shock-sensitivity of RDX and its HMX and CL20 
cousins.
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Technology Transfer

The ACES III program system being developed un this grant is in wide use at the DOD HPCC. Active users at ARL include de 
Carlos Taylor, Betsy Rice, and Steve Bunty. Results we have obtained have been import to Dr Igor Schweigert at NRL.

ACES III is also extensively used by Doug Burns and Marshll Cory at ENSCO to fulfill their obligations at Patrick Air Force Bse. 
There are many other users in academe and national labs.
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