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Adaptive Control of Bivalirudin in the Cardiac
Intensive Care Unit∗

Qi Zhao,† Thomas Edrich,‡ Member, IEEE, and Ioannis Ch. Paschalidis,§ Fellow, IEEE,

Abstract—Bivalirudin is a direct thrombin inhibitor used in the
cardiac intensive care unit when heparin is contraindicated due
to heparin-induced thrombocytopenia. Since it is not a commonly
used drug, clinical experience with its dosing is sparse. In earlier
work ([1]) we developed a dynamic system model that accurately
predicts the effect of bivalirudin given dosage over time and pa-
tient physiological characteristics. This paper develops adaptive
dosage controllers that regulate its effect to desired levels. To
that end, and in the case that bivalirudin model parameters are
available, we develop a Model Reference Control law. In the
case that model parameters are unknown, an indirect Model
Reference Adaptive Control scheme is applied to estimate model
parameters first and then adapt the controller. Alternatively,
direct Model Reference Adaptive Control is applied to adapt
the controller directly without estimating model parameters first.
Our algorithms are validated using actual patient data from a
large hospital in the Boston area.

Index Terms—Bivalirudin, Pharmacokinetics, Parameter Iden-
tification, Adaptive Control.

I. I NTRODUCTION

The US health care system is viewed as costly and highly
inefficient. Among the many reform efforts, the meaningful
use of Electronic Health Records (EHRs) is invariably seen as
a key to improving efficiency. In the hospital, the digitization
of data from medical devices enables the development of
algorithms that can automate decision making and facilitate
treatment. This is exactly the goal of this paper which fo-
cuses on automating dosage decisions for a particular drug
–bivalirudin– used in the cardiac Intensive Care Unit (ICU).

Bivalirudin antagonizes the effect of thrombin in the blood
clotting cascade, thereby preventing complications from blood
clotting. It is currently FDA-approved for short-term anti-
coagulation of patients undergoing cardiac catheterization to
prevent complications due to undesired blood clots [2], [3],
[4], [5]. Bivalirudin is administered to patients who have a
contraindication to heparin. It is infused continuously, and is
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eliminated via the kidney and by plasma protease-metabolism.
It affects the coagulation parametersPartial Thromboplastin
Time (PTT) and the International Normalized Ratio (INR)
in a dose-dependent fashion. The PTT value is measured in
seconds and it will be used as the output one wishes to regulate
within a specific range.

Although not commonly used overall, bivalirudin is finding
increasing use in the ICU. Residents adjusting the infusionrate
of bivalirudin may have limited experience, thus, risking over-
or under-dosing. Currently, the drug is regulated empirically or
with a very simple nomogram [6]. Adequate anticoagulation is
necessary to avoid the risk of clot formation, but overshooting
increases the risk of bleeding. Complicating matters, there
is considerable inter- and intra-individual variability in the
response to bivalirudin. Motivated by these challenges, in
earlier work [7], [8], [1], we developed methods for predicting
future PTT values given past infusion rates and the patient’s
renal and liver function characteristics. Related work hasused
pharmacokinetic-pharmacodynamic models to model the effect
of various drugs, see, e.g., [9], [10]. One of our methods in [1]
proposes an explicit dynamic system model which was shown
to produce quite accurate results when tested against actual
patient data.

In this paper, we pursue what we view as the natural next
step. Leveraging the dynamic system model from [8], [1], we
seek to synthesize controllers that can regulate the infusion rate
to drive PTT within a desirable range. Other methodologies
such as expert systems have also been used for controlling
some drugs [11]. We develop two types of control laws. First,
assuming that a dynamic system model that can predict PTT
given dosage is completely characterized, we develop aModel
Reference Control (MRC)law. Model parameters, however,
may be viewed as not known with certainty, which is due
to modeling errors and inter- or intra-individual variability.
To overcome this problem, we develop an indirectModel
Reference Adaptive Control (MRAC)law that identifies the
model parameters first and then adapts the controller in real-
time. Furthermore, we develop a direct Model Reference
Adaptive Control law that adapts the controller directly with-
out estimating model parameters first, which is more efficient.
For each case, we present analytical and numerical evidence
showing that the controllers do drive PTT to the desirable
range. Our numerical validation is in fact done using actual
patient data from the Brigham and Women’s Hospital – a large
hospital in the Boston area.

The remainder of the paper is organized as follows. Sec. II
presents the dynamic system model that predicts the effect of
bivalirudin given dosage and patient physiological information.
Sec. III presents the proposed control schemes; Sec. III-A de-
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velops the MRC law whereas Sec. III-B develops the indirect
MRAC law based on the patient model but with unknown
parameters. Sec. III-C develops the direct MRAC, which is
more efficient in adapting the controller. Finally, concluding
remarks appear in Sec. IV.

Notation: We use bold letters to denote vectors and ma-
trices; typically vectors are denoted by lower case letters
and matrices by upper case letters. Vectors are assumed to
be column vectors unless explicitly stated otherwise. For
economy of space we writex = (x1, · · · , xn) for the column
vectorx ∈ R

n. In addition, we use lower case letters to denote
time domain functions (e.g.,f(t)), and upper case letters to
denote Laplace transforms (e.g.,F (s)).

II. DYNAMIC SYSTEM MODEL FORMULATION

A. The Model

This section presents aMultiple Input Single Output (MISO)
dynamic system model that attempts to explicitly account for
the way bivalirudin affects PTT in patients. The model was
developed and validated in [1]; it is presented here briefly
to establish the notation and to set the stage for the control
schemes of Sec. III.

Fig. 1. The Multiple Inputs Single Output (MISO) dynamic system model.

The key quantity (response) we would like to predict is the
PTT at each timet. The dynamic model structure is shown
in Fig 1. There are9 inputs which are denoted byui(t), i =
1, . . . , 9 and correspond to important physiological variables
used as predictors. More specifically, inputsu1(t), . . . , u9(t)
respectively correspond to:

1) Bival rate (mg/kg/h): the weight-based bivalirudin in-
jection rate.

2) GFR (mL/min): the glomerular filtration rate.
3) SGOT (Units/L): the Serum Glutamic Oxaloacetic

Transaminase.
4) SGPT (Units/L): the Serum Glutamic Pyruvic Transam-

inase.
5) TBILI (mg/dL): total bilirubin.
6) ALB (g/L): Albumin.

7) PLT (K/mcL): Platelet count.
8) HCT (%): Hematocrit.
9) FIB (mg/dL): Fibrinogen.

More detailed description of these physiological variables can
be found in [1].

The model of Fig. 1 has a single output –the PTT value–
which is denoted byy(t). There is also a single state variable
denoted byx(t). Overall there are12 unknown parameters:
11 of which correspond to the various gains and are denoted
by βi, i = 1, . . . , 11. The initial condition of the system is the
12th unknown parameter and is denoted byx(0) (β12). The
system dynamics are:

ẋ(t) = Ax(t) + Bu(t), (1)

y(t) = Cx(t) + Du(t),

where A = −β3, B = [β1 0 · · · 0], C = β2, and
D = [0 β4 · · · β11]. Clearly, this is aLinear Time Invariant
(LTI) dynamic system. The challenge is that we do not know
the model parameters and we only have non-uniform sampled
inputs u(t), and clinical observation valuesy(t) at certain
timest for each patient. It is therefore necessary to translate the
continuous-time system dynamics to discrete-time dynamics
before proceeding with parameter identification.

B. Parameter Identification

Given the highly non-uniform sampled data, two methods
were introduced to identify model parameters in [1]. First,
after converting to discrete-time dynamics, we formulatedthe
parameter identification problem as the nonlinear optimization
problem of minimizing some metric of fitness to a training set
of sampled data.

The data set we used comes from the STAR (Surgical
ICU Translational Research) Center at Brigham and Women’s
Hospital in Boston. It consists of records for233 patients
including the predictors and the output PTT value sampled
(non-uniformly) over time. We randomly split our data set into
a training set corresponding to2/3 of the total (155 patients)
and a test set corresponding to1/3 of the total (78 patients).
We use the former to identify the unknown system parameters
and the latter to evaluate the performance of the various control
laws we will develop in subsequent sections.

More specifically, let us use a subscriptj to denote the
model primitives, i.e., the statexj(t), outputyj(t), and inputs
uj(t) for each patientj = 1, . . . , N , whereN denotes the
number of patients in the training set. To distinguish between
measurements ofyj(t) and predictions based on the system
dynamics we useyj(t) for the former and̂yj(t) for the latter.
Suppose for each patientj we haveTj measurements at times
t1j , . . . , t

Tj

j , where we adopt the conventiont0j = 0 for all j.
We can then formulate a nonlinear optimization problem of
minimizing the least squares error

N∑

j=1

t
Tj

j∑

t=t1
j

(ŷj(t) − yj(t))
2,
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Fig. 2. In this dynamic model, the bivalirudin infusion rateu(t) is the only controllable input.d(t) is the linear combination of the rest of the inputs.

Fig. 3. Model Reference Adaptive Control (MRAC) structure.

subject to the discretized version of the system dynamics. The
decision variables arex(0)(= x(t0j ) for all j) and the parame-
tersβi, i = 1, . . . , 11. One can easily substitute the expressions
from the constraints (the system dynamics) into the objective
function and obtain a nonlinear optimization problem with no
constraints other than some bounds on the decision variables.
This problem, however, is non-convex. We applied a Quasi-
Newton method (BFGS) [12] to obtain optimal values for the
model parameters. This yielded a population-wide model in the
sense that its parameters produced the best fit with the sampled
data. Furthermore, and to accommodate variability across
patients, we used a recursive estimation method (Extended
Kalman Filter) to estimate the parameter values that best fita
given individual patient in real-time.

III. B IVALIRUDIN CONTROL SCHEME

We now turn to our primary goal of devising a proper
controller to keep the PTT value in the range of 60s-80s.
According to clinical experience, this range is safe and optimal
for cardiac surgery patients. For the system we have defined in
Eq. (1), note that the only controllable part is the bivalirudin
infusion rate. The rest of the inputs are indicators of patients’
liver (SGOT, SGPT, TBILI, ALB) and renal function (GFR)

and include some metrics related to the blood (PLT, HCT,
FIB). Arguably, these variables are not immediately affected
by the drug but change over a longer time-scale than the
one we focus on for controlling PTT through the infusion of
bivalirudin. Therefore, we consider them as non-controllable
and aggregate them in a variabled(t) which is their linear com-
bination with the appropriate gainsβ4, . . . , β11 (see Fig. 2).

Ideally, we want to design a reference model which can
generate sufficient but safe PTT values driven by a reference
input signal. Based on the output of the reference model,
we want to drive our system to perform similarly to the
reference model by a proper control signal. Motivated by
this, we adopt the so called continuous-time MRAC scheme.
Fig. 3 shows the general structure of this control law.Wm(s)
denotes an ideal reference transfer function that can generate
the desired reference output signal. The controllable system is
represented byGp(s,θ

∗

p), whereθ
∗

p is a parameter vector. The
objective is to design a controllerC(s,θ∗

e), parameterized by
θ
∗

e, to generate the proper control signals that can drive the
controllable system to track the reference output values.

Our first controller is an MRC law that is designed assuming
that the system parametersθ

∗

p are known.



4 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

A. Model Reference Control (MRC)

By observing the system in Fig. 2, we can rewrite the
dynamics of a particular patient as

ẋp(t) = −β3xp(t) + β1u(t), (2)

yp(t) = β2xp(t) + d(t), (3)

where we useu(t), xp(t), yp(t) to denote the input signal
(bivalirudin infusion rate), the state variable, and the output
signal (PTT), respectively, and whered(t) =

∑9
i=2 βi+2ui(t).

Clinically, since the renal/liver functions and blood metrics
of patients do not vary much within a certain period, we do
not need to measure these physiological variables continuously
and we assume that they are constant within the sample
interval. By observing the clinical data, we find thatd(t) is
a step-wise signal. Therefore, we assume that the first order
derivative ofd(t) (ḋ(t)) is 0 within the sample interval. By
taking the derivative on both sides of (3), using (2) to substitute
for ẋp(t), and using (3) to eliminatėxp(t), we obtain:

ẏp(t) = −β3yp(t) + β1β2u(t) + β3d(t). (4)

In the frequency domain, we have

Yp(s) =
β1β2U(s) + β3D(s)

s + β3
,

where the system outputyp(t) (Yp(s)), the inputu(t) (U(s)),
and d(t) (D(s)) can be observed. Hence, in our setting, the
system transfer function isGp(s,θ

∗

p) = Yp(s)/U(s) and it is
parameterized byβ1, β2 and β3. In this case,θ∗

p = (β1, β2,
β3).

Next, we design a reference transfer functionWm(s). We
take Wm(s) to be a first-order LTI system driven by a
reference signalr(t):

Wm(s) =
Ym(s)

R(s)
=

bm

s + am

,

which is equivalent to

ẏm(t) = − amym(t) + bmr(t), or (5)

Ym(s) =
bm

s + am

R(s),

for any bounded piecewise continuous signalr(t), where
am > 0, bm 6= 0 are known. We assume thatam, bm, and
r(t) are chosen so thatym(t) represents the desired output
signal.

Before introducing the MRC law, we start with two defini-
tions and a theorem (proven in the Appendix).

Definition 1
A statexe is said to be anequilibrium stateof the system
ẋ = f(t,x), x(t0) = x0, wherex ∈ R

n, f : T × B(r) →
R

n,T = [t0,∞), B(r) = {x ∈ R
n | ‖x‖ < r}, if f(t,xe) ≡

0 ∀t ≥ t0. We assume thatf is such that for everyx0 ∈ B(r)
and everyt0 ∈ [0,∞), the system possesses one and only one
solutionx(t; t0,x0).

Definition 2
A equilibrium statexe is exponentially stableif there exits an
α > 0 and for everyǫ > 0 there existsδ(ǫ) > 0, such that

‖x(t; t0,x0) − xe‖ ≤ ǫe−α(t−t0), ∀t ≥ t0 whenever‖x0 −
xe‖ < δ(ǫ).

Theorem III.1 If we chooseam > 0, bm 6= 0, andr(t) = Cr

(constant), the reference model equilibrium stateyme = bmCr

am

is exponentially stable.

We will now design a proper controlleru(t) such that all
signals in the closed-loop system are bounded and the system
output yp(t) tracks the reference model outputym(t). The
control law should be chosen so that the closed-loop plant
transfer function from the inputr(t) to the outputyp(t) is
equal to the reference model transfer function. Motivated by
this, we propose the control law

C(s,θ∗

e) = U(s) = −k∗

1YP (s) + k∗

2R(s) − k∗

3D(s),

or equivalently, in the time domain

u∗(t) = −k∗

1yp(t) + k∗

2r(t) − k∗

3d(t), (6)

wherek∗

1 , k∗

2 , k∗

3 are controller coefficients chosen so that

Yp(s)

R(s)
=

bm

s + am

=
Ym(s)

R(s)
. (7)

Eq. (7) is satisfied, if we select

k∗

1 = −
1

β1β2
(β3 − am), k∗

2 =
bm

β1β2
, k∗

3 =
β3

β1β2
,

which yields

u(t) =
1

β1β2
(β3 − am)yp(t) +

bm

β1β2
r(t) −

β3

β1β2
d(t), (8)

provided of course thatβ1, β2, β3 6= 0, i.e., the system
is controllable. Such a transfer function matching guarantees
that yp(t) = ym(t), ∀t ≥ t0, when yp(t0) = ym(t0), or
|yp(t)− ym(t)| → 0 exponentially fast whenym(t0) 6= yp(t0)
for any bounded reference signalr(t). We also note that,
depending on the parameters of some patients, this law may
yield a negative control signal which can not be implemented
in practice (corresponds to “extraction of bivalirudin” from
the patient). In such a case, we need to set a lower threshold
of zero for the control signal. The final MRC control signal
becomesmax{0, u(t)} with u(t) defined as in (8).

We test the performance of the MRC on the data set we
described in Section II-B. We only use the test set (1/3 of
the total) for testing since the remaining training set was used
for model parameter identification. As mentioned before,d(t)
(the linear combination of physiological variables at timet)
is a step-wise signal over time. By applying the parameter
identification method outlined in Sec. II-B, we obtained both
population-wide parameter values and individual model pa-
rameter values.

We tested the MRC control law on a subset of patients and
the results were qualitatively the same in each case. We report
results from a randomly selected patient who has identified
model parameters and available input data. To that end, we
set the reference parameters asam = 10, bm = 700, r(t) = 1.
Choosing these values keeps the reference PTT value to be
70s, which is in the middle of the desirable range. We note that
these parameter values are simply an example and physicians
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Fig. 4. The effect of the MRC law derived for and applied to onerandomly selected patient.

have the freedom of selecting alternative values dependingon
the stable value and response time they wish to achieve.

The effect of the MRC law (8) on this randomly selected
patient is shown in Figure 4. It can be seen that driven by
inputs generated by the MRC law, the system output quickly
converges to the reference output (top figure). The tracking
error (e(t) = yp(t) − ym(t)) quickly converges to zero and
remains at zero (second figure). We also obtain the control
signal which corresponds to the bivalirudin infusion rate (third
figure). The MRC control law we introduced is robust to
the uncontrollable signald(t) (bottom figure). Althoughd(t)
changes over time, the control signal can adapt and drive the
system to track the reference signal closely.

We next evaluate the performance of the MRC scheme on
all patients in the test set we described earlier. For performance
evaluation, we use three performance metrics. The first one is
the Root Mean Square Error (RMSE), which for patienti is
defined as

RMSEi =

√√√√√ 1

Ti

t
Ti
i∑

t=t1
i

(yi
p(ti) − yi

m(ti))2,

where t1i , . . . , t
Ti

i are the time instants at which we adapt
the controller for patienti. We define RMSE for the whole
population of patients as the average per patient RMSE,
i.e., RMSE= 1

Nt

∑Nt

i=1 RMSEi, whereNt is the number of
patients in the test set. We also defineσEi to be the standard
deviation of the errorsei(t) = yi

p(t) − yi
m(t), t = t1i , . . . , t

Ti

i ,
of patienti. Similarly, we defineσE as the average standard
deviation ofσEi’s, i.e., σE = 1

Nt

∑Nt

i=1 σEi.
To capture a notion of “relative” error, we also compute the

Normalized Root Mean Square Error (NRMSE) defined for
each patienti as

NRMSEi =

√√√√√ 1

Ti

t
Ti
i∑

t=t1
i

[(yi
p(ti) − yi

m(ti))/yi
m(ti)]2.

As with the RMSE, we define the population-wide NRMSE
as the average ofNRMSEi’s over the patients. Similarly, we
also defineσNEi as the standard deviation of the normalized
tracking errorsei(t) = (yi

p(t) − yi
m(t))/yi

m(t) for patient i,
andσNE as the average ofσNEi’s over the patients.

Furthermore, to illustrate the percentage of PTT outliers
which are outside clinically safe bounds, i.e., not in the interval
[ym(t) − 10, ym(t) + 10] during the transient and not in the
interval [60s, 80s] in steady-state, the Risk Percentage (RP)
for patienti is defined as

RPi =
Nrisk

i

Ti

,

where Nrisk
i is the number of time instantst1i , . . . , t

Ti

i at
which the PTT value of patienti is outside the safe bounds.
Then,RP is defined as the average ofRPi’s over patients. We
note that this metric is from a clinical perspective the most
important in assessing the efficacy of our methods. Table I
reports the performance of the MRC law for the patients in
the test set.

TABLE I
PERFORMANCE OF THEMODEL REFERENCECONTROL (TEST SET)

value
RMSE 0.84

σE 0.82
NRMSE 1.20%
σNE 1.17%
RP 0%

In summary, in the case that model parameters are known,
the MRC law tracks the reference signal quite well as demon-
strated by the low RMSE and NRMSE. The RP value is zero,
which completely assures clinical safety. The corresponding
standard deviations for RMSE and NRMSE are small as well.



6 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

Fig. 5. The MRC law derived for one patient but applied to another patient.

B. Indirect Model Reference Adaptive Control (MRAC)

As we mentioned in the Introduction, there is significant pa-
tient variability in the response to bivalirudin. We have already
established [1], that adapting model parameters to individual
patients leads to improved performance. This suggests thatthe
model structure is largely accurate but model parameters ofan
individual patient can deviate from population-wide parameter
values.

TABLE II
PERFORMANCE OF THEINACCURATE MODEL REFERENCECONTROL

(TEST SET)

value
RMSE 9.93

σE 3.98
NRMSE 14.18%
σNE 5.68%
RP 61.60%

To better assess the effect of this variability, we test the per-
formance of the MRC law derived using parameter values of a
specific patient when applied to another patient with different
model parameters. Fig. 5 plots the MRC law performance for
such a case. The top figure shows that there exists a large
gap between the reference output signal and the system output
signal. In addition, the system output is outside the safe range.

We also tested the MRC law derived using parameter values
of a specific patient against all patients in the test set. Table II
reports the results. We note that RMSE, NRMSE, and RP are

substantially higher (and clinically unacceptable) than those in
Table I. The difference of course is due to the fact the results
of Table I are obtained when using the MRC law with the
correct model parameters for each patient, whereas Table II
results apply the MRC law with parameters of some patient
to another patient. The small values ofσE andσNE in Table II
indicate that performance of the MRC law when used with the
wrong parameters is consistently poor. This situation should
obviously be avoided because overdosing or underdosing is
very dangerous for the patients.

To address this important issue, we next develop a method
that first estimates the individual model parameters, and then
adopts the MRC law we introduced using a certainty equiva-
lence principle [13]. Such a control scheme is called indirect
Model Reference Adaptive Control (MRAC)law.

By adding and subtracting−amyp(t) to (4), we can obtain
the State-Space Parametric Model (SSPM):

ẏp(t) = −amyp(t)+(am−β3)yp(t)+β1β2u(t)+β3d(t). (9)

Based on (9), the series-parallel estimation model [14] is given
by:

˙̂yp(t) = −amŷp(t) + (am − β̂3(t))yp(t) + β̂1(t)β̂2(t)u(t)

+ β̂3(t)d(t), (10)

where ŷp(t) is an estimated value ofyp(t), and β̂1(t), β̂2(t),

β̂3(t) are estimates of the system parametersβ1, β2, andβ3 at
time t. Note that in (10),yp(t) is treated as an input available
for measurement. By using the certainty equivalence principle
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(cf. (8)), we take the control scheme structure to be:

u(t) = −k1(t)yp(t) + k2(t)r(t) − k3(t)d(t), (11)

where

k1(t) =
am − β̂3(t)

β̂1(t)β̂2(t)
, k2(t) =

bm

β̂1(t)β̂2(t)
,

k3(t) =
β̂3(t)

β̂1(t)β̂2(t)
.

In this problem, we will estimate the product ofβ1(t) and
β2(t) instead of estimating them separately. The model esti-
mation error ise(t) = yp(t) − ŷp(t) which implies:

ė(t) =ẏp(t) − ˙̂yp(t)

= − ame(t) + β̃3(t)(yp(t) − d(t)) − β̃12(t)u(t), (12)

where

β̃3(t) = β̂3(t) − β3, β̃12(t) = β̂1(t)β̂2(t) − β1β2. (13)

We now choose a Lyapunov-like function

V (t) =
1

2
e(t)2 +

1

2γ1
β̃3(t)

2 +
1

2γ2
β̃12(t)

2, (14)

which, with γ1, γ2 > 0, is non-negative for allt. By taking
the derivative on both sides of (14) we obtain

V̇ (t) =e(t)ė(t) +
1

γ1
β̃3(t)

˙̃
β3(t) +

1

γ2
β̃12(t)

˙̃
β12(t)

= − am(e(t))2 + β̃3(t)

[
e(t)(yp(t) − d(t)) +

1

γ1

˙̃
β3(t)

]

+ β̃12(t)

[
1

γ2

˙̃
β12(t) − e(t)u(t)

]
. (15)

Then, choosing

˙̃
β3(t) = −γ1(yp(t) − d(t))e(t) and ˙̃

β12(t) = γ2e(t)u(t)

leads toV̇ (t) = −ame(t)2 ≤ 0. In addition, sinceβ1β2 and

β3 are constants, (13) implies˙̃β3(t) =
˙̂
β3(t) and ˙̃

β12(t) =
d(β̂1(t)β̂2(t))/dt. It follows that we could estimate the model
parameters by:

β̂3(t + ∆t) = β̂3(t) +
˙̂
β3(t)∆t,

β̂12(t + ∆t) = β̂12(t) + d(bβ1(t)bβ2(t))
dt

∆t,
(16)

for small ∆t. Then, we can adapt the controller coefficients
recursively and control the system in real-time by using (cf.
(11))

u∗(t) = −
am − β̂3(t)

β̂12(t)
yp(t)+

bm

β̂12(t)
r(t)−

β̂3(t)

β̂12(t)
d(t). (17)

Similarly, as we did earlier for the MRC law, we will use the
control max{0, u∗(t)} to avoid negative values.

Theorem III.2 Under the control law (17), the tracking error
converges to0 as t → ∞.

Proof: By choosing such control law,V̇ (t) =
−ame(t)2 ≤ 0, ∀t > t0. SinceV (t) is bounded from below

and non-increasing, it converges to a constant. This implies
that−am

∫
∞

t0
e2(t)dt = V (∞) − V (t0) is bounded, which in

turn implies thate(t) → 0 as t → ∞ according to Barbalat’s

lemma [15]. It also follows that˙̃β3(t),
˙̃
β12(t) → 0 ast → ∞.

One key flaw of the adaptive control law (17) is that the
boundness of control signalu(t) can not be established unless
we show thatk1(t), k2(t), k3(t) are all bounded. However,
such a control law may generate estimates ofβ1β2 arbitrarily
close or even equal to zero, which leads to the uncontrollability
of the estimated model and unboundness ofu(t). To avoid
this issue, we propose a modification to the control law (17).
One method is to modify the adaptive law forβ̂12(t) so that
adaptation takes place in a subset ofR which does not include
the zero element. We need to use the a priori knowledge of
β1 ≥ βlb

1 > 0 andβ2 ≥ βlb
2 > 0 to do the projection:

˙̃
β3(t) = − γ1(yp(t) − d(t))e(t),

˙̃
β12(t) =






γ2e(t)u(t), if |β̃12(t)| > βlb
1 βlb

2 ,

or |β̃12(t)| = βlb
1 βlb

2

ande(t)u(t)sgn(β̃12(t)) ≥ 0,

0, otherwise.

(18)

After modifying the adaptive control law, the time derivative
of the Lyapunov function becomes:

V̇ (t) =






−am(e(t))2, if |β̃12(t)| > βlb
1 βlb

2 ,

or |β̃12(t)| = βlb
1 βlb

2

ande(t)u(t)sgn(β̃12) ≥ 0,

−am(e(t))2

+β̃12(t)e(t)u(t), if |β̃12(t)| = βlb
1 βlb

2

ande(t)u(t)sgn(β̃12(t)) < 0.

Therefore,V̇ (t) ≤ −ame2(t) ≤ 0, ∀t ≥ t0.
Using a similar argument as before, it can be shown that by

using this modified parameter estimation law (18), the tracking
error converges to zero driven by a bounded control signal.
Additionally, we have shown (cf. Thm. III.1) that the reference
output response is exponentially stable, and it follows that the
system output can be driven to the stable state exponentially
fast.

We next test the indirect MRAC law using the patient data.
The parameter values of the reference model are the same as
in Sec. III-A. We choose the population-wide parameter values
β∗

3 = 7.9 × 10−4, andβ∗

1β∗

2 = 4.22 as initial values ofβ̂3(t)
and β̂12(t), respectively. The MRAC adapts based on these
estimates in real-time. We also setγ1 = γ2 = 5 × 10−4. The
trajectory of the system under the indirect MRAC is shown in
Fig. 6.

Fig. 6 indicates that the system output quickly converges to
the reference output and it remains within the desired range
(top figure). The tracking error oscillates around zero (middle
figure), but it is not as smooth as in Fig. 4. This is due to
the fact that the indirect MRAC takes some time to estimate
the system parameters first and then adapts the controller
coefficients. Similarly, we can also obtain the bivalirudinin-
fusion rate (bottom figure). Notice that althoughd(t) changes
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Fig. 6. The performance of the indirect MRAC law.

over time, the control signal can drive the system to track
the reference output signal well. The performance of indirect
MRAC for all patients in the test set is reported in Table III.

TABLE III
PERFORMANCE OF THEINDIRECT MODEL REFERENCEADAPTIVE

CONTROL (TEST SET)

value
RMSE 5.52

σE 2.00
NRMSE 7.88%
σNE 2.86%
RP 2.30%

We note that in this case, the values of our three perfor-
mance metrics are all higher than those in the Table I. This
is again explained by the fact that adaptation of the indirect
MRAC law is not very fast due to the parameter estimation
step. Yet, RMSE, NRMSE and RP values are now significantly
less than those in Table II and they could be considered
acceptable in a clinical setting.

C. Direct Model Reference Adaptive Control MRAC

In this section, we focus on designing the direct MRAC
without estimating the model parameters first. Because the
individual model parameters are unknown, we can not apply
the MRC law directly. Based on the structure of MRC law,
we propose an adaptive control law with similar structure:

u(t) = −k̂1(t)yp(t) + k̂2(t)r(t) − k̂3(t)d(t),

where k̂1(t), k̂2(t), and k̂3(t) are the estimates of MRC
controller coefficientsk∗

1 , k∗

2 , and k∗

3 at time t, respectively.

We will devise a control law that estimates these coefficients
directly.

Consider the error derivative:

ė(t) =ẏp(t) − ẏm(t)

= − ame(t) + β1β2[−k̃1(t)yp(t)

+ k̃2(t)r(t) − k̃3(t)d(t)],

where k̃i(t) = k̂i(t) − k∗

i , i = 1, 2, 3. It follows that ˙̂
ki(t) =

˙̃
ki(t), i = 1, 2, 3.

To design the controller, consider the Lyapunov-like func-
tion:

V (t) =
e(t)2

2
+ β1β2

[
k̃1(t)

2

2γ1
+

k̃2(t)
2

2γ2
+

k̃3(t)
2

2γ3

]
.

By taking the derivative, we obtain:

V̇ (t)

= ė(t)e(t) + β1β2

[
k̃1(t)

˙̃
k1(t)

γ1
+

k̃2(t)
˙̃
k2(t)

γ2
+

k̃3(t)
˙̃
k3(t)

γ3

]

= −ame2(t) + β1β2

[
k̃1(t)

γ1
(
˙̃
k1(t) − e(t)γ1yp(t))

+
k̃2(t)

γ2
(
˙̃
k2(t) + e(t)γ2r(t)) +

k̃3(t)

γ3
(
˙̃
k3(t) − e(t)γ3d(t))

]
,

where we have the a priori knowledge thatβ1β2 > 0.
Choosing

˙̃
k1(t) =γ1e(t)yp(t),

˙̃
k2(t) = − γ2e(t)r(t),

˙̃
k3(t) =γ3e(t)d(t),
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Fig. 7. The performance of direct MRAC law.

leads toV̇ (t) = −ame(t)2 ≤ 0. Furthermore, the controller
coefficients can be adapted by

k̂i(t + ∆t) = k̂i(t) +
˙̂
ki(t)∆t, i = 1, 2, 3,

and our direct MRAC controller becomes

u(t) = −k̂1(t)yp(t) + k̂2(t)r(t) − k̂3(t)d(t). (19)

As with the previous two controllers, we will usemax{0, u(t)}
to avoid negative controls.

We establish the following result; we omit the proof because
it is similar to the proof of Theorem III.2.

Theorem III.3 Under the control law (19), the tracking error
converges to0 as t → ∞.

We know that the reference model output is exponentially
stable and the tracking error converges to zero ast increases,
which establishes that the system output can be driven to
track the reference output well. To avoid overdosing and
underdosing risks that may occur in the time it takes the
MRAC to converge to the appropriate controller parameters,
we can use as initial estimates of these coefficients the
MRC coefficients, namelŷk1(0) = 2.37, k̂2(0) = 165.75,
and k̂3(0) = 1.87 × 10−4, obtained from a system model
parametrized with population-wide parameters.

We applied such a direct MRAC law to the same patient
used for generating Fig. 6. The result is shown in Fig. 7
(using γ1 = γ2 = γ3 = 0.001). We note that driven by
the direct MRAC law, the system output quickly converges
to the reference output. Although the system output oscillates
around the reference signal, it remains within the desired range
(top figure). The tracking error also converges to zero (middle

figure). We also plot the bivalirudin infusion rate (bottom
figure). Compared to the indirect MRAC, the direct MRAC
has similar performance on controlling the PTT. However,
the direct MRAC avoids parameter estimation and estimates
controller parameters directly.

Table IV reports the overall performance of the direct
MRAC for the patients in the test set. Compared to the results
from the indirect MRAC, the direct MRAC achieves lower
values for all performance metrics, i.e., RMSE, NRMSE,σE ,
σNE and RP. Notice the rather significant decrease of the RP
value, which, as we argued, is clinically a top priority. This
table validates the fact that the direct MRAC is a more efficient
and safer control scheme than the indirect MRAC.

TABLE IV
PERFORMANCE OF THEDIRECT MODEL REFERENCEADAPTIVE

CONTROL (TEST SET)

value
RMSE 0.80

σE 0.80
NRMSE 1.15%
σNE 1.14%
RP 0.09%

IV. CONCLUSIONS

Based on a specific dynamic system model of bivalirudin
acting in cardiac surgical patients, we developed two meth-
ods for synthesizing a controller to regulate the bivalirudin
infusion rate and induce a PTT within a desirable range. The
first method assumes that the model parameters are available
and develops a control law that tracks a physician specified
reference output signal. Our second method considers patients
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for which past clinical records are sparse and accurate model
parameters are not readily available. It develops an indirect
control scheme (indirect MRAC) that first estimates the model
parameters and then adapts the corresponding controller based
on these estimates. Alternatively, a direct control scheme
(direct MRAC) that adapts the controller without estimating
the model parameters first is also developed. Testing of these
schemes against actual patient data from a hospital, shows that
the direct MRAC is more efficient than the indirect version.

The methods we developed can be seen as key steps towards
automation of dosage decisions in a hospital setting, which
can help eliminate errors and neutralize the inexperience of
residents who are currently responsible for these decisions.
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APPENDIX

The solution to Eq. (5) is

ym(t) = Φ(t, t0)ym(t0) +

t∫

t0

Φ(t, τ)bmr(τ)dτ,

where Φ(t, τ) = e−am(t−τ) is the state transition function
in this problem. Sincer(t) = Cr, which is a constant, the
solution to (5) can be written as

ym(t; t0, ym(t0)) = e−am(t−t0)

(
ym(t0) −

bmCr

am

)
+

bmCr

am

.

(20)
Equation (20) indicates thatym(t; t0, ym(t0)) →

bmCr

am
which

is a constant, ast → ∞. In addition, using Definition 1, it can
be easily verified thatyme = bmCr

am
is the equilibrium state of

our reference system. Furthermore,|ym(t; t0, ym(t0))−yme| =
|e−am(t−t0)(ym(t0)−yme)| = |ym(t0)−yme|e

−am(t−t0), ∀t ≥
t0. Therefore, by Definition 2, it follows that the reference
model equilibrium stateyme is exponentially stable.
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