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1. Introduction

The natural solution to many problems in probability theory and mathemati-
cal statistics is provided by an examination of certain limit distributions. As is
the case in the classical problem of the summation of a large number of random
variables which are in some sense of equal weight, the study of the exact distri-
bution functions of the sums not only leads, as a rule, to intractable formulas
but in many important cases is impossible, since the exact distributions of the
separate summands are often unknown. On the other hand, limit distributions
are almost independent of the idiosyncrasies of the distributions of the summands
and have a quite manageable form. The same phenomenon can be observed in
mathematical statistics in the study of statistical criteria for a large number of
observations. As a rule, the exact criteria are complicated but their limiting form
is simple and convenient for application. An excellent example of this situation
is the treatment of statistical mechanics by A. I. Khinchin, in which limit theo-
rems play an outstanding role. Examples of this kind are literally innumerable.

However, as was pointed out a long time ago by P. L. Chebyshev [1], in order
to be able to apply limit theorems in practice, it is necessary to have an estimate
of the error involved. Obviously, if the remainder terms decrease slowly, then the
limiting distributions must be used with corrections. Currently the most power-
ful and general method for finding corrections of this nature is the method of
asymptotic expansions. These expansions were first examined, without an exact
foundation, by Chebyshev [2] for the case of the classical limit theorem. Later,
expansions of Chebyshev's type were studied by H. Bruns [3], C. Charlier [4],
and F. Y. Edgeworth [5]. However, the fullest results in this direction were ob-
tained much later by H. Cramer [6] and by C. G. Esseen [7]. We shall not con-
cern ourselves here with the numerous further improvements in precision, since
that is not the basic object of this paper. Nor shall we dwell on the series of inter-
esting investigations of recent years, which studied asymptotic distributions for
the sums of random variables and vectors forming a simple Markov chain. To a
considerable extent, these works repeated methods which had been worked out
for the sums of independent random variables and essentially consisted of the
use of the properties of the Fourier transforms of functions of bounded variation.
The asymptotic analysis of the distributions of functionals of sums of random
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variables began quite recently. The first result in this direction seems to be due
to N. V. Smirnov [8]. This result is concerned with the speed of convergence of
the distribution of the normed maximal difference between the true distribution
function and the corresponding empirical distribution function, when the number
of observations on which the latter is based is indefinitely increased. Let F(x) be
the distribution function of an observable random variable and assume that it is
continuous. Let n be the number of independent observations and let Fn(x)
denote the corresponding empirical distribution function. Smirnov studied the
random variable

(1) Dn+ = Wn sup [Fn(x) - F(x)]
-X <x<o

and found the following facts [8].
For 0 < x < nll2 we have

(2) 4,t(x) = P{D+ < x}

=1-(i - ~=)fl =izv;(n)(k - v')(n - k + x-\/n)
( a/n) k=lk+[zo/n] (k) nn

Also, we have 4,+ (x) = 0 for x < 0 and 4+ (x) = 1 for x > \/n. Another result
of Smirnov is that, for all x > 0,
(3) b+(x) = lim 4I+ (x) = 1 -e-2x

n co
and, for 0 < x < 0(n1/6),

(4) 4¢+(x) = 1 2x[ + 2x + ° ( .

Later, another term of the asymptotic expansion was found by N. I. Karplev-
skaia, a student at the University of Lvov. Her unpublished result (1949) is

(5) ¢+(x) = 1-Ie2x[1 + 32 2(+3 93) + 0( )].
Chan Li-Tsian added still another term [9] in this expansion. As a result, for
O < x < 0(n"l6), we have

(6) 4t+(x) = 1 -e-2x'
+ 2x + 2x2 (1 2x2 + 4x (1 19X2 2x4\) + ](n-2)
L3Vn~~3n J9391/2 k ) +(n3

A little later than Smirnov, and independently from him, Z. W. Birnbaum and
F. H. Tingey [10] also found a result equivalent to (2), differing from it only in
notation.

Using the exact distribution of the variable

(7) D. = \n sup IFn(x) - F(x)l
-_ <x<.
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and performing elegant calculations, Chan Li-Tsian [11] succeeded in obtaining
the expansion

3

(8) F.(x) = P{Dn < x} = E_ n-rl2Kr(X) + O(n-2),
r=O

where the symbols K, in formula (8) mean

Ko(x) = ( lek-2
k =-oo

Ki(x) = -
2x

E ( )kk2e-2k2X2,3 k=-x

(9) K2(x) = - 1 E (-1)k[fi - 4(fi + 3)k2X2 + 8k4x4]e 2k2X2,

K3(X) = (_l) [52_ 4(f2 +45)k2X2 + 8k4x4] e-2k22

fi = k2 sin2k2 f2 = 5k+22 - 15 sin 2-2 2

The use of exact distributions in order to obtain asymptotic expansions is
found in a note by B. V. Gnedenko [12], given to the study of the maximal
deviations, both one-sided and two-sided, between two empirical distribution
functions, each based on the same number of independent observations.

It is obvious that, given the exact distribution corresponding to a fixed value
of the parameter n, it is always possible to obtain an asymptotic power-series
expansion; success here depends only on the manipulative skill of the research
worker. However, this method of obtaining asymptotic expansions can hardly be
considered interesting mathematically. In the first place, each improvement in
precision of the formula already obtained requires a repetition of the calculations
performed earlier. In the second place, the method requires the knowledge of the
exact distribution, and it is this last problem by itself that is likely to present
considerable difficulties. Thus there is an acute need for a method that would
permit us to find asymptotic expansions without first having to determine the
exact distributions for all n.

In this particular respect the works of H. E. DaDiels [13], I. I. Gikhman [14],
[15], and V. S. Koroluk [16], [17], [18] are of undoubted interest, since not only
did they solve separate particular problems but they also laid the foundation of
a general method for obtaining asymptotic expansions. Daniels' article examined
the asymptotic expansion of the probability density function of the arithmetic
mean of identically distributed summands. Gikhman studied the asymptotic
expansions of the expected value of sufficiently smooth functions of random
variables forming a Markov chain. These expansions were obtained as a result of
an analysis of the equation determining the required expectation. In particular,
if the independent identically distributed random variables (l, 2. - - - X t have
moments of the first three orders and the function f(x) is uniformly continuous
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and bounded, together with its derivatives up to the fifth order inclusive, then
we have the equation

(10) E (n j = f(a,) + 2 (a2- a')f"(a)
+ 1 {[a -a, _ al(a2- af)]fm(al) + (a2-)a fiv(al)} + o(n-2),

where ak = E {,}.
Koroluk studied the asymptotic expansions for the maximal deviations in a

Bernoulli scheme using a recurrent system of differential equations. A mistake
which slipped into papers [16] and [17] served to clarify the difficulties and
pitfalls that threaten the research worker. It turned out that in his first works
Koroluk did not take into account the effect of a jump through the limit, with
the result that in the formulas he obtained several terms of the expansion were
omitted. This was pointed out by A. N. Kolmogorov. His observations were used
by A. A. Borovkov in [19] and [20] in the study of large deviations of the maxi-
mum of sums of independent, identically distributed, bounded lattice-like sum-
mands.
We limit ourselves to these few references to the existing literature, and make

no claim to present an exhaustive study of the history of the question.

2. Random walks with assigned boundaries. Boundary layers

2.1. A number of fundamental problems of mathematical statistics anid prob-
ability theory fit naturally into a scheme of random walk between some bound-
aries. In the case of random walk over a lattice, difference equations are ob-
tained with some boundary conditions. The well-known book by W. Feller ([21],
chapter 14) is an excellent introduction to this type of problem. In particular,
it is known that the distribution of the above statistics D., introduced by Kol-
mogorov, is contained in this scheme. In addition to the determination of exact
solutions for such problems, their asymptotic analysis is of considerable interest
in the case when we assume that the variation of position of the particle in one
step of the random walk will with overwhelming probability become infinitely
small.

For the solution of problems of this type the following method can be sug-
gested. The desired distribution is regarded as the solution of the equation

(I1) P/u( = 0,
depending on the small parameter E, which when e- 0 degenerates into the
differential equation
(12) Louo = 0

of elliptic or parabolic type. In order to find the asymptotic expansion

(13) u, EkUk,
k=O
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which is to be interpreted as meaning
N

(14) Ue- E Eku/ = 0(,N),
k=0

methods can be used which were worked out since the times of Henri Poincar6 in
the theory of differential equations with a small parameter. This approach was
employed in the previously mentioned papers by Gikhman and Koroluk. How-
ever, as we shall see presently, in the study of limit problems which arise from
problems of random walks with absorbing or other types of barriers, the degen-
eration of equation (11) leads to the degeneration of the boundary conditions.
The usual process for the asymptotic solutions of equations with a small

parameter consists of the expansion of the original operator P, into a series

(15) Pe = Lo +,eL, + e2L2 + * - -.

Then a formal solution of (11) is sought in the form of the series

(16) U= E eUk.
k=O

By substituting this series into the original equation and comparing terms with
the same power of E, a recurrent system of equations is obtained that determines
successively the terms of the asymptotic expansion

Louo = 0,
(17) m-I

Loum = - , LmkUk.
k=O

Generally, the method just described is ineffective. The reason is that, while
each successive step in the recurrence process reduces the inconsistencies involved
in the earlier terms of the expansion, the inconsistencies in the fulfillment of
boundary conditions. remain untouched.
A similar situation was noted by M. I. Vishik and L. A. Liusternik in the

asymptotic analysis of limit problems for differential equations in which higher
order derivatives have "small" coefficients. Their results are summarized in the
large paper [22]. The basic idea they used is as follows: insofar as the terms of a
regular asymptotic expansion, defined by means of the system of equations (17),
bring inconsistencies in the fulfillment of boundary conditions, it is essential to
examine the complementary terms of the asymptotic expansion, which would
act only near the boundary and would compensate for the inconsistencies in the
fulfillment of boundary conditions. Liusternik and Vishik called these terms of
the asymptotic expansion terms of the boundary layer type.

Recently the application of this idea to problems of probability theory has been
the subject of studies of Koroluk [23], [24]. Naturally, the difference operators,
the integral and the integro-differential operators P, become particularly impor-
tant in this domain. The splitting of the original operator, which would warrant
the second of the two processes mentioned, is more difficult here than for differ-
ential equations with small coefficients of higher derivatives. The general idea
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just described will be illustrated with the example of a one-dimensional random
walk on a lattice with step E.

Let u.(x) denote the probability that the moving particle starting from x > 0
will reach the position y _ 0 before visiting the region y _ 1. Further, let Pk
denote the probability of transition from x to x + ke in a single step. For con-
venience in subsequent calculations, the probability that the moving particle
will remain at x will be denoted by 1 + po, with po < 0 defined by Pk = 0.
The required probability Uk(X) satisfies the equation

(18) P.U,(X) = E pkUu(X + ke) = 0,

subject to the boundary conditions
(19) U.(-Er) = 1, U,(l + re) = 0, r _ 0.

We shall assume that the distribution Pk has N + 3 finite moments, for which
we introduce the notation

(20) Ea= kpk = 2 r = , kr

for 3 _ r < N + 3. We shall assume further that the distribution Pk is N + 3
times differentiable with respect to e, which yields the expansion

N+2
(21) Pk = Pko + Z ErPkr + EN+lpk.E

r=1

The above assumptions lead to the expansions
N+2

(22) a,= ao + E E'as + eN+laN+28,
8=1

N+2

(23) A = o + E ,Bs,g + EN±+3N+38,
s=1

N+2
(24) Yre = Yr.o + E E'7rS + EN+ YN+3,-

e=1

It is known (see [25], chapter 3) that, when E-- 0, the probability u,(x) tends
to that solution uo(x) of the second order differential equation
(25) ~~~~~~~d2Udu(25) '8° dx2 + ao d = 0,

which satisfies the boundary conditions

(26) uo(0) = 1, uo(1) = 0.

In this way, when E-- 0, the difference equation (18) degenerates into the
differential equation (25) and, as can be seen easily by comparing (19) and (26),
the boundary conditions are lost.

In accordance with the above general idea of the asymptotic method, the
asymptotic series for the required probability u,(x) will contain regular asym-
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totic terms (bounded and having bounded derivatives of all orders) and asymp-
totic terms of the boundary layer type, which decrease to zero at infinity (see
[22]). Thus we shall seek an asymptotic expansion of the form

N N+1r1\
(27) ue(X) =E Eru(X) + e E E [ V-(X)+ V, (X + Z( ,

r=O a=0 Lz
where ur(x) are the regular terms of the expansion, where V5 and V+ are the
boundary layers at the points x = 0 and x = 1, respectively, and Z, is the
remainder term.
In order to determine the regular terms of the expansion, Taylor's formula

and the expansions (22) to (24) are used to construct a recurrent system of
differential equations. As a result, as indicated in (15), the operator P. on the
class of infinitely differentiable functions is split into components of the type

Lo = ao d + o d2

(28) 2 r_s_d ddxd ' 1r.<N.Ir= a!d + I8r dX2 +1Ts8+2.r-s dxs+2' r<N

Thus, for the determination of the regular terms of the asymptotic expansion,
we obtain a system of differential equations of the type (17), with the operator
Lr defined by (28). The boundary conditions for the regular term u, will be
chosen so as to compensate for the inconsistencies of the boundary layers Vr1
and Vr+ 1 at the boundary points x = 0 and x = 1. Indeed we write

(29) Ur(O) = -Vr71(0),UX(1) = -Vrt1(()-
The equations for the boundary layers are determined by a different process.

After substituting (27) in (18) and carrying out the process for determining the
regular terms of the expansion, we arrive at equation

(30) pl. e [Vs (- + k) + V+ (x + k)] + Z,(x + k)} = 0.

Using the asymptotic expansion for Pk we obtain from it equations determining
Vr- and Vr+ by equating to zero the coefficients of the different powers of E,
separately for Vr- and Vr+. In the result V1- is determined as the solution of
equations

(31) Po[V6 (y)] = E pkOVO (y + k) = 0
k=-X

and
rX

(32) Po[Vr(y)] = - E pk,VrV-(y + k) = - E Pl[V,rl(y)]
1=1 k=-a 1=1

on the semiaxis y _ 0 that tends to zero at +oc, and takes given values for
y < 0. The meaning of the operators Pi is clear from equations (31) and (32).

In exactly the same way VT+ is determined as the solution of equations
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(33) Po[V+(y)] = E pk.ol& (y + k) = 0

and
r xe r

(34) PO[V,t(y)] = -E E PkIVrI,(y + k) = -E P [Vr-.,(y)]
1-1 k=-x 1=1

on the semiaxis y _ 0 that takes given values when y > 0 and tends to zero
when y-- - 0.
We determine the boundary conditions for the boundary layers Vr in such a

way that, in the fulfillment of conditions (19) when y < 0 by the function

(35) Wn(x) = E e'ul(x) + E e ( )1=0 1=0

the inconsistency should be of the order O(Er+l). With this object in mind, the
regular terms of the expansion are first extended in a continuous differentiable
way beyond the limits of the interval (0, 1). Let us consider for t < 0 the differ-
ence

(36)
N N

W_(Et) - 1 uo(et) - 1 + tE)[U((et)-0v)L1(0)] +
N 57 e'[Ul(d) V ~~~(O)] + _ E'+'[V[t -VI()]

By applying Taylor's formula to the regular terms and equating the coeffi-
cients of equal powers of e, we obtain

r+1 ta f3aU +1 (0)
(37) Vr (t) = V7(0) - EaxE
The values of the boundary layers V+ (t) when t > 1 are determined in an
analogous way,

(38) V+(t) rV+(1) - r t8 O ±8r(1)s= ! lxa

By direct verification we can now ascertain that the algorithm we have
constructed leads, for the remainder term, to equation

(39) Pf[Zf(x)] = EN+3g(x),

where g(x) is a function bounded in (0, 1) and the boundary conditions for
Z.(x) are of the order 0(eN+1). From this we conclude that

(40) Z.(X) = O(eN+1).
The boundary layers of equations (31) to (35) can be found using the factor-

ization method developed by M. G. Krein [26] for integral equations on the
half line. We assume

(41) 0(x) = Pk. = 1.

For the functioni

(42) 2(X) - - qkX1,
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factorizationi is possible on the circle 1XI = 1. In other words, there exists the
representation

(43) q(X)
in which the functions q+(X) and q-(X) are analytic and nonzero inside and
outside the unit circle, respectively. Thus

(44) q+(X) = E q+kk q_(X) =E X
k=0 k=0

The representation (43) enables us to transform the equations for Vr-(t) and
Vr+ (t) into the form

(45) E qk VO (t - k) = 0, E qkVo(t + k) = 0.k=O k=O

The boundary layers Vr- (t) are determined in the form of a sum

(46) Vr-(t) = Vr,o(t) + X kwr-(t + k),
k=O

where wr- (t) is the solution of the nonhomogeneous equation
xo r

(47) sE qkwr (t + k) = - E P1[LV- (t)]
k=-oo 1=1

on the semiaxis t _ 0 that is equal to zero when t < 0, and V - (t) is the solution
of equation (44) that, when t < 0, takes the values

(48) Vro(t) = Vr (t) - E (k - t)wr (t).

The functions Vr+ (t) are determined in a similar way.
We omit here the details of the proof of the proposed method, since this

requires deep involvement in analytical detail.
2.3. To illustrate the application of the proposed algorithm let us examine

the case when the initial distribution of the size of the jumps does not depend on
e, and the mathematical expectation of the size of the jump is equal to zero. In
this case, as can be calculated easily, the regular terms of the asymptotic expan-
sion have the form

(49) uo(x) = 1 -x, Ur(X) =ar + brx, r = 1,2,*.
In accordance with (29),

(50) a, = - Vr=- 1 (°) a ar + br = Vr+- l (O) -
As indicated above, the boundary values for the boundary layers are determined
by the equations

(51) Vv-(t) = Vr-(0) - b,t, V +(t) = V+(O) - brt.
Equations (45) give

(52) Vr- (0) = b,q, V+ (0) = b,q+
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where

(53) q+ +(1)

Simple calculations lead to the following regular part of the asymptotic
expansion

(54) UE(X) = 1 + eq x

1 -E(q.-q+) 1-e(q- q+)
This function gives the solution of the asymptotic problem considered, with
accuracy up to any power of E, valid within the interval (0, 1). Outside of fixed
neighborhoods of the points x = 0 and x = 1, the boundary layers tend to zero
faster than any power of e and, therefore, do not influence the asymptotic
expansion. It is interestin, that in the present case it is possible to avoid the
necessity of determining the boundary layers.

It is known the determination of the distributions of the statistics DI and D1.
referred to at the beginning of this paper, can be reduced to the solution of
certain difference equations (see, for example, [24] and [27]). The algorithm
just described was used in [24] to obtain the asymptotic expansions of the
distributions of these statistics. Naturally, the result obtained coincides with
that of Chan Li-Tsian [11] which we indicated in the introduction. We cannot
dwell here on a detailed examination of the series of interestinig special problems
in probability theory to which the algorithm we have constructed is applicable.
We intend to do this in other publications.

3. Rate of convergence

3.1. The following method may be used to estimate the rate of convergence
of the distribution functions Fn(x) to a limiting distribution function F(x) or to
obtain the asymptotic expansions of Fn(x). A random variable (n is constructed,
possessing the distribution Fn(x) and depending upon n in the simplest possible
manner. Let us assume that we have succeeded in representing (n in the form

(55) Sn = t + a.,7.
where, as n x, the coefficicent a,, - 0 aind the Ialndomll variables qn tend in
probability to a random variable 7. If E-1n < C then, for every function g,
bounded and having two bounded derivatives,

(56) Eg((n) = f g(x)dFn(X) = Eg(s) + anEg'(l)17 + 0(°n).

In this manner, if the joint distribution of t and X is known, it is possible to
obtain an asymptotic representation of the expected value of any sufficiently
smooth function.

In some cases the representation (55) makes it possible to estimate the speed
of convergence of Fn(x) to F(x). For this purpose use can be made of the fact
that for any h > 0 we have the inequalities
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(57) P{t < x-h} -P{Iaonl. ;h} < P{ n < x}
< P{f < x + h} + P{la,7.1n 2 h}.

This implies that

(58) P{{ < x} - P{t < x}j
_ P{t < x + h} -P{j < x-h} + 2P{Ilani I _ h}.

If at the point x the function F(x) satisfies a Lipschitz condition with constant
K and EO(,q.) _ C, then

(59) IFn(x) - F(x)l < 2Kh + 2C
ck(h/a,1)

The following lemma may be helpful in many cases in the study of convergence
of sums of independent random variables to a Brownian process. Here Sn stands
for a functional on the increasing sums and one tries to obtain the representa-
tion (59).
LEMMA. Let 4(x) be a distribution function such that

(60) f xz(x) = 0,

and let w(t) be a Brownian process. Then there exists a random variable r such that
W(T) has the distribution function 4(x), the event {r > s} is independent of w(t)-
w(s) when t > s, and w(,r) - w(s) does not vanish when s < T. Iff x2d4(x) < ,

then

(61) Er = xldcb(x).

If f x2`d4(x) < -O then E{Tn} < oo. Finally, if there exists a constant C > 0

such that 4(C) - 4(-C) = 1, then Iw(s)I < C when s < T.
PROOF. It is sufficient to give the argument only for the case when the

distribution 4(x) is discrete. First let D(x) have only the two points of growth,
-xi and x2 with jumps pi and p2. By assumption xlpl + x2p2 = 0. We shall
denote by r the moment at which the process w(t), starting at the point 0 first
reaches the boundary of the interval (xI, x2). Then w(r) takes the values xi and
x2. Since Ew(t) = 0, the probabilities pi and p2, with which w(r) takes the
corresponding values xi and x2, satisfy the equations pl + p2 = 1 and x1p, +
X2P2= 0. This yields pi = pi and P2 = P2-
The fact that the event {r > s} is independent of w(t) - w(s) follows from

the fact that the event {r > s} is completely determined by the behavior of w(t)
for t < s. It is easy to show that

(62) Pi 2 ' P2 -X

and, consequently, that

(63) E = - X1X2 = Xlp, + XIP2-
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Now let b(x) denote an arbitrary discrete distribution with f xdb = 0. This

distribution (x) cain be represented as a mixture of discrete distributions 4k(x),
each possessing only two points of growth, x(k) and x?), for which f xd4k = 0. In

other words, we can write

(64) 4(x) - E Xk4k(x),
k=1

where E = 1 anid Xk _ 0 for all k. In this case we construct the random
variable r by the following method. First, among the positive integers we choose
at random one, the probability of choosing k being Xk. If the integer selected is m,
we choose r to be equal to the value of t at which w(t) would first reach the
boundary of the interval (xr'n), x2m'). We omit the proof that in this case also the
random variable r satisfies all the conclusions of the lemma. In the general
case, the proof of the lemma is achieved by approximating 4(x) by a discrete
distribution function.

In order to illustrate the applications of the lemma, we shall consider a se-
quence of independent random variables 0b, ... ,* ,X and a sequence of corre-
sponding distribution functions 41(x), 42(x), * * , F,(x). We shall assume that for
each j = 1, 2, * * *, n the expectation E(j = 0. As before, let w(t) stand for the
Brownian motion process. Now, we use the lemma and denote by Ti the random
variable satisfying its conditions and such that w(T1) has the distribution function
¢1,(X) .

For each s > 0 the process w(s + r1i) - w(r) also will be a Brownian process
and moreover will be independent of w(T1). Let T2 be a random variable satis-
fying the requirements of the lemma for the process W(S + 1) -W(Ti) and
having the distribution function 42(x). Then the difference W(T2 + Tr) -W(rl)
has the distribution 42(x) and is independent of w(ri). We can construct the
quantities r3, . * , i-,, in a similar way. Thus the differences w(EZt1 ri) -
w(F_=Z rj) have the distributions bk(X) and for different k are independent. In
this way, instead of the sequence of sums

(65) sl = 41, S2 = 01 + 42, * * * , S. = 41 + 2 + *+

we can study the sequence of values of a Brownian process at the points 1 =
Ti, 772 Ti + T2, * **,, = Ti + T2 + -

* * + Tn. If

(66) Var (Qi) = oa2 E4 < °° Var (Ti) = ai,

then
k

k k k (nE(i - Eri)
(67) r/ , at i E=i) =+(ai),2l

We write
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k

(68)k= (ri - Eri) n

(68) tk =E at, r(tk) = E1e ( aa)12.
i=l (E ct~~~~~i)1/2i-

-i-
In this notation we have
(69) W(11k) = W[tk + Cf-t(tk)].

In the case when the quantities {i are identically distributed

Var (Qi) =1n E = 2

(70)k
W(()k) = W[n+ c nQ()]

where

(71) Var (ri) = -
_ (Ti- Eri).

Since t(k/n) is finite, for sufficiently large n we have

(72) W(21n) ' W k)-
This circumstance can be used to obtain estimates of the rate of convergence
and to find asymptotic expansions for the distribution of functionals defined on
the successive sums of independent random variables.

3.2. Let us now turn to the consideration of two concrete problems.
3.2.1. THEOREM. Let the random variables l 2, **, tn be independent and

such that
n

(73) Eti = 0, E Var (ti) = 1, P{|tij > an} = 0.
i-1

Further, let the functions gi(t) and g2(t) be such that

(74) gl(t) < g2(t), gl(0) < 0 < 92(0),
and such that for a certain k and for any t and h > 0 we have the inequalities

(75) jgi(t + h)- gi(t)| _ kh, Ig2(t + h) - g2(t)|I kh.

Let Sk = tl + t2 + + {k and

(76) Pn = P{g1(ti) < Si < g2(ti); i = 1, 2, * , n}.

Under the conditions indicated there exists a number L, dependent only on k, gi(0),
and g2(0), such that

(77) IP' - P{gi(t) < w(t) < g2(t); t E [O, 1]}I
. L [ n + max Var (ti) + y log

where yn = Dt_lek.
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PROOF. In accordance with (69)

(78) Pn = P{gl(ti) < w[ti + E.;(ti)] < 92(ti); i = 1, 2, , n}.
Since Ij _ &n, when
(79) s C [ti + e.r(ti), tj+j + E.r(ti+l)]
by virtue of the lemma,

(80) |w(s) - w[ti + ent(ti)] I < a..
Therefore
(81) P fgi(ti) + 5. + k(ti+l- ti) < w(s) < g2(ti)- n- k(t+1-ti);

1s C [ti + e.t(ti), ti+j + e.n(t*+1)], i = 1, 2, * , n J

< Pn

< p fgi(ti) - .- k(t+1± - ti) < w(8) < 92(ti) + S. + k(ti+l -t)t1

s E [ti + e.t(t), ti+j + e.t(tj+j)], i = 1, 2, * , n J
Since

(82) lg1(s) - gj(ti)j < kls - til _ k(ti+l -ti) + E max 1¢(ti)|
therefore

gi(s) + B. + 2k max (ti+i - ti) + E, max D(tQ)I < w(s)
(83) P i i

{ < 92(8) - 6 2k max (ti+i - ti)- max jr(tj) J
i i

< P.

-gl(s) - 2k max (tj+1- ti) - E. max l(ti)J < w(s)
< Pp

< 92(S) + rS. + 2k max (tj+1- ti) + e,, max (ti)

Let us now note that

(84) P{max 1¢(ti)I > log en'} < 4P{! (tn)! > log en 1}.

It can be shown that, under the assumptions adopted, this probability turns
out to be a quantity of the order of 6a + e,,. Therefore

(85) P{g1(s) + h < w(s) < g2() -h; s _ 1 + v.1 0(6n + e-)
< P. < P{gl(s) - h < w(s) < 92(S) + h; s _ 1 - vn} + O(6' + e,,),

where

(86) h = bn + 2k max (tj+1- ti) + vP,
In- = ten smden a

Insofar as (11a)w(a2u) has the same distribution as W(u), we find
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(87) P gi[u(1 + v.t] + h < g)2[u(1 + v,,)] -h :E 0(6+
( (1 + Vn)1/2 (1 + v.)1/2 -

}

< P. < P fgl[ (1 _ v.)] - h < w(u) < 92[u(l - v.)] + h o _ u <

+ °(5n + e)
This gives us

(88) IP. - P{gi(s) < W(S) < 92(S); S E [0, 1]}|
< O(6n + e,) + P{g(s)- hi < w(s) < 92(S) + hi; s E [0, 1]}

- P{gi(s) + hi < w(s) < g2(s) - hi; s E [0, 1]}
' P{jsup [w(s) - gi(s)]| < hi} + P{[sup [w(s) - 92(s)]I < hi} + 0(6& + es)

where

(89) h= O[max (ti+i - ti) + &n + V,].
It can be shown that the quantities sup, [w(s) - g1(s)] and sup, [w(s) - g2(s)]

have finite density. Since ef = O(y,n) this implies our assertion.
Particularizing the proposition just proved we obtain the following theorem.
THEOREM. If the random variables {. are identically distributed, bounded and

if Eti = 0, then

(90) iP {gl () <
k
< g2 (k); k = 1, 2, n

- P{91(t) < w(t) < 92(t); t E [0, 1]}1 _ Ln-112logn.
3.2.2. THEOREM. Let 1 2, ...*, tn be identically distributed and independent

random variables, with Eti = 0, Var(ti) = 1/n, and Et. = O(n-2). Further, let
f(t, x) be a sufficiently smooth function of its arguments and

k\
(91) = (n k)

Then

(92) Eip(i7,) = E f[s, w(s)]ds} + p4f f[s, w(s)]ds}

{ ff[t, w(t)]wl(t)dt - f[t, w(t)]dw1(t) + fIl, w(1)Iwi(1)} + o(n-1/2),

where w(t) and w1(t) are two independent Brownian processes and (p(x) a bounded
differentiable function.

In order to shorten the formulas, it is convenient to write

(93) 41k = k (n) = k+ c

Pn (n-)-
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Then it follows that the quantity

(94) n=kElf n (wk)]
is distributed in the same way as Snn We write

(95) ~ f4kW4k kW4knk=1 f[Pk,W(',k)] - E I )] -f

It is obvious that
1 n 71~~-1 kl

(96) 1 f[ W (0k) F, f[k,=V(4,k)]ds + -f(O, 0)
nk=l ~~k=OJit

- - 1,w[1 + c- i(j)]}- cn-112 ,f['PA*, W('k)][¢_(k+ 1)-_n (k)]-
It is easy to verify that

n-1 f4k+1 fl+cn-1I2,(1)
(97) f 4k, W(4'k)]ds = J f(s, w(s))ds + an

k=O J#k

where a, is such that E{(n-l12an)2} -O 0 when n *.
Further,

I_fr\l f k
(98) -~E f[4'k,W(4'k) - fi' (4k

nlk=l In 1

= cn23 f[ + Ok)k4(YW(#k)1 fl(,
k=1 n \n

where 0 < Onk < 1-
Thus

(99) ~ fo1+cn-fl121f(1) f[s, w(s)]ds

- cn1I2 E f[#4k, W( nk)] [ ( n )- (

+ Cn-3I2 E f, [k + On, C/ n (k)' V(iPk)] (

+ atn.

The joint distribution of w(s) and ?n(s) converges to the joint distribution of
a two-dimensional homogeneous Gaussian process [w(s), wi(s)] with independent
incremen-ts, for which

(100) L'w(s) = Ewl(s) = 0,
Ew2(s) = Ew'l(s) = s,

E-w(s)'wl(s)} = 3 1

where ,U3 is the third moment of the quantity 01.
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Hence we finid

(101) = f f[s, w(s)]ds + o (<)

and so, if Sp(x) is a bounded differentiable function, then

(102) Ep(7.n) = Ep {ff1 f[s, w(s)]ds}

+ Cn-12Esp'{ft f[s, w(s)]ds} {fff'[t, w(t)]wI(t)dt

-f0 f[t, w(t)]dwi(t) + f[1, w(1)]wi(1)}
+ 0(n-1/2)

This concludes our account of certain methods which can be used for obtaining
both asymptotic expansions and estimates of the rate of convergence for fune-
tionals derived from distributions depending on a parameter.
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