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Adaptive Control of Bivalirudin in the Cardiac

Intensive

Care Unit

Qi Zhao! Thomas Edrich, Member, IEEE, and loannis Ch. Paschalidisellow, IEEE,

Abstract—Bivalirudin is a direct thrombin inhibitor used in the
cardiac intensive care unit when heparin is contraindicated due
to heparin-induced thrombocytopenia. Since it is not a commonly

used drug, clinical experience with its dosing is sparse. In earlier .
work ([1]) we developed a dynamic system model that accurately

eliminated via the kidney and by plasma protease-metaholis

It affects the coagulation parametedrartial Thromboplastin
Time (PTT)and theInternational Normalized Ratio (INR)

in a dose-dependent fashion. The PTT value is measured in

predicts the effect of bivalirudin given dosage over time and pa- Seconds and it will be used as the output one wishes to regulat
tient physiological characteristics. This paper develops adaptive within a specific range.

dosage controllers that regulate its effect to desired levels. To

that end, and in the case that bivalirudin model parameters are

available, we develop a Model Reference Control law. In the

case that model parameters are unknown, an indirect Model

Although not commonly used overall, bivalirudin is finding
increasing use in the ICU. Residents adjusting the infusite
of bivalirudin may have limited experience, thus, riskingep

Reference Adaptive Control scheme is applied to estimate model OF under-dosing. Currently, the drug is regulated emplisica

parameters first and then adapt the controller. Alternatively,
direct Model Reference Adaptive Control is applied to adapt
the controller directly without estimating model parameters first.
Our algorithms are validated using actual patient data from a
large hospital in the Boston area.

Index Terms—Bivalirudin, Pharmacokinetics, Parameter lden-
tification, Adaptive Control.

I. INTRODUCTION

with a very simple nomogram [6]. Adequate anticoagulat®n i
necessary to avoid the risk of clot formation, but oversimgpt
increases the risk of bleeding. Complicating matters, eher
is considerable inter- and intra-individual variability the
response to bivalirudin. Motivated by these challenges, in
earlier work [7], [8], [1], we developed methods for predigt
future PTT values given past infusion rates and the pasient’
renal and liver function characteristics. Related work bsesd
pharmacokinetic-pharmacodynamic models to model theteffe

The US health care system is viewed as costly and higilj various drugs, see, e.g., [9], [10]. One of our methoddjn [
inefficient. Among the many reform efforts, the meaningfUf"OPOses an explicit dynamic system model which was shown

use of Electronic Health Records (EHRs) is invariably seen { Produce quite accurate results when tested againstlactua

a key to improving efficiency. In the hospital, the digitizat

patient data.

of data from medical devices enables the development ofin this paper, we pursue what we view as the natural next
algorithms that can automate decision making and faeilitat!eP- Leveraging the dynamic system model from [8], [1], we
treatment. This is exactly the goal of this paper which fo:€€k to synthesize controllers that can regulate the orusite
cuses on automating dosage decisions for a particular dltggdnve PTT within a desirable range. Other methodolog@s
—bivalirudin— used in the cardiac Intensive Care Unit (ICU) SUch as expert systems have also been used for controlling
Bivalirudin antagonizes the effect of thrombin in the bloo§°Me drugs [11]. We develop two types of control laws. First,

clotting cascade, thereby preventing complications fréood

assuming that a dynamic system model that can predict PTT

clotting. It is currently FDA-approved for short-term ant 9/ven dosage is completely characterized, we develbtoadel

coagulation of patients undergoing cardiac cathetedmatd

Reference Control (MRClaw. Model parameters, however,

prevent complications due to undesired blood clots [2], [3["@Y Pe viewed as not known with certainty, which is due

[4], [5]. Bivalirudin is administered to patients who have
contraindication to heparin. It is infused continuouslydas
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0 modeling errors and inter- or intra-individual variatyil

To overcome this problem, we develop an indirédodel
Reference Adaptive Control (MRA@Gw that identifies the
model parameters first and then adapts the controller in real
time. Furthermore, we develop a direct Model Reference
Adaptive Control law that adapts the controller directlythwi
out estimating model parameters first, which is more efficien
For each case, we present analytical and numerical evidence
showing that the controllers do drive PTT to the desirable
range. Our numerical validation is in fact done using actual
patient data from the Brigham and Women'’s Hospital — a large
hospital in the Boston area.

The remainder of the paper is organized as follows. Sec. Il
presents the dynamic system model that predicts the effect o
bivalirudin given dosage and patient physiological infation.
Sec. Il presents the proposed control schemes; Sec. Ik-A d



2 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

velops the MRC law whereas Sec. IlI-B develops the indirect 7) PLT (K/mcL): Platelet count.
MRAC law based on the patient model but with unknown 8) HCT (%): Hematocrit.
parameters. Sec. IlI-C develops the direct MRAC, which is 9) FIB (mg/dL): Fibrinogen.
more efficient in adapting the controller. Finally, conchgl \iore detailed description of these physiological variahtan
remarks appear in Sec. IV. be found in [1].
Notation: We use bold letters to denote vectors and ma- t1a model of Fig. 1 has a single output —the PTT value—

trlcdes; WP'Ca”i’) vectors are dlenoted by lower case letiegg,ih i denoted by)(¢). There is also a single state variable
En mlatnces y upperl case etlt_e_rslz. Vecto;ls arr? as_sumeqjéﬂoted byz(t). Overall there arel2 unknown parameters:
e column vectors unless explicitly stated otherwise. FQY ot \yhich correspond to the various gains and are denoted

economy of space we write = (z1,--- ,z,) for the column o, 5 - 1~ 11 The initial condition of the system is the

vectorx € R™. In addition, we use lower case letters to denot&th unknown parameter and is denotedatf9) (52). The
time domain functions (e.gjf(¢)), and upper case letters to

system dynamics are:
denote Laplace transforms (e.d.(s)). y y

z(t) = Az(t) + Bu(t), 1)
Il. DYNAMIC SYSTEM MODEL FORMULATION y(t) = Caz(t)+ Du(t),
A. The Model
This section presentsMultiple Input Single Output (MISO) where A = —f; B = [6 0 - ,O]’ C = [ and
dynamic system model that attempts to explicitly account 2 = [0 Ba -+~ fu]. Clearly, this is alinear Time Invariant

the way bivalirudin affects PTT in patients. The model wald-T!) dynamic system. The challenge is that we do not know

developed and validated in [1]; it is presented here brief{)® Model parameters and we only have non-uniform sampled

to establish the notation and to set the stage for the contf@Puts u(?), and clinical observation valueg(t) at certain
schemes of Sec. Il timest for each patient. It is therefore necessary to translate the

continuous-time system dynamics to discrete-time dynamic
before proceeding with parameter identification.

Bazinitial condition

G 20 [+]
whaicy s Bz > +
B. Parameter Identification
B Given the highly non-uniform sampled data, two methods

e >, + were introduced to identify model parameters in [1]. First,
P after converting to discrete-time dynamics, we formulatesl
EL—~ ¢ parameter identification problem as the nonlinear optitiira
< SGPT s > + problem of minimizing some metric of fitness to a training set
TS | i of sampled data.

P s The data set we used comes from the STAR (Surgical

el ICU Translational Research) Center at Brigham and Women'’s
I |+ Hospital in Boston. It consists of records f@s3 patients
Ge—i g including the predictors and the output PTT value sampled
G (non-uniformly) over time. We randomly split our data sebin

— + a training set corresponding &3 of the total (155 patients)

and a test set corresponding @3 of the total (78 patients).
Fig. 1. The Multiple Inputs Single Output (MISO) dynamic systmodel. We use the former to identify the unknown system parameters
and the latter to evaluate the performance of the various@on
The key quantity (response) we would like to predict is thews we will develop in subsequent sections.
PTT at each time. The dynamic model structure is shown More specifically, let us use a subscriptto denote the
in Fig 1. There aré inputs which are denoted hy;(t), i = model primitives, i.e., the state;(t), outputy;(¢), and inputs

1,...,9 and correspond to important physiological variables;(¢) for each patientj = 1,..., N, where N denotes the
used as predictors. More specifically, inputg(t), ..., u9(t) number of patients in the training set. To distinguish betwe
respectively correspond to: measurements of;(¢) and predictions based on the system
1) Bival rate (mg/kg/h): the weight-based bivalirudin in-dynamics we usg;(t) for the former andj;(¢) for the latter.
jection rate. Suppose for each patieptwe havel; measurements at times
2) GFR (mL/min): the glomerular filtration rate. thyee ,t?’, where we adopt the conventiafi = 0 for all 5.
3) SGOT (Units/L): the Serum Glutamic OxaloaceticWe can then formulate a nonlinear optimization problem of
Transaminase. minimizing the least squares error
4) SGPT (Units/L): the Serum Glutamic Pyruvic Transam- .
inase. Nt
5) TBILI (mg/dL): total bilirubin. SO @) - yi1)?,

6) ALB (g/L): Albumin. J=1t=t!
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Fig. 2. In this dynamic model, the bivalirudin infusion ratét) is the only controllable inputd(¢) is the linear combination of the rest of the inputs.
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Fig. 3. Model Reference Adaptive Control (MRAC) structure.

subject to the discretized version of the system dynamies. Tand include some metrics related to the blood (PLT, HCT,
decision variables are(0)(= a:(t?) for all j) and the parame- FIB). Arguably, these variables are not immediately a#fdct
tersg;, i = 1,...,11. One can easily substitute the expressiorisy the drug but change over a longer time-scale than the
from the constraints (the system dynamics) into the objectione we focus on for controlling PTT through the infusion of
function and obtain a nonlinear optimization problem with nbivalirudin. Therefore, we consider them as non-conthda
constraints other than some bounds on the decision vasiabknd aggregate them in a variaklg) which is their linear com-
This problem, however, is non-convex. We applied a Quadiination with the appropriate gairn, ..., 511 (see Fig. 2).
Newton method (BFGS) [12] to obtain optimal values for the
model parameters. This yielded a population-wide modéiént Ideally, we want to design a reference model which can
sense that its parameters produced the best fit with the sdmg@ienerate sufficient but safe PTT values driven by a reference
data. Furthermore, and to accommodate variability acrd§®ut signal. Based on the output of the reference model,
patients, we used a recursive estimation method (Extendi@l want to drive our system to perform similarly to the
Kalman Filter) to estimate the parameter values that beat fiteference model by a proper control signal. Motivated by
given individual patient in real-time. this, we adopt the so called continuous-time MRAC scheme.
Fig. 3 shows the general structure of this control 184, (s)
denotes an ideal reference transfer function that can gener
the desired reference output signal. The controllablecsyss

We now turn to our primary goal of devising a propefepresented by, (s,0;), where@ is a parameter vector. The
controller to keep the PTT value in the range of 60s-80gbjective is to design a controll€F(s, 87), parameterized by
According to clinical experience, this range is safe andheglt  9*, to generate the proper control signals that can drive the

for cardiac surgery patients. For the system we have defmecbntrollable system to track the reference output values.
Eqg. (1), note that the only controllable part is the bivadiru

infusion rate. The rest of the inputs are indicators of pagle  Our first controller is an MRC law that is designed assuming
liver (SGOT, SGPT, TBILI, ALB) and renal function (GFR)that the system parametefl§ are known.

Ill. BIVALIRUDIN CONTROL SCHEME
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A. Model Reference Control (MRC) x(t;to, x0) — Xe|| < ee (%) Wt > ¢, whenever|x, —

By observing the system in Fig. 2, we can rewrite th&ell <d(€).
dynamics of a particular patient as

_ Theorem Ill.1 If we chooser,,, > 0, b,, # 0, andr(t) = C,
p(t) = —Psap(t) + Pru(t), (@) (constant), the reference model equilibrium stgig, = 2
yp(t) = Bax,(t) + d(t), (3) is exponentially stable.

where we useu(t),z,(t),y,(t) to denote the input signal We will now design a proper controller() such that all
(bivalirudin infusion rate), the state variable, and thépati signals in the closed-loop system are bounded and the system
signal (PTT), respectively, and whedét) = 3°7_, Biroui(t).  output y,(t) tracks the reference model outpyt,(t). The
Clinically, since the renallliver functions and blood niesr control law should be chosen so that the closed-loop plant
of patients do not vary much within a certain period, we d@ansfer function from the input(t) to the outputy,(t) is

not need to measure these physiological variables contiyo equal to the reference model transfer function. Motivatgd b
and we assume that they are constant within the samgigs, we propose the control law

interval. By observing the clinical data, we find tht) is . . . .

a step-wise signal. Therefore, we assume that the first order C(s,0;) = U(s) = =kiYp(s) + ka R(s) — k3 D(s),
derivative ofd(t) (d(t)) is O within the sample interval. By of equivalently, in the time domain

taking the derivative on both sides of (3), using (2) to siist

for i,(t), and using (3) to eliminate,, (), we obtain: ut(t) = —kiyp(t) + kor(t) — k3d(?), (6)
Up(t) = —Bayp(t) + B1Bou(t) + Bad(t). (4) Wherek7, k3, k3 are controller coefficients chosen so that
In the frequency domain, we have Yp(s) _ b _ Ym(é’). @)
o BuBalU(s) + BsD(s) | | .R(s? s+ am R(s)
p(s) = s+ Os ) Eq. (7) is satisfied, if we select
where the system outpyt,(t) (Y,(s)), the inputu(t) (U(s)), pr— L _ g Om g Ps
P . . 1 — (ﬁ?) am)7 2 — 5 3 — 3
andd(t) (D(s)) can be observed. Hence, in our setting, the B2 B2 B2
system transfer function ié?p(s,e;j) =Y,(s)/U(s) and it is which yields
parameterized by, G2 and (5. In this caseﬂ; = (81, P, 1 b By
Next, we design a reference transfer functiof, (s). We 172 172 172
take W,,(s) to be a first-order LTI system driven by aprovided of course thaB, (2, 33 # 0, i.e., the system
reference signat(t): is controllable. Such a transfer function matching guaesit
Yin(s) b that y,(t) = ym(t), Vt > to, when y,(to) = ym(to), OF
Wi(s) = 7 = , lyp(t) — ym ()| — 0 exponentially fast whem,,, (to) # y,(to)
o _ (5)  s+am for any bounded reference signalt). We also note that,
which is equivalent to depending on the parameters of some patients, this law may
Um (t) = — amym (t) + byr(t), or (5) yield a negative control signal which can not be implemented
" b e e in practice (corresponds to “extraction of bivalirudin’ofn
Yin(s) = +m R(s), the patient). In such a case, we need to set a lower threshold
S+ am,

of zero for the control signal. The final MRC control signal
for any bounded piecewise continuous signdt), where becomeanax{0,u(t)} with u(t) defined as in (8).
am > 0, by, # 0 are known. We assume thaf,, b,,, and  We test the performance of the MRC on the data set we
r(t) are chosen so that,(t) represents the desired outpufescribed in Section II-B. We only use the test set (1/3 of
signal. the total) for testing since the remaining training set wseadu

. ) ] __for model parameter identification. As mentioned befai(e)
~ Before introducing the MRC law, we start with two definiihe linear combination of physiological variables at time
tions and a theorem (proven in the Appendix). is a step-wise signal over time. By applying the parameter
Definition 1 identification method outlined in Sec. 1I-B, we obtainedbot

A statex, is said to be anequilibrium stateof the system population-wide parameter values and individual model pa-

% = f(t,x), x(to) = xo, wherex € R, f : 7 x B(r) — rameter values. _
R", T = [to,00), B(r) = {x € R" | |x|| < r}, if f(t,x.)= We tested the MRC control law on a subset of patients and

0 Vt > to. We assume that is such that for everx, € B(r) the results were qualitatively the same in each case. Wetrepo

and evenyt, € [0, xc), the system possesses one and only offsults from a randomly selected patient who has identified
solutionx(#; to X’O)_ ’ model parameters and available input data. To that end, we

set the reference parametersugs= 10, b,, = 700, r(¢t) = 1.
Definition 2 Choosing these values keeps the reference PTT value to be
A equilibrium statex. is exponentially stablé there exits an 70s, which is in the middle of the desirable range. We note tha
a > 0 and for everye > 0 there existsi(e) > 0, such that these parameter values are simply an example and physicians
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Fig. 4. The effect of the MRC law derived for and applied to eardomly selected patient.

have the freedom of selecting alternative values depenaling As with the RMSE, we define the population-wide NRMSE
the stable value and response time they wish to achieve. as the average dfRMSE;'s over the patients. Similarly, we
The effect of the MRC law (8) on this randomly selectedlso definesy g; as the standard deviation of the normalized
patient is shown in Figure 4. It can be seen that driven tsacking errorse’(t) = (v} (t) — yi,(t))/y.,(t) for patienti,
inputs generated by the MRC law, the system output quickindox g as the average afyg;'s over the patients.
converges to the reference output (top figure). The trackingrurthermore, to illustrate the percentage of PTT outliers
error (e(t) = y,(t) — ym(t)) quickly converges to zero andwhich are outside clinically safe bounds, i.e., not in thetival
remains at zero (second figure). We also obtain the contrgl () — 10, ,,(¢) + 10] during the transient and not in the

signal which corresponds to the bivalirudin infusion rdterd interval [60s,80s] in steady-state, the Risk Percentage (RP)
figure). The MRC control law we introduced is robust tgor patient; is defined as

the uncontrollable signal(¢) (bottom figure). Althoughi(t)
changes over time, the control signal can adapt and drive the

system to track the reference signal closely. RP; = N} wk,

We next evaluate the performance of the MRC scheme on T;
all patients in the test set we described earlier. For perdoice
evaluation, we use three performance metrics. The first ®neyhere N;%** is the number of time instants,...,t/* at
the Root Mean Square Error (RMSE), which for patiéns which the PTT value of patientis outside the safe bounds.
defined as Then,RP is defined as the average RP;’s over patients. We

o note that this metric is from a clinical perspective the most

: important in assessing the efficacy of our methods. Table |

RMSE; = T, Z(%(ti) = Y (ti))?, reports the performance of the MRC law for the patients in
"=t the test set.
where t!,... tI" are the time instants at which we adapt
the controller for patient. We define RMSE for the whole TABLE |
population of patients as the average per patient RMSE, PERFORMANCE OF THEMODEL REFERENCECONTROL (TEST SE7)
i.e., RMSE= N%Zivz‘l RMSE;, where N, is the number of value
patients in the test set. We also defing; to be the standard RMSE | 0.84
deviation of the errors’(t) = v (t) — yi, (t), t = t},... 1", . 1%%%/0
of patienti. Similarly, we definesy as the average standard one | L17%
deviation ofop;’s, i.e.,op = &= S 0. RP | 0%

To capture a notion of “relative” error, we also compute the
Normalized Root Mean Square Error (NRMSE) defined for

each patient as In summary, in the case that model parameters are known,
the MRC law tracks the reference signal quite well as demon-
1 ¢ strated by the low RMSE and NRMSE. The RP value is zero,

NRMSE; = T [y () — i, (t:)) /i, (t:)]2 which completely assures clinical safety. The correspundi
LA, standard deviations for RMSE and NRMSE are small as well.

STh
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Fig. 5. The MRC law derived for one patient but applied to arotpatient.

B. Indirect Model Reference Adaptive Control (MRAC) substantially higher (and clinically unacceptable) tHawst in
Table I. The difference of course is due to the fact the result
of Table | are obtained when using the MRC law with the
correct model parameters for each patient, whereas Table Il

established [1], that adapting model parameters to indalid "€SUltS apply the MRC law with parameters of some patient

patients leads to improved performance. This suggestshtaat ©© @nother patient. The small valuesaf andoy ; in Table Il
model structure is largely accurate but model parametess Ofmdlcate that performance of the MRC law when used with the

individual patient can deviate from population-wide paeen wrong parameters is consistently poor. This situation khou
values obviously be avoided because overdosing or underdosing is

very dangerous for the patients.
To address this important issue, we next develop a method

As we mentioned in the Introduction, there is significant p
tient variability in the response to bivalirudin. We havesaldy

TABLE I
PERFORMANCE OF THEINACCURATE MODEL REFERENCECONTROL that first estimates the individual model parameters, aerd th
(TEST SEV) adopts the MRC law we introduced using a certainty equiva-
alie lence principle [13]. Such a control scheme is called iradire
RMSE 9.03 Model Reference Adaptive Control (MRAIG}v.
oE 3.98 By adding and subtractinga.,,y,(¢) to (4), we can obtain
NRMSE | 14.18% the State-Space Parametric Model (SSPM)
ONE 5.68%
RP 61.60% .
- Up(t) = —am¥yp(t) +(am —B3)yp(t) + 1 B2u(t) +Bd(t). (9)

To better assess the effect of this variability, we test #e p Based on (9), the series-parallel estimation model [14iMsrg
formance of the MRC law derived using parameter values ofo:

specific patient when applied to another patient with deffer R - PN
model parameters. Fig. 5 plots the MRC law performance for¥p(t) = —am¥p(t) + (am — B5(t))yp(t) + B1(t)B2(t)u(?)
such a case. The top figure shows that there exists a large +§3(t)d(t), (10)

gap between the reference output signal and the systemtoutpu R R
signal. In addition, the system output is outside the safgea wherey,(¢) is an estimated value of,(¢), and 51 (t), B2(t),
We also tested the MRC law derived using parameter valuggt) are estimates of the system parametrsfs, andjs at
of a specific patient against all patients in the test setleTdb time ¢. Note that in (10)y,(¢) is treated as an input available
reports the results. We note that RMSE, NRMSE, and RP dog measurement. By using the certainty equivalence piaci
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(cf. (8)), we take the control scheme structure to be: and non-increasing, it converges to a constant. This implie

that —a,,, [ e%(t)dt = V(c0) — V(L) is bounded, which in
u(t) = =k (O)yp(t) + ka(B)r(t) = ks (B)d(t), (A gy implies thate(t) — 0 ast — oo according to Barbalat's

where lemma [15]. It also follows thaBs(t), f12(t) — 0 ast — oc.
Ay — /27)\3 (t) an . . "
ki(t) = =——=—=, ka(t) = =—=—, One key flaw of the adaptive control law (17) is that the
ALt)Ba(t) Art)Ba(t) boundness of control signalt) can not be established unless
53(75) we show thatk, (¢), k2(t), k3(¢t) are all bounded. However,
3(t) = m such a control law may generate estimategqf, arbitrarily

close or even equal to zero, which leads to the uncontrditiabi
In this problem, we will estimate the product 6f(¢) and of the estimated model and unboundnessu(f). To avoid
P2(t) instead of estimating them separately. The model esfis issue, we propose a modification to the control law (17).
mation error ise(t) = y,(t) — ¥ (t) which implies: One method is to modify the adaptive law far(t) so that
&(t) =iy (t) — 5 0 adaptation takes place in a subseRofvhich does not include
P PR - the zero element. We need to use the a priori knowledge of
= —ame(t) + Ba(1) (yp(t) — d(t)) — Pra(Wu(t), (12) g, > plb > 0 andB, > AL > 0 to do the projection:

where S Bo(t) = = (yp(t) — d(t))e(t),
Bs(t) = B3(t) — B, Bia(t) = B1(t)Ba2(t) — B1f2. (13) ee(ult), if \B}z(ﬁﬂ > glegl,
. ) P o or |ﬁl2(t)| = ibﬁéb 18
We now choose a Lyapunov-like function Bra(t) = and e(t)u(t)sgi Bra(t)) > 0. (18)
_1 1z 15 0, otherwise.
V(t) = 26(15)2 + 5 Bs(t)? + 5 Bra(t)?,  (14)

After modifying the adaptive control law, the time derivati

which, with v1, 79 > 0, is non-negative for alt. By taking of the Lyapunov function becomes:

the derivative on both sides of (14) we obtain

. ~ 3 - z —am(e(t 2, if Bl t) > ibﬁlb,
V(0) =e(e(t) + ~- )0 + - Brat)na(0) e sl
= — am(e(t))? + B5(t) {e(t)(yp(t) —d(t)) + %ég(t) V(t) = (e’ and e(t)u(t)sgn(B12) > 0,
ol LA - ettru)| +B2(t)e(t)ult), if |Bia(t)| = BleaL
i Bult)| ) — (o) (15) e S,

Then, choosin .
g Therefore,V (t) < —a,,e?(t) <0, Vt > ty.

B3(t) = =1 (yp(t) — d(t))e(t) and Bra(t) = vae(t)u(t) Using a similar argument as before, it can be shown that by
. 9 - : using this modified parameter estimation law (18), the fragk
leads toV(t) = —ame(t)” < O;m addltlon, smca@& and error converges to zero driven by a bounded control signal.
B3 are constants, (13) implies;(t) = 33(¢) and 512(t) =  Additionally, we have shown (cf. Thm. I1I.1) that the reface
d(B1(t)B2(t))/dt. It follows that we could estimate the modebutput response is exponentially stable, and it follows tha

parameters by: system output can be driven to the stable state expongntiall
~ ~ 5X fast.
Pyt + At) = B(t) + ﬂgd(t%At% | (16)  We next test the indirect MRAC law using the patient data.
Bra(t + At) = Bia(t) + LOLBRE Ay, The parameter values of the reference model are the same as

for small At. Then, we can adapt the controller coefficient§ S€c. Ill-A. We choose the population-wide parameter eslu
¥ =17.9x10"% and 3735 = 4.22 as initial values of3s(t)

recursively and control the system in real-time by using (0?3 . !
(11)) and (12(t), respectively. The MRAC adapts based on these
- N estimates in real-time. We also sgt= v, = 5 x 10~%. The
ut(t) = _m = ﬁ3(t)yp(t) i Abm r(t) — 93(75) d(t). (17) trgjectory of the system under the indirect MRAC is shown in
Br2(t) Bra2(t) Bra2(t) F'Q-_ 6. o _
Similarly, as we did earlier for the MRC law, we will use the F19- 6 indicates that the system output quickly converges to
control max{0, u* ()} to avoid negative values. the rgference output gnd it remains within the desired range
(top figure). The tracking error oscillates around zero (tted
figure), but it is not as smooth as in Fig. 4. This is due to
the fact that the indirect MRAC takes some time to estimate
the system parameters first and then adapts the controller
Proof: By choosing such control Iaw,V(t) = coefficients. Similarly, we can also obtain the bivalirud
—ame(t)? <0, Vt > to. SinceV (¢) is bounded from below fusion rate (bottom figure). Notice that althoudft) changes

Theorem IIl.2 Under the control law (17), the tracking error
converges td ast — oo.
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Fig. 6. The performance of the indirect MRAC law.

over time, the control signal can drive the system to tradke will devise a control law that estimates these coeffisient
the reference output signal well. The performance of irdiredirectly.
MRAC for all patients in the test set is reported in Table Ill. Consider the error derivative:

e(t) =p(t) = gm(t)

TABLE Il
PERFORMANCE OF THEINDIRECT MODEL REFERENCEADAPTIVE = — ame(t) + ﬂ152[7k1 (t)yp(t)
CONTROL (TEST SET) ~ ~
+ ko (t)r(t) — ks(t)d(t)],
value B =R "
RMSE | 552 wherek;(t) = k;(t) — kF,i = 1,2,3. It follows thatk;(t) =
oE 2.00 z )
NRMSE | 7.88% ki(t),i=1,2,3. . _
ONE 2.86% To design the controller, consider the Lyapunov-like func-
RP 2.30% tion:
e(t)? Ei(t)? k(1) ks(t)?
o Vi) = (t) + 615 17 k27 ks(O7]
We note that in this case, the values of our three perfor- 2 271 279 273

mance metrics are all higher than those in the Table I. Thi§; taking the derivative, we obtain:
is again explained by the fact that adaptation of the intlirec.

MRAC law is not very fast due to the parameter estimatiory ()

step. Yet, RMSE, NRMSE and RP values are now significantly F (D (8) Fo(Dha(t)  Fos(D)s(t
less than those in Table Il and they could be considered €(t)€(t)+ﬁ152{ 1tk (£) (ks (1) (0 ()}
acceptable in a clinical setting.

S0 G0 - etpmun(o)

— ~an0) + it |

C. Direct Model Reference Adaptive Control MRAC R B
In this section, we focus on designing the direct MRAC M@Q(t) + e(t)yar(t)) + M(Eg(t) G(t)’ygd(t))],

without estimating the model parameters first. Because the 72 73

individual model parameters are unknown, we can not applhere we have the a priori knowledge th#t3; > 0.

the MRC law directly. Based on the structure of MRC law, Choosing

we propose an adaptive control law with similar structure:

u(t) = =1 ()yp (1) + ka(6)r (1) — ks(£)d(2),

where ﬁl(t), Eg(t), and Eg(t) are the estimates of MRC B
controller coefficientst, k3, and k; at timet, respectively. ka(t) =yse(t)d(t),

@mzmwmm
]%2(15) = = 72e(t)r(t),
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Fig. 7. The performance of direct MRAC law.

leads toV (t) = —ame(t)? < 0. Furthermore, the controller figure). We also plot the bivalirudin infusion rate (bottom
coefficients can be adapted by figure). Compared to the indirect MRAC, the direct MRAC
~ ~ - ‘ has similar performance on controlling the PTT. However,
kit + At) = ki(t) + k(DAL i=1,2,3, the direct MRAC avoids parameter estimation and estimates
and our direct MRAC controller becomes controller parameters directly.

R R R Table IV reports the overall performance of the direct
u(t) = —ki(t)yp(t) + ka2(t)r(t) — ks(t)d(t).  (19) MRAC for the patients in the test set. Compared to the results
from the indirect MRAC, the direct MRAC achieves lower
values for all performance metrics, i.e., RMSE, NRMStz,
GNE and RP. Notice the rather significant decrease of the RP
value, which, as we argued, is clinically a top priority. hi
table validates the fact that the direct MRAC is a more efficie
and safer control scheme than the indirect MRAC.

As with the previous two controllers, we will useax{0, u(t)}
to avoid negative controls.

We establish the following result; we omit the proof becau
it is similar to the proof of Theorem IIl.2.

Theorem I11.3 Under the control law (19), the tracking error

converges td) ast — oo. TABLE IV
. . PERFORMANCE OF THEDIRECT MODEL REFERENCEADAPTIVE
We know that the reference model output is exponentially CONTROL (TEST SE)

stable and the tracking error converges to zero imsreases,

which establishes that the system output can be driven to value
track the reference output well. To avoid overdosing and R(’;"SE g'gg
underdosing risks that may occur in the time it takes the NR,ﬁSE T 15%
MRAC to converge to the appropriate controller parameters, one | 1.14%
we can use as initial estimates of these coefficients the RP__| 0.09%

MRC _coefficients, namelyzl(()) = 2.37, EQ(O) = 165.75,
and k3(0) = 1.87 x 1074, obtained from a system model
parametrized with population-wide parameters. IV. CONCLUSIONS

We applied such a direct MRAC law to the same patient Based on a specific dynamic system model of bivalirudin
used for generating Fig. 6. The result is shown in Fig. &cting in cardiac surgical patients, we developed two meth-
(usingy; = 72 = 3 = 0.001). We note that driven by ods for synthesizing a controller to regulate the bivalinud
the direct MRAC law, the system output quickly convergegfusion rate and induce a PTT within a desirable range. The
to the reference output. Although the system output osedla first method assumes that the model parameters are available
around the reference signal, it remains within the desimede and develops a control law that tracks a physician specified
(top figure). The tracking error also converges to zero (teiddreference output signal. Our second method considersnpstie
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for which past clinical records are sparse and accurate imode APPENDIX

parameters are not readily available. It develops an intire The solution to Eqg. (5) is

control scheme (indirect MRAC) that first estimates the nhode

parameters and then adapts the corresponding controedba

on these estimates. Alternatively, a direct control scheme  ¥m(t) = ®(t, to)ym(to)+/‘I’(f77)bmr(7)d7a
(direct MRAC) that adapts the controller without estimgtin to

the model parameters first is also developed. Testing ofath%here &

schemes against actual patient data from a hospital, stats ¥n this problem. Since-(t) = C., which is a constant, the
the direct MRAC is more efficient than the indirect Version.. .\ +ion to (5) can be written as

The methods we developed can be seen as key steps towards b C b O
automation of dosage decisions in a hospital setting, whigh), (¢: to, y,,(ty)) = e—am (t—to) <ym(to) _ W) 4 ZmET
can help eliminate errors and neutralize the inexperierice o a a7(”20)
residents who are currently responsible for these dedsion Equation (20) indicates thak, (t: to, ym (to)) — ba,f which

is a constant, as— oco. In addition, using Definition 1, it can

be easily verified thay,,. = 2= is the equilibrium state of
REFERENCES our reference system. Furthermag, (¢; to, Ym (t0)) —Yme| =

|eiam(t7to)(ym(t0)*yme)‘ = ‘ym(to)*ymekiam(tito)'Vt 2

to. Therefore, by Definition 2, it follows that the reference
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