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1. Introduction 

Lately the statistical methods of psychometrics have been severely criti
cized in psychological quarters. Thus Skinner [1] maintains that if order is to 
to be found in human and animal behavior, then it should be extracted from 
investigations into individuals, and that psychometric methods are inadequate 
for such purposes since they deal with groups of individuals. And as regards 
abnormal psychology Zubin [2] states: "Recourse must be had to individual 
statistics, treating each patient as a separate universe. Unfortunately, present 
day statistical methods are entirely group-centered, so that there is a real need 
for developing individual-centered statistics." 

In a recently published book [3] I have developed three models for reactions 
to certain attainment tests and intelligence tests. Within the very limited areas 
covered, these models represent an attempt to meet this challenge. In fact, each 
model specifies a distribution function for the potential responses of a given per
son to a given stimulus of a certain set of allied stimuli, and this distribution 
function depends upon a parameter characterizing the person and a parameter 
characterizing the stimulus. The models have a remarkable property in common 
that renders it possible, in the analysis of the data, to detach the personal param
eters from the stimulus parameters, and vice versa. And furthermore, we may 
check the adequacy of the model itself independently of coth sets of parameters. 

The present paper is concerned with a rather large class of models sharing 
this separability property, and also with some of the implications of this type of 
models. 

2. A model for tests in oral reading 

Let me begin with a description of two of the above mentioned models which 
pertain to static situations, leaving the third one, which is dynamical, for 
another occasion. 

A large number v = 1, · · · , n, of children were given a few tests, i = 1, · · · , k, 
in reading aloud and on each occasion the number of misreadings was counted. 
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For the sake of simplicity, we shall consider only the cases where all texts were 
completed. 

For reasons not to be discussed here (compare chapter 2 in [3]) the number of 
misreadings x.,i made by child number 11 in text number i is assumed to follow 
a Poisson law, 

(2.1) 

We shall attempt to describe the parameter ~ .. i as the product of two factors, 
one pertaining to the person and one to the text, 

(2.2) 

At this stage we might, in keeping with the usual psychometric reasoning, 
assume that the 8, the "underlying continuum of inabilities," follow some dis
tribution. A normal distribution is usually preferred, but since its composition 
with the Poisson law would be hard to handle, a gamma distribution might be 
tolerated for once. 

It is, however, a main point of the present paper that for models like (2.1) any 
assumption about populations in an ordinary psychometrical sense is superfluous 
as far as comparisons of tests and comparisons of persons go. In fact, if we assume 
stochastic independence of the k test results for the same child and also of the test 
results for different children, the distribution function for the whole set of 
observations ((x.,i)), with 11 = 1, · · · , n and i = 1, · · · , k, becomes 

II o;··II u:-· 
(2.3) P{((x.,i))} = e- 8

·"· " ' II II X11i! 
i 

where a dot indicates summation over the corresponding index. 
From (2.3) it is easy algebra to deduce the distribution of the grand total, 

(2.4) P{x } - e-8.v. (8.u.)X·· 
.. - x .. ! 

and the two conditional distributions of the marginal sums, given the grand 
total, 

(2.5) = ( x.. ) II (~)%"·, 
Xt . , • • • , Xn • " 8. 

(2.6) P{(x.i)lx .. } = ( x.. ) II (~):t .. 
X.1,···,X.k i u . • 

It is also easily realized that for given x .. the two sets of marginal sums are 
stochastically independent, that is, 

(2.7) 

Finally, (2.3) with (2.5) and (2.6) leads to 



(2.8) 
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II xJI.! II x.d 
P{((xvi))!(xJI.), (x.i)} = JI Illl · 

x .. ! Xvi~ 
JI i 
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Formulas (2.5) and (2.6) give a quite clear cut separation of the parameters: 
the ratios 8.,,/0. are to be estimated from one margi,nal, the ratios <Ti/ <T. from the other 
one, and these estimators are sufficient. With one of the tests chosen as reference, 
with <T = 1, all the other <T can be estimated uniquely. In consequence, O. may 
be estimated from (2.4), and accordingly, the estimates of the OJI are fixed. 

Formula (2.8) tells us that, given the two marginals, the total set of observa
tions obeys a distribution which is independent of all parameters. In consequence, 
we may check the model without involving any of the unknown parameters. In order 
to indicate in which way (2.8) may be employed for such control purposes, we 
consider a special case of (2.6), namely, 

(2.9) ( x.. ) II (<Ti)X•i P{x,1, ... 'X11klxJI.} = x,1, ... 'x,k i ; 

from which it follows that the expected value of any X11i for given total xJI. is 
proportional to x,., 

(2.10) 

Thus, if we collect children into groups according to their total number of mis
readings in the k tests all together and, for each group, average the number of 
misreadings in test number i, these averages should, apart from random varia
tions which may be judged by a x2-test, increase proportionally to x, .. 

This test, which is, by the way, passed beautifully by my observations, may 
be conceived as an application of (2.8) in which we, without specifying explicitly 
any alternative to our model (2.1) and (2.2), are looking for trouble in. a more 
or less definite direction, namely, for the possibility that the relative difficulties 
of the tests may vary with x11 ., that is, with the reading inability of the children. 

3. A model for a type of intelligence test 

For the responses to the items of an intelligence test the following model 
is suggested. (For the background of this choice, see chapter 5 in [3].) The 
probability that person number 11 gives a correct answer to item nutnber i is 

(3.1) 
8,<Ti 

' 1 + OJl<Ti 

assumed independent of the answers to the preceding questions. 
For the following algebra it is convenient to reformulate this model in terms 

of another random variable a 11i, defined as 1 if the answer of person .,, to item i 
is correct, 0 if it is not correct. In both cases we have 
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(3.2) 

Under the assumption of independence between the answers to different items 
for any given person, as well as between the answers of different persons, the 
probability of the whole set of answers 

(3.3) .,, = 1, · · · , n; i = 1, · · · , k, 

of the n persons to the k items becomes 

(3.4) 

where the denominator is 

(3.5) 

II 0~·· II ur-· 
P{A} = II 'Y(8, ~) 

'Y(e, ~) = II II <1 + o,,ui). 
i 

Since P{A} is the same for all matrices (3.3) with the same two marginal 
vectors 

(3.6) a*. = (a1., ... 'an.), a.*= (a.1, ... 'a.k), 

the joint distribution of these vectors is 

(3.7) 

where the coefficient on the right denotes the number of all such possible matrices 
with all a,,i = 1 or 0. On summing (3.7) over all a*.' we obtain the distribution 

(3.8) P{ } - 'Y<t*.(~) II a,. 
a*. - (e ~) o,, ' 

'Y l II 

where 

(3.9) 

Now, by dividing (3.8) into (3.7) we obtain the conditional distribution of one 
marginal vector, given the other, 

II <Ta •• 

P{a.*\a*.} = [~*·] _i_, 
'* 'Ya*.(~) 

(3.10) 

and a symmetrical argument yields the symmetrical formula 

(3.11) 

II oa •. 
P{a*.!ct.*} = [~*·]-"-

11 

• 

·* 'Ya)8) 

Finally, we may divide (3.7) into (3.4), thus obtaining the conditional dis-
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tribution of the total matrix of observations, given the two marginal vectors, 

(3.12) 
1 

P{Ala •. , a .• } = -[ ]. a •. 
a .• 

Formulas (3.10), (3.11), and (3.12) form the analogues to (2.5), (2.6), and (2.8), 
being, however, somewhat weaker since a •. and a .• for given a ... do not appear to 
be stochastically independent. The main feature, however, has been retained. 

On the basis of (3.10) we may estimate the item parameters independently of the 
personal parameters, the latter having been replaced by something obscrvab"le, namely, 
by the individual total number of correct answers. Furthermore, on the basis of 
(3.11) we may estimate the personal parameters without knowing the item parameters 
which have been replaced by the total number of correct answers per item. Finally, 
(3.12) allows for checks on the model (3.2) which are independent of all of the param
eters, relying only upon the observations. 

4. Models with separate parameters 

The practical results of applying these two models have been encouraging 
enough to justify a theoretical study of their basic properties as a preliminary 
to attempts at covering much wider fields of psychology. Formally, at least, we 
shall confine ourselves to the types of experiments or observations where all per
sons in question have been exposed to the same set of stimuli belonging to a 
certain, potentially large, class of allied stimuli. And at present we shall deal 
only with single individuals in static situations, assuming that preceding re
sponses of a given person have no influence upon later responses, and the re
sponses of any given person are unaffected by the responses of any other person. 
Situations to which these conditions do not apply may be considered under a 
dynamic point of view, such as processes of learning or of adaptation, or as 
group psychological phenomena. 

In passing it may be noted that this assumption of independence of items is 
conditional to a given "ability." It is, therefore, not at variance with the well
established high intercorrelations between items which are produced under our 
model by the strong variation of the "abilities" in the "population" considered. 

The responses may, of course, be quantitative, such as reaction times, or 
estimated sizes or velocities. However, they may just as well be qualitative, 
such as answers to a questionnaire or solutions to problems in an intelligence 
test, which are recorded as, for example, correct, incorrect, or not answered. 

In psychometric practice the specification of the statistical model for the 
latter type of data is usually preceded by a so-called quantification or scoring 
of the qualitative observations, which is quite often nothing more than an enu
meration of possible responses. In view of Dirichlet's definition of a function as 
just a correspondence between two sets of elements, such procedures would seem 
unnecessary as prerequisites to mathematical formulations of general laws. In 
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the present approach we shall, therefore, start from the original observations 
themselves, quantitative or qualitative as the case may be. 

In accordance with the two models already considered we shall attempt to 
characterize each individual .,, by a parameter 8., which, however, is not neces
sarily one-dimensional. And similarly, each stimulus i will be characterized by a 
parameter u i which also may be of a higher dimension. To each combination of 
individual and stimulus we shall assign a probability distribution on the set of 
prn!!sible responses. For simplicity we shall on this occasion consider only the 
case of a finite number m of possible responses, to be denoted x <o, · · · , x <m>. The 
probability that individual.,, gives the response x.,i = x, which, by the way, also 
may be a vector, to the stimulus i is assumed to be determined by x and a param
eter ~,,i, which is, in turn, determined entirely by 8,, and <Ti, 

(4.1) ~Iii = µ(8,,, <Ti)· 

This formulation allows for the possibility that the characteristics of persons 
and stimuli show some sort of random variation. In this case 8., and <Ti are inter
preted as parameters in probability distributions. 

In section 5 we shall refer to this representation; at present it suffices to keep 
in mind that the probability that x,,i = xis conditioned by 8,, and <Ti· 

In the proofs of the separability of the parameters in sections 2 and 3 the 
relative sufficiency played, to say the least, an important instrumental role. Fol
lowing this lead we may ask what conditions are required for the existence of 
sufficient statistics for the 8, provided the u are known, and vice versa. From 
well-known theorems on sufficiency it follows that, apart from a normalizing 
function depending on 8,, and <Ti only, log P{xj8.,, <Ti} must be a bilinear function 
of some transformations 8~ and uLof 8., and <Ti, respectively. Therefore, on proper 
choice of 8., and <Ti we have 

(4.2) 
1 

P{xl8,,, <Ti} = (
8 

·)exp [cp(x)8,, + 1/;(x)ui + x(x)8.,ui + p(x)], 
'Y "' <T' 

where cp, 1/1, x, pare functions of x only. In writing (4.2), it is presumed that the 
parameters are one-dimensional, but, in order to make the formula apply to 
higher dimensional cases, we just have to interpret cp(x)8,, and 1/;(x)ui as inner 
products of vectors, while x(x) is taken to be a matrix and x(x)8,,ui to be a 
homogeneous bilinear form in the elements of 8,, and <Ti. For the sake of simpli
city, most of the formulas in the following will be expressed as if 8,, and <Ti were 
scalars, but the above reinterpretation is available at any time. 

I have not yet studied the general form (4.2) in detail, but the case x(x) = 0, 
for which there exist relatively sufficient estimators for the 8 which are independ
ent of the u and vice versa, shows several features of considerable interest. 

Preparatory to the analysis of this case I shall change the stochastic variable 
by introducing the selection vector 

(4.3) a,,i = (0, ... ' 1, ... '0) = (a~\ ••. 'a~m>), 

which has elements 0 except the µth where x.,i = x<">. Writing, furthermore, 
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(4.4) 

and introducing the vectors 

(4.5) cf> = (cp1, • • • , 'Pm), '11 = (1/11, ' '' , lfm), P = (p1, · · · , Pm), 

we have 

(4.6) 

Now imagine that all of the k stimuli, i = 1, · · · , k have been applied to each 
of then persons.,, = 1, · · · , n and that we obtain a selection vector for a response 
every time. We may then build up a matrix of order (n, k), whose elements are 
the selection vectors a,,i. For each person the a,,i add to a total vector a,,., and 
similarly, the <i,,i: for a given stimulus add to a total vector a.i. Out of these 
marginal vectors, whose grand total is a .. , we form the ordinary matrices 

(4.7) (a1.) (a.1) 
A •. = · · · ' A .• = · · · 

ctn. a.k 
of orders (n, m) and (k, m). 

Noticing that 

(4.8) 

and writing 

(4.9) 

'L 'L 8,,a,,i = eA •. , 
,, i 

'L 'L "ia,,i = 2;A .• 
,, i 

-y(e, 2;) = II II -y(fJ,,, <Ti), 
i 

we obtain for the distribution of the whole set of a,,i 

(4.10) P{A} = exp (eA •. cI>* + 2;A .• w* + a .. P*). 
-y(8, 2;) 

Since P {A} remains the same for all matrices ( a,,i) with the same marginal 
matrices (4.7), the joint distribution of A •. and A .• becomes 

(4.ll) P{A A } = [A•·] exp (eA •. cl>* + 2;A .• w* + a .. P*) 
•. , ·• A.. -y(8, 2;) 

where the coefficient on the right denotes the number of such matrices for which 
the elements are selection vectors. By convention the coefficient is understood 
to be 0 if the two matrices could not possibly represent the two sets of marginal 
vectors of the same A-matrix, for example, if some a,,. > k or some a.i > n, 
or if 'L,,A,. ~ 'L~ ·i· 

On summation of (4.11) over all matrices A •. and A .• with the same grand 
total vector a .. , we obtain the distribution 

(4.12) P{~ } = 'Y<1 .. (e, 2;) ea •• P* 
u. • L -y(0, 2;) ' 
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where 

(4.13) 'Y<i .. (0, };) = L L [~··]exp (0A •. c1>* + };A .• w*). 
A*. A.* ·* 

From (4.11) and (4.12) we derive the conditional distribution of A •. and A .• 
for given a .. , 

(4.14) P{A A I a } = [A··] exp (0A •. c1>* + };A .• w*) 
•. , ·• .. A.. 'Y<i..(0, };) 

in which the terms containing P have disappeared. Next we may sum (4.14) 
over the matrices A .• to find the distribution of A •. for given a .. , 

(4.15) P{A IA } - 'YA •. (};) 0A ~ 
•· ·• - (0 };) e •· ' 

')'Ci.. ' 

where 

(4.16) 'YA (};) = L [A•·] el:A .• '11'*, 
•· A A ·• ·• 

Now divide (4.15) into (4.14) to obtain the conditional distribution of one 
marginal matrix, given the other, 

(4.17) [
A J el:A .• '11'* 

P{A .• IA •. } = A•· -(};). 
'* 'YA*. 

This distribution is seen to be independent of 0. This means that we may esti
mate the stimulus parameters W'ithout regard to the personal parameters, instead of 
which we use the observed personal marginals. 

Symmetrically, of course, we have 

(4.18) 

where 

(4.19) 

and consequently 

(4.20) 

P{A .• la .. } 

'YA (0) = L [A•·] e0 A •• ~, 
·• A A •. ·• 

[
A J e0A •. ~ 

P{A •. IA .• } = A•· -(0) 
'* ')'A,* 

so that the personal parameters may be estimated W'ithout regard to the stimulus 
parameters, which are replaced by the observed stimulus marginals. 

Finally, from (4.10) and (4.11) we obtain the conditional distribution of the 
entire observed set of selection vectors for given marginal matrices, 

(4.21) 
1 

P {A IA •. , A .• } = [A•·]· 
A .• 
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Since this distribution is independent of both sets of parameters, it may serve as 
a basis for nonparametric checks of our model (4.2). It should be noticed that all 
algebraically possible A-matrices are equally probable if the model holds. For 
an effective check, the a.,i should be collected into groups pointing to possible 
deviations from the model in a more or less specified direction. 

So far, our results run parallel to those obtained for the item analysis model 
(3.2), but when we try to apply ( 4.17) and ( 4.20) for estimation purposes, prob
lems of a new kind arise. Let us try for a moment to think of ( 4.2) as fully 
specified, for example, by the Poisson law (2.1) and (2.2), with the functions 
<P(x), ,P(x), and p(x) assumed known, and x(x) = 0. From (4.17) it follows that 
the vector 

(4.22) S* = A .• w* 
is a sufficient statistic for ~ with distribution 

(4.23) P{SIA } = L •· _e_ = •· _e_, [A J l:S* {A } l:S* 

•· A 'lr*=S* A.. 'YA (~) s 'YA (~) 
'* •· *' 

say, and the corr£sponding conditional distribution 

(4.24) 

is independent of~. 

P {A .• IA •. , S} 
_[ij 
- {~·} 

At this stage two comments are called for. In accordance with ordinary 
psychometric practice, the possible observations x<O, · · · , x<m> might have been 
translated to a set of scores, zO>, · · · , z<m>, say. Provided, however, that our 
model is given by ( 4.2), or equivalently by ( 4.6), the values 1/11, • • • , 1/lm will be 
unaffected by the choice of the z. Since 

(4.25) Si = :E a~~>1/11.1, ,,. 
i = 1, ... , k 

are sufficient for estimating the u, the 1/11.1 represent the only way in which the x 
should enter the estimation of the u. We may, therefore, ignore the z and consider 
the 1/1 as the proper scoring function of x so far as the estimation of the stimulus 
parameters is concerned. 

Symmetrically, of course, <P(x) is the proper scoring function for the estimation of 
the personal parameters. I shall discuss the particular role of p(x) on some other 
occasion. 

The other comment refers to (4.24). Due to the independence of~, this rela
tion might be employed just as well as (4.21) in a check of the model. There is, 
however, an essential difference between the kinds of check exerted by the two 
formulas. Relation (4.21) is independent both of parameters and scoring func
tions and, in fact, even of the dimensions of the 0 and the u. Thus, checks based 
on (4.21) refer only to the pure framework; can the given data be represented at all 
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by any model whatsoever of the form (4.2) with x(x) = 0. On the other hand, 
(4.24) depends on the choice of the function 1/l(x), and therefore, if the given 
data have passed the first check, the check based on (4.24) would be interpreted 
mainly as a check on the witability of the choice of the scoring function 1/l(x). 

Now it may very well happen that the framework according to the first test 
seems quite feasible but that the scoring function according to the second test 
seems quite inadequate. In general, therefore, we may be better off if we leave the 
scoring function unspecified altogether, and try to estimate it from the data. 

Accordingly, our problem now is to estimate them+ k elements of~ and '11 
from an observed matrix A .• of order (m, k). This, of course, is quite possible 
insofar as (4.17) gives an adequate representation of these data. Estimation and 
checking may be combined as in the following procedure. 

The exponent in (4.17) is a bilinear form in the 1/1 and the u, 

(4.26) ~A .• w* = :E :E a~~>1/l"u1. 
i " 

Consider now for a moment 

(4.27) 

as mk algebraically almost independent (apart from a trivial normalization) 
parameters to be estimated from the observed numbers a~~>. Denote the estimate 
Of Ti"> by t~") 1 

(4.28) 

If u i, and therefore also 1/1" are one-dimensional, 4"> is an estimate of the product 
1/lµui; the joint distribution of these estimates is known in principle. As a con
sequence, the 4"> for any fixed i should be "stochastically proportional" to the 
t~">-values and, symmetrically, the ~"> for any fixed µ. should be "stochastically 
proportional" to the ti" >-values. 

In case our data satisfy these conditions, ( 4.17) would seem applicable with 
the <Ti and the 1/1" interpreted as scalars which may be estimated from the tP and 
the t~">. Better estimates may be available but this is a technical matter which 
I shall leave aside on this occasion. 

However, it may equally well happen that the proportionality condition 
clearly fails to hold. Then the conclusion is that the assumption now at stake, 
namely, the one-dimensionality of the u and the 1/1, has to be dropped. If so, the 
alternative assumption obviously is that the parameters and the scoring function 
may be of a higher dimension. For an investigation of this possibility we tum to 
the reinterpretation of our formulas. Accordingly putting 

(4.29) 

we have to interpret T~"> in (4.27) as the inner product of <Ti and 1/lw Since 4"> 
still estimates T~">, we now have 

(4.30) 
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where the residuals u<~> under favorable conditions may be fairly small and even 
approximately normally correlated. 

Formally, the system of relations (4.30) reminds us strongly of factor analysis 
specification, from which, however, it differs in a main respect in that the joint distri
bution of the ~"'> is in principle known and depends only on the basic parameters 
(4.29). In particular, the variations of the residuals are not to be accounted for 
by a particular set of variability parameters, and assumptions about variances 
and covariances of the residuals that are not corollaries from the distribution 
of the ti"'> would be inadmissible. 

Another consequence of the distribution of the ti"'> is that the obvious analogue 
of an old and troublesome question in factor analysis, "When to stop factoring?", 
here has a fairly definite answer insofar as it would seem pointless to try to add 
another pair of elements to ( 4.29) when the calculated residuals after l pairs 
already tally with the distribution of the w"'>, as computed from the Z-dimen
sional estimates of the u and the l/;. 

On following the same line of deductions from ( 4.20), we eventually arrive at 
a complete mastery of the estimation of both sets of parameters and of both 
scoring functions, including the dimensionalities. With this, finally we may esti
mate the third scoring function p(x) from ct .. on the basis of (4.12). In a certain 
sense, p(x) gives the final specification of the model (4.6), the exponential frame
work having been agreed upon. 

5. Principles of comparison 

In psychology proper, and in particular in its applications, there seems to 
be a strong need for replacing the original qualitative observations by measur
able quantities. In formulating a general law of the type (4.2), we have so far 
replaced the observations by quantitative parameters, but that does not imply 
that we have a proper measurement, on a ratio scale or on an interval scale, of 
the individuals or of the stimuli nor even that a proper ordering is available. This 
is obvious in case the parameters are nonscalar since the relations < and > seem 
hard to extend to higher dimensions. But even in case of scalar parameters, as we 
shall see, trouble may arise when m exceeds 2. 

In an attempt to make clear what may be achieved in these respects, within 
the class of models considered here, I shall begin with simply dropping both meas
uring and ordering as possibly too ambitious concepts. More modestly I shall in
quire into the possibilities for just comparing individuals and comparing stimuli. 
In doing so, I shall, however, formulate four requirements that to my mind seem 
indispensable for well-defined comparisons. Preliminarily, it may be noted that 
in order to compare stimuli we have to apply them to some adequately chosen 
individuals, and similarly, that in order to compare individuals in a given respect, 
we must use some adequate stimuli. 

Now the requirements are as follows. 
The comparison between two stimuli should be independent of which particular 
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individuals u·ere instrumental for the comparison; and it should also be independent 
of which other stimuli within the considered class were or might also have been 
compared. 

Symmetrically, a comparison between two individuals should be independent of 
which particular stimuli within the class considered were instrumental for the com
parison; and it should also be independent of which other individuals were also 
compared, on the same or on some other occasion. 

Returning now to (4.1) we shall obviously be in a favorable position if this 
equation, whatever ~ may be, has a unique solution with regard to () for any 
given <T, and vice versa, that is, if the functions 

(5.1) () = X(<T, ~) and <T = K(O, ~) 

are uniquely defined. 
In this situation we may compare two individuals by means of the following 

principle of equivalent stimuli: To any chosen ~' which, it will be recalled, is not 
a response but a distribution parameter, we may for two individuals with the 
parameters () and ()' find the stimuli <T and <T

1 that produce the reaction ~· Here u 
and <T

1 are called equivalent stimuli for the comparison of () and ()'. Now letting 
~vary throughout its entire range, we obtain a series of equivalent pairs of stimuli, 
the relationship between which constitutes a well-defined comparison between () and ()'. 
In fact, for any stimulus <T as applied to the individual fJ we may look up which 
stimulus <T

1 corresponds to it in the individual fJ'. 
This comparison fulfills the fourth of our requirements. In fact, considering 

a third individual with the parameter fJ" it is easy to see that if the first compari
son is followed by a comparison of()" to fJ' we shall get the same u" as would have 
obtained by direct comparison of()" to fJ. 

Similarly, we may compare two stimuli by a principle of equivalent individual;_: 
To any chosen ~ we may for the two stimuli considered, with parameters <T and 
<T

1 find the two individuals, with parameters fJ and fJ', which react with ~ upon 
<T and <T

1
• The relationship between all such equivalent individuals constitutes a 

well-defined comparison between the stimuli considered. Obviously such compariscns 
are also transitive, thus fulfilling the second of our requirements. 

On the other hand, if equation (4.1) for some fJ or for some u has more than 
one solution, then the transitivity cannot hold without exception. And if the 
equation for some () or for some u has no solution corresponding to a given ~' 
then a comparison cannot always be carried out. 

Thus, the exittence and the uniqueness of the functions (5.1) are necesrnry and 
sufficient conditions for unrettricted and tram.itive comparability of both individuals 
and stimuli. 

The rule of transitivity seems to generalize one of the most fundamental 
properties of measurement. If, for instance, we wish to measure the distance 
between two points A and C on a straight line we may do it directly or we may 
interpose a third point B, measure the distance AB, and on top of that measure 
the distance BC to obtain the total AC. 
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As a corollary we may conclude that in the case of transitivity the dimensions 
of~' 8, and u n:ust be equal. 

For the model (4.2) this implies that ,Y(x) must be a linear transform of cp(x), 
which is always so in the trivial case l ~ m but has to be tested in the case l < m. 
Equivalently, this implies that with an appropriate normalization of the u we 
have 

(6.1) ,Y(x) = cp(x), 

in which case the model simplifies to 

(6.2) P{xl~11i} = exp [~11i<P*(x) + p(x)]' 
"((811, Ui) 

where 

(6.3) ~Jli = 811 + <Ji. 

According to this formula, which corresponds to the logarithmic version of 
(2.2), we may introduce what may be called the l-dimensional measurement of the 
pencnal and the stimulus parameters, choosing, for example, a certain stimulus, 
i = 0 say, as our reference point with 

(6.4) uo = (0, ... '0). 

With such a choice all other parameters 811 and ui are uniquely determined by 
virtue of the empirically established law (6.3). The parallel between this type of 
approach and the introduction of mass and force as measurable concepts in 
classical dynamics has been thoroughly discussed in chapter 7 of [3]. 

Accordingly, the first and the third requirements also are fulfilled in the model 
(6.2). 

A discussion of these requirements as separated from (4.2) awaits another 
occasion. 
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