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Abstract

Information has intrinsic geometric and topological structure, arising from relative
relationships beyond absolute values or types. For instance, the fact that two people
did or did not share a meal describes a relationship independent of the meal’s ingredients.
Such relationships give rise to lattices. Lattices have topology. That topology informs the
ways in which information may be observed, hidden, inferred, and dissembled. Privacy
preservation may be understood as finding isotropic topologies, in which relationships
appear homogeneous. Moreover, the underlying lattice structure of those topologies has a
temporal aspect, which reveals how isotropy may degrade over time, thereby puncturing
privacy.

Dowker’s Theorem establishes a homotopy equivalence between two simplicial
complexes derived from a relation. From a privacy perspective, one complex describes
individuals with common attributes, the other describes attributes shared by individuals.
The homotopy equivalence is an alignment of certain common cores of those complexes,
effectively interpreting sets of individuals as sets of attributes, and vice-versa. That
common core has a lattice structure. An element in the lattice consists of two components,
one being a set of individuals, the other being an equivalent set of attributes. The lattice
operations join and meet each amount to set intersection in one component and set union
followed by a potentially privacy-puncturing inference in the other component.

One objective of this research has been to understand the topology of the Dowker
complexes, from a privacy perspective. First, privacy loss appears as simplicial collapse of
free faces. The actual collapse is local, but the property of fully preserving both attribute
and association privacy requires a global condition: a particular kind of spherical hole.
Second, by looking at the link of an individual in its encompassing Dowker complex, one can
characterize that individual’s privacy via another sphere condition. That characterization
generalizes to group privacy. Third, even when long-term privacy is impossible, homology
provides lower bounds on how an individual may defer identification, when that individual
has control over how to reveal attributes. Intuitively, the idea is to first reveal information
that could otherwise be inferred. This last result in particular highlights privacy as a
dynamic process. Privacy loss may be cast as gradient flow. Harmonic flow for privacy
preservation may be fertile ground for future research.
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4 Introduction

1 Introduction

Privacy is the ability to control how much an individual or entity reveals about itself to others.
Fundamental research into privacy seeks to understand the limits of that ability.

A brief history of privacy should include the following:

• The right to privacy as a legal principle, appearing in an 1890 Harvard Law Review
article [20]. The article was a reaction to the then modern technology of photography
and the dissemination of gossip via print media.

• A demonstration linking supposedly anonymous information with public data, thereby
revealing sensitive information [17]. The demonstration employed birth date, gender, and
zip code to link anonymous public insurance information with voter registration data.
Doing so produced the health record of the governor of Massachusetts. This privacy
failure suggested a first form of homogenization, called k-anonymity. Roughly, the idea
was to structure databases in such a way that a database could respond to any query
with an answer consisting of no fewer than k individuals matching the query parameters.

• The discovery that it is impossible to preserve the privacy of an individual for even
a single attribute in the face of repeated statistical queries over a population [2], unless
answers to those queries are purposefully perturbed with noise of magnitude on the order
of at least

√
n. Here n is the size of the population. The significance of this discovery is

to underscore how difficult it is to preserve privacy while retaining information utility.

• Netflix Prize. In 2006, Netflix offered a $1M prize for an algorithm that would predict
viewer preferences better than Netflix’s internal algorithm. Netflix made available some
of its historical user preferences, in anonymized form, as a basis for the competition. Once
again, it turned out that one could link this anonymized data with other publicly available
databases, resulting in the potential (and in some cases actual) identification of Netflix
viewers and their entire viewing history [15]. Whereas in the earlier health example, a
few specific observables made linking possible (global coordinates, one might say, namely
birth date, gender, zip code), in the Netflix example, the intrinsic geometric structure of
the database facilitated linking via a wide variety of observables (local landmarks, one
might say, namely movies that were characteristic for each individual). Key was sparsity
of information: 8 movie ratings and dates were generally enough to uniquely characterize
99% of viewers in the Netflix Prize dataset, even with errors in the ratings and dates.

• Differential Privacy [5, 4] seeks to avoid the previous privacy failures by focusing on
local rather than absolute privacy guarantees. The underlying approach in differential
privacy is for a database to answer statistical queries with a particular stochastic blurring.
Specifically, the probability that an interrogator of the database will make any particular
inference should depend only in a very small way on whether any one individual does or
does not have a particular attribute (such as even being in the database). We might call
this stochastic homogeneity.

• Randomized Response. Differential privacy is further significant because it makes
explicit the dynamic nature of privacy; there may be no enduring privacy guarantees but

DISTRIBUTION A: Distribution approved for public release.
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there are differential guarantees. A particular form is randomized response, a technique
used in the social sciences to elicit reliable aggregate answers to sensitive questions, asking
the question of many people, but perturbing individual answers stochastically so as not
to learn much about any one individual [19]. A version has been employed by Google
to find malware [8]. (We note a form of ergodicity: the averaging that would destroy
privacy for an individual with repeated queries over time allows for utility of information
at any instant in time over a large population.)

Privacy has both a combinatorial component and a statistical component. Prior research
has largely focused on statistical techniques, both to preserve privacy and to puncture privacy.
One of the goals of this research is to understand the combinatorial component of privacy,
leading naturally to methods from combinatorial topology.

A desire to understand the geometry and topology of the types of inferences revealed by
the Netflix Prize formed the specific motivation for our research initially. Subsequently, we
realized that the lattice structure found in that geometry had broader applicability, providing
an ability to model the dynamics of privacy more generally.

DISTRIBUTION A: Distribution approved for public release.



6 Outline

2 Outline

The remaining sections and appendices present the following material:

3: Toy examples illustrating how a relation may lead to privacy loss in the presence of
background information. This section also introduces the doubly-labeled poset associated
with a relation, to model such inferences. The elements of the poset are pairs, each a set
of individuals and a set of attributes.

4: Formal description of the Galois Connection associated with a relation. The section
first defines, for any relation, two simplicial complexes called Dowker complexes. One
complex represents sets of individuals with shared attributes, the other represents sets
of attributes shared by individuals. The Galois Connection then establishes a homotopy
equivalence between the Dowker complexes, thereby generating the relation’s doubly-
labeled poset. The homotopy equivalence gives rise to closure operators, with “closure”
in the poset modeling inference of unobserved attributes from observed attributes (or
unobserved individuals from observed individuals). The section defines attribute privacy
and association privacy.

5: A characterization of privacy in terms of the absence of free faces in the relevant Dowker
complex. This section observes as well that the only connected relations able to preserve
both attribute and association privacy must look like either like linear cycles or boundary
complexes. In particular, the number of individuals and attributes must be the same.

6: Conditional relations as models for simplicial links. A conditional relation is much like
a conditional probability distribution. It might, for instance, represent the possible
arrangement of remaining attributes among individuals, after some attributes have
already been observed.

7: A characterization of individual and group privacy in terms of spherical and boundary
complexes for the relation that models the individual’s or group’s link in its Dowker
complex.

8: A brief exploration of holes in relations, focusing on attribute spaces generated by bits.

9: A small example exploring the possibility of increasing privacy by change-of-coordinate
transformations.

10: A lengthy exploration of how someone can delay identification by releasing attributes
selectively in a particular order. This idea leads to the notion of informative attribute
release sequences, how to find such sequences in the Galois lattice, and the value of
homology as a lower bound for the number and length of such sequences.

11: Computation of the homology and maximal informative attribute release sequences present
in two relations found on the world wide web. One relation describes Olympic athletes
and their medals, the other describes jazz musicians and their bands.

DISTRIBUTION A: Distribution approved for public release.
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12: A more general perspective of inference as motion in lattices, not necessarily directly
derived from a relation. This perspective suggests connections to randomized response
techniques.

13: An examination of the ability to obfuscate strategies and/or goals in graphs where motions
may be nondeterministic or stochastic.

14: A possible category for representing relations, along with an analysis of morphism
properties. The morphisms between relations in this category induce simplicial and
therefore continuous maps on the Dowker complexes. This section shows how a surjective
morphism at the set level generates the image lattice via lattice operations performed on
images of certain elements from the domain lattice.

A: A summary of the basic notation and definitions used in this report.

B: A summary of the basic tools used in this report, establishing the homotopy equivalences
and closure operators mentioned above.

C: Construction of links and deletions, and examination of the privacy properties each inherits
from its encompassing relation. This section explores the significance of free faces in the
Dowker complexes. The section further proves that a relation with more attributes than
individuals cannot preserve attribute privacy.

D: Proof that the problem of finding a minimal set of attributes from which another attribute
may be inferred is NP -complete. This stands in contrast to the observation that the
problem of finding some set of attributes from which another may be inferred (or
reporting that no such set exists) is computable in polynomial time.

E: Detailed proofs of the results claimed in Section 7. Also a detailed proof of the assertion
from Section 5 regarding relations that preserve both attribute and association privacy.

F: Detailed proofs of the connection between maximal chains in the Galois lattice and
informative attribute release sequences. When such sequences are order-independent
they correspond to spherical holes, leading to the concept of an isotropic sequence.

G: Detailed proof that homology establishes a lower bound for the number and length of
maximal chains in a relation’s Galois lattice, and thus for the number and length of
informative attribute release sequences that may be used to delay identification.

H: An application of the previous results with the aim of obfuscating the identification of
strategies for attaining goals in graphs with uncertain transitions.

I: Detailed proofs of the assertions of Section 14 regarding morphisms.

J: Some additional examples:

1. Dunce Hat: modeled as a relation for which the Dowker attribute complex is
contractible but has no free attribute faces, meaning the relation preserves attribute
privacy.

DISTRIBUTION A: Distribution approved for public release.
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2. Disinformation: An example that glues together two copies of the Möbius strip,
thereby removing free faces and creating a form of homogeneity that preserves
attribute privacy yet retains the utility of identifiability.

3. Insufficient Representation: If there are insufficiently many individuals in a relation
generated by bits, attribute inference is possible.

4. A Matching Example: When many individuals are being observed, cardinality
constraints allow for inferences beyond those discussed in this report. One can
model some such inferences using links and joins. We have not reported that work
here, merely provide one example.

DISTRIBUTION A: Distribution approved for public release.
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10 A Toy Example: Health Data and Attribute Privacy

3 Privacy: Relations and Partially Ordered Sets

Our investigation of privacy in this report will be in terms of relations. As we will see in this
section and the next, relations give rise to simplicial complexes, which give rise to partially
ordered sets, which expose an underlying lattice structure. That lattice structure makes explicit
how privacy may be preserved or lost through so-called background knowledge. As we will see
in Section 10, the lattice structure also makes explicit how identification may be delayed by
careful release of information.

3.1 A Toy Example: Health Data and Attribute Privacy

Consider the following relation H, describing the results of a health study for four
patients and three attributes. The patients have been anonymized and are represented
simply by the set of numbers {1, 2, 3, 4}. The three attributes are drawn from the set
{smokes,has cancer,drinks soda}.

One can describe a relation equivalently either as a matrix or as a set of pairs:

Relation H as a matrix: H smokes has cancer drinks soda

1 • •
2 • •
3 •
4 •

Relation H as a set of pairs:{
(1, smokes), (1,has cancer), (2,has cancer), (2,drinks soda),

(3,drinks soda), (4,drinks soda)
}
.

Assumptions

Before discussing privacy further, we make some assumptions that hold throughout the report:

Assumption of Relational Completeness: We generally assume that a relation is
complete, meaning it is not missing any elements (a relation could contain extra elements,
which may be useful as disinformation). For example, if we observe that someone drinks soda
and has cancer in relation H, then we would conclude that we are observing individual #2.
We would be surprised to see that individual smoke. If for some reason we ever do see the
individual smoke, then we would deem our observations to be inconsistent with relation H. The
meaning of inconsistency depends on context. At top-level it may mean that the relation or
observation is errorful. When making conditional observations, an inconsistency may actually
supply useful information, as we will see in Lemma 11 on page 29.

Assumption of Observational Monotonicity: Even though we assume relations are
complete, we do not assume that observations are complete. Instead we assume: Observing
that an individual has a particular attribute is meaningful; lack of such an observation does
not necessarily imply that an individual fails to have the unobserved attribute. The motivation
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for this assumption is that one may yet discover that the individual has the attribute. For
example, suppose we observe someone (whom we know to be part of relation H) drinking soda.
Even if that is all we observe, we do not conclude that the individual is cancer free. It could
be that we might yet observe the individual to have cancer.

If absence of an attribute is significant and that absence is measurable, then both the
attribute and its negation could and perhaps should appear explicitly in the relation as distinct
mutually exclusive attributes. For instance, Prime versus Composite might be such a pair
of attributes for integers greater than 1.

Assumption of Observational Accuracy: We assume that observations are accurate. For
instance, if we observe an integer to be either Prime or Composite, then we do so correctly.

Comments: The three assumptions above are desiderata for how the mathematical
abstractions of this report fit into the real world. Some comments are in order:

• In and of itself, a relation defines a particular kind of world, a bipartite graph, and there
is no need for something like a completeness assumption.

• The monotonicity and accuracy assumptions then describe a sensor for that world and
how to interpret observations.

The purpose of the assumptions in the real world is largely to ensure consistency between
different relations and with observations.

• The monotonicity assumption is important because information generally aggregates
asynchronously. Together with the other assumptions, this assumption means that one
may view relations as monotone Boolean functions, and thus may leverage methods from
combinatorial topology.

• One may incorporate errors into the relational and observational models, for instance by
blurring a relation. For very large integers, a relation might allow some integers to have
both Prime and Composite as attributes. Although an integer is one or the other, the
relation admits to uncertainty by allowing both attributes at once. Indeed, some relations
purposefully introduce such blurring to preserve privacy. And, in robotics, relational
blurring in a sensor-compatible fashion can be a useful technique for establishing the
topology of a region, for instance when dualizing sensors and landmarks [10].

Privacy Implications

If the health study H is publicly available, then it has the following privacy implications:

• Suppose someone named Bob tells his friend Alice that he was part of the study. Alice
knows that Bob smokes everywhere he goes, so she can infer that he is Patient #1 and
has cancer. (This is an example of inference in a relation using background knowledge.)

• Suppose Cindy is Patient #2. She has full privacy as far as relation H is concerned. In
particular, as we saw already, Cindy can tell her friends that she was part of the health
study while drinking soda and those friends will not be able to conclude that she has
cancer.
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12 A Toy Example: Health Data and Attribute Privacy

• Patients #3 and #4 are not only indistinguishable from each other but also from Cindy
(patient #2). This is a very strong form of anonymity. Even if one of them reveals that
s/he drinks soda, s/he will remain indistinguishable from the other two patients who
drink soda.

Caveat: In the last case, if Cindy reveals that she has cancer and is seen to be different
from the other individuals, then one may be able to remove her from the relation, narrowing
the focus and creating a new relation that may allow additional inferences. Similar caveats
hold for the other bullets. Deletions are discussed further in Appendix C.

Modifying a Relation to Increase Privacy We can make a small change in relation H
that enhances privacy. If we artificially give patient #3 the attribute smokes, then we obtain
the following modified relation H ′:

H ′
smokes has cancer drinks soda

1 • •
2 • •
3 • •
4 •

Now Bob may reveal to Alice that he was part of the health study without Alice being able
to infer that he has cancer, even though she knows that everyone knows that he smokes. In
fact, more generally, one can no longer infer cancer from smoking.

Such an artificial entry1 in the relation is a form of disinformation. It certainly skews
statistics and utility. It also increases privacy.

1Terminology: We often use the term 'entry' to mean an element of a relation, as in a matrix.
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3.2 A Dual Perspective: Payroll Data and Association Privacy

The previous example examined a relation from the perspective of attribute privacy: we were
interested in understanding how observation of some attribute(s) implies other attribute(s). A
dual perspective is association privacy, in which one seeks to understand how some associations
between individuals imply others.

The following “salary” relation S has the same matrix structure as H did earlier, but with
different semantics. This relation represents employees {Bob,Mary,Frank, Julie} working on
secret projects {a, b, c}. Now the employee names are visible so that a payroll clerk can disburse
salaries correctly, but the actual projects are anonymous.

S a b c

Bob • •
Mary • •
Frank •
Julie •

The salary relation S facilitates the following implications regarding individuals:

• If someone tells the payroll clerk that Julie is the lead of a very important project, then
the payroll clerk can infer that Mary and Frank may have valuable information.

• In contrast, if someone tells the payroll clerk that Bob is the lead of a very important
project, the payroll clerk cannot be sure that Mary is also working on that project.

Regarding disinformation: Observe how adding the artificial entry (Julie, a) prevents the
payroll clerk from inferring that Mary and Frank have valuable information, even if the payroll
clerk knows that Julie does:

S′ a b c

Bob • •
Mary • •
Frank •
Julie • •
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3.3 Privacy Preservation and Loss: A Poset Model

R a b c

1 • •
2 • •
3 •
4 •

PR

({1}, {a, b}) ({2}, {b, c})

({1, 2}, { b}) ({2, 3, 4}, {c})

Figure 1: Relation R serves as a model for the two examples of Sections 3.1 and 3.2. The
doubly-labeled poset PR describes the inferences facilitated by R.

Figure 1 shows a relation R that serves as a model for both the health example of Section 3.1
and the payroll example of Section 3.2. The relation is identical to those given earlier, but with
abstract labels in place of both individuals and attributes. The figure also depicts a partially
ordered set (poset) PR, designed to model the inferences discussed previously. We refer to
that poset as the doubly-labeled poset associated with R. We next discuss the semantics of PR.
Section 4 discusses the construction of PR. The underlying concepts are important throughout
the report.

Semantics of the poset PR:

• Each element in the poset consists of a pair (σ, γ), with ∅ �= σ ⊆ {1, 2, 3, 4} describing a
set of individuals and ∅ �= γ ⊆ {a, b, c} describing a set of attributes. We say that the
poset element is labeled with σ and γ. The meaning of such a double-labeling is:

(a) All individuals in σ have all attributes in γ.

(b) If an individual has at least all the attributes in γ, then that individual must be
in σ. For example, we see that individual #2 and only individual #2 has both
attributes b and c in R.

(c) If an attribute is shared by at least all individuals in σ, then that attribute must be
in γ. For example, attribute b and only attribute b is shared by both individuals
#1 and #2.

• The partial order for PR is described by the edges in the figure. There is an edge
between two elements (σ1, γ1) and (σ2, γ2) of PR whenever the corresponding sets are
subset comparable. In particular, (σ1, γ1) ≤ (σ2, γ2) in PR precisely when σ1 ⊆ σ2 and
γ1 ⊇ γ2. [Observe that the comparability (⊆ versus ⊇) is opposite for σ versus γ.]

Using the poset PR for attribute inference:

Suppose γ is any nonempty subset of attributes in {a, b, c}. Then:

(i) Either: no individual has all the attributes γ. For example, no individual has both
attributes {a, c}. We would not expect to see γ and so γ does not appear in the poset.
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(ii) Or: γ is a subset of at least one set of attributes that does appear in the poset. In this
case, one may be able to enlarge γ nontrivially, resulting in privacy loss.

For example, imagine that individual #1 (Bob in our first example above) tells us that
he has attribute a (smokes). So γ = {a}. The poset then allows us to infer that Bob
must also have attribute b (has cancer). Why? Because {a, b} is a minimal set in PR
containing {a}.

We can say yet more: The element labeled with {a, b} is also labeled with {1}. So now
we know that Bob is individual #1.

Regardless of whether Bob ever actually talks to us, the poset tells us that individual #1
could suffer privacy loss, and in fact, is uniquely identifiable without needing to reveal
everything about himself.

Similar reasoning is possible for association inference, as we saw earlier.

R′ a b c

1 • •
2 • •
3 • •
4 • ({1}, {a, b}) ({2}, {b, c})

({1, 2}, { b}) ({2, 3, 4}, {c})
PŔ

({1, 3}, { a})

({3}, {a, c})

Figure 2: A relation R′ along with its doubly-labeled poset PR′ . The relation preserves
attribute privacy but allows a small amount of association inference: If ones sees individual
#4 in some context c, then one can infer that individuals #2 and #3 are also present in that
same context, without needing to observe them directly.

Disinformation Revisited: Figure 2 shows relation R′, constructed from R by adding an
entry of disinformation, much as we constructed H ′ from H earlier. The figure also shows the
doubly-labeled poset PR′ . Observe that it is no longer possible to infer {a, b} from {a} because
{a} now appears directly in the poset. The added entry has increased attribute privacy.

There is, however, still some opportunity for making association inferences. For instance,
knowing that individual #4 (Julie earlier) works on an important secret project still allows the
inference that individuals #2 and #3 might have valuable information. That is because the
minimal set containing {4} in the poset is {2, 3, 4}. Notice that no such association inference
is possible if someone says that individual #3 works on an important secret project, though
that would have been possible in the original relation R.
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4 The Galois Connection for Modeling Privacy

Section 3 showed by example how a relation determines a partially ordered set (poset) useful
for modeling privacy. The elements in the poset are pairs — a set of attributes and a set of
individuals — that are equivalent from the relation’s perspective. Privacy loss occurs when an
observer has data (for example, background knowledge) that is not directly in the poset but is
a proper subset of some set of attributes or individuals in the poset. The observer may then
infer some additional attributes or individuals. This section develops the connection between
relations and posets more precisely, continuing to use the earlier examples for illustration. See
also Appendix B for additional material and notation.

4.1 Dowker Complexes

Definition 1 (Dowker Complexes). Let X and Y be finite discrete spaces and let R be a
relation on X×Y . This means R is a set of pairs (x, y), with x ∈ X and y ∈ Y . We frequently
view R as a matrix of 0s and 1s, or blank and nonblank entries, with X indexing rows and Y
indexing columns.

(a) We often refer to elements of X as individuals and to elements of Y as attributes.

(b) For each x ∈ X, let Yx = {y ∈ Y | (x, y) ∈ R}. Then Yx consists of all attributes of
individual x. We may view Yx as a row of R. The row is blank if Yx = ∅.

(c) For each y ∈ Y , let Xy = {x ∈ X | (x, y) ∈ R}. Then Xy consists of all individuals who
have attribute y. We may view Xy as a column of R. The column is blank if Xy = ∅.

(d) We next define two simplicial complexes ΦR and ΨR:

ΦR = {γ ⊆ Y | there exists x ∈ X such that (x, y) ∈ R for all y ∈ γ },
ΨR = {σ ⊆ X | there exists y ∈ Y such that (x, y) ∈ R for all x ∈ σ}.

Special cases: If X and Y are both nonempty, then the empty simplex ∅ is in both ΦR

and ΨR. Otherwise, with some exceptions discussed later (Section 6, Section 10, and
Appendix C), we take both complexes to be void.

We refer to ΦR and ΨR as Dowker complexes after the author of upcoming Theorem 2.

Interpretation: A nonempty set γ of attributes is a simplex in ΦR precisely when at least
one individual has at least all the attributes in γ. We refer to any such individual as a
witness for γ.

Similarly, a nonempty set σ of individuals is a simplex in ΨR precisely when there is at
least one attribute that is shared by at least all the individuals in σ. We refer to any such
attribute as a witness for σ.

Figure 3 shows the Dowker complexes for the relation R of Section 3.3.
Dowker’s Theorem [3] says that the two simplicial complexes ΦR and ΨR have the same

homotopy type. As we will see, the maps establishing that homotopy equivalence define the
poset PR and describe how privacy may be lost.
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R a b c

1 • •
2 • •
3 •
4 •

21
4

3ΨR

ca b

ΦR
Figure 3: Simplicial complexes ΦR and ΨR associated with relation R.

Theorem 2 (Dowker [3]). Suppose R is a relation on X × Y . Let ΦR and ΨR be as in
Definition 1. Then ΦR and ΨR are homotopy equivalent.

Every nonvoid simplicial complex Σ determines a partially ordered set F(Σ) called the face
poset of Σ. The elements of this poset are the nonempty simplices of Σ, partially ordered by
set inclusion. (Recall that 'poset' is short for 'partially ordered set'.)

For the finite setting, the homotopy equivalence of Dowker’s Theorem may be seen by
explicit formulas for maps between the face posets of the two Dowker complexes. These maps
describe what is known as a Galois Connection. [This construction also appears as a core tool
within the field of Formal Concept Analysis [21, 9].] Here are the formulas:

φR : F(ΨR) → F(ΦR)

σ →
⋂
x∈σ

Yx

ψR : F(ΦR) → F(ΨR)

γ →
⋂
y∈γ

Xy

These two maps are inverse homotopy equivalences. One sees this by considering the maps
φR ◦ ψR and ψR ◦ φR. These compositions turn out to be what are called closure operators on
the face posets F(ΦR) and F(ΨR), respectively, implying that each is homotopic to the identity
map, thereby establishing the desired homotopy equivalence. See Appendix B for detailed
computations; see the next subsection for interpretation.

4.2 Inference from Closure Operators

A poset map f : P → P is said to be a closure operator whenever x ≤ f(x) and f(f(x)) = f(x)
for all x ∈ P . If f is a closure operator, then it induces a homotopy equivalence between P
and the image f(P ) (see [1, 18]).

One can think of a closure operator as “pushing elements up” in the poset. From a privacy
perspective, “pushing up” amounts to inference. Specifically, (φR ◦ ψR)(γ) \ γ consists of all
additional attributes that may be inferred from observing attributes γ, while (ψR ◦ φR)(σ) \ σ
consists of all additional individuals that may be inferred from observing individuals σ.

Comment: The formulas for φR and ψR in Section 4.1 and the inference perspective extend
to the empty simplex. Observe that ψR(∅) = X, so (φR ◦ψR)(∅) consists of all attributes that
every individual in X has. If (φR ◦ ψR)(∅) �= ∅, then the attributes (φR ◦ ψR)(∅) are inferable
“for free” from R, that is, without making any observations. Similarly, (ψR ◦ φR)(∅) consists
of all individuals who have every attribute in Y .
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18 Inference from Closure Operators

Any poset P defines a simplicial complex ∆(P ) called the order complex of P . The
simplices of ∆(P ) are given by the finite chains {p0 < p1 < · · · < pn} in P . Suppose
we start with a simplicial complex Σ, construct its face poset F(Σ), and then construct the
order complex ∆(F(Σ)). The result is isomorphic to the first barycentric subdivision of Σ. A
convenient visualization of the face posets F(ΦR) and F(ΨR) therefore is to draw the barycentric
subdivisions of ΦR and ΨR, respectively, as in Figure 4.

{c}{a} {b} {b,c}{a,b}

∆(F(ΦR))

{2}{1}

{4}

{3}

{1,2}

{2,3}

{2,4}

{3,4}
{2,3,4}

∆(F(ΨR))
Figure 4: Order complexes of the face posets of the complexes ΦR and ΨR shown in Figure 3.

Viewed in the order complexes, functions ψR and φR are easy to visualize. They are fully
determined by their action on vertices of the order complexes, as shown in Table 1. (Bear
in mind that each element of F(ΦR) represents a simplex in ΦR but is a vertex in ∆(F(ΦR)).
Similarly, each element of F(ΨR) represents a simplex in ΨR but is a vertex in ∆(F(ΨR)).)

γ ψR(γ) (φR ◦ ψR)(γ)
{a} {1} {a, b}
{b} {1, 2} {b}
{c} {2, 3, 4} {c}
{a, b} {1} {a, b}
{b, c} {2} {b, c}

σ φR(σ) (ψR ◦ φR)(σ)
{1} {a, b} {1}
{2} {b, c} {2}
{3} {c} {2, 3, 4}
{4} {c} {2, 3, 4}
{1, 2} {b} {1, 2}
{2, 3} {c} {2, 3, 4}
{3, 4} {c} {2, 3, 4}
{2, 4} {c} {2, 3, 4}
{2, 3, 4} {c} {2, 3, 4}

Table 1: The maps ψR and φR, and their compositions, for relation R of Figure 3.

Using Table 1 one can again see how privacy loss might occur via R.
For instance, the map φR ◦ ψR gives rise to the closure (i.e., a “pushing up”)

{a} ψR−−−→ {1} φR−−−→ {a, b},
telling us how to infer unobserved attribute b from observed attribute a (in the health study
example of Section 3.1, Alice could infer that Bob has cancer from knowing that he smokes).
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Similarly, for the map ψR ◦ φR,

{4} φR−−−→ {c} ψR−−−→ {2, 3, 4},

leading to association inference (in the payroll example from Section 3.2, the payroll clerk
could infer Bob and Mary’s exposure to valuable information after learning of Julie’s work on
an important project).

Figure 5 indicates the homotopy deformations produced by the maps φR ◦ ψR and ψR ◦ φR,
while Figure 6 show the resulting image of each face poset.

{c}{a} {b} {b,c}{a,b}

{2}{1}

{4}

{3}

{1,2}

{2,3}

{2,4}

{3,4}
{2,3,4}

∆(F(ΦR)) ∆(F(ΨR))

Figure 5: Closure operators φR ◦ ψR and ψR ◦ φR produce homotopy deformations, indicated
by directed edges. In F(ΦR), {a} closes up to {a, b}. In F(ΨR), most of the subsets of {2, 3, 4}
close up to {2, 3, 4}. The exception is subset {2}, which does not move.

{2}{1} {1,2} {2,3,4}
img(ψR º φR 

):

{c}{b} {b,c}{a,b}
img(φR º ψR 

):

Figure 6: Result of the closure operators of Figure 5.

Observe that these two images are isomorphic. Matching up corresponding elements
produces the poset PR of Figure 1.

Summary: A relation R produces two simplicial complexes, ΦR and ΨR, one modeling
attributes shared by individuals, the other modeling individuals with common attributes. The
complexes are related by two maps, φR and ψR, that are homotopy inverses. The compositions
of these maps describe the attribute and association inferences possible via R, leveraging
background information someone may have. These inferences are summarized by a poset PR
that pairs sets of individuals with sets of attributes. We may describe PR as follows:
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Definition 3 (Doubly-Labeled Poset). Let R be a relation on X × Y .
The doubly-labeled poset PR consists of all pairs of sets (σ, γ) such that ∅ �= σ ∈ ΨR,

∅ �= γ ∈ ΦR, σ = ψR(γ), and γ = φR(σ).
The partial order on PR is defined by: (σ1, γ1) ≤ (σ2, γ2) if and only if σ1 ⊆ σ2

(and/or, equivalently, γ1 ⊇ γ2).

(This definition agrees with our intuition that PR is both the image (ψR ◦φR)(F(ΨR)) and
the image (φR ◦ ψR)(F(ΦR)), by Appendix B.)

4.3 Attribute and Association Privacy

Here are formal definitions for the intuition developed via the previous examples:

Definition 4 (Attribute Privacy). A relation R preserves attribute privacy
precisely when φR ◦ ψR is the identity operator on the poset F(ΦR) ∪ {∅}.

Definition 5 (Association Privacy). A relation R preserves association privacy
precisely when ψR ◦ φR is the identity operator on the poset F(ΨR) ∪ {∅}.

Comment: For notational simplicity, we frequently say simply that
φR ◦ ψR is the identity on ΦR and/or that ψR ◦ φR is the identity on ΨR.

4.4 Disinformation Example Re-Revisited

Recall the relation R′ of Figure 2, which is relation R of Figure 1 but with an added entry
of disinformation. Figure 7 displays the resulting Dowker complexes and the actions of the
closure operators. Figure 8 flattens out the poset PR′ of Figure 2, so one sees its triangle
structure and how it is the image of the Dowker complexes under the closure operators for R′.
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{2}{1}

{4}{3}

{1,2}

{2,3} {2,4}

{3,4}

{2,3,4}

{1,3}

21

43
ΨŔ

ca

b

ΦŔ

{c}{a}

{b}

{b,c}{a,b}

{a,c}

∆(F(ΦŔ )) ∆(F(ΨŔ ))

Figure 7: The Dowker complexes as well as the order complexes of their face posets for the
relation R′ of Figure 2. The closure operator φR′ ◦ ψR′ is the identity on F(ΦR′) ∪ {∅}. The
closure operator ψR′ ◦φR′ on F(ΨR′)∪{∅} closes many (but not all) subfaces of {2, 3, 4} up to
{2, 3, 4}, as indicated by the directed arrows. The result is a poset isomorphic to the poset PR′

of Figure 2, drawn again slightly differently in Figure 8. Thus relation R′ preserves attribute
privacy but not association privacy.

{c}{a}

{b}

{b,c}{a,b}

{a,c}

{2}{1}

{3}

{1,2}

{2,3,4}{1,3}

PŔ

Figure 8: A flattened view of the doubly-labeled poset PR′ from Figure 2. Combined with
Figure 7, this perspective shows how PR′ arises as the images of F(ΦR′) and F(ΨR′) under the
closure operators φR′ ◦ ψR′ and ψR′ ◦ φR′ , respectively. (The vertices drawn as bigger dots in
the current figure were higher up in the poset of Figure 2 than those drawn as smaller dots.)
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5 The Face Shape of Privacy

R a b c

1 • •
2 • •
3 •
4 •

ca b
ΦR

R′ a b c

1 • •
2 • •
3 • •
4 • ca

b

ΦŔ

Figure 9: Relations R and R′ of Section 3, along with their attribute complexes ΦR and ΦR′ .

5.1 Free Faces

Figure 9 recapitulates relation R and R′ from the previous two sections, along with their
Dowker attribute complexes, ΦR and ΦR′ , respectively. Recall that in R one could make the
inference a ⇒ b, but no such inference was possible in R′.

Support for the inference a ⇒ b in R is evident in ΦR. No such support is evident in ΦR′ .
In particular, observe how vertex a has only one incident edge in ΦR but has two incident edges
in ΦR′ . The fact that there are two edges in ΦR′ , with those edges being maximal simplices,
means, intuitively, that vertex a is being “pulled” in two different inference directions, so one
cannot conclude anything additional from a. In contrast, in ΦR, a is being “pulled” only
toward b, so it is possible that a implies b.

The underlying geometry is that of a free face. A simplex σ of a simplicial complex Σ is
said to be a free face of Σ if it is a proper subset of exactly one maximal simplex of Σ. That
is true for {a} in ΦR but not for {a} in ΦR′ .

Of course, vertex {c} also forms a free face in ΦR, yet one cannot make any inferences upon
observing just c. So, what is going on? The difference is that c is itself the only attribute of
some individual in R. Even though {c} is technically a free face of ΦR, it is not really free to
move under the closure operator φR ◦ ψR, whereas {a} is. Observe that individuals #2, #3,
and #4 all have attribute c, but only individual #2 has additional attributes. This means
that individuals #3 and #4 cannot ever be identified; they have effectively “camouflaged”
themselves with individual #2.

If one disallows or disregards such camouflage, then the idea of a free face and privacy loss
are equivalent. The following definition is useful:
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Definition 6 (Unique Identifiability). Let R be a relation on X × Y and suppose x ∈ X.
We say that x is uniquely identifiable via relation R when ψR(Yx) = {x}.

Suppose R is a relation. Appendix C proves that if ΦR has no free faces, then R preserves
attribute privacy. For the converse, Appendix C further proves that if R preserves attribute
privacy and if every individual is uniquely identifiable, then ΦR has no free faces. (Dual
statements hold for association privacy.)

5.2 Privacy versus Identifiability

Section 5.1 hinted at the difference between privacy and identifiability. In relation I below
(“I” for “individuality” or “identity”), every individual has exactly one attribute that uniquely
identifies that individual. Relation I preserves privacy fully. It is impossible to make any
attribute inferences. If Bob reveals that he has attribute yBob, then Alice cannot infer any
additional attributes for Bob. He has himself revealed everything about himself that there is
to know, as far as relation I is concerned.

I y1 y2 · · · yn

x1 •
x2 •
...

. . .
xn •

In contrast, all individuals in relation C (for “conformism”) have exactly the same set of
attributes. As a result, there is no privacy: one can predict all the attributes of any individual in
the relation without making any observations. On the other hand, no individual is identifiable.

C y1 y2 · · · yn

x1 • • · · · •
x2 • • · · · •
...

...
...

. . .
...

xn • • · · · •

Homogeneity: Relation C exhibits a form of homogeneity often sought by anonymization
or other privacy techniques. As we have suggested before, the utility of relation C is essentially
zero, unless one makes the entries stochastic, so that some utility is encoded in the distribution.

The discussion of free faces in Section 5.1 suggests an alternative approach to homogeneity:
one may preserve privacy and retain utility by choosing the geometry of the relation
appropriately, for instance, so the space ΦR exhibits sphere-like homogeneity. There will be
considerable discussion of the importance of spheres in the rest of the report.

5.3 Spheres and Privacy

The attribute complex ΦR′ of Figure 9 is equal to a boundary complex, namely the boundary
of the full simplex consisting of the attributes {a, b, c}. We will denote boundary complexes
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24 A Spherical Non-Boundary Relation that Preserves Attribute Privacy

by ∂(V ), with V some nonempty set. The simplices of ∂(V ) are all proper subsets of V .
Boundary complexes are homotopic to spheres, specifically ∂(V ) � Sn−2, with n = |V |. For
ΦR′ of Figure 9, we have that ΦR′ = ∂({a, b, c}) � S1. (In English: The Dowker attribute
complex is the boundary of a triangle, so homotopic to a circle.)

More generally, if for some relation R, ΦR = ∂(Y ), then ΦR cannot have any free faces and
so R preserves attribute privacy.

Privacy and Utility: An important observation is that boundary complexes exhibit
homogeneity but still permit identifiability. If ΦR = ∂(Y ) and no individual’s attributes are a
subset of another’s attributes, then one can and needs to specify |Y | − 1 attributes in order to
identify an individual. The boundary structure ensures that one cannot infer any attributes
by specifying fewer than |Y | − 1 attributes, yet retains the ability to identify every individual.

Appendix J.1 gives an example of a contractible space that preserves attribute privacy.
Observe, however, that the number of attributes needed to identify an individual in that
example is considerably less than the total number of attributes in the space. For a boundary
complex, it is just one less.

Preserving Association and Attribute Privacy: A consequence of these observations is
that if one wishes to preserve both attribute and association privacy, then one requires both
Dowker complexes to look like spheres. More specifically, either both Dowker complexes are
linear cycles or both look like boundary complexes of the same dimension. In the latter case,
the relation is isomorphic to a relation of the following form, in which the diagonal {(xi, yi)}
is blank but all other entries are present:

R y1 y2 · · · · · · yn−1 yn

x1 • • · · · • •
x2 • • · · · • •
... • • . . .

... •
...

...
...

. . . • ...
xn−1 • • · · · • •
xn • • • · · · •

See Appendix E for further details.

5.4 A Spherical Non-Boundary Relation that Preserves Attribute Privacy

Consider relation R as in Figure 10. Relation R preserves attribute privacy, since ΦR has no
free faces. The relation does not preserve association privacy. In particular, the quadrilaterals
drawn for ΨR in the figure are actually tetrahedra. This means that the diagonals of the
quadrilaterals are free faces. For instance, one would expect to infer individuals #1 and #6 as
additional unobserved associates if one observes individuals #3 and #4. Indeed, computing
using the closure operator ψR ◦ φR, we see that:

(ψR ◦ φR)({3, 4}) = ψR({b}) = {1, 3, 4, 6}.
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R a b c d e

1 • • •
2 • • •
3 • • •
4 • • •
5 • • •
6 • • •

a 

b 

c d 
e 

ΦR ΨR

2 

3 

5 

6 

1 4 

Figure 10: A relation R and its Dowker complexes ΦR and ΨR, each homotopic to the two-
dimensional sphere S2. (One may view ΦR as two party hats glued together. One may view
ΨR as a triangular cylinder with endcaps. However, the quadrilaterals drawn for the cylinder
portion of ΨR are simply flattened sketches of what are actually solid tetrahedra.)

Relation R has another interesting feature. Even though ΦR is not itself a boundary
complex, it is the simplicial join of two boundary complexes:

ΦR = ∂({a, b, c}) ∗ ∂({d, e}).

In fact, we can think of R as R1 ∪ R2, with R1 the restriction of R to the attributes
{a, b, c} and R2 the restriction of R to the attributes {d, e}. This means that we can view
every individual in R as being described by two independent attribute spaces. The attribute
space {d, e} acts like a standard bit; every individual has exactly one of these two attributes.
In contrast, the attribute space {a, b, c} is an “any 2 of 3” type of descriptor. Every individual
has exactly two of these three attributes.

Figure 11 shows the relations R1 and R2 along with their Dowker attribute complexes.

R1 a b c

1 • •
2 • •
3 • •
4 • •
5 • •
6 • •

R2 d e

1 •
2 •
3 •
4 •
5 •
6 •

b

ac
d e

ΦR1
ΦR2

Figure 11: Relation R of Figure 10 decomposes into two disjoint relations R1 and R2 such
that ΦR = ΦR1 ∗ ΦR2 , with ΦR1 the boundary of a triangle and ΦR2 two isolated points. This
means every individual in R has attributes that act like two independent coordinates: an “any
2 of 3” component and a bit.
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6 Conditional Relations as Simplicial Links

The decomposition of Figures 10 and 11 is reminiscent of stochastic independence expressed as
multiplication of probabilities. Similarly, there is a combinatorial analogue to the notion of a
conditional probability distribution. It appears as the link of a simplex in a simplicial complex.

Given a relation R, suppose we have observed attributes γ for some unknown individual.
The remaining possible combinations of attributes we might yet observe are described by
the simplicial complex Lk(ΦR, γ) = {τ ∈ ΦR | τ ∩ γ = ∅ and τ ∪ γ ∈ ΦR }. Interpretation:
τ ∩ γ = ∅ means that τ consists of as yet unobserved attributes, while τ ∪ γ ∈ ΦR means
that there is some individual who has the attributes τ in addition to the attributes γ that have
already been observed.

Q a b c

1 • •
2 • •
3 • •

ΦQ ΨQ

b

ac 2

13

Figure 12: Relation Q describes the conditional relation resulting from R of Figure 10 upon
observing attribute d. Note that ΦQ = Lk(ΦR, {d}).

For instance, after observing attribute d in relation R of Figure 10, we may conclude that
we are observing one of the individuals in {1, 2, 3} and that the remaining attributes we might
yet observe are any two attributes drawn from {a, b, c}. We can express these conclusions as
yet another relation, namely the relation Q of Figure 12. Relation Q describes exactly which
individuals could give rise to which attributes, consistent with the observation of d already
made. Thus ΦR plays a role much like a probability distribution, while ΦQ plays
the role of a conditional distribution. For another example, suppose we have observed
attribute b in R. Then the resulting conditional relation Q′ is as in Figure 13.

Q′ a c d e

1 • •
3 • •
4 • •
6 • •

ΦQ́ ΨQ́

d

ac

13

46e

Figure 13: Relation Q′ describes the conditional relation resulting from R of Figure 10 upon
observing attribute b. Here ΦQ′ = Lk(ΦR, {b}). The attribute space for Q′ now factors into
two independent bits: {a, c} constitutes one bit, {d, e} the other. This factoring is conditional
on having observed b.
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The formal constructions of conditional relations proceed as follows (a symbol of the form
R|W means “restrict R to W”). See also Appendix C.

Definition 7 (Conditional Attribute Relations). Let R be a relation on X × Y and suppose
γ ⊆ Y . The following relation Q models Lk(ΦR, γ):

Q = R |σ×Y , with σ = ψR(γ) and Y =
⋃
x∈σ

Yx \ γ.

The Dowker complexes are defined in the standard way, except for this special case:
If Y = ∅ and σ �= ∅, we let ΦQ and ΨQ be instances of the empty complex {∅}.

Observe: Lk(ΦR, γ) = ΦQ (a proof appears in Appendix C).

Comment: If γ �∈ ΦR, then σ = ∅ and Q is void, and so ΦQ is void, consistent with the
standard definition of Lk(ΦR, γ) being void in this situation.

There is a dual construction for links of individuals σ in the Dowker complex modeling
associations:

Definition 8 (Conditional Association Relations). Let R be a relation on X×Y and suppose
σ ⊆ X. The following relation Q models Lk(ΨR, σ):

Q = R |X×γ , with γ = φR(σ) and X =
⋃
y∈γ

Xy \ σ.

The Dowker complexes are defined in the standard way, except for this special case:
If X = ∅ and γ �= ∅, we let ΨQ and ΦQ be instances of the empty complex {∅}.

Observe: Lk(ΨR, σ) = ΨQ.

As we will see in Section 7, the complex Lk(ΨR, {x}) is useful for characterizing individual
x’s attribute privacy. If that seems surprising, observe that Lk(ΨR, {x}) models the connections
x has to other individuals. Those connections determine whether in ΦQ, and thus back in ΦR,
there are attributes of x that are “free to move” under the closure operators.
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7 Privacy Characterization via Boundary Complexes

Q b c d

1 • •
2 • •
4 •
5 •
6 • • ΦQ ΨQ

d

cb 6 5

21

4

Figure 14: With R as in Figure 10, relation Q describes the conditional relation corresponding
to Lk(ΨR, {3}). Also shown are the Dowker complexes of Q. By design, ΨQ = Lk(ΨR, {3}).
Observe that ΦQ is the boundary complex ∂({b, c, d}), with {b, c, d} being all of individual #3’s
attributes in relation R. That boundary condition characterizes full privacy for an individual.

We observed earlier that every individual in relation R of Figure 10 has full attribute
privacy. We came to that conclusion after observing that ΦR has no free faces. In fact, one
can focus in on the privacy of a single individual rather than look at the full relation. Let’s
pick one such individual, say #3, and look at the conditional relation Q that models the link
Lk(ΨR, {3}), as shown in Figure14.

Individual #3 has attributes {b, c, d} in R. The attribute complex ΦQ for Q is the boundary
complex on exactly this set. Interpretation: for any nonempty proper subset of individual #3’s
attributes, some combination of other individuals in R has at least those attributes, but not
all of individual #3’s attributes. Moreover, there is a different combination of individuals for
each proper subset that is missing exactly one of #3’s attributes. That diversity of individuals
ensures #3’s attribute privacy.

The previous example suggests the following characterization: An individual has full
attribute privacy precisely when the attribute complex of the individual’s link is the boundary
complex of the individual’s attributes. Observe that this characterization is local to the
individual; it does not depend on other individuals having privacy. We now formalize this
intuition. Proofs appear in Appendix E.

Recall Definitions 4 and 6, from pages 20 and 22, respectively, formalizing the notions of
privacy preservation and unique identifiability. And recall the semantics of PR, for instance
from Definition 3 on page 20.

Theorem 9 (Individual Attribute Privacy). Let R be a relation on X × Y , with |X| > 1.
Suppose x ∈ X is uniquely identifiable via R. Let Q be the relation modeling Lk(ΨR, x).
Then the following three conditions are equivalent:

(a) R preserves attribute privacy for x,

(b) Lk(ΨR, x) � Sk−2, with k = |Yx|,
(c) ΦQ = ∂(Yx).
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The previous theorem generalizes to sets of individuals for sets that are “stable” under the
closure operators, i.e., that appear as the “set of individuals component” in an element of PR:

Theorem 10 (Group Attribute Privacy). Let R be a relation on X × Y .
Suppose (σ, γ) ∈ PR, with σ �= X. Let Q be the relation modeling Lk(ΨR, σ).
Then the following three conditions are equivalent:

(a) (φR ◦ ψR)(γ′) = γ′, for every subset γ′ of γ,

(b) Lk(ΨR, σ) � Sk−2, with k = |γ|,
(c) ΦQ = ∂(γ).

The following lemma appears in Appendix E:

Lemma 11 (Interpreting Local Operators). Let R be a relation on X × Y .
Suppose (σ, γ) ∈ PR, with σ �= X.
Let Q be the relation on X × γ that models Lk(ΨR, σ) and suppose X �= ∅.
Then, for every γ′ ⊆ γ: (i) If γ′ �∈ ΦQ, then ψR(γ′) = σ,

(ii) If γ′ ∈ ΦQ, then ψR(γ′) � σ.

Moreover, in this case:

If (φQ ◦ ψQ)(∅) = ∅, then (φR ◦ ψR)(∅) = ∅.
If γ′ �= ∅, then (φQ ◦ ψQ)(γ′) = (φR ◦ ψR)(γ′).

The lemma says that observations of attributes that are consistent in Q have as
interpretation more individuals in R than just the individuals σ, but if ever those observations
become inconsistent in Q, then one has identified σ in R. Here “inconsistent in Q” means that
the observed attributes are legitimate attributes for Q but do not constitute a simplex of ΦQ.
(Note: Such observed attributes necessarily constitute a simplex of ΦR since they are a subset
of γ ∈ ΦR).

Moreover, attribute inferences are identical in R and Q for nonempty simplices of ΦQ.
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8 The Meaning of Holes in Relations

We have seen how spheres characterize privacy. More generally, when working with topological
spaces, holes are significant. One wonders what holes mean for relations.

• Some holes arise as a consequence of exclusion between attributes, as we saw in the
decomposition of Figures 10 and 11.

Sticking with binary exclusions, suppose a group of individuals are described by k bits.
One can model those individuals via a relation containing 2k attributes (one attribute
for each possible bit value). Every individual has exactly k of those 2k attributes. If all
possible 2k combinations of bit values are represented by individuals in the relation, then
the two Dowker complexes are both homotopic to Sk−1, the sphere of dimension k−1. In
fact, ΦR is the simplicial join of k copies of S0, while ΨR is visualizable as a hypercube
in k dimensions, with (k−1)-dimensional subcubes fattened to be simplices. Figures 15,
16, and 17 depict the cases k = 1, 2, and 3, respectively.

In short, k bits means a hole of dimension k−1, if all possible individuals are actually
present in the relation.

(The lack of an expected hole may mean that the capacity of a relation has not been
exhausted, hinting at possible inference. See Appendix J.3.)

S a ¬a
1 •
2 •

a
_- a 21

ΨSΦS

Figure 15: Relation S describes two individuals in terms of a single attribute and its negation.
The topology of the Dowker complexes is S0.

Q a ¬a b ¬b
1 • •
2 • •
3 • •
4 • •

ΨQΦQ

3

2

1

4

a
_- a

b

_- b

Figure 16: Relation Q describes four individuals in terms of two attributes and their negations.
The topology of the Dowker complexes is S1.

• Minimal nonfaces (which may or may not be topological holes) suggest restrictions of a
relation to equal-numbered attributes and individuals for whom there is both attribute
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R a ¬a b ¬b c ¬c
1 • • •
2 • • •
3 • • •
4 • • •
5 • • •
6 • • •
7 • • •
8 • • • ΨRΦR

3

1

4

2

5 6

8
7

c
_- a

b

_- b

a
_- c

Figure 17: Relation R describes eight individuals in terms of three attributes and their
negations. The topology of the Dowker complexes is S2. The cube faces are actually tetrahedra,
flattened to parallelograms in the drawing.

and association privacy, within the restricted relation. This observation follows from the
following results (here we assume that each relation has no blank rows or columns):

– A relation with more attributes than individuals cannot fully preserve attribute
privacy.

– A relation with more individuals than attributes cannot fully preserve association
privacy.

– A relation that preserves both attribute and association privacy must have the same
number of attributes and individuals. Moreover, if the relation is connected, then
both Dowker complexes are either linear cycles of the same length or they are both
boundary complexes of full simplices, as we indicated previously.

See Appendices C and E for further details and proofs.

Consequently, minimal nonfaces of a relation may be viewed by restriction as descriptions
of subrelations that preserve both attribute and association privacy.

• Minimal nonfaces can have other context-dependent meanings. For instance, in a certain
authorship relation, knowing that each pair of three individuals has written a paper
together appears to be a good predictor that all three individuals will co-author a paper
together [13]. This suggests the following: if one sees that such an authorship hole
does not fill over time, then one likely can infer some kind of obstruction, perhaps an
incompatibility in the group as a whole, or the death of an author, for instance.

• When designing relations or anonymizing relations, these results suggest transformations
that create “bubbly spaces” of some sort, in order to retain identifiability but also reduce
unwanted inference. Sections 9 and J.2 discusses examples.

• Whatever holes there are in ΦR and ΨR must also show up in the poset PR, since that
poset is formed by homotopy equivalences from ΦR and ΨR. Interestingly, whereas one
thinks of ΦR and ΨR simply as spaces, one sees a partial order on PR. Something can
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move, “up” or “down”. The elements of PR are inference-stable, by design. So, what is
this possible motion? It is a dynamic process that describes how information changes
interpretation. For instance, as an individual reveals information about him- or herself,
an observer can attempt to identify the individual, by finding interpretations in PR of
the information revealed. As the individual reveals additional information, the observer’s
interpretation moves downward in PR, narrowing the set of individuals.

Holes in the spaces ΦR and ΨR (and thus PR) constrain how that interpretation moves
downward in PR. The greater a hole’s dimension, the further a downward path has to
move before identifying an individual. One can think of holes in a relation much like
boulders in a stream. Eventually, the current of information sweeps past the hole, but
it is forced to divert its motion, covering more distance. Moreover, there may be many
paths around the hole, much like a leaf in a stream may divert around a boulder in
different directions. The individual can force a particular path by choosing to reveal
attributes in a particular order.

Much of the rest of the report explores the implications of this stream analogy. The
analogy merges with the realization that privacy is a dynamic process, certain to flow
toward identification when attributes are static or persistent, yet subject to channeling
and turbulence when fluid. See in particular Section 10 onward.
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9 Change-of-Attribute Transformations

Free faces and holes in the Dowker complex ΦR can sometimes suggest changes in attributes
that preserve desired information but reduce inference. Consider the “ice-cream cone” relation
C of Figure 18 and the corresponding complexes shown in Figure 19. The relation describes
four individuals in terms of the two-flavor two-scoop ice-cream cones each individual enjoys at
a particular ice-cream parlor.

C gc gs cs cv sv gv

Bob • • •
Alice • • •
David • • •
Cindy • • •

g = ginger
c = chocolate
s = strawberry
v = vanilla

Figure 18: Four individuals and their preferences for ice-cream cones containing two scoops,
with different flavors (each letter represents a flavor, as indicated). See Figure 19 for the
Dowker complexes.

ΨCΦC

gvgv cs

gs gc

sv cv

Alice

Bob

D
av

id

C
indy

Bob
Cindy

AliceDavid

gs

sv

cs
cv

gc

gv

Figure 19: The Dowker complexes for the relation of Figure 18. ΦC is a complex whose vertices
are ice-cream cones (two flavors). (For visualization purposes, the complex is flattened, with
the leftmost and rightmost vertices really representing the same ice-cream cone.) Each maximal
simplex is a triangle, labeled with the individual who enjoys the three types of cones comprising
the triangle. ΨC is a complex whose vertices are individuals. Each maximal simplex is an edge,
representing a two-flavor two-scoop ice-cream cone that each of two individuals enjoys; the edge
is labeled with the cone flavors. The homotopy type of each complex is S1 ∨ S1 ∨ S1.

Relation C is a typical “2-implies-3” relation: Any two different ice-cream cones fully
identify an individual, thereby implying a third ice-cream cone, as can be seen from either
Dowker complex: In ΦC , every edge is a free face of its encompassing triangle. Moreover, the
edge is not itself generated by any individual.2 The closure operator φC ◦ ψC must therefore
map every edge to a triangle. Similarly, in ΨC , any two edges intersecting at a vertex imply
the third edge incident on that vertex.

2We say an individual x of a relation R generates a simplex γ ∈ ΦR when γ = Yx. Similarly, an attribute y
generates a simplex σ ∈ ΨR when σ = Xy.
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This type of relation models, in the small, inferences such as those reported in [17, 15].
For instance, [17] reported that zip code, gender, and birth date were likely sufficient in 1990
to identify 87% of individuals in the U.S. That is nearly a “3-implies-all” type of relation.
Similarly, [15] reported that 8 movie ratings and dates were enough to uniquely identify 99%
of viewers in the Netflix Prize dataset. That is essentially an “8-implies-all” type of relation.

Let’s focus for a moment on Bob’s neighborhood. That relation, let’s call it B, and its
complexes are depicted in Figure 20. (The relation models St(ΨC , {Bob}), see Appendix C.)

B gc gs cs

Bob • • •
Alice •
David •
Cindy •

ΨBΦB

cs

gs gc

(Alice)

Bob
(Cindy)(David)

Bob

Alice

David Cindy
gcgs

cs

Figure 20: Relation B models Bob’s neighborhood in the ice-cream relation of Figure 18.
Each maximal simplex is labeled with its generator. Generators of non-maximal simplices are
indicated in parentheses.

As in C, seeing someone eat one ice-cream cone is not enough to identify anyone in B.
Seeing someone (in this case Bob), eat two different types of ice-cream cones, is sufficient to
infer the third type of ice-cream cone that individual prefers. How might we prevent this? We
observe that the vertices of ΦB are themselves generated by individuals while the edges are
not. Homotopically, therefore, we want to expand the vertices of ΦB into edges, and contract
the edges of ΦB into vertices. One possible way to accomplish this is the take logical ors of
the existing attributes. With ⊕ meaning Boolean or, we define:

α = gc ⊕ gs, β = gc ⊕ cs, γ = gs ⊕ cs.

Then relation B becomes B′ as in Figure 21. The result is that the free faces of ΦB′ now
are generated by other individuals, so even though they are free, the closure operator does not
move them. In fact, the closure operator φB′ ◦ ψB′ is the identity on F(ΦB′) ∪ {∅}, meaning
that no attribute inference is possible in B′.

B′ α β γ

Bob • • •
Alice • •
David • •
Cindy • •

α

(Alice)

Bob
(Cindy)(David)

γ β

ΦB’ ΨB ’

Bob

Alice

David Cindyα

βγ

Figure 21: RelationB′ represents relation B of Figure 20, now with a coordinate transformation
for the attributes. Simplices are again labeled by generators.
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Now imagine performing similar operations for all four individuals of relation C from
Figure 18. One winds up constructing four logical ors:

gc ⊕ gs ⊕ gv, gc ⊕ cs ⊕ cv, gs ⊕ cs ⊕ sv, cv ⊕ sv ⊕ gv.

Two observations:

1. Each or describes three ice-cream cones that form a hole in the complex ΦC of Fig. 19.

2. Each such hole may be interpreted as a single flavor, namely the flavor in common to the
three ice-cream cones appearing in the or. For instance, “ginger” (abbreviated as g) is
the common flavor for the or gc⊕ gs⊕ gv.

In order to describe the resulting relation, it is perhaps easiest to express those four new
coordinates themselves via a relation S that describes the scoops present in an ice-cream cone:

S g c s v

gc • •
gs • •
cs • •
cv • •
sv • •
gv • •

Finally, to perform the coordinate-transformation, one simply multiplies Boolean matrices,
with addition being Boolean or and multiplication being Boolean and: F = CS. The relation
F and its complexes appear in Figure 22.

F g c s v

Bob • • •
Alice • • •
David • • •
Cindy • • •

ΨFΦF

Bob

Cindy

Alice
David

g

v

ssss cccc

Cindy

g

v

s
c

David

Alice

BoBobBoBo

Figure 22: Relation F describes the individual flavors each individual prefers. ΦF is the
boundary of a tetrahedron, with flavors as vertices. ΨF is the Dowker dual of ΦF , meaning it
too is the boundary of a tetrahedron, now with the roles of flavors and individuals interchanged.
For both ΦF and ΨF , each maximal simplex is a triangle, labeled with its generator.

Relation F represents a description of the four individuals’ preferences in terms of flavors
not cones. The resulting complexes ΦF and ΨF are now boundary complexes of full simplices,
each homeomorphic to S2. These complexes have no free faces, so no inference is possible.
Observe further that ΦF is homotopic to what one obtains from ΦC by filling the S1-holes.
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Indeed, this idea implicitly motivated our construction, as a way to remove free faces. Similarly,
ΨF is isomorphic to what one obtains from ΨC by filling its S1-holes.

One should ask how this approach might generalize. The answer is mixed. The idea
of removing free faces is central. There are many ways to accomplish that, with relational
composition being but one method. One issue with logical ors is that it is very easy to obtain
an or that is always True, at which point the resulting attribute is of little use.

Even with more general transformations, there remains the issue of whether the new
attributes are grounded in what is actually measurable. In the ice-cream example, it was
fortunate that cones decomposed naturally into flavors. It is at least plausible that someone
might merely observe the flavors a customer prefers, not the combinations of flavors as cones.
If, however, only cones can be observed, then one is forced to deal with relation C as given.
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10 Leveraging Lattices for Privacy Preservation

This section examines more carefully the poset PR along with its lattice structure, leading to
the idea of informative attribute release sequences. These are attributes that an individual
can release in a particular order so as to prevent inference of any attributes yet to be released
via the sequence. The lattice length therefore describes the extent to which an individual can
defer identification. Homology in PR provides lower bounds on that length.

10.1 Attribute Release Order

Relation G of Figure 23 describes hypothetical co-authorships among five authors in producing
travel guides for five European cities. Each collaboration consists of three authors working
together on one of the five travel guides.

G

A
t
h
e
n
s

B
e
r
l
i
n

C
a
e
n

D
u
b
l
i
n

E
�l
k

1 (Alice) • • •
2 (Ben) • • •
3 (Claire) • • •
4 (David) • • •
5 (Eric) • • •

ΨG

ΦG

A
1

A

B

B

C

D

E

2 3 4 5

A
1

B
C

D
E

2

3

4

5 2

1

Figure 23: A relation G describing co-authorship of travel guides. The Dowker complexes are
dual triangulations of the Möbius strip, with S1 homotopy type. (Notes: Integers indicate
authors, letters indicate cities via first letter abbreviations. Some vertices and edges appear
twice for ease of viewing. Each maximal simplex is labeled with its generating author or city.)

Suppose in casual conversation a person mentions that he/she worked on producing a travel
guide for Berlin. In the context of relation G, that information means the author is one of
{Alice, Ben, Claire}. If the author further mentions working on the travel guide for Dublin,
then that identifies the author as Claire. Equivalently, the listener can infer that the author
also helped write the travel guide for Caen. (This form of inference was the source of problems
for the Netflix Prize [15].)

Claire was a co-author on three travel guides, for Berlin, Caen, and Dublin. Now
consider the different possible sequential ways in which Claire might reveal which books she
helped co-author, along with the point at which her identity becomes known (see Figure 24).

Of the six possible ways, four do not fully identify Claire until she has revealed all three
books that she co-authored. However, two of the possible six release sequences do allow a
listener to identify the author and infer an additional book that she co-authored.

This example shows how inference may be a dynamic process. While a consumer of data
may wish to identify Claire with as little information as possible, the author herself may wish
to delay that identification for as long as possible (perhaps for reasons of public mystery in
selling books). In the example, the minimal length of an identifying attribute release sequence
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Caen Dublin

Berlin
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Berlin

Caen
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Figure 24: This figure shows the six possible sequential ways in which author #3 (Claire) of
Figure 23 can mention the cities for which she co-authored travel guides. The point at which
her identity becomes known in any such release sequence is circled. If Claire does not mention
Caen, one can infer, via relation G of Figure 23, that she co-authored a travel guide for that
city as soon as she mentions the other two cities, Berlin and Dublin, in either order.

is two, while the maximal length is three. If Claire can control how information is released,
then she can choose to reveal what might otherwise be inferred, namely that she co-authored
a travel guide to Caen, thereby delaying her identification.

Finally, we observe that the order of attributes released may or may not matter. In the
travel guide example, Claire should mention Caen before the end of her revelations (if she
wants to delay her identification), but the order of cities mentioned is otherwise irrelevant.
The topology of the doubly-labeled poset PG encodes this order (in)dependence, as we will see
shortly. Indeed, much of the remainder of this report examines the connection between the
topology of a relation’s doubly-labeled poset and the length of attribute release sequences.

10.2 Inferences on a Lattice

The doubly-labeled poset of a relation produces a lattice [21], as follows:

Definition 12 (Galois Lattice). Let R be a relation on X × Y , with X �= ∅ and Y �= ∅. Let
PR be the associated doubly-labeled poset.

(Recall from Definition 3 on page 20 that an element of PR is a pair (σ, γ), with
∅ �= σ = ψR(γ) ∈ ΨR and ∅ �= γ = φR(σ) ∈ ΦR.

We previously defined a partial order on PR by (σ1, γ1) ≤ (σ2, γ2) iff σ1 ⊆ σ2 (iff γ1 ⊇ γ2).)
PR may already contain a bottom element of the form (σ, Y ), with σ those individuals in X

who have all the attributes in Y . If not, we adjoin (∅, Y ) to the bottom of PR.
PR may already contain a top element of the form (X, γ), with γ those attributes in Y that

every individual in X has. If not, we adjoin (X, ∅) to the top of PR.

We refer to the resulting poset as the Galois lattice P+
R . It has lattice operations ∨ and ∧:

(σ1, γ1) ∨ (σ2, γ2) =
(
(ψR ◦ φR)(σ1 ∪ σ2), γ1 ∩ γ2

)
,

(σ1, γ1) ∧ (σ2, γ2) =
(
σ1 ∩ σ2, (φR ◦ ψR)(γ1 ∪ γ2)

)
.

We sometimes refer to the bottom element of P+
R by 0̂R and to the top element by 1̂R.
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(Ø, ABCDE)

(12345, Ø)

(51, EA) (23, BC)(12, AB) (34, CD) (51, EA)(45, DE)

PG
+

(1, EAB) (2, ABC) (3, BCD) (4, CDE) (5, DEA)

(512, A) (123, B) (234, C) (345, D) (451, E)

Figure 25: The lattice P+
G for the travel guide relation of Figure 23. Each element is a pair of

sets (σ, γ) such that σ = ψG(γ) and γ = φG(σ). (We have elided commas and braces in sets,
for ease of viewing.) The lattice operations model inferences possible from observations. For
instance, (123, B)∧(345, D) = (3, BCD), meaning that observation of attributes B and D permits
inference of additional attribute C and identification of author #3. (In Figure 23, attribute
C is the travel guide for Caen and author #3 is Claire.) The lattice wraps around, with
element (51, EA) duplicated for ease of viewing. If one removes the top and bottom elements,
the remaining poset PG has S1 homotopy type, just like the Möbius strip.

Figure 25 shows the lattice P+
G for the travel guide relation of Figure 23. Observe how the

lattice encodes attribute and association inferences (or lack thereof) via its lattice operations.

Special Cases: It can happen that the lattice consists of a single element. For example,
with relation C as on page 23, P+

C = PC = {(X,Y )}. In particular, 0̂C = 1̂C .
Definition 12 ignores the situation in which R is void. One possibility is to view P+

R as void
and PR as degenerate.

10.3 Preserving Attribute Privacy for Sets of Individuals

Theorem 9 on page 28 described the conditions under which an individual has full attribute
privacy. For such an individual, the order in which that individual (or anyone) releases the
individual’s attributes is irrelevant. Any order is fine. Only once all attributes have been
released, can an observer definitively identify the individual. Theorem 10 described a similar
result for certain sets of individuals, including those with whom an individual is confusable
after only some of his/her attributes have been released.

Consider Lk(ΨG, 3), modeled by relation C as in Figure 26. This relation describes the
authors with whom Claire has collaborated, via their co-authored books. The Dowker
complexes are contractible, so by either Theorem 9 or Theorem 10, we know that some attribute
inference is possible involving Claire. Lemma 11 on page 29 tells us to look for a subset of
{Berlin,Caen,Dublin} that is a simplex of ΦG but not of ΦC . As is apparent from the figure,
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4 (David) • •
5 (Eric) •

ΨCΦC

(1)
Berlin

Caen

Dublin

2 4
(5) 1

Berlin Dublin

2 4

5

Caen

Figure 26: Relation C describes Lk(ΨG, 3), the link of Claire in the relation of Figure 23.
(Each maximal simplex in any one complex is labeled with its generating attribute or individual
from the other complex. Generators of non-maximal simplices are indicated in parentheses.)

the set {Berlin,Dublin} satisfies these conditions, consistent with our earlier observations.
Alternatively, looking at P+

C in Figure 27, we see that (12, B) ∧ (45, D) = (∅, BD), allowing
us to draw the same conclusion. Consequently, Claire should be sure to mention her travel
guide for Caen early on, not leave it for last, if she wants to delay identification.

(1245, Ø)

(2, BC) (4, CD)

PC
+

(Ø, BCD)

(12, B) (24, C) (45, D)

Figure 27: The lattice P+
C for the link of Claire, as given in Figure 26. (Here authors appear

as integer indices and city names appear as first letter abbreviations.) Observe that this lattice
may be viewed as a sublattice of P+

G , containing all elements that include individual #3 there,
but with that individual removed here.

Now let us take this reasoning one step further. Consider an element of P+
G corresponding to

some state just prior to identification of Claire, for instance (23, BC). This element corresponds
to both of the first two release sequences of Figure 24: Claire has mentioned her work regarding
the travel guides for Berlin and Caen, but has not yet mentioned Dublin. Thus there is
still some ambiguity as to her identity (it is either author #2 or author #3). In terms of
Theorem 10 on page 29, σ = {2, 3}, γ = {Berlin,Caen}, and k = 2.

Figure 28 shows the relation describing Lk(ΨG, {2, 3}). The Dowker complexes have S0

homotopy type, thus satisfying the topological conditions of Theorem 10. Consequently, there
is no attribute inference possible in the encompassing relation based on attributes that appear
in the link. That means the order in which Claire releases the two attributes Berlin and
Caen is immaterial. This conclusion is consistent with the conclusion one draws upon explicitly
enumerating all release sequences, as in Figure 24.
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& PQ
+

(14, Ø)

(Ø, BC)

(1, B) (4, C)

Figure 28: Relation Q describes Lk(ΨG, {2, 3}), the combined link of authors #2 and #3 (Ben
and Claire) in the relation of Figure 23. These two authors have together collaborated with
each of authors #1 and #4 (Alice and David) but have not both together collaborated with
author #5 (Eric). The two Dowker complexes are each instances of S0, so essentially the
same. The corresponding lattice P+

Q is also very simple.

10.4 Informative Attribute Release Sequences

This subsection defines more precisely the idea of controlled information release. These
definitions will help us better understand holes in a relation’s Dowker complexes, via
Theorem 10. Subsequently, Section 11 will test that insight with data from the world wide
web.

Definition 13 (Attribute Release Sequence). Let R be a relation on X × Y , with both X and
Y nonempty. An attribute release sequence for R is a nonempty set of attributes from Y
released in a particular sequential order:

y1, y2, . . . , yk, with k ≥ 1.

We say that the sequence has length k.

We say that an attribute release sequence is informative if

yi �∈ (φR ◦ ψR)({y1, . . . , yi−1}), for all 1 ≤ i ≤ k.

(Note: for i = 1, the requirement states that y1 �∈ (φR ◦ ψR)(∅) = φR(X).)

(We sometimes use the abbreviation 'iars' to mean either 'informative attribute
release sequence' or 'informative attribute release sequences'.)

Interpretation: When i = 1, the argument to φR ◦ ψR is the empty set, so the condition
requires that y1 �∈ φR(X). In other words, y1 may not be any attribute that is shared by
all individuals in X. Any such attribute could be inferred “for free” and thus would not
be informative. Thereafter, the condition requires that any attribute to be released not be
inferable from those already released.

We are interested in understanding the extent to which order of release matters:

Definition 14 (Isotropy). Let R be a relation on X × Y , with both X and Y nonempty.
Suppose ∅ �= γ ⊆ Y .

We say that γ is isotropic if every possible ordering of all the elements in γ forms an
informative attribute release sequence for R.
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We are interested in the minimal and maximal lengths of informative attribute release
sequences:

Definition 15 (Identification and Minimal Identification). Let R be a relation on X × Y .
We say that a set of attributes γ ⊆ Y identifies a set of individuals σ ⊆ X in R when

ψR(γ) = σ. (We sometimes alternatively say that γ localizes (to) σ.)

We say that γ is minimally identifying (for σ) if both the following conditions hold:

(i) ψR(γ) = σ,

(ii) ψR(γ′) � σ for every γ′ � γ.

Definition 16 (Identification Lengths). Let R be a relation on X × Y , with both X and Y
nonempty. Suppose (σ, γ) ∈ PR. Define the fast and slow attribute release lengths for σ as

rfast(σ) = min {|γ|
∣∣∣ γ ∈ ΦR and ψR(γ) = σ}.

rslow(σ) = max {k
∣∣∣ y1, . . . , yk is an iars for R and ψR({y1, . . . , yk}) = σ}.

An argument similar to that in Appendix D shows that the following problem is NP -
complete: Given σ, is there some minimally identifying γ for σ of size at most k?

10.5 Isotropy, Minimal Identification, and Spheres

There is no requirement in Definition 13 that an informative attribute release sequence be a
simplex in ΦR. Indeed, when working with links, it is useful to create informative attribute
release sequences that are not simplices in the link, thereby identifying a set of individuals
in the encompassing relation, as per Lemma 11. However, it is always the case that any
inconsistency arises only with the last attribute released:

Lemma 17 (Almost a Simplex). Let R be a relation on X×Y , with both X and Y nonempty.
Suppose {y1, . . . , yk} is an informative attribute release sequence for R.
Then {y1, . . . , yk−1} ∈ ΦR.

Proof: If {y1, . . . , yk−1} �∈ ΦR, then (φR ◦ ψR)({y1, . . . , yk−1}) = φR(∅) = Y . Since yk ∈ Y ,
this contradicts the requirement of Definition 13.

Interestingly, when an informative attribute release sequence is a simplex, then being
isotropic is equivalent to being minimally identifying. Moreover, topologically, we can
characterize this isotropy property as a sphere appearing via a restricted link:
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Figure 29: Relation Q′ = Q(σ, γ), for the book authorship example of Figure 23, with σ = {3}
and γ = {Berlin,Dublin}. Relation Q′ describes the link of author #3 (Claire) restricted
to the attribute set {Berlin,Dublin}. See Figure 26 for the full link relation. (Each maximal
simplex in the Dowker complexes is again labeled with its generating individuals or attribute.)

Definition 18 (Restricted Link). Let R be a relation on X × Y .
Suppose σ ∈ ΨR and γ ⊆ φR(σ).
Define relation Q(σ, γ) as follows:

Q(σ, γ) = R |X×γ , with X =
⋃
y∈γ

Xy \ σ.

The Dowker complexes are defined in the standard way, except for these special cases:
If σ = X, we let ΨQ(σ,γ) and ΦQ(σ,γ) be instances of the void complex ∅.
If σ �= X but X = ∅, we let ΨQ(σ,γ) and ΦQ(σ,γ) be instances of the empty complex {∅}.

We say that Q(σ, γ) models the link of σ restricted to γ.

Comment: Although the previous definition looks similar to that for Lk(ΨR, σ) on page 27,
there are some differences: (a) Here, we require that σ be a simplex in ΨR. (b) Here, we do
not assume γ = φR(σ), merely γ ⊆ φR(σ). (c) Finally, Definition 8 on page 27 creates an
empty complex whereas the current definition creates a void complex when σ = X ∈ ΨR. In
summary: When σ �= X, Q(σ, γ) models those simplices of Lk(ΨR, σ) that are witnessed by
attributes in γ.

Theorem 19 (Isotropy = Minimal Identification = Sphere). Let R be a relation and suppose
∅ �= γ ∈ ΦR. Let σ = ψR(γ). Then the following four conditions are equivalent:

(a) γ is isotropic.

(b) γ is minimally identifying (for σ).

(c) ΨQ(σ,γ) � Sk−2, with k = |γ|.
(d) ΦQ(σ,γ) = ∂(γ).

See Appendix F.3 for a proof.
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Collaboration Example Revisited: To illustrate Theorem 19, consider again the example
of Figure 23. Recall that together the travel guides for Berlin and Dublin identify Claire.
Indeed, {Berlin,Dublin} is a minimally identifying set of books for Claire. It is isotropic,
as Figure 24 shows. Figure 29 depicts the link of Claire restricted to {Berlin,Dublin},
modeled by relation Q′. Observe that ΦQ′ = ∂({Berlin,Dublin}) and that ΨQ′ � S0, as the
theorem asserts.

10.6 Poset Lengths and Information Release

We have seen how minimal identification appears topologically via spheres. Spheres are
isotropic so perhaps it is not surprising that they encode isotropic attribute release sequences.
We cannot therefore expect a spherical characterization for the problem of finding a maximally
long informative attribute release sequence. Instead, we find an answer in the combinatorial
structure of the doubly-labeled poset PR and its lattice P+

R . We summarize the key results
below. For proofs, see Appendix F.

Lemma 20 (Informative Attributes from Maximal Chains). Let R be a relation on X × Y ,
with both X and Y nonempty. Suppose {(σk, γk) < · · · < (σ1, γ1) < (σ0, γ0)}, with k ≥ 1, is a
maximal chain in P+

R .
Define y1, . . . , yk by selecting some yi ∈ γi \ γi−1, for each i = 1, . . . , k.
Then y1, . . . , yk is an informative attribute release sequence for R.
Moreover, (φR ◦ ψR)({y1, . . . , yi}) = γi for each i = 0, 1, . . . , k.

(Notes: (a) For a maximal chain, γk = Y and σ0 = X. (b) The hypothesis k ≥ 1 excludes
any relation R for which 0̂R = 1̂R.)

Lemma 20 implies that every maximal chain in the doubly-labeled poset associated with a
relation gives rise to an informative attribute release sequence that tracks the chain.

A partial converse holds as well:

Lemma 21 (Chains from Informative Attributes). Let R be a relation on X×Y , with both X
and Y nonempty. Suppose y1, . . . , yk is an informative attribute release sequence for R, with
k ≥ 1.

Let γi = (φR ◦ ψR)({y1, . . . , yi}) and σi = ψR(γi), for i = 1, . . . , k.
Then {(σk, γk) < · · · < (σ1, γ1) < (X, γ0)} is a (not necessarily maximal) chain in P+

R ,
with γ0 = φR(X).

Consequently one can obtain all informative attribute release sequences as subsequences of
those constructed from maximal chains in P+

R .

Comment about “length”: The length 	(P ) of a poset P is defined to be one less than
the number of elements in the longest chain of the poset [18]. The length of an informative
attribute release sequence y1, . . . , yk is k. These definitions match much like the dimension of
a simplex is one less than the number of its elements.

Corollary 22 (Maximal Length). The maximum length of an informative attribute release
sequence for a relation R is 	(P+

R ).
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Corollary 23 (Maximal Identification Length). Suppose R is a relation such that no attribute
is shared by all individuals. For any (σ, γ) ∈ PR, rslow(σ) = 	(PQ(σ,γ)) + 2.

Collaboration Example Re-Revisited: Returning again to the travel guide example,
observe in Figure 25 that 	(P+

G ) = 4. This tells us, by Corollary 22, that a longest informative
attribute release sequence for relation G contains four attributes. Indeed, we can pick three
attributes to identify an individual, and then a fourth to form an inconsistency. How do we
know that we can choose three attributes informatively to identify an individual? For example,
Lk(ΨR, Claire) is shown in Figure 26 with associated lattice P+

C in Figure 27. In this case
	(PC) + 2 = 	(P+

C ) = 3. Moreover, by the construction of Lemma 20, we can read off four
different such informative sequences, namely the first four sequences appearing in Figure 24.

We thus see that rslow(Claire) = 3, and as we have seen previously, rfast(Claire) = 2.
In other words, if Claire has control over how to release information, she can draw out
identification for three books, while the fastest anyone can identify her is via two books.

T a b c d

1 • • •
2 • • •
3 • • •
4 • • •

3

2

1

4

d

b

a c

ΦT ΨT

2

d

b

a
c

4

1

3

Figure 30: Relation T describes four individuals with four attributes, with Dowker complexes
that are boundary complexes of tetrahedra, meaning they have homotopy type S2.

In contrast, consider the tetrahedral relation of Figure 30. The Dowker complexes are
boundary complexes, so we know that no attribute or association inference is possible. This
is evident from the lattice P+

T depicted in Figure 31 as well. It has length 4, just as did
the travel guide lattice, but the inference structure is now different. For any (σ, γ) ∈ PT ,
with Q = Q(σ, γ) modeling Lk(ΨT , σ) on attributes γ, we see that ΦQ = ∂(γ) and thus
that 	(P+

Q ) = 	(PQ) + 2 = |γ|. This tells us, by Theorem 19 and Corollary 23, that
rfast(σ) = rslow(σ) = |γ|, as one would expect in an inference-free world. For a specific instance,
Figure 32 describes Q = Q({3}, {a, c, d}) along with Q’s Dowker complexes and the lattice P+

Q .

10.7 Hidden Holes

We saw via Theorem 19 that whenever a set of attributes γ minimally identifies some set of
individuals σ, then the link of σ, restricted to those simplices that are witnessed by attributes
in γ, defines a sphere in both Dowker complexes. It is a hole.

All sets of individuals that are identifiable in some way, in other words, that appear in
the doubly-labeled poset PR of a relation, must be minimally identifiable in some way. That
suggests there must be holes everywhere in a relation’s Dowker complexes, and yet we do not
see many holes. What is going on?
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(Ø, abcd)

(1234, Ø)

(1, abc) (2, bcd) (3, acd) (4, abd)

(134, a) (124, b) (123, c) (234, d)

(14, ab) (12, bc)(13, ac) (23, cd) (24, bd)(34, ad)

PT
+

Figure 31: The lattice P+
T for the tetrahedral relation of Figure 30. Each element is a pair of

sets (σ, γ) such that σ = ψT (γ) and γ = φT (σ). (We have elided commas and braces in sets, for
ease of viewing.) The lattice is isomorphic to the Boolean algebra on four elements, consistent
with the fact that T preserves both association and attribute privacy. If one removes the top
and bottom elements, the remaining poset PT has S2 homotopy type.

The answer is that the restricted link construction Q(σ, γ) focuses on a particular
subrelation, thereby highlighting the hole. The hole itself could be hidden in the encompassing
relation. For instance, we saw that relation Q of Figure 32 defines an S1 hole. If Q happened
to be a subrelation of relation R as in Figure 33, then Q would not be a hole when viewed in
R, merely a boundary.

Notice that the lattice P+
R is isomorphic to the lattice P+

Q . The difference is that for every
lattice element (σ, γ), the set of individuals σ includes 3 in P+

R but not in P+
Q . Consequently,

the bottom element (3, acd) of P+
R is actually an element of the poset PR, meaning ∆(PR) is

a cone, hence contractible. In contrast, the poset PQ does not contain the bottom element
(∅, acd) of P+

Q and so ∆(PQ) has S1 homotopy type.

Aside: Why not always focus on a relation’s lattice rather than its doubly-labeled poset?
Because the lattice is always contractible. Any interesting topology lies in the poset. See [18].

Conclusion: Even though R is contractible, it offers the same choices for informative
attribute release sequences as does Q. More generally, the analysis of this subsection suggests
that one look for holes in subrelations of a given relation. Looking at links is one way to focus
on subrelations. Removing individuals or attributes that represent cone apexes is another,
as we just saw. More generally, any simplicial cycle that can be represented by a subrelation
defines a useful hole even though the hole appears to be filled-in. So long as one can remove any
coboundary of that cycle, by restricting the relation without destroying the cycle, the cycle is
informational. In particular, it offers opportunities for informative attribute release sequences,
as the next subsection makes precise.
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(12, c) (24, d)
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PQ
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Figure 32: Relation Q models Lk(ΨT , 3), with T as in Figure 30.
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1 • •
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4 • •
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(1234, Ø)

(3, acd)

(123, c) (234, d)

(13, ac) (23, cd) (34, ad)

PR
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(134, a)

Figure 33: Relation R fills in the hole of relation Q from Figure 32. It is still true that Q
models a link, namely Lk(ΨR, 3). R and Q have the same lattice structure, but the bottom
element of P+

R defines the set of individuals {3}, whereas the bottom element of P+
Q defines

the empty set. Thus relation R defines a contractible poset for PR, whereas relation Q defines
an S1 hole for PQ.

10.8 Bubbles are Lower Bounds for Privacy

We have seen minimal identifiability characterized by holes, via Theorem 19. The previous
subsections make clear that the topological characterization of rslow is not so direct. In this
subsection we establish a sufficient condition. We will see that holes provide lower bounds for
rslow. We will focus on a relation and its links, but these results apply more generally to any
hidden holes made visible by focusing on subrelations, as outlined in the previous subsection.

The connection between a relation’s poset PR and its lattice P+
R suggests the following:

Definition 24 (Almost a Join-Based Lattice). Let P be a finite poset. We say that P is
almost a join-based lattice if adjoining a top element 1̂ means P ∪ {1̂} is a join semi-lattice.

Comments: (a) We adjoin 1̂ even if P already has a top element. (b) Since P is finite, if P
is almost a join-based lattice, then if we adjoin both a top element 1̂ and a bottom element 0̂,
the result will be a lattice. See also [18].

This definition leads our key insight (for a proof, see Appendix G):

Theorem 25 (Many Chains). Let P be almost a join-based lattice. Suppose P has reduced
integral homology in dimension k ≥ 0, that is, H̃k(∆(P ); Z) �= 0.

Then there are at least (k + 2)! maximal chains in P of length at least k.
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Interpretation: The theorem says that a homology hole acts at least as powerfully as a
spherical hole, from the perspective of producing informative attribute release sequences.
Consider again the tetrahedral relation of Figure 30. The Dowker complexes form two-
dimensional holes, so k = 2 and (k + 2)! = 24. The poset PT is the proper part of the
lattice shown in Figure 31, that is, all the elements except the topmost and bottom-most.
There are indeed 24 different chains of length 2, i.e., containing three elements, in PT .

These chains represent the 24 different ways in which one might start at a vertex of one of
the Dowker complexes, walk from that vertex to the middle of an incident edge, then walk from
the middle of that edge to the centroid of an encompassing triangle. For instance: the walk
from the vertex {a} to the edge {a, c} to the triangle {a, c, d} in ΦT . One can think of this walk
as sequential acquisition of attribute information about an individual in a particular order. The
order may perhaps be determined by chance or perhaps by an individual purposefully releasing
information in a particular order. Once (and only once) one has arrived at the center of the
triangle, has one fully identified the individual (in this case, as individual #3).

With that observation, we finally see how the global geometry / topology of the Dowker
complexes, as encoded in their common poset, affects inference, beyond the local simplicial
collapses of the closure operators. We will presently formalize this insight via two corollaries
to Theorem 25.

R a b c

1 • • •
2 • • •
3 • • •

23

1

ΨR

ba

cΦR

1,2,3

a,b,c
(123, abc)

PR PR
+&

Figure 34: Relation R describes three individuals all of whom have the exact same three
attributes. The Dowker complexes are both triangles, but the poset PR is a single point. This
single point captures the indistinguishability of the individuals and the attributes. In fact,
P+
R = PR, meaning one can infer everything from nothing.

We caution that the dimension of a simplex in a Dowker complex is not meaningful in and
of itself, since the simplex may collapse under the closure operators. (Consider the example of
Figure 34, in which the Dowker complexes are full triangles, but the doubly-labeled poset is
a single point.) Instead, the length of chains in a relation’s poset is significant. Holes prevent
these chains from being short.

Corollary 26 (Holes Reduce Inference). Let R be a relation. Suppose PR has reduced integral
homology in dimension k ≥ 0. Then there are at least (k+ 2)! maximal chains in PR of length
at least k.

Corollary 27 (Holes Defer Recognition). Let R be a relation and let (σ, γ) ∈ PR.

Define Q = Q(σ, γ) as per Definition 18 and recall Definition 16, from pages 42–43.
Suppose PQ has reduced integral homology in dimension k ≥ 0.
Then there are at least (k + 2)! distinct informative attribute release sequences y1, . . . , y�

for R, each with 	 ≥ k + 2, such that ψR({y1, . . . , y�}) = σ. Consequently, rslow(σ) ≥ k + 2.
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Comment: Since (σ, γ) ∈ PR and by the homology hypothesis, relation Q(σ, γ) models link
Lk(ΨR, σ).

Collaboration Example Once Again: The Dowker complexes for the travel guide example
of Figure 23 have S1 homotopy type, meaning PG has homology in dimension k = 1.
Corollary 26 therefore says that there are at least 6 maximal informative attribute release
sequences in PG. Being maximal, each must identify some author. In fact, we saw that
there were 4 different maximal informative attribute release sequences for identifying any one
author. Since there are 5 authors, PG actually contains at least 20 distinct maximal informative
attribute release sequences. Can we find more via our corollaries? Not directly for individual
authors, since, as we saw via Figure 26, the link of any one author is contractible, meaning
that Corollary 27 does not help us directly.

There is more to be said however: The proof of Theorem 25 actually establishes that,
for certain representatives of a homology class, the maximal elements in the support of that
representative give rise to (k + 1)! chains. In the collaboration example, by choosing the
homology generator appropriately, this implies that for each author there are at least two
informative attribute release sequences for identifying the author. That gives us 10 sequences
overall for relation G. To find 20, we would have to examine links of pairs of authors. There
are 10 such links, 5 of which look similar to the one in Figure 28 on page 41. Each is an
instance of S0, meaning each has two different identifying iars. That therefore gives us 10
iars for identifying pairs of authors, and thus 20 iars for identifying individual authors. —
Corollary 27 further allows us to conclude that the maximal length of an informative attribute
release sequence that identifies a given pair of authors is at least two. Consequently, the
maximal length of an informative attribute release sequence that identifies a given individual
author must be at least (and thus exactly) three. — Observe that one can draw these various
conclusions guided by homology.
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11 Experiments

An individual may wish to reveal information about himself/herself while delaying full
identification. We saw in Section 10.8 that homology provides a lower bound on the number
and length of such informative attribute release sequences. The lower bound need not be tight.
In order to test the existence of the lower bound as well as see that it is not tight, we examined
two datasets of different character:

Medals: We obtained this dataset in August 2014 from

http://www.tableausoftware.com/public/community/sample-data-sets.

The dataset contains information about athletes who participated in the Olympics during
the years 2000–2012. The attributes we considered were:

Age, Country, Year, Sport, Gold Medals, Silver Medals, Bronze Medals

(The last three attributes count the number of medals won by an athlete.)

Every athlete therefore has exactly 7 attributes, with each attribute taking on one of
a finite discrete set of mutually exclusive values. We represented these 7 dimensions of
multivalent attributes as a collection of 233 binary attributes.

There are 8613 individuals (we regarded the same athlete in different years as distinct
individuals), who partition into 6955 equivalence classes (for team sports, athletes are
often indistinguishable).

The result is a binary relation M with 6955 rows and 223 columns.

Jazz: We assembled this relation in June 2015 by examining the website

http://www.redhotjazz.com.

The website contains information about jazz musicians and bands, mainly from the early
to late-mid 20th century.

We assembled a relation J whose rows are indexed by musicians and whose columns are
indexed by bands, with (m, b) ∈ J meaning that musician m played in band b.

The result is a binary relation J with 4896 rows and 990 columns.

Cautions: We were not particularly careful to determine whether different spellings of
a name really meant the same person. For some bands, the website listed one or more
bandmembers as “unknown”. We ignored those bandmembers. We ignored bands for
whom we could not determine any bandmembers. Since our goal was to understand how
homology influences the existence of informative attribute release sequences, such noise
in constructing a relation should not be particularly significant. If one wished to draw
sociological conclusions about the spread of music, one would need to be more careful.

We encountered the jazz website because it was the source of data for a paper on
collaboration networks [11] that considered the dual nature of individuals and attributes. That
paper constructed two graphs, one with musicians as vertices and bands as edges, the other
with those roles reversed. One can view those graphs as the 1-skeleta of our Dowker complexes.
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The paper observed that drawing conclusions in one space might be easier than in the other,
depending on the question being asked. The paper drew some conclusions about musical
influence.

11.1 Compare and Contrast

We review some key differences between the two relations M and J .

Identifiability: The original 8613 individuals in the Olympic Medals dataset were not all
uniquely identifiable. For some athletes, even knowing an athlete’s full set of 7 attributes
left ambiguity as to the athlete’s identity. This was true for 2810 of the athletes.
Fortuitously, an athlete’s ambiguity was fully symmetric, meaning that one could in fact
partition the set of all athletes into equivalence classes. This symmetry was likely due to
the fact that some competitions involved teams, with team members indistinguishable
from each other. Each equivalence class then formed a uniquely identifiable “individual”
in relation M .

For the Jazz relation, 863 of the 4896 musicians were uniquely identifiable, but 4033 were
not. Unfortunately, this time the ambiguity was not fully symmetric. One could again
partition the 4033 individuals into 1022 equivalence classes based on having identical
rows in J . However, some rows remained subsets of other rows, giving a directionality
to the ambiguity. For this reason, we did not pass to equivalence classes.

Attribute Size: In the medals relation M , every individual has exactly 7 attributes,
describing one value for each of the 7 possible fields: Age, Country, Year, Sport,
Gold Medals, Silver Medals, Bronze Medals. Consequently there are also always
exactly 7 attributes in each link relation.

In the Jazz dataset, there was no structural bound to the number of bands in which
a musician might have played, so a musician’s attributes could be many. The largest
number of bands in which any one musician played was in fact 44. The average was a
little over 2 and the median 1. Conversely, the largest band had 288 musicians, with an
average of 10.4 and a median of 7.

Link Size: For M , the number of other athletes in any given athlete’s link was always close to
the entire set of possible athletes. With only 7 attribute fields, any two athletes shared
almost certainly some attribute value.

In contrast, for the 767 musicians in J for whom we computed links (described further in
Section 11.4), the number of other musicians in any given musician’s link was relatively
low. The average was 55.3, the median 37, with a maximum of 301. With musicians
generally playing in few bands, each encountered on average only a few score fellow
musicians of the 4895 other musicians he/she might have encountered.
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11.2 Homology Computations

For each of the link relations discussed below, we computed homology of the Dowker complex
ΦQ, with relation Q modeling the link.3 Since our goal was to find lower bounds for informative
attribute release sequences, we modified ΦQ slightly, as suggested by Section 10.7. Specifically,
whenever ΦQ was a cone with more than one maximal simplex, we removed all its cone apexes.

Note: The homology lower bound results of Section 10 and Appendix G do not depend
directly on the chain coefficients being integers. We therefore computed homology with Z2

coefficients, using the Perseus software previously written at the University of Pennsylvania:
http://www.sas.upenn.edu/∼vnanda/perseus/.

11.3 Homology and Release Sequences in the Olympic Dataset

Overall Homology: A collection of k multivalent discrete attributes produces Dowker
complexes with homotopy types that are wedges of Sk−1s, assuming that all possible
combinations of the attributes are represented by individuals.

Consequently, with every individual having exactly 7 attributes, one might expect to see
some homology in dimension 6. But of course, not every combination is possible. For instance,
no one athlete is going to simultaneously win the gold, silver, and bronze medals in the same
event. From this perspective, real-world constraints show up as absence of potential homology.
In fact, relation M has the Betti numbers described in Table 2, computed using Z2 coefficients.

d 0 1 2 3 4
βd 1 0 23 757 503

Table 2: Betti numbers for the topology of the Olympic Medals relation.

The table suggests that there are quite a few informative attribute release sequences of
length at least 5 for identifying athletes.

Link Homology: We computed the link of each athlete in M , and determined homology
for the resulting relation, with the proviso mentioned above. Specifically, we removed all cone
apexes from an athlete’s Dowker complex ΦQ (assuming it contained more than one maximal
simplex) before computing homology, with Q being the link relation. Of the 6955 links, 3822
contained attribute cone apexes in ΦQ.

Table 3 summarizes the results. One may conclude more strongly now that (at least) 2198
athletes each have (at least) 120 different ways of releasing (at least) 5 of their 7 attributes in
ways that do not fully identify the athlete before those 5 attributes have been released.

Informative Attribute Release Sequences: We computed a maximal length informative
attribute release sequence for each link relation. One can find such a sequence by searching for
a least-cost path from 1̂Q to 0̂Q in P+

Q , picking attributes along the way as per the construction
of Lemma 21 on page 44, with cost being the number of attributes inferred as one traverses
the path. Here Q is again the link relation. Of the 6955 athletes, 6229 actually had a maximal
informative attribute release sequence of length 7. Each such athlete could order his/her

3Formally, the link is equal to ΨQ. By Dowker’s Theorem, ΨQ and ΦQ have the same homology.
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d 0 1 2 3 4
# of athletes 229 1355 2773 2198 57

max
athletes

βd 2 4 7 4 2

Table 3: Histogram indexed by dimension d, describing athletes whose links Lk(ΨM , athlete)
have homology in dimension d (after removal of attribute cone apexes from the dual complexes),
for the 6955 athletes in the Olympic Medals relation M . Also shown are the maximum Betti
numbers seen in each dimension, with the maximum taken over all possible athletes.

attributes in such a way that his/her identity does not become fully known until s/he has
released all 7 attributes. Of the remaining athletes, 719 had a maximal informative attribute
release sequence of length 6, and 7 had a maximal length of 5.

Of course, Corollary 27 makes a stronger claim, suggesting permutability of attributes.
Consequently, we computed for each link relation all possible isotropic sets of attributes (see
again Definition 14 on page 41, now with Q in place of R). Table 4 summarizes the results.

|κ| 2 3 4 5 6
# of athletes 6955 6955 6955 5568 171

max
athletes

|{κ}| 21 35 35 21 5

Table 4: Histogram indexed by size |κ|, describing athletes whose link relations contain isotropic
attribute sets κ. An athlete may have several distinct (possibly overlapping) such sets for any
given size. Also shown therefore are the maximum numbers of such sets, with the maximum
taken over all possible athletes. For example: 171 athletes have at least one isotropic set of
size 6 in their link relation, and the maximum number of such sets any one athlete has is 5.

Scatterplot: Finally, we computed for each link a pair of numbers (h, i), with h representing
a measure of link homology and i representing a measure of informative attribute release
sequences for the link relation. The resulting scatterplot appears in Figure 35. One can see
that homology acts as a lower bound for informative attribute release sequences.

The exact formulas for h and i are not that significant, but we mention them here for
completeness. To get a measure of homology, we assembled for each link a vector with the
Betti numbers computed earlier: (β0, β1, β2, β3, β4). We looked at all such vectors to determine
maximum values for each component (as given in Table 3). We could then think of the vector as
defining, in reverse order, a varying-radix numeral. We converted that numeral to an integer.
So, for instance, if a given link were to have Betti vector (1, 3, 5, 0, 0), then its h value would
be 1 + 3·(2 + 1) + 5·(4 + 1)·(2 + 1) = 85. Observe that the h value for a contractible link is 1.
In order to graph the scatterplot nicely, we scaled the h-axis by taking a fourth root.

We computed a link’s i value similarly, now from the following vector of data:
(	max, c2, c3, c4, c5, c6). Here 	max is the largest 	 in an informative attribute release sequence
y1, . . . , y� for the link relation, while ck is the number of different isotropic attribute sets κ in
the link relation such that |κ| = k. We scaled the i-axis by taking a logarithm.
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Figure 35: Scatterplot describing each athlete’s link in the medals relation M . The scatterplot
shows for each link a point (h, i), with h a measure of the link’s homology (after removal of
attribute cone apexes) and i a measure of how many significant informative attribute release
sequences exist for the link relation. The scatterplot underscores how homology is a lower
bound for informative attribute release sequences, as described in Corollary 27.
(The colors and radii indicate the numbers of athletes in the links. The color ordering and size
boundaries are:

black–6821–silver–6831–orange–6851–green–6859–blue–6865–magenta–6872–red.

In this figure, the boundaries between colors were chosen so that each bucket holds roughly
1000 links. As one can see, the number of athletes in a link is generally large.)
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11.4 Homology and Release Sequences in the Jazz Dataset

Overall Homology: Given the large number of bands in which some musicians played, and
given memory constraints of our laptop at the time, we were not able to compute homology
for the full Jazz relation J . Instead, we were able to compute the homology for restricted
relations consisting of musicians that played in fewer than 20 bands. This covered 4856 of the
4896 musicians in the overall relation. Since we did not see any homology above dimension 2
in several of these restricted cases, we considered the 3-skeleton of ΦJ as proxy for the topology
of the full relation J and computed its homology. Table 5 summarizes the results. We verified
using a graph algorithm that the full relation J did indeed have 107 components, as indicated
by β0 for the 3-skeleton Φ(3)

J . Given the low amount of homology and the low dimension of such
homology, J might not be telling us much about the length of informative attribute release
sequences for the various musicians, suggesting we look at links.

b Σ m β0 β1 β2 β3

14 ΦJ |b 4819 111 613 20 0
15 ΦJ |b 4831 111 613 32 0
16 ΦJ |b 4838 111 605 42 0
17 ΦJ |b 4848 110 603 58 0
18 ΦJ |b 4851 110 603 65 0
19 ΦJ |b 4856 109 596 75 0

∞ Φ(3)
J 4896 107 550 93 −

15 ΦJ ′ 767 18 595 32 0

Table 5: Betti numbers for subcomplexes Σ of ΦJ , with J being the Jazz relation. The first
six rows correspond to restrictions of J to musicians who played in at most b bands. For each
row, m indicates the number of musicians in the relation. The penultimate row describes the
3-skeleton of ΦJ . The last row refers to a relation J ′ described further in the text.

Link Homology: We computed the link of some of the musicians in J , and determined
homology for the resulting relations (again after removal of attribute cone apexes). Table 6
summarizes the results. Given the inability to fully identify some musicians even knowing
all their bands (as described in Section 11.1) and the difficulty of computing homology
for large band memberships, we computed links only for a subset of the musicians. We
required each musician to be uniquely identifiable, to have played in at most 15 bands, and
to have a nontrivial link. There were 767 such musicians. Betti numbers for the relation
J ′ representing the restriction of J to these 767 musicians also appear in Table 5. (Note,
however, that we computed the full link Lk(ΨJ ,musician) for each of the 767 musicians, not
merely Lk(ΨJ ′ ,musician).) We removed attribute cone apexes from the link relation for 106 of
these 767 musicians.

These results suggest that the relationships to other musicians do indeed not have many
holes in them. Recall, from a topological perspective, one can assert the existence of at least
(k+2)! distinct informative attribute release sequences of length at least k+2 for any musician
with a k-dimensional hole. For almost all musicians this means 2 sequences of length 2, for
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d 0 1 2 3
# of musicians 604 145 20 1

max
musicians

βd 7 6 3 1

Table 6: Histogram indexed by dimension d, describing musicians whose links Lk(ΨJ ,musician)
have homology in dimension d (after removal of attribute cone apexes from the dual complexes),
for the 767 musicians who are uniquely identifiable in J , played in at most 15 bands, and had
nontrivial link. Also shown are the maximum Betti numbers seen in each dimension, with the
maximum taken over the 767 possible musicians. For d = 0, this means that 604 of the 767
musicians have connections to other musicians that split into disjoint groups. The maximum
number of such disjoint components for any one musician is 7.

some it means 6 sequences of length 3, for a few it means 24 sequences of length 4, and for one
musician it means 120 sequences of length 5. These observations are roughly in line with the
actual data for informative attribute release sequences described next, though, as expected for
the theoretical reasons discussed earlier, they constitute lower bounds.

Informative Attribute Release Sequences: We computed a maximal length informative
attribute release sequence for each link relation. Table 7 summarizes the results. We mention in
passing: Any attribute release sequence that is informative for a link relation is also informative
for the encompassing relation. For a few musicians, the maximal sequence found within the
link relation Q could be further extended in the encompassing relation J , with a prefix of one
attribute, namely an attribute shared by all members of the link, yet remain informative and
identifying. This occurred for the 17 musicians whose maximum sequence length 	 was 1.

We also computed for each link relation all possible isotropic sets of attributes. Table 8
summarizes those results.

	 1 2 3 4 5 6 7 8 9 10 11
# of musicians 17 248 218 125 72 35 23 15 11 2 1

Table 7: Histogram of musicians, indexed by length 	 of the longest informative attribute
release sequence for the musician’s link relation, for the 767 musicians described in the text.

|κ| 2 3 4 5
# of musicians 750 219 49 3

max
musicians

|{κ}| 105 202 40 2

Table 8: Histogram indexed by size |κ|, describing musicians whose link relations contain
isotropic attribute sets κ. Also shown are the maximum numbers of such sets, with the
maximum taken over the 767 possible musicians described in the text.

Scatterplot: We computed for each link a pair of numbers (h, i), with h representing a
measure of homology and i representing a measure of the link’s informative attribute release
sequences, much as for the medals relation M of Section 11.3. The resulting scatterplot appears
in Figure 36. Again homology acts as a lower bound for informative attribute release sequences.
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Figure 36: Scatterplot describing the links computed for 767 of the musicians in the Jazz
relation J . The scatterplot shows for each link a point (h, i), with h a measure of the link’s
homology (after removal of attribute cone apexes) and i a measure of the link’s informative
attribute release sequences.
(The colors and radii indicate the numbers of musicians in the links. Link sizes are fairly small.
The color ordering and size boundaries are:

black–5–silver–10–orange–20–green–50–blue–100–magenta–200–red.

In this figure, the buckets may hold noticeably varying numbers of links.)
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12 Inference in Sequence Lattices

We have seen how a relation gives rise to a lattice via the Galois connection, as per Definition 12
on page 38. The lattice structure describes the ways in which privacy may be preserved or
lost. Consequently, when thinking about privacy, one may be able to start with a lattice that
does not necessarily arise directly from a relation.

This section will look at inferences from sequences of observations. The next section
examines strategy obfuscation in planning with uncertainty.

We should also recall some equivalences. Lattices are particular kinds of partially ordered
sets (posets). Posets and simplicial complexes are topologically identical [18]. One can
move back and forth between these representations while preserving homeomorphism type
(see Appendix A). Furthermore, one may describe a simplicial complex by a relation in
several different ways that preserve homotopy type, including ways in which one of the two
resulting Dowker complexes is identical to the original simplicial complex. In short, one has
three different categories of structures with which to think about privacy: relations, simplicial
complexes, and lattices. One may start with any one representation and build the other two
from that.

12.1 Sequence Lattices for Dynamic Attribute Observations

time

1:
a b
b a

c c3:

2:
a a
b b

t0 t1 t2

in
d

iv
id

u
al

s

Figure 37: Three types of individuals and the attributes each might reveal in two successive
time intervals.

Consider the dynamic process of Figure 37. The process models observations of individuals
who reveal attributes over successive time steps. There are three possible individuals (or more
generally, types of individuals). The first individual emits attributes “a” and “b” alternatingly
at successive times, but one does not know which of those attributes one might see first. The
second individual always emits the same attribute, either “a” or “b”, but one does not know
a priori which it is. The third individual always emits the same attribute “c”.

A relation for these (types of) individuals that models the individuals in terms of single
attributes appears as relation S in Figure 38. Individual #3 is distinguishable from the other
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S a b c

1 • •
2 • •
3 •

T aa bb ab ba cc

1 • •
2 • •
3 •

Figure 38: Relation S describes individuals and single attributes, while T describes individuals
and sequences of two attributes.

two individuals, but the relation provides no means for distinguishing those two individuals
from each other. The relation is homogeneous with regard to single attributes for individuals
#1 and #2. Of course, we can see from the dynamic process of Figure 37, that distinguishing
information appears via sequences of two attributes. Relation T of Figure 38 models such
sequences. Now all three individuals are uniquely identifiable. Should one wish to model
inferences based on both one and two observations, one could use the relation S ∪ T .

({1, 2}, a) ({1, 2}, b)({3}, c)

1̂

({1}, ba) ({2}, bb)({1}, ab) ({2}, aa)

0̂

L

Figure 39: Lattice representing the dynamic process of Figure 37.

That jump from single to double attributes is useful, but where does it come from
intrinsically? After all, without additional knowledge, we might simply consider infinitely long
sequences, even though those would not add anything in this example. In fact, the dynamic
process of Figure 37 gives us the information. It is itself basically a decision tree that amounts
to the lattice of Figure 39. In that figure, we have annotated each internal node of the lattice
with a pair, consisting of a set of individuals and either a single attribute or a sequence of two
attributes. This lattice differs from previous ones in this report in that a set of individuals
(or attributes more generally) is no longer constrained to appear in at most one node of the
lattice. By allowing multiple nodes, we enhance our ability to encode state in the lattice.
For example, observing attribute “a” carries different meaning depending on whether one has
already seen attribute “a” or attribute “b” or no attribute at all. Also: While we could have
included ({3}, cc) in the lattice, we did not need that element.

In the lattice of Figure 39 it is tempting to merge the two identifying nodes for individual
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#1 into one node and to merge the two identifying nodes for individual #2 into one node.
There is apparently no harm in doing so, in that the decision process would still be correct.
However, the resulting structure would no longer be a lattice but merely a poset. That may
or may not be desirable in a given application. For instance, using homology to estimate how
long one can delay identification requires almost a join-based lattice to fulfill the hypotheses
of Theorem 25 on page 47.

If we did want to merge nodes as just described, while maintaining a lattice, then we would
perhaps also merge the two nodes containing the set {1, 2}, giving us the lattice of Figure 40.
This lattice is similar to the lattice P+

S∪V that one would construct from the relation S ∪ T ,
except that it does not include singleton attributes in the nodes identifying individuals #1 and
#2 and it does not include the sequence “cc” in the node identifying individual #3.

({1, 2}, {a, b}) ({3}, c)

1̂

({1}, {ab, ba}) ({2}, {aa, bb})

0̂

L

Figure 40: Modified lattice of Figure 39, after merging some nodes.

Regardless, the lattices of Figures 39 and 40 encode the inferences possible from the decision
process of Figure 37. In particular, if we observe either attribute “a” or attribute “b”, then we
know the set of possible individuals is {1, 2}; we have excluded individual #3. Moreover, if we
observe any two-attribute sequence, with attributes drawn from {a, b}, then we can identify
the observed individual fully as either #1 or #2. Thus the required sequences come directly
from the decision process, not requiring an intermediate representation as a relation.

12.2 Lattices of Stochastic Observations

The dynamic sequence perspective incorporates randomized response within the lattice
framework. Instead of arising via a deterministic process as in Figure 37, the attributes “a”
and “b” could flow from a stochastic process. One obtains an infinite lattice determined by
increasingly longer sequences of observations. Depending on the confidence intervals one wishes
to set, one obtains decision regions such as those sketched in Figure 41, with a central region
of ambiguity, bounded by regions of exclusion, for identifying individuals.
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consistent
with both

individuals
1 and 2

excluded
1

excluded
2

Figure 41: Sketch of an inference lattice for sequences of randomized response queries.

12.3 General Inference Lattices

Lattices are useful tools for inference. Rather than work with completely arbitrary lattices,
we give here a definition that makes explicit the existence of two underlying structures over
which we wish to perform inferences. However, we no longer assume a pair of underlying
discrete spaces X and Y for individuals and attributes, but instead posit posets P and Q. The
connection to our earlier relational perspective is that P would be the powerset of X and Q
the powerset of Y . By allowing potentially different posets P and Q for a given lattice L, one
can in some instances obtain different “views” of that lattice, thereby increasing flexibility in
the interpretation process. For instance, Q might consist of all sequences up to a specified
length or it might consist of sets of such sequences.

Definition 28 (Inference Lattice). Let P and Q be finite posets.
An inference lattice L with respect to P and Q is a bounded lattice whose proper part L

consists of pairs (p, q), with p ∈ P and q ∈ Q, satisfying the following conditions:

For all (p1, q1) and (p2, q2) in L:

(i) (p1, q1) ≤L (p2, q2) if and only if p1 ≤P p2 and q1 ≥Q q2;

(ii) (p1, q1)∨L (p2, q2) is either 1̂L or a pair (p, q) ∈ L such that p is an upper bound for both
p1 and p2 in P and q is a lower bound for both q1 and q2 in Q;

(iii) (p1, q1) ∧L (p2, q2) is either 0̂L or a pair (p, q) ∈ L such that p is a lower bound for both
p1 and p2 in P and q is an upper bound for both q1 and q2 in Q.

(Note that 0̂L <L (p, q) <L 1̂L for every (p, q) ∈ L, given that L is the proper part of L. Also
be aware that L need not, and generally will not, contain all possible pairs (p, q).)

Inference Protocol: Suppose we have observed some q ∈ Q. How should we interpret
that observation in terms of the lattice L? Here is a possible protocol: (In terms of our
earlier relational model, one may view this protocol as inferring sets of individuals from sets
of attributes.)
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P Q

ab aa ba bb

1̂

0̂

a b

{1, 2}

Ø

{1} {2}

Figure 42: Poset P models some sets of individuals; poset Q models some sequences of
attributes.

• Let Γ =
{

(p′, q′) ∈ L | q ≤Q q′
}

.

• If Γ = ∅, then we view q as inconsistent, implying interpretation 0̂L ∈ L.

• Otherwise, let Γmax consist of all the maximal elements of Γ (maximal with respect to
the partial order on L). We view q as implying this set of elements in L. One can project
each of those elements onto its P coordinate, if that is useful.

There is a dual protocol for interpreting an observation p ∈ P :
(In terms of our earlier relational model, one may view this protocol as inferring sets of
attributes from sets of individuals.)

• Let Σ =
{

(p′, q′) ∈ L | p ≤P p′
}

.

• If Σ = ∅, then we view p as inconsistent, implying interpretation 1̂L ∈ L.

• Otherwise, let Σmin consist of all the minimal elements of Σ (minimal with respect to
the partial order on L). We view p as implying this set of elements in L. Again, one can
project each of those elements onto its Q coordinate, if that is useful.

In our previous relational setting, the structure of Galois lattices ensured that each of Γmax

and Σmin never contained more than one element. That need not be true for general inference
lattices.

Example: Suppose P and Q are as in Figure 42. Here P models subsets drawn from the
set of two individuals {1, 2}, while Q models sequential observations of “a” and “b”, of lengths
one and two, as in our earlier example of Figure 37. The lattice L is as in Figure 39. For
presentational simplicity, posets P and Q ignore individual #3 and attribute “c”, instead
focusing on individuals {1, 2} and attributes {a, b}.
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Observing an attribute: Suppose we have observed attribute “b”, i.e., q = b. What can
we infer from q in P via L? Let’s follow the protocol given above:

• The subposet of Q consisting of elements q′ greater than or equal to q is:
1̂

ba bb

b

.

• Consequently, Γ is the following subposet of L:
({1, 2}, b)

({1}, ba) ({2}, bb)

.

• There is one maximal element in Γ, so Γmax = {({1, 2}, b)}.

Projecting onto the P component tells us how to interpret q: The observation “b” must
have come from either individual #1 or individual #2. (This conclusion would hold as well if
P had modeled individual #3 and if Q had modeled attribute “c”.)

Observing an individual: Suppose we have observed individual #1, i.e., p = {1}. What
can we infer from p in Q via L? Again, let’s follow the inference protocol given earlier:

• The subposet of P consisting of elements p′ greater than or equal to p is:
{1, 2}

{1}
.

• Consequently, Σ is the following subposet of L:
({1, 2}, a) ({1, 2}, b)

({1}, ab) ({1}, ba)

.

• The minimal elements of Σ give us Σmin = {({1}, ab), ({1}, ba)}.

Projecting onto the Q component tells us how to interpret p: The individual observed can
or did reveal one of the two-attribute sequences “ab” or “ba”.

Comment: The poset Q of Figure 42 would not be very useful for inferences in the lattice
of Figure 40, since that lattice now models attribute observations as sets of sequences rather
than merely as sequences. We would instead probably want Q to be something like the
poset of Figure 43. So even though L has become simpler than in Figure 39, Q has become
more complicated. On the other hand, the new (L,P,Q) triple means that one can infer
({1, 2}, {a, b}) from the observation “b”. As before, that says the observation “b” must have
come from individual #1 or #2, but it also says that the individual could alternatively have
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1̂

0̂

{a} {b}

Q

{a, b}

{ab, ba} {aa, bb}

{ab} {ba} {aa} {bb}

Figure 43: Poset Q modeling sets of attribute sequences, for inferences in the lattice of
Figure 40.

produced attribute “a”. In summary, by altering the triple (L,P,Q), one changes the possible
inferences.

The poset Q of Figure 43 is a conveniently chosen finite subposet of a particular infinite
poset modeling sets of sequences. In that model, each set is required to be finite and prefix-free,
meaning that if two distinct sequences appear in an element of Q, neither may be a prefix of
the other. The partial order on Q is defined by: q1 ≤Q q2 precisely when every sequence in q1
is a prefix of (possibly equal to) some sequence in q2.
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13 Lattices for Strategy Obfuscation

We have seen sublattices of powerset lattices, those being prototypical examples of Boolean
lattices. A related example is given by strategy complexes [6, 7], which may be viewed as
lattices of partial orders formed from potentially stochastic or nondeterministic transitions in
a graph. The basic elements in such a lattice are strategies for attaining various goals. Our
work on privacy now raises the question of strategy obfuscation: How can someone reveal the
actions of a strategy in a fashion that delays identification of the strategy?

13.1 Strategies for Nondeterministic Graphs

3

1 2
G: a1 a2a3

a5

a4

Figure 44: A graph G with three states, four deterministic actions, and one nondeterministic
action (a3).

For a very simple example, consider the graph of Figure 44. We think of this graph as
modeling some kind of dynamic system, for instance, a person driving between three shopping
malls or a robot moving among clutter in a warehouse or an intruder in a server network.

There are three states in the graph, along with five actions. Each action has a source state
and one or more target states. An action may be executed when the system is at the source
of the action, causing the system to move from the action’s source to one its target states.

Four of the actions, {a1, a2, a4, a5}, are standard deterministic directed edges, leading
for certain from one state to another. The remaining action, a3, is nondeterministic.
Nondeterminism of a3 means that if the system is at state 3 and executes action a3, then
the precise outcome is uncertain: The system might move either to state 1 or to state 2.
Nondeterminism is potentially adversarial: The precise target state attained is unpredictable
and could vary nonstochastically on different executions of the action. One may generalize this
idea to include stochastic actions along with deterministic and nondeterministic actions, thus
modeling adversarial combinations of Markov chains. We will not do so here, but see [6, 7].

For our purposes here, a strategy is a set of actions whose underlying edge set contains no
cycles. If the system is at a state which is the source of an action in the strategy, then the
system executes that action. If the strategy contains multiple actions with that same source
state, then the actual action executed is determined nondeterministically. For instance, in the
example, if actions a1 and a5 both appear in a strategy then the strategy is agnostic as to
whether the system will transition to state 2 or state 3 from state 1. If a strategy does not
contain an action for a given state, then the system will stop moving if it is ever in that state.

DISTRIBUTION A: Distribution approved for public release.



66 Strategies for Nondeterministic Graphs

The lattice operations for strategies are set union and set intersection, with one proviso:
Suppose σ1 and σ2 are two strategies. Each strategy is a set of actions with no cycles in its
underlying edge set. If the union of two strategies σ1 ∪ σ2 contains an underlying cycle in its
edge set, then the lattice operation becomes σ1 ∨ σ2 = 1̂, with 1̂ the top element of the lattice.
That top element represents cyclicity. The bottom element 0̂ of the lattice is equivalent to the
empty strategy ∅, amounting to no motion.

a2

a1

a3

a5a4

σ1 σ2

σ3 σ4
∆G

 :

Figure 45: The strategy complex for the graph of Figure 44. We have labeled each maximal
simplex with an identifier, for the purposes of Figure 46.

Rather than draw a lattice of strategies L, it is more convenient to draw an equivalent
simplicial complex whose vertices are the (acyclic) actions A of the graph. This simplicial
complex is denoted by ∆G and is called the strategy complex of G. The connection is that the
proper part of the lattice is the face poset of the simplicial complex, that is L\{0̂, 1̂} = F(∆G).
Figure 45 shows the strategy complex for the graph of Figure 44. The constituent simplices of
the strategy complex are strategies, that is, all sets of actions whose underlying edge sets are
acyclic.

A a1 a2 a3 a4 a5

σ1 • •
σ2 • •
σ3 • • •
σ4 • • •

Goal
1
2
3
3

Figure 46: Relation A describes the strategy complex of Figure 45 in terms of its maximal
simplices and their constituent actions. The rightmost column shows each maximal strategy’s
goal, i.e., that state at which motion ceases.

Now that we have a simplicial complex, we can form a relation, whose “individuals” are
all maximal strategies of the complex and whose “attributes” are the underlying actions, as
shown in Figure 46. The figure also shows each maximal strategy’s goal, that is, the state at
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which the strategy would stop moving. (In general, a strategy, even a maximal strategy, may
have a multi-state goal set, but in this example the goals of all maximal strategies are singleton
states.) We make the following observations:

• There is at least one strategy for attaining each state in the graph, meaning it is possible
to move from every state to every other state, despite uncertainty in the outcome of one
of the actions. Such graphs are called fully controllable in [6, 7], and have properties
similar to those of strongly connected directed graphs.

• For each maximal strategy, there are two informative attribute release sequences, each
consisting of two actions. For instance, for σ2 one could reveal actions a3 and a4 in either
order, identifying σ2 only after revealing both actions. For σ3, one could reveal actions
a1 and a4 in either order, now identifying σ3 only after revealing both actions.

• Some actions reveal the goal even though they do not identify the maximal strategy. In
particular, actions a1 and a2 each individually reveal the goal to be 3. (The two actions
are in fact equivalent in A, in that either one implies the other.) For instance, if one
knows that a1 is in a maximal strategy σ, then one knows that the strategy cannot also
contain a3, as adding a3 would create a cycle in the underlying edge set. Action a2 must
therefore also be in the strategy, since the strategy is maximal. Consequently, the goal
is state 3 and σ is either σ3 or σ4. The difference between these two maximal strategies
is a choice between a4 and a5. That choice does not affect the final goal, but could affect
intermediate motions and the time to reach the goal. A rough analogy is knowing that
a car on a freeway must continue on the freeway until at least the next exit but has a
choice between lanes enroute.

• Each strategy has at least one informative attribute release sequence, consisting of two
actions, that does not reveal the goal until the final action has been released. For
instance, for σ3, one could first release a4, leaving open the possibility of either state 1
or state 3 being the goal, then subsequently release either a1 or a2.

Question: Is this set of intertwined observations fundamental?

Answer: Yes, with certain qualifications, described next.

13.2 Connecting the Topologies of Strategy Complexes and Privacy

Notation:

• G = (V,A) denotes a graph with underlying states V and possibly uncertain actions A.
(For simplicity, we assume here that both V and A are not empty.)

• ∆G denotes the strategy complex of G; it includes the empty strategy ∅.

Lemma 29. Let G = (V,A) be a graph as above and M the set of maximal simplices of ∆G.
Define relation A on M × A by A = {(σ, a) | a ∈ σ ∈ M}. Then ΦA = ∆G. In other

words, the Dowker complex over the set of actions is the same as the graph’s strategy complex.
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(The lemma holds more generally for simplicial complexes. The proof is nearly definitional.)
(The “A” stands for “Action”.)

One of the fundamental results from [6, 7] is that a graph is fully controllable if and only if
its strategy complex is homotopic to a sphere of dimension two less than the number of states
in the graph: (Recall that “�” means homotopy equivalence.)

Theorem 30. A graph G = (V,A) is fully controllable if and only if ∆G � Sn−2, with n = |V |.
Now recall our fundamental privacy result, Corollary 26 from page 48. That corollary,

along with Theorem 30, tells us that if a graph G = (V,A) is fully controllable, then the poset
PA formed from the relation A constructed as above must contain at least n! maximal chains,
each consisting of at least n− 1 elements, with n = |V | (recall that the number of elements in
a chain is one more than its length).

We actually want a stronger result, speaking to individual strategies and we can get that by
looking into the details of the proof of Theorem 25. The proof is an induction that recursively
considers links, giving us the following (see Appendices G and H):

Theorem 31 (Delaying Strategy Identification). Let G = (V,A) be a fully controllable graph,
with n = |V | > 1. Let A be the relation constructed as in Lemma 29 and let PA be its associated
doubly-labeled poset. Then:

For each v ∈ V , there exists a maximal strategy σv ∈ ∆G for attaining singleton goal state
v such that PA contains at least (n− 1)! distinct maximal chains for identifying σv, with each
chain consisting of at least n− 1 elements.

Clarifying Observation: Each maximal chain for identifying σv specifies at least n − 1
actions and an order for releasing them such that no action is implied by those previously
released. In particular, the sequence of actions does not identify σv until all actions have been
released.

Comments: Theorem 31 does not assert that every maximal strategy in ∆G has (n− 1)!
many “long” identifying chains, merely that for every possible singleton goal v, there is some
strategy for attaining v with (n−1)! many “long” identifying chains. It is not hard to construct
an example for which some maximal strategy with a singleton goal state has fewer than (n−1)!
identifying chains. This fact suggests further questions. Here are two:

• Given an arbitrary maximal strategy σv for attaining a singleton goal state v, can we
find at least one chain in PA that identifies σv but requires release of at least n − 1
actions before doing so? We do not know the answer in general, although small examples
suggest the answer is “yes”. We do have a proof that the answer is “yes” when the
graph contains a Hamiltonian cycle consisting of edges that come from deterministic or
stochastic actions.

• Given a singleton goal state v, can we find at least one maximal strategy σv and at
least one chain in PA that eventually identifies σv, but does not reveal the goal v before
releasing at least n−1 actions? The answer to this question is “yes”. The proof operates
by repeatedly creating quotient graphs. In forming a quotient graph, the proof regards
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as equivalent a certain set of states that are connected by a cycle of edges, with each
edge coming from some deterministic or stochastic action. For instance, in the graph of
Figure 44, the proof would regard states 1 and 2 as equivalent. The resulting quotient
graph would then consist of two states with deterministic actions between them, since
action a3 becomes a deterministic transition in the quotient graph. Inductively, one
therefore sees that an entity can hide its true goal until at least two actions in the
original graph G have been revealed. (See Appendix H for further details.)

A comment/caution regarding the availability of many chains: The (n−1)! chains
mentioned above may come from all possible permutations of the same underling set of n− 1
actions. Alternatively, these (n−1)! chains may involve creative sequencing of more than n−1
actions. The precise makeup of the chains depends on the underlying homology generators.
However, even if the chains are merely reordering the same n − 1 actions, there is good
reason to take advantage of that capability, rather than pick one particular sequence via a
deterministic algorithm. The reason is that knowledge of how an algorithm releases actions
may leak information to an adversary. Such leakage may be understood as changing the
effective relation. For instance, despite thinking one is working with relation A, a particular
release protocol may simply be focusing on some proper subset of A or some proper subset
of the poset PA, possibly resulting in very different inference characteristics. A good release
strategy may be to choose randomly from among the (n−1)! possible chains. In that way, one
is taking good advantage of the spherical homogeneity suggested by homology.
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14 Relations as a Category

We have discussed disinformation, obfuscation, and other manipulation of relations. The goal
of such transformations has been to preserve privacy by removing free faces. We have not
yet discussed such transformations formally. For instance, the coordinate transformations of
Section 9 raise the question:

How should one think about maps between relations?

14.1 Relationship-Preserving Morphisms

Traditionally, relations are morphisms between sets (with functions a special case). In thinking
about privacy, it is useful to define a category in which the relations are the objects. We
have some choices in defining morphisms for this category. Bearing in mind our Dowker
constructions, we make the following definitions.

Notation: We frequently will be working with two relations: R is a relation on XR × Y R

and Q is a relation on XQ × Y Q (the superscripts are just indices to indicate the underlying
relation). In order to distinguish rows and columns between the two, we will also use notation
of the form XR

y , Y R
x , XQ

y , and Y Q
x .

Definition 32 (Morphism). Let R be a relation on XR × Y R and let Q be a relation on
XQ × Y Q. A morphism of relations f : R→ Q is a pair of set functions:

fX : XR → XQ

fY : Y R → Y Q

such that (fX(x), fY (y)) ∈ Q whenever (x, y) ∈ R.

In other words, a morphism of relations maps individuals to individuals and attributes to
attributes in a way that preserves relationships.

The following lemma follows from the definitions (a proof appears in Appendix I):

Lemma 33 (Induced Simplicial Maps). A morphism f : R → Q between nonvoid relations
induces simplicial maps between the Dowker complexes:

fX : ΨR → ΨQ

fY : ΦR → ΦQ

Notational comment: The symbols fX and fY are overloaded intentionally. The
simplicial map fX is precisely the set map fX applied to the vertices of any simplex: If
σ = {x0, . . . , xk} ∈ ΨR, then fX(σ) = {fX(x0), . . . , fX(xk)} ∈ ΨQ. Similarly for fY .

Intuitively, one cannot partition the individuals of a connected relation into two or more
classes without misclassifying or ignoring at least some relationships. A graph connectivity
argument provides a possible proof. Lemma 33 provides another, with additional insight. Let’s
look at some examples:
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Two Bits onto One: Consider again the relations S andQ of Figures 15 and 16, respectively,
on page 30. Relation S models a one-bit relation — an attribute and its negation. Relation
Q models a two-bit relation — two attributes and their negations. The Dowker complexes for
S have S0 homotopy type, while those for Q have S1 homotopy type. We can think of S as
a classification, splitting individuals into those that have some attribute a and those that do
not.

By Lemma 33, a morphism f : Q→ S induces simplicial (hence continuous) maps between
the corresponding Dowker complexes of S and Q. Since S1 is connected but S0 is not, there
is no surjective continuous function from S1 to S0. Consequently, no morphism f : Q → S
can truly be a classification: fY can map all four attributes {a,¬a, b,¬b} of Q to the single
attribute a or all four attributes to ¬a, but fY cannot map to both a and ¬a.

Q′ a ¬a
1 •
2 •
3 •
4 •

ΨQ’ΦQ’

a
_- a

{1,2}
represents

{3,4}
represents

3

2

1

4

Figure 47: Relation Q′ obtained from relation Q of Fig. 16 by discarding attributes b and ¬b.

This impossibility may at first seem paradoxical. After all, one can simply cut relation
Q down the middle and throw away the columns involving attributes b and ¬b, as shown
in Figure 47. After that, a surjective morphism f ′ : Q′ → S is immediate. Indeed, that is
possible. However, in so doing, one has discarded some relationships, perhaps purposefully,
perhaps accidentally. In particular, the relationship between individuals #1 and #3 of Q via
attribute b is lost, as is the relationship between individuals #2 and #4 via attribute ¬b.
This reasoning simply underscores the fact that morphisms of relations preserve relationships.
Lack of continuity in a function therefore is a sign that one is discarding some relationships.
Whether such discard is desirable depends on one’s goals in a particular application.

Three Bits onto Two: Recall as well Figure 17, which depicts a three-bit relation R —
three attributes and their negations, capable of distinguishing between eight individuals. The
homotopy type of the Dowker complexes is S2. With Q as above, the following question arises
naturally when trying to reduce complexity of data yet preserve information:

Does there exist a surjective morphism f : R→ Q ?

Unlike the previous example, there do exist continuous maps from S2 onto S1, so perhaps
one can find a surjective morphism f : R → Q. In fact, one cannot, for dimensional reasons
that force an equator of S2 to become a homology generator of S1. A simplex-based argument
goes as follows:

• Suppose surjective f : R→ Q exists. As will be discussed later (see page 74), this means
the component functions fX : ΨR → ΨQ and fY : ΦR → ΦQ are surjective as set maps.
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• One may therefore assume without loss of generality that fY (a) = a and fY (b) = b.

• The triangles {a, b, c} and {a, b,¬c} are both simplices in ΦR. The maximal simplices
of ΦQ are edges.

• By Lemma 33, this means that fY (c) and fY (¬c) are both elements of {a, b} in ΦQ.

• Again by surjectivity, we therefore see that {fY (¬a), fY (¬b)} = {¬a,¬b}.

• Another triangle-versus-edge argument then says that fY (c) and fY (¬c) are both
elements of {¬a,¬b}, giving us a contradiction.

Of course, as in constructing Q′ of Figure 47, if we are willing to tolerate discontinuities, we
could discard one attribute and its negation to obtainQ from R. As before, discontinuity means
losing awareness of some relationship(s). For instance, if we omit attribute c, we would become
unaware in Q of the relationship that exists in R among the set of individuals {1, 3, 5, 7}.

14.2 Privacy-Establishing Morphisms

M a b c d e

1 • • •
2 • • •
3 • • •
4 • • •
5 • • • ΨM

ΦM

a
1

a

b

b

c

d

e

2 3 4 5

a
1

b
c

d
e

2

3

4

5 2

1

Figure 48: Relation M is isomorphic to relation G of Figure 23 on page 37, now without the
author-book semantics. The Dowker complexes are dual triangulations of the Möbius strip,
with S1 homotopy type.

Relations involve two spaces. Looking at just ΦR or just ΨR may hide some interesting
properties. For instance, consider the Möbius strip relation M of Figure 48. We encountered
this relation previously, in Section 10.

We might want to try to remove some of the inferences discussed in Section 10 by reshaping
the underlying relation without discarding any relationships. Doing so leads to the following
question:

Does there exist a surjective morphism f : M → T , with T a
relation that preserves attribute and association privacy ?

In Section 8, we mentioned that any such T must have the topology of either a linear cycle
or a spherical boundary complex. It turns out that the answer to this question is “yes” and
that the relevant T creates Dowker complexes that are boundaries of tetrahedra (see Figure 30
on page 45).
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This construction is not immediately obvious from the complexes ΦM and ΨM . Although
those simplicial complexes are 2-dimensional, suggesting that their triangles can be wrapped
around a tetrahedron, doing so actually collapses two of the five triangles to edges. Indeed,
the component functions for one such surjective morphism f : M → T are:

fX : XM → XT

1 → 4
2 → 1
3 → 2
4 → 3
5 → 4

fY : YM → Y T

a → a

b → b

c → c

d → d

e → a

The induced simplicial maps act on the five maximal simplices of ΨM and ΦM as follows:

fX : ΨM → ΨT

{1, 2, 3} → {1, 2, 4}
{2, 3, 4} → {1, 2, 3}
{3, 4, 5} → {2, 3, 4}
{1, 4, 5} → {3, 4}
{1, 2, 5} → {1, 4}

fY : ΦM → ΦT

{a, b, c} → {a, b, c}
{b, c, d} → {b, c, d}
{c, d, e} → {a, c, d}
{a, d, e} → {a, d}
{a, b, e} → {a, b}

Even though fX and fY are surjective as set maps on the vertices of the Dowker complexes,
they are not surjective as simplicial maps on the complexes themselves. Each only covers 3
of the 4 triangles comprising its image tetrahedron. At first glance it may therefore seem
that the morphism f : M → T resulting from fX and fY does not achieve the desired
privacy preservation. A closer look, however, reveals that f is actually surjective as a map of
relations: it maps all the elements of M onto the elements of T . Therefore, it does represent a
transformation that achieves privacy preservation.

In order to understand this paradox, imagine again that M represents an authorship
database. Think of the maps fX and fY as quotient maps, in this case equating authors
1 and 5 and books a and e. The equivalencing of authors might constitute a recognition of
pseudonyms. The equivalencing of books might represent a generalization from titles to genres.
Such changes of resolution, carefully chosen, perhaps based on external structure, can preserve
relationships while reducing recognition and inference granularity.

14.3 Summary of Morphism Properties

Definition 32 defines a morphism of relations f : R → Q in terms of underlying set functions
fX : XR → XQ and fY : Y R → Y Q. These set functions further induce simplicial maps
fX : ΨR → ΨQ and fY : ΦR → ΦQ. The previous subsections spoke of surjectivity in varying
contexts. Similarly, one could speak of maps as being one-to-one in varying contexts. Finally,
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one also speaks of morphisms as being epimorphisms and monomorphisms. This subsection
summarizes how these properties relate for the various maps. See Appendix I for proofs.

First, some definitional context and reminders:

• Suppose f : R→ Q is a morphism of relations. Recall from category theory that f is an
epimorphism if, for any pair of morphisms g, h : Q→ S, g ◦ f = h ◦ f implies g = h.

Recall further that a morphism f : R → Q is a monomorphism if, for any pair of
morphisms g, h : S → R, f ◦ g = f ◦ h implies g = h.

• A morphism of relations f : R→ Q is also a set map between the set of pairs comprising
R and the set of pairs comprising Q. Specifically, f(x, y) = (fX(x), fY (y)).

One may speak of f as being surjective and/or one-to-one, meaning as a set map.

• The functions fX : XR → XQ and fY : Y R → Y Q are set maps. One may speak of them
as being surjective and/or one-to-one.

• One may also ask whether the induced simplicial maps fX : ΨR → ΨQ and fY : ΦR → ΦQ

are surjective and/or injective as maps between simplicial complexes viewed as sets.

Lemma 34 (Morphism Properties). Assume the notation from above and that all relevant
relations are nonvoid. Let f : R→ Q be a morphism of relations (as per Definition 32). Then:

(i) fX and fY are one-to-one set maps =⇒ f is one-to-one ⇐⇒ f is a monomorphism.

(ii) f surjective =⇒ f epimorphism ⇐⇒ fX and fY are surjective set maps.

(Additional conditions for that last ⇐⇒ : The =⇒ direction assumes that Q has no blank
rows or columns, while the ⇐= direction assumes that R has no blank rows or columns.)

The two uni-directional implications =⇒ above are strict.

(iii) If fX : ΨR → ΨQ is surjective and Q has no blank rows, then fX : XR → XQ is
surjective.

Similarly for fY , now assuming that Q has no blank columns.

The converses need not hold. Indeed, f itself can be surjective but the maps of simplicial
complexes need not be (as we saw with the maps of page 73).

(iv) If fX : XR → XQ is one-to-one, then fX : ΨR → ΨQ is injective. The converse holds if
R has no blank rows.

Similarly for fY , now assuming that R has no blank columns for the converse.
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14.4 G-morphisms

Since a relation R defines a poset PR, rather than merely create morphisms from set maps
between individuals and attributes as in Definition 32, we may broaden the definition by
considering maps between posets:

Definition 35 (G-Morphism). Let R and Q be relations.
A G-morphism f : R→ Q is any poset map f : PR → PQ.

Comments: The “G” stands for “Galois”. We might have insisted that a G-morphism
R → Q be a lattice morphism P+

R → P+
Q rather than merely a poset map PR → PQ, but

that might be too restrictive. Instead, as subsequent lemmas will describe, we view a G-
morphism as providing homotopy flexibility. In particular, a morphism between relations as
per Definition 32 induces two homotopic G-morphisms. The lattice structure of the image is
relevant in that it allows one to fill in elements not directly in the image of any one poset map,
as will become apparent in Theorem 40.

F(ΨR)
fX−−−−−−→ F(ΨQ)

φR

⏐⏐
 �⏐⏐ψR φQ

⏐⏐
�⏐⏐ψQ

F(ΦR)
fY−−−−−−→ F(ΦQ)

Figure 49: Diagram showing the poset maps fX and fY induced by a morphism f : R → Q,
along with the homotopy equivalences between each relation’s face posets. (The diagram need
not be commutative, but is almost so; see Lemma 36.)

Recall that a morphism f : R → Q as per Definition 32 is built from two set maps fX
and fY and that these set maps induce simplicial maps between the Dowker complexes, as per
Lemma 33. We may therefore further regard fX and fY as poset maps between the face posets
of the Dowker complexes: fX : F(ΨR) → F(ΨQ) and fY : F(ΦR) → F(ΦQ). Consequently
we have a diagram of maps as in Figure 49. The diagram need not be commutative, but the
following containments hold:

Lemma 36 (Containment). Let f : R→ Q be a morphism of nonvoid relations. Then:

(a) (fY ◦φR)(σ) ⊆ (φQ◦fX)(σ), for every σ ∈ ΨR,

(b) (fX◦ψR)(γ) ⊆ (ψQ◦fY )(γ), for every γ ∈ ΦR.
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As a corollary, we see that the diagram of Figure 49 describes two pairs of homotopic maps:

Corollary 37 (Homotopic Face Maps). Let f : R → Q be a morphism of nonvoid relations.
Then:

(a) fX and ψQ ◦ fY ◦ φR are homotopic poset maps F(ΨR) → F(ΨQ),

(b) fY and φQ ◦ fX ◦ ψR are homotopic poset maps F(ΦR) → F(ΦQ).

The images of the compositions that appear in Corollary 37 may be regarded as lying in
PQ. We may further restrict the domain of these maps to be PR, giving us the following
G-morphisms:

Definition 38 (Induced G-Morphism). A morphism of relations f : R → Q induces two
G-morphisms PR → PQ, defined as follows:

fgX = (ψQ ◦ fY ◦ φR)|PR
fgY = (φQ ◦ fX ◦ ψR)|PR

.

(The g superscript stands for “Galois” while the vertical bar | means “restricted to”. See
also Appendix I.2.)

Corollary 39 (Homotopic Poset Maps). Let f : R → Q be a morphism of nonvoid relations.
The induced G-morphisms fgX , f

g
Y : PR → PQ are homotopic.

Corollary 39 says that we may view the underlying maps fX and fY of a morphism f as
mapping any inference-closed set (viewed either as a set of individuals or as a set of attributes)
from the domain of f to an interval of inference-closed sets in the codomain of f .

R a

1 •
Q a b

1 • •
2 • (1, a)

PR

(1, ab)

PQ (12, a)

Figure 50: Relation R is a subrelation of Q. How should one embed PR into PQ? There are
two possible embeddings, related by a homotopy.

For a simple example, see Figure 50. One may regard relation R as a subrelation of Q,
then define f : R → Q to be inclusion. For instance, maybe R and Q represent individuals
#1 and #2 at two parties a and b, with R representing known parties and party-attendees at
some time and Q representing an update of that information at a later time. Observe that:

fgX((1, a)) = (ψQ ◦ fY ◦ φR)({1}) = (ψQ ◦ fY )({a}) = ψQ({a}) = {1, 2} “=” (12, a),

fgY ((1, a)) = (φQ ◦ fX ◦ ψR)({a}) = (φQ ◦ fX)({1}) = φQ({1}) = {a, b} “=” (1, ab).
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The last equality in each row indicates how to view the image element on the left of the “=”
as an element of the poset PQ.

Both fgX and fgY tell us how to update inference-closed sets from PR into inference-closed
sets within PQ:

• The map fgX updates association inferences while holding observed attributes fixed. In
this example, based on initial information (relation R), we know that person #1 attended
party a. Once we update that information (relation Q) we can conclude that person #2
also attended a party at which person #1 was present.

• Similarly, the map fgY updates attribute inferences while holding observed individuals
fixed. In this example, updated information allows us to conclude that person #1
attended not only party a but also party b.

In general, for any fixed element of PR, the two maps may give different results, but those
results are comparable in PQ. Here f was inclusion, so we could speak of holding attributes or
individuals “fixed”. More generally, “fixed” is replaced by whatever f does.

14.5 Surjectivity Revisited

A paradox: We saw on page 73 a surjective morphism f , from the Möbius strip relation of
Figure 48 to the tetrahedral relation of Figure 30, whose induced simplicial maps fX : ΨM →
ΨT and fY : ΦM → ΦT were not surjective. This raises some questions:

1. Are the induced poset maps fgX , f
g
Y : PM → PT surjective?

2. If not, how can one speak of a surjective morphism?

(Note that P+
M is isomorphic to P+

G as shown in Figure 25 on page 39. A rendering would
be identical, except for lowercase letters in place of uppercase ones. The lattice P+

T appears in
Figure 31 on page 46.)

The answer to Question 1 is that the two poset maps are not surjective. Observe in Table 9,
for instance, that the image of fgX does not include (4, abd). Similarly, the image of fgY does
not include (134, a).

These missing elements are in the image of both maps together, viewed as a pair of
homotopic maps, as per Corollary 39. Unfortunately, that explanation is not a full answer
to Question 2. For instance, neither map’s image includes the element (13, ac) of PT , nor does
that element appear in any interval [fgY (p), fgX(p)] as p varies throughout PM .

To answer question 2, the lattice structure of PT is useful. In the example, the image of fgX
includes all elements of PT that correspond to maximal simplices of ΨT . Similarly, the image
of fgY includes all elements of PT that correspond to maximal simplices of ΦT . Intuitively,
we therefore expect that the lattice operations (which correspond to intersection in either ΨT

or ΦT ) will generate all the elements of PT . In that sense, the surjectivity of f appears as
surjectivity of each of fgX and fgY , once one completes their images under lattice operations.
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p fgX(p) fgY (p)

(12 , ab) (14 , ab) (14 , ab)
(2 , abc) (1 , abc) (1 , abc)
(123 , b) (124 , b) (124 , b)
(23 , bc) (12 , bc) (12 , bc)
(3 , bcd) (2 , bcd) (2 , bcd)
(234 , c) (123 , c) (123 , c)
(34 , cd) (23 , cd) (23 , cd)
(4 , cde) (3 , acd) (3 , acd)
(345 , d) (234 , d) (234 , d)
(45 , de) (34 , ad) (34 , ad)
(5 , ade) (34 , ad) (4 , abd)
(145 , e) (134 , a) (34 , ad)
(15 , ae) (134 , a) (4 , abd)
(1 , abe) (14 , ab) (4 , abd)
(125 , a) (134 , a) (14 , ab)

Table 9: Each p is of the form (σ, γ) ∈ PM . The elements fgX(p) and fgY (p) lie in PT . See
also Figures 25 and 31, on pages 39 and 46, respectively. (As in those figures, the table elides
commas and braces from set notation.)

The following theorem summarizes the intuition of the previous pages:

Theorem 40 (Lattice Surjectivity). Let R and Q be nonvoid relations with no blank rows or
columns. Suppose f : R → Q is a surjective morphism (in the sense of Definition 32). For
any q ∈ PQ:

q =
∧
j

∨
i

qji, with each qji in the image of fgX : PR → PQ,

q =
∨
k

∧
�

q′k�, with each q′k� in the image of fgY : PR → PQ.
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A Preliminaries

Assumption: All simplicial complexes, relations, posets, and lattices in this document are
finite.

A.1 Simplicial Complexes

We largely follow the notation of [14] and [1].

• An (abstract) simplicial complex Σ with underlying vertex set X is a collection of finite
subsets of X, such that if σ is in Σ then so is every subset of σ. The elements of Σ are
simplices. We allow the empty set ∅ to be a simplex in Σ, for combinatorial reasons. We
refer both to the elements of a simplex and to singleton simplices as vertices. Not all
elements of X need to be vertices of Σ.

• We let verts(Σ) denote the set of vertices that actually appear in Σ, called the zero-
skeleton of Σ. [The standard notation is Σ(0) but that conflicts with some iterative
notation in the proof of Theorem 25.]

• The dimension of a simplex σ is one less than its cardinality. The empty simplex ∅ has
dimension −1. If a simplex has dimension k we sometimes call it a k-simplex.

• The void complex ∅ has no simplices in it. The void complex is degenerate. The empty
complex {∅} consists solely of the empty simplex. The empty complex represents the
empty topological space. It is also the sphere of dimension −1, written S−1. (There
could be be different instances of the void or empty complex, depending on the underlying
vertex set X, though frequently one takes that to be empty.)

• A simplex σ of a simplicial complex Σ is a free face of Σ if it is a proper subset of exactly
one maximal simplex τ of Σ. (The empty simplex ∅ can sometimes be a free face.)

• With Σ a simplicial complex, Ck(Σ; Z) is the group of simplicial k-chains over Σ with
integer coefficients. A k-chain c ∈ Ck(Σ; Z) assigns to each oriented k-simplex τ an
integer, such that c(−τ) = −c(τ). (Caution: We will later use the word “chain” in the
poset sense; there should be no ambiguity given context.)

• Suppose Σ is a simplicial complex and c ∈ Ck(Σ; Z). Assume all simplices have been
assigned an orientation in Σ. One can write c =

∑
i niτi uniquely, for some collection

of (oriented) k-dimensional simplices {τi} in Σ such that ni �= 0 for each i. This means
c(τi) = ni for each τi that appears in the sum and c(τ) = 0 for all other k-simplices τ .

We define the support of c as ‖c‖ = ∪iτi. The support is the set of all vertices that appear
in any of the simplices τ for which c(τ) is nonzero.

• We let ∂ and ∂̃ stand for “boundary”. There are two contexts:

1. When V is a nonempty finite set of points, then ∂(V ) means the simplicial complex
whose underlying vertex set is V and whose simplices consist of all proper subsets
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of V . We refer to this complex as the boundary complex of the full simplex on vertex
set V . It has the homotopy type of a sphere, specifically Sn−2, with n = |V |, for all
n ≥ 1.

2. We also designate the simplicial boundary operator by ∂ and the reduced boundary
operator by ∂̃. These operators are families of maps, describing for each dimension
k a group homomorphism Ck(Σ; Z) → Ck−1(Σ; Z).
(See below for the special case k = 0.)

Given an oriented k-simplex σ = {x0, . . . , xk}, with k ≥ 1, ∂̃k(σ) = ∂k(σ) =∑k
i=0(−1)iτi, where τi is the oriented (k − 1)-simplex formed from σ by removing

vertex xi and using the induced orientation of σ on τi.

For k = 0, ∂0 : C0(Σ; Z) → 0, while ∂̃0 : C0(Σ; Z) → Z, with ∂̃0({v}) = 1, for each
vertex {v} ∈ Σ. There is also a map ∂̃−1 : Z → 0. See [14, 12] for further details.

We are mainly interested in the reduced boundary operator ∂̃.
We often write ∂̃ in place of ∂̃k when the context k is clear.

Elements of the subgroup ker(∂̃k) are called reduced k-cycles.

Elements of the subgroup img(∂̃k+1) are called reduced k-boundaries.

• Given a simplicial complex Σ, H̃k(Σ; Z) is the reduced homology group in dimension
k based on simplicial chains over Σ with integer coefficients. It is a quotient group,
measuring the number of reduced k-cycles that are not reduced k-boundaries.

Formally, H̃k(Σ; Z) = ker(∂̃k)/img(∂̃k+1). (That makes sense since ∂̃k ◦ ∂̃k+1 = 0.)

• Given a simplicial complex Σ and a set σ, we define the following three simplicial
subcomplexes of Σ in the standard way:

– The link of σ in Σ: Lk(Σ, σ) = {τ ∈ Σ | τ ∩ σ = ∅ and τ ∪ σ ∈ Σ}.
– The deletion of σ in Σ: dl(Σ, σ) = {τ ∈ Σ | τ ∩ σ = ∅}.
– The closed star of σ in Σ: St(Σ, σ) = {τ ∈ Σ | τ ∪ σ ∈ Σ}.

The definitions make sense even when σ is not itself a simplex in Σ, though in that case
both Lk(Σ, σ) and St(Σ, σ) are the void complex ∅.

Observe that dl(Σ, σ) ∩ St(Σ, σ) = Lk(Σ, σ) and St(Σ, σ) = Lk(Σ, σ) ∗<σ>.

Here ∗ means simplicial join (described below) and <σ> is the simplicial complex
generated by σ, consisting of all subsets of σ.

When σ consists of a single element v, i.e., σ = {v}, we tend simply to write Lk(Σ, v),
dl(Σ, v), St(Σ, v). Aside: For a singleton v, it is further true that dl(Σ, v)∪St(Σ, v) = Σ.

• One may associate a geometric realization to a finite abstract simplicial complex Σ by
embedding Σ into a finite-dimensional Euclidean space. One may therefore think of Σ
as a topological space [14, 1].
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• Suppose Σ and Γ are two simplicial complexes with underlying vertex sets X and Y ,
respectively. A set function f : X → Y is said to be a simplicial map if it satisfies the
following condition: If σ ∈ Σ, then f(σ) ∈ Γ.

In that case, one may view f as a map of simplicial complexes, f : Σ → Γ.

A simplicial map may further be viewed as a continuous function between the geometric
realizations of Σ and Γ.

• When X1 and X2 are topological spaces, the notation X1 � X2 means that X1 and X2

have the same homotopy type [1, 12].

• When X1 and X2 are topological spaces, X1 ∨X2 means a wedge sum of X1 and X2 [12].

• Suppose U is a finite nonvoid collection of (not necessarily distinct) topological subspaces
of some ambient space. One may define a simplicial complex N (U), called the nerve
of U : The simplices of N (U) are given by the empty simplex and all nonvoid finite
subcollections {U1, . . . , Uk} of U such that U1 ∩ · · · ∩ Uk �= ∅. Under certain conditions,
if these nonempty intersections are contractible, then the nerve has the same homotopy
type as the union of all the elements in U : N (U) � ⋃

U∈U U . See [1, 12] for conditions.

• Suppose Σ and Γ are simplicial complexes with disjoint underlying vertex sets. The
simplicial join [18] of Σ and Γ is the simplicial complex

Σ ∗ Γ = {σ ∪ γ | σ ∈ Σ and γ ∈ Γ}.
The underlying vertex set of Σ ∗Γ is the union of the underlying vertex sets of Σ and Γ.

A.2 Partially Ordered Sets (Posets)

We largely follow the notation of [18].

• A poset P is a set of elements with a partial order, sometimes written simply as “≤”
other times as “≤P ”. The symbols “≥”, “<”, “>” and “=” are defined accordingly.

• A chain c in a poset P is a totally ordered subset of P , which we often write as
c = {p0 < p1 < · · · < p�}. The length 	(c) = 	 of a chain c is one less than the
number of elements in the chain (much like simplex dimension). The length of the empty
chain is −1. The length 	(P ) of a poset P is the maximum length of any chain in P .

• The face poset F(Σ) of a nonvoid simplicial complex Σ consists of all nonempty simplices
of Σ, partially ordered by set inclusion.

• The order complex ∆(P ) of a poset P is the simplicial complex whose simplices are given
by all finite chains {p0 < p1 < · · · < p�} of P . (If P = ∅, then ∆(P ) = {∅}.)

• One may speak of the topology of a poset: One says that a poset P has a topological
property when its order complex ∆(P ) has that property. For instance, to say that a
poset is contractible means that its order complex is contractible. To say that two posets
P and Q are homotopic means that ∆(P ) and ∆(Q) have the same homotopy type. Etc.
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• It is a fact that ∆(F(Σ)) is homeomorphic to Σ. Indeed, ∆(F(Σ)) may be viewed as the
first barycentric subdivision of Σ, which we write as sd(Σ). See [18, 16].

• A set function θ : P → Q between two posets P and Q is said to be a poset map if it is
either order-preserving or order-reversing. That means, for all x, y ∈ P :

order-preserving: If x ≤P y, then θ(x) ≤Q θ(y).
order-reversing: If x ≤P y, then θ(x) ≥Q θ(y).

• A poset map θ : P → Q between two posets P and Q induces a simplicial map between
the associated order complexes θ : ∆(P ) → ∆(Q).

• An order-preserving poset self-map θ : P → P is said to be a closure operator when
x ≤ θ(x), for all x ∈ P , and θ ◦ θ = θ. A closure operator θ defines a homotopy
equivalence between P and the image θ(P ). See [1, 18].

A.3 Semi-Lattices and Lattices

Let L be a partially ordered set and suppose p, q ∈ L:

• If p and q have a least upper bound, then one writes p∨q to mean that least upper bound.
If every pair of elements has a least upper bound, one says that L is a join semi-lattice.

• If p and q have a greatest lower bound, then one writes p∧ q to mean that greatest lower
bound. If every pair of elements has a greatest lower bound, one says that L is a meet
semi-lattice.

• A poset that is both a join semi-lattice and a meet semi-lattice is said to be a lattice.

• If L has a unique top element, we may designate that element by 1̂ or 1̂L.

• If L has a unique bottom element, we may designate that element by 0̂ or 0̂L.

• If L is a finite join semi-lattice with a unique bottom element, then L is a lattice.
Similarly, if L is a finite meet semi-lattice with a unique top element, then L is a lattice.

• A lattice L is said to be bounded if it has a unique top element 1̂ and a unique bottom
element 0̂. (These are same element if L is a singleton.)

• When L is a bounded lattice, the proper part of L is the poset L = L \ {0̂, 1̂}.

• Suppose L is a bounded lattice and p ∈ L. Then the complements of p are given by the
set C(p) =

{
q ∈ L

∣∣ q ∨ p = 1̂ and q ∧ p = 0̂
}

.

• A bounded lattice L is said to be noncomplemented if C(p) = ∅ for at least one p ∈ L.
The proper part L of a noncomplemented lattice L is contractible ([1], Theorem 10.15).

• Suppose L is a bounded lattice. The elements of L immediately below 1̂ are called co-
atoms. These are the maximal elements of L. The elements immediately above 0̂ are
called atoms. These are the minimal elements of L.
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A.4 Relations

Let R be a relation on X × Y . We use the following notation and conventions:

• R is a set of pairs, namely a subset of the cross product X×Y . It is convenient sometimes
to view R as a matrix of 0s and 1s, perhaps drawn as a matrix of blank and nonblank
entries, representing the characteristic function of this set of pairs.

• Even if X �= ∅ and Y �= ∅, it is possible that R = ∅, in which case we say that R is an
empty relation.

• If either X= ∅ or Y = ∅, then we say that R is a void relation.

On some occasions, we may treat a void relation R much like an empty relation, in the
sense that we will let the Dowker complexes defined below be empty rather than void.
That view will sometimes be convenient when R is derived from some encompassing
relation as a link or deletion in a simplicial complex.

• We often refer to elements of X as individuals and elements of Y as attributes.

• Yx is the set of attributes that individual x has (in relation R). Viewing R as a matrix,
one may think of Yx as the row of R indexed by x. We say that the row is blank when
Yx = ∅.

• Xy is the set of individuals who have attribute y (in relation R). Viewing R as a matrix,
one may think of Xy as the column of R indexed by y. The column is blank when Xy = ∅.

• ΦR is the Dowker simplicial complex associated with R whose underlying vertex set is
Y . A nonempty subset γ of Y is a simplex in ΦR precisely when there exists x ∈ X such
that (x, y) ∈ R for all y ∈ γ. We refer to x as a witness for γ.

When R is void, ΦR is void as well, except as otherwise indicated in the text.

When R is nonvoid, ΦR contains the empty simplex. Moreover, we may view ΦR as
generated by all the rows of R. In particular, Yx ∈ ΦR for each x ∈ X.

• ΨR is the Dowker simplicial complex associated with R whose underlying vertex set is
X. A nonempty subset σ of X is a simplex in ΨR precisely when there exists y ∈ Y such
that (x, y) ∈ R for all x ∈ σ. We refer to y as a witness for σ.

When R is void, ΨR is void as well, except as otherwise indicated in the text.

When R is nonvoid, ΨR contains the empty simplex. Moreover, we may view ΨR as
generated by all the columns of R. In particular, Xy ∈ ΨR for each y ∈ Y .

• There exist homotopy equivalences φR : ΨR → ΦR and ψR : ΦR → ΨR.

Viewed as poset maps φR : F(ΨR) → F(ΦR) and ψR : F(ΦR) → F(ΨR), one obtains
explicit formulas, sending nonempty simplices to nonempty simplices:

φR(σ) =
⋂
x∈σ

Yx and ψR(γ) =
⋂
y∈γ

Xy.
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Suppose X �= ∅ and Y �= ∅. Then the intersections appearing in the previous formulas
comprise the witnesses for the respective simplex arguments. Consequently, one may use
the formulas more generally as tests for membership in the Dowker complexes:

– For any σ ⊆ X, σ ∈ ΨR if and only if φR(σ) �= ∅.
– For any γ ⊆ Y , γ ∈ ΦR if and only if ψR(γ) �= ∅.

These tests also make sense for the empty set, that is, when σ = ∅ or γ = ∅. In particular,
φR(∅) = Y and ψR(∅) = X.

• Composing φR and ψR as ψR ◦ φR : F(ΨR) → F(ΨR) and φR ◦ ψR : F(ΦR) → F(ΦR)
produces closure operators. See Appendix B for further details.

• PR is the doubly-labeled poset associated with R as per Definition 3 on page 20. Each
element in PR is of the form (σ, γ), with σ �= ∅ and γ �= ∅, such that σ = ψR(γ) and
γ = φR(σ).

One may view PR either as the image (ψR◦φR)(F(ΨR)) or as the image (φR◦ψR)(F(ΦR)).

• P+
R is the Galois lattice formed from PR as per Definition 12 on page 38.

• We sometimes view PR as “almost a join-based lattice”, as per Definition 24 on page 47.
That amounts to adjoining a single new element 1̂ above PR, then inducing a join
operation on PR∪{1̂} from the join operation on P+

R . Thus PR∪{1̂} is a join semi-lattice.
If we further adjoin a new bottom element 0̂, then PR ∪ {0̂, 1̂} is a lattice.

• One may speak of the topology of a relation: One says that a relation R has a topological
property when any and all of ΦR, ΨR, and ∆(PR) have that property. (This convention
makes sense by Dowker’s Theorem on page 17 and the nature of PR.)
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B Basic Tools

This appendix reviews some basic facts about relations, their Dowker complexes, and the
Galois connection. Recall the formulas from page 85.

Although we do not always say so explicitly, there are dual statements for the lemmas and
corollaries in this appendix, for each of the two perspectives offered by Dowker’s Theorem, by
inverting the roles of individuals and attributes.

Lemma 41. Let R be a relation on X × Y . Then φR is inclusion-reversing.

Proof. Let σ′ ⊆ σ ⊆ X. Then: φR(σ′) =
⋂
x∈σ′

Yx ⊇
⋂
x∈σ

Yx = φR(σ).

Just to be careful: if σ′ = ∅, then φR(σ′) = Y , which does indeed contain φR(σ).

Each of φR and ψR is inclusion-reversing, so φR◦ψR is inclusion-preserving. Lemmas 42 and
44 establish that φR ◦ ψR is a closure operator when viewed as a poset map F(ΦR) → F(ΦR):

Lemma 42. Let R be a relation on X × Y . For all γ ⊆ Y , γ ⊆ (φR ◦ ψR)(γ).

Proof.
(φR ◦ ψR)(γ) =

⋂
x∈σ

Yx, with σ =
⋂
y∈γ

Xy.

The assertion is clear if γ = ∅ or σ = ∅. Otherwise, let y ∈ γ and x ∈ σ. Then x ∈ Xy, so
y ∈ Yx. Since x is arbitrary in σ, we see that y ∈ (φR ◦ψR)(γ) and thus γ ⊆ (φR ◦ψR)(γ).

Corollary 43. Let R be a relation on X × Y .
If γ is a maximal simplex of ΦR, then (φR ◦ ψR)(γ) = γ.

Proof. When γ �= ∅, this assertion follows from Lemma 42 and maximality of γ. Otherwise,
apparently ΦR = {∅} and so (φR ◦ ψR)(∅) = φR(X) = ∅ (since φR must map X into ΦR).

Lemma 44. Let R be a relation on X × Y .
For all γ ⊆ Y , ((φR ◦ ψR) ◦ (φR ◦ ψR))(γ) = (φR ◦ ψR)(γ).

Proof. Consider: γ
ψR−−−→ σ

φR−−−→ γ′ ψR−−−→ σ′ φR−−−→ γ′′.

We need to show that γ′ = γ′′.
By Lemma 42 and its dualization, γ ⊆ γ′ ⊆ γ′′ and σ ⊆ σ′.
By Lemma 41, φR is inclusion-reversing, so σ ⊆ σ′ implies γ′ ⊇ γ′′, and thus γ′ = γ′′.
Comment: By the dual of Lemma 41, ψR is inclusion-reversing, so in fact also σ = σ′.

Corollary 45. Let R be a relation on X × Y . For all σ ⊆ X, (φR ◦ ψR)(φR(σ)) = φR(σ).

Proof. This follows from a dual version of the comment at the end of the proof of Lemma 44.

Corollary 46. Let R be a relation on X × Y . For all x ∈ X, (φR ◦ ψR)(Yx) = Yx.

Proof. The assertion follows from Corollary 45, with σ = {x}.
(This includes the case Yx = ∅.)
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Lemma 47. Let R be a relation on X × Y and suppose η ⊆ Y .
The following two conditions are equivalent:

(a) (φR ◦ ψR)(χ) = χ, for every proper subset χ of η,

(b) (φR ◦ ψR)(γ) = γ, for all γ of the form γ = η \ {y} with y ∈ η.

Proof. Certainly (a) implies (b). Suppose (b) holds, but there is some χ � η such that
χ � (φR ◦ ψR)(χ). Let y ∈ (φR ◦ ψR)(χ) \ χ and consider γ = η \ {y}.

Observe that χ ⊆ γ, so y ∈ (φR ◦ ψR)(χ) ⊆ (φR ◦ ψR)(γ). Consequently,

η = γ ∪ {y} ⊆ (φR ◦ ψR)(γ) = γ � η, which is a contradiction.

Definition 48 (Connected). A relation R on X × Y is connected if R is connected when
viewed as an undirected bipartite graph on the vertex sets X and Y .

Definition 49 (Tight). A relation R on X × Y is tight if it has no blank rows or columns.

Lemma 50 (Connectedness). Let R be a tight relation on X×Y , with both X and Y nonempty.
Then the following three conditions are equivalent:

(a) R is connected.

(b) ΨR is path-connected.

(c) ΦR is path-connected.

Proof. We will show that (a) and (b) are equivalent. The proof for (a) and (c) is similar, or
one can simply invoke Dowker duality.

I. Suppose R is connected. Consider two vertices x0 and xf of ΨR. Since R is connected
as a bipartite graph, there exists a path x0, y1, x1, y2, . . . , yn, xn = xf . Observe that each yi is
a witness for the simplex {xi−1, xi} ∈ ΨR, so in ΨR there exist edges {x0, x1}, . . . , {xn−1, xn}.
Since ΨR is a simplicial complex, we see that it is path-connected.

II. Suppose ΨR is path-connected. Since R is tight, each y ∈ Y appears as the vertex of
an edge (x, y) in the bipartite graph R. To show that R is connected, it therefore is enough to
show that any two elements x0 and xf of X may be connected by a path in the bipartite graph.
Since R is tight, x0 and xf are each vertices of ΨR. Since ΨR is path-connected, there exists
a path between x0 and xf in ΨR. Since ΨR is a finite simplicial complex, we can deform that
path so that it consists of finitely many edges {x0, x1}, . . . , {xn−1, xn}, with each xi a vertex
of ΨR and xn = xf . Each edge {xi−1, xi} has some witness yi ∈ Y . So x0, y1, x1, y2, . . . , yn, xf
is a path connecting x0 and xf in the bipartite graph R.
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Lemma 51 (Components). Let R be a tight relation on X×Y , with both X and Y nonempty.
Suppose R = R1∪ · · ·∪R�, with the {Ri} pairwise disjoint and each Ri a connected component
of R viewed as a bipartite graph on X and Y . Then X, Y , ΨR, and ΦR decompose as follows:

(a) X = X1 ∪ · · · ∪ X�, with the {Xi} pairwise disjoint and each Xi not empty.

(b) Y = Y1 ∪ · · · ∪ Y�, with the {Yi} pairwise disjoint and each Yi not empty.

(c) Ri is the restriction of R to Xi × Yi, and is tight, for i = 1, . . . , 	.

(d) ΨR = ΨR1
∪· · ·∪ ΨR�

, with the {ΨRi
} pairwise disjoint and each ΨRi

path-connected.

(e) ΦR = ΦR1
∪· · ·∪ ΦR�

, with the {ΦRi
} pairwise disjoint and each ΦRi

path-connected.

Proof. Let Xi = {x | (x, y) ∈ Ri for some y ∈ Y } and Yi = {y | (x, y) ∈ Ri for some x ∈ X },
for i = 1, . . . , 	. These sets are nonempty since the components of R are necessarily nonempty.

To see that Xi ∩ Xj = ∅ unless i = j, suppose x ∈ Xi ∩ Xj . Then (x, y) ∈ Ri for some
y ∈ Y and (x, y′) ∈ Rj for some y′ ∈ Y . Since Ri and Rj are connected components of R,
i = j. Next observe that each x of X must appear in some Xi since R has no blank rows.
Point (a) follows. Point (b) is similar.

For (c), observe that if (x, y) ∈ Ri ⊆ R then x ∈ Xi and y ∈ Yi, so (x, y) is in the restriction
of R to Xi × Yi. Conversely, if (x, y) ∈ R with x ∈ Xi and y ∈ Yi, then (x, y) ∈ Rj for some j.
By the previous reasoning, i = j. Tightness follows by definition of Xi and Yi.

For (d), ΨRi
⊆ ΨR since Ri ⊆ R, for each i = 1, . . . , 	. Now suppose ∅ �= σ ∈ ΨR. Then

there exists y ∈ Y such that (x, y) ∈ R for every x ∈ σ. For some i, y ∈ Yi. Since Ri is a
connected component of R, (x, y) ∈ Ri for every x ∈ σ, so σ ∈ ΨRi

. The {ΨRi
} are pairwise

disjoint since the underlying vertex sets {Xi} are pairwise disjoint. Path-connectedness follows
from Lemma 50, since each Ri is tight and connected. Point (e) is similar.

Corollary 52 (Component Maps). Assume the hypotheses and constructions as in Lemma 51
and its proof. Then:

ψRi(γ) = ψR(γ), for each ∅ �= γ ∈ ΦRi
,

φRi(σ) = φR(σ), for each ∅ �= σ ∈ ΨRi
, i = 1, . . . , 	.

Proof. By direct computation:
ψRi(γ) =

⋂
y∈γ

(Xy ∩Xi) =
⋂
y∈γ

Xy = ψR(γ).

The second equality comes from the fact that each Xy can touch only Xi, since Ri is a
connected component of R. The argument for the φ... maps is similar.

Corollary 53 (Component Privacy). Assume the hypotheses and constructions as in
Lemma 51 and its proof. Let i ∈ {1, . . . , 	}.

If ψR ◦ φR is the identity on ΨR and Yi �∈ ΦRi
, then ψRi ◦ φRi is the identity on ΨRi

.
If φR ◦ ψR is the identity on ΦR and Xi �∈ ΨRi

, then φRi ◦ ψRi is the identity on ΦRi
.

Proof. Suppose ∅ �= σ ∈ ΨRi
, then ∅ �= φRi(σ) ∈ ΦRi

, so by Corollary 52, (ψRi ◦ φRi)(σ) =
(ψR ◦ φR)(σ) = σ. And (ψRi ◦ φRi)(∅) = ψRi(Yi) = ∅, since Yi �∈ ΦRi

.
The argument for φRi ◦ ψRi is similar.

DISTRIBUTION A: Distribution approved for public release.



90 Links and Inference

C Links and Inference

This appendix provides some technical tools for modeling inference, particularly in links, ending
with some instances in which inference is unavoidable.

Intuition: The link Lk(ΦR, γ) of a set of attributes γ in the Dowker complex ΦR can be
understood as a description of what may yet be observed or inferred, conditional on having
already observed γ.

Lemma 54. Let R be a relation on X × Y , with both X and Y nonempty. Suppose γ ∈ ΦR.
Define relation Q as a restriction of R by

Q = R |σ×Y , with σ = ψR(γ) and Y =
⋃
x∈σ

Yx \ γ.

Then Lk(ΦR, γ) = ΦQ, as collections of simplices (i.e., ignoring underlying vertex sets).

(Observe that σ �= ∅. If Y = ∅, then technically Q is void, but it is convenient to let both
ΦQ and ΨQ be instances of the empty complex {∅}. — In a standard link, one might define
Y = Y \ γ. With Y as above, Q always discards blank columns of R, even when γ = ∅.)
Proof. Observe that γ ⊆ Yx if and only if x ∈ σ.

We discuss the case Y = ∅ separately, for clarity. We need to show that Lk(ΦR, γ) = {∅}.
If Lk(ΦR, γ) �= {∅}, then there exists some y ∈ verts(Lk(ΦR, γ)). By definition of link, y �∈ γ
and there exists x ∈ X such that (x, y) ∈ R for all y ∈ γ ∪ {y}. That means x ∈ σ, so y ∈ Y ,
a contradiction.

The converse is true as well: If Lk(ΦR, γ) = {∅}, then Y = ∅. For if some x ∈ σ has an
attribute y in addition to all those in γ, then y would be a vertex in the link.

Now suppose Y �= ∅:

I. If ξ ∈ Lk(ΦR, γ), then ξ ∩ γ = ∅ and there exists x ∈ X such that (x, y) ∈ R for every
y ∈ ξ ∪ γ. So ξ ⊆ Yx \ γ and x ∈ ψR(γ) = σ. Thus (x, y) ∈ Q for every y ∈ ξ, meaning ξ ∈ ΦQ.

II. Conversely, if ξ ∈ ΦQ, then there exists x ∈ σ such that (x, y) ∈ Q ⊆ R for every y ∈ ξ.
By definition of σ, (x, y) ∈ R for every y ∈ γ. Combining these two assertions, we see that
(x, y) ∈ R for every y ∈ ξ ∪ γ. And ξ ∩ γ = ∅ since ξ ⊆ Y . So ξ ∈ Lk(ΦR, γ).

Comment: There is a dual version of this lemma for links of individuals σ, modeling
Lk(ΨR, σ) as ΨQ for an appropriate relation Q. We see an instance of that in Theorem 9 on
page 100, with σ consisting of a single individual x.

With notation and construction as in Lemma 54, the following formulas hold, assuming
Y �= ∅:

• Suppose ξ ⊆ Y and define τ = ξ ∪ γ. Then

ψQ(ξ) =
⋂
y∈ξ

(Xy ∩ σ) =
( ⋂
y∈ξ

Xy

) ⋂ ( ⋂
y∈γ

Xy

)
=

⋂
y∈(ξ∪γ)

Xy = ψR(τ).

Notes: We allow ξ = ∅, since ψQ(∅) = σ = ψR(γ). We do not require ξ ∈ ΦQ. The
equalities hold regardless. Of course, ξ ∈ ΦQ if and only if ψQ(ξ) �= ∅.
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• Suppose ∅ �= κ ⊆ σ. Then

φQ(κ) =
⋂
x∈κ

(Yx ∩ Y ) =
( ⋂
x∈κ

Yx

)
\ γ = φR(κ) \ γ.

And thus also φR(κ) = φQ(κ) ∪ γ, since γ ⊆ Yx for all x ∈ σ.

Notes: Here we do not allow κ = ∅, since φQ(∅) = Y whereas φR(∅) = Y . It need not be
true that Y = Y ∪ γ. Again, κ ∈ ΨQ if and only if φQ(κ) �= ∅, this valid also for κ = ∅.

Comment: If Y = ∅, the previous formulas still hold, albeit trivially. However, testing for
membership in ΨQ via the question “Is φQ(κ) nonempty?” no longer makes sense.

Lemma 55. Let R be a relation on X × Y , with both X and Y nonempty. Suppose γ ⊆ Y .
Then dl(ΦR, γ) = ΦQ′, with Q′ formed from R by removing the columns corresponding to γ,
that is, Q′ = R |X×(Y \γ). (Here we let ΨQ′ and ΦQ′ each be the empty complex if γ = Y .)

Proof. An individual x ∈ X is a witness to a set of attributes ξ ⊆ Y \ γ in R if and only if x
is a witness to ξ in Q′.

With notation and construction as in Lemma 55, the following formulas hold, assuming
γ �= Y :

• If ξ ⊆ (Y \ γ), then ψQ′(ξ) =
⋂
y∈ξXy = ψR(ξ).

• If κ ⊆ X, then φQ′(κ) =
⋂
x∈κ(Yx \ γ) = φR(κ) \ γ.

Caution: It need not be true that φR(κ) = φQ′(κ) ∪ γ.

Comments: (1) The first formula holds for ξ = ∅ and the second formula holds for κ = ∅.
(2) The simplex tests hold: ξ ∈ ΦQ′ if and only if ψQ′(ξ) �= ∅; and κ ∈ ΨQ′ if and only if
φQ′(κ) �= ∅. (3) If γ = Y , the formulas still hold, but testing for membership in ΨQ′ via the
question “Is φQ′(κ) nonempty?” no longer makes sense.

Recall: A relation R preserves attribute privacy when the closure operator φR ◦ ψR is the
identity on ΦR and it preserves association privacy when the closure operator ψR ◦ φR is the
identity on ΨR.

Lemma 56. Let R be a relation on X × Y , with both X and Y nonempty. Suppose γ ∈ ΦR.
If φR ◦ψR is the identity on ΦR, then the corresponding closure operators for the relations

modeling Lk(ΦR, γ) and dl(ΦR, γ) are also identities.

Technicality: The operators are formally defined as self-maps on the face posets of the
simplicial complexes mentioned in the lemma, but we can extend each operator to the empty
simplex and therefore think of it as a self-map on a simplicial complex viewed as a collection
of simplices.
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Proof. Define Q as in Lemma 54. That lemma tells us ΦQ = Lk(ΦR, γ).
Given ξ ∈ ΦQ, let τ = ξ ∪ γ and calculate:

(φQ ◦ ψQ)(ξ) = φQ(ψR(τ)) = φR(ψR(τ)) \ γ = τ \ γ = ξ.

Define Q′ as in Lemma 55. That lemma tells us ΦQ′ = dl(ΦR, γ).
Given ξ ∈ ΦQ′ , calculate:

(φQ′ ◦ ψQ′)(ξ) = φQ′(ψR(ξ)) = φR(ψR(ξ)) \ γ = ξ \ γ = ξ.

Here is a variation, in which one again computes a link of attributes but then considers the
closure operator on the dual complex, i.e., within the space of individuals:

Lemma 57. Let R be a relation on X × Y , with both X and Y nonempty. Suppose γ ∈ ΦR.
Let Q, σ, and Y be as in the construction of Lemma 54. Assume |σ| > 1 and Y �= ∅.
If ψR ◦ φR is the identity on ΨR, then ψQ ◦ φQ is the identity on ΨQ.

Proof. Suppose ∅ �= κ ∈ ΨQ. Observe that γ ⊆ φR(κ) and calculate:

(ψQ ◦ φQ)(κ) = ψQ(φR(κ) \ γ) = ψR(φR(κ)) = κ.

Additionally,

(ψQ ◦ φQ)(∅) = ψQ(Y ) = ψR(Y ∪ γ) = ψR

( ⋃
x∈σ

Yx

)
=

⋂
x∈σ

ψR(Yx) =
⋂
x∈σ

(ψR ◦ φR)({x}) =
⋂
x∈σ

{x} = ∅.

The last equality holds since |σ| > 1. In short, (ψQ ◦ φQ)(κ) = κ for all κ ∈ ΨQ.

Comment: When Y = ∅, we take ΨQ and ΦQ to be the empty simplicial complex {∅}. It
is sensible to say that φQ ◦ψQ is the identity on ΦQ since φQ(ψQ(∅)) = φQ(σ) = ∅. It could be
confusing to say that ψQ ◦ φQ is the identity on ΨQ since ψQ(φQ(∅)) = ψQ(Y ) = ψQ(∅) = σ,
though perhaps one could argue that there should be no association inference in Q since there
are no attributes.

Corollary 58. Let R be a relation on X ×Y , with both X and Y nonempty. Suppose γ ∈ ΦR.
Let Q and Y be as in the construction of Lemma 54. Assume Y �= ∅.
If R preserves both attribute and association privacy, then so does Q.

Proof. Relation Q preserves attribute privacy by Lemma 56. Let σ = ψR(γ). If we can show
that |σ| > 1, then Q preserves association privacy by Lemma 57.

Observe that |σ| > 0, since γ ∈ ΦR. If ψ(γ) consists of a single individual x ∈ X, then

γ = (φR ◦ ψR)(γ) = φR(σ) = Yx = Y ∪ γ,
which is impossible for nonempty Y .
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The following lemma formalizes the intuition that a set of attributes γ implies another
attribute y precisely when the columns corresponding to γ have nonempty intersection and
that intersection is a subset of the column corresponding to y.

Lemma 59. Let R be a relation on X × Y , with both X and Y nonempty.
R preserves attribute privacy if and only if the following condition is true:
For all γ ∈ ΦR and all y ∈ Y , if ψR(γ) ⊆ ψR({y}) then y ∈ γ.

Proof. I. Suppose there exist γ ∈ ΦR and y ∈ Y such that ψR(γ) ⊆ ψR({y}) but y �∈ γ.
Since φR ◦ ψR is a closure operator, y ∈ (φR ◦ ψR)({y}) and γ ⊆ (φR ◦ ψR)(γ). Now observe
that (φR ◦ ψR)({y}) ⊆ (φR ◦ ψR)(γ) by supposition and because φR is inclusion-reversing.
Consequently, (φR◦ψR)(γ) must be a proper superset of γ, telling us there is attribute inference.

II. If there is attribute inference, then for some γ ∈ ΦR, γ � (φR ◦ ψR)(γ). Pick some
y ∈ (φR ◦ ψR)(γ) \ γ. Then y �∈ γ but

ψR(γ) = ψR
(
(φR ◦ ψR)(γ)

) ⊆ ψR
(

(φR ◦ ψR)(γ) \ γ ) ⊆ ψR({y}).

(The equality holds by associativity of ◦ and the dual version of Corollary 45 on page 87.
The two subset relations hold by inclusion-reversal of ψR.)

(Technical comment: In both parts above, γ = ∅ is permissible.)

Recall the following definition:

Definition 6 (Unique Identifiability). Let R be a relation on X × Y and suppose x ∈ X.
We say that x is uniquely identifiable via relation R when ψR(Yx) = {x}.

Comment: It is entirely possible that one or more proper subsets γ of Yx already identifies
x, meaning ψR(γ) = {x}. Certainly x is uniquely identifiable in that case. Moreover, the
attributes Yx \ γ can be inferred from γ.

Lemma 60. Let R be a relation on X × Y that preserves attribute privacy. Let x ∈ X. Then
no proper subset of Yx identifies x.

Proof. Suppose for some x ∈ X and some γ � Yx, ψR(γ) = {x}. A contradiction ensues:

γ � Yx = φR({x}) = (φR ◦ ψR)(γ) = γ.
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We turn now to proving the assertions of Section 5, regarding free faces.

Lemma 61. Let R be a relation on X × Y , with both X and Y nonempty. If ΦR contains no
free faces, then R preserves attribute privacy.

Proof. We will show that φR ◦ ψR is the identity on ΦR.
As usual, (φR ◦ψR)(∅) = φR(X). We therefore need to show that φR(X) = ∅. Observe that

every maximal simplex of ΦR contains φR(X), since any witness for such a simplex must have
all the attributes in φR(X). Pick some maximal simplex η of ΦR and consider γ = η \ φR(X).
Let η′ be any maximal simplex of ΦR containing γ. Then

η = γ ∪ φR(X) ⊆ η′ ∪ φR(X) = η′.

So η = η′ by maximality. Since ΦR has no free faces, γ cannot be a proper subset of η,
meaning φR(X) = ∅, as desired.

Now consider ∅ �= γ ∈ ΦR. Suppose γ is a proper subset of (φR ◦ ψR)(γ). By Corollary 43
and Lemma 47 on pages 87 and 88, respectively, we can assume without loss of generality that
γ = η \ {y} for some maximal η of ΦR and some y ∈ η. Observe that

η \ {y} = γ � (φR ◦ ψR)(γ) ⊆ (φR ◦ ψR)(η) = η,

so η = (φR ◦ ψR)(γ). Now let η′ be any maximal simplex of ΦR containing γ. Then

η = (φR ◦ ψR)(γ) ⊆ (φR ◦ ψR)(η′) = η′.

(Note: The last equality in each of the lines of comparisons above follows from Corollary 43
by maximality.)

So η = η′ by maximality. That says γ is a free face of ΦR, a contradiction.

The converse of Lemma 61 need not hold if there exists an individual who can hide, with
attributes that form a strict subset of some other individual’s attributes. However:

Lemma 62. Let R be a relation on X × Y , with both X and Y nonempty. If R preserves
attribute privacy and if every x ∈ X is uniquely identifiable via R, then ΦR contains no free
faces.

Proof. Suppose that γ is a free face of ΦR. We can assume without loss of generality that
γ = η \ {y} for some maximal η ∈ ΦR and y ∈ η. Since a Dowker attribute complex is
generated by the rows of the underlying relation, it must be that η = Yx for at least one
x ∈ X. By Lemma 60, there is at least one x′ besides x in ψR(γ). Then

γ = (φR ◦ ψR)(γ) ⊆ φR({x, x′}) = Yx ∩ Yx′ .
Since we have assumed that γ is free and Yx is maximal, we see that Yx′ must be a subset

of Yx. That means x′ is not uniquely identifiable, a contradiction.
(Technical comment: γ = ∅ is permissible throughout this argument.)
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The following lemma will help us later in Appendix E, to establish the remaining assertions
of Sections 5 and 7.

Lemma 63. Let R be a relation on X×Y such that |X| = |Y | > 1. If R has no blank columns
and preserves attribute privacy, then every x ∈ X is uniquely identifiable via R.

Proof. The proof is by induction on n = |X| = |Y |.
I. The base case n = 2 implies that R is isomorphic to

R y1 y2

x1 •
x2 •

(Any other type of 2×2 relation without blank columns would allow for attribute inference.)

Each xi is uniquely identifiable in R above.

II. For the induction step, assume that, for some n > 2, the lemma holds for all relations
with X and Y spaces of size strictly less than n. We need to establish the lemma for all
relations with X and Y spaces of size n.

Subclaim: R has no blank rows.

To see this, suppose that Yx̃ = ∅ for some x̃ ∈ X. Let Q be the restriction of R to
X ′ × Y , with X ′ = X \ {x̃}. There is no significant difference between R and Q; in
particular, Q also preserves attribute privacy.

(Perhaps the empty simplex is slightly tricky: (φQ ◦ ψQ)(∅) =
⋂
x∈X′ Yx. If this

intersection is nonempty, it contains some y1 ∈ Y . Pick y2 ∈ Y with y2 �= y1; this
is possible since |Y | > 2. Note that Xy2 ⊆ X ′, so y1 ∈ ⋂

x∈X′ Yx ⊆ ⋂
x∈Xy2 Yx =

(φR ◦ ψR)({y2}) = {y2}, a contradiction. So (φQ ◦ ψQ)(∅) = ∅.)

Now let Q′ be the further restriction of R to X ′ × Y ′, where Y ′ = Y \ ỹ, with ỹ
any element of Y . By Lemma 56 on page 91, Q′ preserves attribute privacy. The
underlying X and Y spaces of Q′ each have size n−1 and Q′ has no blank columns.
The induction hypothesis therefore tells us that every individual in X ′ is uniquely
identifiable via Q′. Bearing in mind that x̃ does not appear in any Xy, one sees that
for each x ∈ X ′, there is some γ ⊆ Y ′ such that

⋂
y∈γ Xy = {x}. That intersection

is a column vector all of whose entries are 0 (blank) except for the entry indexed by
x. Since R preserves attribute privacy and x is arbitrary in X ′, Lemma 59 implies
that in fact Xỹ = ∅, contradicting the assumption that R has no blank columns.

Next, pick x ∈ X. We will show that x is uniquely identifiable via R. Without loss of
generality, write R as in Figure 51 (“blank” entries are indicated by “0”s):

Specifically, pick some y ∈ Y such that (x, y) ∈ R. This is possible since R has no blank
rows. Then decompose X = X1 ∪ X2, with X1 = Xy and X2 = X \ X1. Since R preserves
attribute privacy, X2 �= ∅.
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A

R y

x

Q

B

0

0

{
{

{{

X1

X2

Y1 Y2

Figure 51: Relation R decomposed into blocks for the proof of Lemma 63.

Let Q model Lk(ΦR, y). So Q is R restricted to X1 × Y1, with Y1 =
⋃
x∈X1

Yx \ {y}. If
Y1 �= ∅, then Q preserves attribute privacy, by Lemma 56, and Q has no blank columns.

Now write Y as the disjoint union Y = {y} ∪ Y1 ∪ Y2, with Y2 = Y \ (Y1 ∪ {y}).
Observe that no element of X2 has attribute y. Observe further that every element in X1

has attribute y but has no attributes in Y2, by construction.
Let A be the restriction of R to X2 × Y1 and let B be the restriction of R to X2 × Y2.
If Y2 �= ∅, then B has no blank columns and ΦB = dl(ΦR, Y1 ∪ {y}). If |Y2| ≥ 2, then the

blank rows indexed by X1 that remain after deleting from R the columns indexed by Y1 ∪ {y}
are irrelevant and so B preserves attribute privacy (by Lemma 56 and by an argument similar
to that appearing in the proof of the Subclaim on page 95).

Let’s look at some cases:

• |Y2| ≥ |X2| = 1: Then any attribute of Y2 identifies the one element of X2. Since R
preserves attribute privacy, this implies both that |Y2| = 1 and that relation A is blank.
Consequently, every attribute in Y1 implies y in R. Since R preserves attribute privacy,
we conclude that Y1 = ∅. That means we are actually in the base case, with n = 2.

• |Y2| > |X2| ≥ 2: By removing some columns of B, we obtain a square relation to which
we can apply the induction hypothesis. That means every x ∈ X2 is uniquely identifiable
by the remaining columns. Since B preserves attribute privacy that means the columns
removed must have been blank, a contradiction.

• |Y2| = |X2| ≥ 2: We can apply the induction hypothesis directly to B. That again tells
us that every x ∈ X2 is uniquely identifiable by columns of Y2, both in B and in R.
We conclude that relation A must be blank and so Y1 = ∅, arguing as above. Thus
|X2| = |Y2| = n− 1, implying |X1| = 1. So y uniquely identifies x, as desired.

• |Y2| < |X2|: This means |Y1| ≥ |X1|. Additionally, |X1| ≥ 2, as otherwise y implies
all the attributes of Y1. If actually |Y1| > |X1|, then we could argue as above to see
that some columns of Q are blank, contrary to the construction of Q. So we have
that |Y1| = |X1| ≥ 2 and the induction hypothesis applies. Consequently x is uniquely
identifiable via Q, say as {x} = ψQ(γ), for some γ ⊆ Y1. If we adjoin y, we get that
ψR(γ ∪ {y}) = ψQ(γ) = {x}, as desired.
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Theorem 64 (Too Many Attributes). Let R be a relation on X × Y with no blank columns.
Suppose |Y | > |X| ≥ 1. Then R does not preserve attribute privacy.

Proof. The proof is a corollary to Lemma 63:
If |Y | > |X| = 1, then any one element of Y implies all the others.
Otherwise, suppose R preserves attribute privacy. We have |Y | > |X| > 1, so we can

delete some columns of R and apply Lemma 63 to the resulting relation. Every element of
X is therefore uniquely identifiable via the columns retained. Consequently, either there is
attribute inference in R or the discarded columns were blank, a contradiction.

Comment: One implication of this result and those in Appendix E is the old detective show
mantra “eliminate suspects”: Reduce the number of relevant individuals sufficiently, and some
attribute inference is assured. This amounts to moving from relation R to a subrelation Q
representing dl(ΨR, σ), with σ a set of “eliminated suspects”.

DISTRIBUTION A: Distribution approved for public release.



98 Inference Hardness

D Inference Hardness

We have so far spoken mainly of privacy preservation overall in a relation. One can also focus
on a single individual:

Definition 65 (Individual Privacy). Let R be a relation on X × Y and suppose x ∈ X.
We say that R preserves attribute privacy for x whenever (φR ◦ψR)(γ) = γ for all γ ⊆ Yx.

We have seen the following basic result within the proofs of other lemmas:

Lemma 66. Let R be a relation on X × Y , with both X and Y nonempty. Let x ∈ X. Then:
R preserves attribute privacy for x

if and only if
(φR ◦ ψR)(γ) = γ, for all γ of the form γ = Yx \ {y}, with y ∈ Yx.

Proof. I. If R preserves attribute privacy for x, then the condition is satisfied by definition.

II. Suppose R does not preserve attribute privacy for x. Then for some η ⊆ Yx,
η � (φR ◦ ψR)(η). We know (φR ◦ ψR)(Yx) = Yx by Corollary 46 on page 87, so by Lemma 47
on page 88 we can assume that η = Yx \ {y}, for some y ∈ Yx.

Lemma 66 tells us that it is fairly easy to check whether an individual’s attribute privacy is
preserved. One merely needs to check whether any one attribute is implied by all the remaining
attributes. That may be done quickly since the maps φR and ψR amount to set intersections.
Harder is finding a smallest set of attributes that implies another of the individual’s attributes.

Influenced by Lemma 59 on page 93, we formulate the following problem:

Definition 67 (Minimal Inference). MinInf is the following decision problem:
Given relation R on X × Y , x ∈ X, y ∈ Y , and k ≥ 0, is there a simplex γ ∈ ΦR with

γ ⊆ Yx \ {y} such that |γ| ≤ k and ψR(γ) ⊆ ψR({y})?

Lemma 68. MinInf is NP -complete

Proof. (A) Observe that the problem lies in NP : Given some γ, one can verify the stated
conditions in polynomial time. The verifications amount to set intersection, cardinality, and
subset computations, drawn from the columns and one row of R.

(B) We will establish NP -hardness by a reduction from Set Cover. Recall: Given a
collection of sets {S1, . . . , Sm}, Set Cover asks whether there is some subcollection of size at
most k such that the union of the subcollection is the overall union (often called the universe).

Given an instance of the Set Cover problem, we define the following relation:

• X = {x0} ∪ ⋃m
i=1 Si, with x0 a new element distinct from any elements in the sets Si.

• Y = {0, 1, . . . ,m}.

• R =
({x0} × Y

) ∪ ⋃m
i=1

{
(x, i) ∈ X × Y | x ∈ X \ Si

}
.
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In words: The 0th column of R is the singleton set {x0} and the ith column of R, for
i = 1, . . . ,m, is X \ Si, i.e., the complement of Si in the original set cover universe, but now
with x0 added. The row for x0 has entries for all possible attributes. All other rows have no
entry in column 0.

Reduction: Given an instance of Set Cover, we transform it into an instance of MinInf

using the relation R given above and by letting x = x0 and y = 0. The parameter k is the
same for both problems. Observe that Yx \ {y} = {1, . . . ,m}.

Observe further that |X| = |⋃m
i=1 Si| + 1 = n + 1, |Y | = m + 1, with n the number of

elements in the set cover universe and m the number of subsets specified for the set cover
problem. The reduction can therefore be computed in polynomial time.

To complete the proof, we will establish the following:

Claim: The answer to Set Cover is “yes” if and only if the answer to MinInf is “yes”.

I. A “yes” answer to Set Cover means that there is some set of indices γ ⊆ {1, . . . ,m},
with |γ| ≤ k such that

⋃
j∈γ Sj =

⋃m
i=1 Si. Therefore, since 0 �∈ γ,

ψR(γ) =
⋂
j∈γ

Xj =
⋂
j∈γ

(X \ Sj) = X \ (
⋃
j∈γ

Sj) = X \ (
m⋃
i=1

Si) = {x0} = ψR({0}) = ψR({y}).

In other words, ∅ �= ψR(γ) ⊆ ψR({y}) with γ ⊆ Yx \ {y} and |γ| ≤ k, meaning that the
answer to MinInf is “yes” as well.

II. A “yes” answer to MinInf means there is some γ ⊆ {1, . . . ,m} such that |γ| ≤ k and
∅ �= ψR(γ) ⊆ ψR({y}). Observe that ψR({y}) = ψR({0}) = {x0} and that

ψR(γ) =
⋂
j∈γ

Xj =
⋂
j∈γ

(X \ Sj) = X \ (
⋃
j∈γ

Sj).

The middle equality holds as before because 0 �∈ γ.
So we see that x0 ∈ X \ (

⋃
j∈γ Sj) ⊆ {x0}, telling us⋃
j∈γ

Sj = X \ {x0} =
m⋃
i=1

Si.

That means γ describes a set of indices sought for by Set Cover, with |γ| ≤ k, so the
answer to Set Cover is also “yes”.
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E Privacy Spheres

The aim of this appendix is to characterize privacy and inference in terms of spheres. Spheres
exhibit homogeneity, which is good for privacy, while still admitting a coordinate system for
identifiability.

We first prove a theorem characterizing individual attribute privacy, then a generalization
that holds for arbitrary elements of a relation’s poset, and finally a characterization of relations
that preserve both attribute and association privacy.

E.1 Individual Attribute Privacy

We first need a lemma as a tool. Recall also Definitions 6 and 65 (see pages 93 and 98).

Lemma 69. Let R be a relation on X × Y . Let x ∈ X be uniquely identifiable via R. Then:( ⋂
y∈Yx

Xy

)
\ {x} = ∅.

Moreover, R preserves attribute privacy for x if and only if( ⋂
y∈γ

Xy

)
\ {x} �= ∅, for all γ � Yx.

Proof. The first statement follows from the definition of unique identifiability:
⋂
y∈Yx

Xy =
ψR(Yx) = {x}.

For the second statement:
I. Assume that R preserves attribute privacy for x. Let γ � Yx. If

( ⋂
y∈γ Xy

) \ {x} = ∅,
then ψR(γ) =

⋂
y∈γ Xy = {x}, since x ∈ Xy whenever y ∈ γ ⊆ Yx (when γ = ∅, the vacuous

intersection is all of X, containing x). That says a proper subset of Yx identifies x, leading to
a contradiction, as in the proof of Lemma 60 on page 93.

II. Assume
( ⋂

y∈γ Xy

) \ {x} �= ∅ for all proper subsets γ of Yx. If R fails to preserve
attribute privacy for x, then by Lemma 66 there is some γ of the form Yx \ {y}, with
y ∈ Yx, such that γ � (φR ◦ ψR)(γ) = Yx. Applying ψR to both sides of that last
equality gives ψR(γ) = ψR(Yx) = {x}, by unique identifiability. That is a contradiction,
since ψR(γ) =

⋂
y∈γ Xy.

We now address our characterization of individual privacy, proving a theorem stated previously:

Theorem 9 (Individual Attribute Privacy). Let R be a relation on X × Y , with |X| > 1.
Suppose x ∈ X is uniquely identifiable via R. Let Q be the relation modeling Lk(ΨR, x).
Then the following three conditions are equivalent:

(a) R preserves attribute privacy for x,

(b) Lk(ΨR, x) � Sk−2, with k = |Yx|,
(c) ΦQ = ∂(Yx).
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Proof. The hypotheses ensure that Yx �= ∅ (and so also Y �= ∅). They also ensure that x is a
vertex of ΨR, so the link is not void. It could be the empty complex {∅}, of course.

Observe that Q is the restriction of R to X × Yx, with X =
⋃
y∈Yx

Xy \ {x}.

If X = ∅, then, reasoning as in the proof of Lemma 54 on page 90, we see that
Lk(ΨR, x) = {∅} = S−1. Furthermore, x does not share any of its attributes with any
other individuals in X. By convention, ΦQ = {∅} as well. If k = |Yx| = 1, meaning
x has a single attribute, then R preserves attribute privacy for x since |X| > 1. Also,
Sk−2 = S−1 = {∅} = ∂(Yx). So conditions (a), (b), (c) all hold. If k = |Yx| ≥ 2, then
any one attribute of Yx implies all the others, so condition (a) does not hold. Moreover,
conditions (b) and (c) also do not hold. In short, the theorem holds when X = ∅.

We now assume that X �= ∅. We then know that Lk(ΨR, x) = ΨQ � ΦQ by a dual version
of Lemma 54 and by Dowker duality. Definitionally, ∂(Yx) � Sk−2, with k = |Yx| > 0. We
therefore see that (c) implies (b). To see that (b) implies (c), observe that the underlying vertex
set of ΦQ is Yx, so ΦQ � Sk−2 means ΦQ = ∂(Yx), since no proper subset of a sphere can be
homotopic to that same sphere. To prove the theorem we therefore only need to establish that
conditions (a) and (c) are equivalent.

Recall the formulas relating φQ and φR from page 91 and dualize them here. We see that:

ψQ(χ) = ψR(χ) \ {x} =
( ⋂
y∈χ

Xy

)
\ {x}, for all ∅ �= χ ⊆ Yx.

I. Assume that R preserves attribute privacy for x. By Lemma 69 and the formula above
we see that ψQ(χ) �= ∅ for all nonempty proper subsets χ of Yx and that ψQ(Yx) = ∅, since x
is uniquely identifiable. Consequently, ΦQ contains every nonempty proper subset of Yx as a
simplex, but does not contain Yx. (Also, ΦQ contains the empty simplex since the complex is
not void.) Thus ΦQ = ∂(Yx).

II. Assume that ΦQ = ∂(Yx). Then ψQ(χ) �= ∅ for every nonempty proper subset χ of Yx.
By the formula above,

( ⋂
y∈χXy

) \ {x} �= ∅, for each such χ. Now suppose χ = ∅ � Yx.
Then:

∅ �= X = ψQ(∅) ⊆ X \ {x} =
( ⋂
y∈∅

Xy

)
\ {x}.

So we see that
( ⋂

y∈γ Xy

) \ {x} �= ∅ for every proper subset of Yx, implying that R
preserves attribute privacy for x, by Lemma 69.

Comment: It is impossible to satisfy the following three conditions simultaneously:
(1) x is uniquely identifiable, (2) |Yx| = 1, (3) X �= ∅.
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E.2 Group Attribute Privacy

We now generalize the previous theorem to arbitrary elements (σ, γ) of the doubly-labeled
poset PR associated with a relation R. We stated the generalized theorem previously in the
report, as Theorem 10, and replicate that below. One may view this generalized theorem as a
characterization of the conditions under which a group σ of individuals has its attribute privacy
preserved, as a whole not necessarily individually. Theorem 9 is a special case of Theorem 10,
with the “group” a single individual x, since ({x}, Yx) ∈ PR whenever x is uniquely identifiable
via R.

Theorem 10 (Group Attribute Privacy). Let R be a relation on X × Y .
Suppose (σ, γ) ∈ PR, with σ �= X. Let Q be the relation modeling Lk(ΨR, σ).
Then the following three conditions are equivalent:

(a) (φR ◦ ψR)(γ′) = γ′, for every subset γ′ of γ,

(b) Lk(ΨR, σ) � Sk−2, with k = |γ|,
(c) ΦQ = ∂(γ).

Proof. Reminder: Since (σ, γ) ∈ PR, ∅ �= σ ∈ ΨR, ∅ �= γ ∈ ΦR, φR(σ) = γ, and ψR(γ) = σ.

Thus also (φR ◦ ψR)(γ) = γ, meaning we can focus on proper subsets of γ for part (a).

Recall also that Q is the restriction of R to X × γ, with X =
⋃
y∈γ Xy \ σ.

If X = ∅, then Lk(ΨR, σ) = {∅} = S−1. By convention, ΦQ = {∅} as well. If k = |γ| = 1,
then Sk−2 = S−1 = {∅} = ∂(γ). The only proper subset of γ in this case is γ′ = ∅, and
(φR ◦ ψR)(∅) = φR(X) = ∅. (Reason: If y ∈ φR(X), then y ∈ γ, so γ = {y}, implying σ = X,
which is disallowed.) Thus conditions (a), (b), (c) all hold. If k = |γ| ≥ 2, then conditions
(b) and (c) cannot hold. Also, condition (a) does not hold since (φR ◦ ψR)({y}) = γ for each
y ∈ γ, bearing in mind that X = ∅ means Xy = σ for each y ∈ γ. In short, the theorem holds
when X = ∅.

We now assume that X �= ∅. As in the proof of Theorem 9, we see readily that conditions
(b) and (c) are equivalent, so we will prove that conditions (a) and (c) are equivalent. And, as
in the previous proof, dualizing a formula from page 91 gives this formula:

ψQ(χ) = ψR(χ) \ σ, for all ∅ �= χ ⊆ γ.

I. Assume that (φR ◦ ψR)(γ′) = γ′, for every subset γ′ of γ.
We will establish that ΦQ contains all proper subsets of γ but not γ, telling us ΦQ = ∂(γ).
Since ΦQ is not void, it contains the empty simplex.

Pick some ∅ �= γ′ � γ. Since (φR ◦ ψR)(γ′) = γ′, ψR(γ′) � σ.

The formula above therefore says ψQ(γ′) �= ∅, telling us γ′ ∈ ΦQ.

Similarly, ψQ(γ) = ψR(γ) \ σ = σ \ σ = ∅, so γ �∈ ΦQ.
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II. Assume that ΦQ = ∂(γ).

Recall that k = |γ| > 0. We look at two cases based on the value of k:

k = 1: In this case, γ = {y}, for some y ∈ Y , so σ = Xy and X = ∅, which we discussed
above.

k > 1: Suppose, for the sake of contradiction, that γ′ � (φR ◦ψR)(γ′), for some γ′ � γ. By
Lemma 47 on page 88, we can assume γ′ = γ \ {y}, for some y ∈ γ. Consequently,
(φR ◦ ψR)(γ′) = γ, which implies ψR(γ′) = σ. The formula above then says
ψQ(γ′) = ∅, whereas the fact that γ′ ∈ ΦQ means ψQ(γ′) �= ∅, a contradiction.

The following lemma, previously stated on page 29, relates privacy preservation in a link
to privacy preservation in the encompassing relation.

Lemma 11 (Interpreting Local Operators). Let R be a relation on X × Y . Suppose
(σ, γ) ∈ PR, with σ �= X. Let Q be the relation on X × γ that models Lk(ΨR, σ) and

suppose X �= ∅.
Then, for every γ′ ⊆ γ: (i) If γ′ �∈ ΦQ, then ψR(γ′) = σ,

(ii) If γ′ ∈ ΦQ, then ψR(γ′) � σ.

Moreover, in this case:

If (φQ ◦ ψQ)(∅) = ∅, then (φR ◦ ψR)(∅) = ∅.
If γ′ �= ∅, then (φQ ◦ ψQ)(γ′) = (φR ◦ ψR)(γ′).

Proof. Observe that for every γ′ ⊆ γ, one has γ′ ∈ ΦR and ψR(γ′) ⊇ ψR(γ) = σ.

By the formula on page 91 dualized, if ∅ �= γ′ ⊆ γ, then ψQ(γ′) = ψR(γ′) \ σ.

(i) Suppose γ′ �∈ ΦQ. Then γ′ �= ∅ since ∅ ∈ ΦQ. Also, ψQ(γ′) = ∅, so by the formula
above, ψR(γ′) = σ.

(ii) Suppose γ′ ∈ ΦQ. If γ′ = ∅, then ψR(∅) = X � σ, by hypothesis. If γ′ �= ∅, then
ψQ(γ′) �= ∅, so again by the formula above, ψR(γ′) � σ.

Turning to the “Moreover”:
If y ∈ (φR ◦ ψR)(∅), then y is an attribute for all individuals in X, so y ∈ γ and

y ∈ φQ(X) = (φQ ◦ ψQ)(∅).

Let ∅ �= γ′ ∈ ΦQ. By the formula on page 90 dualized, if κ ⊆ X, then φQ(κ) = φR(κ ∪ σ).

Therefore: (φQ ◦ ψQ)(γ′) = φQ(ψR(γ′) \ σ) = (φR ◦ ψR)(γ′).

Comment: Also, (φQ ◦ ψQ)(∅) = φQ(X) = φR
( ⋃

y∈γ Xy

)
=

⋂
y∈γ(φR ◦ ψR)({y}).
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E.3 Preserving Attribute and Association Privacy

In this subsection, we are interested in understanding relations that preserve both attribute
and association privacy. We will discover that this requirement is severely limiting. As one can
already see from Theorem 64 on page 97, if R is a nonvoid tight relation on X×Y that preserves
both attribute and association privacy, then |X| = |Y | = n. What are the possibilities?

n = 0: Not possible; this is the void relation.

n = 1: Not possible; such a relation does not preserve privacy; one can infer the single individual
or single attribute from nothing.

n = 2: As we have seen before, such a relation must be isomorphic to the following relation:

R y1 y2

x1 •
x2 •

Then both ΨR and ΦR are instances of the 0-sphere S0.

n ≥ 3: Now there are several possibilities:

– The relation could be isomorphic to a cyclic staircase relation:

R y1 y2 · · · · · · yn−1 yn

x1 • •
x2 • •
...

. . . . . .
...

. . . •
xn−1 • •
xn • •

Then both ΨR and ΦR are homotopic to the 1-sphere S1. Each is simply a linear
cycle of edges, with vertices in one complex dualizing to edges in the other.

– The relation could be isomorphic to a spherical boundary relation in which every
entry is present except that a diagonal is blank. For example, in the following
relation all entries are present except those for (xi, yn−i+1), i = 1, . . . , n:

R y1 y2 · · · · · · yn−1 yn

x1 • • • · · · •
x2 • • · · · • •
... • ... • • •
... • • • ... •

xn−1 • • · · · • •
xn • · · · • • •

Then ΨR and ΦR are each boundary complexes, namely ΨR = ∂(X) and ΦR = ∂(Y ).
Thus both are homotopic to the (n− 2)-sphere Sn−2.
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– Finally, R could have multiple components, each of which is one of the following: A
singleton, a cyclic staircase relation, or a spherical boundary relation, all as above.
(Observe that even though a 1 × 1 relation in and of itself preserves no privacy, a
relation can preserve privacy over a 1 × 1 subrelation when that subrelation is one
of several components.)

(Comment: the staircase and spherical relations are isomorphic when n = 3.)

The aim of this subsection is to prove that these are the only possibilities.

Lemma 70. Let R be a connected tight relation on X × Y , with |X| = |Y | ≥ 3, that preserves
both attribute and association privacy.

Let x ∈ X and define Q to be the relation on X × Yx that models Lk(ΨR, x).
Then ΨQ = ∂(X) and ΦQ = ∂(Yx), with |X| = |Yx|.

Proof. Observe that Yx �= ∅ since R is tight. Recall that X =
⋃
y∈Yx

Xy \ {x}, which is
nonempty since R is connected and X contains not just x.

By Lemma 63 on page 95, x is uniquely identifiable via R, so Theorem 9 on page 100 says
that ΨQ � Sk−2 and ΦQ = ∂(Yx), with k = |Yx|. If we can show that |X| = k, then we can
conclude that ΨQ = ∂(X).

The vertices of ΨQ generate the maximal simplices of ΦQ. In particular, there exist
x1, . . . , xk ∈ X such that Y 1, . . . , Y k are the maximal simplices of ΦQ, with Y i = Yxi ∩Yx, and
|Y i| = k − 1, for i = 1, . . . , k.

Let x̃ ∈ X. Then Yx̃ ∩ Yx ⊆ Y i ⊆ Yxi , for some i ∈ {1, . . . , k}.
That says ∅ �= ψR({x̃, x}) ⊆ ψR({xi}).
Since R preserves association privacy, the dualization of Lemma 59 on page 93 implies

x̃ = xi. Thus |X| = k.

Comment: Where did we use the assumption that each of X and Y has at least three
elements? In fact, for the proof it is enough to assume that |X| = |Y | ≥ 2. However, there is
no connected tight relation that preserves privacy when |X| = |Y | = 2.

Corollary 71. Let R be a connected tight relation on X × Y , with |X| = |Y |, that preserves
both attribute and association privacy.

Let y ∈ Y and suppose |Xy| ≥ 4.
Then Lk(ΦR, y) is not a linear cycle. (In other words, the relation Q that models

Lk(ΦR, y) is not isomorphic to a staircase relation.)

Proof. Arguing as in the proof of Lemma 70, now in dual form, we see that Lk(ΦR, y) � Sk−2,
with k = |Xy|. Since k − 2 ≥ 2, Lk(ΦR, y) is not a linear cycle.

Corollary 72. Let R be a connected tight relation on X×Y , with |X| = |Y | ≥ 3, that preserves
both attribute and association privacy.

Suppose {x, x′}, with x �= x′, is an edge (1-simplex) in ΨR.
Then |Yx| = |Yx′ |.
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Proof. Let k = |Yx| and k′ = |Yx′ |.
Observe that x′ is a vertex of Lk(ΨR, x) and x is a vertex of Lk(ΨR, x

′).
By the proof of Lemma 70, each of x′ and x generates a maximal simplex in the attribute

complex associated with the other’s link. That simplex is Yx ∩ Yx′ in both complexes.
So k − 1 = |Yx ∩ Yx′ | = k′ − 1, hence k = k′.

Corollary 73. Let R be a connected tight relation on X×Y , with |X| = |Y | ≥ 3, that preserves
both attribute and association privacy.

Then all rows and columns have the same number of nonblank entries.

Proof. By Lemma 50 on page 88 and Corollary 72 above, all rows have the same number kr of
nonblank entries. Dualizing, one sees that all columns have the same number kc of nonblank
entries. We claim that kc = kr. This assertion follows from Lemma 70 and its proof as follows:

Pick some x ∈ X and let Q be the relation modeling Lk(ΨR, x). By Lemma 70, ΨQ and
ΦQ are each boundary complexes, with kr = |Yx| vertices. Moreover, each element y ∈ Yx
generates a maximal simplex Xy ∩ X in ΨQ, which must have size kr − 1. The column Xy

contains one additional element, namely x. So kc = |Xy| = (kr − 1) + 1 = kr.

Theorem 74 (Privacy as Sphere). Let R be a nonvoid connected tight relation on X ×Y that
preserves both attribute and association privacy.

Then |X| = |Y | ≥ 3 and R is isomorphic to either a cyclic staircase relation or a spherical
boundary relation (each described on page 104).

Proof. As we commented previously, Theorem 64 implies that |X| = |Y | = n. Connectedness
further means that n ≥ 3.

By Corollary 73, all rows and columns in R have the same number of nonblank entries. In
other words, |Xy| = |Yx| = k, for all x ∈ X and all y ∈ Y , for some fixed k. By connectedness,
k ≥ 2.

By Lemma 63 on page 95, each x ∈ X is uniquely identifiable via R. Dualized, each y ∈ Y
is uniquely identifiable via R as well.

If k = 2, then ΨR and ΦR contain vertices and edges but no higher-dimensional simplices.
By duality, each vertex therefore has at most two incident edges. By unique identifiability,
each vertex has exactly two incident edges. Thus, by connectedness, each complex is a linear
cycle. So R is isomorphic to a staircase relation.

Now assume that k ≥ 3.
Pick a y ∈ Y and consider the decomposition of Figure 52, similar to the one we saw in

the proof of Lemma 63. (We indicate blank entries either by blanks or by explicit “0”s.)
Let X1 = Xy and write X = X1 ∪X2 with X2 = X \X1. X1 �= ∅ since every column of R

has k nonblank entries and X2 �= ∅ since R preserves attribute privacy.
Let Q model Lk(ΦR, y). So Q is R restricted to X1 ×Y1, with Y1 =

⋃
x∈X1

Yx \ {y}. Y1 �= ∅
because every row of R has k nonblank entries. In particular, there are exactly k − 1 entries
in each row of Q, so at least two entries in each row.

Now write Y as the disjoint union Y = {y} ∪ Y1 ∪ Y2, with Y2 = Y \ (Y1 ∪ {y}). Observe
that every element in X1 has attribute y but has no attributes in Y2, by construction.

By the dual to Lemma 70, we know that ΨQ = ∂(X1) and ΦQ = ∂(Y1), with k = |X1| = |Y1|.
Therefore, for each each y ∈ Y1, column Xy of R has k− 1 entries that lie in X1 and one entry
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R y

{

{

X1

Y1

Q 0

{
{

X2

Y2

0 A B

Figure 52: Relation R decomposed into blocks for the proof of Theorem 74.

that lies in X2. We claim that the X2 entry is the same across all columns Xy as y varies
over Y1. For otherwise, at least two such columns would have an intersection (nonempty, since
k − 2 ≥ 1) contained wholly within Xy, implying that R permits attribute inference after all,
by the proof of Lemma 59 on page 93. Call that common element x. Observe that Yx = Y1

since every row of R has exactly k elements. Consequently, the block diagram for R becomes
as in Figure 53.

R y

{

{

X1

Y1

x

Q

C

0

{

{

X2

Y2

00

Figure 53: Relation R decomposed further.

Observe that no element of X1 ∪ {x} has any attributes in Y2 and that no element of
X2 \ {x} has any attributes in Y1 ∪ {y}, by the row and column cardinality constraints. That
means relation C, which is the restriction of R to (X2 \ {x})×Y2 is disconnected from the rest
of R, if C were to exist. We conclude that Y2 = ∅ and that X2 = {x}. Thus, finally, R must
decompose as in Figure 54. As we have seen, Q is nearly a full relation, missing a diagonal.
We now see that R is also nearly a full relation, missing a diagonal. Thus ΨR = ∂(X) and
ΦR = ∂(Y ), meaning R is a spherical boundary relation, as claimed.
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{X1

R y

{ Y1

x

R y

{

{

X1

Y1

x

Q ≅

Figure 54: Relation R decomposes diagonally.

Corollary 75. Let R be a nonvoid tight relation that preserves both attribute and association
privacy. Decompose R into its connected components as R = R1 ∪ · · · ∪R�, with Ri a relation
on Xi × Yi, as per the proof of Lemma 51 on page 89. Then Ri is either a singleton or a
staircase relation or a spherical boundary relation and |Xi| = |Yi|, i = 1, . . . , 	.

Comment: When 	 = 2 and each of R1 and R2 is a singleton, then the Dowker complexes
of R itself, ΨR and ΦR, are each an instance of S0.

Proof. Consider some Ri.
Suppose that Xi ∈ ΨRi

. Then some attribute y ∈ Yi is shared by all individuals in Xi.
If there were any other attributes in Yi, then each of those would individually imply y in R.
Since R preserves attribute privacy, |Yi| = 1. Consequently, since R also preserves association
privacy, |Xi| = 1, so Ri is a singleton.

If Ri is not a singleton, then Xi �∈ ΨRi
and similarly Yi �∈ ΦRi

.
Consequently, Lemma 51 and Corollary 53 on page 89 tell us that Ri is a nonvoid connected

tight relation that preserves both attribute and association privacy. Theorem 74 completes the
proof.
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F Poset Chains

Recall Definition 12, on page 38, of the Galois lattice P+
R associated with a relation R, and

Definition 13, on page 41, defining informative attribute release sequences. In this appendix
we will explore connections between these two concepts.

F.1 Maximal Chains and Informative Attribute Release Sequences

Let R be a nonvoid relation on X × Y . Suppose {(σk, γk) < · · · < (σ1, γ1) < (σ0, γ0)} is a
maximal chain in P+

R . Then, for 1 ≤ i ≤ k, σi � σi−1 and γi � γi−1.
Also, σ0 = X and γk = Y . Note that γ0 = φR(X) and σk = ψR(Y ). Consequently, γ0 �= ∅

if and only if X ∈ ΨR, and σk �= ∅ if and only if Y ∈ ΦR.

We sometimes speak of a maximal chain at and above (σ, γ), by which we mean a chain
{(σ, γ) < · · · < (σ1, γ1) < (σ0, γ0)} in P+

R that is maximal among all such chains. Such a chain
is a prefix of a full maximal chain in P+

R (“prefix” with respect to our subscript ordering, which
starts at the top of a poset and moves downward).

Lemma 20 (Informative Attributes from Maximal Chains). Let R be a relation on X × Y ,
with both X and Y nonempty. Suppose {(σk, γk) < · · · < (σ1, γ1) < (σ0, γ0)}, with k ≥ 1, is a
maximal chain in P+

R .
Define y1, . . . , yk by selecting some yi ∈ γi \ γi−1, for each i = 1, . . . , k.
Then y1, . . . , yk is an informative attribute release sequence for R.
Moreover, (φR ◦ ψR)({y1, . . . , yi}) = γi for each i = 0, 1, . . . , k.

Proof. Establishing the “Moreover” also establishes the “iars” assertion.
The proof is by induction on i.
For the base case, i = 0 and we need to show that (φR ◦ ψR)(∅) = γ0.
Calculating, (φR ◦ ψR)(∅) = φR(X) = γ0, by our earlier comments about maximal chains.
For the induction step, we assume that, for some 1 ≤ i ≤ k, the assertion holds for indices

smaller than i and we need to show the assertion holds for i. First, observe:

ψR({y1, . . . , yi}) = ψR({y1, . . . , yi−1}) ∩ Xyi
= ψR(γi−1) ∩ Xyi

= ψR(γi−1 ∪ {yi}).

(The middle equality follows from the induction hypothesis and a dual version of
Corollary 45 from page 87, specifically because (φR ◦ ψR)({y1, . . . , yi−1}) = γi−1 and
ψR ◦ φR ◦ ψR = ψR.)

Since γi−1 � γi−1 ∪ {yi} ⊆ γi,

γi−1 = (φR ◦ ψR)(γi−1) � (φR ◦ ψR)(γi−1 ∪ {yi}) ⊆ (φR ◦ ψR)(γi) = γi,

By maximality of the original chain and the nature of elements in P+
R , we see that

(φR ◦ ψR)(γi−1 ∪ {yi}) = γi, so (φR ◦ ψR)({y1, . . . , yi}) = (φR ◦ ψR)(γi−1 ∪ {yi}) = γi.
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Here is a partial converse:

Lemma 21 (Chains from Informative Attributes). Let R be a relation on X×Y , with both X
and Y nonempty. Suppose y1, . . . , yk is an informative attribute release sequence for R, with
k ≥ 1.

Let γi = (φR ◦ ψR)({y1, . . . , yi}) and σi = ψR(γi), for i = 1, . . . , k.
Let γ0 = φR(X). Then {(σk, γk) < · · · < (σ1, γ1) < (X, γ0)} is a chain in P+

R .

Comment: The resulting chain need not be maximal.

Proof. Observe that each (σi, γi) ∈ P+
R by construction, so we need to establish the total

ordering. Let’s define σ0 = X. We need to show that σi � σi−1, for each i = 1, . . . , k.
Since {y1, . . . , yi} ⊇ {y1, . . . , yi−1}, we see that σi ⊆ σi−1. If σi = σi−1, then also γi = γi−1,

contradicting the fact that yi ∈ γi \ γi−1 (which is true by the nature of informative attribute
release sequences).

As a corollary to Lemmas 20 and 21, one sees that every informative attribute release
sequence (iars) for R is a subsequence of an iars derived from a maximal chain in P+

R .
(Technically, one needs to show that any nonempty subsequence of an iars is itself an iars.
And one needs to show that extending any chain obtained via Lemma 21 to a maximal chain
retains the original iars as a subsequence of one subsequently obtainable via Lemma 20. All
that is straightforward.)

F.2 Chains and Links

We are interested in understanding how chains and informative attribute release sequences
behave as one passes to links. (Small caution: whereas we were looking at chains in P+

R before,
we focus here on PR (and PQ).)

Lemma 76 (Chains in Links). Let R be a relation on X × Y , with both X and Y nonempty
and suppose (σ, γ) ∈ PR. Let Q be the relation modeling Lk(ΨR, σ). Then

PQ =
{

(σ′ \ σ, γ′) ∣∣ (σ, γ) < (σ′, γ′) ∈ PR
}
.

Comments:

• Q is the restriction of R to X × γ, with X =
⋃
y∈γ Xy \ σ.

• PQ could be empty. This occurs precisely when (σ, γ) is a maximal element of PR, which
occurs precisely when Lk(ΨR, σ) = {∅}.

• If σ = X, then Lk(ΨR, σ) = {∅} and so PQ = ∅, given Definition 8 on page 27. Note
however that Definition 18 of Q(σ, γ) on page 43 would mean that PQ(σ,γ) is degenerate.

• PQ never contains the element 0̂Q = (∅, γ) of P+
Q . That element corresponds to (σ, γ)

in PR, consistent with the idea of Lemma 11 on page 29 that one has “localized (to) σ
upon observing γ”. (See also Definition 15 on page 42.)
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• PQ could contain the element 1̂Q = (X,χ) of P+
Q , for some χ � γ. That happens precisely

when X �= ∅ and all individuals in X share an attribute of γ, in which case χ �= ∅.

Proof. The proof relies on dual versions of the formulas on pages 90–91.

I. Suppose (κ, η) ∈ PQ. So κ �= ∅ and η �= ∅. Also, ΨQ = Lk(ΨR, σ), so κ ∩ σ = ∅ and
κ∪σ ∈ ΨR. Let σ′ = κ∪σ. So σ � σ′. We can take γ′ to be η since η = φQ(κ) = φR(σ′). Note
that ψR(γ′) = ψQ(η) ∪ σ = κ ∪ σ = σ′. We have shown that (σ′, γ′) ∈ PR and (σ, γ) < (σ′, γ′).

II. Suppose (σ′, γ′) ∈ PR and (σ, γ) < (σ′, γ′). So σ � σ′ and γ � γ′. Let κ = σ′ \ σ. Note
that κ �= ∅ and γ′ �= ∅. Moreover, κ ∈ Lk(ΨR, σ), so X �= ∅.

Verifying correspondence: φQ(κ) = φR(σ′) = γ′ and ψQ(γ′) = ψR(γ′) \ σ = σ′ \ σ = κ.
We have shown that (σ′ \ σ, γ′) ∈ PQ.

Corollary 77 (Order Preservation). Let R and Q be as in Lemma 76, with (σ, γ) ∈ PR.
Then (σ, γ) < (σ1, γ1) < (σ2, γ2) in PR if and only if (σ1 \ σ, γ1) < (σ2 \ σ, γ2) in PQ.

Proof. By Lemma 76 and because:
(a) σ � σ1 � σ2 implies ∅ �= σ1 \ σ � σ2 \ σ ;
(b) ∅ �= κ1 � κ2 implies σ � (κ1 ∪ σ) � (κ2 ∪ σ).

Corollary 78 (Maximal Chain Preservation). Let R and Q be as in Lemma 76, with
(σ, γ) ∈ PR. Then {(σ, γ) < (σk, γk) < · · · < (σ1, γ1)} is a maximal chain at and above
(σ, γ) in PR if and only if {(σk \ σ, γk) < · · · < (σ1 \ σ, γ1)} is a maximal chain in PQ.

Proof. By Lemma 76 and Corollary 77, we know that {(σ, γ) < (σk, γk) < · · · < (σ1, γ1)} is a
chain extending upward from (σ, γ) in PR if and only if {(σk \ σ, γk) < · · · < (σ1 \ σ, γ1)} is a
chain in PQ.

Maximality follows for the same reason: Refine or extend a chain in one poset and one can
refine or extend the corresponding chain in the other poset as well.

Comment about “length”: Recall that the length of a chain in a poset is one less than
the number of elements in the chain. We also speak of the length of an informative attribute
release sequence y1, . . . , yk, which is k, the actual number of elements in the sequence.

In the context of Lemmas 20 and 21, there is a happy alignment of definitions: The length
k of a longest iars in R is the length 	(P+

R ).
In thinking about poset lengths, bear in mind that 	(PR) may be any of 	(P+

R ), 	(P+
R ) + 1,

or 	(P+
R ) + 2, depending on whether the top and/or bottom elements of P+

R already lie in PR.

Corollary 79 (Longest Localization Sequences). Let R be a relation on X × Y , with both X
and Y nonempty and suppose (σ, γ) ∈ PR. Let Q be the relation modeling Lk(ΨR, σ).

If X �∈ ΨR, then the length of a longest informative attribute release sequence for localizing
σ in R is 	(PQ) + 2. If X ∈ ΨR and σ �= X, then that length is 	(PQ) + 1.

(Note: If σ = X ∈ ΨR, then the length is 0; one can identify X in R without observation.)

Comment: If PQ does not contain the top element 1̂Q of P+
Q , then 	(PQ)+2 = 	(P+

Q ), since
PQ never contains the bottom element 0̂Q. This occurs precisely when there is no attribute
that is shared by all the individuals in the link.
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Proof. Let us address one special case first, namely when Lk(ΨR, σ) is the empty complex. In
that case, PQ is empty, so 	(PQ) = −1. Also observe that in this case any y ∈ γ identifies σ,
as otherwise X in the definition of Q would not be empty. So long as σ is not all of X, we do
indeed have that 	(PQ) + 2 = 1. (Observe, by the way, that it is impossible for the following
conditions to be satisfied simultaneously: σ � X ∈ ΨR and Lk(ΨR, σ) = {∅}.)

Suppose Lk(ΨR, σ) is not the empty complex and that X �∈ ΨR. Lemmas 20 and 21 imply
that a longest informative attribute release sequence for localizing σ comes from a longest
maximal chain in P+

R at and above (σ, γ) and thus may be obtained by Corollary 78 from a
maximal chain in PQ. The length of the chain in PQ is two shorter than that in PR. (Why?
Because (σ, γ) ∈ P+

R becomes 0̂Q ∈ P+
Q , which is not present in PQ, and because the top

element 1̂R = (X, ∅) ∈ P+
R disappears altogether.) So 	(PQ) + 2 gives the correct length of

the iars in R.

Suppose Lk(ΨR, σ) is not the empty complex but that σ � X ∈ ΨR. The argument
proceeds as before except that now the top element of P+

R looks like 1̂R = (X, γ0), with γ0 �= ∅.
It appears in PR. Consequently, 1̂Q = (X\σ, γ0) and 1̂Q now also appears in PQ. So a maximal
chain in PQ is now only one shorter than a corresponding maximal chain in PR at and above
(σ, γ), meaning 	(PQ) + 1 gives the correct length of a longest iars.

F.3 Isotropy

We turn now to the proof of our isotropy sphere theorem, with the theorem replicated here
from earlier in the report. Recall also Definitions 13, 14, 15, 16, and 18 from pages 41–43.

Theorem 19 (Isotropy = Minimal Identification = Sphere). Let R be a relation and suppose
∅ �= γ ∈ ΦR. Let σ = ψR(γ). Then the following four conditions are equivalent:

(a) γ is isotropic.

(b) γ is minimally identifying (for σ).

(c) ΨQ(σ,γ) � Sk−2, with k = |γ|.
(d) ΦQ(σ,γ) = ∂(γ).

Proof. Observe that σ ∈ ΨR and γ ⊆ (φR ◦ ψR)(γ) = φR(σ), so constructing Q(σ, γ) is valid.
Note that γ �∈ ΦQ(σ,γ). For if there were some x ∈ X such that (x, y) ∈ Q(σ, γ) ⊆ R for

every y ∈ γ, then x ∈ σ, but σ is disjoint from X.

If |γ| = 1, then Sk−2 = S−1 = {∅} = ∂(γ). Write γ = {y}. Then γ is isotropic if and only if
y constitutes an informative attribute release sequence if and only if y �∈ φR(X). If y ∈ φR(X),
then σ = X so our conventions say ΨQ(σ,γ) = ΦQ(σ,γ) = ∅ �= {∅}. Moreover, ψR(∅) = σ, so γ
is not minimally identifying. If y �∈ φR(X), then σ = Xy � X and X = ∅, and both ΨQ(σ,γ)

are ΦQ(σ,γ) are instances of {∅}, by our conventions. Moreover, ψR(∅) �= σ. So we see that (a),
(b), (c), (d) are all equivalent when |γ| = 1.

Henceforth assume that |γ| > 1. It will be convenient to write γ = {y1, . . . , yk}, with k > 1,
with the element indexing chosen arbitrarily.
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As we have observed elsewhere, (c) and (d) are equivalent by Dowker duality and the fact
that only a boundary complex can produce Sk−2 homotopy type when the underlying vertex
set has size k.

We will first show that (a) implies (d) and (b):
Suppose that γ is isotropic.
We wish to show that all proper subsets of γ are simplices in ΦQ(σ,γ). Without loss of

generality, consider {y1, . . . , yk−1}. If we can show that ψR({y1, . . . , yk−1}) \ σ �= ∅, then
that provides an x ∈ X such that (x, yi) ∈ R for i = 1, . . . , k − 1, thereby establishing that
{y1, . . . , yk−1} ∈ ΦQ(σ,γ). It also establishes that ψR({y1, . . . , yk−1}) � σ. Since the “missing
element” yk is arbitrary in γ, we see that ΦQ(σ,γ) = ∂(γ) and that γ is minimally identifying.

Suppose otherwise: ψR({y1, . . . , yk−1}) = σ = ψR(γ), so also (φR ◦ ψR)({y1, . . . , yk−1}) =
(φR ◦ ψR)(γ) ⊇ γ. That says yk ∈ (φR ◦ ψR)({y1, . . . , yk−1}), violating the assumption that
any ordering of γ is an informative attribute release sequence.

We will now show that (d) implies (a):
Suppose that ΦQ(σ,γ) = ∂(γ).

If some ordering of γ is not an informative attribute release sequence, then we can rearrange
the sequence further to establish that the last element is implied by all the others, i.e., that
yk ∈ (φR ◦ ψR)({y1, . . . , yk−1}). Arguing as we did in the proof of Lemma 20 on page 109, we
obtain:

ψR
({y1, . . . , yk−1}

)
= (ψR ◦ φR)

(
ψR

({y1, . . . , yk−1}
))

= ψR

(
(φR ◦ ψR)

({y1, . . . , yk−1}
))

= ψR

(
{yk} ∪ (φR ◦ ψR)

({y1, . . . , yk−1}
))

= Xyk
∩ ψR

(
(φR ◦ ψR)

({y1, . . . , yk−1}
))

= Xyk
∩ ψR({y1, . . . , yk−1})

= ψR
({y1, . . . , yk}

)
= ψR(γ)

= σ.

On the other hand, since {y1, . . . , yk−1} ∈ ΦQ(σ,γ), there is a witness x ∈ X, meaning
x ∈ ψR({y1, . . . , yk−1}), which contradicts X ∩ σ = ∅.

Finally, we will show that (b) implies (d):
Suppose that γ is minimally identifying.
Observe that ψR({y1, . . . , yk−1}) � σ. As above, this establishes {y1, . . . , yk−1} ∈ ΦQ(σ,γ),

from which we conclude that ΦQ(σ,γ) = ∂(γ), since the missing element yk was arbitrary.
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G Many Long Chains

This appendix provides a proof of Theorem 25 from page 47.

First, we need some tools:

Recall what it means for a poset to be almost a join-based lattice from Definition 24 on page 47.

Definition 80 (Join Completion). Suppose P is almost a join-based lattice. Let S be a subset
of P . The bounded join-completion of S in P is the set S∨ defined by:

S∨ = {p ∈ P | p ≤ s, some s ∈ S, and p = s1 ∨ · · · ∨ sm, with each si ∈ S, and m ≥ 1}.
Here and in the rest of this appendix, “≤” and “<” refer to the partial order on P , and

“∨” denotes the join operation on P ∪ {1̂}.
We also define Smax to consist of all the maximal elements of S relative to the partial order

inherited from P .

The following facts will be useful. Assume S ⊆ P , with P almost a join-based lattice. Then:

1. S∨ is almost a join-based lattice. The join operation for elements p, q ∈ S∨ is given by:

p ∨S∨ q =

{
p ∨ q, if p ∨ q ≤ s, for some s ∈ S;

1̂, otherwise.

2. S ⊆ S∨ and Smax = (S∨)max.

3. (S∨)∨ = S∨.

4. If T ⊆ S, then T∨ ⊆ S∨.

5. If T ⊆ S∨ such that Smax \ T �= ∅, then T∨ � S∨.

6. Let ∅ � T ⊆ S. Then the poset

ST =
{
p ∈ S∨ | p ≤ t, for all t ∈ T

}
is almost a join-based lattice. The join operation for elements p, q ∈ ST is given by:

p ∨ST
q =

{
p ∨ q, if p ∨ q ≤ t, for all t ∈ T ;

1̂, otherwise.

7. Fact 6 holds as well for the poset S′
T = { p ∈ S∨ | p < t, for all t ∈ T },

now using “<” in place of “≤” throughout.
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Lemma 81 (Contractibility of Closed Semi-Intervals). Suppose S ⊆ P , with P almost a join-
based lattice. Let ∅ � T ⊆ S and define the poset ST as in Fact 6 on page 114.

If ST �= ∅, then ST is contractible.

Proof. Suppose p and q are arbitrary elements of ST . Every element of T is an upper bound
for both p and q. Since T is not empty, this means p∨ q exists in P and p∨ q ≤ t for all t ∈ T .
Since t ∈ S, we have that p ∨ q ∈ S∨ and thus p ∨ q ∈ ST as well. Consequently, the lattice
ST ∪ {0̂, 1̂} is noncomplemented, implying that ST is contractible, by a fact on page 84.

Intuitively: ∆(ST ) is a cone with apex
∧
T , the meet of all the upper bounds.

Caution: The lemma need not hold for S′
T as defined in Fact 7.

We now specialize a topological tool to our current setting. We refer to the lemma as “cycle
tightening” because we will apply the lemma with p ∈ Smax and with z a reduced homology
generator of ∆(P ). The lemma will allow us to move that generator downward in P .

Lemma 82 (Cycle Tightning). Let P be almost a join-based lattice. Suppose z =
∑

i niτi is a
nontrivial reduced k-cycle for ∆(P ), i.e., 0 �= z ∈ Ck(∆(P ); Z) and ∂̃z = 0, for some k ≥ 0.

Define S = ‖z‖ and K = {τ ∈ ∆(P ) | τ ⊆ S∨ }.
Let p ∈ S.

If H̃k−1(Lk(K, p); Z) = 0, then there exists η ∈ Ck+1(St(K, p); Z) such that p /∈ ‖z + ∂̃η‖,
now viewing η ∈ Ck+1(∆(P ); Z).

Proof. Let W = St(K, p) and A = Lk(K, p). Note that A is not the empty complex (that
observation follows from the reduced homology assumption when k = 0 and the fact that p is
part of a simplex containing at least one other element when k > 0).

The long exact sequence for a pair [12] therefore gives us the following exact sequence:

0 = H̃k(W ; Z) −→ H̃k(W,A; Z) −→ H̃k−1(A; Z) = 0

The left 0 comes from W being a cone and the right 0 comes from the lemma’s hypotheses.
Consequently, H̃k(W,A; Z) = 0. Now let zS consist of the part of z that lies within W , so:

zS =
∑
τi∈W

niτi.

Since z is a reduced k-cycle with support in verts(K), zS is a reduced relative k-cycle for
the pair (W,A).

Since H̃k(W,A; Z) = 0, zS must be a reduced relative boundary, so there exists κ ∈
Ck+1(W ; Z) such that zS = ∂̃κ+ γ, with γ ∈ Ck(A; Z).

Now let η = −κ and view η ∈ Ck+1(∆(P ); Z).
Observe that ‖zS + ∂̃η‖ ⊆ verts(A) ⊆ verts(dl(K, p)). Consequently, p �∈ ‖z + ∂̃η‖.

Lemma 83 (Maximal Element Cardinality). Let P be almost a join-based lattice. Suppose
P has reduced integral homology in dimension k ≥ 0, that is, H̃k(∆(P ); Z) �= 0. Consider a
reduced homology generator z =

∑
i niτi, for some collection {τi} such that ni �= 0 for each τi.

Let S = ‖z‖. Then |Smax| ≥ k + 2.
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Proof. Since S ⊆ S∨, z ∈ Ck(∆(S∨); Z). If there exists η ∈ Ck+1(∆(S∨); Z) such that ∂̃η = z,
then z would also be a reduced boundary in ∆(P ). So, H̃k(∆(S∨); Z) �= 0 and z is a reduced
homology generator for ∆(S∨).

Recall the notation ST in Fact 6 on page 114. We claim that⋃
t∈Smax

∆(S{t}) = ∆(S∨).

To see this, first observe that the empty simplex ∅ appears in both these sets. Then:

I. Suppose ∅ �= σ ∈ ∆(S{t}) for some t ∈ Smax. Being a chain in S{t}, we can write σ as
{p0 < p1 < · · · < p�}, for some 	 ≥ 0, with each pi ∈ S∨ and with p� ≤ t ∈ Smax ⊆ S.

Consequently, σ ∈ ∆(S∨) as well.

II. Suppose ∅ �= σ ∈ ∆(S∨). Then σ = {p0 < p1 < · · · < p�}, for some 	 ≥ 0, with each
pi ∈ S∨. By definition of S∨ and Smax, p� ≤ s ≤ t, for some s ∈ S and t ∈ Smax.

Consequently, σ ∈ ∆(S{t}) as well, for that t.

Similarly, one sees that, for any ∅ �= T ⊆ S,⋂
t∈T

∆(S{t}) = ∆(ST ).

The complex on the right is either empty or contractible, by Lemma 81, so we see that the
intersection on the left is either empty or contractible.

A variation of the Nerve Lemma now implies that ∆(S∨) and the nerve of the simplicial
complexes

{
∆(S{t})

}
t∈Smax

have the same homotopy type (see Theorem 10.6(i) in [1]).

Since ∆(S∨) has reduced homology in dimension k, so does the nerve of
{

∆(S{t})
}
t∈Smax

.

The nerve of
{

∆(S{t})
}
t∈Smax

is isomorphic to a simplicial complex with underlying vertex
set Smax. In order for a simplicial complex to have reduced homology in dimension k it must
have at least k + 2 vertices. Thus |Smax| ≥ k + 2.

We now turn to the proof of the main theorem, the statement of which is replicated here:

Theorem 25 (Many Chains). Let P be almost a join-based lattice. Suppose P has reduced
integral homology in dimension k ≥ 0, that is, H̃k(∆(P ); Z) �= 0.

Then there are at least (k + 2)! maximal chains in P of length at least k.

Proof. The proof is by induction on k.

I. For the base case, k = 0, observe that ∆(P ) must have at least two vertices that are
incomparable in P , as otherwise ∆(P ) would be either empty or contractible. Each vertex sits
inside a maximal chain of P . The chains are distinct since the vertices are incomparable.

II. For the induction step, assume that, for some k ≥ 1, the theorem holds for all relevant
P with reduced homology in dimension k−1. We need to establish the theorem for all relevant
P with reduced homology in dimension k.
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Let z =
∑

i niτi be a homology generator of H̃k(∆(P ); Z), with ni �= 0 for all τi.

Define S and K by S = ‖z‖ and K = {τ ∈ ∆(P ) | τ ⊆ S∨ }. Interpretation: S is the
support of the homology generator z and K is the subcomplex of ∆(P ) formed by restricting
to the bounded join-completion of z’s support.

We now have an inner induction, which we will describe as an iterative algorithm:
(Notation: superscript (j) indicates the jth iteration.)

1. Initialize with z(0) = z, S(0) = S, and K(0) = K.

2. Suppose z(j), S(j), and K(j) have been defined, with z(j) a homology generator of

H̃k(∆(P ); Z), and with S(j) and K(j) similar in meaning to S and K, now based on z(j).

In particular, z(j) has support S(j) and all of K(j)’s vertices lie in (S(j))∨.

Pick some p ∈ (S(j))max such that H̃k−1(Lk(K(j), p); Z) = 0.

If no such p exists, then the loop ends.

3. Otherwise, invoke Lemma 82 to find an η ∈ Ck+1(St(K(j), p); Z) such that p /∈ ‖z(j)+∂̃η‖.

Let z(j+1) = z(j) + ∂̃η, S(j+1) = ‖z(j+1)‖, and

K(j+1) =
{
τ ∈ ∆(P )

∣∣∣ τ ⊆ (S(j+1))∨
}
.

Observe that S(j+1) ⊆ ‖z(j)‖ ∪ ‖∂̃η‖ ⊆ (S(j))∨.
On the other hand, p ∈ (S(j))max \ S(j+1). So by Fact 5 on page 114, (S(j+1))∨ � (S(j))∨.
In other words, the possible vertex set for the simplicial complex shrinks with each iteration

and so the loop must eventually end, P being finite.

Given this iterative algorithm, we can now assume without loss of generality that
H̃k−1(Lk(K, p); Z) �= 0 for each p that is a maximal element in the support S of the given
homology generator z.

Observe that Lk(K, p) = {τ ∈ ∆(P ) | τ ⊆ S∨ and s < p for every s ∈ τ }, when p ∈ Smax.

Consequently, Lk(K, p) = ∆(Qp), where Qp is the subposet of P given by

Qp =
{
s ∈ S∨ | s < p

}
.

By Fact 7 on page 114, Qp is itself almost a join-based lattice.
Qp has reduced integral homology in dimension k−1, so by the induction hypothesis, there

are at least (k + 1)! maximal chains in Qp of length at least k − 1. As the description of Qp
makes clear, we can extend each of these chains in P by adding p as a top element, then further
refine and/or extend each chain as needed into a maximal chain in P . Distinct chains remain
distinct after this augmentation since the process only adds elements of P that lie outside Qp.

Consequently, we obtain for each p ∈ Smax at least (k + 1)! distinct maximal chains in P
of length at least k, each touching p. A maximal chain in P cannot contain more than one
element of Smax since such elements are necessarily incomparable. Letting p vary over Smax

therefore produces at least |Smax| · (k + 1)! distinct maximal chains in P of length at least k.
By Lemma 83, |Smax| ≥ k + 2. So P contains at least (k + 2)! distinct maximal chains of

length at least k.
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Corollary 26 (Holes Reduce Inference). Let R be a relation. Suppose PR has reduced integral
homology in dimension k ≥ 0. Then there are at least (k+ 2)! maximal chains in PR of length
at least k.

Proof. The assertion follows from Theorem 25, since PR is almost a join-based lattice.
(The join operation is exactly that of P+

R . In particular, the top element 1̂R of P+
R is not

already in PR, since PR has homology, so we may adjoin that as the upper bound 1̂ for PR.)

Recall informative attribute release sequences from Appendix F.

Corollary 27 (Holes Defer Recognition). Let R be a relation and let (σ, γ) ∈ PR.

Define Q = Q(σ, γ) as per Definition 18 and recall Definition 16, from pages 42–43.
Suppose PQ has reduced integral homology in dimension k ≥ 0.

Then there are at least (k + 2)! distinct informative attribute release sequences y1, . . . , y�
for R, each with 	 ≥ k + 2, such that ψR({y1, . . . , y�}) = σ. Consequently, rslow(σ) ≥ k + 2.

Proof. By Corollary 26, PQ contains at least (k + 2)! maximal chains of length at least k.
The rest of the argument is much like that in the proof of Corollary 79 on page 111:

• Each maximal chain in PQ gives rise to a maximal chain in P+
R at or above (σ, γ).

• Distinctness in PQ carries over to P+
R .

• In moving from PQ to P+
R one adds two elements:

1. One adds (σ, γ), corresponding to 0̂Q in P+
Q .

2. PQ has homology, so no attribute is shared by all individuals, either in Q or R.
One thus also adds the top element 1̂R of P+

R , corresponding to 1̂Q in P+
Q .

Summary: Each distinct maximal chain of PQ gives rise to a distinct maximal chain at or
above (σ, γ) in P+

R of length at least k+2, and therefore a distinct informative attribute release
sequence of length at least k + 2. So by Definition 16, rslow(σ) ≥ k + 2.

(How do we know that distinct maximal chains produce distinct iars? Because if two iars
are the same, the chains must be the same, by the “Moreover” of Lemma 20 on page 109.
It is true that one may be able to obtain different iars from the same maximal chain, but
our counting was over maximal chains, so provides a lower bound for the number of distinct
iars.)

Comment: Since PQ has reduced homology in nonnegative dimension, σ �= X. Along with
the assumption (σ, γ) ∈ PR, that means relation Q(σ, γ) models the link Lk(ΨR, σ).
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H Obfuscating Strategies

Recall the discussion and terminology of Section 13.

The primary goal of this appendix is to provide a proof of Theorem 31. In addition, this
appendix provides proof of some of the assertions in the bullets on pages 68–69.

Once again, we first need to develop some tools:

H.1 Source Complex

Subsection 13.1 introduced the strategy complex ∆G of a graph G = (V,A). Recall that every
action a ∈ A has a unique source state in V . Given a set of actions A ⊆ A, we say src(A) is
the start region of A, defined by

src(A) = {v ∈ V | v is the source of some a ∈ A}.

One obtains another simplicial complex from G via src, now on underlying vertex set V :

∆G = {src(σ) | σ ∈ ∆G }.

We refer to this complex as G’s source complex.

3

1 2∆G
 :

Figure 55: Source complex for the graph of Figure 44 on page 65.

The map src : F(∆G) → F(∆G) is a homotopy equivalence, so ∆G � ∆G [6, 7].
Consequently, for a fully controllable graph, ∆G = ∂(V ), the boundary complex of the full
simplex on vertex set V . For the graph of Figure 44 on page 65, the source complex is the
boundary of a triangle, as shown in Figure 55.

B 1 2 3
σ1 • •
σ2 • •
σ3 • •
σ4 • •

Goal
1
2
3
3

Figure 56: Relation B describes the source complex ∆G of the graph of Figure 44. Each row
describes the start region of a maximal simplex of ∆G, which appeared in Figure 45 on page 66.
The rightmost column again shows each maximal strategy’s goal.

DISTRIBUTION A: Distribution approved for public release.



120 Source Complex

In Lemma 29 we saw that ∆G = ΦA for the action relation A defined there. We can see
that ∆G = ΦB, for yet another relation, which we will refer to as B. Figure 56 shows that
relation for the graph of Figure 44. More generally, we have the following lemma:

Lemma 84. Let G = (V,A) be a graph as discussed in Section 13 and let M the set of maximal
simplices of ∆G. Define relation B on M × V by B = {(σ, v) | v ∈ src(σ) and σ ∈ M}.

Then ΦB = ∆G.
(Again, the proof is nearly definitional, so we omit it.)
(The “B” stands for “Beginning” — while “S” for “source” might be desirable, we have

already used S to mean “support” elsewhere.)

How should we interpret the remaining Dowker complexes, ΨA and ΨB, for relations A and
B? To answer this, let’s look at the semantics of simplices in these complexes. A simplex in
ΨA represents a collection of maximal simplices of ∆G, namely maximal simplices that have
at least one action in common. A simplex in ΨB again represents a collection of maximal
simplices of ∆G, now with at least one source state in common. Thus ΨA ⊆ ΨB. Moreover,
from Dowker duality one obtains:

Lemma 85. Let G = (V,A) be a graph as discussed in Section 13, with V �= ∅.
Then the inclusion ι : F(ΨA) → F(ΨB) is a homotopy equivalence.

Comment: The assumption V �= ∅ means ∆G and ∆G are not void, so relation B is not
void. If V �= ∅ but A = ∅, then technically relation A is void, but is is convenient to think of
it as an instance of the empty relation instead, with associated empty Dowker complexes.

Proof. Consider the following diagram:

F(ΨA)
ι

↪−−→ F(ΨB)

ψA

�⏐⏐ ψB

�⏐⏐
F(ΦA) F(ΦB)

= =

F(∆G)
src−−−→ F(∆G).

Recall that ψA, ψB, and src are homotopy equivalences.
Let M denote the maximal simplices of ∆G. Observe the following, for each σ ∈ F(∆G):

(ι ◦ ψA)(σ) = {σ′ ∈ M | σ ⊆ σ′ }.

(ψB ◦ src)(σ) = {σ′ ∈ M | src(σ) ⊆ src(σ′)}.

If σ ⊆ σ′, then src(σ) ⊆ src(σ′).

Consequently, (ι ◦ ψA)(σ) ≤ (ψB ◦ src)(σ) for every σ ∈ F(∆G), where “≤” refers to the
partial order on F(ΨB).

We conclude that the two order-reversing poset maps ι ◦ ψA and ψB ◦ src are homotopic
(see [1], Theorem 10.11) and therefore that ι is a homotopy equivalence.
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Lemma 86. Let G = (V,A) be a graph as discussed in Section 13, with V �= ∅. Then src
induces a homotopy equivalence of posets PA → PB with explicit formula

(τ, σ) → (
(ψB ◦ src)(σ), (φB ◦ ψB ◦ src)(σ)

)
.

Proof. Let clA denote the image of the closure operator φA ◦ ψA : F(ΦA) → F(ΦA) and let
clB denote the image of the closure operator φB ◦ ψB : F(ΦB) → F(ΦB). We then have the
following diagram of homotopy equivalences:

PA
π2−−−−→ clA

ι
↪−−−→ F(ΦA) = F(∆G) src−−−→ F(∆G) = F(ΦB)

φB ◦ψB−−−−−→ clB
ι

↪−−−→ PB.

(Here π2 is projection onto the second coordinate, i.e., π2(τ, σ) = σ and each of the
occurrences of ι is an inclusion.)

The composition of all these maps is an order-preserving poset map with the specified
formula. The overall map is a homotopy equivalence because each of its constituent maps is a
homotopy equivalence.

Corollary 87. If G is fully controllable in Lemma 86, then the formula for the poset map
becomes (τ, σ) → (

(ψB ◦ src)(σ), src(σ)
)
.

Proof. Since G is fully controllable, ΦB = ∆G = ∂(V ) � Sn−2, with n = |V |. So ΦB has no
free faces, implying that φB ◦ ψB is the identity, by Lemma 61 on page 94.

Two Observations: Assume that G is a fully controllable graph. (i) No action can appear
in all maximal simplices of ∆G as that would mean ∆G would be a cone, so not homotopic to
a sphere. Consequently, 1̂A = (M, γ) has γ = ∅ (recall that M is the collection of all maximal
simplices of ∆G). (ii) Even if all actions of A appear individually as vertices of ∆G, 0̂A = (τ,A)
has τ = ∅, since src(A) = V and V /∈ ∂(V ).

These observations mean that PA does not contain either the top element 1̂A or the bottom
element 0̂A of P+

A , when G is fully controllable.

H.2 Delaying Strategy and Goal Recognition

We now turn to the proof of the main theorem, the statement of which is replicated here:

Theorem 31 (Delaying Strategy Identification). Let G = (V,A) be a fully controllable graph,
with n = |V | > 1. Let A be the relation constructed as in Lemma 29 on page 67 and let PA be
its associated doubly-labeled poset. Then:

For each v ∈ V , there exists a maximal strategy σv ∈ ∆G for attaining singleton goal state
v such that PA contains at least (n− 1)! distinct maximal chains for identifying σv, with each
chain consisting of at least n− 1 elements.

Proof. Let P op
A be PA but with the opposite order. Then P op

A is almost a join-based lattice,
with join operation for elements of P op

A given by

(τ1, σ1) ∨ (τ2, σ2) =

{ (
τ1 ∩ τ2, (φA ◦ ψA)(σ1 ∪ σ2)

)
, when τ1 ∩ τ2 �= ∅;

1̂, otherwise.
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The maximal elements of P op
A are of the form ({σ}, σ), with σ varying over the maximal

simplices of ∆G. Each minimal element of P op
A is of the form

(
ψA({a}), (φA ◦ ψA)({a})

)
, with

action a some vertex of ∆G. (Aside: not every element of that form is necessarily minimal.)

Since G is fully controllable, ∆(P op
A ) � Sn−2, which has reduced homology in dimension

k = n− 2. By the proof of Theorem 25, on page 117, there exists a homology generator z for
∆(P op

A ) with support S = ‖z‖ such that P op
A contains, for each p ∈ Smax, a collection of maximal

chains passing through p with the following property: Even if one merely considers the portions
of the chains at and below p, the collection contains at least (n − 1)! distinct such subchains
and each subchain has length at least n−2. Each full chain, being maximal, must be a path in
P op
A between some top element ({σ}, σ) and some bottom element

(
ψA({a}), (φA ◦ ψA)({a})

)
.

Working upward from the bottom in (P+
A )op (which is equivalent to working downward from

the top in P+
A ), each such chain therefore gives rise to an informative action release sequence

for identifying σ, consisting of at least n − 1 actions. Moreover, there are at least (n − 1)!
different such sequences for that same strategy σ; we can hold fixed the portion of any chain
at and above p in P op

A , while varying the portion below p in at least (n− 1)! different ways.
Let p ∈ Smax and suppose c is some maximal chain of P op

A that passes through p and
touches top element ({σ}, σ). Pick q ∈ S, with q ≤ p (here “≤” is the order on P op

A ). Write
p = (τp, σp) and q = (τq, σq). Even though q may not be part of chain c, we can still conclude
that σq ⊆ σp ⊆ σ. If additionally src(σq) = V \ {v}, then σ at the top must be a maximal
strategy for attaining singleton goal state v. In order to prove the theorem, it is therefore
enough to show that for any v ∈ V some such q exists.

Recall the source relation B from Lemma 84. Let P op
B be PB but with the opposite order.

Referring back to the notation in the proof of Lemma 86, and using the fact that G is fully
controllable, one sees that ∆(P op

B ) ∼= ∆(clB) = ∆(F(ΦB)) = sd(∂(V )), with “∼=” meaning
“isomorphic” and “sd” meaning “first barycentric subdivision”. The isomorphism holds by
definition of PB. The first equality holds because φB ◦ ψB is the identity when G is fully
controllable, as we saw in the proof of Corollary 87. The second equality amounts to the
definition of first barycentric subdivision, bearing in mind that ΦB = ∆G = ∂(V ).

The homotopy equivalence of Lemma 86 carries over to this setting as θ : ∆(P op
A ) →

sd(∂(V )) and Corollary 87 provides an explicit formula. Specifically, for vertices (τ, σ) of
∆(P op

A ), one has θ(τ, σ) = src(σ).
Since θ is a homotopy equivalence, the induced map θ∗ on reduced homology must map the

homology generator z to a homology generator for the triangulated (n − 2)-sphere sd(∂(V )).
Consequently, ‖θ∗(z)‖ must consist of all nonempty proper subsets of V . In particular, for
each v ∈ V , there is some q = (τq, σq) ∈ ‖z‖ such that src(σq) = θ(q) = V \{v}, as desired.

H.3 Hamiltonian Flexibility

The next lemma establishes the second bullet in the comments on page 68.

Definition 88 (Complete Strategy). Let G = (V,A) be a graph as discussed in Section 13.
A complete strategy for attaining state v is a strategy σ that has at least one action at every
state other than v. So σ ∈ ∆G and src(σ) = V \ {v}.
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Lemma 89 (Delaying Goal Identification). Let G = (V,A) be a fully controllable graph. Let
n = |V |. Suppose s ∈ V is some desired goal state.

There exists a sequence of actions a1, a2, . . . , an−1 in A satisfying the following conditions:

(i) {a1, . . . , an−1} is a complete strategy for attaining s.

(ii) For each i = 1, . . . , n−1, let σi = {a1, . . . , ai} and Wi = src(σi). Then
for each v ∈ V \Wi, there exists a complete strategy σ for attaining v,
such that σi ⊆ σ ∈ ∆G.

Comments:
(a) Condition (i) implies that no two of the actions a1, . . . , an−1 have the same source state.
(b) Condition (ii) further implies that the sequence a1, . . . , an−1 forms an informative

attribute release sequence for the relation A defined in Lemma 29 on page 67. The reason
is that any state in v ∈ V \Wi could still be a goal state after an observer has seen the actions
a1, . . . , ai, so the observer cannot predict even the source of the next action to be released.

Proof. For the proof, we assume that A contains only deterministic and nondeterministic
actions, not stochastic ones. The proof generalizes to graphs that include stochastic actions
(in addition to deterministic and nondeterministic) by an argument in [7]. The essence of that
argument is that the source complex of a graph does not change if one replaces stochastic
transitions by deterministic ones.

We sketch the rest of the proof, assuming all actions are deterministic or nondeterministic.

Since G is fully controllable, for each state in V there must be a deterministic transition
to that state (from some other state). Backchaining such transitions gives rise to a cycle of
deterministic actions, since the graph is finite. If that cycle is Hamiltonian, then we may chose
a1, . . . , an−1 to be any ordering of those n deterministic actions except that we omit the action
whose source is s.

Suppose instead that the cycle of deterministic actions covers only a proper subset W of the
state space V . Form a quotient graph with state space V ′ = {�} ∪ V \W , where � represents
all of W collapsed to a point. Inductively, the lemma’s assertions hold for the quotient graph.
One then needs to show how to combine the actions determined by the quotient graph with the
cycle on W in order to satisfy the lemma’s assertions for the original graph G. That argument
is straightforward if a bit tedious, so we omit it.

The next lemma establishes the Hamiltonian “yes” in the first bullet on page 68.

Definition 90 (Hamiltonian Action Cycle). Let G = (V,A) be a graph whose actions
may have uncertain outcomes. A sequence of actions a1, . . . , an, with n = |V |, is a
Hamiltonian cycle of actions whenever:

(i) No two actions have the same source state.

(ii) Each action is either deterministic or stochastic (so, nondeterministic is
disallowed).

(iii) The source of action ai+1 is a target of action ai, for all i = 1, . . . , n− 1, and
src(a1) is a target of an.
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Observe: Any proper subset of a Hamiltonian cycle of actions is a simplex in ∆G.
(That observation requires understanding the definition of ∆G when stochastic actions are

involved: stochastic cycles are fine, so long as they are not recurrent. See [7] for details.)

Lemma 91 (Delaying Identification of a Given Strategy). Let G = (V,A) be a fully controllable
graph. Assume A contains a Hamiltonian cycle of actions a1, . . . , an, with n = |V |.

Suppose σv is a maximal and complete strategy in ∆G for attaining v ∈ V . Then σv
contains actions b1, . . . , bn−1 that constitute a complete strategy for attaining v and that form
an informative attribute release sequence for relation A.

(Recall: Relation A was defined in Lemma 29 on page 67; it models the maximal simplices
of ∆G in terms of their constituent actions.)

Proof. Let σv be as specified.
We can assume without loss of generality that V = {1, . . . , n}, that src(ai) = i for all i ∈ V ,

and that v = n > 1.
Now let b1, . . . , bn−1 be any actions in σv chosen so that src(bi) = i, for i = 1, . . . , n− 1.
(If bi = ai for some i, that is fine.)
Then {b1, . . . , bn−1} is itself a complete strategy for attaining v.
We claim that the release order bn−1, . . . , b1 constitutes an informative attribute release

sequence for relation A. In fact, we will prove the stronger assertion:

Claim: Pick some i ∈ {1, . . . , n}. Then:
For each s ∈ {n}∪{1, . . . , i−1}, there exists a complete strategy
σs ∈ ∆G for attaining s, with {bi, bi+1, . . . , bn−1} ⊆ σs.
(Notation: {bi, bi+1, . . . , bn−1} = ∅ when i = n.)

Consequently, after an observer has seen bn−1, . . . , bi, the observer cannot predict even the
source state of the next action to be released, and so the action sequence is informative for A.

The claim certainly holds for s = n, using the original σv. Now consider an s ∈ {1, . . . , i−1}
and let σs = {a1, . . . , as−1} ∪ {bs+1, . . . , bn−1} ∪ {an}. By arguments from [7], σs ∈ ∆G.

Caution: As mentioned on page 68, just because bn−1, . . . , b1 as produced by Lemma 91 is
an informative attribute release sequence for A, that does not mean one should always release
actions in that fashion. If the release protocol were so rigid, an adversary familiar with the
protocol would be able to infer much about the goal. In particular, the target set of bn−1

includes the goal state, so if that action is deterministic, then the adversary would be able to
infer the goal from the first action released.
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I Morphisms and Lattice Generators

The aim of this appendix is to prove the claims of Section 14, ending with Theorem 40. That
theorem shows how a surjective morphism of relations can use lattice operations to fully cover
the image lattice even when the poset map induced by the morphism is not itself surjective.

I.1 Morphisms

Notation reminder: We frequently will be working with two relations: R is a relation on
XR × Y R and Q is a relation on XQ× Y Q. In order to distinguish rows and columns between
the two, we also use notation of the form XR

y , Y R
x , XQ

y , and Y Q
x .

Now recall the definition of morphism from page 70:

Definition 32 (Morphism). Let R be a relation on XR × Y R and let Q be a relation on
XQ × Y Q. A morphism of relations f : R→ Q is a pair of set functions:

fX : XR → XQ

fY : Y R → Y Q

such that (fX(x), fY (y)) ∈ Q whenever (x, y) ∈ R.

Throughout this appendix, 'morphism' refers to Definition 32. When the time comes, we
will refer to 'G-morphism' explicitly (see again Definitions 35 and 38 on pages 75 and 76).

Morphism Equality: Before proving properties about morphisms, we should give a notion
of morphism equality. Suppose g, h : R → Q are two morphisms. We will say that g = h if
and only if

(
gX(x), gY (y)

)
=

(
hX(x), hY (y)

)
for all (x, y) ∈ R. In particular, we do not care

what the constituent set maps do on elements that are not relevant to the relations viewed
as sets of pairs. (Note: The condition stated is equivalent to requiring gX(x) = hX(x) and
gY (y) = hY (y) for all (x, y) ∈ R.)

The following lemma shows that the component maps of a morphism between relations
may be viewed as simplicial maps:

Lemma 33 (Induced Simplicial Maps). A morphism f : R → Q between nonvoid relations
induces simplicial maps between the Dowker complexes:

fX : ΨR → ΨQ

fY : ΦR → ΦQ

Proof. We need to show that fX(σ) ∈ ΨQ for all σ ∈ ΨR.
If σ = ∅, then fX(σ) = ∅ ∈ ΨQ since Q is nonvoid.
If σ = {x1, . . . , xk}, then fX(σ) = {fX(x1), . . . , fX(xk)}.
Since ∅ �= σ ∈ ΨR, there exits y ∈ Y R such that (x, y) ∈ R for all x ∈ σ. Thus

(fX(x), fY (y)) ∈ Q for all x ∈ σ, by the definition of morphism. So fY (y) is a witness
for fX(σ) in Q, telling us fX(σ) ∈ ΨQ.

The argument for the map fY : ΦR → ΦQ is similar.
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Comment: The nonvoid requirement is an artifact, arising because we sometimes regard
void relations as having empty rather than void Dowker complexes, in the context of links
(see Definition 7 on page 27, Definition 18 on page 43, the comments about void relations on
page 85, and the hypotheses of Lemma 54 on page 90). The nonvoid requirement of Lemma 33
avoids having to worry about mapping from an artificially empty complex into a void one.

Lemma 34 (Morphism Properties). Assume the notation from above and that all relevant
relations are nonvoid. Let f : R→ Q be a morphism of relations. Then:

(i) fX and fY are one-to-one set maps =⇒ f is one-to-one ⇐⇒ f is a monomorphism.

(ii) f surjective =⇒ f epimorphism ⇐⇒ fX and fY are surjective set maps.

(Additional conditions for that last ⇐⇒ : The =⇒ direction assumes that Q has no blank
rows or columns, while the ⇐= direction assumes that R has no blank rows or columns.)

The two uni-directional implications =⇒ above are strict.

(iii) If fX : ΨR → ΨQ is surjective and Q has no blank rows, then fX : XR → XQ is
surjective.

Similarly for fY , now assuming that Q has no blank columns.

The converses need not hold. Indeed, f itself can be surjective but the maps of simplicial
complexes need not be (as we saw with the maps of page 73 and as one can see with
simpler examples as well).

(iv) If fX : XR → XQ is one-to-one, then fX : ΨR → ΨQ is injective. The converse holds if
R has no blank rows.

Similarly for fY , now assuming that R has no blank columns for the converse.

Proof. We will prove the various implications. Strictness, i.e., failure of converses, where
mentioned above, can be seen readily with simple examples.

Part (i):

(a) Let fX and fY be one-to-one set maps.

Suppose (fX(x′), fY (y′)) = (fX(x), fY (y)). Then fX(x′) = fX(x), so x′ = x.
And fY (y′) = fY (y), so y′ = y. So f is one-to-one as a set map of pairs.

(b) Let f be one-to-one as a set map of pairs.

Suppose g, h : S → R are morphisms such that f ◦ g = f ◦ h.
Suppose (x, y) ∈ S. By assumption, (fX(gX(x)), fY (gY (y))) = (fX(hX(x)), fY (hY (y))).
Since f is one-to-one, (gX(x), gY (y)) = (hX(x), hY (y)).
So g = h, by our notion of equality, meaning f is a monomorphism.

(c) Let f be a monomorphism.

Suppose f(x, y) = f(x′, y′) but (x, y) �= (x′, y′). Let S be the relation consisting of the
single element {(I, α)}, with I and α new symbols:

S α

I •
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Define two morphisms g, h : S → R by:

gX : I → x hX : I → x′

gY : α → y hY : α → y′

Then g �= h, but f ◦ g = f ◦ h, a contradiction. So f is one-to-one.

Part (ii):

(a) Let f be surjective as a set map of pairs.

Suppose g, h : Q→ S are morphisms such that g ◦ f = h ◦ f .
Suppose (x′, y′) ∈ Q.
By surjectivity, there exists (x, y) ∈ R such that (fX(x), fY (y)) = (x′, y′). So:(
gX(x′), gY (y′)

)
=

(
gX(fX(x)), gY (fY (y))

)
=

(
hX(fX(x)), hY (fY (y))

)
=

(
hX(x′), hY (y′)

)
.

Thus g = h and we see that f is an epimorphism.

(b) Assume Q has no blank rows or columns and let f be an epimorphism.

Suppose fY is not surjective, so there exists y∗ ∈ Y Q \ (fY (Y R)).
Let S be the relation consisting of two elements {(I, α), (I, β)}, with I, α, β new symbols:

S α β

I • •

Define two morphisms g, h : Q→ S by:

gX(x) = I hX(x) = I for every x ∈ XQ

gY (y) = α hY (y) = α for every y ∈ Y Q \ {y∗}
gY (y∗) = α hY (y∗) = β

Since y∗ ∈ Y Q and Q has no blank columns there is at least one x∗ ∈ XQ such that
(x∗, y∗) ∈ Q. So g �= h.

Observe that g ◦ f = h ◦ f since y∗ does not appear in the image of fY , contradicting f
being an epimorphism.

The argument showing that fX is surjective is similar.

(c) Assume R has no blank rows or columns and let fX and fY be surjective.

Suppose g, h : Q→ S are morphisms such that g ◦ f = h ◦ f .
Suppose (x, y) ∈ Q. We need to show that gX(x) = hX(x) and gY (y) = hY (y), as that

means g = h, given our definition of equality. We will make the argument for the X coordinate;
the Y argument is similar.

Since fX is surjective, there exists x ∈ XR such that fX(x) = x. Since R has no blank
rows, there exists y ∈ Y R such that (x, y) ∈ R.

Since (g ◦ f)(x, y) = (h ◦ f)(x, y), one obtains gX(x) = gX(fX(x)) = hX(fX(x)) = hX(x).
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Part (iii):

Suppose Q has no blank rows and suppose fX : ΨR → ΨQ is surjective as a simplicial map.

Suppose x ∈ XQ. Since Q has no blank rows, x is a vertex of ΨQ, so there is some x that
is a vertex of ΨR such that fX(x) = x. That says fX : XR → XQ is also surjective as a set
map.

The argument for fY assuming Q has no blank columns is similar.

Part (iv):

(a) Let fX be one-to-one as a set map XR → XQ. Consider fX as a simplicial map ΨR → ΨQ.

Suppose fX(σ) = κ = fX(τ), with σ, τ ∈ ΨR and κ ∈ ΨQ.
If κ = ∅, then necessarily σ = τ = ∅. Otherwise, σ �= ∅ and τ �= ∅, so let x ∈ σ. Then

fX(x) ∈ κ. So there exists x′ ∈ τ such that fX(x′) = fX(x). Since fX is one-to-one as a set
map, that says x′ = x. Thus σ ⊆ τ . A similar argument shows the reverse inclusion, so σ = τ .
Thus fX is injective as a simplicial map.

(b) Assume R has no blank rows and let fX be injective as a simplicial map ΨR → ΨQ.

Consider fX as a set map XR → XQ and suppose fX(x) = fX(x′). Since R has no blank
rows, both x and x′ are vertices in ΨR. That means fX({x}) = fX({x′}) when we view fX as
a simplicial map, so {x} = {x′} by injectivity, i.e., x = x′. So we see that fX is one-to-one as
a set map.

A similar argument holds for the assertions regarding fY .

I.2 G-Morphisms

Recall the material of Section 14.4.

Lemma 36 (Containment). Let f : R→ Q be a morphism of nonvoid relations. Then:

(a) (fY ◦φR)(σ) ⊆ (φQ◦fX)(σ), for every σ ∈ ΨR,

(b) (fX◦ψR)(γ) ⊆ (ψQ◦fY )(γ), for every γ ∈ ΦR.

Proof. Observe that (fY ◦ φR)(∅) = fY (Y R) ⊆ Y Q = φQ(∅) = (φQ ◦ fX)(∅).

Now let ∅ �= σ ∈ ΨR. Let y ∈ φR(σ) �= ∅. Then (x, y) ∈ R for every x ∈ σ. Thus
(fX(x), fY (y)) ∈ Q for every x ∈ σ. So fY (y) ∈ φQ(fX(σ)). This is true for all y ∈ φR(σ),
telling us fY (φR(σ)) ⊆ φQ(fX(σ)).

The argument for assertion (b) is similar.

Corollary 37 (Homotopic Face Maps). Let f : R → Q be a morphism of nonvoid relations.
Then:

(a) fX and ψQ ◦ fY ◦ φR are homotopic poset maps F(ΨR) → F(ΨQ),

(b) fY and φQ ◦ fX ◦ ψR are homotopic poset maps F(ΦR) → F(ΦQ).
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Proof. Let σ ∈ F(ΨR).

By Lemma 36, (fY ◦ φR)(σ) ⊆ (φQ ◦ fX)(σ).

Therefore (ψQ ◦ fY ◦ φR)(σ) ⊇ (ψQ ◦ φQ ◦ fX)(σ).
So (ψQ ◦ fY ◦ φR) and (ψQ ◦ φQ ◦ fX) are homotopic maps (see [1], Theorem 10.11).
Since ψQ ◦ φQ is homotopic to the identity on F(ΨQ), part (a) follows.
The proof of (b) is similar.

Corollary 39 (Homotopic Poset Maps). Let f : R → Q be a morphism of nonvoid relations.
The induced G-morphisms fgX , f

g
Y : PR → PQ are homotopic. (See Definition 38 on page 76.)

Proof. See Figure 49 on page 75 for the underlying maps comprising the G-morphisms. The
G-morphisms are defined as follows:

For all (σ, γ) ∈ PR:

fgX(σ, γ) = (σ′, γ′), with σ′ = (ψQ ◦ fY ◦ φR)(σ) and γ′ = φQ(σ′).

fgY (σ, γ) = (σ′′, γ′′), with γ′′ = (φQ ◦ fX ◦ ψR)(γ) and σ′′ = ψQ(γ′′).

These definitions make sense because fX and fY map nonempty simplices to nonempty
simplices and because the images of ψQ and φQ may be viewed as lying in PQ, by Corollary 45
on page 87. (Similarly, the images of ψR and φR may be viewed as lying in PR — In fact, as
used above, these maps are simply switching between the σ and γ components (“labels”) of
the given element (σ, γ) in PR.) Observe that fgX and fgY are order-preserving poset maps.

Applying Lemma 36 and since (σ, γ) ∈ PR:

(fY ◦ φR)(σ) ⊆ (φQ ◦ fX)(σ) = (φQ ◦ fX ◦ ψR)(γ) = γ′′.

Consequently:

σ′ = (ψQ ◦ fY ◦ φR)(σ) ⊇ ψQ(γ′′) = σ′′.

So the maps are homotopic (see [1], Theorem 10.11).

I.3 Lattice Generators

We turn now to the main result.

(Recall that a relation is tight when it has no blank rows or columns.)

Lemma 92 (Generators in Image). Let f : R→ Q be a surjective morphism between nonvoid
tight relations.

Suppose q ∈ PQ is of the form
(
XQ
y , (φQ ◦ ψQ)({y})

)
, for some y ∈ Y Q.

Then there exist q1, . . . , qk in the image of fgX : PR → PQ, with k ≥ 1, such that q =
∨k
i=1 qi.

(Here
∨

is the join operation of P+
Q .)
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Proof. By Lemma 34(iii), the component functions fX : XR → XQ and fY : Y R → Y Q are
surjective. Since fY is surjective, f−1

Y ({y}) = {y1, . . . , yk} ⊆ Y R, for some k ≥ 1.

For each i = 1, . . . , k, observe and define the following:

• Since R has no blank columns, XR
yi

�= ∅, so
(
XR
yi
, (φR ◦ ψR)({yi})

) ∈ PR.

• Define σi as the “σ′-component” of fgX
(
XR
yi
, (φR ◦ ψR)({yi})

)
, meaning:

σi = (ψQ ◦ fY ◦ φR)
(
XR
yi

)
= ψQ(γ) =

⋂
y∈γ

XQ
y , with γ = fY

(
(φR ◦ ψR)({yi})

)
.

• Observe that y ∈ γ since y = fY (yi) and yi ∈ (φR ◦ ψR)({yi}). Therefore σi ⊆ XQ
y .

• Define qi = (σi, γi) ∈ PQ, with γi = φQ(σi). So qi is in the image of fgX : PR → PQ.

We need to show that q =
∨k
i=1 qi. Expanding, we see:

k∨
i=1

qi =
((
ψQ ◦ φQ

)( k⋃
i=1

σi

)
,

k⋂
i=1

γi

)
.

By a bullet above,
⋃k
i=1 σi ⊆ XQ

y , so:

k⋃
i=1

σi ⊆ (
ψQ ◦ φQ

)( k⋃
i=1

σi

)
⊆ (ψQ ◦ φQ)

(
XQ
y ) = XQ

y .

We will establish XQ
y ⊆ ⋃k

i=1 σi, thereby completing the proof.

Let x ∈ XQ
y .

So (x, y) ∈ Q. By surjectivity, there exists (x̂, ŷ) ∈ R such that fX(x̂) = x and fY (ŷ) = y.

Now ŷ = yj , for some j ∈ {1, . . . , k}, as defined earlier. Thus x̂ ∈ XR
yj

.

Consequently, for every z ∈ (φR ◦ ψR)({yj}), (x̂, z) ∈ R and so (fX(x̂), fY (z)) ∈ Q.

That means (x, y) ∈ Q for every y ∈ fY
(
(φR ◦ ψR)({yj})

)
.

Therefore, x ∈ σj ⊆
⋃k
i=1 σi and we conclude that XQ

y ⊆ ⋃k
i=1 σi.

(Note: XQ
y need not lie in a single σj , since j depends on x.)

Corollary 93. Assume the hypotheses of Lemma 92.
Suppose further that for some yi ∈ f−1

Y ({y}), (φR ◦ ψR)({yi}) = {yi}.
Then q is itself in the image of fgX : PR → PQ.

Proof. In the proof Lemma 92, we see that now fY
(
(φR ◦ ψR)({yi})

)
= {y}, so σi = XQ

y .
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Comment: Corollary 93 helps to explain the example of pages 73 and 77, in which a
surjective morphism generated the entire image poset even though the induced maps on the
Dowker complexes were not surjective. Namely:

In the Möbius relation M of page 72, singletons are unmoved by the closure operators. In
the tetrahedral relation T of page 45, maximal simplices are dual to singletons. Intersections
of all the maximal simplices in the tetrahedral relation generate all of PT . These maximal
simplices come from dualizing images of singletons of the Möbius relation.

More specifically: Even though one merely has fX({1, 2, 5}) = {1, 4}, it is also true that
fgX({1, 2, 5}, {a}) = ({1, 3, 4}, {a}). The G-morphism fgX therefore supplies the apparently
missing simplex {1, 3, 4}.

More generally, the following theorem describes the process:

Theorem 40 (Lattice Surjectivity). Let R and Q be tight nonvoid relations. Suppose
f : R→ Q is a surjective morphism. For any q ∈ PQ:

q =
∧
j

∨
i

qji, with each qji in the image of fgX : PR → PQ,

q =
∨
k

∧
�

q′k�, with each q′k� in the image of fgY : PR → PQ.

Proof. Write q = (σ, γ) ∈ PQ. Then σ = ψQ(γ) =
⋂
y∈γ X

Q
y .

So q =
∧
y∈γ qy, with each qy ∈ PQ of the form

(
XQ
y , (φQ ◦ ψQ)({y})

)
.

By Lemma 92, for each y ∈ γ, we have that qy =
∨
i qy,i with each qy,i in the image of

fgX : PR → PQ and with i in some finite index set I(y). Thus:

q =
∧
y∈γ

∨
i∈I(y)

qy,i.

The other form follows by dualizing the previous arguments.
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J A Few More Examples

J.1 Local Spheres versus Global Contractibility

The reader may wonder whether privacy preservation always requires a relation to exhibit
homology in its Dowker complexes. The answer is that links of individuals must have homology,
by Theorems 9 and 10 on pages 28 and 29, but the overall relation need not.

D a b c d e f g h

1 • • •
2 • • •
3 • • •
4 • • •
5 • • •
6 • • •
7 • • •
8 • • •
9 • • •
10 • • •
11 • • •
12 • • •
13 • • •
14 • • •
15 • • •
16 • • •
17 • • •

a

a a

b b

bc

c c

e

d

f

g

h

ΦD

2
4

7

1
3

8
9

6 5

11

12
1314

15

16 10

17

Figure 57: RelationD and its Dowker complex ΦD. The complex is a triangulation of the Dunce
Hat, a contractible space (the seemingly bounding edges actually touch, as suggested by the
vertex labels). The Dunce Hat has no free faces, indicating that D preserves attribute privacy.
(Vertices of ΦD are attributes. Triangles are labeled with their generating individuals.)

Consider for example the relation D of Figure 57. There are 17 individuals, each with
three attributes. The figure also shows ΦD. We can see that there are no free faces, so the
relation preserves attribute privacy by Lemma 61 on page 94. Moreover, each link Lk(ΨD, x) is
homotopic to a circle S1. Indeed, viewed from attribute space, that link is exactly the boundary
of a triangle for each individual. Figure 58 shows such a link for individual #10. The link
relation has a large number of individuals but only three attributes. So Theorem 9 holds and
there is homology in the link. There is however no homology in the attribute complex of the
relation D itself; the simplicial complex ΦD is a triangulation of the Dunce Hat, a nontrivially
contractible space.

Although R preserves attribute privacy, it does not preserve association privacy. Individuals
1 and 12 share exactly one attribute (namely h), but do so with 4 additional people (namely 3,
7, 11, and 13). If attributes represent shared dinners, then in some cases one can infer all the
guests at a dinner after having seen as few as two guests. (Attribute privacy means that one
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Q b c g

3 •
4 • •
6 •
7 •
8 •
9 • •
11 •
12 •
13 • •
14 •
15 •
16 • •
17 •

b

c

g

4

9

13
16

ΦQ

Figure 58: Relation Q represents Lk(ΨD, 10) from Figure 57. Also shown is the attribute
Dowker complex ΦQ. It is the boundary of a triangle, so homotopic to S1 = Sk−2. Since
individual #10 has three attributes and 1 = 3 − 2, that means relation R preserves attribute
privacy for individual #10. (Vertices of ΦQ are attributes. Edges are labeled with their
generating individuals. Notice that the edge {b, c} is generated by two individuals. Whereas
most edges in ΦD are shared by only two triangles, edge {b, c} is shared by three triangles; it is
one of those edges that are glued to two others in the Dunce Hat representation. — Individuals
who generate just vertices are not shown in ΦQ.)

cannot infer additional dinners attended by a guest simply from having observed that guest at
a particular dinner or two.)

J.2 Disinformation

Privacy loss is possible when there is a free face in the relevant Dowker complex. One way to
preserve privacy is to eliminate such free faces. Earlier in the report, we studied morphisms
between relations as a possible way to transform data so as to reduce privacy loss. Ideally, for
attribute privacy, the goal of such a transformation is to map onto a relation whose attribute
complex has no free faces. We saw that such transformations need not always exist, for
topological reasons, unless one is willing to introduce discontinuities, that is, discard knowledge
of some relationships in the underlying spaces.

Alternatively, one could imagine embedding a relation within another that does preserve
privacy. Of course, at the extreme, one simply embeds the given relation in a huge relation
that looks like a perfect sphere. Now there is privacy but the same mechanism that provides
privacy reduces utility. Nonetheless, one has not discarded relationships, merely surrounded
them with disinformation. We saw an example of that early on, when we added a single
attribute to relation H in the example of Section 3.1, in order to remove the inference that
someone had cancer. If one has a separate mechanism for discerning fake entries from legitimate
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entries, then one can see past the disinformation — in the earlier example that would entail
having a (presumably safely encrypted) memory of which single entry in the relation is false.

M a b c d e

1 • • •
2 • • •
3 • • •
4 • • •
5 • • •

ΦM

a
1

a

b

b

c

d

e

2 3 4 5

Figure 59: Relation M revisited along with its attribute complex ΦM .

Figure 59 revisits ours earlier Möbius strip relation, showing the relationM and its attribute
complex ΦM . Privacy loss occurs when someone observes two attributes that make up an edge
on the boundary of the Möbius strip, such as {b, d}. Given the relation, the observer can
infer a third attribute and identify the underlying individual, in this case infer attribute c and
identify individual #3.

In order to preserve attribute privacy, one might consider adding decoy individuals whose
so-called attributes include those edges, making them non-free, thus removing that inference
mechanism. Figure 60 does so by doubling the number of individuals.

MM a b c d e

1 • • •
2 • • •
3 • • •
4 • • •
5 • • •
6 • • •
7 • • •
8 • • •
9 • • •
10 • • •

ΦMM
a

1

a

b

b

c

d

e

2 3 4 5

a
b c d

e

9 876 10

d a

Figure 60: Relation MM adds five decoy individuals. The attribute complex ΦMM entails
gluing two Möbius strips together.

The additional five individuals form their own Möbius strip. The figure therefore describes
the overall attribute complex ΦMM as two Möbius strips, with edges shared between the two
strips, as suggested by the vertex labels. The overall attribute complex amounts to gluing the
two Möbius strips together, boundary to zigzag spine. The resulting attribute complex is the
2-skeleton of the full complex on the attribute set {a, b, c, d, e}. It therefore is homotopic to
the wedge of four two-spheres: S2 ∨ S2 ∨ S2 ∨ S2.

Each of ΦMM ’s edges is now shared by three triangles. There are no free faces.
There is no attribute inference. (There is association inference.)
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Moreover, the complex is sufficiently isotropic that one cannot say a priori which individuals
are real and which are decoys, even if one knows that there might be decoys. Of course, the
actual curator of the relation would need some secure mechanism to separate truth from fiction,
that is, to peel apart the gluing. Regardless, real individuals may be identified upon seeing all
their attributes (and only then).

J.3 Insufficient Representation

In this subsection we show that if there are fewer than 2k individuals in a relation that
has 2k attributes representing k bits, then the relation cannot preserve attribute privacy for
everyone. The basic reason is that fewer than 2k individuals amounts to cutting out a piece
of the full attribute sphere S0 ∗ S0 ∗ · · · ∗ S0, exposing some free faces in ΦR. By similar
intuition, it is not necessarily true that privacy loss will occur if there are fewer than, say, 3k

individuals in a relation that has 3k attributes representing k trivalent pieces of information.
After all, bits are a special case of such tri-values, so one can preserve privacy with certain
2k individuals. Thinking topologically, the full attribute space for such tri-values looks like
(S0 ∨ S0) ∗ (S0 ∨ S0) ∗ · · · ∗ (S0 ∨ S0). Cutting out a piece of that space does not necessarily
create free faces, as one can see by simple example.

Definition 94 (Binary Attribute Pair). By a binary attribute pair we mean two mutually
exclusive attributes, written y and y. No individual can have both attributes. Moreover, in
what follows we will assume that every individual has exactly one attribute from any such pair.

Lemma 95 (Privacy Requires Many Individuals). Suppose Y = {y1, y1, y2, y2, . . . , yk, yk},
with {yi, yi} a binary attribute pair, for i = 1, . . . , k, and k ≥ 1.

Let R be a relation on X×Y , with X �= ∅ such that every individual x ∈ X has as attributes
exactly one of {yi, yi}, for each i = 1, . . . , k. Let n be the number of distinct rows of R.

Then R preserves attribute privacy if and only if n = 2k.

Proof. Observe that each row of R has exactly k nonblank entries, so each maximal simplex
of ΦR consists of exactly k vertices. Moreover, no row of R is contained in another row unless
the two rows are identical. We may therefore assume, without loss of generality, that all rows
of R are distinct and incomparable. Consequently, every x ∈ X is uniquely identifiable. We
can think of each individual x ∈ X as defining a unique k-bit number, with one bit per binary
attribute pair, as determined by that individual’s row, Yx. All possible k-bit numbers are
represented by X if and only if n = 2k.

I. Suppose that n = 2k.

Showing that ΦR contains no free faces would establish that R preserves attribute privacy,
by Lemma 61 on page 94. To show that ΦR contains no free faces, it is enough to show that,
for every maximal γ ∈ ΦR and every y ∈ γ, the simplex γ \ {y} is contained in some maximal
simplex of ΦR other than just γ.

Write χ = γ \ {y}. Since y is a binary attribute pair, we can construct a new set γ′ from γ
by replacing y with its “opposite”. Specifically: γ′ = χ ∪ {yi}, if y = yi; and γ′ = χ ∪ {yi}, if
y = yi. Since n = 2k there is an x ∈ X for which Yx = γ′. So γ′ ∈ ΦR, telling us χ is not free.
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II. Suppose that that R preserves attribute privacy.

By Lemma 62 on page 94, ΦR contains no free faces.
Let γ be a maximal simplex of ΦR and y ∈ γ. Define χ = γ \ {y}. Construct γ′ as in part

I above. Consider the collection Γ = {η ∈ ΦR | χ � η}. The only possible set that might be
in Γ besides γ is γ′. Since ΦR contains no free faces, Γ = {γ, γ′}.

Now vary y across γ and then repeat the process for all γ′ thus constructed. The transitive
closure of this process generates 2k distinct maximal simplices in ΦR, each of which corresponds
to a unique x ∈ X. So n = 2k.

J.4 A Structural Inference Example : Passengers on Ferries

6am

8am
7am

9am
0am
1 1am
1 1 pm
2pm
3pm
4pm
5pm

2pm
1

B
A

D
C

F
E

H
G

I
J
K
L
M
N
O
P
Q

Passengers

Departure
   Times

Figure 61: This time series represents 17 different passengers on 12 different ferry crossings.
Each dot represents a passenger on a crossing. As a visual aid, solid lines connect multiple
crossings by the same passenger at consecutive departure times, while dashed lines connect
multiple crossings by the same passenger at non-consecutive departure times.

Imagine a commuter ferry that crosses back and forth between downtown and an island.
Passengers pay electronically as they enter the ferry, so there is a record of who is on which
crossing. Figure 61 shows a hypothetical time series for 12 crossings during a day in which
17 passengers took the ferry, some of whom crossed several times. Figure 62 shows the
corresponding ΨR complex: vertices are individuals; each triangle represents a particular
crossing. (Each ferry crossing had three passengers in this simplified example.)

The waitress in the ferry’s coffee shop observes four individuals ordering coffee and
conversing during the day, appearing in pairs on different crossings. She observes exactly
four pairs, never the same pair twice. Who are the individuals?

It is convenient to represent the waitress’s observations as a complex itself. Figure 63 does
so. Vertices are now the four unknown individuals; edges are their (unknown) common crossing
times. One can interpret who the individuals are by embedding the complex of Figure 63 into
the complex of Figure 62, using one-to-one maps in both the passenger and time domains.
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ΨR

B

A

D

C

F

E

H

G

I

J

K

L

M

N

O

P

Q6am

8am

7am

9am

0am1 1am1 1pm

2pm 3pm
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Figure 62: Simplicial complex ΨR determined by the time series of Figure 61, viewed as
a relation R. Vertices represent passengers, labeled with letters. Triangles represent ferry
crossings, labeled with departure times.

a passenger

a ferry crossing

Figure 63: A waitress’s observations of passengers drinking coffee together at various times,
represented by a simplicial complex. Vertices represent unknown but distinct passengers.
Edges represent unknown but distinct crossing times.

There are exactly two such embeddings (modulo index permutations), given by the two ways
one can wrap a rectangle around the two holes in the complex of Figure 62. (Those are the
only two “diamonds” touching four different crossing times.) Thus the individuals are either
{C,G, J,K} or {B,F, I, J}, as indicated by Figure 64. Either way, one knows for sure that
individual “J” twice had a conversation over coffee that day.

BC FG

IJ

K
7am

9am 1am12pm

4pm

2pm1

J
9am 2pm

Figure 64: The two possible embeddings of the complex of Fig. 63 into the complex of Fig. 62.

Moreover, each of these embeddings places a time ordering on the embedded edges, from
which one can make inferences as to who might have transmitted information to whom. For
instance, for the embedding involving individuals {B,F, I, J}, one sees that individual “J” could
have been both the initial source and final recipient of information.
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