

RESILIENT DIFFUSIVE CLOUDS

TRUSTEES OF DARTMOUTH COLLEGE

FEBRUARY 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-035

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2017-035 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
ANNA L. WEEKS WARREN H. DEBANY, JR.
Work Unit Manager Technical Advisor, Information
 Exploitation and Operations Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

FEB 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2011 – SEP 2016
4. TITLE AND SUBTITLE

RESILIENT DIFFUSIVE CLOUDS

5a. CONTRACT NUMBER
FA8750-11-2-0257

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62722F

6. AUTHOR(S)

Stephen Taylor

5d. PROJECT NUMBER
MRC0

5e. TASK NUMBER
DA

5f. WORK UNIT NUMBER
RT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Trustees of Dartmouth College
11 Rope Ferry Road, #6210
Hanover, NH 03755-1404

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-035
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The primary goal of this research project was to explore an alternative to conventional operating systems based on
diffusive management of diversified virtual machines. The concepts lead to a view of cloud computing in which
vulnerabilities are different at every host, attackers cannot perform reliable surveillance and attacks are unable to
persist on the timescale of military missions. These concepts stand in stark contrast to today's systems where
vulnerabilities are amplified by being present at every host in the cloud, systems are static allowing long-term
surveillance, and operating systems are pre-determined and static allowing kernel implants to persist.

15. SUBJECT TERMS
Software Based Biometrics; Cognitive Fingerprint; Continuous User Identification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
ANNA L. WEEKS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

36 N/A

TABLE OF CONTENTS

Section Page

List of Figures ii
List of Tables.. 111

ACKNOWLEDGEMENTS . iv

1.0 SUMMARY !
2.0 INTRODUCTION 1
3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 3
3.1 ASSUMPTIONS 3
3.2 METHODS AND PROCEDURES 5
3.2.1 Core Ideas 5
3.2.2 Utility Virtual Machines 6
3.2.3 Diffusive Scheduling 9
3.2.4 VT-d 14
3 .2.5 ExOShim14
3.2.6 KPLT14
3.2.7 Load-Time Diversity15
3.2.8 Compile-Time Diversity 16
3.2.9 Replication Diversity 17
3.2.10 Diversified-NFS 17
3.2.11 Asymmetric Multiprocessing 19
4.0 RESULTS AND DISCUSSION 20
4.1 Core Results 21
4.2 Diffusive Scheduling 22
5.0 CONCLUSIONS 25
6.0 REFERENCES 26
7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS29

LIST OF FIGURES

Figure Page

1 APT Thread Model . 3
2 Timeliness in the Attack Process . 4
3 Bare-Metal Hypervisor 6
4 System based on Utility Virtual Machines . 7
5 Scheduling Software Components 10
6 Code to Schedule Next Process ... 12
7 Dynamic Load-Balancing Code ... 13
8 Original Function with two vacuous padded variants . 17
9 D-NFS System Overview 18
10 Diffusion Performance as Interrupt Heat Rises . 24

ii

Table
1
2

LIST OF TABLES

Page
Memory and Processor Benchmarks ... 21
Scheduler Performance Characteristics . 23

iii

ACKNOWLEDGEMENTS

The work described in this report represents the collective work of a talented group of graduate
students at Dartmouth College. Within the strategic framework, much of the detail is taken
directly from the writings of these students. In any group effort there is naturally considerable
collaboration and overlap, the following gives a rough breakdown of the primary activities each
student was engaged in; in alphabetic order: Scott Brookes (signals, diversity, memory
systems, asymmetric multiprocessing, ExOShim, KPL T), Jason Dahlstrom (hardware-hiding),
Robert Denz (kernel, hypervisor, UVM's, diffusive scheduling, ExOShim, KPLT, D-NFS),
Michael Henson (memory encryption), Morgon Kanter (hypervisor, camouflage, diversity),
Stephen Kuhn (hypervisor, networking, VT-d, network hiding, forensics) , Kathleen McGill
(rMP and resilience), Colin Nichols (kernel and hypervisor), Martin Osterloh (systems
engineering, reverse engineering, D-NFS, KPLT, ExOShim).

DATA RIGHTS

As per contract FA8750-11-2-0257, pertaining to the research described in this report,
Dartmouth College grants to the U.S. Government a royalty free, world-wide, non
exclusive, irrevocable license to use, modify, reproduce, release, perform, display, or
disclose any data for Government purposes.

iv

1.0 SUMMARY

The primary goal of this research project was to explore an alternative to conventional
operating systems based on diffusive management of diversified virtual machines. The
concepts lead to a view of cloud computing in which vulnerabilities are different at every
host, attackers cannot perform reliable surveillance and attacks are unable to persist on
the timescale of military missions. These concepts stand in stark contrast to today's
systems where vulnerabilities are amplified by being present at every host in the cloud,
systems are static allowing long-term surveillance, and operating systems are pre
determined and static allowing kernel implants to persist.

The research builds upon and complements operating system research recently concluded
under the DARPA CRASH program as part of the "Attacking Time" effort. It leverages
small-footprint hypervisor and micro-kernel designs that incorporate non-deterministic
methods and techniques to increase attacker workload and operate through attacks even
if the attacks are never detected.

Collectively, these two DARPA projects have resulted in a new way to structure
distributed systems based on a non-deterministic defense-in-depth. This defense
combines a series of breakthrough technologies that collectively provide an
insurmountable barrier to the tactical viability of Advanced Persistent Threats (APT's).

2.0 INTRODUCTION

Our method for mitigating APT's is based on a non-deterministic defense-in-depth in
which a collection of innovative technologies are applied, either in isolation or in
combination, to successively increase attacker workload and operate through attacks.
These techniques prevent an adversary from operating on timescales that lie within the
tempo of US military operations.

Whereas the CRASH effort [1] was limited primarily to single-core security
methods, the MRC effort has focused on multi-core methods and diversity. The primary
security methods that have emerged are:

1. Utility Virtual Machines (UVM): A multi-core operating system organization
that separates kernel code into components and protects them through hardware
isolation [2,3,4].

2. Diffusive Scheduling: A diffusive method for scheduling UVM's on multi-core
processors [2].

3. VT-d: Methods for leveraging device virtualization technology in UVM's [5].
4. ExOShim: A virtualization technology that provides execute-only protection to

kernel code [6,7].
5. Kernel Procedure Linkage Table (KPLT): A diversification method that

redirects references to kernel code in the virtual address of user-processes [8].
6. Load-time Diversity: A load-time method, incorporated into an ELF-loader, that

disrupts function entry and exit points, with a strategy for using it to diversify
hypervisors in addition to kernel and user code [9,10,11 ,12].

1
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

7. Compile-time Diversity: A compiler method that disrupts block-level addresses
[9,10].

8. Replicated Diversity: A method to increase diversity through replication of code
[9,10].

9. Diversified-NFS: An architectural concept for combining compile-time, load
time, and replicated diversity methods [13].

10. Asymmetric Multiprocessing. A research concept that uses asymmetric multi
processing to improve both security and performance; this early research is not
yet complete [14,15].

Other elements of the defense-in-depth approach, begun under the CRASH program have
been completed under MRC, and consequently recognize the support, in particular:

11. Forensics: A method for discovering zero-day attacks by correlating network
traffic with process actions [16,1 7].

12. Hiding-in-Hardware: A Method used to own and control the base-of-trust in
hardware and provides hidden hardware monitoring [18,19].

This body of knowledge has been published in 3 Ph.D. theses [2,9, 18] and 18 published
papers; 2 additional papers are in final stages of preparation/submission [5,12]; two
additional Ph.D.'s have been initiated under this funding but are not yet complete.

Other elements of the general approach, funded under CRASH, are briefly referred to
here for completeness and context; these include:

•

•
•
•

•
•
•

Non-deterministic refresh to deny surveillance, privilege escalation, and
persistence.
Code size and attack surface minimization to reduce vulnerabilities .
MULTICS-style protection based on 64-bit extended paging tables (EPT) .
Full memory encryption to deny access to code and data in memory and shrink
the protection boundary to the chip boundary.
Network hiding to dynamically change network properties .
Camouflage to deny system identification .
Resilience through dynamic process regeneration and remapping to operate
through attacks.

It is not the goal of this report to repeat either the material or the extensive
bibliographies provided in the project publications, but rather to provide a

cohesive overview of the body of work taken in its entirety.

The research has been embodied in a clean-slate, multi-core operating system- Bear
that operates on Dell workstations (9010/9020), ARM embedded processors
(M4/ A8/ A9), a system-on-a-chip device (Xilinx Zynq), and large-scale blade servers
(Dell PowerEdge) [20]. It must be recognized however, that the findings are distributed
over this collection of architectures not ported to each of them. The reason for this
distinction is that, at the time of the research, all of the needed underlying hardware
capabilities were not available on any single platform. For example, Intel processors
provided virtualization and protection support for guest operating systems (VT-x) and

2
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

devices (VT-d); this was not available on ARM processors. Similarly, on-chip
encryption/decryption engines and FPGA technology were available on ARM-based
devices but not Intel processors with virtualization. Only recently, has there been a
confluence of these technologies, with both Intel and Xilinx recently announcing future
offerings that will combine all the needed capabilities into a single processor design -
thereby opening the door to an eventual integration of the techniques within a single
operating system.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Assumptions. At the outset of the project, team members already had extensive
experience with a combination of vulnerabilities, exploitation methods, and TTP's that
have the DARPA designation "Advanced Persistent Threat" (APT). Consequently, the
starting assumption was a threat-model that directly encapsulates the core notions of this
designation as illustrated in Figure 1. An APT involves several steps that may include
surveillance to determine if a vulnerability exists [21], use of an appropriate exploit or
other access method [21], privilege escalation [22], removing exploit artifacts, and hiding
behavior [23]. Surveillance may involve obtaining a copy of the binary code and using
reverse engineering [24,25] or fuzzing [26] to facilitate a broad range of attack vectors
including return oriented programming [27]. The implant then persists for a time
sufficient enough to carry out some malicious effect, obtain useful information, or
propagate intrusion to other systems. The ubiquitous use of a small number of operating
system types and versions in distributed systems and clouds, has the effect of amplifying
vulnerabilities: an exploit developed against one version may be used against any host
using a similar version. A central goal of this project is to mitigate vulnerability
amplification through diversification methods.

< Extract Binary

• Reverse Engineering
• Vulnerability Amplification

Surveillance
Effect & Remote

SIGINT
HUMINT
05 Effect

Exploit

Figure 1: APT Threat Model

3
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A central aspect of this attack process is timeliness: the value of information is always
qualified by time. For example, a cyber attack assigned to discovery of an opponents air
targets would have little utility if not able to provide information within the 24 - 72 hr
timeframe covered by air tasking orders (ATO). Figure 2 shows the attackers process
from the perspective of timeliness.

ms

•
mon

Attacker
Process •

ms
Figure 2: Timeliness in the Attack Process

Unlike the time to execute an exploit or effect, the time spent in surveillance and
persistence may range from minutes to months or even years depending upon the
intended effect. Moreover, the presence of an intrusion may never be detected by network
defenses but instead may be recognized indirectly due to either a deviation from expected
behavior, the adversary's execution of some D5 effect, or derived from other intelligence
sources (SIGINT, HUMINT, etc). Unfortunately, it is precisely the short-timescale areas
designated in Figure 2 that are the domain of anomaly and rule-based intrusion detection
systems (IDS) and the associated correlation tools. For rule-based detectors, there is no
defense against zero-day attacks - if an exploit has not been used before, there will be no
rule or derivative rule that renders it detectable. Sadly anomaly detectors also fail due to a
sad truism: Not all malicious attacks are anomalous, and not all anomalies are
malicious. In other words, good APT's will hide their behavior and false alarms will
obscure their activities.

Current operating system designs have sought to utilize a static base of trust and
extend trust into software through deliberate layering to combat such threats [28].
Unfortunately, a wide variety of vulnerabilities have appeared that undermine kernel
security allowing attackers to implant code, hide, and persist at the highest levels of
privilege [29]. The number of vulnerabilities is directly correlated with the size of the
code base [30], indicating that there is substantial value in the intellectual process of
reducing the attack surface; most current operating system designs run into millions of
lines of code. Moreover, they compound the opportunity for compromise by granting
device drivers unnecessary levels of privilege in order to attain, what in recent years has
become, diminishing returns in performance.

4
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3.2 Methods and Procedures.

3.2.1 Core Ideas. Our core ideas build upon those enumerated in detail in the associated
CRASH project [1]. It is not our intent to repeat that material here, but rather to briefly
review the ideas in this section for background and context.

Recall that our approach assumes that adversaries will conduct surveillance, will
be successful in gaining access, will obtain critical system code for reverse engineering,
and will persist undetected to carry out effects at a later date. To mitigate the risks
associated with APT's, we non-deterministically discard the current kernel, user
processes, and device drivers. They are replaced by new instances, bootstrapped in the
background from read-only gold standards. The cumulative effect of this change in
design style is to increase attacker workload by continually invalidating surveillance data
and denying persistence over time-scales consistent with tactical missions. Unlike other
approaches to computer security, no attempt is made to detect intrusions: instead, we
focus on continually validating, preserving, and re-establishing the ability of a mission to
proceed.

These concepts have been incorporated into a 64-bit version of the Bear operating
system [20]. The system is composed of a minimalist micro-kernel with an associated
hypervisor that share code extensively to reduce the attack surface. The core functions of
scheduling user processes and protecting them from each other are handled by the micro
kernel. All processes and layers are hardened by strictly enforcing MUL TICS-style read,
write, and execute protections that became available with 64-bit x86 address translation
hardware.

All potentially contaminated user processes, device drivers and services are
executed with user-level privileges and are strictly isolated from the micro-kernel via a
message-passing interface. A notional system task mediates between processes and the
kernel to implement the interface. Unlike a conventional rendezvous mechanism in which
processes block until synchronization, this asynchronous buffered design provides a
single uniform treatment of system calls, inter-process, and inter-processor
communication. The interface also supports distributed computing through an MPI -like
programming model that maps processes to processors using a user level demon, rMP, to
provide remote messaging.

To deny persistence in compromised device drivers and services, the micro-kernel
randomly and non-deterministically regenerates them from gold-standard images resident
in a trusted read-onlyfile store. This store is realized by loading all system code directly
into a read-only RAM-disk using an iPXE NIC-assisted boot process. The file system is
accessible only from the hypervisor; however, it could alternatively be realized via read
only memory (ROM) or via an out-of-band, write-enabled channel to flash on new
hardware. Unlike the MINIX re-incarnation process, regeneration is carried out without
regard to the perceived fault or infection status. User processes can also be refreshed
through pre-arranged or designated schedules; for example, every few hours, at night, or
just prior to a tactical mission.

To deny persistence in the micro-kernel, it is also non-deterministically refreshed
from a gold-standard image in the trusted file store, but by the hypervisor. Unlike
traditional hypervisors, which are intended to support a general virtual machine execution
environment, in CRASH we provided a minimalist hypervisor designed to support only
the operations required to bootstrap a single micro-kernel and change its network

5
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

properties (e.g. IP & MAC address) so as to invalidate an adversary's surveillance data.
The current running and bootstrapping instances of the micro-kernel are isolated in
hardware through extended page tables, implemented with Intel VT -x extensions.
Similarly, in the CRASH project, the network card was isolated through a mapping
scheme that attempted to emulate Intel VT -d extensions.

3.2.2 Utility Virtual Machines (Method 1)

Utility virtual machines are an alternative multi-core operating system organization. They
are best understood by considering the traditional bare-metal (or Type 1) hypervisor that
is used in large-scale cloud computing operations, illustrated in Figure 3. The hypervisor
controls all the hardware on a system. Conceptually, it presents a virtual machine
abstraction that restricts malicious code, executing within one instance of an operating
system, from affecting a different instance. On top of the hypervisor sits one or more
guest virtual machine(s), which contain an operating system kernel and its associated user
processes. The kernel provides networking, scheduling, and many other key functions.
The guest's view of hardware is, however, tightly controlled through the Intel
Virtualization suite of VT-x (basic virtualization), VT-d (input output memory
management unit virtualization), VT-c (network virtualization), and APICv (Interrupt
Virtualization). This provides the hardware isolation necessary to protect other guests
from a potentially compromised guest, but does not protect data inside of that guest.

User Space
Virtual Machine

Figure 3: Bare-Metal Hypervisor

Unfortunately, hypervisors have continually grown in size and have introduced their own
new security challenges: adversaries now actively attempt to detect the presence a
hypervisor in order to tailor attacks accordingly. A wide range of hypervisor detection
techniques have already appeared against popular systems such as VMWare, VirtualPC,
Bochs, Hydra, Xen, and QEMU.

As the number of available cores on a processor continues to expand, it is clearly
time to rethink the idea of running a monolithic kernel on a hypervisor. Instead, our
Utility Virtual Machine concept separates and isolates specific services as illustrated in
Figure 4. Each distinct component of the kernel is protected through hardware isolation
provided by virtualization. This includes, but is not limited to: user process scheduling,
networking, messaging, and other security functions. In a monolithic design, a

6
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

compromise of a component, such as the network driver, would give the attacker
complete control of the guest and all of its data, which would include many other
operating system specific services. Using UVMs, the attacker would only have isolated
access to the small subset of data available to the networking UVM, by virtue of
hardware protections between virtual machines.

User Space User Space User Space User Space
Utility Virtual
Machines

Figure 4: System based on Utility Virtual Machines

These ideas have been implemented in a multi-core version of the Bear operating system
under MRC program. To eliminate the micro-kernel, and replace it with a collection of
UVMs, three key challenges were resolved: isolation of system functions within separate
UVMs, communication and synchronization between virtual machines, and the allocation
of virtual machines to processing cores to balance load across the cores. Unlike MINIX,
which uses the standard rendezvous method to implement system calls and inter-process
communication, recall that Bear employs an asynchronous model similar to the message
passing interface (MPI) used in parallel and distributed computing. This is central to our
design of utility virtual machines since all inter-process communication is transformed
into message passing between utility virtual machines. An asynchronous model reduces
blocking and allows a higher degree of overlapping across distributed multiprocessors.
Obviously, the message-passing interface requires additional compute cycles inside the
hypervisor that might be expected slow the guest operation to some degree. However,
since guests are no longer full-fledged kernels, their compute requirements and memory
footprint is considerably different: What were once solely kernel cycle times are now
split with hypervisor cycle times.

To implement UVM's required a complete re-write of the Bear memory system to
provide efficient multi-core memory management. This is now achieved using a novel
technique known as recursive paging, where a single page table entry is reserved to allow
fast access to portions of the virtual address space. The technique leverages the hardware
features of the memory manager to provide virtual memory mappings on demand. The
hypervisor makes use of this method to ·provide memory sandboxing through Extended
Page Tables (EPT) for each virtual machine, whereas the micro-kernel leverages it to
enable multiple concurrent processes that operate independently from each other. The
UVMs apply the technique to provide the necessary memory for device drivers that they
encapsulate.

7
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Symmetric multiprocessing (SMP) is typically enabled through the presence of an
Advanced Programmable Interrupt Controller (APIC) inside the silicon of each core on
the system. The APIC provides interrupt routing, but more critically supports interrupt
routing between cores. The hypervisor hooks onto these interrupts between cores to
provide message passing between virtual machines. This hooking is provided through a
technique known as APIC Virtualization: any virtual machine that generates any type of
interrupt through its APIC, causes the hypervisor to intercept the interrupt. Only when a
UVM message is needed does the hypervisor leverage the hook into the inter-core
interrupt system. The core where the UVM message is sent, via inter-core interrupt, is
determined through the introspection of the virtual machine. However, the cost of using
just the inter-core interrupts requires that the hypervisor must also process all of the guest
interrupts. This task is challenging because each core in the system can generate tens of
millions of local interrupts per second through their individual local APIC timers.
Therefore, the hypervisor must efficiently process and route every local interrupt and
only when needed generate an inter-core interrupt for UVM messaging. Failure to do so
can detrimentally impact the runtime performance of a virtual machine executing on the
hypervisor.

A messaging system for the UVM framework is only useful if multiple virtual
machines can be executed concurrently on top the hypervisor. Moreover, the hypervisor
must be able to identify a virtual machine to facilitate where to route the UVM messages.
The solution to these issues is to track a variety of information inside the hypervisor. This
includes the cores assigned to all virtual machines at any given time and fine grain details
of the general purpose register state in each running core. By storing this information, the
hypervisor maintains an independent core state for all virtual machines, which allows
them to run independently. This information also speeds the process of introspecting
virtual machines to acquire UVM message data and to quickly determine where to route a
UVM message.

The transfer of messages between virtual machines is achieved by combining
inter-core interrupt hooking with the data stored in the hypervisor. The need for this
connection is driven by the fact that all virtual machines are sandboxed in memory by
their own EPTs, which (intentionally) prevents them from communicating directly. Thus,
the hypervisor must operate as the intermediary between these systems. For example, let
us assume that a virtual machine running on a core wants to print a character to the screen
though the use of an I/0 UVM (encapsulating the keyboard and video drivers) running on
a different core. First, the virtual machine generates a UVM message send request, which
is caught by the hypervisor. The hypervisor then introspects this virtual machine to obtain
the message data, which is stored in the UVM messaging system contained in the
hypervisor. The hypervisor then initiates an inter-core interrupt to signal the I/0 UVM to
generate a message receive request. This inter-core interrupt causes the I/0 UVM to set
up a receive buffer for an incoming message. Then it enters the hypervisor, which
performs introspection to determine where the associated buffer is located. The
hypervisor then copies the previously stored message into the buffer and resumes
execution of the I/0 UVM, causing the character to be printed to the screen.

A critical aspect of the UVM concept, cloud computing, and computing in
general, is the need for efficient, reliable, and scalable scheduling of system processes.
These factors become more critical for UVMs since two levels of scheduling now exists:

8
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

one UVM may be running a scheduling algorithm needed to provide fairness to its own
user processes while the hypervisor below it may also be running a scheduler to
determine which UVM to service.

3.2.3. Diffusive Scheduling (Method 2)

There exist a wide assortment of scheduling algorithms that can be utilized in operating
system design and no one size fits all. For example, real time computing systems must
respond to high priority jobs as soon as they occur, because not doing so could result in
system failure. For these types of environments, preemptive schedulers are used to give
preference to highest priority jobs first and the lowest priority jobs last. In contrast,
larger operating systems often use multilevel feedback queues, which partition the ready
queue into two or more queues. For each new process that is scheduled the system
determines which queue to place the process in. Each queue may have its own unique
scheduling algorithm based on the processes it serves. Additionally, this allows an under
served process to be rescheduled in a higher priority queue and likewise an over served
process to a lower priority queue. However, The main goal of all of these algorithms is to
minimize resource starvation, i.e. when a process is denied access to a resource it needs
to finish execution.

In the context of UVM' s, the critical resource is CPU cycles needed to execute
user, kernel, or hypervisor code. The first version of Bear was a uniprocessor system that
ran a handful of drivers (executed with user level privileges) and user programs. Fairness
was provided to each through a simple round-robin scheduling algorithm. This provides a
starvation free solution by offering every process the same time slice to run on the
processor core before the next process is scheduled. The enforcement of time slices was
provided through the Programmable Interrupt Timer (PIT), which fired at a constant time
interval.

As Bear matured, new hardware mechanisms were utilized to replace legacy
systems. The most impactful changes to scheduling were the replacement of the PIT with
the higher resolution APIC timer and the transition to SMP. The APIC Timer allows
scheduling of processes to occur at a faster rate than allowable with the PIT.
Additionally, the APIC architecture allows for the scheduling of processes across all of
the cores available. This was not possible in the early versions of Bear that utilized the
PIT. Nonetheless the round-robin scheduler can still be used with SMP, as illustrated in
Figure 5, using a standard method that employs a single kernel lock. All processes that
are able to run are stored in ready queue (1). When any of the cores (2) generate a timer
interrupt they grab a kernel lock (3) and pull a process from the ready queue (1) in first-in
first-out fashion. The process that was previously running on that core is stored in the
process pointer array (4); each core has its own entry in the array based on its core
number. The previously running process is then put at the end of the ready queue (1).
The next process to run is then stored in that core' s process pointer array (4) entry.
Lastly, the kernel lock (3) is released and the new process executes. Every core uses this
scheduling method independently each time a timer interrupt is received.

9
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

0
I

I
I

Process Ptr Array

1
\

\
\

N
\

\
\

Kernel Lock

t;1 0

Figure 5: Scheduling Software Components

In addition to architectural changes, such as SMP, added under the MRC project, the user
level component of Bear received several new and complex drivers, including a Network
File Sharing Daemon (12,850 lines of code) and an elOOO network card driver (939 lines
of code) with an associated LWIP network stack (33,762 lines of code). These form the
backbone for network connectivity and file sharing. From the size of these three
components alone, it can be seen that considerable additional resources were required.
Ever more challenging operating system concepts in diversity, memory security, and
utility virtual machines were explored as described in later sections. Through all of this
change, the round-robin scheduler remained in place. Thus, all performance
enhancements over this period came from architectural changes that resided below the
round-robin code.

Eventually, a new scheduler was sought to better make use of these new realities
and improve scheduling performance. Unfortunately, this would not be without its own
set of challenges, specifically process affinity. This is a uniquely multiprocessor problem
based on the principle of cache coherency. In the Intel i7 architecture, the cache is laid
out so that each core has its own L 1 and L2 cache and all cores share an L3 cache. When
a process moves from one core to another, information about it is often shared through
the L3 cache; this process is known as snooping. Unfortunately, when data is not
propagated fast enough between cores, a cache miss can occur, which introduces a
significant time penalty on execution. The processor often has to reach out to main
memory to find the needed data, which is a much slower process than when it is available
in the cache directly. Another issue involves the introduction of the elOOO network card
and its driver into the system: the card itself, by default, generates a hardware interrupt
once every 256 nanoseconds (or every 3.9 million cycles of core execution). The APIC
timer is typically set to fire once every 34 million cycles. Consequently, the core that
receives the network interrupts will have each of its time slices interrupted on average ~8
times. Consequently, any process running on that core will receive less execution time
than had it been on another core. This breaks the principle of fairness (i.e. equal time
slice) in round robin scheduling.

10
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

To address these issues and improve overall system performance a method of
scheduling based on heat diffusion was incorporated. Previously, much of the supporting
research had been performed on large-scale parallel and distributed computing systems.
In these studies, one or more compute nodes would quickly become burdened with very
large workloads, which then diffused to other nodes via communication. Several
beneficial criteria exist for its selection: it uses a simple, fast, scalable algorithm
involving only nearest neighbor communication, while global progress and convergence
are guaranteed through well-established mathematical analysis. The algorithm has been
shown, through simulation, to balance multiple independent load distributions over large
scale distributed architectures, even with huge random load injections. Vector based
extensions to the algorithm allow multiple resources (including bandwidth, latency,
memory use, and CPU load) to be balanced concurrently.

Similar principles apply to SMP systems: a single compute node can now be
considered a single processor core. However, some adjustments must be made to the load
calculation to account for traditional measures that cannot be used to determine heat in a
localized system. Bandwidth and latency can be eliminated as the cores have near
instantaneous communication between each other via an internal crossbar. All cores share
the main memory of the system, which removes the need to account for memory usage:
no additional memory is available. New measures for load can be attributed to process
priority, interrupt routing, and individual core load. Driver processes can be given
priority by weighting them at different heat levels than those of a standard user process as
they often times perform more complex tasks. In terms of routing interrupts, the core
receiving them will by default run hotter than one that is not. Lastly, each process itself
carries its own heat that adds load to a core. These three variables can be stored and
accumulated to calculate the scalar heat of any core running at any given time. A core
can use this heat value to dynamically offload a process to another core with a lower
workload.

Two components exist for mapping heat to a processor core and then diffusing
work between them. The first is a static component corresponding to initialization and
assumptions made for interrupts, process priority, and individual process heat. The
second component corresponds to the dynamic load-balancing component that moves
processes between cores. These two pieces were incorporated into the round-robin
scheduler to provide a diffusive scheduler. The ready queue can continue to store all of
the runnable processes that are present on the system by making two minor changes: The
first is the addition an identifier in the process structure for each process that maps it to
the core it is bound to. This allows for individual processes to be tracked across cores for
heat calculations and scheduled by their assigned core; The second modification is the
replacement of the qgetO function, used to retrieve a process from the ready queue, with
a qremoveO function for scheduling the next process. Where qgetO returns values from
the queue in first-in first-out fashion, the qremoveO function allows the ready queue to be
searched by each core via their core ID, which maps to the new identifier in the process
structure. The abstract code for this process can be seen in Figure 6.

11
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

0: static int assigned_core(void* proc, const void* core_id){
1:
2: r return first found process assigned to this core *I
3: return ((Proc_t*)proc)->core == (*(uint32_t*)core_id);
4:}
5:
6: Proc_t * ksched_scheduleO {
7:

Proc_t *next; I* Next process to run *I 8:
9: uint32_t core = this_cpu(); I* Core requesting next process */
10:
11: next= (Proc_t*)qremove(readyq, &assigned_ core, &core);/* Get next process to run *I
12:

13: --- -- - -- ----------
14:
15: /* Other non-diffusion scheduling tasks *I
16: - - - - - - - - - - - ·- - - - ·- - -
17: ------------------
18:
19: return next;
20:}

Figure 6: Code to Schedule Next Process

The function ksched _scheduleO is called for every timer interrupt to retrieve the next
process to run for a specific core. It relies on reading the core' s local APIC ID (line 9) to
pass to qremoveO (line 11) along with the global pointer to the ready queue, and the
helper function assigned_coreO. The sole purpose of the helper function is to return the
pointer to the first found process in the ready queue that has been mapped to that core.
The process is then removed from the ready queue by the qremoveO function. Lastly, not
seen here, the previously running process is added back to the end of the ready queue.

To initialize the heat map an array of integers is used. Its length corresponds to
the number of cores present on the system (8 cores on Dell 9010). All of the cores start
with an initial heat value of zero. Cores that handle hardware interrupts can then be
assigned heat values of 0, 10, 100, or 1000. These heat values move with the interrupt
they are assigned to. Driver processes, like the e1 000 driver are assigned heat values of 1
or 10 and move with them as well. All other user space processes are assigned a heat
value of 1. Lastly, when a new process is created it is always assigned to the core that
created it through the fork system call.

The movement of processes to a new core occurs through the dynamic load
balancing code, which is called during a timer interrupt, but before the next process is
retrieved through ksched_scheduleO. To ease explanation of how this code works, the
base case of all processes having a heat of 1 and no interrupt heat assignment is shown in
Figure 7. The balanceO function returns the ID of the core the process will run on the
next time it is scheduled. The ID returned by it is stored in the process identifier that was
added to the process structure. This is accomplished by assigning the heat value of core
zero to a comparator (line 3). Next, the loop (line 5) iterates over the remaining values
stored in the heat map. Along the way, if the current comparator' s heat is greater than
another core' s heat, it will then swap the lower heat into the comparator (lines 7-8).

12
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Furthermore, the ID of the core with the lower heat is then stored in the variable ret (line
9). Upon completion of the loop the core with the least heat is increased by 1 (line 13).
The core the process just ran on has its heat decreased by 1 (line 14).

0: int balance(uint32_t core_id){
1: int i, ret, cmp; I* i to iterate over heat map, ret core id to return, cmp for comparision * 1
2:
3: cmp = heat_map[O]; /* start at beginning of heat map for compadsion * I
4:
5: for(i = 1, ret= 0; i < smp_num_cpus; i++){
6: /* if the current map location's load is greater than another's *I
7: if({cmp - DELI A) > heat_map[i]){
8: cmp = heat_map[i]; /* swap to lower heat map location *I
9: ret= i; /* update ret to reflect this is now the least loaded core * 1
10: }
11: }
12:
13: heat_ map[ret]++;/* increase heat of core process will run on next* I
14: heat_map[core_id}--; /*decrease heat of core the process just ran on * I
15:
16: return ret;/* return the core id the process will run on next*/
17:}

Figure 7: Dynamic Load-Balancing Code

There are a number of ways that this base case can be extended. For example, the process
structure can also be passed into the balanceO function. This allows the routine to check
the heat of individual processes for comparison and swapping. So if a driver process with
a heat of 1 0 was being considered for movement, the left half of the if statement (line 7)
is modified to subtract that processes heat from the comparator (cmp - DELTA -
process_ assigned_ heat). This also means that a similar change is made to the final
addition and subtractions (lines 13 - 14) such that the process heat is accounted for
correctly (heat_map[ret] += process_assigned_heat, etc). This is just one type of
modification that can be made, but other possibilities exist to find the optimal load
balancing solution.

One facet that has not been discussed is the DELTA value (line 7) used in the
comparator portion of the balancing routine. This value exists due to the process affinity
problem and was only discovered through experimentation. The primary purpose is to
eliminate cache thrashing across cores in situations when low loads exist. A good
explanation of what happens without a delta value occurs when there are 10 processes
and 8 cores. In this situation the first 8 processes will be scheduled on one of the 8 cores.
The last two processes after each scheduling round will be swapped dynamically to one
of the other six. Every time one of these swaps occurs, the next run of that process will
result in cache misses and large performance penalties. Experiments with low values for
delta appear to indicate that a value of 2 provides a practical situation where processes
are pegged to processors unless the processor is overwhelmed.

13
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3.2.4 VT -d (Method 3)

A longstanding challenge in our research has been the effective use of peripheral device
virtualization, typified by Intel ' s VT-d extensions. This technology has been the subject
to rapid architectural evolution in recent years, due to increased awareness of the
vulnerabilities associated with device drivers. The advances have resulted in poor
documentation that is overly complex, contradictory, poorly explained, and incomplete.
The current version of Bear uses a full VT -d implementation of its E-1 000 network driver
and was incorporated at the request of DoD partners and funded independently by them.
We are currently check-pointing our experiences in developing the driver for the Intel
X86-64 platform and its VT -d support within the Bear hypervisor. The driver was
integrated as a user-level daemon, running a full network stack running on top of the Bear
microkemel. The implementation explored the concept of non-deterministically
refreshing the driver from a gold-standard image to deny persistence using VT-d. The
implementation details illuminate the raw capabilities of the hardware, highlights
practical challenges, and alerts other developers to the gaps in documentation accessible
only through careful exploration of Intel ' s example code.

3.2.5 ExOShim (Method 4)

Information leakage and memory disclosure are major threats to the security in modem
computer systems. If an attacker is able to obtain the binary-code of an application, it is
possible to reverse engineer the source-code, uncover vulnerabilities, craft exploits, and
patch together code-segments to produce code-reuse attacks. These issues are particularly
concerning when the application is the operating system kernel itself, because they open
the door to privilege escalation and exploitation techniques that provide kernel-level
access. ExOShim is a 325-line, lightweight "shim" layer, that uses Intel's commodity
virtualization features (extended page tables and protection bits) to prevent memory
disclosures by rendering all kernel code execute-only i.e. explicitly not readable or
writable. This technology, when combined with nondeterministic refresh and load-time
diversity explained below, prevents disclosure of kernel code on time-scales that facilitate
kernel-level exploit development. Additionally, the shim employs self-protection and
hiding techniques to guarantee its operation even if the attacker gains full kernel level
access. The proof-of-concept prototype incorporated into Bear was evaluated using
metrics that quantify its code size and complexity, associated run-time performance costs,
and its effectiveness in thwarting information leakage. Unlike other approaches,
ExOShim is the first to provide complete execute-only protection for kernel code and has
a runtime-performance overhead of only 0.86%. The concepts are general and could also
be applied to other operating systems. The ExOShim functionality has been explored in
two variants: one where it is slipped underneath a running kernel, the other involves
direct integration within the hypervisor.

3.2.6 KPL T: Diversity through a Kernel Procedure Linkage Table (Method 5)

It is standard practice in modem operating systems for the kernel to be mapped into the
virtual address space of every user process for efficiency; after all, invariably every
process needs access to the kernel ' s functionality at some point in its execution. The

14
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

kernel is never considered "shared" memory in the conventional sense, but upon closer
inspection, the kernel does show similar attributes. In particular, the kernel is commonly
mapped at the same location for every user process. Consequently, its location is
predictable, giving rise to privilege escalation opportunities. During the MRC program,
we explored the idea of treating the kernel as a shared object and forcing a level of
indirection, through virtual addressing, in order to access it. This is achieved by
interjecting a Kernel Procedure Linkage Table (KPL T) into each process that maps the
same (shared) kernel functions into different virtual addresses in each process. The
framework and mechanisms that use the table protect it from discovery, while allowing
the KPL T to increase diversity by changing the addresses of kernel functions on a per
process basis.

3.2. 7 Load-time Diversity (Method 6)

Our primary goal in developing other diversity techniques were to ensure that the
following properties were achieved:

1. All function entry points are disrupted.

2. All function exit points are disrupted.

3. All basic blocks (if, while, switch, etc.) within functions are disrupted.

The first of these properties eliminates entry into malicious code by patching a
predictable address; the second eliminates the opportunity to return to normal operation
from malicious code; the final property ensures that every instance of a function has a
unique layout i.e. all jump offsets within all basic blocks are diversified. In combination,
when applied to an operating system binary code, these properties ensure that no two
instances of a running operating system share the same exploitable address - thereby
eliminating vulnerability amplification in clouds.

The standard Executable and Linkable Format (ELF) format, used in the
program compilation and linking process, segregates an executable program into distinct
sections that designate TEXT (code), DATA (initialized variables), RODATA (read-only
data), and BSS (uninitialized variables). The resulting ELF file also contains headers that
describe how these sections should be stored in memory. Typically, for example in
Linux, functions are loaded sequentially into sections and sections are loaded back-to
hack into memory. There is no re-ordering of functions or sections and as a result, the
location of code in memory is deterministic, predictable, and can be reverse-engineered.
Instead, we force the compiler to build a separate section for each function using the
standard -ffunction-sections compiler option. This allows our diversifying ELF loader to
re-order function layout, placing each function in a random page at load time. Moreover,
using relocations (Rel/Rela sections) generated by the compiler, the loader is able to
update inter-section dependencies between functions and data at load-time.

Load-time diversity involves dispersing functions randomly across the entire
virtual address space at load-time to achieve properties 1 and 2 above, using the
underlying paging system. During the project, a variety of algorithms were explored to
achieve this dispertion; the final version -- affectionately refered to by the members of the
group as "Uberdiversity" -- uses almost the entire x86-64 virtual address space. To
implement this technique, the separate ELF sections are randomly distributed over the

15
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

virtual address space at load-time by a specialized diversifying ELF-loader. This loader is
responcible for patching up function calls and function returns to take account of the
dispertion achieved during loading using relocations. The loader uses the Intel x86-64
hardware virtual memory abstraction to inject the maximum amount of entropy into a
loaded program instance. A particularly novel aspect of the approach is that it is
incorporated into a standard stage 2 bootloader; this allows kernel and user code to be
interspersed with each other with appropriate protections. In addition, for the first time,
this has made it possible to diversity the hypervisor itself, within its own separate address
space. A detailed theoretical study of diversity has been conducted to explore the limits of
the approach both from the viewpoint of the degree of entropy introduced (i.e. the
likelihood that an instruction falls at a predictable location) and the number of unique
memory layouts that a particular application admits to.

3.2.8 Compile-time Diversity (Method 7)

Recall that the load-time diversification technique described in section 3 .2. 7 satisfies the
first two desired diversification properties, concerning the disruption of function entry and
exit points, but not the last, associated with disrupting basic code blocks: The loader
modifies address references between sections, but not within sections. Furthermore, keep
in mind that there is a loss of 12 potential bits of entropy at load-time due to constraints on
the paging system (i.e. caused by page size and alignment constraints) - more than three
orders of magnitude! To resolve these issues a compile time source-to-source
transformation is used that adds vacuous code padding to basic blocks, achieving the final
3rd property of disrupting basic blocks while gaining back this lost entropy.

To inject entropy into every logical block in a program, a random number of bytes,
between 0 and 25 - 1, are injected into the beginning of every logical block in the program,
using a uniform random distribution. The inserted bytes themselves are random numbers.
Jump instructions are inserted before the random byte stream to ensure it is not actually
executed at run-time; this minimizes the performance effect of the transformation,
typically the entire block is in cache. The insertion is achieved through a source-to-source
transformation on the original C source code using a Clang compiler plug-in.

Figure 8 shows the padding transformation in action. The left-most function in
Figure 8 is the original source code; the two right-most functions demonstrate two
possible results from the source-to-source transformation: the first using a two-byte,
followed by a four-byte random sequence; the second using a one-byte followed by a two
byte sequence. The consequence of this transformation is that if an attacker attempts to use
pre-existing code present in the binary, based on static analysis, the execution will
incorrectly jump to a random prior location, typically causing a crash. On some rare
occasions where a crash is not triggered, an unexpected non-deterministic action will be
performed. Alternatively, traps could be placed in the random sequence to allow detection.

The parameter s is configurable and can be provided with separate values for the
blocks that represent function opening and the beginning of other logical blocks. For
function opening, the maximum useful value for s is 12; buying back the entropy lost to
paging and allignrnent constraints. If the beginning of each function is located at the
beginning of a page, as is the case with the ELF loader, this entropy is additive with the
entropy injected by the ELF loader. Any larger value of s would overlap with the
relocation provided by the functional loader, resulting in no appreciable gain in entropy.

16
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The entropy injected into the jump offsets of logical blocks is, assuming a uniform
distribution on [0, 25 - 1] , simply equivalent to the value of s. The limitation is the
overhead willing to be accepted in file and memory size increases; for our systems, we
typically use a value of 8 (giving 256 possible variants for each jump offset).

void fn() {
if(var) {

}

void fu() {
jmp1f
Ox63 Ox4F
1:
if(var) {

}

jmp1f
Ox27 Ox15
OxCA OxD5
1:

void fn() {
jmp1f
OxA9
1:
if(var) {

jmp1f
Ox02 Ox24
1:

Figure 8: Original Function with two vacuous padded variants.

3.2.9. Replication Diversity (Method 8)

To augment the runtime and compile time transformations described thus far, we have
developed a runtime transformation based onfunction replication. In this transformation,
functions (or more specifically, relocatable code units) are cloned at runtime. Any calls
into a unit are redirected at random into one of the clones.

The effect of this transformation is to increase the likelihood that if an attacker
were to fortuitously discover a usable address, there is no guarantee that the address would
be consistently usable at run-time. While it might work acceptably in a return-oriented
programming system, if the address was used to resume normal execution it would not be
guaranteed to operate correctly. Furthermore, an active intrusion detection system could
be created to utilize the clones - for example, if an unexpected clone was ever executed, it
would be clear that at some point the program execution had been derailed.

This transformation, for modest levels of replication (e.g. 3) increases memory
usage, but has negligible impact on the performance. The clone to use is picked at random
before execution is initiated, and then never changed. Relocations, jumps, and control flow
instructions are unmodified; only endpoint addresses are reconfigured. At every refresh, a
different one of the replicas is used.

3.2.10 Diversified-NFS (Method 9)

Figure 9 illustrates Diversified-NFS - an architectural organization for combining
compile-time, load-time, and replication diversity explained in previous sections. It
operates in combination with the Preboot eXecution Environment (PXE-boot) and
Dynamic Host Configuration Protocol (DHCP). The overall concept places DHCP, TFTP

17
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

(used by PXE-boot), and NFS servers on a separate out-of-band network or V -LAN
within the cloud that is used only for code protection. Each program, corresponding to an
application, operating system, or hypervisor, is compiled at an out-of-band server to form
a variant repository within the distributed file system. For the sake of simplicity, we
currently place all application binaries in /bin; operating system and hypervisor binaries
are placed in /var/lib/tftp. A background task at the out-of-band server periodically
recompiles each program and replaces the existing version within the repository to avoid
the delay associated with on-demand compilation. The random nature of the compile
time diversity transformation ensures that each time a program is recompiled a unique
binary variant is available for loading as indicated by the multiple instances (in time) of
an application (A) and operating system (OS).

Transmit Binary

Request Binary

Load OS

Figure 9: D-NFS System Overview

u
s

E

L

When a physical host bootstraps within the cloud, its NIC card obtains an IP address from
the DHCP server together with the address of the TFTP server (1). The NIC card then
downloads the current OS variant comprising a RAM-disk (containing the compile-time
diversified variants of the hypervisor and microkernel) from the TFTP server (2). It then
bootstraps the hypervisor using the diversifying ELF-loader (load-time diversity),
choosing a random function replica (replication diversity). This ensures that each
instance of an operating system variant has a unique image in memory. Services and
device drivers, loaded during bootstrapping, are also diversified with the modified ELF
loader.

18
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The bootstrapped operating system incorporates an NFS client, designated in
Figure 9 as NFSD. Eventually, the operating system opens a shell and begins execution
of commands (3) using an execve system call. This call will load the current variant of the
application binary code over the network through NFS (4) into the operating system
kernel. The diversifying ELF-loader is then used to initiate execution of the application
(5). This ensures that the each instance of an application in memory is random and
urn que.

This process mitigates vulnerability amplification and substantially increases
attacker workload: in order to craft a reusable exploit, the attacker must reverse-engineer
each program variant and determine its unique memory footprint, on each host in the
cloud, as a function of time. The more frequently a program is reloaded, the more
difficult the attackers task. The intent is to force the refresh frequency inside (shorter
than) the time to reverse-engineer a code and develop an exploit. This removes the
opportunity to use an exploit without the need to detect intrusions. The approach yields
the full capacity of entropy for even small code bases, allows compile-time code-size
overhead and entropy to be adjusted based on threat-level, and has negligible run-time
overhead; all of the overhead is paid up-front at load-time. We have demonstrated the
system by running all components within the same cloud at Rackspace, and by running
the NFS, DHCP, and TFTP servers remotely at Dartmouth, with the rest of the system at
Rackspace. By replacing PXE with iPXE, it is possible to encrypt and sign binaries
downloaded from the repository.

3.2.11 Asymmetric Multiprocessing (Method 10)

We have recently been exploring a new operating system design that completely
decouples the kernel from user processes. This is achieved by running the kernel
and user processes on separate processor cores instead of at different privilege
levels on a single core. Rather than the traditional approach of using interrupts to
implement system calls, we instead utilize the hardware facilities for inter-core
communication developed as part of our UVM research. Surprisingly, on modem
processors, this now offers the opportunity for increased performance, while
providing a hard separation between user processes and the kernel. One of the
central advantages of this approach is that it then allows user processes and device
drivers to be elevated to operate in at a higher privilege level. This offers device
drivers the performance normally associated with monolithic systems, but provides
the security generally associated with micro-kernels.

19
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

4.0 RESULTS AND DISCUSSION

4.1 Core Results: Utility Virtual Machines

Two test suites were used to benchmark the memory and processor performance of our
preliminary UVM implementation. Performance is measured in processor cycles using
the time stamp counter, which counts the number of cycles executed since a core starts.
The time for a test is calculated by dividing the total cycles needed for completion of the
test by the speed of the processor. ·

The memory benchmark used was developed by Chuck Lever and David
Boreham at the University of Michigan and measures the performance of malloc() in a
multithreaded system. This benchmark supports the use of either threads or processes to
test physical memory performance. POSIX threads are not supported in the current Bear
micro-kernel implementation; in common with Linux, lightweight processes provide a
more uniform programming abstraction. For the testing reported here, 100 processes are
created that execute a loop running for 100 million iterations; each iteration executes one
malloc() and realloc() on a 1024 byte block size.

Processor performance is measured using the addition, subtraction, and
multiplication modules from the popular AIM9 synthetic benchmark suite. The AIM9
suite specifically tests processor performance by executing instructions that stress test the
internal processor logic. For the testing reported here, a single process runs 100 iterations
of each of the AIM9 addition, multiplication, and division benchmarks.

Two test systems were used for the benchmarks: a Dell OptiPlex 9010 with 4GB
RAM and an 8-core 3.4 GHz Intel i7 processer, and a MacBook Pro with 8GB RAM and
a 3.2GHz processor. The Dell system ran the Bear Micro-Kernel, Bear Micro-Kernel on
its Hypervisor, Fedora with 3.17.4-301 Linux Kernel, and Fedora 3.17.4-301 Linux
Kernel on Xen 4.4 Hypervisor. The MacBook Pro ran VMware Fusion, a type 2
hypervisor [16] with an Ubuntu with 2.6.32-38-generic Linux Kernel guest that has 4Gb
of ram and 4 processor cores provided to it from the MacBook Pro.

Table 1 below provides the average processor cycles and time from twenty runs
ofthe above-mentioned tests. The table itself is broken into the Cycles it took to complete
the memory benchmark, AIM9 benchmark, and total for both. The Table also provides
the time in seconds it took to complete the respective benchmarks and total time for both.
There are several interesting observations from this table. Using the memory and
recursive paging system discussed in this paper, the micro-kernel is 34.4% faster than the
Fedora Kernel. Furthermore, The micro-kernel on the custom hypervisor is 27.7% faster
than Fedora on Xen, and 25.9% faster than Ubuntu on VMware. Some of this
performance gain should be attributed to the fact that a micro-kernel is a much lighter
weight operating system than a full Linux kernel and thus can create processes at a faster
rate. However, the purpose of the benchmark in creating 100 processes with a large
number of malloc() and realloc() iterations is to focus the performance measurements
more on the operating systems use of malloc(), realloc() and virtual memory for user
space as a whole. This provides a level of certainty in the performance gains provided by
a recursive paging system.

20
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Memory AIM9 Total Test
Memory Cycles AIM9 Cycles Total Cycles Time (s) Time (s) Time (s)

Bear
Micro-
Kernel

2.95738 E+ 11 1.44554 E+ II 4.40292 E+ 11 86.981 42.5I5 129.497
Bear Micro
Kernel &
Hypervisor 2.99564 E+ 11 1.54416 E + 11 4.5398 E+ 11 88.107 45.416 133.523
Fedora
Kernel

4.79616 E+11 1.43682 E+ 11 6.23298 E+ 11 141.063 42.259 183.322
Fedora
Kernel-
X en
Hypervisor 4.07463 E+ II 1.92471 E+ 11 5.99935 E+ II I19.842 56.609 176.451
Ubuntu
Guest-
VMware
Fusion 4.60572 E+ 11 9.38998 E+1 0 5.54472 E+ ll 143.928 29.343 173.272
Bear
System
with UVM 3.02883E+ 11 1.4533E+ 11 4.48212E+ 11 89.083 42.744 131.827

Table 1: Memory and Processor Benchmarks

Processor performance based on the AIM9 benchmarks had three interesting comparison
points. While it was expected that the Bear micro-kernel would outperform the larger
Fedora Kernel as it did in memory, this is not the case. In fact, both systems scored
roughly the same in cycles and time, with the Fedora kernel edging out the micro-kernel
by ~.251 of a second to complete the AIM9 benchmark. This is attributed , to the
minimalistic nature of the micro-kernel and the superior scheduling offered by Fedora,
which for both means the AIM9 test is running at all times on a singular core.

It is important to notice the impact that a newer processor has on the AIM9
benchmark. The type 2 VMware hypervisor running Ubuntu is running on a slower
processor and with 4 less cores, but that processor was released ~ 15 months after the
processor shipped with the Dell. The difference a year can make is staggering, as the
Ubuntu guest finishes the AIM9 benchmarks almost a full 13 seconds faster than any
configurations running on the Dell.

The presence of a hypervisor slows performance of the AIM9 benchmark on all of
the systems. The micro-kernel has the smallest impact, which is due to configuring the
hypervisor to operate the guest as close to real time as possible. Larger hypervisors such
as Xen and VMware are designed to manage multiple guests, some configurations that
are suitable to a micro-kernel are not appropriate for them. This can be seen in the larger
performance impact when comparing the Fedora kernel to the Fedora kernel on the Xen
hypervisor.

Lastly, the performance of a stripped down prototype UVM messaging system
that contains just the keyboard & VGA drivers was also evaluated. As expected it
performs about equal to the micro-kernel with hypervisor. Being about ~ 1 second slower
in memory performance and ~3 seconds faster in AIM9 performance. Noticeably, the
AIM9 performance is expected to slow in future development cycles. As more

21
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

functionality will be added to the system through the addition of a greater number of
UVMs.

The benchmarks demonstrate that well-known optimization techniques, used in
today's state-of-the-art systems can make a significant difference in performance.
Although using only basic scheduling concepts and little in the way of optimization, the
micro-kernel design performs surprisingly well when compared with mature systems that
have undergone hundreds of man-years in development and optimization. This can be
directly attributed to extensive use of Intel hardware mechanisms using their
recommended implementation methods to build an SMP enabled hypervisor and micro
kernel.

4.2 Diffusive Scheduling

To eliminate as many external factors that could impact performance, experimentation on
diffusive scheduling was completed on the kernel only version of the system. This
removes the slow-down generated by the presence of the hypervisor and the virtual APIC
settings. The memory benchmark is well suited for the evaluation of the diffusion
scheduler as a single process spawns 100 additional processes. This results in one core
having a high initial load that it then transfers to the other cores.

The initial run of the diffusion scheduler used the code seen in Figure 7 without
the DELTA variable. The AIM9 test suite, which runs as a single process, illustrates the
problem of process affmity as cache thrashing occurs and results in high overheads.
Once, the issue was noticed, a DELTA of one and two are used in all further testing.
Additional configurations of the scheduler include drivers with heat values of 10, all
drivers pegged to a core, and hardware interrupts of heat 10, 100, or 1000. The results of
the varying methods and the round-robin scheduler performance are seen in Table 2.

When reviewing Table 2, it is important to examine the individual tests first when
evaluating the new scheduler, as the memory test benefits from improvements to multi
process execution. Whereas the AIM9 test suite sees performance gains when single
process execution is sped up through an enhancement. Adding the times it takes to
complete both tests together provides an overall measure of performance, but may miss
potential impacts to either form of execution.

For example, on the surface the diffusive scheduler without the DELTA variable
overall performs 15.68% worse than the round-robin scheduler. This is solely because of
a 42.78% performance penalty taken during single process execution of the AIM9 suite
due to cache thrashing. In fact, multi-process execution during memory testing is
improved by 1.32%, which almost certainly is impacted by cache thrashing to some
degree. Thus, all testing is performed with a DELTA present. As noticeable performance
gains were only shown using a DELTA of two, the following discussions will only be in
regards to that setting.

The diffusive scheduler performs equivalently to the round-robin scheduler once
process affmity has been accounted for. Further exploration of increasing process affinity
was explored by pegging drivers to a single core. This alone did not result in any
performance gains. In an attempt to isolate drivers further from user tasks, their heat
value was increased from 1 to 10. As this resulted in a .52% speedup for memory, a .97%

22
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

speedup for AIM9, and an overall speedup of .70%. Unfortunately, these results provide
less than a 1% margin for scheduling improvement.

AIM9
Scheduler Cycles Cycles A1M9 Memory Time Total

Configurations Memory Add/Mul/Div Cycles Total Time (s) (s) Time (s)
Round-Robin
Scheduler 2.9574E+11 I.4455E+11 4.4029E+ll 86.98 42.54 129.50

Diffusion-
All Processes 1 2.9185E+11 2.2333E+11 5.1519E+ll 85.84 65.69 151.53

Diffusion-
All Processes I, 2.8910E+II 1.798IE+I1 4.6891E+ll 85.03 52.88 137.91
Delta 1
Diffusion -
All Processes I, 2.9378E+11 1.4500E+11 4.3878E+11 86.41 42.65 129.05
Delta 2
Diffusion -
All Processes 1,
Delta 1, 2.9111E+11 1.7725E+li 4.6836E+II 85 .62 52.I3 137.75
Peg Drivers
Diffusion -
All Processes 1,
Delta 2, 2.9316E+ll 1.4593E+ II 4.3909E+II 86.22 42.92 129.14
Peg Drivers
Diffusion -
User Processes 1,
Delta 1, 2.9391E+ll 2.0721E+11 5.0112E+ll 86.44 60 .94 147.39
Peg Drivers 1 0
Diffusion -
User Processes 1,
Delta 2, 2.9420E+11 1.4323E+11 4.3743E+ll 86.53 42.13 128.66
Peg Drivers I 0
Diffusion- User
Processes 1 ,
Delta 2, Interrupts 2.8634E+ 11 1.4769E+11 4.3402E+11 84.22 43.44 I27.65
IO,
Peg Drivers I
Diffusion-
User Processes 1,
Delta 2, 2.7283E+II 1.5956E+ I1 4.3239E+ll 80.24 46.93 127.17
Interrupts I 00,
Peg Drivers 1
Diffusion -
User Processes I,
Delta 2, 2.8835E+11 1.62252E+l1 4.5060E+l1 84.81 47.72 132.53
Interrupts I 000,
Peg Drivers 1

Table 2: Scheduler Performance Characterization

23
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The last variable that impacts normal core execution is hardware interrupts. In this
measurement the core receiving hardware interrupts from the I/0 APIC will be assigned a
heat of 10, 100, or 1 ,000. Drivers will continued to be pegged to cores to improve their
individual process affinity as experiments showed a marginal benefit in doing so. The
graphed results of increasing heat can be seen in Figure 10.

120

100
Cll

"0 = 80 0
I.J
IV
Vl
IV 60
= e::

40

20

0
0 10 100

Interrupt Heat

1000

• Memory Benchmark

• AIM9 Benchmark

• Overall Performance

Figure 10: Diffusion Performance as Interrupt Heat Rises

Looking at the graph it can be seen that from 0 to 100, memory and overall performance
improve, while AIM9 performance decreases as interrupt heat rises. Going from 100 to
1000 heat causes a decrease in all three categories. However, the setting of this variable
at 100 has an effect of improving multi-process performance by 8.06%, but decreasing
single process performance by 9. 81%, which amounts to an overall performance increase
of 1.82%. These results are noteworthy as they clearly demonstrate that the heat diffusion
algorithm has a marked scheduling improvement in environments with heavy workloads.

With all of the changes to the scheduler, it might be expected that there was a
large addition to the number of lines of code, which would increase the attack surface.
However, this was not the case, by re-purposing pieces of the original round-robin
scheduler, the need for additional code was low: To add the minimal amount of support
for diffusion, 29 lines of code were needed for the configuration presented in Figure 7;
To go to the full interrupt and driver pegging setup requires only an additional23 lines of
code, which brings the total to 52 lines. The brunt of this work was in developing an
alternative conceptual framework and adapting it to operate on multiple cores.

24
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

5.0 CONCLUSIONS

The concepts and technologies developed under this project extend and harden the
defense-in-depth strategy developed in the associated CRASH project to the domain of
symmetric multiprocessing and cloud computing. Utility Virtual Machines serve to
separate concerns, use hardware mechanisms to harden boundaries between operating
systems functions, and reduce the overall attack surface. Diffusive scheduling improves
performance ofUVM implementations in high-load situations and sets up the opportunity
to transparently schedule resilient applications among multi-processors. Several varieties
of diversification allow us to throttle vulnerability amplification and increase the
workload of reverse engineering and exploit development; when combined with dynamic
refresh these ideas introduce a time-dependent element into the randomization process
that substantially increases attacker workload.

This project affirms and solidifies our general conclusions from the CRASH program:
Military systems have gained tremendously from the cost and flexibility benefits afforded
by widespread adoption of commercial off the shelf (COTS) technology -- to the point
where it is now difficult to imagine how we might operate, with similar levels of
assurance and efficiency, using non-COTS methods. However, in times of tension,
critical mission capabilities must continue to operate, even if major components of "the
network" are unavailable and the systems upon which we rely are repeatedly
compromised by error, fault, or malicious action. It therefore behooves us to apply
Occam's razor to pare back the layers of complexity that have been thrust upon us by
commercial vendors, in light of the controlled environment in which DoD operates, to
selectively improve resilience and increase attacker workload.

Our approach is to use COTS subsystems, accepting their imperfections, but
augmenting them with ideas from the fault-tolerance, distributed computing, and
encryption communities. The body of research explored how we might pursue this goal
using three basic non-deterministic precepts:

• Don' t trust what you have- continually validate, replicate and regenerate ,
• Don't advertise what you do- continually hide and camouflage, and
• Don' t be predictable- instead be diverse, mobile and non-deterministic.

The Bear system uses overlapping regenerative techniques, combined at every layer of
the system, from the user to the hardware. These methods deny surveillance and throttle
vulnerability amplification by continually invalidating surveillance data, randomizing
systems across memory, hiding in the network, and using camouflage. Persistence is
denied by non-deterministically replacing, refreshing, replicating, diversifying, and/or
relocating components so as to continually re-establish trust. The methods can be
incorporated individually, as independent modes, or collectively and continuously for
critical missions.

25
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

6.0 REFERENCES

[1] S. Taylor, "Attacking Time: Mitigating Advanced Persistent Threats (APT's)", Apr 3,
2015, Final report: DARPA CRASH Program, Air Force Research Laboratory, Rome,
NY.

[2] R. Denz, Securing Operating Systems Through Utility Virtual Machines, Ph.D.
Thesis, Thayer School of Engineering at Dartmouth College, June 2016.

[3] R. Denz, and S. Taylor, "A Survey on Securing the Virtual Cloud", Journal of Cloud
Computing: Advances, Systems, and Applications, Volume 2, Issue 1 on 6 November
2013.

[4] R. Denz and S. Taylor, "Securing the Cloud through Utility Virtual Machines", In the
Proceedings ofiMCIC, Orlando, FL, March, 2016.

[5] S. Kuhn and S. Taylor, "VT-d: Revealing Complexity and Pitfalls", In preparation.

[6] S. Brookes, R. Denz, M. Osterloh, and S. Taylor, "ExOShim: Preventing Memory
Disclosure using Execute-Only Kernel Code", 11th International Conference on Cyber
Warfare and Security (ICCWS' 16), pp 56-64, Boston University, Boston, MA, March
2016.

[7] S. Brookes, R. Denz, M. Osterloh, and S. Taylor, "ExOShim: Preventing Memory
Disclosure using Execute-Only Kernel Code.", International Journal of Information and
Computer Security, April2016.

[8] S. Brookes, M. Osterloh, R. Denz, and S. Taylor, "The KPLT: The Kernel as a Shared
Object", MILCOM 2015, pp 981-986, Oct 2015.

[9] M. Kanter, "Enhancing Non-determinism in Operating Systems", Ph.D. Thesis,
Thayer School of Engineering at Dartmouth, October 2013.

[10] M. Kanter, and S. Taylor, "Diversity in Cloud Systems through Runtime and
Compile-Time Relocation", In proceedings ofiEEE-HST 2013.

[11] M. Kanter, and S. Taylor, "Attack Mitigation through Diversity", In proceedings of
MILCOM 2013, pp 1410-1415, Nov 2013.

[12] S. Brookes, M. Osterloh, R. Denz, and S. Taylor, "Uberdiversity", In preparation.

[13] M. Osterloh, R. Denz, and S. Taylor, "Diversified-NFS", ICCSM 2014, Oct, 2014.

[14] S. Brookes and S. Taylor, "Rethinking Operating System Design: Asymmetric
Multiprocessing for Security and Performance", New Security Paradigms Workshop 2016,
Sept 26-29 2016. Accepted for Publication.

26
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

[15] S. Brookes and S. Taylor, "Containing a Confused Deputy on x86: A Survey of
Privilege Escalation Mitigation Techniques", International Journal of Advanced
Computer Science and Applications (IJACSA), April 2016.

[16] S. Kuhn and S. Taylor, "Locating Zero-day Exploits with Course-Grained
Forensics", Expanded version of conference paper by same name. Journal oflnformation
Warfare, Voll4, Issue 4, Oct 2015.

[17] S. Kuhn and S. Taylor, "Locating Zero-day Exploits with Course-Grained
Forensics", 14th European Conference on Cyber Warfare and Security ECCWS-2015, 2-
3 July 2015, pp 159-168.

[18] J. Dahlstrom, "Hiding in Hardware", Ph.D. Thesis, Thayer School of Engineering at
Dartmouth College, December 2015.

[19] J. Dahlstrom and S. Taylor, "Hardware-Based Code Monitors on Hybrid, Processor
FPGA System-on-Chip Architectures, MILCOM 2015, pp 968-973, Oct 2015.

[20] C. Nichols, M. Kanter, and S. Taylor, "Bear - A Resilient Kernel for Tactical
Missions", In proceedings ofMILCOM 2013, pp 1416-1421, Nov 2013. (Co-funded with
CRASH)

[21] D. Kennedy, J. O'Gorman, D. Keams, and M Aharoni, "Metasploit: The Penetration
Testers Guide", No Starch Press, 2011.

[22] L. Davi, A Dmitrienko, AR Sadeghi, M Winandy, "Privilage Escalation Attacks on
Android", Information Security, Springer 2011.

[23] Greg Hoglund and Jamie Butler, "Rootkits", Addison-Wesley Professional Press,
2005.

[24] C. Eagle, "The IDA Pro Book", No Starch Press, 2011.

[25] Eldad Eilam, "Reversing", Wiley, 2005

[26] J.E. Forrester and B.P. Miller, "An Empirical Study of the Robustness of Windows
NT Applications Using Random Testing", 4th USENIX Windows Systems Symposium,
Seattle, August 2000. Appears (in German translation) as "Empirische Studie zur
Stabilitat von NT -Anwendungen", iX, September 2000.

[27] S. Checkoway, A.J. Halderman, A. J. Feldman, E. W. Felten, B. Kantor, and H.
Shacham (2009); "Can DREs Provide Long-Lasting Security? The Case of Return
Oriented Programming and the AVC Advantage", in Proceedings of the
USENIXIACCURATEIIA VoSS Electronic Voting Technology Workshop, August 2009.

27
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

[28] W. A. Arbaugh, D. J. Farber, and J. M. Smith. "A secure and reliable bootstrap
architecture." In Proceedings of the 1997 IEEE Symposium on Security and Privacy (SP
'97). IEEE Computer Society, Washington, DC, USA, 65-. 1997.

[29] B. Blunden. The Rootkit Arsenal: Escape and Evation in the Dark Corners of the
System. USA: Jones and Bartlett Publishers, Inc. 2009.

[30] Pandey and Tiwari, "Reliability Issues in Open Source Software." International
Journal of Computer Applications, vol. 34 issue 1, pp. 34-3 8. 2011.

28
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

APIC
APT
ARM
ATO
CPU
COTS
D5 Effects
DHCP
DNS
ELF
EPT
FPGA
HUMINT
IDS
IOMMU
IP
KLPT
MAC Address
MINIX
MMU
MPI
MULTICS

NFS
PIT
PO SIX
PXE
RAM
ROM
ROP
rMP
SIGINT
SMP
TFTP
TTP
UVM
VLAN
VT-c/d/x

Advanced Programmable Interrupt Controller
Advanced Persistent Threat - cyber implant that persists and hides
Advanced RlSC Machines -a type of computer processor
Air Tasking Order
Central Processing Unit
Commercial of the shelf
Deceive, Deny, Disrupt, Degrade, Destroy
Dynamic Host Configuration Protocol
Domain Name Service
Executable and Linkable Format
Extended Page Tables
Field-Programmable Gate Array
Human Intelligence
Intrusion Detection System
input/output memory management unit
Internet Protocol
Kernel Procedure Linkage Table
Media Access Control Address - identifies a network interface
mini-Unix-- a micro-kernel based operating system
Memory Management Unit
Message Passing Interface -- software API
Multiplexed Information and Computing Service - an operating
system
Network File System
Programmable Interrupt Controller
Portable Operating System Interface
Preboot eXecution Environment
Random Access Memory
Read-only memory
Return Oriented Programming - a form of cyber attack
resilient Message Passing software system
Signals Intelligence
Symmetric Multiprocessing
Trivial File Transfer Protocol
Tools, Techniques, and Procedures --operational aspects
Utility Virtual Machine
Virtual Local Area Network
Intel virtualization technologies

29
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

