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ABSTRACT 

Every day throughout the country, fire departments respond to a variety of 

emergencies in their communities. Steadily over the last decade, departments 

have mitigated these threats in an atmosphere of decreasing budgets, declining 

fire volume, and a burgeoning call volume. Thus, fire service leaders require data 

and analysis to justify the dollars spent to mitigate the risks within communities. 

Community risk is dynamic in that it fluctuates over geography and time; 

spatiotemporal modeling is one proven method for illustrating such dynamic 

modulations. This thesis produces a spatiotemporal model of fire department call 

volume to depict fluctuations in community risk in the Fresno (CA) Fire 

Department’s area of operations. This study led to several findings. First, using 

historical records for spatiotemporal modeling of community risk could help 

leaders visualize the dynamic nature of risk. Second, visualizing community risk 

with spatiotemporal modeling could provide the basis for resource deployment 

models attuned to specific risks. Finally, investigating additional data sets in 

conjunction with such methodology could uncover the causal factors of risk 

dynamics from which leaders design proactive preventative measures. 
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EXECUTIVE SUMMARY 

Fire stations are fixtures in their communities and respond to a variety of 

emergencies every day. In the context of the recent recession, many municipal 

leaders have called into question firefighter quotas, citing reduced budgets, a 

decrease in the number of fire incidents, and an increase in the number of 

medical calls. As a result, fire departments are struggling to justify their existence 

against the risks within the community.  

It is from the depiction of call volume that fire service and municipal 

leaders can comprehend more thoroughly the dynamic nature of risk within the 

community. Spatiotemporal modeling maps community risk by using historical 

data from fire department databases and depicting it with heat maps. These heat 

maps are produced for increments of time, such as hour of the day, and shown in 

sequence to depict how community risk changes over time and space.  

Spatiotemporal modeling provides a unique perspective of data 

fluctuations. The literature for fire service data models fire incidents and provides 

for basic inquiries into the statistical underpinnings for incident distribution. 

However, fire departments increasingly respond to more than just fires, and 

quantitative assessments of entire call volume are necessary. This thesis offers 

spatiotemporal modeling as a starting point for quantitative analysis of all risks 

represented within the community.  

To model community risk with spatiotemporal tools, this thesis used 

geospatial information systems software, ArcMap 10.2 from ESRI, for heat maps 

of individual point data. For the purposes of this thesis, a sample dataset of more 

than 40,000 entries was used from Fresno (CA) Fire Department. The data were 

broken into three temporal partitions: by 24 hours, 12 months, and seven days. 

The heat maps for each time partition were analyzed sequentially to create a 

visualization of fluctuations over the different partitions of time. Analysis was 

conducted by hour of the day, day of the week, and month of the year.  
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This thesis developed models for fluctuations in the data over time. The 

spatiotemporal changes fell in line with the hypotheses in some cases. Call 

distribution throughout the day, for instance, was expected to follow a circadian 

rhythm, which occurred. However, the models showed other hypotheses were 

incorrect. It was expected that call volume would follow seasonal variations; the 

winter would see severe spikes because of cold and flu season, while the 

summer would see spikes in call volume from the effects of asthma and summer 

heat. Surprisingly, the monthly trends of EMS call volume depicted a stable call 

volume across the months with no apparent seasonal modulations. By sheer 

numbers, call volume by the day of the week experiences daily fluctuations, with 

Monday and Wednesday as the busiest days. The spatial distribution of that call 

volume, however, showed little fluctuation. The examples of analysis in this 

thesis provide valuable quantitative and objective information for fire service 

leaders.  

Spatiotemporal modeling is a dynamic method for visualizing a dynamic 

problem—assessing the static deployments of the fire service. Implementing 

spatiotemporal modeling does not require much in the way of change, and the 

tools and methods used in this thesis could be easily reproduced. Fire 

departments need to assess risk within the community objectively and 

quantitatively as well as the deployment plans meant to mitigate that risk. In 

many cases, spatiotemporal modeling justifies the current deployment plans. 

Risk across days of the week and months of the year were remarkably static, 

closely matching the current static deployment plans. However, call volume 

fluctuated greatly by hour of the day, suggesting that a dynamic deployment 

during the busiest portions of the day may be the most cost-efficient use of 

resources.  

Spatiotemporal modeling is just the beginning of quantitative assessment 

of community risk. Accessing the data for spatiotemporal modeling and its causal 

factors opens the door to a host of opportunities for future research. The three 

opportunities outlined in the thesis are as follows. First, the entire spectrum of 
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call volume should be modeled. Fire-service call volume continues to grow while 

fire calls are dropping; community risk is not solely about fires anymore. Second, 

future research should focus on the causal factors for the observed spatial and 

temporal trends in the data. To develop proactive preventative efforts and 

reactive deployment plans, fire service leaders need to understand what is 

causing the patterns in the first place. Third, future research should look at time 

studies by incident type. Though fire call volume was down, the time committed 

to fires remained at approximately 40 percent of total time committed to incidents 

in the dataset from this thesis. Time commitment studies could provide another 

layer of understanding to spatiotemporal modeling when addressing deployment 

models.  

The fire service faces many important challenges as communities 

continue to recover from the Great Recession, fire call volume continues its 

downward trend, and the demands of non-fire calls continue to rise. The 

response to these challenges must include increased quantitative studies and 

spatiotemporal modeling, which can support analytical investigation. 

Spatiotemporal modeling provides a unique view into community risk changes 

relating to public safety. The three-dimensional view can help leaders visualize 

the dynamic nature of risk and develop measures to address it.  
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I. INTRODUCTION 

Fire stations are fixtures of stability, known for their roles responding to 

community emergencies and preventing injury or loss of life. While all 

communities need emergency assistance, how do communities decide where to 

build their firehouses? This project seeks to assess community risk by mapping 

geographic and temporal distribution of fire-service call volume.  

A. PROBLEM STATEMENT 

Several organizations representing fire service interests in the United 

States, such as the National Fire Protection Association (NFPA), the Center for 

Public Safety Excellence (CPSE), and the Insurance Services Office (ISO), offer 

specific guidelines that many local governments use for deploying fire service 

resources to mitigate risks. The NFPA, CPSE, and ISO focus on what Charles 

Jennings of City University of New York calls “conflagration avoidance” for fire 

service deployment—an organic distribution of fire trucks throughout an area 

designed “to develop and deliver high volumes of water.”1 The ISO focuses 

solely on responses to fires in deploying fire department assets. And while fires 

still occur and take American lives, many departments have seen their responses 

to fires drop off significantly, while their overall call volume has steadily 

increased. In light of this change in call types, local governments are looking for 

guidance on deployment models.  

This thesis focuses on understanding the risk within our communities to 

which fire-service resources respond. Obviously, finances cannot be ignored 

when deploying resources. However, as noted at one popular fire service 

website, no one wants to play “the ‘buildings will burn and people will die’ 

game.”2 Old-school political tactics do not work under today’s severe economic 

                                            
1 Charles Jennings, The Promise and Pitfalls of Fire Service Deployment Analysis Methods 

(Alexandria, VA: Institution of Fire Engineers, 1999).  
2 “Firefighter Staffing,” FirefighterCloseCalls.com, accessed February 1, 2016, 

http://firefighterclosecalls.com/firefighter-staffing/.  

http://firefighterclosecalls.com/firefighter-staffing/
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conditions. The cost of doing business continues to grow for fire departments, 

and recent financial calamities have forced local governments to make 

monstrous cuts.3 Only objective facts and analysis can justify the costs of the 

contemporary fire service.  

The profile of fire department call volume continues to shift significantly, 

with a heavy pivot toward emergency medicine and specialized rescue skills. 

This author suggests that guidelines for fire department deployment should 

include risk assessments based on past call volume. In this work, risk in our 

communities is defined as the cumulative distribution of emergency events that 

have already occurred. Jennings, the aforementioned City University of New 

York associate professor and director of its Center for Emergency Response 

Studies, refers to this type of risk as “actualized risk.”4  

The following chapters introduce a visualization of risk across geography 

and time, referred to as spatiotemporal risk modeling, which could augment fire 

service guidelines when determining deployment of fire resources. Furthermore, 

the assessment of resource allocation to risk models could provide a more 

financially accessible deployment of risk protection by fire departments. 

B. LITERATURE REVIEW 

The literature review provides background and relevant research of 

spatiotemporal modeling. The research focuses on quantitative analysis of fire-

service response data, and in particular, the connection between objective 

research and deployment models. Research in the fields of geographic 

information systems and spatial statistics provide context to the discussion of 

spatiotemporal modeling. Little research covers spatiotemporal modeling of fire 

service data specifically; however, two researchers, one from Canada and the 
                                            

3 Jonathan Walters, “Firefighters Feel the Squeeze of Shrinking Budgets,” Governing, 
January 2011, http://www.governing.com/topics/public-workforce/firefighters-feel-squeeze-
shrinking-budgets.html.  

4 Charles R. Jennings, “Evaluating and Managing Local Risks,” in Managing Fire and 
Emergency Services, 1st edition, ed. Adam K. Thiel and Charles R. Jennings (Washington, DC: 
International City/County Management Association, 2012), 73. 

http://www.governing.com/topics/public-workforce/firefighters-feel-squeeze-shrinking-budgets.html
http://www.governing.com/topics/public-workforce/firefighters-feel-squeeze-shrinking-budgets.html
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other from Turkey, have explored spatiotemporal analysis of fires.5 These articles 

provide insight into spatiotemporal modeling methods, as well as causal factor 

analysis. This work includes quantitative non-fire research to elucidate how all 

calls for service, not those solely for fires, can have a significant effect on policy-

maker decisions concerning fire apparatus allocation.  

The literature review comprises three parts. The first section identifies and 

defines relevant terms. The second section addresses methods and challenges 

of spatiotemporal modeling, and inquiries in which researchers used 

spatiotemporal modeling for visualizing fire distribution. The third section 

recognizes that fire departments respond to more than incidents of fire and, as a 

result, analysis of those service calls is needed. In addition, case studies 

reference examples of how quantitative analysis can affect policy decisions 

driving the need to incorporate all calls for service into spatiotemporal modeling.6  

1. Terminology  

Spatiotemporal modeling, also referred to as geotemporal modeling, 

depicts the relationship between geographic distribution of spatial data and its 

temporal fluctuations.7 Spatial data are represented by the two-dimensional 

positioning of point data as defined by x, y coordinates. Temporal data are 

defined by time of day, day of the week, or month of the year and are 

represented as two-dimensional positions on a timeline. Spatiotemporal modeling 

attempts to combine the visualizations of two-dimensional x, y coordinates and 

                                            
5 Ali Asgary, Alireza Ghaffari, and Jason Levy, “Spatial and Temporal Analyses of Structural 

Fire Incidents and Their Causes: A Case of Toronto, Canada,” Fire Safety Journal 45, no. 1 
(January 2010); Elvan Ceyhan, Kivanc Ertugay, and Sebnem Duzgun, “Exploratory and 
Inferential Methods for Spatio-Temporal Analysis of Residential Fire Clustering in Urban Areas,” 
Fire Safety Journal 58 (May 2013): 226–239.  

6 Office of the Deputy Prime Minister, Using FSEC to Develop an Integrated Risk 
Management Plan (London: Office of the Deputy Prime Minister, 2003); Alan M. Craig, Richard P. 
Verbeek, and Brian Schwartz, “Evidence-based Optimization of Urban Firefighter First Response 
to Emergency Medical Services 9–1-1 Incidents,” Prehospital Emergency Care 14 (2010). 

7 B. M. Tomaszewski, “Developing Geo-Temporal Context from Implicit Sources with 
Geovisual Analytics,” presented at the ICA Commission on Visualization and Virtual 
Environments Annual Meeting, Helsinki, Finland, August 2, 2007. 
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two-dimensional time coordinates into an understandable two-dimensional 

image.8  

According to authors Asgary, Ghaffari and Levy in their study of Toronto 

fire incidents, when developing a spatiotemporal model, analysts first need a 

spatial visualization of the point data.9 Researchers typically display data on two-

dimensional maps using point data to form what are collectively known as 

clusters, hot spot maps, or heat maps. These maps provide users a broad 

overview of relative point density across a geographic area. All of the map types 

have the ability to extrapolate, or interpolate, data density in areas where no data 

exist. The distinction between a hot spot, cluster, or heat map lies in how the 

thresholds for determining density levels are determined. Hot spot maps usually 

have defining threshold before the density is displayed on a map.10 Cluster maps 

create a threshold of the spatial distance between points before they are mapped 

as cluster.11 On many occasions, all three styles of maps will look similar to the 

untrained eye. For the purposes of this thesis, heat map is the preferred generic 

term for a map illustrating point density. The specific methods for converting point 

data into a heat map include statistical processes wherein densities are 

calculated across a denoted area and then color-coded based on predetermined 

criteria. Some methods have statistical significance, while researchers can 

arbitrarily choose other methods based on the presentation of the map. Figure 1 

is a depiction of a heat map. 

                                            
8 May Yuan, “Temporal GIS and Spatio-Temporal Modeling,” University of Oklahoma, April 

18, 2007, Abstract, http://geosensor.net/temp/yuan1996.pdf.  
9 Asgary, Ghaffari, and Levy, “Spatial and Temporal Analyses.” 
10 Lauren Rosenshein, “Extending Your Map with Spatial Analysis,” Environmental Systems 

Resource Institute, accessed February 8, 2016, http://resources.arcgis.com/en/communities/
analysis/017z00000015000000.htm.  

11 “Space-Time Cluster Analysis,” Environmental Systems Research Institute, accessed 
February 9, 2014, http://resources.arcgis.com/en/help/main/10.1/
index.html#//005p00000056000000.  

http://geosensor.net/temp/yuan1996.pdf
http://resources.arcgis.com/en/communities/analysis/017z00000015000000.htm
http://resources.arcgis.com/en/communities/analysis/017z00000015000000.htm
http://resources.arcgis.com/en/communities/analysis/017z00000015000000.htm
http://resources.arcgis.com/en/help/main/10.1/index.html#//005p00000056000000
http://resources.arcgis.com/en/help/main/10.1/index.html#//005p00000056000000
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Figure 1.  Call Volume Heat Map 

 
This Charlotte (NC) Fire Department heat map illustrates the area call volume. Source: 
“Charlotte Fire Department Links Live Data, Multiple Systems,” ArcNews, Summer 2012, 
http://www.esri.com/news/arcnews/summer12articles/charlotte-fire-department-links-live-
data-multiple-systems.html.  

Many methods exist for visualizing spatial information. In their research on 

the Toronto fire department, Asgary, Ghaffari and Levy found that kernel density 

estimation, quadrant count and nearest neighbor distance are the “most common 

and well-established methods.”12 Kernel density estimation (KDE) offers 

simplicity, functionality within mapping software, and the ability to employ an 

additional variable for deeper analysis. KDE breaks up spatial data into 

geographic spaces, called neighborhoods, defined by the user. These 

neighborhoods are analyzed for the point data density within them and given an 

average value.13 Then, the areas within each neighborhood are compared to the 

adjacent neighborhoods. Next, the KDE process smooths the transition between 

                                            
12 Asgary, Ghaffari, and Levy, “Spatial and Temporal Analyses,” 46. 
13 “How Kernel Density Works,” Environmental Systems Research Institute, accessed March 

21, 2016, http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-
works.htm.  

http://www.esri.com/news/arcnews/summer12articles/charlotte-fire-department-links-live-data-multiple-systems.html
http://www.esri.com/news/arcnews/summer12articles/charlotte-fire-department-links-live-data-multiple-systems.html
http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works.htm
http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works.htm
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the adjoining neighborhoods with different average densities.14 Resolution of the 

visualization is a function of the size of the neighborhood: the smaller the 

neighborhood, the higher the resolution of the density visualization. KDE 

provides an accurate and flexible approach to spatial density visualization  

Temporal visualization of data provides users an image event distribution 

over time. While researching fire incidents in Toronto, Canada, Asgary, Ghaffari, 

and Levy used a circular plot visualization tool to show time of day distribution of 

various fire types.15 The circular plot conforms to the appearance of a clock and 

provides the reader an intuitive display. Figure 2 depicts a circular temporal plot 

of structures by the hour of day.  

Figure 2.  Fire Incident Circular Temporal Plot 

 
Source: Ali Asgary, Alireza Ghaffari, and Jason Levy, “Spatial and Temporal Analyses of 
Structural Fire Incidents and Their Causes: A Case of Toronto, Canada,” Fire Safety Journal 45, 
no. 1 (January 2010): 45.  

                                            
14 Asgary, Ghaffari, and Levy, “Spatial and Temporal Analyses,” 47. 
15 Ibid.  
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As with the spatial display, however, temporal visualization gives only a 

partial story about data change over time. Spatial and temporal visualizations 

provide important data but not a complete picture. In order to achieve 

spatiotemporal visualization, spatial distribution must be combined in a cogent 

fashion with its time components. The literature speaks to several methods of 

depicting spatial distribution over time, but none of which is without challenges. 

Shekhar et al., in their non-fire-specific study, and Ceyhan, Ertugay, and Duzgun, 

in their fire-specific work, describe a temporal snapshot as the predominant 

method for depicting spatial and temporal distributions, also known as 

spatiotemporal modeling..16  

Shekhar et al. observe that in a temporal snapshot model, the spatial 

layers possess a common theme and time stamp for each layer.17 The snap-

shots of spatial data for each time segment are pieced together using an 

animation process to show the change from one time block to the next. The user 

sees a stop action view of spatial distribution change over the course of a defined 

period of time. It is this view of spatial distribution over time that provides the 

analyst with an intuitive visualization of fire department responses.  

These terms provide a basic lexicon for the review of various studies 

about spatiotemporal modeling. The following section addresses specific 

components in more detail in an attempt to elaborate on spatiotemporal modeling 

as a tool for visualizing community risk for fire department leaders.  

2. Spatiotemporal Modeling 

Various researchers are included in this literature review for their 

contributions to spatiotemporal modeling as a non-discipline-specific study. 

These researchers describe varying methods for visualizing spatial and temporal 

data in combination. Other research addresses the spatiotemporal distribution of 

                                            
16 Ceyhan, Ertugay, and Duzgun, “Exploratory and Inferential Methods,” 227. 
17 Shashi Shekhar et al., “Spatiotemporal Data Mining: A Computational Perspective,” ISPSR 

International Journal of Geo-Information 4, no. 4 (2015): 2310, doi: 10.3390;ijgi4042306. 
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fires specifically for studies of the fire service. Missing from the literature is a 

composite view assessing the range of fire department calls for service.  

Fire service data come in the form of spatial data with an intrinsic time 

stamp. Each call for service possesses at least an x, y coordinate and time. 

Visualizing the spatial components of these data takes on many forms, but KDE 

provides the optimal combination of flexibility, accuracy, and simplicity. The 

method offers researchers and policy makers a view of density estimates. The 

KDE process takes an average density across the neighborhood defined by the 

user and defines the resolution of the map. The important part of density 

mapping as a spatial visualization tool is analyzing the patterns within the data.  

Shekhar et al. provide a compendium of spatial, temporal, and 

spatiotemporal visualization tools.18 Among the spatiotemporal tools cited, is the 

temporal snapshot. The resolution of spatiotemporal visualization through a 

temporal snapshot is a direct function of the size of the time increment. As users 

move from one snapshot to the next, they see abrupt spatial distribution change 

for each snapshot over time.19  

As Yuan points out in “Temporal GIS and Spatio-Temporal Modeling,” 

snapshots can display only sudden changes over time.20 Yuan discusses 

temporal snapshots and captures the difficulty of spatial temporal relationships. 

Because spatial and temporal distributions are two-dimensional in nature, 

combining them requires a three-dimensional display to show the relationship.21  

According to Shekhar et al. in an article summarizing spatiotemporal 

methodology, the snapshot model allows users to see point trajectories and data 

distribution over consecutive moments in time.22 However, spatial and temporal 

visualizations each offer mechanisms for smoothing the transitions between point 
                                            

18 Shekhar et al., “Spatiotemporal Data Mining,” 2310. 
19 Ibid. 
20 Yuan, “Temporal GIS.”  
21 “Space-Time Cluster Analysis,” Environmental Systems Research Institute.  
22 Shekhar et al., “Spatiotemporal Data Mining,” 2310. 
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data, depicting spatial and temporal representations together proves difficult to 

smooth. This shortcoming forces analysts to use snapshots in time sequences to 

visualize the progression of change. Yuan states that methods like temporal 

snapshots represent only “sudden changes upon an independent, discrete, and 

linear time structure,” adding that none are “able to portray the concepts about 

transition, process, or motion.”23 

Despite challenges with spatiotemporal modeling, methods for displaying 

spatial temporal data can still provide keen insight. Asgary, Ghaffari, and Levy 

provide ample evidence that spatiotemporal modeling of fires in Toronto can help 

“develop more meaningful and relevant policy decisions.”24 This thesis seeks to 

incorporate the researched methods to visualize not only fire risk but all 

community risk fire departments face.  

In the analysis portion of “Spatial and Temporal Analyses of Structural Fire 

Incidents and Their Causes,” Asgary, Ghaffari, and Levy say the most dramatic 

instance of change in incident density occurs in the spring, at night, and on the 

weekends.25 Their possible explanations for the patterns need confirmation, but 

the visualization shows the pattern occurring consistently. They also suggest 

further research into causal factors for the patterns, for instance looking into an 

“ecological approach” to the spatiotemporal distribution of fire origin. 

Visualizations of fires provide valuable information to policy makers when 

determining resource allocation “and thus enhance fire safety and response in 

communities.”26 

In “Exploratory and Inferential Methods for Spatio-temporal Analysis of 

Residential Fire Clustering in Urban Areas,” Ceyhan, Ertugay, and Duzgun 

provide a spatiotemporal study of residential fire location over a four-year span in 

a district of Ankara, Turkey. The location, time, and date of residential structure 

                                            
23 Yuan, “Temporal GIS.”  
24 Asgary, Ghaffari, and Levy, “Spatial and Temporal Analyses.” 
25 Ibid.  
26 Ibid. 
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fires was plotted with the express purpose “to inform policy makers from both a 

reactive, resource allocation perspective and a more proactive perspective.”27  

The researchers used kernel estimation in plotting the spatial density and 

intensity of their point data. They developed a spatial visualization of fire 

distribution against a random sampling of non-affected buildings, effectively 

creating a control group. In their analysis of the data the team describes spatial 

distribution of fires as adhering to one of three patterns: “complete spatial 

randomness (CSR), clustering, or regularity.”28 Ceyhan, Ertugay, and Duzgun 

also break down spatial correlation into first- and second-order effects. First-

order effects are density and intensity. Second-order effects look closer at the 

corresponding patterns within adjoining datasets for causal factors. In their study, 

the team examined structure fire distribution and compared it to a control group 

of residences not affected by fire. Specific patterns were identified in location and 

times that fires occurred (first-order effects). In short, the distribution was not 

random, though causal agents (second-order effects) were not identified with 

certainty. The density of fires showed clustering around certain residential 

neighborhoods, while the intensity calculations showed that the clustering was 

not random in nature.29 Spatiotemporal modeling provided the researchers with a 

visualization of fire activity throughout their districts with which they could make 

policy decisions.  

Spatiotemporal visualization provides valuable information to policy 

makers and fire service administrators in understanding the dynamics of local fire 

problems. As analysis improves and becomes ubiquitous, the value will only 

increase. However, spatiotemporal visualization has been applied mostly to fire 

incidents, and fires consistently make up less and less of the overall call volume. 

To understand the trends in other call types, fire departments should use 

spatiotemporal visualization. The following section elaborates on two data 
                                            

27 Ceyhan, Ertugay, and Duzgun, “Exploratory and Inferential Methods.” 
28 Ibid., 227. 
29 Ibid., 232. 
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sources that show how data analysis affects policy decisions, justifying 

incorporation of all call types into spatiotemporal analysis.  

3. Case Studies 

The practices gleaned from the following case studies could provide policy 

makers information for more effective deployment of resources. The studies 

examine the breadth of call volume to which fire resources respond. In 

“Evidence-based Optimization of Urban Firefighter First Response to Emergency 

Medical Service 9-1-1 Incidents,” Craig, Verbeek, and Schwartz analyzed the 

outcomes of approximately 200,000 medical responses by the Toronto fire 

department.30 They found significant justification in their study to radically 

change the way fire apparatuses respond to medical calls. In the second study, 

Using FSEC to Develop an Integrated Risk Management Plan, the Office of the 

Deputy Prime Minister addressed risk modeling in the United Kingdom. This kind 

of risk modeling provides policy makers significant information when they seek to 

establish deployment plans, prevention efforts, and budget allocations.  

The first case study of Toronto Fire Services’ medical responses provides 

valuable insight into how statistical analysis can provide a detailed picture of 

community risk. In the study, Craig, Verbeek, and Schwartz sought to optimize 

fire responses by surveying historical data. They examined Toronto fire 

department responses to medical calls over the course of 16 months. Analysts 

compared categories of dispatched calls to the interventions conducted by 

firefighters in an attempt to create a predictive model that, according to the 

study’s authors, “maximizes the opportunities for [firefighter first responders] 

interventions while minimizing unwarranted responses.”31 The results showed 

that fire engine responses to medical calls could be reduced by 90 percent, 

depending on how the researchers reconfigured the response criteria. The 

results varied based on response criteria modifications, but as the study 

                                            
30 Craig, Verbeek, and Schwartz, “Evidence-based Optimization,” 110. 
31 Ibid. 
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mentions, in many jurisdictions, fire departments “respond to a large proportion of 

their total EMS call volume without an objective, comprehensive mechanism for 

evaluating any of these factors.”32 In the case of Toronto fire department, 

objective statistical evaluation shows that changes can be made to more 

efficiently utilize resources. As a result, fire engines were available for more 

responses when a fire engine was truly needed, such as fires, rescues, and other 

specialized calls.  

The United Kingdom has worked for the last three decades honing risk 

assessment strategies, starting with those of the Fire Service Emergency Cover 

(FSEC). The FSEC quantifies community risk by mapping roads, bridges, 

waterways, building types, and demographics.33 The latest working editions of 

the FSEC possess detailed risk-assessment modeling that seeks to incorporate 

risk levels of individual buildings cross-referenced to historical data.  

The FSEC provides policy makers important details about risk by 

examining all call types. In the UK, the fire service does not play as significant a 

role in the emergency medical system as does its American counterpart, but it 

does play a large role in other areas, such as motor vehicle accidents, rescue, 

and hazardous materials responses. The FSEC analysis incorporates all hazards 

that fire apparatuses respond to when fire service leaders determine 

deployments and budgets.34 In the 2010 Update of Response Time Loss 

Relationships for the Fire Service Emergency Cover Toolkit, the FSEC toolkit 

was updated to reflect fatality and damage rates from all incidents that UK Fire 

Rescue Services attended.35 These fatality rates and damage rates were 

correlated to response times such that policy makers could grasp an accurate 

                                            
32 Ibid., 113. 
33 Office of the Deputy Prime Minister, Using FSEC.  
34 John Wicks, Fire Service Emergency Cover: Presentation Strategy Toolbox (Research 

Report No. 4/2003) (London: Office of the Deputy Prime Minister, 2003).  
35 Martin Stone, Update of Response Time Loss Relationships for the Fire Service 

Emergency Cover Toolkit (Fire Research Report 3/2010) (Reading, United Kingdom: Greenstreet 
Berman, 2010), 10. 
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view of how station location and apparatus availability directly affected damage 

to structures and survivability of citizens.36 This all-hazards and quantitative 

approach delivers significant evidence for deciding resource type and location.  

However, what the FSEC lacks is an intrinsic spatiotemporal modeling 

tool. FSEC quantifies risk and shows its location throughout jurisdictions but 

stops short of explicitly visualizing risk dynamics over time and space. Despite a 

lack of spatiotemporal capability, the FSEC shows that risk modeling can have a 

significant impact by providing information to policy makers as they develop 

strategic plans for fire resources. Quantitative analysis of risk modeling of all call 

types in the UK has shown already that it can have important impacts on 

resource allocation, budgets, and prevention efforts.37 Additional analysis at a 

spatiotemporal level can enhance the existing the methodology.  

4. Conclusion 

Spatiotemporal modeling provides a valuable tool for researchers as they 

seek to understand changes in geographic distribution of incidents over time. 

Spatial analysis and temporal analysis have been studied as unique entities; it is 

the combination of the two in the form of spatiotemporal modeling that is a 

relatively new field, especially for the fire service. Where the fire service has 

incorporated spatiotemporal modeling, researchers have found that patterns 

emerge in distribution of fires across spans of days, months, or years. Toronto 

Fire Services and the United Kingdom Fire Service Office of the Deputy Prime 

Minister, Fire Health and Safety Directorate have both shown that analysis of all 

fire department calls for service can yield significant results in terms of honing 

deployment plans. The remainder of this work examines the incorporation of 

                                            
36 Stone, Response Time Loss Relationships, 10. 
37 The IRMP discusses the themes of the FSEC as an impetus to key objectives in its plan. 

The IRMP drives budget provisions for the Fire Rescue Service. See Northern Ireland Fire and 
Rescue Service, Integrated Risk Management Plan 2012–2015 (Lisburn, Northern Ireland: 
Northern Ireland Fire and Rescue Service, 2012). 
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spatiotemporal analysis into modeling all call types to understand risk within 

communities. 

C. RESEARCH DESIGN 

This thesis visualizes how fire department requests for service fluctuate 

both geographically and temporally through a means of spatiotemporal modeling. 

By categorizing and mapping different call types, different patterns of change 

emerge across time and space. Spatiotemporal modeling best illustrates this 

concept because it encapsulates geographic and temporal change in the same 

visualization.  

Spatiotemporal modeling requires a time-stamped, geographic data 

source. Computer-aided dispatch (CAD) and records management  

system (RMS) data provide such sources for modeling spatiotemporal 

distribution. Most jurisdictions direct fire service equipment to emergencies with 

(CAD) systems that store and track time-stamped locations of incidents and 

apparatuses. Data from a records management system (RMS) offer complete 

accounts of events by fire service personnel including geographic locations and 

time stamps.  

Jennings, the aforementioned City University of New York associate 

professor, states that “actualized risk is determined by examining the history of 

fires in the community.”38 CAD and RMS systems provide a history of all 

incidents, not just fires. Thus, CAD and RMS provide the raw data for all 

actualized risk. Spatiotemporal modeling consumes the raw historical data and 

allows the user to visualize actualized risk and its spatiotemporal distribution 

across the community.  

To model distribution of historical activity, the author accessed CAD and 

RMS data to create homogenous groupings of incidents. These RMS incidents 

are grouped with two criteria. The first criterion is the type of apparatus that 

responds. For instance, emergency medical calls are grouped together because 
                                            

38 Jennings “Evaluating and Managing Risks,” 73. 
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they typically require only a single fire apparatus to respond. Structure fires are 

grouped together because they require a much larger response. Similar call 

types provide the second criterion for groups. Vegetation fires, for example, are a 

separate group because they tend to follow predictable seasonal patterns.  

The homogenous groups of incidents were further organized into specific 

time increments: month of the year, day of the week, and time of day. After the 

data were categorized into homogenous groups and segregated by time 

increments, they were plugged into the kernel density estimation spatial analyst 

tool in ESRI ArcMap 10.2. The KDE tool creates a heat map of the incident 

density for the time increments of each group. For example, seven KDE images 

were created of emergency medical calls, each one representing incident density 

for a day of the week. In order to help depict spatial distribution changes from 

one time increment to the next, slides of the density images were produced. 

Most current deployment models involve a static distribution of fire 

resources spread across the community. Spatiotemporal modeling shows that 

actualized risk is dynamic and relatively patterned. Though actualized risk 

fluctuations do not coincide with current deployment plans, spatiotemporal 

modeling can still provide input to policy makers for future deployment models. 

Subsequent chapters of this thesis explore strategies for integrating a 

spatiotemporal model into deployment plans based on actualized community risk. 

D. THESIS ORGANIZATION 

The next chapter makes the connection between historical data, 

actualized risk, and spatiotemporal modeling of community risk. Then, Chapter III 

outlines the research plan, which involves accumulating, categorizing, 

partitioning, and processing large amounts of data with spatiotemporal mapping 

software. Chapter IV indicates how a fire department can implement 

spatiotemporal risk modeling. This method conflicts with existing static fire-

service deployment plans, so this chapter addresses the challenges facing 

dynamic deployments. The final chapter identifies areas of future research. 
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II. METHODS 

A. METHODOLOGICAL APPROACH 

The data for this thesis come from two primary sources, computer aided 

dispatch (CAD) and records management system (RMS) systems. Fire service 

dispatchers use CAD to locate emergencies and identify apparatuses available to 

respond. Dispatchers define the nature of emergencies based on the information 

shared with them by callers who witness the incidents. CAD systems log the 

geographic location of an incident, apply a time stamp, capture the nature of 

emergency, and transfer it to units responding to the incident. The CAD data 

provide the initial source for RMS data. At the completion of an incident, CAD 

data are uploaded to an RMS system, at which point fire department personnel 

complete a report summary of the incident.  

In many fire-dispatching centers across the country, CAD platforms and 

RMSs are separate databases, and in many cases, they do not share 

information. In other systems, the CAD platform feeds the RMS, so incident 

reports reflect all the data points gathered by CAD in addition to information the 

report writer uses to supplement the report. For the purposes of this thesis, the 

data are an amalgamation of both CAD and RMS data sets.  

CAD and RMS data represent a historical picture of fire service activity. 

Each call for service represents an event when risk is actualized. For example, 

planners can discuss the possibility, or potential, that a building will catch fire or a 

train will derail. However, until the event occurs, the risk is hypothetical. When a 

building catches fire or a train derails, the event goes from a potential risk to one 

that is actualized, as coined by Jennings.39 CAD and RMS data capture 

actualized risk, whether fire, flood, heart attack, or train derailment. The history of 

events in a community represents actualized community risk. Furthermore, as 

policymakers look retrospectively at actualized risk, patterns begin to emerge 

                                            
39 Jennings, “Evaluating and Managing Risks,” 73. 
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that can help planners make presumptions about future, or potential, risk. 

Spatiotemporal modeling of CAD and RMS data visualizes actualized community 

risk in hopes of illuminating potential risk.  

To utilize CAD and RMS data for spatiotemporal modeling, several steps 

must occur. The first step is to categorize the data into meaningful groups. In 

order to visualize spatiotemporal patterns, the incidents must be similar in nature. 

Each incident type requires a complement in the form of equipment. For many 

agencies, vegetation fires require a specific apparatus that has the ability to fight 

fire off the road. Vegetation fires also have a specific seasonal variation; 

consequently, access to or staffing of specialized off-road equipment is not 

relevant to the distribution of rescue calls, which use different specialized 

equipment.  

The second step in utilizing CAD and RMS data involves partitioning the 

incidents into pertinent time increments. The author segregated the incident 

categories into three time increments: month of the year, day of the week, and 

hour of day. The time increments correspond to the method by which the CAD 

and RMS data is stored.  

Prior to loading the data into ArcMap 10.2, KDE spatial analyst tool, 

dozens of separate data sets comprised each time increment for each of the call 

type categories. In the data for this thesis, the emergency medical calls 

composed the largest data by volume. Based on the size of the data, the author 

chose to use emergency medical calls as the sample data set and created KDE 

raster images for each time increment. The result was 12-months-of-the-year, 

seven-days-of-the-week, and 24-hours-of-the-day raster images of emergency 

medical call distributions.  

When the heat maps of the incident data were finished, the necessary 

components were in place for a temporal snapshot to show the data trajectories 

over chosen periods of time. For each of the three time increments, a slide 
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presentation was built of the individual raster images, to illustrate for the analyst 

changes in spatial distribution. 

B. DATA SOURCES 

All data, covering a span of 27 months, from January 1, 2012, to March 

30, 2014, came from Fresno (CA) Fire Department’s geographic information 

systems database. The total call volume during that time comprised 82,591 

incidents; however, 676 calls were not analyzed due to the infrequency of the call 

type. The total number of calls not analyzed represents less than 0.8 percent of 

call volume.  

Fresno Fire contracts with the Fresno County Emergency Medical 

Services Communications Center, which dispatches for several fire agencies and 

the local ambulance company. The communications center uses a TriTech 

computer-aided dispatch system to log call information, direct apparatuses, and 

capture the following information among the data fields for each incident: call 

type, geographic location, and time stamps. At the conclusion of the incident, the 

CAD platform pushes the incident data to a server at Fresno Fire Department, 

where the data is uploaded in the Tiburon records management system (RMS). 

The RMS platform absorbs the CAD data and initiates an incident report. The 

responding fire officer logs into the RMS server to complete the incident report by 

filling in an incident summary and other required fields not uploaded by CAD. The 

RMS feeds the data to a geographic information system (GIS) database housed 

by Fresno Fire in which each individual incident is represented by an individual 

geographic data point. 

1. Data Processing 

The 81,915 incidents required sorting into useful partitions. ArcMap 10.2 

was used to query the data into the partitions. Table 1 illustrates the breakdown 

of the incident data by type. 
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Table 1.   Data Partitions Using NFIRS Codes 

Description NFIRS40 

Codes 
Call Qty Raster Map 

Scale 

Structure Fires 11-123 2,019  

Mobile Property Fires 130-138 796  

Vegetation Fires 140-143, 
170–173 

866  

Outside NonVeg Fires 150-163 1,834  

Medical/ EMS 300-321 40,553 0-200/SqMi 

Motor Vehicle Accidents 322-324 5,367  

Hazardous Materials/Rescue 340-499 2,009  

Utility Standby 200-251, 
444 

428  

Service/ Good Intent 500-699 8,214  

Canceled Calls 611 13,341  

Alarms 700-799 6,488  

Total analyzed call volume  81,915  

 

Each partition was further grouped into following time increments:  

• The incident data set were sorted by hour of the day, starting with 
midnight (0000 hours), ending with 11:59 P.M. (2359 hours) 
yielding 24 groups of call data.  

• The incident data set were sorted by day of the week, starting with 
Monday and ending with Sunday, yielding seven separate groups 
of call data.  

                                            
40 National Fire Incident Recording System (NFIRS) publishes standardized three-digit codes 

representing the array of different call types experienced by fire departments. NFIRS codes are 
published by the United States Fire Authority (USFA) as a way of standardizing call 
categorization across the country. Fresno Fire Department complies with NFIRS guidelines, and 
the data reflects those categories.  
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• The incident data were sorted by month of the year, starting with 
January, ending with December, yielding twelve separate groups of 
data.  

2. Spatiotemporal Modeling Method 

A heat map was created for each partition of incidents that included all 

incidents. A second set of heat maps was created using each time increment 

group within the incident partitions utilizing the ArcMap kernel density function in 

the Spatial Analyst toolbox using the following settings (all base units were in 

feet): 

1. The population field was set to none. 

2. The output cell size to 400. 

3. The search radius to 2640. 

4. The area units to square miles.  

Once the heat maps were created for each time increment group within 

the incident partitions, the collection of heat maps were then exported as JPEG 

image files. The groups of JPEG images were then compiled into a single image 

for display in Findings and Analysis chapter.  

The heat map created for each partition with all incidents became the 

base map for an additional method of visualizing spatiotemporal distribution. A 

composite heat map showed all emergency medical calls that occurred in the 

data set. Then, for each station, a circular plot was created showing the temporal 

distribution of emergency medical calls in that station. Each of these circular plots 

was added to the map, giving the analyst an idea of spatial density through heat 

map and the temporal distribution via the circular plot. See Figure 13 in Chapter 

III for this product. 
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III. FINDINGS AND ANALYSIS 

This chapter comprises four types of heat maps for Fresno, California, 

each of which partition emergency medical calls into different time increments. 

The first set of heat maps depicts EMS call volume by day of the week, resulting 

in seven hot spot maps. The second set of maps categorizes EMS calls by hour 

of the day. Twenty-four heat maps were created, one for each hour of the day. 

Additionally, a composite heat map of all emergency medical service calls over 

the period studied, January 2012 to April 2014, was generated along with circular 

plots of the hourly distribution of calls for each station. The third set of maps 

partitions emergency medical service calls by month of the year, so 12 hot spot 

maps were created. Each set of findings are followed by analysis. 

A. CALL DENSITY BY DAY OF THE WEEK  

In order to visualize spatiotemporal patterns across days of the week, 

seven heat maps were produced to display the density of calls that occurred on 

each day, starting with Sunday and ending with Saturday. The maps depict the 

entire coverage area and include fire station locations along with main roads 

plotted for reference. There were nine classifications of call density represented 

on the heat map (see Figure 3), with a range from 0 to 15 incidents per square 

mile, indicated in pale green; to 400 incidents per square mile, indicated in red. 
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Figure 3.  Call Density by Day of Week 
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1. Daily Distribution Summary Analysis 

The most notable feature of the daily distribution of calls was the 

remarkable consistency from one day to the next. There were some fluctuations 

in specific areas, but no identifiable patterns across the entire jurisdiction. Three 

areas showed localized fluctuations worthy of mention: the downtown area 

between Station 3 and Station 4, a small area east of station 10, and a hot spot 

on the north end between Stations 13 and 17. The continuity across the days and 

its possible ramifications will be discussed toward the end of this section. 

2. The Downtown Core 

The downtown area of Fresno is situated between Fire Stations 3 and 4 

and represents the commercial and governmental hub, with little residential 

occupancy. Most of downtown’s daytime population is made up of business 

commuters who reside elsewhere Traffic patterns look like many downtown 

areas: heavy flows into downtown in the morning followed by ebbs in the evening 

hours. The expected daily distribution was a dense call volume from Monday 

through Friday followed by a significant lull in activity on Saturday and Sunday. 

Throughout the week, the call density was fairly consistent each day, between 

100 and 150 calls per square mile. On the heat map for Tuesday, a small area 

appears in the middle of downtown showing a spike of 250 calls per square mile, 

but generally, the call volume stays constant everywhere else. Call volume on 

Friday, however, increases significantly. Friday shows a hot spot in the same 

area as Tuesday but nearly three times larger, indicating a significant increase in 

the call volume for that day. Another notable feature of this uptick in activity is 

that the surrounding area does not experience any noticeable change in call 

volume.  

Downtown is generally described as a triangular area bounded by 

Highway 99, which runs at a diagonal to the west, Highway 180 to the north, and 

Highway 41 to the east. See Figure 4 for the location of downtown and call 

densities.  
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On the heat maps, the area between Stations 3 and 4 has a consistent 

call density of 126 to 200 for each day of the week, with upticks of more than 200 

calls per square mile in isolated areas every day. On Friday, the density climbs to 

over 275 calls per square mile across several blocks. This trend on Fridays 

represents nearly a 35 percent increase in call volume over the rest of the week. 

This small geographic area has the greatest call density of any area in the 

Fresno Fire Department’s coverage area yet has the fewest full-time residents by 

density. It is reasonable to expect that commercial centers would have the 

heaviest call volume during the weekdays and attenuate into the weekend. 

Downtown follows a pattern other than the expectation, which creates an 

opportunity for investigation into causal factors. 

Figure 4.  Downtown Core 
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An explanation for the observed density was elusive. For clarification, 

actual call volume in the area was investigated. The average call volume per day 

in the center of downtown was just over 90 incidents per day, with a standard 

deviation of 14 calls per day. The call volume on Tuesday was 102 calls, about 

one standard deviation above average, while the volume on Friday was almost 

two standard deviations greater than the average at 117 calls. The question 

remains as to why there is such an increase on Tuesday and Friday. An increase 

on a Tuesday seems in line with the original theory that weekdays should be 

busier than weekends due to the commercial nature of most downtown 

occupancies, but the uptick on Friday seems contrary.  

A possible explanation for the Friday uptick may come from increased  

restaurant and bar activity at the end of the workweek. The city of Fresno built a 

stadium downtown near the middle of the hot spot, and the related activities may 

be connected to Friday’s increase in call volume. Because stadium games are 

usually scheduled on weekend nights such as Fridays, they may keep local 

workers downtown to attend events. The additional traffic and activity may very 

well drive the higher call density in the area. Further analysis of the daily call 

volume vis-à-vis hourly analysis could illuminate when Friday is busier. However, 

the hourly pattern of calls on Friday does not directly correspond to evening 

events. Friday shows heavy surges in call from 12:00 P.M. to 3:00 P.M. then 

tapers off to a pattern similar to what the rest of the city observes. See Figure 5 

for a comparison of the citywide and downtown area patterns for Fridays. These 

data fail to provide analysts with a conclusive answer to the observed call density 

on Friday and beg for further investigation into causal factors. 
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Figure 5.  Downtown Fresno Core Call Volume on Fridays 

 
 

3. Fort Washington Area  

The Fort Washington area of Fresno is roughly bounded by Woodward 

Park along the west, Champlain Avenue to the east, and Shepherd Avenue to 

the south. The residential area is home to custom properties and one of the most 

exclusive golf courses in the city, the Fort Washington Country Club. This area 

falls between two fire stations, 13 and 17, and is one of the city’s districts with the 

lightest overall call volume. The demographic of the area is mostly upper middle 

class to upper-class households. Most occupancies are single-family residential 

developments with a sprinkling of condominiums and an assisted-living center, 

the Fairwinds, which houses a significant convalescent population. See Figure 6 

for location of the Fort Washington area in the northern part of Fresno.  
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Figure 6.  Fort Washington Area 

 
 

As shown in Figure 6, the area between stations 13 and 17 experiences 

an approximate 27 percent increase in call volume on Wednesday and Saturday 

(30 and 31 calls, respectively) relative to the average for the area on Sunday, 

Tuesday, and Thursday (24 calls per day). On Monday and Friday (19 and 18 

calls, respectively), the volume drops by approximately 23 percent. A bar graph 

is especially useful for illustrating the variation between days of the week. As 

shown in Figure 7, the call volume exhibits fluctuations that peak on Wednesday 

and Saturday. By comparing the daily data with monthly data over 27 months, 

the number of calls per particular day was remarkably similar. It appears that the 

pattern observed over the days of the week extends throughout the year, 

indicating that the pattern does not have a seasonal or monthly variation. 
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Figure 7.  Fort Washington Weekly Call Volume 

 
 

A demographic analysis and comparative analysis of this area using an 

additional EMS dataset may lead to some fruitful conclusions. The second 

emergency medical call dataset includes calls for service by the area ambulance 

company. The ambulance data includes the call outcome and details of the 

treatments ambulance personnel provided by the patients at the scene and en 

route to the hospital. Analyzing the fire department data against the ambulance 

data and reviewing patient outcomes could provide insight into the patterns 

observed. Cross-referencing the fire department data with ambulance company 

EMS data could provide the kind of detail necessary to derive proactive 

measures to the population. If patients experience short hospital visits 

corresponding with the three-day cycle observed in the fire department data, it is 

possible that outreach to those patients in their homes may provide better care 

for them.  
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Several fire departments in the United States, including the Los Angeles 

Fire Department (LAFD), are reaching out to patients in attempts to extend 

hospital care. LAFD is a transporting paramedic-level fire department that has 

begun a pilot program that assigns a nurse practitioner to paramedic 

ambulances. Ambulances can now extend the level of pre-hospital care to its 

citizens in lieu of tying up firefighters for non-emergency calls.41 Fresno Fire 

could work collaboratively with local care facilities and the ambulance company 

to investigate proactive measures. Proactive measures could reduce the 

committed time for fire engines when a smaller piece of equipment with fewer 

personnel would suffice for the nature of the call. 

4. Airport Industrial Area 

Fire Station 10 resides on the east side of Fresno, adjacent to the Fresno 

Yosemite International Airport. The station responds to about 1,000 calls for 

service a year and houses a single apparatus. The district is largely industrial 

with some older single-family residences. The bulk of the residences immediately 

east of the station do not experience a large quantity of calls, especially relative 

to the downtown core, but an abrupt daily call pattern. Over the 27 months in the 

dataset, the total call volume reached 152, which, when compared to the 633 in 

the downtown core for the same time period, seems quite insignificant. However, 

the incident pattern was so apparent that the causal factors deserve analysis. 

See Figure 8 for a geographic reference of Station 10 and the unusual hotspot in 

the airport industrial area. 

  

                                            
41 “Let Paramedics and Nurse Practitioners Handle Some 911 Calls,” Los Angeles Times, 

April 8 2015, 2015, sec. Opinion/Editorial.  
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Figure 8.  Airport Industrial Area 

 
 

The call distribution across all days of the week follows a distinct 

incremental increase starting on Thursday and peaks on Wednesday. On 

Thursday, the call volume is at its lowest, 12 calls. Call volume steadily 

increases, with a slight dip on Sunday, peaking on Wednesday at 32. From 

Wednesday to Thursday, the call volume drops by 60 percent, which equals 

more than three standard deviations. See Figure 9 for the daily distribution of 

calls in the area. 
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Figure 9.  Call Volume for Airport Industrial Area 

 
 

The pattern—a steady increase to Wednesday followed by the precipitous 

drop before the cycle starts again—is peculiar. This area is less than half of a 

square mile composed of mixed residential and commercial occupancies that 

produced 152 calls for service. It seems highly improbable that the calls for 

service would randomly follow a pattern like the one observed, especially since it 

stands in such contrast to the broader trends across the city as a whole. The 

pattern is most likely not random, so there must be an underlying causal factor 

for steady buildup of calls to Wednesday. Nowhere else in the coverage area is 

the pattern so clear and so precipitous from one day to the next. An analyst might 

ask, what happens on Wednesdays to drive such a pattern?  

Deriving the causal factors for this pattern could provide fruitful data for 

preventative efforts. Furthermore, the causal factors in this neighborhood could 

drive intervention efforts elsewhere in the community. Future research may also 

address other call types in this area to see whether this is a general trend or one 
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specific to EMS-related calls. Analysts may find that activity in this neighborhood 

ebbs and flows according to days of the week, driving calls for all services, not 

just medically related ones.  

The area in question is home to a dense industrial and commercial district. 

Some of these businesses use chemicals, which may have downwind effects on 

the community. One way to investigate this hypothesis could be to look at all 

calls for service. If all calls for service follow a similar pattern as the EMS calls, 

an analyst could surmise that the patterns stem from something other than the 

industrial activity. However, if analysts find that only EMS calls follow this pattern, 

the nucleus of a causal factor may emerge. In this case, an investigation into the 

ambulance data would be warranted to see if the patient outcome data (similar to 

that used in the Fort Washington study) could reveal specific nature of the calls. 

If the patient outcome and call natures matched those indicative of downwind 

exposure to toxins, a greater health study could begin. 

5. Conclusion 

Aside from the aforementioned localized geographic patterns, an 

overarching theme appeared: a remarkable continuity spanning the days of the 

week. Even though each day had its distinctive distribution of call density, there 

were few global patterns that emerged from the data. It was difficult to observe 

patterns that encompassed the entire coverage area. It appeared that density 

shifted slightly or intensified but not by any substantial amount. When the raw 

numbers for each day of the week were plotted in a bar graph, the difference 

between the busiest day and the slowest day was approximately 400 incidents, 

or about eight percent of the maximum daily volume.  

Spatiotemporal distribution of call density was consistent during the week, 

necessitating little change to resource allocation for emergency medical 

incidents. With little variation across the days of the week, it seems unnecessary 

to push for any type of redeployment of resources based on the busiest day of 
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the week. It appears that the current static resource deployment matches the risk 

associated with emergency medical service calls.  

B. CALL DENSITY BY HOUR OF THE DAY 

Call density by hour of the day breaks total EMS calls into 24 separate 

heat maps (staring with Figure 10), each representing the call density for an hour 

of the day. The maps run midnight to midnight 11:59 P.M., each map 

representing one hour’s worth of calls. The last map is a composite map 

comprising two parts—a heat map and circular temporal plots for each fire 

station. The circular plots depict the calls in each station’s area throughout the 

24-hour day. Though the composite map does not provide the resolution of 

individual hourly heat maps, it does provide an alternate visual tool for spatial 

and temporal distribution of EMS calls. The hourly map sets use density ranges 

from 0–15 calls per square mile, represented by pale green, and up to 150–200 

calls per square mile, indicated in red. The composite map uses a wider value 

range, 0–30 calls per square mile up to 2,500 calls per square mile, with the 

same color schematics. 
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Figure 10.  Call Density by Hour of Day, Midnight to 8:00 A.M. 

.  
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Figure 11.  Call Density by Hour of Day, 9:00 A.M. to 4:00 P.M. 

  
  



 38 

Figure 12.  Call Density by Hour of Day, 5:00 P.M. to Midnight 
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Figure 13.  Composite Map of Call Density with Circular Temporal Plots by Hour 
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1. Hourly Distribution Summary Analysis 

Analyzing the hourly maps involved reviewing how density changed from 

one image to the next. Specific areas were inspected one at a time throughout 

the displays. This afforded a comparison of smaller areas over time to see 

potential patterns. A bar graph of the total quantity of EMS calls by hour (see 

Figure 14) was also created to help illustrate how a particular area varies from 

the patterns of the entire coverage area. The total quantity of EMS calls follows a 

very clear pattern that mirrors a diurnal circadian rhythm. Call volume is lowest 

from 11:00 P.M. to 7:00 A.M. before it steadily climbs to a peak around 6:00 

P.M., and then tapers off after 11:00 P.M. The heat maps show this trend, as 

well. The hottest portions of the heat maps appear from 6:00 P.M.–7:00 P.M. and 

the coolest portions between 2:00 A.M. and 3:00 A.M. Some areas still show 

considerable density in those early morning hours yet proportional decreases 

from the busiest times of the 24-hour cycle. 

As depicted in Figure 14, call volume steadily increases during the day 

until its peak in the evening. Diving further into the hourly values, the graph 

reveals that city wide, 66 percent of emergency medical calls occur in a 12-hour 

span between 10:00 A.M. and 10:00 P.M. In the Fresno Fire Department 

coverage area, two-thirds of the medical calls in the community occur during half 

of the day. Any discussion of increasing resources could focus on the surge of 

EMS calls between 10:00 A.M. and 10:00 P.M.  
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Figure 14.  Total EMS Calls for the Fresno City Fire Department 

 
 

2. Blackstone Corner 

Not all of the coverage area requests for service follow a daytime 

circadian rhythm. One area, the “Blackstone Corner” at the intersection of 

Blackstone and Dakota avenues, stood out as having a nominally different 

pattern than the rest of the city. The typical pattern of hourly distribution, as seen 

in Figure 15, shows heavy call volume during the afternoon into the evening, but 

the Blackstone Corner experiences declines in volume during the afternoon. The 

area also shows a distinctive uptick in volume during the early morning hours, 

which stands in opposition to the balance of the coverage area.  
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Figure 15.   Total EMS Calls Compared to Station 5 EMS Calls 

 
 

Fire Station 5 is located in the center of Fresno along the main artery of 

Blackstone, running north and south of Highway 41. Station 5 has one of the 

busiest engines historically, and throughout the study period, it responded to 

nearly 6,000 EMS incidents. The composite map in Figure 13 depicts an hourly 

call distribution for Station 5 that resembles the rest of the city with its call density 

following a diurnal circadian rhythm.  

The hourly heat map, as seen in Figure 16, shows a distinctive pattern of 

call volume in the Blackstone Corner. While most of the coverage area shows 

relatively lower activity after 11:00 P.M., this one pocket actually increases in 

activity. The increase in activity extends until the 4:00 to 5:00 A.M. window, when 

call density drops to that of the surrounding areas. After 7:00 A.M., call density 

picks up steadily until 1:00 P.M. and, then, unlike the rest of the city, drops 20 

percent after the lunch hour. While the rest of the coverage area ramps up with 

activity between 1:00 P.M. and 5:00 P.M., this area appears to cool off. See 

Figure 16 for a chart of the activity of this area relative to the broader temporal 
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trend in the coverage area. The Blackstone Corner exhibits a distinctive hourly 

distribution of calls.  

Figure 16.  Blackstone Corner 

 
 

Observing the spatiotemporal trends provides a window into the various 

microclimates of EMS call density through the Fresno Fire Department’s 

coverage area. However, it provides only the opening chapter to a story about 

the underlying causes for the observed patterns. The data in Figure 15 shows a 

quantitative assessment of the discrepancy between the Blackstone Corner near 

Station 5 and the coverage area as a whole. To further understand the dynamics, 

analysts would need to access a much broader dataset. One possible 

explanation may be found in the police department’s RMS dataset. Among the 

Fresno fire personnel, this spatiotemporal anomaly is a well-known location for 

prostitution. Police RMS data may reveal similar trends to those seen by the Fire 

Department. Further research could analyze police RMS data and associate 
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them with Fresno Fire Department RMS data to investigate any coincident 

spatiotemporal patterns. If there is any kind of causal connection, it is reasonable 

to assume that if the prostitution problem is addressed, call volume will decrease. 

3. Conclusion 

Throughout the coverage area for Fresno Fire Department, hourly call 

volume follows a clear cyclical pattern of ebb and flow. The slowest times occur 

through the early hours of the morning while approximately two-thirds of the EMS 

call volume occurs between 10:00 A.M. and 10:00 P.M. The effect on the static 

deployment plan is a surge of activity during a 12-hour period when the largest 

number of apparatuses is committed to EMS incidents. The hourly 

spatiotemporal analysis also showed that spatially, the ebbs and flows of density 

remain proportional. In other words, the relative density of calls in specific areas 

remains constant. The composite maps illustrate this point in that, generally 

speaking, each of the circular plots of temporal distribution appears very similar. 

Though the quantities of calls may change from one station to the other, the 

temporal distribution of the call volume is extremely similar; it follows a diurnal 

circadian rhythm. In terms of community risk, the surges in risk across the entire 

coverage area follow a similar pattern, while the quantity of apparatuses 

deployed to mitigate this risk remains static.   

Further analysis should investigate how the surge in EMS call volume 

affects availability of apparatuses. Analysts may find that the EMS demand 

exceeds a threshold for a committed apparatus. For example, if policy makers 

determine that 50 percent of resources committed for 30 minutes or longer is the 

lowest threshold of risk that the department is willing to accept, and during the 

busiest hours of the day, the department routinely passes that threshold, then 

analysts and leaders would need to discuss deployment of additional 

apparatuses.  

Spatiotemporal analysis of EMS call volume depicts a significant impact to 

the deployment plan. EMS calls for service may also not necessarily need the full 
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complement of four firefighters from a fire engine. Analysis of the EMS datasets 

might determine that a percentage of the surge in EMS calls stems from calls 

that could be handled with a smaller crew on a smaller piece of equipment in 

place of a fire engine. Should analysts determine that an alternative piece of 

equipment is capable of managing a portion of the call volume surge, it is 

possible that deployment of an alternative apparatus could relieve the pressure 

of lower level emergencies on fire engines.  

C. CALL DENSITY BY MONTH OF THE YEAR 

Call density by month of the year breaks total EMS calls into 12 separate 

heat maps (shown in Figures 17 and 18). The maps start in January and extend 

to December; each map represents one month’s worth of calls. The monthly map 

sets use density ranges from 0–15 calls per square mile, represented by pale 

green, and up to 350–400 calls per square mile, indicated in red.  

Twelve heat maps depicting monthly EMS call volume provided insight 

into a stable volume distribution over the course of two years despite an 

expectation that migratory work and seasonal illnesses would drive fluctuations in 

call volume. Surprisingly, across the entire coverage area, call volume remained 

stable from month to month. The heat maps illustrate no seasonal fluctuations, 

and the month-to-month call volume is notably stable.  
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Figure 17.  Call Density by Month of Year from January through June 
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Figure 18.   Call Density by Month of Year from July through December 
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1. Monthly Distribution Analysis 

As depicted in the heat maps, call volume remained stable from month to 

month across the coverage area and, seasonal fluctuations were not noted. The 

monthly changes across the coverage area were minute. Overall call volume 

fluctuated by approximately 12–15 percent, but no particular area showed 

significant signs of shifting density. The data appear to show that when overall 

call volume dropped, it did so across the entire district.  

The expectation for month-to-month call volume was to identify significant 

seasonal, if not monthly, variations. Seasonal illnesses, such as the flu and 

asthma, should have registered fluctuations to match outbreaks. In addition to 

seasonal illnesses, Fresno, which is situated in the San Joaquin Valley, depends 

largely on an agricultural economy. Agricultural businesses and workers tend to 

follow the seasonal crop harvests. The hypothesis for the monthly call distribution 

was that there would be statistically significant seasonal or monthly variations in 

call volume driven by seasonal illnesses and the agricultural economy. 

A second hypothesis regarding the rural areas west of Fresno was 

debunked. It was that, in alignment with agricultural harvests, monthly distribution 

of call volume would follow stronger seasonal trends than would the metropolitan 

areas. However, the area around Fire Station 21 in the city of Kerman, as seen in 

Figure 19, showed remarkable consistency from month to month, more so even 

than the metropolitan area.  
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Figure 19.  Call Volume by Month with the City of Kerman Highlighted 

 
 

2. Kerman Monthly Analysis 

The Fresno Fire Department protects approximately 600,000 people across 

320 square miles and includes the community of Kerman, home to approximately 

14,000 citizens. Many residents of Kerman, a agricultural community, commute 

to surrounding commercial areas for work. The production of crops such as 

grapes, pistachios, and cotton support migrant farm labor as well as commercial 

enterprises. The seasonal nature of agricultural work prompted a working 

hypothesis that Kerman would experience monthly or seasonal fluctuations in call 

volume associated with a potentially transient labor force. The results, however, 

defied the hypothesis. Kerman had a more stable call volume throughout the 

months than did the coverage area as a whole. The range of monthly totals was 

only 19 percent. When the highest and lowest values were removed (August and 

October), the range shrunk to 13 percent. Of the 12 months, seven of them were 

within 10 calls of one another, approximately a five percent range. Figure 20 
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shows the monthly call volume for Station 21 in Kerman in which fluctuations 

were less than the coverage area as a whole. 

Figure 20.   Monthly Call Volume for Kerman and Entire Coverage Area 

 
 

In contrast to assumptions about transient agricultural communities, the 

monthly call volume for Station 21 fluctuated far less than expected. The 

quantitative analysis from spatiotemporal modeling illustrates that community risk 

in the city of Kerman shows very little volatility from month to month. The static 

deployment of fire apparatuses, therefore, matches the consistent nature of the 

community risk. 

3. Conclusion 

The data across the coverage area of the Fresno Fire Department appear 

to show a consistent volume of calls each month of the year, which probably 

speaks to a lack of population volatility or mobility. The people in the coverage 

area seem to stay relatively stationary, if call volume is any indicator of 

population fluctuations. One could reasonably expect that if the population were 

to change, there would be a correlated fluctuation in the volume of requests for 

service.  
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One could posit that fluctuations in weather patterns affect call volume, 

especially for emergency medical services. The flu season in the winter and 

asthmatic episodes in the summer typically provide fodder for news coverage, 

but the monthly fluctuations in EMS call volume fail to follow any distinguishable 

seasonal pattern. The summer months see a slight uptick, from 2,900 calls in 

June to 3,200 calls in July and August, and, then, a decline to 2,900 calls in 

September. This fluctuation does not seem substantial and is probably 

statistically insignificant. December and January see an increase to 

approximately 3,400 calls for service, but this only represents a 5.8 percent 

increase from the high months of July and August and a 12 percent increase 

from June and September. This stability in call volume speaks to some 

underlying cause and may mask more focused patterns in types of medical 

emergency that are not present in the fire department’s data.  

The stability in EMS calls over the months suggests an important 

component in community risk. Spatiotemporal modeling can show risk dynamics 

over time, and in the case of the data from Fresno Fire Department, the risk 

associated with emergency medical service calls is very consistent. This is 

important to fire department staffing because it shows explicitly and quantitatively 

that, at least across seasons and months, the requests for service are extremely 

consistent. Therefore, a static deployment model is appropriate for what appears 

to be a static risk factor.  

D. ANALYSIS SUMMARY 

Synthesizing the analysis across three different time increments provides 

a view into how risk changes over space and time. Spatiotemporal modeling 

provided an image of incident density changes for three time increments: calls by 

hour of the day, day of the week, and month of the year. For each time 

increment, a set of heat maps was created, and a fourth was added for depicting 

spatiotemporal distribution of calls by hour. Analysis of the data concluded that 

across the days of the week and months of the year, there was notable 
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consistency. In days-of-the-week modeling, the distribution across each day 

showed a relatively even spread. Distribution across the months was more 

evenly spread than the days of the week. The hourly distribution of calls, 

however, showed a strong temporal distribution that followed diurnal circadian 

rhythms. Call volume peaked in the late afternoon and evening and then reached 

its nadir in the early morning hours. Analysis of the spatiotemporal trends can 

drive important proactive and reactive policy decisions.  

The findings in the spatiotemporal modeling provide the impetus for 

analysis of two areas: proactive preventative measures and reactive deployment 

efforts. Understanding the causal factors is a step toward creating proactive 

measures. Spatiotemporal models provide the first look at a comparison of 

deployment models to community risk. Further analysis would determine whether 

deployment plans match actual community risk. 

Several examples in the analyses for the different increments were noted 

for their break from the broader spatiotemporal trends. The day-of-week trends, 

for instance, showed broad continuity across the coverage area with a few 

notable exceptions: the downtown core, the Fort Washington area, and the 

Airport Industrial area. These areas depicted unique localized spatiotemporal 

distributions of call density and provide excellent opportunities for future analysis 

into the causal factors. The broader trend, however, depicts a consistent level of 

risk throughout the coverage area. From a deployment standpoint, this means 

that the current static deployment model matches the overall uniformity of call 

volume across the days of the week.  

Spatiotemporal distribution across the months of the year showed strong 

continuity. The fluctuation from the month with lowest call volume to the highest 

volume showed statistically insignificant variation. In spite of the absence of 

seasonal and monthly variations, spatiotemporal modeling should be the 

beginning of the analysis. Seasonal outbreaks of flu and asthma are known 

problems in Fresno, yet the EMS call data do not reflect seasonal illness trends. 

This discrepancy should lead analysts to investigate the underlying reasons. We 
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may find that the Fire Department’s RMS data does not have the resolution to 

visualize seasonal outbreaks. It is possible that summer and fall outbreaks of 

asthma present in a similar way to winter outbreaks of flu in the Fire Department 

RMS data. To determine whether seasonal data is hidden in the Fire Department 

data, analysts may need to look further into alternate datasets such as EMS 

records.  

Analysis of spatiotemporal trends across the Fresno Fire Department 

equips leaders with the necessary quantitative information to assess deployment 

plans and develop proactive measures. The largely insignificant fluctuation of call 

volume over days and months justifies the current static deployment models as 

adequate to mitigate the mostly static risk levels. 

Contrary to monthly and daily trends, spatiotemporal patterns of the hourly 

call volume depict a clear call volume fluctuation. For Fire Department leaders, 

this provides the impetus for analyzing data further and also assessing current 

deployment models. Static deployment may not be the most appropriate answer 

for what is clearly a dynamic risk. Hourly call volume data indicate that the most 

appropriate deployment would be a dynamic model possessing surge capacity 

for the daily fluxes in call volume. It is these daily surges that drive down 

apparatus availability. In a dynamic deployment model, additional apparatuses 

would be assigned during the busiest portions of the day to provide needed 

surge capacity.  

Spatiotemporal modeling provides valuable analysis of call volume 

distribution throughout the coverage area. The analysis should drive research 

into causal factors for preventative and reactive measures. The spatiotemporal 

trends across months and days for the Fresno Fire Department show little 

change, while the hourly flux depicts dynamic risk across the entire coverage 

area. The observed patterns provide the nucleus for further research into 

proactive measures as well as justification for reactive mitigation efforts. 
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IV. IMPLEMENTATION 

Spatiotemporal modeling provides an enhanced view of community risk by 

showing how it changes over time and space. Many methods in the literature 

show time or spatial distribution, but few discuss how space and time changes 

coincide. For the fire service, spatiotemporal modeling of community risk, as 

Ceyhan, Ertugay, and Duzgun suggest, gives leaders and policy makers a view 

of actualized risk within the community to create both “proactive and reactive” 

mitigation measures.42 Spatiotemporal modeling of community risk shows policy 

makers that oftentimes, dynamic features of risk fluctuate over time and 

geography. Understanding how risk changes can help drive fire departments to 

refine deployment and operate efficiently in a changing political environment.  

Three separate factors over the last decade are driving changes to 

operational models for the fire service. First, fires are occurring less frequently 

across the country while other calls for service are increasing.43 The most 

notable changes have come in the increase of emergency medical calls and 

incidents requiring specialized equipment.44 Second, budgets have been 

squeezed significantly since 2008, which has caused city leaders to rethink the 

costs associated with fire departments. Firefighting is no longer the sacred 

service that it was many years ago. Author Jonathan Walters knows about 

shrinking budgets; he points to the words of public safety professional Tom 

Wieczorek: “For the fire service to continue to perform in these leaner times … it 

is now going to have to actively embrace change.”45 Walters describes the 

change needed, specifically in the area of data analysis of call volume. Third, 

                                            
42 Ceyhan, Ertugay, and Duzgun, “Exploratory and Inferential Methods.” 
43 The USFA stats show an approximately 20 percent reduction in fires between 2002 and 

2011. See, “U.S. Fire Statistics, Trends in Fires, Deaths, Injuries and Dollar Loss,” USFA, last 
modified January 6, 2016, https://www.usfa.fema.gov/data/statistics/#tab-1.  

44 “Fire Department Calls,” National Fire Protection Association, last updated September 
2014, http://www.nfpa.org/research/reports-and-statistics/the-fire-service/fire-department-calls/
fire-department-calls.  

45 Walters, “Firefighters Feel the Squeeze.” 

https://www.usfa.fema.gov/data/statistics/#tab-1
https://www.usfa.fema.gov/data/statistics/#tab-1
http://www.nfpa.org/research/reports-and-statistics/the-fire-service/fire-department-calls/fire-department-calls
http://www.nfpa.org/research/reports-and-statistics/the-fire-service/fire-department-calls/fire-department-calls
http://www.nfpa.org/research/reports-and-statistics/the-fire-service/fire-department-calls/fire-department-calls
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technology has provided immense computing power and data that allow policy 

makers to see the true nature of fire department activities and actualized risk 

within communities. These three factors provide both the means and the impetus 

for creating change, and spatiotemporal modeling is a tool to get there. 

Producing spatiotemporal products involves an investment of time and resources 

in a series of interconnected processes.  

Changing call volume, decreasing budgets, and increasing availability of 

data analysis are pushing fire departments to adapt operations. The availability of 

fire service data can provide the means for departments to adapt their efforts to 

the shifting operational sands. The reduction of fire volume combined with an 

increasing overall call volume means the risk environment is transitioning. In 

order to transition with the risk environment, fire departments have at their 

disposal data and processing power to understand the risk profile and develop 

corresponding deployments. Spatiotemporal modeling provides visualization of 

community risk and how that risk fluctuates through space and time. Analyzing 

community risk dynamics provides the nucleus for deployment models, which 

answer the demands of the changing operational and political environment in 

which the modern fire service finds itself.  

Fire service leaders have access to community risk data available in CAD 

and RMS platforms. Most dispatch centers use digital dispatching systems with 

integrated GPS systems, noting the most basic geographic, temporal, and 

incident type information. Furthermore, most departments already have an 

NFIRS-compliant RMS system, which provides the nucleus for analyzing 

actualized risk data. Actualized risk data from RMS systems gives analysts the 

start point for conducting spatiotemporal modeling. The RMS data, with its 

geographic, time-stamped incident information, is uploaded into a GIS database 

where computing power can yield modeling results.  

Spatiotemporal modeling of actualized risk requires specialized software. 

ESRI is a ubiquitous name in the geographic information systems (GIS) industry 

and provides an array of tools and services by which departments with the 
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appropriate resources can conduct spatiotemporal analysis. ESRI has a library of 

resources available to fire departments that are initiating a GIS system. These 

documents help departments structure the data and guide them in building 

databases that they can analyze.46 ESRI also produces ArcMap 10.2, which has 

a set of tools called Spatial Analyst. Spatial Analyst has multiple methods for 

creating the heat maps, which are the baseline product for spatiotemporal 

visualization. Some departments, however, find they lack the resources or the 

interest in building out their own GIS platforms, but still require the necessary 

analysis. In those cases, outside consulting companies have produced detailed 

analysis for departments across the country.47 

Spatiotemporal modeling of community risk provides policy makers a 

unique view of actualized risk. Fire service leaders, from both management and 

labor, have largely embraced the idea that the modern American fire service 

responds to all manner of emergencies, not solely fires. This thesis has 

presented two ideas that should be considered by all departments: first, that all 

emergencies represent the true nature of community risk and second, that the 

extent of community risk can be modeled through spatiotemporal methods. 

Spatiotemporal modeling of actualized risk provides the analytical underpinnings 

of refined deployments.  

Finally, as policy makers in individual departments adopt spatiotemporal 

modeling as a tool for understanding actualized community risk, a standardized 

methodology needs to be created. As discussed in Chapter II, the spatial analyst 

tool settings were provided with a wide range of potential options for presenting 

the data in a meaningful visualization. Settings, such as color scales, call 

categorization, and time partitioning, were selected based on the presentation of 

                                            
46 Mike Price, Fire Mapping: Building and Maintaining Datasets in ArcGIS (Redlands, CA: 

Environmental Systems Research Institute, 2012).  
47 “Fire Service Emerging Trends: ‘The View from the Road,” PowerPoint Presentation, 

Citygate Associates; for a good analysis of a consultant’s ability to analyze a department’s 
service call, see System Planning Corporation, Fire Service and Resource Deployment Analysis 
City of Oceanside Ca (Arlington, VA: System Planning Corporation, 2012).  
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the particular dataset used. If another department used the same settings for a 

different dataset, it might find the presentation less than useful. However, 

analytical comparisons across jurisdictions provide fire service leaders context 

for their particular community’s risk and potential mechanisms for mitigating 

those risks. Standardizing spatiotemporal methods will allow departments to 

compare data objectively across jurisdictions. 

A combination of the correct data, the right tools, and receptive policy 

makers will provide the fertile ground on which an enhanced understanding of 

community risk can grow. Implementing spatiotemporal modeling is less a 

technical hurdle than an intellectual movement, one toward understanding that 

contemporary deployment models are static while the risk they are designed to 

mitigate is inherently dynamic. Depicting actualized risk in a spatiotemporal 

fashion illuminates the reality of dynamic community risk. 
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V. FUTURE RESEARCH 

The preceding chapters covered spatiotemporal visualization of call 

volume for emergency medical service calls within the Fresno Fire Department. 

Spatiotemporal visualization provides immense analytical understanding of 

dynamic actual risk, but spatial or temporal statistics that could explain the 

underlying causal factors were outside the scope of this thesis. Fire departments 

could benefit from further research into the statistical underpinnings of the 

observed spatial and temporal patterns. In addition, this thesis modeled a single 

partition of the entire dataset, emergency medical service calls. Continuing to 

model the entire dataset would depict a broader visualization of risk within the 

coverage area, specifically for fires. Fires no longer represent a significant 

portion of call volume by number, but they still account for nearly half of the 

injuries and time committed by fire crews. Researching and visualizing time 

commitments to incidents is paramount to gaining a full understanding of all risks 

within the community. Analyzing all risk involves reviewing risk and the 

underlying data for causal factors. The underlying data also can provide insight 

into the potential risks within a community. Spatiotemporal modeling can assist in 

planning for potential risks and should be incorporated into future research.  

Spatiotemporal modeling creates a visualization of the geographic and 

temporal distribution of incidents, but it lacks a statistical framework that explains 

the source for spatiotemporal distribution. Incidents can occur in complete spatial 

randomness or cluster according to patterns derived from underlying causal 

factors. Ceyhan, Ertugay, and Duzgun, in their research on structure fires in 

Ankara, Turkey, reference procedures within spatial analysis for distinguishing 

between complete randomness and clustering.48 Future research should 

investigate the underlying causes of the distribution. Ceyhan, Ertugay, and 

Duzgun determined through statistical methodology that fires in the study were 

                                            
48 Ceyhan, Ertugay, and Duzgun, “Exploratory and Inferential Methods.” 
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not random but exhibited first-order clustering based on some unknown 

commonality.49 In their study that analyzed spatiotemporal patterns of fire 

distribution in Toronto, Canada, Asgary, Ghaffari, and Levy called for additional 

research into the sociological factors driving the underlying patterns in fire types. 

In their conclusions, the researchers suggest taking what author Jennings refers 

to as the “ecological approach” to discovering the underlying distribution 

patterns.50 Spatiotemporal modeling provides clarity to distribution patterns 

across space and time but further research needs to delve into the root causes. 

Comprehending the underlying factors for incident distribution gives fire service 

leaders the ability to pursue proactive measures of risk mitigation while creating 

reactive deployment models.  

Integrating additional datasets into the statistical analysis is needed to 

understand the causal factors of various patterns. The city of Fresno possesses 

several data sets that could prove relevant to the study. Those pertinent data 

sources include the U.S. Census, building and housing unit types, city zoning 

categories, transit routes, and tax records. It is possible that when demographic 

information is analyzed for correlations in spatial and temporal distribution, 

patterns could appear that may lead departments to proactive measures. For 

example, additional studies of existing population density and illness patterns 

may predict future seasonal spread of disease outbreaks. As the causal factors 

are determined for spatiotemporal distribution, proactive solutions may become 

evident to reduce the risk factors in the community.  

Follow-on studies of the Fresno Fire Department should also include a 

spatiotemporal model of the entire dataset. This study analyzed the largest 

portion of the dataset, emergency medical calls, to depict spatiotemporal 

modeling. Modeling all call types could provide immense value to any 

organizations. The most significant potential for intervention exists within the 

study of fire occurrence in Fresno. Fires represent the single greatest 
                                            

49 Ceyhan, Ertugay, and Duzgun, “Exploratory and Inferential Methods,” 232. 
50 Asgary, Ghaffari, and Levy, “Spatial and Temporal Analyses,” 54. 
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expenditure of time and a significant source of injuries each year to personnel. It 

is possible that spatiotemporal modeling could illuminate patterns of distribution 

that have very specific causal factors—in other words, they are not randomly 

distributed. One potential causal factor is the link between the homeless 

population and temperature. It appears that when temperatures drop in the fall 

and winter, the number of fires in vacant and boarded-up homes increases 

significantly. Spatiotemporal visualization correlated with weather patterns could 

drive deployments when temperature drops below a certain threshold. Proactive 

measures may also emerge to reduce the vacant structure fire problem, such as 

warming centers and homeless shelters.  

Structure fires represent a small number of total Fresno city incidents, 

approximately 10 percent of total call volume, compared with EMS calls, which 

represent approximately 60 percent of total incidents. Structure fires, however, 

consume almost 40 percent of the total time fire apparatuses are committed to 

incidents. EMS calls also represent approximately 40 percent of total time 

committed while all other calls combined only represent 20 percent. 

Accompanying the large volume of time committed to suppressing fires are 

enormous sums of money and many firefighter injuries. According to the National 

Fire Protection Association, 43 percent of injuries occurred during fire calls in 

2014.51 Spatiotemporal modeling of fire incidents should be part of future 

research to understand the causal factors, but the visualization lacks a 

component for specifically analyzing the time committed. 

Future research into time committed to various incident types, especially 

for fires, could provide valuable insights. A framework for the study could go as 

follows. For the concept that many ambulance companies call “time-on-task,” 

(TOT)52 analysts could calculate how long an ambulance crew spends on each 

                                            
51 Hylton J.G. Haynes and Joseph L. Molis, “U.S. Firefighter Injuries in 2014,” nfpa Journal, 

November 2, 2015, 6. 
52 Fitch and Associates, “How to Explain UHU from UFOs to Your City Manager,” EMS1, 

November 8, 2012, https://www.ems1.com/ems-management/articles/1365144-How-to-explain-
UHU-from-UFOs-to-your-city-manager/.  

https://www.ems1.com/ems-management/articles/1365144-How-to-explain-UHU-from-UFOs-to-your-city-manager/
https://www.ems1.com/ems-management/articles/1365144-How-to-explain-UHU-from-UFOs-to-your-city-manager/
https://www.ems1.com/ems-management/articles/1365144-How-to-explain-UHU-from-UFOs-to-your-city-manager/
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call then correlate the call type with various other data points, including location 

and number of crew members, to determine dynamic ambulance deployment 

models. The time-on-task concept could be applied to the fire-service call volume 

segregated by call type. One method for TOT studies would be to incorporate 

TOT into spatiotemporal visualization. The KDE tool referenced in Chapter II can 

utilize a z variable that weights incidents on commit time as well as density. 

The CAD system keeps track of each apparatus assigned to an incident 

and how long it stays committed. In the RMS and GIS systems, the total time 

committed for all apparatuses on an incident is calculated and added to the RMS 

files. One could use TOT as the z variable when building KDE heat maps. The z 

factor would cause the incidents with longer TOTs to show up as hotter spots on 

the maps than those with lower TOTs. Areas that have significant fire problems 

would appear hotter. Furthermore, the apparatuses with larger coverage areas 

experiencing longer response and wait times for ambulances would also appear 

hotter on the heat maps. In addition to adding nuance to the heat maps for 

incident density, it could be found that different incident types require different 

average TOTs. For instance, hazardous materials incidents do not occur often 

but their durations tend to last for hours and require several apparatuses to 

mitigate the hazard. It could be that resources do not adequately meet the 

demand of the Fresno area.  

This thesis had a fundamental emphasis on incorporating all incidents into 

a spatiotemporal modeling visualization. The purpose was two-fold. First, it 

acknowledged that the fire service responds to all manner of hazards and risks in 

the community. From fires to car crashes, the fire department provides 

emergency care. Second, each of the hazards to which the fire service responds 

requires different types of equipment. The Fresno Fire Department, similar to  

many urban departments, has ladder trucks, water tenders, off-road engines, a 

hazardous materials apparatus, an aircraft rescue firefighting apparatus, urban 

search and rescue units, water rescue resources, a communications support 

vehicle, a large building mobile ventilation unit, a mobile air and light unit, and 24 



 63 

engines. Each piece of equipment is designed for a different type of hazard. 

Spatiotemporal modeling of incidents specific to each type of equipment could 

help fire service leaders visualize the extent of the risk associated with those 

apparatuses. In some cases, the Fresno Fire Department (FFD) may need 

significantly more equipment. For some community risks, the department may 

decide that the specialized equipment is located in the wrong areas. Finally, FFD 

face risks for which there are no answers. Understanding the spatiotemporal 

distribution of all community risks provides the backdrop for discussion about the 

mitigation measures FFD needs to employ.  

The last area of future research involves the data necessary to derive the 

causal factors from actualized risk to evaluate potential risk, the probability of 

emergencies that have yet to occur. Jennings illustrates this idea perfectly when 

explaining that “a community must not ignore a major hazard simply because it 

hasn’t yet experienced a major consequence, but at the same time it must not 

ignore or undervalue the real and recurring patterns of risk that may be 

responsible for the lion’s share of incidents, property losses and casualties.”53  

This thesis modeled emergency medical service incidents due to the large 

volume of calls during the time period in question (40,553 incidents in 27 

months). During this research, several data sources surfaced that presented risk 

factors for which there has never been an emergency. Some potential risks 

present significant consequences. A prime example is a train derailment.  

In reviewing transit line data underlying the EMS call distributions, it 

became clear that the two major railways traveling through Fresno present a 

significant problem if a train were to derail. Housing density, population density, 

emergency travel routes, and prevailing winds all point to a significant potential 

risk should a train derail. An emergency of this nature has never occurred in 

Fresno, but it represents such a significant consequence that it deserves 

attention. Evaluating the potential risk of such a scenario involves studying the 

                                            
53 Jennings, “Evaluating and Managing Risks,” 73. 
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data that also drives causal factors of spatiotemporal modeling. In addition, 

spatiotemporal modeling could be used in a train derailment scenario to visualize 

the impacts of such an event, such as plume modeling, evacuation routes, and 

damage estimates.  

Future research into spatiotemporal methods and causal factors could 

extend into many directions. This thesis offered visualization of a specific portion 

of the available dataset, emergency medical service calls, but stopped short of 

delving into the underlying spatial statistics describing the analytical framework of 

the distribution. The analytical framework for the spatiotemporal distribution, 

when correlated with other datasets, can provide causal factors. These areas are 

ripe for future analysis. Spatiotemporal modeling should also reflect the true 

nature of risk within the community and encompass all calls for service. 

Visualizing risk and determining causal factors of actual risk also provide the data 

and analytical framework for researching potential risk and mitigation measures. 

Community risk will constantly evolve and drive future research into the 

relationship between the fire departments and the challenges they are employed 

to overcome.   
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APPENDIX A. NFIRS INCIDENT CODE GUIDE 

Excerpted from United States Fire Administration, National Fire 
Incident Reporting System: Complete Reference Guide (Washington, 
DC: FEMA, July 2010), Section C, 3-21 – 3-28. 

C. Incident Type   
Incident Type was known as Type of Situation Found in NFIRS 4.1. 
Definition 
This is the actual situation that emergency personnel found on the scene when 
they arrived. These codes include the entire spectrum of fire department 
activities from fires to EMS to public service. 
The type of incident reported here is not always the same as the incident type 
initially dispatched. 
 
Purpose 
This critical information identifies the various types of incidents to which the fire 
department responds and allows the fire department to document the full range 
of incidents it handles. 
This information can be used to analyze the frequency of different types of 
incidents, provide insight on fire and other incident problems, and identify training 
needs. 
This element determines which modules will subsequently be completed. 
 
Entry 
Enter the three-digit code and a written description that best describes the type of 
incident. This entry is generally the type of incident found when emergency 
personnel arrived at the scene, but if a more serious condition developed after 
the fire department arrival on the scene, then that incident type should be 
reported. The codes are organized in a series: 
 
SERIES HEADING 
100 Fire 
200 Overpressure Rupture, Explosion, Overheat (No Fire) 
300 Rescue and Emergency Medical Service (EMS) Incidents 
400 Hazardous Condition (No Fire) 
500 Service Call 
600 Good Intent Call 
700 False Alarm and False Call 
800 Severe Weather and Natural Disaster 
900 Special Incident Type 
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For incidents involving fire and hazardous materials or fire and EMS, use the fire 
codes. Always use the lowest numbered series that applies to the incident. You 
will have an opportunity to describe multiple actions taken later in the report. 
For vehicle fires on a structure, use the mobile property fire codes (130–138) 
unless the structure became involved. 
3-22 
NFIRS 5.0 COMPLETE REFERENCE GUIDE 
CHAPTER 3 • BASIC MODULE (NFIRS-1) 
The P denotes a required field. 
C 
For fires in buildings that are confined to noncombustible containers, use codes 
113–118 of the structure fire codes when there is no flame damage beyond the 
noncombustible container. 
Example 
Fire in food on the stove that was confined to the pot (113). 
C 
Incident Type 131 Food on the stove  
Incident Type 
INCIDENT TYPE CODES 
Fire. Includes fires out on arrival and gas vapor explosions (with extremely rapid 
combustion). 
Structure fire 
111 Building fire. Excludes confined fires (113–118). 
112 Fire in structure, other than in a building. Included are fires on or in piers, 
quays, or pilings: tunnels or underground connecting structures; bridges, trestles, 
or overhead elevated structures; transformers, power or utility vaults or 
equipment; fences; and tents. 
113 Cooking fire involving the contents of a cooking vessel without fire extension 
beyond the vessel. 
114 Chimney or flue fire originating in and confined to a chimney or flue. 
Excludes fires that extend beyond the chimney (111 or 112). 
115 Incinerator overload or malfunction, but flames cause no damage outside the 
incinerator. 
116 Fuel burner/boiler, delayed ignition or malfunction, where flames cause no 
damage outside the fire box. 
117 Commercial compactor fire, confined to contents of compactor. Excluded are 
home trash compactors. 
118 Trash or rubbish fire in a structure, with no flame damage to structure or its 
contents. 
Fire in mobile property used as a fixed structure. Includes mobile homes, motor 
homes, camping trailers. 
121 Fire in mobile home used as a fixed residence. Includes mobile homes when 
not in transit and used as a structure for residential purposes; and manufactured 
homes built on a permanent chassis. 



 67 

122 Fire in a motor home, camper, or recreational vehicle when used as a 
structure. Includes motor homes when not in transit and used as a structure for 
residential purposes. 
123 Fire in a portable building, when used at a fixed location. Includes portable 
buildings used for commerce, industry, or education and trailers used for 
commercial purposes. 
120 Fire in mobile property used as a fixed structure, other. 
Mobile property (vehicle) fire. Excludes mobile properties used as a structure 
(120 series). If a vehicle fire occurs on a bridge and does not damage the bridge, 
it should be classified as a vehicle fire. 
131 Passenger vehicle fire. Includes any motorized passenger vehicle, other 
than a motor home (136) (e.g., pickup trucks, sport utility vehicles, buses). 
132 Road freight or transport vehicle fire. Includes commercial freight hauling 
vehicles and contractor vans or trucks. Examples are moving trucks, plumber 
vans, and delivery trucks. 
133 Rail vehicle fire. Includes all rail cars, including intermodal containers and 
passenger cars that are mounted on a rail car. 
134 Water vehicle fire. Includes boats, barges, hovercraft, and all other vehicles 
designed for navigation on water. 
135 Aircraft fire. Includes fires originating in or on an aircraft, regardless of use. 
136 Self-propelled motor home or recreational vehicle. Includes only self-
propelled motor homes or recreational vehicles when being used in a transport 
mode. Excludes those used for normal residential use (122). 
137 Camper or recreational vehicle (RV) fire, not self-propelled. Includes trailers. 
Excludes RVs on blocks or used regularly as a fixed building (122) and the 
vehicle towing the camper or RV or the campers mounted on pickups (131). 
 
3-23 NFIRS 5.0 COMPLETE REFERENCE GUIDE 
CHAPTER 3 • BASIC MODULE (NFIRS-1) 
The P denotes a required field. 
C 
138 Off-road vehicle or heavy equipment fire. Includes dirt bikes, specialty off-
road vehicles, earth-moving equipment 
(bulldozers), and farm equipment. 
130 Mobile property (vehicle) fire, other. 
Natural vegetation fire. Excludes crops or plants under cultivation (see 170 
series). 
141 Forest, woods, or wildland fire. Includes fires involving vegetative fuels, other 
than prescribed fire (632), that occur in an area in which development is 
essentially nonexistent, except for roads, railroads, power lines, and the like. Also 
includes forests managed for lumber production and fires involving elevated fuels 
such as tree branches and crowns. Excludes areas in cultivation for agricultural 
purposes such as tree farms or crops (17xseries). 
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142 Brush or brush-and-grass mixture fire. Includes ground fuels lying on or 
immediately above the ground such as duff, roots, dead leaves, fine dead wood, 
and downed logs. 
143 Grass fire. Includes fire confined to area characterized by grass ground 
cover, with little or no involvement of other ground fuels; otherwise, see 142. 
140 Natural vegetation fire, other. 
Outside rubbish fire. Includes all rubbish fires outside a structure or vehicle. 
151 Outside rubbish, trash, or waste fire not included in 152–155. Excludes 
outside rubbish fires in a container or receptacle (154). 
152 Garbage dump or sanitary landfill fire. 
153 Construction or demolition landfill fire. 
154 Dumpster or other outside trash receptacle fire. Includes waste material from 
manufacturing or other production processes. Excludes materials that are not 
rubbish or have salvage value (161 or 162). 
155 Outside stationary compactor or compacted trash fire. Includes fires where 
the only material burning is rubbish. 
Excludes fires where the compactor is damaged (162). 
150 Outside rubbish fire, other. 
Special outside fire. Includes outside fires with definable value. Excludes crops 
and orchards (170 series). 
161 Outside storage fire on residential or commercial/industrial property, not 
rubbish. Includes recyclable materials at dropoff points. 
162 Outside equipment fire. Includes outside trash compactors, outside HVAC 
units, and irrigation pumps. Excludes special structures (110 series) and mobile 
construction equipment (130 series). 
163 Outside gas or vapor combustion explosion without sustained fire. 
164 Outside mailbox fire. Includes dropoff boxes for delivery services. 
160 Special outside fire, other. 
Cultivated vegetation, crop fire 
171 Cultivated grain or crop fire. Includes fires involving corn, wheat, soybeans, 
rice, and other plants before harvest. 
172 Cultivated orchard or vineyard fire. 
173 Cultivated trees or nursery stock fire. Includes fires involving Christmas tree 
farms and plants under cultivation 
for transport off-site for ornamental use. 
170 Cultivated vegetation, crop fire, other. 
Fire, other 
100 Fire, other. 
Overpressure Rupture, Explosion, Overheat (No Fire). Excludes steam mistaken 
for smoke. 
Overpressure rupture from steam (no ensuing fire) 
211 Overpressure rupture of steam pipe or pipeline. 
212 Overpressure rupture of steam boiler. 
213 Overpressure rupture of pressure or process vessel from steam. 
210 Overpressure rupture from steam, other. 
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Overpressure rupture from air or gas (no ensuing fire). Excludes steam or water 
vapor. 
221 Overpressure rupture of air or gas pipe or pipeline. 
222 Overpressure rupture of boiler from air or gas. Excludes steam-related 
overpressure ruptures. 
 
3-24 NFIRS 5.0 COMPLETE REFERENCE GUIDE 
CHAPTER 3 • BASIC MODULE (NFIRS-1) 
The P denotes a required field. 
C 
223 Overpressure rupture of pressure or process vessel from air or gas, not 
steam. 
220 Overpressure rupture from air or gas, other. 
Overpressure rupture from chemical reaction (no ensuing fire) 
231 Overpressure rupture of pressure or process vessel from a chemical 
reaction. 
Explosion (no fire) 
241 Munitions or bomb explosion (no fire). Includes explosions involving military 
ordnance, dynamite, nitroglycerin, plastic explosives, propellants, and similar 
agents with a UN classification 1.1 or 1.3. Includes primary and secondary high 
explosives. 
242 Blasting agent explosion (no fire). Includes ammonium nitrate and fuel oil 
(ANFO) mixtures and explosives with a UN Classification 1.5 (also known as 
blasting agents). 
243 Fireworks explosion (no fire). Includes all classes of fireworks. 
240 Explosion (no fire), other. 
Excessive heat, scorch burns with no ignition 
251 Excessive heat, overheat scorch burns with no ignition. Excludes lightning 
strikes with no ensuing fire (814). 
Overpressure rupture, explosion, overheat, other 
200 Overpressure rupture, explosion, overheat, other. 
Rescue and Emergency Medical Service Incident 
Medical assist 
311 Medical assist. Includes incidents where medical assistance is provided to 
another group/agency that has primary EMS responsibility. (Example, providing 
assistance to another agency-assisting EMS with moving a heavy patient.) 
Emergency medical service incident 
321 EMS call. Includes calls when the patient refuses treatment. Excludes 
vehicle accident with injury (322) and pedestrian struck (323). 
322 Motor vehicle accident with injuries. Includes collision with other vehicle, 
fixed objects, or loss of control resulting in leaving the roadway. 
323 Motor vehicle/pedestrian accident (MV Ped). Includes any motor vehicle 
accident involving a pedestrian injury. 
324 Motor vehicle accident with no injuries. 
Lock-In 
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331 Lock-in. Includes opening locked vehicles and gaining entry to locked areas 
for access by caretakers or rescuers, such as a child locked in a bathroom. 
Excludes lock-outs (511). 
Search for lost person 
341 Search for person on land. Includes lost hikers and children, even where 
there is an incidental search of local bodies of water, such as a creek or river. 
342 Search for person in water. Includes shoreline searches incidental to a 
reported drowning call. 
343 Search for person underground. Includes caves, mines, tunnels, and the like. 
340 Search for lost person, other. 
Extrication, rescue 
351 Extrication of victim(s) from building or structure, such as a building collapse. 
Excludes high-angle rescue (356). 
352 Extrication of victim(s) from vehicle. Includes rescues from vehicles hanging 
off a bridge or cliff. 
353 Removal of victim(s) from stalled elevator. 
354 Trench/Below-grade rescue. 
355 Confined space rescue. Includes rescues from the interiors of tanks, 
including areas with potential for hazardous atmospheres such as silos, wells, 
and tunnels. 
356 High-angle rescue. Includes rope rescue and rescues off of structures. 
357 Extrication of victim(s) from machinery. Includes extrication from farm or 
industrial equipment. 
350 Extrication, rescue, other. 
 
3-25 NFIRS 5.0 COMPLETE REFERENCE GUIDE 
CHAPTER 3 • BASIC MODULE (NFIRS-1) 
The P denotes a required field. 
C 
Water and ice-related rescue 
361 Swimming/Recreational water areas rescue. Includes pools and ponds. 
Excludes ice rescue (362). 
362 Ice rescue. Includes only cases where victim is stranded on ice or has fallen 
through ice. 
363 Swift-water rescue. Includes flash flood conditions. 
364 Surf rescue. 
365 Watercraft rescue. Excludes rescues near the shore and in swimming/
recreational areas (361). Includes people 
falling overboard at a significant distance from land. 
360 Water and ice-related rescue, other. 
Electrical rescue 
371 Electrocution or potential electrocution. Excludes people trapped by power 
lines (372). 
372 Trapped by power lines. Includes people trapped by downed or dangling 
power lines or other energized electrical equipment. 
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370 Electrical rescue, other. 
Rescue or EMS standby 
381 Rescue or EMS standby for hazardous conditions. Excludes aircraft standby 
(462). 
Rescue, emergency medical service (EMS) incident, other 
300 Rescue and EMS incident, other. 
Hazardous Condition (No Fire) 
Combustible/Flammable spills and leaks 
411 Gasoline or other flammable liquid spill (flash point below 100 degrees F at 
standard temperature and pressure [Class I]). 
412 Gas leak (natural gas or LPG). Excludes gas odors with no source found 
(671). 
413 Oil or other combustible liquid spill (flash point at or above 100 degrees F at 
standard temperature and pressure (Class II or III)). 
410 Combustible and flammable gas or liquid spills or leaks, other. 
Chemical release, reaction, or toxic condition 
421 Chemical hazard (no spill or leak). Includes the potential for spills or leaks. 
422 Chemical spill or leak. Includes unstable, reactive, explosive material. 
423 Refrigeration leak. Includes ammonia. 
424 Carbon monoxide incident. Excludes incidents with nothing found (736 or 
746). 
420 Toxic chemical condition, other. 
Radioactive condition 
431 Radiation leak, radioactive material. Includes release of radiation due to 
breaching of container or other accidental release. 
430 Radioactive condition, other. 
Electrical wiring/Equipment problem 
441 Heat from short circuit (wiring), defective or worn insulation. 
442 Overheated motor or wiring. 
443 Breakdown of light ballast. 
444 Power line down. Excludes people trapped by downed power lines (372). 
445 Arcing, shorted electrical equipment. 
440 Electrical wiring/equipment problem, other. 
Biological hazard 
451 Biological hazard, confirmed or suspected. 
Accident, potential accident 
461 Building or structure weakened or collapsed. Excludes incidents where 
people are trapped (351). 
462 Aircraft standby. Includes routine standby for takeoff and landing as well as 
emergency alerts at airports. 
463 Vehicle accident, general cleanup. Includes incidents where FD is 
dispatched after the accident to clear away 
debris. Excludes extrication from vehicle (352) and flammable liquid spills (411 or 
413). 
460 Accident, potential accident, other. 
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3-26 NFIRS 5.0 COMPLETE REFERENCE GUIDE 
CHAPTER 3 • BASIC MODULE (NFIRS-1) 
The P denotes a required field. 
C 
Explosive, bomb removal 
471 Explosive, bomb removal. Includes disarming, rendering safe, and disposing 
of bombs or suspected devices. Excludes bomb scare (721). 
Attempted burning, illegal action 
481 Attempt to burn. Includes situations in which incendiary devices fail to 
function. 
482 Threat to burn. Includes verbal threats and persons threatening to set 
themselves on fire. Excludes an attempted burning (481). 
480 Attempted burning, illegal action, other. 
Hazardous condition, other 
400 Hazardous condition (no fire), other. 
Service Call 
Person in distress 
511 Lock-out. Includes efforts to remove keys from locked vehicles. Excludes 
lock-ins (331). 
512 Ring or jewelry removal, without transport to hospital. Excludes persons 
injured (321). 
510 Person in distress, other. 
Water problem 
521 Water (not people) evacuation. Includes the removal of water from 
basements. Excludes water rescues (360 series). 
522 Water or steam leak. Includes open hydrant. Excludes overpressure ruptures 
(211). 
520 Water problem, other. 
Smoke, odor problem 
531 Smoke or odor removal. Excludes the removal of any hazardous materials. 
Animal problem or rescue 
541 Animal problem. Includes persons trapped by an animal or an animal on the 
loose. 
542 Animal rescue. 
540 Animal problem or rescue, other. 
Public service assistance 
551 Assist police or other governmental agency. Includes forcible entry and the 
provision of lighting. 
552 Police matter. Includes incidents where FD is called to a scene that should 
be handled by the police. 
553 Public service. Excludes service to governmental agencies (551 or 552). 
554 Assist invalid. Includes incidents where the invalid calls the FD for routine 
help, such as assisting a person in returning to bed or chair, with no transport or 
medical treatment given. 
555 Defective elevator, no occupants. 
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550 Public service assistance, other. 
Unauthorized burning 
561 Unauthorized burning. Includes fires that are under control and not 
endangering property. 
Cover assignment, standby at fire station, move-up 
571 Cover assignment, assist other fire agency such as standby at a fire station 
or move-up. 
Service call, other 
500 Service call, other. 
Good Intent Call 
Dispatched and canceled en route 
611 Dispatched and canceled en route. Incident cleared or canceled prior to 
arrival of the responding unit. If a unit arrives on the scene, fill out the applicable 
code. 
 
3-27 NFIRS 5.0 COMPLETE REFERENCE GUIDE 
CHAPTER 3 • BASIC MODULE (NFIRS-1) 
The P denotes a required field. 
C 
Wrong location, no emergency found 
621 Wrong location. Excludes malicious false alarms (710 series). 
622 No incident found on arrival at dispatch address. 
Controlled burning 
631 Authorized controlled burning. Includes fires that are agricultural in nature 
and managed by the property 
owner. Excludes unauthorized controlled burning (561) and prescribed fires 
(632). 
632 Prescribed fire. Includes fires ignited by management actions to meet 
specific objectives and have a written, approved prescribed fire plan prior to 
ignition. Excludes authorized controlled burning (631). 
Vicinity alarm 
641 Vicinity alarm (incident in other location). For use only when an erroneous 
report is received for a legitimate incident. Includes separate locations reported 
for an actual fire and multiple boxes pulled for one fire. 
Steam, other gas mistaken for smoke 
651 Smoke scare, odor of smoke, not steam (652). Excludes gas scares or odors 
of gas (671). 
652 Steam, vapor, fog, or dust thought to be smoke. 
653 Smoke from barbecue or tar kettle (no hostile fire). 
650 Steam, other gas mistaken for smoke, other. 
EMS call where party has been transported 
661 EMS call where injured party has been transported by a non-fire service 
agency or left the scene prior to arrival. 
HazMat release investigation w/no HazMat found 
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671 Hazardous material release investigation with no hazardous condition found. 
Includes odor of gas with no leak/gas found. 
672 Biological hazard investigation with no hazardous condition found. 
Good intent call, other 
600 Good intent call, other. 
False Alarm and False Call 
Malicious, mischievous false alarm 
711 Municipal alarm system, malicious false alarm. Includes alarms transmitted 
on street fire alarm boxes. 
712 Direct tie to fire department, malicious false alarm. Includes malicious alarms 
transmitted via fire alarm system directly tied to the fire department, not via dialed 
telephone. 
713 Telephone, malicious false alarm. Includes false alarms transmitted via the 
public telephone network using the local emergency reporting number of the fire 
department or another emergency service agency. 
714 Central station, malicious false alarm. Includes malicious false alarms via a 
central-station-monitored fire alarm system. 
715 Local alarm system, malicious false alarm. Includes malicious false alarms 
reported via telephone or other means as a result of activation of a local fire 
alarm system. 
710 Malicious, mischievous false alarm, other. 
Bomb scare 
721 Bomb scare (no bomb). 
System or detector malfunction. Includes improper performance of fire alarm 
system that is not a result of a proper system response to environmental stimuli 
such as smoke or high heat conditions. 
731 Sprinkler activated due to the failure or malfunction of the sprinkler system. 
Includes any failure of sprinkler 
equipment that leads to sprinkler activation with no fire present. Excludes 
unintentional operation caused by damage to the sprinkler system (740 series). 
732 Extinguishing system activation due to malfunction. 
733 Smoke detector activation due to malfunction. 
734 Heat detector activation due to malfunction. 
735 Alarm system activation due to malfunction. 
736 Carbon monoxide detector activation due to malfunction. 
730 System or detector malfunction, other. 
 
3-28 NFIRS 5.0 COMPLETE REFERENCE GUIDE 
CHAPTER 3 • BASIC MODULE (NFIRS-1) 
The P denotes a required field. 
D 
Unintentional system or detector operation (no fire). Includes tripping an interior 
device accidentally. 
741 Sprinkler activation (no fire), unintentional. Includes testing the sprinkler 
system without fire department notification. 
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742 Extinguishing system activation. Includes testing the extinguishing system 
without fire department notification. 
743 Smoke detector activation (no fire), unintentional. Includes proper system 
responses to environmental stimuli such as non-hostile smoke. 
744 Detector activation (no fire), unintentional. A result of a proper system 
response to environmental stimuli such as high heat conditions. 
745 Alarm system activation (no fire), unintentional. 
746 Carbon monoxide detector activation (no carbon monoxide detected). 
Excludes carbon monoxide detector malfunction. 
740 Unintentional transmission of alarm, other. 
Biohazard scare 
751 Biological hazard, malicious false report. 
False alarm and false call, other 
700 False alarm or false call, other. 
Severe Weather and Natural Disaster 
811 Earthquake assessment, no rescue or other service rendered. 
812 Flood assessment. Excludes water rescue (360 series). 
813 Wind storm. Includes tornado, hurricane, or cyclone assessment. No other 
service rendered. 
814 Lightning strike (no fire). Includes investigation. 
815 Severe weather or natural disaster standby. 
800 Severe weather or natural disaster, other. 
Special Incident Type 
Citizen complaint 
911 Citizen’s complaint. Includes reports of code or ordinance violation. 
Special type of incident, other 
900 Special type of incident, other. 
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APPENDIX B. DAILY CALL DISTRIBUTION 
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APPENDIX C. HOURLY CALL DISTRIBUTION 
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APPENDIX D. MONTHLY CALL DISTRIBUTION IN FRESNO, CA, 
FROM JANUARY 2012 TO MARCH 2014 
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