
REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

12/31/2016 Final Technical Report (Phase I - Base Period) 30-06-2014 - 31-12-2016

Lean and Efficient Software: Whole-Program Optimization of Executables
Final Report

Evan Driscoll
Tom Johnson

GrammaTech, Inc.
531 Esty Street
Ithaca, NY 14850

Office of Naval Research
875 North Randolph Street
Arlington, Virginia 22203-1995

N00014-14-C-0037

ONR

Distribution Statement A.

Complex software is usually assembled from a number of third-party or in-house components and libraries. This
development style makes writing software more tractable than starting from scratch, but this process has drawbacks. Very
often the components are included in whole, but only used in part (increasing attack surfaces and bloat), or may include
redundant error checks and other tests (increasing overhead). LACI (Layer Collapsing Infrastructure) uses binary-to-binary
transformations to optimize compiled program executables to improve security and runtime performance, as well as reduce
executable size. LACI allows its users to optimize, harden, and specialize existing binaries.

binary analysis, binary optimization, binary rewriting, partial evaluation, program hardening

U U U UU 30

Tom Johnson

(607) 273-7340 x.134

 Page 1 of 30

“Lean and Efficient Software:

Whole-Program Optimization of Executables”

Final Report
(Report Period: 06/30/2014 to 12/31/2016)

Date of Publication: December 31, 2016

© GrammaTech, Inc. 2016

 Sponsored by Office of Naval Research (ONR)

Contract No. N00014-14-C-0037

Effective Date of Contract: 06/30/2014

 Technical Monitor: Sukarno Mertoguno (Code: 311)

 Contracting Officer: Casey Ross

Submitted by:

Principal Investigator: Thomas Johnson

531 Esty Street

Ithaca, NY 14850-4201

(607) 273-7340 x. 134

tjohnson@grammatech.com

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Financial Data Contact:

Krisztina Nagy

T: (607) 273-7340 x.117

F: (607) 273-8752

knagy@grammatech.com

Administrative Contact:

Derek Burrows

T: (607) 273-7340 x.113

F: (607) 273-8752

dburrows@grammatech.com

mailto:tjohnson@grammatech.com

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

Contents

1 Summary ... 3

2 Introduction ... 4

2.1 Partial Evaluation, Binding-Time Analysis, and Program Specialization 4

2.1.1 Example of partial evaluation ... 6

2.1.2 Binding time analyses ... 7

2.1.3 Termination of partial evaluators .. 11

2.1.4 WIPER: Binary partial evaluator from the University of Wisconsin 12

2.2 Value-Set Analysis ... 13

2.3 Review of some Phase I results .. 15

2.3.1 Phase I Transformation and Results ... 15

2.3.2 Phase I Partial Evaluation Limit Studies .. 15

3 Methods, Assumptions, and Procedures ... 16

3.1 Limit studies ... 16

3.1.1 Improving the security of format-string functions .. 17

3.1.2 Measuring “excess features” in Grep .. 19

3.1.3 Measuring the change in VSA coverage given a configuration 19

3.2 Experiments with WIPER (the UW binary partial evaluator).. 20

3.2.1 “Local” partial evaluation ... 21

4 Results and Discussion ... 21

4.1 Format string measurements and function hardening .. 21

4.2 Grep: unused features and functions .. 24

4.3 VSA trace seeding: improved precision from trace seeding .. 24

4.4 Adapting UW’s partial evaluator ... 25

4.4.1 Binding-time analysis precision .. 25

4.4.2 Local partial evaluation results ... 27

4.4.3 Instruction synthesizer difficulty .. 29

5 Conclusions ... 29

6 References ... 30

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 3 of 30

1 Summary

In this project, we investigated using binary-to-binary transformations to optimize compiled

executables to improve security, improve runtime performance, and reduce executable size. The

primary focus of our effort was on improving a research prototype of a partial evaluation engine

original developed by researchers and colleagues at the University of Wisconsin (UW). We also

carried out additional studies to determine how much room for improvement there is. We call

this project LACI (Layer Collapsing Infrastructure).

Background

Our goal is to improve performance and reduce size of compiled binaries. These are useful goals

themselves, but a significant benefit is improved security properties.

Current requirements for critical and embedded infrastructures call for significant increases in

both the performance and the energy efficiency of computer systems. Needed performance

increases cannot be expected to come from Moore’s Law, as the speed of a single processor core

reached a practical limit at ~4GHz; recent performance advances in microprocessors have come

from increasing the number of cores on a single chip. However, to take advantage of multiple

cores, software must be highly parallelizable, which is rarely the case. Thus, hardware

improvements alone will not provide the desired performance improvements and it is imperative

to address software efficiency as well.

Existing software engineering practices target primarily the productivity of software developers

rather than the efficiency of the resulting software. As a result, modern software is rarely written

entirely from scratch – rather, it is assembled from a number of third-party or in-house

components and libraries. This development style makes writing complex software much more

tractable than if everything had to be written from scratch, but there are drawbacks:

 Modern software uses only a fraction of the code of its integrated components. Generic

components include code that is “dead” or irrelevant for the particular client in question.

 Modern software must penetrate multiple layers of libraries to get to the required low-level

functionality. Each layer implements its own, potentially redundant, sanity checks and

environment customizations.

 Often, source code for libraries and components is not available, which prevents compilers

and linkers from being able to optimize across library levels.

 In a nutshell, heavy use of libraries leads to code bloat. Code bloat slows application loading,

reduces available memory, and makes software less robust and more vulnerable.

In addition to performance and size, “software bloat” is a security concern. At a low level, bloat

means a larger code base for attackers to draw from for attacks such as return-to-library and

return-oriented-programming attacks; this is true even if the extra code can never be called by

the program. At a higher level, libraries are written to be generically useful, and usually include

functionality unneeded by specific applications. For example, one historically-common exploit is

based on abusing the %n format specifier for functions such as printf, despite few programs

actually using that feature. If a program were rewritten to use a version of printf that does not

support %n, that would close off an attack vector.

The opportunity

We believe that this problem will best be addressed by optimizing the software executable at or

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 4 of 30

immediately prior to deployment of software. Machine-code analysis and binary-rewriting

techniques have reached a sufficient maturity level to make whole-program, machine-code

optimization feasible. Thus, we believe there is now a great opportunity to build tools that will

revolutionize the software development industry. In this project, we have worked on a tool that

aggressively optimizes software by leveraging a global view of all the code used in the program,

including the integrated components and libraries. The tool attempts to optimize software in the

following ways:

 Specializing integrated components and libraries to eliminate library functionality that is not

required by the software. Collapsing interface layers of nested components and libraries.

 Specializing software (libraries and included components) for the host platform to make the

code leaner and more efficient for the host platform.

 Performing traditional whole-program optimizations to improve software efficiency.

We worked on a tool that operates for three classes of users:

 Developers, dedicated security analysists, and reverse engineers can use it to operate at the

level of procedures and instructions: optimizing, removing, and/or customizing the behavior

at a function level.

 End users can pick out parts of a program (e.g., certain command line options) that either

they are interested in using, and rewrite programs to remove uninteresting features.

 System administrators can specialize programs for a particular configuration and setting.

Really these three modes of operation are different sides of the same coin, but we illustrate each

of these modes with experiments. The tool operates directly on an executable, using binary

rewriting to eliminate dead code and perform optimization. This will allow the tool to effectively

handle commercial libraries and components for which the source code is not available. Also, it

will allow users to apply the tool immediately prior to deployment, when details of the target

platform are available, letting the tool tailor the software specifically to the target platform.

2 Introduction

In this section, we give some background information on the following items:

 §2.1 covers partial evaluation, the technique that forms the backbone of our investigations.

An integral part of partial evaluation is an analysis called binding-time analysis, which has

several design axes discussed in §2.1.2. For a specific partial evaluation implementation, we

are building off of a research prototype developed by the University of Wisconsin, discussed

in §2.1.4.

 For limit studies of how much benefit we might see from partial evaluation, we carried out

investigation using an analysis called value-set analysis (VSA) with a trace seeding feature

we developed under DARPA’s VET program. VSA and trace seeding is described in §2.2.

 Finally, we review some work done during Phase I of LACI (§2.3).

2.1 Partial Evaluation, Binding-Time Analysis, and Program Specialization

Partial evaluation is a set of program transformation techniques that trim and rewrite a program,

or portion of a program, according to the specific context(s) it is used in. As a simple example,

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 5 of 30

consider an application in which a particular function is always called with one of its arguments

having the same constant value; the function can be specialized given that knowledge. The

common compiler optimizations of constant propagation and constant folding can be seen as a

very limited form of partial evaluation. At the level of a whole program, one might know some

of the inputs to the program (e.g., configuration files) but not know other inputs; a partial

evaluator can create a version of the program specialized to the known inputs.

The process of partial evaluation works in two steps, detailed below. First, the program

determines what portions of the program depend on unknown input in a process called binding-

time analysis (BTA). Second, the program is rewritten to take advantage of the known

information.

Parts of the target’s (the program’s or program portion’s) starting state and inputs are known and

some are unknown. The known parts are called static, and the unknown parts are called dynamic.

Either before or during the specialization process proper (see §2.1.2.1), information about what

parts of the program are static and dynamic need to be propagated through the program. If

“something” depends on dynamic input, then that something must be marked dynamic as well.

That something might be another variable, an expression, or syntax such as control flow

constructs. For example:

 If the program has x := y and y is dynamic, then x must be dynamic as well (at least for the

live range starting with that definition).

 If y is dynamic, then the expression x + y is dynamic.

 If the program has if (e) ... and e is dynamic, then the if itself is dynamic. We may also

mark program points in both branches of the if as dynamic, because the dynamic condition

controls whether they are executed; see §2.1.4.

The process of determining which parts of the program are dynamic is called “binding-time

analysis” (BTA), and there are several design choices that will affect the precision of results and

performance of the analysis (see the following sections). The actual result of BTA is called a

division; a division annotates each program element with “static” or “dynamic.”

Once the division is known, the partial evaluator can perform program specialization. In its

simplest form, a program specializer operates similarly to a fancy interpreter. A normal

interpreter tracks a program state (a map of variables to values), applies that state to the current

statement, and the result of the application is the next state, including the next statement. The

specializer in a partial evaluator includes the following changes:

 The program state only tracks values of static variables.

 When the specializer is interpreting a program element marked static, it acts as a normal

interpreter. (Something static can only depend on static variables, so the restricted program

state is sufficient.)

 When the specializer is “interpreting” a program element marked dynamic, instead of doing a

normal interpretation, it instead outputs that program element to the final, specialized

program. For example, if an if statement is marked dynamic, the specializer will output that

if statement.

 The specializer may have multiple next statements. For example, if an if statement is marked

dynamic, the specializer needs to interpret both branches.

The outputting of dynamic elements in the third step above is called residuation, and the result of

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 6 of 30

specialization is the residual program.

2.1.1 Example of partial evaluation

In this section, we will provide a couple examples of partial evaluation. We will start with a

simple example, adapted from a tutorial by Hatcliff .

int pow(int base, int exp)

{

 int result = 1;

 while (exp > 1) {

 result = result * base;

 exp--;

 }

 return result;

}

Suppose we want a version of the pow function shown above that is specialized to taking the

cube of base. We can partially evaluate pow specifying base as dynamic and exp as static, equal

to 3. We get the following result:

int pow_exp3(int base)

{

 int result = 1 * base;

 result = result * base;

 result = result * base;

 return result;

}

Effectively, what the partial evaluator has done in this case is unroll the loop three times. Note

that the partial evaluator did not simplify 1*base; this is traditionally left to the compiler that

will build the residual program.

However, one must be careful when designing and using partial evaluators, because it is possible

to create a specializer that will not terminate on some programs. (See §2.1.3 for a more detailed

discussion.) With a naïve partial evaluator, we could not ask the opposite question – specialize

pow with a static base and dynamic exp. This would lead to non-termination, as the partial

evaluator would attempt to produce the following infinite program (with base = 5):

int pow_base5(int exp)

{

 int result = 1 * 5;

 if (exp == 1)

 return result;

 result *= 5;

 exp--;

 if (exp == 1)

 return result;

 result *= 5;

 exp--;

 if (exp == 1)

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 7 of 30

 return result;

 result *= 5;

 exp--;

 if (exp == 1)

 return result;

 ...

}

The partial evaluator continues unrolling the loop, but it does not know when to stop. Using

either the manually-added gen annotation suggested by Hatcliff or the control-dependence-based

technique that is used by our partial evaluator, the result would be:

int pow_base5(int exp)

{

 int result = 1;

 while (exp > 1) {

 result = result * 5;

 exp--;

 }

 return result;

}

This is only a small improvement over the original, but it is an improvement and we could hardly

expect to do better without duplicating the loop-unrolling heuristics that compilers use to

determine how much to unroll a loop.

2.1.2 Binding time analyses

Critical to the success of partial evaluation is the precision of the static/dynamic division; the

division is computed by binding-time analysis (BTA). BTA determines the division, and the

division determines what code is evaluated statically versus what code is residuated; thus, BTA

directly affects how the original program is transformed.

There are several variations on BTA. This section will describe some of the important choices

and their tradeoffs.

2.1.2.1 Online vs offline
The first choice is whether the binding-time analysis should be online or offline.

1
 Online BTA

occurs intertwined with specialization. Offline BTA is a ahead-of-time analysis that annotates

the program with static/dynamic annotations; specialization proceeds obeying these annotations.

Another way of looking at the distinction is to ask whether the BTA has access to the values of

the static inputs; or whether it knows just which inputs are static, and only the specialization

process will know their values. Online BTA has access to the values, while offline BTA does

1
 Formally, “online BTA” is an abuse of terminology, and “BTA” is, by definition, a separate analysis; we should

instead be referring to online and offline specialization, where offline specialization is paired with a BTA and online

specialization has no need for a BTA. However, “online BTA” emphasizes that it is the placement of the

computation of the static/dynamic division that is being changed; like a “dynamically-typed language” (despite a

type system being, by strict definition, a static thing), it is a useful abuse.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 8 of 30

not.

As a simple example of where this can make a difference, consider the following example:

int foo(bool cond /*static*/, int if_false /*dynamic*/) {

 return (cond ? 0 : if_false) * 5;

}

An offline BTA cannot make much progress with this program directly. Because if_false is

dynamic, the whole conditional expression must be marked dynamic; as a result, the

multiplication by five will be dynamic as well.

Suppose at specialization time, the value of cond is provided to be true. In this case, the value of

the conditional expression is known statically – 0 – but the specializer still has to residuate

return 0*5 because the multiplication was marked as dynamic by (offline) BTA and the

specializer is just following BTA’s annotations. (In this case, further compiler-style optimization

may well constant fold the multiplication, but that is not true in general.)

An online BTA can “do the right thing” in this case. Because the BTA is woven into

specialization:

1. The “BTA” would determine that the condition is static.

2. The specializer would start to interpret the conditional and reduce it to the true branch.

3. The BTA would determine that the true branch’s expression is static.

4. The specializer would evaluate the true branch to 0, which becomes the result of the

conditional expression.

5. The BTA would determine that both arguments to the * are static.

6. The specializer would evaluate the multiplication to get 0.

The final result for an online BTA would be simply return 0, because the BTA isn’t pre-

determining the static/dynamic division before it even executes.

There are a variety of techniques, collectively known as binding-time improvements [1], for

trying to overcome this problem. In our example above, we could distribute multiplication over

the conditional to get return (cond ? 0 * 5 : if_false * 5). The 0*5 portion is entirely

static and would be determined as such by offline BTA, allowing it to achieve the same result as

online BTA. However, binding-time improvements can be seen in part as a compensation for not

running online BTA, and they are not general.

2.1.2.2 Offline: uniform vs pointwise
The first refinement of offline BTA is whether the set of variables marked dynamic is allowed to

vary by program point. If the static and dynamic variables are fixed everywhere, then the BTA is

uniform; if each point can have a separate set, then the BTA is pointwise. (Online BTAs are

pointwise by their nature.)

For example, consider a typical temp=b; b=a; a=temp; sequence to swap two values. With a

pointwise BTA, this sequence will swap a’s and b’s static/dynamic bindings just like it swaps

their values. However, with a uniform BTA, if either variable is dynamic, then both variables

must be dynamic for the entire function or program.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 9 of 30

2.1.2.3 Offline: monovariant vs polyvariant
The final refinement we will examine is whether the BTA allows only one static/dynamic

division at each program point, or multiple. If the BTA only allows one, then it is monovariant;

if it allows multiple, it is polyvariant. (Again, online BTAs can be considered polyvariant.)

One context the distinction commonly arises (though not the only one) is when there are multiple

call sites to the same function with different sets of static and dynamic parameters at each site.

As a trivial example, consider the code fragment foo(0, x); foo(x, 0); with x dynamic. A

monovariant BTA is only allowed to produce one annotation for foo, and so must conservatively

annotate both parameters as dynamic. As a result, presumably most of the function foo will be

dynamic. However, a polyvariant BTA would be able to produce two separate annotations for

foo – one annotation would be (static, dynamic) and be associated with the call site foo(0, x),

and a second (dynamic, static) annotation would be associated with foo(x, 0).

For an example of where polyvariant BTAs can be useful aside from function calls, consider the

following function:

int foo(int a, int b)

{

 if (b > a) {

 a = b;

 }

 return bar(a, a);

}

Suppose we want to specialize max with a dynamic and b static, equaling 5. There is one path

through max (if a is the larger) where a has its original, dynamic value at the return. In the other

path, a has the value 5 at the return. The specializer cannot tell which path will be taken, but a

polyvariant BTA and accompanying specializer could produce two copies of the return

statement, one for each path. That would lead to the following specialized version:

int foo_5_poly(int a)

{

 if (5 > a) {

 return bar(5);

 }

 else {

 return bar(a);

 }

}

(The specializer would likely include a dead a = 5 assignment in the conditional, but it would be

eliminated by the compiler.) Note that the specializer may be able to simplify bar(5) even more,

making the true case even faster; this contrasts with the following version, where both cases need

the general version of bar.

However, a monovariant BTA and specializer would only be able to produce one return

statement. Because a is dynamic at the return on some paths, it would need to be dynamic at that

one point. In this example, we would just replace the uses of b in the original procedure by 5.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 10 of 30

int max_5_mono(int a)

{

 if (5 > a) {

 a = 5;

 }

 return a;

}

In particular, the assignment to a inside the if is still there. (And in contrast to the prior case, it

is not dead, so it cannot be trivially removed by the compiler.)

In both examples, the polyvariant BTA is more precise, but at the cost of (i) (perhaps) many

more annotations and (ii) (perhaps) many more specializations as the specializer will need to

create a separate residual program point for each annotation.

2.1.2.4 Tradeoffs between BTA choices
There are clear performance tradeoffs between the different options for binding-time analyses. In

a rough order, one can expect that online BTA will be the most expensive, followed by

polyvariant BTAs, followed by monovariant pointwise BTAs, with monovariant uniform BTAs

the fastest.

What is likely less evident is that the more expensive and precise BTAs are not necessarily

better.

Consider the following examples, adapted from [11].

 Partial evaluation result

Source Inputs Uniform BTA Polyvariant BTA

if (upd)
 val = curval;

output = val *
2;
return output;

upd = false;
val = 100;
outval = 0;

curval dynamic

val = 100;
outval = val * 2;
return outval;

return 200;

while (a > 0)
 p(x)

procedure p(x) {
 a -= 1;
 b += y;
 count += 1;
}

a = 2;
b = 5;

x dynamic
count dynamic

b = 5;
p(x);
p(x);

procedure p(x) {
 b += y;
 count += 1;
}

p1(x);
p2(x);

procedure p1(x) {
 b = 5 + y;
 count += 1;
}

procedure p2(x) {
 b += y;
 count += 1;
}

For the first example, the version specialized by a polyvariant partial evaluator is clearly better.

However, the second example is more ambiguous. The version created with a uniform BTA

executes one more instruction at runtime (the initial assignment to b), but the polyvariant version

is significantly larger. Christensen et al. argue that the uniform specialization is better in

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 11 of 30

circumstances such as this; in real programs, the duplication can be substantial. When run on real

machines, smaller programs are likely to have better cache behavior and may run faster even if

they execute more instructions. It is also possible for switching from a less-precise to a more-

precise BTA to cause a specializer to cease terminating entirely (see the next section for more on

termination of the partial evaluator.)

2.1.3 Termination of partial evaluators

Another place that care must be taken is in ensuring termination of the specializer. Just as a

normal interpreter can run forever, so can a naïve specializer. (As a quick illustration, consider

providing a program you want to run, a specification that all inputs are static, and the inputs you

want to run it with. By the description in §2.1, the specializer should do exactly what the original

program does on those inputs, which could be running forever.)

Even if the specializer is not in a true infinite loop, it may run for a very long time in a loop with

a high static bound. What is perhaps even worse is that, if there are dynamic elements inside that

loop, the partial evaluator will residuate those elements each time through the loop. Effectively,

when a loop has a static bound, the specializer will blindly unroll that loop for the appropriate

number of iterations. (Contrast this behavior with a compiler-style loop unrolling optimization,

which uses models of the cost of the control structure, loop body size, number of unrollings, and

other factors to determine whether and how much to unroll a loop.)

Various attempts at partial specialization take different approaches to address this issue.

The dead-simple solution is to ignore the problem, and to put the responsibility for dealing with

this on the programmer. It is possible, the argument goes, for a developer to write a program that

runs too long or infinitely, and the compiler will not go out of its way to prevent this; why

shouldn’t the developer be able to write a program that specializes forever? Why should a partial

evaluator have to jump through hoops to catch this case? To allow the developer to have control,

such partial evaluators usually provide a means to explicitly mark an expression or variable as

dynamic. For example, the developer could mark the variable tracking loop iterations as

dynamic, and then the specializer would not do unrolling. This approach is what is taken by Shali

and Cook [3], for example.

A more sophisticated approach [1] tries to ensure that each loop has a bounded number of

iterations once you fix the static inputs. If the BTA can find a loop induction variable that it

proves always decreases by some measure that cannot decrease indefinitely, then it assumes that

loop is well-behaved. If it can not find such a variable, than any other variable changed in the

loop (at least in a way that increases its “size”) is marked dynamic. This ensures termination,

though could still lead to large residual programs if the loop has a high bound.

Neither of these is particularly applicable to a partial evaluator that is supposed to work on

arbitrary, stripped binaries. The first approach requires manual annotation – likely, a lot of

manual annotation – and the second requires analyses that are extremely difficult on binary

programs. The Wisconsin binary partial evaluator WIPER, the evaluator that we investigated in

Phase II (see §2.1.4) uses a different, coarser approximation to ensure termination.

WIPER’s BTA performs a forward slice from the dynamic inputs; anything included in that slice

is considered dynamic. The forward slice follows control-dependence edges; this means that if a

dynamic instruction is control dependent on a particular branch B, then B will also be marked

dynamic. Effectively, this marks a loop test as dynamic if anything in the body is dynamic.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 12 of 30

Implications of this decision will be discussed later (§4.4.1).

2.1.4 WIPER: Binary partial evaluator from the University of Wisconsin

During Phase II, we investigated applying a binary partial evaluation tool called WIPER to layer

collapsing. WIPER was developed by Venkatesh Srinivasan and Thomas Reps at the University

of Wisconsin, and is the only partial evaluator for binary code that we are collectively aware of.

WIPER operates in a typical offline manner. As stated above, its binding-time analysis is the

result of a forward slice from the variables and instructions that are designated as dynamic (the

“input”). It is a pointwise, monovariant BTA. The forward slice leverages additional recent work

from UW on specialization slicing [4].

The specialization portion of WIPER is unique. Many x86 instructions (indeed, for other

architectures as well) conflate updates to several different locations, for example two different

registers. To maintain precision, it is important to decouple these effects; then “part” of an

instruction can be marked static, part of an instruction can be marked dynamic, and the

specializer can interpret the static part and residuate the dynamic part. However, there is no such

thing as emitting “part of an instruction,” and thus WIPER must find a sequence of instructions

that has the desired effect and just the desired effect.

For example, suppose the input instruction is push eax. This instruction performs two actions:

 Stores the value of register eax into memory at the stack pointer (esp). In C-like notation,

this action is (*esp) = eax.

 Decrements the stack pointer (the stack grows toward lower addresses). In C-like

notation, this action is esp -= 4.

The second action writes esp. Suppose there is a later instruction mov ebx, [esp + 16]. (In C-

like notation, this is ebx = *(esp + 16).) At surface level, because push eax writes to esp and

mov ebx, [esp + 16] reads esp, the mov instruction is data-dependent on the push; this would

mean that if eax is dynamic at the push, it would mean the mov must be dynamic too. This is

highly undesirable, and is also conceptually unnecessary – considering the push’s two actions

separately, it is clear that the mov does not, in fact, depend on ebx and should thus not be made

dynamic.

Because push and pop instructions are extremely common, and because local variable accesses

all take the form of offsets from esp (or ebp, copied from esp), conflating the two actions will

result in marking basically the whole program as dynamic. BTA needs to be able to separate the

two actions, so that the specializer can residuate the first action (assuming a dynamic eax) and

statically interpret the second action.

To determine the instructions that need to be residuated, WIPER uses instruction synthesis [13],

the process of generating instructions that meet a logical formula describing the desired behavior.

To use the above example, WIPER proceeds as follows:

 Produce a logical formula for the semantics of the instruction in question. For push eax, the

formula will be (mem' = mem[esp - 4 ⟼ eax]) ∧ (esp’ = esp - 4) ∧ …. Note that

the two conjuncts of this formula correspond to the two actions of push eax. (The “primed”

variables indicate the value following the instruction’s execution. mem is a logical function

symbol representing the values in memory. There are also many conjuncts such as eax' =

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 13 of 30

eax and ebx' = ebx that indicate that other parts of the state do not change.)

 Separate the updates along interesting boundaries; WIPER considers an interesting boundary

to be the updates to the stack pointer, versus everything else. We pull out the esp' = esp -

4 conjunct from the formula, replacing it with just esp' = esp.

 Use instruction synthesis to generate an instruction or instruction sequence with the new

formula’s semantics. In our example, that will be an instruction that performs just the first

action, corresponding to mem' = mem[esp - 4 ⟼ eax] and leaving the rest of the state

unchanged – mov [esp-4], eax.

 Consider the synthesized instruction(s) along with another instruction that just updates the

stack pointer when performing BTA and specialization. In our example, the stack pointer is

updated by lea esp, [esp-4]; we use lea instead of sub esp, 4 to avoid updating flags.

If eax is dynamic and esp is static, WIPER will residuate mov [esp-4], eax and statically

interpret lea esp, [esp-4].

The stack pointer, esp, is treated specially to allow access to local variables to be resolved

statically. It is considered static at program entry, and will become dynamic only in rare cases

(while inside functions that use alloca or similar), so we expect that nearly all places there is an

instruction that conflates actions that update the stack pointer with something else will benefit

from this technique.

Experiments performed on WIPER by UW showed promising results, showing an average

reduction of about 25% in runtime across a small suite of test cases, comparing a specialized

version to the original. We reproduced these results for a subset of those tests; reductions in

runtime ranged between 4% and 55% in our runs:

 Average test run time (sec)

 test case program size (kb) Original Rewritten Reduction

 interpreter 2.35 15,616 14,159 9%

 sha1 3.8 5,810 3,684 37%

 filter 3.7 4,047 1,822 55%

 dotproduct 2.3 2,580 1,789 31%

 power 1.7 1,411 1,357 4%

For the above experiments, both by us and UW, the program points that receive input were

identified and marked manually; these served as the dynamic inputs. This would not be a feasible

approach in real-world use; §3.2 discusses what we investigated in the context of LACI.

2.2 Value-Set Analysis

Value-set analysis (VSA) is a combined numeric- and pointer-analysis algorithm that determines

an approximation of the set of numeric values and addresses that each register and memory

location can hold for each program point [5]. In particular, at each instruction that contains an

indirect memory operand, VSA provides information about the contents of the registers that are

used. This information permits it to determine the (abstract) addresses that are potentially

accessed, which, in turn, permits it to determine the potential effects of the instruction on the

program state.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 14 of 30

A key feature of VSA is that it tracks integer-valued and address-valued quantities

simultaneously. This approach is crucial for analyzing executables because numeric operations

and address-dereference operations are inextricably intertwined even in the machine code

generated for simple source-code operations.

VSA is a soundy analysis [7], which means that the approximations it computes are usually-safe

overapproximations of the truth (if the approximations were always safe it would be straight-up

sound), but in order to get useful results it is sometimes necessary for VSA to operate unsoundly.

For example, suppose there is a memory write (e.g., the machine-code analogue of *p = 42) but

VSA has lost enough precision that it has no information about what the target address (p) refers

to. In this case, the sound action to take would be to clobber all of memory; but this leads to

extremely imprecise analysis results that would be nearly useless. Instead, in the mode we

usually run VSA in, VSA will ignore the write. This means that whatever the target actually is

may become underapproximated.

VSA works as a pretty typical dataflow analysis. For each program point, it stores an abstract

state that is a map from program variables to abstract values. (Below, the abstract state for each

node is referred to as the “aggregated” abstract state.) The structure of the values is described by

[6].
2
 Abstract values are propagated around the CFG as follows, using a worklist of nodes:

 VSA pops a new current node from the worklist.

 VSA grabs the abstract state of the current node, and interprets the semantics of the current

node under the abstract state. The result is the abstract state “after” the node executes.

 VSA propagates the “after” state to each successor of the current state, unless they appear to

not be reachable:

o VSA grabs the abstract state of the successor, and joins it to the after state of the

current node.

o If the join result is different from the successor’s origial abstract state, it replaces the

successor’s abstract state and the successor is added to the worklist.

As part of DARPA’s VET project, we introduced a new mode to VSA, which we call VSA with

trace seeding. The idea behind this mode is to provide VSA with extra information from a real,

dynamic trace of the target program. The trace includes each instruction that is executed, along

with the value(s) that are read or written by that instruction. It also includes write information for

some system calls, such as read. (Dynamic values can, of course, usually be reconstructed from

the trace and information about the effects of system calls. However, we include this “redundant”

information in the trace to provide some protection against any unmodeled effects.)

When running with trace seeding, VSA has two phases. The second phase is just standard VSA,

except that instead of starting from main it starts from the last instruction of the trace (which is

also where the first phase leaves off).

The first phase of VSA with trace seeding operates as follows. Compared to standard VSA:

 Instead of propagating information to every (apparently-reachable) successor of the current

instruction, VSA only propagates to the next instruction in the trace.

2
 Briefly, VSA abstract values consist of a set of abstract memory regions the value may point to plus a “strided

interval” of offsets in that region, along with a strided interval of possible numberic values. A strided interval is a

range s[l,h], and its concretization is {l, l+s, l+2s, …, h}.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 15 of 30

 In addition to an aggregated abstract state for each instruction, VSA also tracks a singleton

“current state.” When it evaluates a node, it does so under the current state rather than the

node’s aggregate state. Evaluating a singleton state gives another singleton state, which is the

next current state. The next current state is then joined with the node’s aggregate state.

 VSA cross checks the values that it thinks the program should have, as represented in the

singleton current state, with the values that were actually observed and captured in the trace.

If they differ, VSA updates its representation to match the trace’s reality and outputs a

diagnostic message.

VSA does this for each instruction in the trace. When it reaches the end of the trace, it switches

to phase 2.

The meaning of the result of running VSA with trace seeding is sort of a conditional static

analysis: it represents a soundy approximation of all runs of the program that follow that initial

trace. In our application, that means “runs that read the given configuration file.” For something

like a web server where a sysadmin can set the configuration file and it is read in before any user

requests are serviced, the user cannot affect the initial trace and this is a useful question to ask.

2.3 Review of some Phase I results

During Phase I, we primarily explored two aspects of the problem of binary optimizatio. First,

we implemented some hand-written, special-purpose program transformations, such as restricted

versions of dead code elimination and function inlining, and measured their improvements

(§2.3.1). Second, we performed some initial limit studies to see the potential for partial

evaluation to help (§2.3.2). These limit studies indicated promise and inspired us to propose

partial evaluation as the center of our Phase II work.

In addition to the results covered below, we also collected a large test suite to subject to our

transformations. More details can be found in the Phase I final report.

2.3.1 Phase I Transformation and Results

We implemented four program transformations during Phase I. These transformations are based

on GrammaTech’s binary rewriting infrastructure, developed over the course of many different

projects. Rewriting works by reading the binary and building an intermediate representation (IR)

for it, recovering information such as procedures and variables; changing the IR; and then

emitting the IR as an assembly file that can be built into the transformed program. We call this

the melt, stir, refreeze approach. The transformations we implemented are:

 The null “transformation.” This is not really a transformation; it serves as both a test of the

transformation infrastructure and a performance baseline. (Though there is no transformation,

the program still goes through the melt and refreeze steps of our rewriter.)

 Dead code removal.

 Procedure inlining.

 Converting dynamic libraries to static libraries.

These showed good results and promise for a binary optimizer; see the Phase I final report for

further details.

2.3.2 Phase I Partial Evaluation Limit Studies

We also looked at opportunities for partial evaluation. At this point, the partial evaluator was not

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 16 of 30

in a state ready to be run, so these studies were somewhat informal.

First, we performed quantitive studies of how often functions are called with constant arguments,

and how many (and what) those arguments are. These are candidates for specialization, because

the constant argument could be specialized into the called function. For example, we found the

function gnu_mbswidth was called six times by the dir executable, always passing 0 as the

second argument. This provides a prime target for specialization, because there would only need

to be one copy of gnu_mbswidth in the final executable.

Second, we manually looked for individual examples that would indicate the promise of partial

evaluation. We identified several such examples. These are covered in more detail in the Phase I

final report, but we briefly review them below:

 fnmatch is a function that does generic wildcard matching (e.g. * patterns in filenames). A

flags parameter controls what style of matching is done, but this parameter is almost always

constant. A program using this function could be specialized to produce an optimized version

of fnmatch that does not check that flags parameter, or even need to be passed it.

 fts_open is a function that traverses a file system. Similar to fnmatch, it takes a flags

parameter that is almost always constant.

 divdi3 and moddi3 implement 64-bit division and modulus on 32-bit architectures. Both

functions check for zero in the divisor, but in many calling contexts it would be possible to

determine that a zero divisor is impossible. In fact, in our test suite, the divisor was usually a

non-zero constant. This example is a bit more complex than the others in that we are

interested in a property of the parameter – “can this be zero” – rather than the exact value. A

powerful specializer could eliminate the zero check even for a non-constant value, as long as

it could determine that the divisor could not be zero.

3 Methods, Assumptions, and Procedures

This section discusses the experiments we performed under Phase II.

First, we carried out three limit studies to try to determine how much promise partial evaluation

has in different situations.

Second, the bulk of our Phase II effort was spent on partial evaluation. We made many

robustness and performance improvements, and extended it to be able to partially-evaluate

portions of a program. (§3.2.1)

3.1 Limit studies

First, we carried out several limit studies. The first limit study are interesting from the

perspective of the developer – they concern low-level implementation details of the program.

 We think that, for many programs, we could completely eliminate the chance of a

historically-common vulnerability: format string vulnerabilities (e.g., for printf). Format

string exploits are based around abusing the %n format specifier to write a controlled value to

memory. If we could replace calls to printf with versions specialized to a constant format

string, and/or replace printf entirely with a version that does not support %n, we could

reduce or eliminate this attack vector. However, this transformation would depend on

programs not actually needing support for %n. We think this is the case, and set out to

establish this hypothesis. (§3.1.1)

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 17 of 30

The next limit study is from the perspective of a user:

 We hypothesized that, for many programs, a user is often only interested in a small portion of

that program’s features. If support for the unneeded features were removed, that would leave

the program smaller, faster, and more secure. We wanted to determine how much of a

program is actually used in typical use. (§3.1.2)

And finally, we did a limit study from the perspective of a system administrator:

 Many programs, particularly servers, are highly configurable. However, a sysadmin often

knows what configuration they want to run the server in, and do not regularly change that

configuration. If we could specialize the program with respect to a configuration, we could

again eliminate unused code, leaving the program smaller, faster, and more secure. We used

VSA as a proxy for how much room there is for partial evaluation to make these

improvements. (§3.1.3)

3.1.1 Improving the security of format-string functions

Hypothesis: most programs do not need the %n format specifier
3
 to functions such as printf,

and the standard version could usually be replaced by a hardened version that does not support

%n.

One specialization idea that we hypothesized would be very useful at reducing attack surface is

to create specialized versions of formatted I/O functions, such as printf and scanf. (This

section also applies to other functions in the family, like snprintf and fscanf, and to a lesser

extent other functions that operate in a similar way.) Such functions have been the culprit behind

several format-string security vulnerabilities in the past [9]; Carlini et al. even describe “printf-

oriented programming,” proving that printf is Turing complete [8].

However, we hypothesized that the unsafe feature that allow these exploits, the %n format

specifier to both printf and scanf, is not commonly used. Furthermore, in most cases the

format string is a fixed, static argument. (In fact, GCC and Clang warn by default if a non-literal

format string is passed as the sole argument to printf, and both offer -Wformat-nonliteral to

warn when any non-literal is passed as the format string.)

Because of these characteristics of use, we think that it would be possible in a large proportion of

the time to provide a specialized printf/etc. implementation that omits the unsafe operations, or

perhaps even ignores at runtime the provided format string altogether, operating on a version of

the function that is completely specialized to the particular format string.

This study illustrates how LACI can operate at a low level, customizing the behavior of

individual functions and function calls, in the hands of a developer, security expert, or reverse

engineer.

To investigate the feasibility and utility of this specialization, we performed a limit study

examining how libraries and executables use format strings and how often %n is used.

For our corpus, we used files appearing within /usr/bin, /usr/sbin, and /usr/lib (including

3
 The %n format specifier instructs printf/scanf to store to a specified address memory the number of bytes output

to/input from the stream. Format string vulnerabilities usually occur when an attacker can control the address written

to along with some control of the size.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 18 of 30

subdirectories) on the machine of an employee at GrammaTech. That machine runs the Xubuntu

variant of Ubuntu Linux 16.04.1. In addition to the packages that are installed by default by the

distribution, many more packages used for day-to-day use were present, as well as the following

server packages specifically installed for this experiment: apache2, lighttpd, nginx,

postgresql, and isc-dhcp-server.

We used the standard strings utility (part of GNU Binutils) to extract strings from each binary.

For configurations, we told it to look for strings of length at least two characters (-n2; the default

is four). When it is run on a binary, it has two modes for where in the file it looks: it can either

look in the whole file (-a) or just initialized, loaded data sections (-d). “Data sections” includes

the .text section that includes the actual program code, and it does not distinguish between

instruction and actual data. (On some RISC architectures, such as ARM, read-only data is

routinely intermixed with code; this is less common on x64, but still possible.) We performed

initial investigations with both modes, but report most of our results with the -d mode.

The first thing we did was a general survey of the output of strings, just counting the number

of strings and their properties – where in the file the strings occurred, whether or not they were

duplicates, and whether or not they were safe or dangerous (containing %n). We first divided

strings into those in the data sections (as determined by the strings utility itself) vs. outside of

the data sections. We then divided each group into unique strings and duplicates of another string

within the same location category. If a string appears multiple times, one of those times is

counted in the unique category, the others in duplicates. So the number in the “unique” category

is the number of unique strings in the location category. If string appears in both a data section as

well as outside data sections, it will be counted as two unique strings; we did not determine if

this happens. Finally, we divided each of those groups up into whether or not the strings contain

%n. Those that do are classified as “dangerous” (really, potentially dangerous) and those that do

not are “safe.”

We then took a more file-centric viewpoint of where the %n occurrences are located. Using the

“data sections” mode (we also investigated “all” and got nearly identical results), we looked at

the number of files that contain a %n and do not contain %n, and divided those groups up by file

system location (bin vs. sbin vs. lib).

Finally, we performed a more detailed investigation of some of the files containing %n. Many of

the server executables are located in /usr/sbin, so we chose to look at files in that directory that

contain %n. Our initial surveys did not exclude files that are not x86/x64 binaries, so we first

excluded those. For a binary containing %n, there are three possibilities:

 The %n appears in a string literal passed as a format string (a “true positive” in terms of

looking for code that would break if we disallowed %n format strings)

 The %n appears in a string literal used for other purposes (a false positive)

 The %n appears in something that is not a string literal at all (an even more falsy false

positive)

To determine which is the case, we used CodeSurfer for Binaries to generate a disassembly

listing;
4
 Codesurfer and IDA Pro attempt to recover the locations of string literals, and in our

4
 For one program, mysqld, CodeSurfer crashed while trying to analyze; we used IDA Pro on its own to generate

mysqld’s listing.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 19 of 30

experience usually do a good job. We checked the disassembly to determine whether there is, in

fact, a string containing %n, and how it was used. If there was not a string literal containing %n,

we did a second check to find out why, looking at where the %n bytes appear. (In particular, we

checked whether they appear in the bytes of an instruction.)

We think this study provides a good indication of how programs use format strings, but it is not

perfect. Two potential problems are:

 The program dynamically constructs (or reads from a configuration file, etc.) a format string

containing %n. In this case, what we would expect is to see a dynamic argument to a format-

string function; neither a partial evaulator nor a specialized format-string simplification

would be able to replace that call. The general version would need to remain as-is and,

unfortunately, available to return-to-library attackers. However, other calls to the function

would still be able to be replaced, which would still reduce the attack surface.

 When concluding that a %n occurrence is a false positive, we are trusting that the CodeSurfer

and IDA Pro string-literal recovery is sufficiently accurate, meaning it is not the case that %n

appears both in the bytes of a random instruction and in a string literal. This would just be a

problem with the limit study and would not affect the final transformation; though it seems

likely that whatever reason led to poor string recovery might also lead to a format-string

specializer concluding that the format string is dynamic. (In this case, the specializer would

have to leave the generalized version in place, as described above.)

3.1.2 Measuring “excess features” in Grep

The second limit study we did was to try to measure how much of the grep utility is used in real-

world usage. This study illustrates how LACI can be used by an end user who thinks that they

likely only use a small part of the overall feature set of a program.

We wrote a script that examines a user’s command-line history (e.g. via .bash_history) and

extracts grep invocations, and then runs grep over those real-world uses under profiling using

QEMU. The profiling collects information about what instructions are visited. We compared the

proportion of instructions that are visited in those test runs and the total number of instructions in

the binary and its libraries. The grep invocations were over a test suite of a large quantity of C

source files as well as the grep executable itself (as a representative of binary files).

If a user can guarantee that a workload was representative of the use they intend, anything that

was not visited (or, perhaps, augmented with some additional instructions some analysis

determines “important”) could be removed from the program. This would allow a user to say “I

never use such-and-such feature; I want to remove it from the program.”

This experiment will underapproximate the needed set of instructions, because it is tracing based.

Things like error handling should not be cut out (and would not be with a tool such as partial

evaluation), and it is possible that some pattern edges were not triggered. However, as will be

seen (§4.2), the proportion of the program that is actually executed is so small that even if the

underapproximation were substantial (e.g., an order of magnitude), it would still be beneficial to

reduce.

3.1.3 Measuring the change in VSA coverage given a configuration

The third level of users we are aiming for is system administrators; we would like LACI to be

usable by a sysadmin to specialize a program for a particular environment or configuration.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 20 of 30

Under DARPA’s VET program, we implemented a new mode of value-set analysis called “VSA

with trace seeding,” described in §2.2. However, we did not perform much evaluation of it under

VET. At a high level, trace seeding is a bit like applying the idea of partial evaluation to a static

analysis. As a result, we decided to evaluate trace seeding’s effect under this project, to

determine if it offers any insight on how much benefit we might see from partial evaluation.

Our evaluation consisted in comparing the proportion of nodes that VSA considers reachable

when running with and without trace seeding. Our target program was rfid_reader, a program

developed for one of the VET engagements; it is a daemon that monitors accesses to an RFID

badge reader that should open (or not open) a door to a controlled area. The program can be

configured on a number of fronts, but perhaps the most interesting front is whether or not it also

requires the user enter a correct PIN before it opens the door. Whether or not it does is controlled

by the configuration.

We gathered a trace of rfid_reader until the point at which it waits for input from the badge

reader, by which point it has already read the configuration file and populated its internal

structures. We then ran VSA twice, once using the trace and once without the trace, measuring

the proportion of nodes that VSA considers reachable. The drop in nodes is attributable to the

trace, which imposes a precondition (“these nodes are reachable if the program reads this

configuration file”).

3.2 Experiments with WIPER (the UW binary partial evaluator)

During the LACI project, we imported the research prototype of WIPER from UW (see §2.1.4)

and worked on making it more robust, performant, and better-fitted to the goals of the project.

The most interesting enhancement is the ability to specialize parts of a program; the idea is that

we could specialize several parts and then reassemble. We call this “local partial evaluation” (see

§3.2.1).

There were a few technical challenges involved in the import process. UW developed WIPER

using an older version of CodeSurfer, and so we updated it to take advantage of more recent

improvements. We also spent time understanding how it is structured.

The first obstacle we encountered was how to specify the static and dynamic inputs. In their

experiments, UW manually specified the instructions that directly read (dynamic) input; those

instructions served as the starting point of the slice that is used for BTA. However, manually

specifying these instructions is not realistic for larger programs.

Instead of manually marking dynamic input, we considered the following as dynamic:

 The arguments to main (argc, argv, envp).

 Return values from system calls and undefined functions.

 Variables whose address is taken. Because it is difficult to determine when the address of a

variable is passed to a system function (for output to that variable), we conservatively mark

the abstract memory locations representing such variables as dynamic. This also allows us to

forgo the need for pointer analysis; any variable that could be written via pointer dereference

is deemed dynamic. This selection errs on the side of playing things safe, reserving partial

evaluation for only parts of the code that we are certain are not affected by the dynamic

input.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 21 of 30

3.2.1 “Local” partial evaluation

One of the opportunities where we think partial evaluation is promising is the interface between

client and library code. Assuming developers often do not need the full generality present in a

given library, it is likely that a lot of the library code can be trimmed down with partial

evaluation.

With this in mind, we investigated the possibility of applying the partial evaluator on subtrees of

the call graph, a technique we call local partial evaluation. In particular, we looked at function

calls in which one or more of the parameters passed to the function is a constant value. If we can

generate a customized version of the function (and its callees) based on those fixed parameters,

then we can eliminate excess code and computation for that specific calling context.

Our first approach to this was to constrain the partial evaluator to just the functions that are

transitively called from a given call site. As described earlier, WIPER’s binding-time analysis

leverages CodeSurfer’s dependence analysis, which computes the data and control relationships

between different instructions in the program; the BTA operates by performing a forward slice

from the dynamic seeds of the program. Instructions covered by the slice are deemed dynamic.

Those not covered by the slice are static.

For local partial evalutaion, we operated at the subcomponent level, starting the slice at the non-

constant parameters to a specific function call. (We also include other possible sources of

dynamic input within the subcomponent as well.) The instructions not covered by the slice can

be deemed static with respect to the specific calling context that we’re interested in.

We specialized components of several programs from the SPEC benchmark suite. Results are

described in §4.4.2.

4 Results and Discussion

This section describes the results and some conclusions from each of the experiments and

implementation efforts we carried out during the LACI project.

4.1 Format string measurements and function hardening

As described in §3.1.1, first, we looked at how many strings of length at least two (strings -

n2) contain %n:

Total strings:

7,146,777

In a data/code

section:

6,778,704 (95.5%)

Unique: 2,038,348

(28.5% of total,

30.0% of parent)

Safe (no %n): 2,032,877

(28.4% of total, 99.7% of parent)

Dangerous: 5,471

(0.08% of total, 0.3% of parent)

Duplicates: 4,750,356 Safe: 4,745,562

Dangerous: 4,794

Outside of all

data/code sections:

358,073

Unique: 37,289 Safe: 37,129

Dangerous: 160

Duplicates: 320,784 Safe: 320,092

Dangerous: 692

From these numbers, we can see that strings containing %n are relatively rare, occurring just over

10,000 times (across 20,907 files, as can be seen in the next table). Furthermore, close to half of

those are duplicates of others, so there are fewer than 5,600 strings; on top of that, based on the

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 22 of 30

proportion of false positives from our detailed look at /usr/sbin (below), a large proportion (very

likely, more than half) of these strings are false positives.

Our file-centric view of where %n is used:

Total files: 20,907 ‘strings -a -n2’ found a %n: 1,557 (7.4%) /usr/bin: 319

/usr/sbin: 28

/usr/lib: 1,210

No %n in the file: 19,350 (92.6%) /usr/bin: 1,962

/usr/sbin: 209

/usr/lib: 17,179

Here things look even better: 92.6% of files appear to not contain %n. It is possible that some of

them might still depend on the ability to use that format specifier because of dynamically-

constructed format strings, but this seems pretty unlikely. The proportion of %n-free strings in

/usr/bin is a little lower (86%), but this suggests that a significant majority of programs might

be able to function with no change other than replacing printf with a hardened version.

And finally, our detailed look at the %n occurrences in /usr/sbin:

Total files:

237

Safe on their face (no string with %n): 209 (88.25)

Contains %n: 21 Not a binary: 9

Binaries: 12 %n in instruction bytes (likely false positive): 6

Calls format string function

with %n: 5 (2.1% of total)
grub-*: 4

tcpdump: 1

Other (may or may not): 1

Of these 237 files from /usr/sbin, only 5 or 6 files (2% – 2.5%) make use of %n; four of those

files are from a family of grub utilities and use it in a similar way. The try-from utility calls

functions in a shared library with a string containing %n; we did not trace it through to find its

ultimate use, so that may or may not ultimately depend on passing it to a format string.

The 6 entries “instruction bytes include %n” are likely false positives. In these cases, %n does not

appear in the assembly listing we get from CodeSurfer for Binaries and/or IDA Pro, and there is

an instruction that happens to include the bytes 0x25 0x6e (%n). (Note that strings -d searches

the entire .text section.) Hypothetically, CodeSurfer and IDA Pro might be missing a string

constant that appears in addition to the %n in the bytes of an instruction, but we think the chance

of this is remote. Regardless, even if all of these files were actually true positives (i.e., they really

do contain a format string with %n), the number of files in sbin that contain a %n literal format

string would still only be about 5%.

To give further credence to our results, we also downloaded the source code for the Apache

HTTPD server and the Apache Portable Runtime library (APR) and did a textual search for %n.

(Apache HTTPD uses APR.) The only places that %n appears in the source tree is in comments.

Future directions and recommendations:

The results of our printf study show that there appears to be a lot of room to improve program

security by providing a restricted version of the format string functions. As mentioned in §3.1.1,

format-string vulnerabilities have been a significant source of program insecurity, and we think

that removing the possibility of exploiting format string functions would be very beneficial.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 23 of 30

There are multiple avenues for approaching this task. We identify two high-level axes on which

there is a choice:

 Will just some of the existing printf calls be redirected, or just some? And if all will be

redirected, will the original printf still be present in the program’s address space? (It must

be present if only some calls are redirected, of course.)

 Will calls to the original printf all call into one, reduced strength printf, or will they call

separate functions with the format string “baked in”? (If multiple printf calls pass the same

format string, they could share the same new function.)

This leads to the following possibilities, including leaving things the same. In the following

table, the cell contents indicate possible implementation techniques, as described below.

 What function will be called when the

format string was a literal?

Original safer specialized

What function will

be called when the

format string is

not a literal?

original no change rewriting* rewriting**

safer not possible LD_PRELOAD

safer, and printf

is absent

custom libc rewriting** and

custom libc (both

necessary***)

* Requires rewriting if there are non-literal calls; if all calls are literal, LD_PRELOAD suffices.

** Requires rewriting if there is more than one call. If there is only one call, LD_PRELOAD

suffices.

*** Alternatively, libc could be rewritten, but the program would still have to use that rewritten

version; or the program could be rewritten to statically link libc.

As you move further right or down in the table, the rewritten program becomes more secure:

 Moving right:

o From first column to the second, corrupting the format string at literal call sites

becomes less useful to an attacker, because the attacker will not be able to cause it to

contain %n.

o Moving from the second column to the third, corrupting the format string at literal

call sites becomes outright impossible, because the format string becomes baked into

the target function.

 Moving down:

o Moving from the first row to the second makes any potential user control of the

format string, or corruption of the format string at the non-literal call sites, less useful

to an attacker (because the attacker will not be able to cause it to contain %n).

o Moving from the second row to the third eliminates the possibility of a return-to-

library attack with a forged, %n-containing format string that bypasses all calls in the

program.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 24 of 30

There are some restrictions to moving down the table. Moving from the first row to the second

means that the program is no longer able to dynamically generate (or read from the user) a

format string containing %n for the call sites that are changed. (Not all need be changed; some

non-literal call sites could call the original printf while others call the safer printf.) Moving

from the second row to the bottom row means that every call site in the program must be to the

safer printf or to a specialized version, meaning it must be intended that no call site in the

program ever can use %n. This is probably a good thing – the hypothesis that our study was

trying to establish – but hypothetically could restrict the application. More realistically, it may

not be possible to automatically determine whether a non-literal call site is safe to restrict to the

safer version.

The table lists the simplest implementation technique that we think could effectively achieve the

desired effects. From simplest to most complex:

 LD_PRELOAD – use a library with a custom printf implementation, and use $LD_PRELOAD

to ensure it is loaded. The library’s printf will interpose and superceed on printf calls.

 custom libc – build a custom version of libc with a safer printf (or without a printf

entirely) and ensure it is loaded by the target program. If the custom library provides its safer

version under the name printf, then this suffices; it could also provide it under a different

name, but that would require rewriting the program to redirect calls.

 rewriting – a binary rewriter would be necessary to rewrite calls to the original printf so

they point somewhere else.

Except for the lower-right cell of the table, later implementation options subsume earlier ones.

For example, if you use a rewriter, you do not also need a custom libc (except for the lower-right

cell). Also, the above options apply only for programs that dynamically link against libc;

statically-linked programs would always need a rewriter.

The general rules are:

 If it is possible that two different calls to printf should call different functions (either

because we are specializing and they have different format strings, or because we want non-

literal calls to call the original printf), then a rewriter is necessary.

 To ensure that printf is absent from the address space of the program, a custom libc is

necessary.

4.2 Grep: unused features and functions

When the usage patterns of our engineer were measured, we found that only 3.25% of all

instructions (6,499 of 199,907) in the program and its libraries were executed.

We think that the large number of unexecuted instructions are because of libraries that grep

includes, but uses only small portions of. This is, at some level, a typical application area that we

wanted to target for this project, and this servers as a further data point that the technique is very

promising. Even if this number is underapproximating the usable code by an order of magnitude

(due to inadequacies in our test suite, for example, but also taking into consideration any

imprecision during the rewriting), that still means there is potential to remove two thirds of the

aggregated program if the user is willing to say “I only want enough to use these features that I

make common use of.”

4.3 VSA trace seeding: improved precision from trace seeding

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 25 of 30

We saw a fairly significant drop in the proportion of nodes that VSA determines as reachable, as

a result of using the dynamic trace as a seed.

With no trace seed, there are 3,382 nodes that VSA considers to be reachable. However, if we

apply the trace, the number of reachable nodes drops to 2,609, a 23% decrease. (In both cases,

this is out of a total of 19,408 nodes; the large number of unreachable nodes is mostly due to the

executable containing code that is used in other versions of the rfid_reader test; this is similar to

part of the motivation for LACI in the first place.)

Without a fuller job of reverse engineering rfid_reader it is hard to say what exactly is

unreachable only under the trace seed assumption, but portions that seem to be removed include

the code that checks the PIN. Under normal operation, the program first checks whether or not

the configuration specifies that the PIN reader is present and necessary, then, if so, reads the pin

from the user. A version specialized to a configuration saying that a PIN is not required could

remove both the configuration check as well as the PIN check code; VSA trace seeding appears

to be reflecting the static analysis analogue.

4.4 Adapting UW’s partial evaluator

We first successfully replicated the improvements from partial evaluation that UW demonstrated.

However, when we applied WIPER to new programs for LACI, we ran into several difficulties.

When we tried to run WIPER on whole programs, the binding-time analysis marked nearly the

entire program as being dynamic, which would lead to no meaningful specialization. We think

the difference in results between our attempts and UW’s is that we were applying it in very

different context, with less well-defined inputs (because UW’s approach for specifying inputs

would not be appropriate for a LACI-like tool, requiring a manual specification of all the inputs).

This problem is described in more detail in §4.4.1.

We then worked on local partial evaluation, as described in 3.2.1; results from those experiments

are described in §4.4.2. We hit another engineering issue, which was a failure of WIPER’s

instruction synthesis; that is discussed briefly in §4.4.3.

4.4.1 Binding-time analysis precision

Our initial experiments with the UW partial evaluator showed that only 3% of the programs were

being marked as static. This would mean that the specializer would do effectively nothing to

improve the program.

As mentioned in §2.1.4, the partial evaulator’s binding-time analysis uses slicing to compute the

static/dynamic division. Slicing can follow two kinds of dependence edges:

 A data dependence indicates that a value computed at one instruction is (directly) used at

another instruction.

 A control dependence indicates that a control-flow operation performed at one instruction

affects whether another instruction is executed.

Obviously, data dependencies indicate direct flow of dynamic information through the system

from one computation to the next. Control dependences represent more subtle flow of

information. Consider the following function:

int foo(int input_var)

{

 int x;

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 26 of 30

 int y;

 if (input_var > 10)

 x = 1;

 else

 x = 2;

 y = x;

 return y;

}

In this example, the assignment to y has data dependences on both of the two assignments to x.

However, neither assignment to x has any data dependencies on any other instructions – their

computation has no inputs. Thus, considering data dependence alone, the assignment to y does

not appear to be dependent on dynamically provided input. Yet clearly that is not true, and the

final value of y does depend on input_var. This is where control dependence comes in. Both of

the assignments to x are control-dependent on the conditional of the if statement, which in turn

is data-dependent on input_var. By following both kinds of edges, we can correctly detect that

the assignment to y and y’s result are, in fact, dynamic.

However, leveraging control dependence results in a conservative overapproximation of the set

of instructions that should be considered dynamic. In the above example, both assignments to x

would also be labeled dynamic and the partial evaluator would residuate them. In this case, this

wouldn’t be too big of a problem. A more problematic case is the following kind of idiom:

void bar(int input_var)

{

 if (!is_valid_input(input_var) {

 report_error();

 return;

 }

 /* ... rest of the function ... */

}

Here we have an error check at the beginning of the function to exit early if invalid data is

provided. The “rest of the function” portion of the function is entirely control-dependent on the

initial error check. As a result, the slice performed by the partial evaluator will label effectively

the entire function as dynamic, and likely miss any opportunities for optimization.

This problem can propagate up and effect basically the entire program – for example, if a

program’s main contains an early exit (perhaps a check for a correct number or the correct

formats of command line arguments and returns if not) or puts the main portion of the program

in the body of a conditional or loop that is dynamic, then all functions called under that would be

marked dynamic as well – because we are talking about main, the dynamic portion would likely

be almost all of the program’s functionality.

There are a couple of ideas that we have for improving things to a production level. Using a BTA

with different attributes (as discussed in §2.1.2) should lead to much better results. For example,

an online evaluator would not have the control-dependence problem.

An alternative approach is to augment the way the control dependencies are used by the offline

BTA analysis. One option is to relax the reliance on the control dependence by following a set of

heuristics. For example, excluding control dependence edges from parameter checks may get us

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 27 of 30

a certain distance.

However, from looking at cases where this problem arises, we also think that a more principled

solution is possible, using data dependence edges. Take for example the following code:

void bar(int input_var)

{

1: int x = input_var;

2: int y = 0;

3: while (x > 0) {

4: int z = f(); // Constant computation

5: y = g(y, z); // Computation dependent on x

6: x--;

7: }

8: return y;

}

Here, the call to function f() when initializing z inside the loop (line 4) is constant and always

returns the same value. Ideally, we’d like to evaluate this computation statically, eliminate the

variable z, and inline the appropriate value into the call to function g(). Note that we cannot do

the same for g() and y, because the first parameter to g() is the previous value that y had (either

its initial value, 0, or the value resulting from the previous execution of the while loop.)

Control dependence would cause BTA to mark the entire loop body as dynamic, and the

specializer would do no optimization. However, note that every time line 4 executes, it performs

exactly the same computation. In contrast, line 5 performs a (potentially) different computation

on each execution. A key distinction between the two lines is that line 5 has a cycle in its data

dependence graph – in fact it is dependent on itself.

This observation may provide a key to a more principled solution: ignore control dependences

for any computation that has no cycles in its backward slice. It is not clear whether this rule

would hold up in all situations, but it seems like it would be a promising direction for future

work on the partial evaluator. Unfortunately, we did not reach a conclusion as to the efficacy of

this analysis before the end of the project.

4.4.2 Local partial evaluation results

The following tables show results from rewriting based on constant arguments. The tests we used

are the following tests from the SPEC benchmark suite:

test # instr # procs

Astar 8,703 124

bzip2 11,826 111

hmmer 59,638 622

libquantum 9,052 139

Sjeng 21,820 191

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 28 of 30

We determined the procedures that are called with a constant literal argument, and specialized

them. Not all specialization attempts succeeded; many timed out or crashed. Results for the

attempts that succeeded are show below.

The following table shows:

 “# procs orig.”: the number of such procedures

 “# procs rewrit.”: the number of procedures they turn into in the rewritten executable. (If

a procedure is called with multiple constant arguments, it will be duplicated and

specialized multiple times.)

 “# instr orig.”: the number of instructions in the procedures that we rewritten, in the

orignial version

 “# instr duped”: the number of instructions in the original version, if each of them were

duplicated the number of times that procedure is specialized in the rewritten program

 “# instr rewrit.”: the number of instructions in the rewritten version. Percentage changes

are given relative to “# instr duped”.

test # procs orig # procs rewrit # instr orig # instr duped # instr rewrit

Astar 4 6 123 269 275 (+2.2%)

bzip2 2 18 42 406 196 (-52%)

hmmer 3 8 86 216 157 (-27%)

libquantum 4 6 73 123 106 (-14%)

sjeng 5 18 920 1,199 772 (-36%)

There are several conclusions from this data:

 Very few procedures are called with constant arguments, in the manner we are detecting it.

However, our detection is reasonably weak; there is no dataflow analysis that helps

determine whether arguments are constant.

 Different calling contexts lead to a duplication of procedures, in many cases many duplicates.

This generally leads to an increase in program size, not a decrease.

 Specialization is generally able to substantially reduce the size relative to “# instr duped” –

the median percentage decrease was 27%, and the total decrease across all procedures was

about 32%.

We think that these data show promise for future work on the subject, though it is also clear that

we are still a fair distance away from binary partial evaluation being applicable in real-world

scenarios.

When looking at the breakdown of binding times, the results for these tests are better than the

overall program (the 3% figure). The following table shows the number of instructions with each

binding time. “# dynamic” and “# static” should be expected; the other two binding times are:

 “# dynamic-”: these are dynamic instructions that also have a static side effect that is

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 29 of 30

interpreted (such as a stack update).

 “# lifted”: these are static instructions that are a data predecessor of a dynamic instruction;

for each of these instructions, a residual instruction needs to be generated to load the static

value to the expected place.

The need for these is somewhat technical. Lifting is a standard partial evaluation top; for more

information about the “dynamic-” binding time, see the UW paper on WIPER [12].

test # dynamic # dynamic- # lifted # static total

astar 193 0 21 58 (21%) 272

bzip2 44 34 22 62 (38%) 162

hmmer 69 30 14 14 (11%) 127

libquantum 49 6 12 24 (26%) 91

sjeng 503 42 65 52 (7.9%) 662

As can be seen from the table, most instructions are still being determined to be dynamic, but a

larger proportion are static – 8% to 38% static, with a median of 21%.

4.4.3 Instruction synthesizer difficulty

As discussed in §2.1.4, WIPER uses instruction synthesis to generate instruction sequences in the

residual program, converting the partially evaluated program state for static code back into

instructions when lifting that state for dynamic instructions. The synthesizer uses an approach

inspired by superoptimization [10] – it searches for the smallest sequence of instructions that can

result in a specific program state.

However, the instruction synthesizer often fails to produce a valid instruction sequence. We did

not have time to diagnose all of the issues with the synthesizer; some possible causes could be:

 The instruction templates the synthesizer uses could be not expressive enough to capture

the necessary program state.

 The search takes too long and times out. (At its core, the synthesizer uses an SMT solver

to determine whether a candidate instruction sequence has the correct semantics.

 Perhaps the most likely scenario is that the synthesizer needed more work than we had in

order to mature it beyond a research prototype.

5 Conclusions

The bulk of our work on LACI was on partial evaluation for machine code, building on

foundational work from UW in the form of LACI. We enhanced the UW prototype to be much

more capable and experimented with applying it to real world software; however, we ran into

some challenges, such as the need for a more precise binding-time analysis.

Despite the challenges that we faced, we are still optimistic about the promise of using partial

evaluation to optimize and minimize programs for specific deployment scenarios. Our

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037

Final Report © GrammaTech, Inc. 2016

 Page 30 of 30

experiments, as well as UW’s, still show promise, and there is an extensive academic literature

of partial evaluation, and techniques from partial evaluation are used in production tools. (For

example, partial evaluation has parallels to, and have influenced, just-in-time compilers [14].)

The specific case of partial evaluation of binary code is substantially more difficult (like binary

analysis in general), and our results show that this is a useful direction to pursue in the future.

6 References
 1. Partial Evaluation. 1993: Prentice Hall International.

 2. Partial Evaluation. 2017: Springer.

 3. Amin Shali and William R.Cook, Hybrid partial evaluation. In ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA): ACM SIGPLAN.

 4. Aung, M., Horwitz, S., Joiner, R., and Reps, T., Specialization Slicing. ACM

Transactions on Programming Languages and Systems, 2014. 36(2): pp. 1-67.

 5. Balakrishnan, G. and Reps, T., Analyzing memory accesses in x86 executables.

Comp.Construct., 2004: pp. 5-23.

 6. Balakrishnan, G. and Reps, T., Analyzing Memory Accesses in x86 Executables. In

International Conference on Compiler Construction (CC). 2004. Barcelona, Spain:

Springer Verlag. pp. 5-23.

 7. Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson

Amaral, Bor-yuh Evan Chang, Samuel Z.Guyer, Uday P.Khedker, Anders Møller, and

Dimitrios Vardoulakis, In Defense of Soundiness: A Manifesto. Communications of the

ACM, 2015. 58(2): pp. 44-46.

 8. Carlini, N., Barresi, A., Payer, M., Wagner, D., and Gross, T. R., Control-flow bending:

On the effectiveness of control-flow integrity. In 24th USENIX Security Symposium

(USENIX Security 15). pp. 161-176.

 9. Karl Chen and David Wagner, Large-scale analysis of format string vulnerabilities in

Debian Linux. In ACM workshop on programming languages and analysis for security.

 10. Massalin, H., Superoptimizer: A look at the smallest program. In Architectural Support

for Programming Languages and Operation Systems (ASPLOS).

 11. Niels H.Christensen, Robert Glück, and Søren Laursen, Binding-Time Analysis in Partial

Evaluation: One Size Does Not Fit All. In Perspectives of System Informatics: Springer.

 12. Srinivasan, V. and Reps, T., Partial evaluation of machine code. In ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA). pp. 860-879.

 13. Srinivasan, V. and Reps, T., Synthesis of machine code from semantics. In ACM

Conference on Programming Language Design and Implementation (PLDI). 2015. pp.

596-607.

 14. Stefan Marr and Stéphane Ducasse, Tracing vs. partial evaluation: comparing meta-

compilation approaches for self-optimizing interpreters. In ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).

