
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

AN IMPROVED TARPIT FOR NETWORK DECEPTION

by

Leslie Shing

March 2016

Thesis Co-Advisors: Robert Beverly
Justin P. Rohrer

Second Reader: Mark Gondree

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
03-25-2016

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE

AN IMPROVED TARPIT FOR NETWORK DECEPTION
5. FUNDING NUMBERS

RCJ66
H98230221650

6. AUTHOR(S)

Leslie Shing

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

LTS
8080 Greenmead Dr, College Park, MD, 20740

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Networks are constantly bombarded with malicious or suspicious network traffic by attackers attempting to execute their attack
operations. One of the most prevalent types of traffic observed on the network is scanning traffic from reconnaissance efforts. This
thesis investigates the use of network tarpits to slow automated scanning or confuse human adversaries. We identify distinguishing
tarpit signatures and shortcomings of existing tarpit applications as uncovered by Degreaser (a tarpit scanner), and implement
improved features into a new tarpit application called Greasy. We conduct several experiments using a select set of metrics to
measure the impact of implementing new tarpitting capabilities and other improvements in Greasy, particularly Greasy′s ability to
deceive Degreaser, degree of stickiness compared to LaBrea, and potential processing overhead as observed by packet latency. Our
experimental results show that we effectively mitigate the two tarpit signatures used by Degreaser′s tarpit identification heuristics.
And although Greasy may not hold the stickiest connections, compared to LaBrea in persist mode, it successfully improves its
tarpitting capabilities, while still evading detection. More importantly, the above results are obtained by deploying Greasy on an
Internet-facing /24 subnet; this allows us to measure Greasy′s ability to interact with real-world network traffic. Furthermore,
Greasy offers a modularized extensible tarpit platform for future tarpit development.

14. SUBJECT TERMS

network deception, improved tarpit, Greasy, Degreaser, LaBrea

15. NUMBER OF
PAGES 99

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

AN IMPROVED TARPIT FOR NETWORK DECEPTION

Leslie Shing, Civilian
B.S., University of California, San Diego, 2011

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2016

Author: Leslie Shing

Approved by: Robert Beverly
Thesis Co-Advisor

Justin P. Rohrer
Thesis Co-Advisor

Mark Gondree
Second Reader

Peter Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Networks are constantly bombarded with malicious or suspicious network traffic by at-
tackers attempting to execute their attack operations. One of the most prevalent types of
traffic observed on the network is scanning traffic from reconnaissance efforts. This thesis
investigates the use of network tarpits to slow automated scanning or confuse human ad-
versaries. We identify distinguishing tarpit signatures and shortcomings of existing tarpit
applications as uncovered by Degreaser (a tarpit scanner), and implement improved fea-
tures into a new tarpit application called Greasy. We conduct several experiments using
a select set of metrics to measure the impact of implementing new tarpitting capabilities
and other improvements in Greasy, particularly Greasy′s ability to deceive Degreaser, de-
gree of stickiness compared to LaBrea, and potential processing overhead as observed by
packet latency. Our experimental results show that we effectively mitigate the two tarpit
signatures used by Degreaser′s tarpit identification heuristics. And although Greasy may
not hold the stickiest connections, compared to LaBrea in persist mode, it successfully im-
proves its tarpitting capabilities, while still evading detection. More importantly, the above
results are obtained by deploying Greasy on an Internet-facing /24 subnet; this allows us to
measure Greasy′s ability to interact with real-world network traffic. Furthermore, Greasy

offers a modularized extensible tarpit platform for future tarpit development.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 2

1.2 Research Questions . 3

1.3 Summary of Contributions and Findings 3

1.4 Thesis Structure . 3

2 Background 5
2.1 Cyber Deception . 5

2.2 Honeypots . 6

2.3 Network Tarpits . 8

2.4 Related Work . 13

3 Requirements and Design 17
3.1 Requirements . 17

3.2 Improvements . 19

3.3 Design . 25

3.4 Implementation . 36

4 Experiments and Results 37
4.1 Metrics . 37

4.2 Experimental Setup . 41

4.3 Results and Analysis . 45

5 Conclusion and Future Work 65
5.1 Conclusion . 65

5.2 Future Work . 66

List of References 71

vii

Initial Distribution List 79

viii

List of Figures

Figure 3.1 UML Class Diagram of Greasy. 26

Figure 3.2 Multi-Threaded Design. 35

Figure 4.1 Experimental Setup for Greasy and LaBrea/24 Subnets on the /17
Network Telescope . 42

Figure 4.2 Number of Packets Received per /24 Subnet of the /17 Subnet on
10/27/15. 43

Figure 4.3 Boxplot of Packets Sent per Flow (Greasy versus LaBrea Non-
Persist) . 48

Figure 4.4 CDF of Packets Sent per Flow (Greasy versus LaBrea Non-Persist) 48

Figure 4.5 Boxplot of Packets Received per Flow (Greasy versus LaBrea Non-
Persist) . 50

Figure 4.6 CDF of Packets Received per Flow (Greasy versus LaBrea Non-
Persist) . 50

Figure 4.7 Boxplot of Packets Sent per Flow (Greasy versus LaBrea Persist) 51

Figure 4.8 CDF of Packets Sent per Flow (Greasy versus LaBrea Persist) . . 52

Figure 4.9 Boxplot of Packets Received per Flow (Greasy versus LaBrea Per-
sist) . 53

Figure 4.10 CDF of Packets Received per Flow (Greasy versus LaBrea Persist) 53

Figure 4.11 Boxplot of Duration per Connection (Greasy versus LaBrea Non-
Persist) . 55

Figure 4.12 CDF of Duration per Connection (Greasy versus LaBrea Non-
Persist) . 55

Figure 4.13 Boxplot of Duration per Connection (Greasy versus LaBrea Persist) 57

Figure 4.14 CDF of Duration per Connection (Greasy versus LaBrea Persist) 57

Figure 4.15 Boxplot of Duration per Connection (Same /24 Subnet) 58

ix

Figure 4.16 CDF of Duration Per Connection (Same /24 Subnet) 58

Figure 4.17 Boxplot of Packets Sent per Flow (Same /24 Subnet) 59

Figure 4.18 CDF of Packets Sent per Flow (Same /24 Subnet) 59

Figure 4.19 Boxplot of Packets Received per Flow (Same /24 Subnet) 60

Figure 4.20 CDF of Packets Received per Flow (Same /24 Subnet) 60

Figure 4.21 PDF of RTT Measurements from Run 1 of Latency Experiment Us-
ing Residential Vantage Point. 62

Figure 4.22 PDF of RTT Measurements from Run 2 of Latency Experiment Us-
ing Residential Vantage Point. 62

Figure 4.23 PDF of RTT Measurements from Run 3 of Latency Experiment Us-
ing Residential Vantage Point. 62

Figure 4.24 PDF of RTT Measurements from Run 1 of Latency Experiment Us-
ing Naval Postgraduate School (NPS) Vantage Point. 63

Figure 4.25 PDF of RTT Measurements from Run 2 of Latency Experiment Us-
ing NPS Vantage Point. 63

Figure 4.26 PDF of RTT Measurements from Run 3 of Latency Experiment Us-
ing NPS Vantage Point. 63

Figure 4.27 PDF of RTT Measurements from Run 1 of Latency Experiment Us-
ing Local Subnet Vantage Point. 64

Figure 4.28 PDF of RTT Measurements from Run 2 of Latency Experiment Us-
ing Local Subnet Vantage Point. 64

Figure 4.29 PDF of RTT Measurements from Run 3 of Latency Experiment Us-
ing Local Subnet Vantage Point. 64

x

List of Tables

Table 3.1 The List of OUIs and Corresponding Index into Greasy’s Array of
OUI Used to Generate the Upper 3 Octets of a Tarpit Host’s MAC
Address . 21

Table 4.1 Number of Real Hosts versus Tarpit Hosts Identified by Degreaser 46

Table 4.2 Average RTT Measurements from Run 1 62

Table 4.3 Average RTT Measurements from Run 2 62

Table 4.4 Average RTT Measurements from Run 3 62

Table 4.5 Z-statistic and Percent of Change Results from Run 1 of Latency Ex-
periment . 63

Table 4.6 Z-statistic and Percent of Change Results from Run 2 of Latency Ex-
periment . 63

Table 4.7 Z-statistic and Percent of Change Results from Run 3 of Latency Ex-
periment . 63

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

ACK Acknowledgement

ARP Address Resolution Protocol

AS Autonomous System

BGP Border Gateway Protocol

CDF Cumulative Distribution Function

CDN Content Delivery Network

CPU Central Processing Unit

DDoS Distributed Denial of Service

DOD Department of Defense

DNS Domain Name System

EUI Extended Unique Identifier

FIFO First In First Out

FIN Finish

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

ICMPv6 Internet Control Message Protocol Version 6

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPv4 Internet Protocol Version 4

xiii

IPv6 Internet Protocol Version 6

ISN Initial Sequence Number

IW Initial Window

LAN Local Area Network

MAC Media Access Control

MD5 Message Digest 5

MSL Maximum Segment Life

MSS Maximum Segment Size

NIC Network Interface Card

NPS Naval Postgraduate School

OS Operating System

OUI Organizationally Unique Identifier

PDF Probability Distribution Function

RA Registration Authority

RST Reset

RTT Round Trip Time

SACK Selective Acknowledgement

SMTP Simple Mail Transfer Protocol

SSH Secure Shell

STL Standard Template Library

SYN Synchronize

xiv

TCP Transmission Control Protocol

UCSD University of California San Diego

UDP User Datagram Protocol

UML Unified Modeling Language

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

Acknowledgments

First of all, I want to thank my advisors, Rob and Justin, for all their guidance and valuable
insight throughout this thesis process. It would have been impossible without them. I also
thank Mark for all his insightful feedback. Secondly, I want to thank the SFS
program and NPS for the opportunity to learn and grow in the cyber world, from one
who did not even know what a “Hello World” program was, to one who is ready to
join the cyber security workforce. Thirdly, I thank my mom and dad for their constant
love, support, and encouragement, and for always reminding me that obstacles can be
overcome with perseverance and continuous prayer. Last but not least, I thank God for
giving me purpose and direction in life. To God be the glory.

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

CHAPTER 1:
Introduction

Networks are constantly bombarded with malicious or suspicious network traffic by at-
tackers attempting to execute their attack operations. One of the most prevalent types of
traffic observed on the network is scanning traffic from reconnaissance efforts. For instance
Yegneswaran et al. determined that worm activity constituted approximately 20%-60% of
all intrusion attempts and observed as many as 3 million scans in a single day in their
logs [1]. Dainotti et al. observed 20 million scanning probes from 3 million distinct source
Internet Protocol (IP) addresses reaching the University of California San Diego (UCSD)
Network Telescope due to the sipscan [2]. Rajab et al. collected three months’ worth of
Intrusion Detection System (IDS) logs and noted 1.5 billion connection attempts from ap-
proximately 32 million unique source IP addresses that originated from either compromised
hosts or active scanners [3]. According to the EC-Council’s Certified Ethical Hacker mate-
rial, reconnaissance–one of the five phases in black hat operations–is the initial and longest
phase, during which attackers perform non-intrusive passive network scanning among other
actions to identify active hosts, operating systems, applications, and ports in a network [4].
After mapping out an organization’s network structure, attackers follow up by using ac-
tive scanning methods to discover weaknesses and potential vulnerabilities in the network
infrastructure, such as open ports, services, and vulnerable applications. Because recon-
naissance is a major phase in an attacker’s operations, and because of the widespread and
frequent nature of vulnerability scanning, efforts have been developed on the defenders’
side to thwart or delay the attacker at this phase. One of the available network security
defenses against worms and scanners is network deception.The high-level idea of network
deception is to provide the illusion of vulnerable targets or to alter the network topology in
such a way as to confuse attackers and divert their attention away from critical resources.
Not only can deceptive strategies create believable targets, but some techniques can also
actively influence an attacker’s actions and decision making process [5].

Network tarpits are one example of network deceptive techniques that seek to slow auto-
mated scanning or confuse human adversaries [5]. These network tarpits are typically light-
weight, low-cost applications that create sticky connections in the same way that physical

1

tarpits have been known to trap animals. They can be configured to use unused or inactive
IP address spaces to create the illusion of a pool of hosts. The main goals of a tarpit are
to penalize malicious connections by actively preventing data transfer over the connection
as well as tying up the remote end’s socket and exhausting the remote host’s resources in
maintaining this connection [5]. One of the obstacles tarpits face is the possibility of their
discovery by advanced scanning techniques, which causes them to lose their deceptive ad-
vantage over an attacker. Attackers may be able to bypass or circumvent tarpits during
their intelligence gathering phase. For example, Degreaser, an advanced tarpit scanning
tool developed by Alt et al. has uncovered numerous network tarpits in the wild [5].

In their study, Alt et al. [5] develop an active probing methodology to detect tarpits based
on two main signatures: Transmission Control Protocol (TCP) options fingerprints and
TCP flow control behavior. This methodology is integrated into their open source tool,
Degreaser, and used to perform an Internet-wide scan. Although organizations are reluctant
to admit their use of tarpits for defensive reasons, Alt et al. discovered a total of 215,000
active fake IP addresses with subnetworks interleaved with real and fake hosts. Their work
demonstrates the ease at which attackers and others can develop scanners to detect and
defeat the use of tarpits based on the tarpits’ current state and implementation [5].

1.1 Motivation
The main motivation for our work stems from two areas. The first is that network tarpits
are powerful, important resources able to thwart network scanning during an attacker’s in-
telligence gathering phase. Alt et al. note that even small blocks of tarpit addresses have
greatly slowed automated scanning, and tarpits have even skewed network measure studies,
e.g., the Internet census [5]. The second reason is that there has been a lack of current re-
search available looking into improving the efficiency and effectiveness of network tarpits.
Our work seeks to accomplish a couple objectives. We investigate heuristics to improve the
tarpitting capabilities of the tarpit and better obscure them from state-of-the-art scanning
tools and techniques. In addition, we develop and provide a modularized extensible tarpit
platform called Greasy for researchers to build upon in the future.

2

1.2 Research Questions
We attempt to address the following research questions:

1. How can we mitigate network tarpit signatures to make them harder to detect, or
more costly to detect, while retaining their defensive behavior?

2. How can we make network tarpits appear more like real hosts without incurring
additional costs, like memory or bandwidth, to tarpit operations?

3. How can we leverage TCP retransmission mechanisms to improve the stickiness of
the tarpit connection?

1.3 Summary of Contributions and Findings
Our work demonstrates that state-of-the-art tarpit scanning tools can be defeated. We make
four primary contributions:

1. We identify distinguishing tarpit signatures and shortcomings of existing tarpit ap-
plications as uncovered by Degreaser, and implement improved features into a new
tarpit application called Greasy.

2. We develop and provide a modularized extensible tarpit platform for future tarpit
development.

3. We examine Greasy’s overall tarpit performance improvement compared to an ex-
isting tarpit application LaBrea [6] using a select set of metrics. We demonstrate
Greasy’s ability to evade detection by Degreaser.

4. We run Greasy in production on an Internet-facing /24 subnet
5. We suggest future improvements to that may increase Greasy’s tarpit functionalities

and capabilities in the future.

1.4 Thesis Structure
The rest of this thesis is structured as follows:

• Chapter 2 discusses background and related work in the area of cyber deception and
network tarpits.

3

• Chapter 3 describes the requirements, improvements, design, and implementation of
a new tarpitting application called Greasy.
• Chapter 4 provides and overview the experiments used to measure the levels of im-

provement in Greasy compared to existing tarpit applications. In particular, we mea-
sure Greasy’s ability to obscure itself from Degreaser.
• And finally, Chapter 5 concludes with highlights of experiment results and discusses

future work.

4

CHAPTER 2:
Background

Among the onslaught of abusive and malicious attacks against networks, scanning attacks
are crucial threats as they form the basis of other malicious operations. In order to infect a
host in a network, an attacker frequently first scans the network (or the entire Internet) to
find a reachable host that has some particular characteristic or exploitable vulnerability [7].
Intrusions by port scanning or self-propagating worms, e.g., CodeRed [8], Conficker [9],
and Heartbleed [10] vulnerability scanning are examples of known scanning attacks [11].
Because network scanning is so pervasive, network administrators often apply network se-
curity defenses to impede scanning. Among these defenses are cyber deception techniques.

2.1 Cyber Deception
Cyber deception has contributed to the successes of both offensive and defensive opera-
tions. For defense in particular, the idea of cyber deception is to provide attackers the
illusion of vulnerabilities so as to delay, halt, respond to, or gather information about sus-
picious activities or attacker behavior [12]. Most defensive deception strategies are only
peripherally deceptive, meaning the objective is to create the facade of a real system, rather
than deceiving the attacker through misinterpretation of data content [13]. Deceptive tactics
force attackers to increase effort and costs to breach a system by causing attackers to spend
time evaluating attack operations on fake resources, thus slowing their progress while gath-
ering intelligence and increasing the likelihood of their discovery [5]. For instance, moving

target defense systems increase the attacker’s difficulty to exploit a vulnerable system by
varying the target’s attack surface or system behavior, thereby actively influencing the at-
tacker’s actions through deceit [14].

One deceptive strategy is to falsely plant information. The key to this deceptive strategy is
to identify the attacker’s targeted resource, plant falsities for the resource and underlying
environment, determine desired consequences for the attacker’s interaction with the fake
system, and ensure the fidelity and sustainability of the resource as the attacker interacts
with the system [13]. Another deceptive strategy is camouflage, which creates an artificial

5

disguise for a system or object to make it harder to find or identify. Noise injection is
one camouflage technique that introduces additional noise to reduce the signal to noise ra-
tio, making it more difficult to compromise a particular system based on signal indicators.
Another technique is to reroute attacks in order to deflect them from the most critical sys-
tems [13]. Examples include lightning rods which distract attackers away from real targets
to focus on interesting fake targets, jails that encapsulate attackers in order to conduct in-
formation gathering and analysis of attack methods, and shunts that redirect attacks around
potential targets [13]. A popular tool used to reroute attacks is a network honeypot.

2.2 Honeypots
Honeypots are security devices, services, or resources in the network that detect and ana-
lyze intruder activities by creating false targets. The main idea behind a honeypot is to redi-
rect potentially malicious traffic to a specially crafted machine. The machine is the “bait”
with which intruders may interact [15]. Because honeypots have no production value, au-
thorized activity, and often inhabit network address spaces where minimal or no legitimate
traffic should exist, any interaction with the honeypot is likely an unsolicited probe, scan,
or attack [16]. Honeypots can capture a wealth of information regarding suspected mali-
cious behavior, including methods to gain unauthorized access, targeted ports, and services
attackers attempt to exploit. Honeypots often operate in conjunction with other IDSs, and
serve to extend IDS functionality by detecting and responding to attacks not identified by
other detection systems [15].

2.2.1 Level of Interaction
Different information can be acquired by the honeypot depending on the honeypot’s level
of interaction.

High-Level Interaction
High interaction honeypots are used for more in-depth analyses, such as an investigation
of tools, channels, or methods of attacks [17]. They replicate full system functionality and
allow the attacker to fully interact with the system, and potentially compromise it to launch
further attacks [15]. Though the data acquired from high interaction honeypots is quite

6

valuable as they allow researchers to study attack methods and attacker behavior, they are
less prevalent compared to low interaction honeypots because the risk of an attacker nega-
tively affecting other devices on the network is quite high. An attacker could simply use the
honeypot machine to infiltrate other systems on the network, or lower system performances
by decreasing bandwidth through generating large amounts of traffic [15]. Research hon-
eypots typically have a high level of interaction with attackers because they are purposed
to gather information about black hat techniques and tactics as well as monitor attacker
behavior [15], [16].

Low-Level Interaction

Low-interaction honeypots emulate certain services, rather than a complete system, and as
such are confined to respond only to specific services or partial implementations [18]. For
instance, they may only emulate the transport layer protocol, and are unable to gather infor-
mation on the application layer. Despite this limitation, low interaction honeypots are the
most prevalent type of honeypot used today [19] and because low interaction honeypots
offer limited services to the attacker and are at a low risk of being compromised, unlike
their high interaction counterparts, they are easier to deploy and maintain [16], [20]. In
addition, low-interaction honeypots are typically chosen to handle scanning and other at-
tack traffic over high-interaction honeypots because they are much less costly (i.e., in terms
of Central Processing Unit (CPU) time and bandwidth, for instance).1 They are designed
to lure an intruder with one or more exploitable vulnerabilities, and establish and capture
the first few transactions of a conversation between the malicious endpoint and the hon-
eypot. These honeypots allow for quantitative, less in-depth, information gathering used
to identify patterns of port scans and worm propagation, passively detect spam activity, or
delay malicious behavior [17]. Production honeypots traditionally fall under this category
of interaction. They are purposed to delay, detect, or respond to attacks [16].

1Because of the benefits and shortcomings of both low-interaction and high-interaction honeypots, recent
work has investigated the use of hybrid honeypot systems that utilize the strengths of both to dynamically
adapt to organizational needs. Thus, low-interaction honeypots are deployed against simple attacks and act
as a first layer of defense, while more sophisticated attacks are redirected towards high-interaction honey-
pots [21].

7

Medium-Level Interaction

Medium interaction honeypots are more advanced than low interaction honeypots, and
less advanced than high interaction honeypots, however they combine advantages of both
types [22]. Like low interaction honeypots, these honeypots do not implement complete
application services or real operating system environments. A key component of these
honeypots is their application-layer virtualization, which is what allows these medium-
interaction honeypots to analyze malware similar to high-interaction honeypots but with
an isolated environment and a small set of services. These honeypots lure attackers to ex-
ecute their exploits by providing fictional vulnerability responses that an attacker expects
to see [22]. After receiving the shell code for offline analysis, the honeypot emulates ac-
tions that the shell code would have performed on a real system. These honeypots do have
limitations. Like high-interaction honeypots, these systems are also considered high risk
because of the level of interaction with an attacker. They are also complex, time consuming
to deploy, and require great knowledge and expertise to create [22].

2.3 Network Tarpits
Network tarpits are a type of low interaction, production honeypot that seek to frustrate and
confuse an intruder, as well as slow automated traffic scanners [5]. They are modeled after
the concept of physical tarpits that trap animals in sticky tar, and as such are sometimes
called “sticky” honeypots. Tarpits attempt to trap potentially malicious incoming TCP
connections through TCP flow control mechanisms – discouraging the remote end from
disconnecting, actively preventing data transfers, and consuming the attacker’s resources
(e.g., CPU time, memory, and bandwidth); all these work to slow the scanner and penalize
these malicious connections [5]. Existing network tarpits are deployed at both the transport
and application layers of the TCP/IP stack. They may be configured to use unused or
inactive IP addresses in a subnetwork to create the illusion of a large pool of available
hosts and impersonate real hosts by responding to TCP, User Datagram Protocol (UDP),
or Internet Control Message Protocol (ICMP) probes that interact with these fake hosts [5].
One of the most widely known network tarpits is LaBrea, developed by Tom Liston [23] in
response to the CodeRed worm of 2001 [18].

8

2.3.1 LaBrea
LaBrea’s main objective is to slow the propagation of Internet worms, by trapping the
worms to delay their attempts of infecting other devices or systems [24]. LaBrea accepts
connections to unused IP addresses on a local network, and responds to incoming traffic
destined to these IP addresses, forcing the remote end to consume resources on a fake
connection until it times out [24]. LaBrea has two main functions: dynamically identifying
unused IPs using Address Resolution Protocol (ARP) and tarpitting connections using TCP
flow control manipulation.

Identifying Unused IP Addresses
To determine which IP addresses to use for tarpitting, LaBrea either hard captures a spe-
cific list of IP addresses, or listens promiscuously for unanswered ARP requests, which
signify unused or unoccupied IP addresses [24]. LaBrea takes advantage of the Layer
2 ARP requests and responses in order to locate these unused Internet Protocol Version
4 (IPv4) addresses and impersonate hosts. ARP provides a mapping between network and
physical addresses. In order for two machines to communicate across an Ethernet Local
Area Network (LAN) each machine must have two unique identifiers: a layer 3 32-bit IPv4
or 128-bit Internet Protocol Version 6 (IPv6) address, and a layer 2 48-bit Media Access
Control (MAC) address. The source device endpoint must know the destination endpoint’s
MAC address in addition to the destination IP address in order to send a packet to the desti-
nation device endpoint. For IPv4 addresses in particular, if the destination IP/MAC address
pair is not stored in the source endpoint’s cached ARP table, it must send a broadcast ARP
request to devices in the LAN to find the MAC address of the destination endpoint [25]. If
an ARP reply successfully returns with a corresponding MAC address, that IP/MAC pair
will be stored in the router’s cache.

Else if the destination device does not exist, the packet will be dropped, the router will
send back an ICMP "host unreachable" message, and no entry will be stored in the ARP
table for that pair [26], [27]. Mechanisms have been used to flush stale ARP cache entries
using ARP cache timeouts. One of these methods involves periodic active probing of the
remote host using ARP requests. If these requests remain unanswered after N successive
probes (with retransmissions as needed), the entry is deleted. N is typically 2 probes, but
is configurable [28], [26]. Additionally, ARP is used to resolve IPv4 address conflicts.

9

Before using an IPv4 address, a host must check to see if that IP address is in use by
broadcasting an ARP request to that particular IP address. The host sends PROBE_NUM
packets spaced PROBE_MIN to PROBE_MAX seconds apart. If ARP requests remain
unanswered after ANNOUNCE_WAIT seconds, then the IPv4 address may be used safely
by the host [29]. PROBE_NUM, PROBE_MIN, PROBE_MAX, and ANNOUNCE_WAIT
values are configurable.

LaBrea monitors for consecutive unanswered ARP requests without intervening ARP
replies [6]. If after the timeout (a value that can be configured in LaBrea but defaults
to 3 seconds) LaBrea still sees unanswered ARPs for a particular IP address, LaBrea will
capture the IP and send an ARP reply to the requesting host with a fake MAC address set
to (00:00:0f:ff:ff:ff). There is no significance for this MAC address other than that it is
bogus and does not actually exist; in addition, it is statically applied to all packets sent on
the LAN by LaBrea [24], [6]. This method even works for switched LANs. Typically the
broadcast ARP requests are visible to all ports on a hub device because data is flooded to
all ports on the device. Switch devices, on the other hand, maintain an address table of
associated hardware addresses and ports [30]. Thus, one port may never see traffic that
another port may see, and LaBrea may never see ARP replies for ARP requests on the
LAN. LaBrea overcomes this by sending a “mirrored” ARP request of any ARP requests
it sees, which allows LaBrea to monitor for potential ARP replies in a switched environ-
ment [6]. The method discussed describes LaBrea’s soft-capture mode, where LaBrea cap-
tures IP addresses dynamically. In addition, LaBrea also offers a hard-capture method and
auto-hard-capture method to capture IP addresses to use as tarpit hosts. The hard-capture
method states that after LaBrea captures an IP address, it does not need to wait for the time-
out before sending an ARP reply. The auto-hard-capture mode states that all non-excluded2

and non-hardexcluded3 IP addresses should be automatically hard-captured.

TCP Flow Control Manipulation and Tarpitting Functionality
TCP flow control [31] manipulation is the heart of LaBrea’s TCP level tarpit deception, and
the key to trapping an adversary in an open TCP connection. Among the objectives of TCP

2Excluded IP addresses are those in the LAN that LaBrea should never capture [6]
3Hardexcluded IP addresses only apply if the hard-capture mode is set; this instructs LaBrea to always

wait for the ARP timeout and never hard-capture these IP addresses [6].

10

in network communication is to accurately match the transmission rates of data transfer
between two end devices [31]. Its main concern is to prevent the remote end from receiv-
ing data faster than it can process. For instance, a larger window size could cause buffer
overruns, packet loss in routers with smaller buffers, or congestion, if the receiving end is
unable to handle packets sufficiently. This is wasteful as the remote end must retransmit
those lost bytes of packets [32]. TCP uses a 16-bit window field in its header to implement
flow control. The receiver uses this field to indicate how many bytes of data the receiver
is willing to accept and process from the sender, thereby establishing the max transmis-
sion rate [31]. This information is sent to the sender through Acknowledgement (ACK)
packets. Included in this transaction is an implicit trust arrangement between the sender
and receiver, which is exploited by LaBrea [25]. In order to lock a client in a fully es-
tablished TCP connection, LaBrea uses the window field in the TCP header to manipulate
flow control. Normally, TCP can advertise an Initial Window (IW) size smaller than 10
segments. The upper bound for the IW is defined as min (10*MSS, max (2*MSS, 14600)),
where MSS is the maximum segment size of the TCP segment. In addition, the Synchro-
nize (SYN)+ACK and ACK packets of the TCP 3-way handshake should not increase the
IW size [32]. In persistent mode, a tarpit advertises a zero window size in ACK packets sent
to the sender. This indicates to the sender that the tarpit’s receive window may be closed
indefinitely, but as long as the tarpit continues to send ACKs in response to the sender’s
window probes, the sender must allow the connection to remain open [33].

In persistent mode, LaBrea never increases the window size, keeping the client in a per-
sistent connection. As soon as an ACK packet with a zero window size is received, the
sender starts the TCP persist timer, and sends a window probe everytime the timer expires
(i.e., a timeout range of 5 to 60 seconds) to query the receiver to see if the window size has
increased. It is important to note that TCP does not give up sending window probes, which
can lead to resource exhaustion [34]. This can create a window probe deadlock in which the
window probe exchange continues indefinitely, unless the remote end has implemented an
alarm to break out of the deadlock. The attacker that initiated the TCP connection may send
a Finish (FIN) packet to terminate the TCP connection after a period of time has elapsed or
limited number of window probe retransmissions are exhausted with no increase in window
size from the receiver [35]. The specific time-frame in which a remote end terminates the
connection is implementation-specific. One of the ways TCP closes a connection is by hav-

11

ing one of the endpoint users initiate the connection termination by sending a FIN packet
to indicate that user is finished sending data. The user then enters the FIN-WAIT4 state,
and waits for the remote end to ACK the user’s FIN and send a FIN packet of their own.
If the user does not receive a FIN+ACK packet from the other end before the FIN-WAIT
timeout expires (i.e., 2 Maximum Segment Life (MSL)), then the connection will timeout
and close [31]. FIN packet LaBrea ignores this request to end the connection, and main-
tains the connection until the FIN-WAIT period expires, thus exhausting the client’s socket
resources to maintain this connection state. LaBrea also offers a non-persistent mode in
which all packets received by the client after the TCP handshake is established are just
ignored, and the TCP connection terminates after a MSL of 2 minutes [5], [31]. Although
LaBrea’s persistent connection is able hold a connection indefinitely versus several minutes
for a non-persistent connection, the persistent connection does contain more traffic over-
head than the non-persistent connection as LaBrea has to send packets back to the attacker.
The overhead is on the order of around 1215 bytes/hour according to Haig [27].

TCP Retransmission Manipulation
Aside from persistent and non-persistent modes of tarpitting, we can also leverage the use
of TCP retransmissions to disrupt the flow of a TCP connection. TCP has several mech-
anisms to indicate packet loss and out-of-order packets to the opposite endpoint. Two of
the mechanisms are duplicate ACKs and partial ACKs. Duplicate ACKs are normally sent
by the receiver to notify the sender that an out-of-order data segment arrived. The sender
usually views duplicate ACKs as an indication of network problems. For instance, dupli-
cate ACKs are usually sent as a result of dropped segments, data segments re-ordered by
the network, or replication of ACKs by the network. The sender remedies the situation by
using a fast retransmit algorithm to detect packet loss. The sender’s algorithm waits for the
arrival of three duplicate ACKs without any other interleaving packets, as the indicator of
packet loss, and immediately retransmits the missing segment [36]. Similarly, partial ACKs
signal packet loss to the sender, and cause the sender to retransmit “lost” packets [37]. This
mechanism can be used by a defender to emulate packet loss and misordered packets to
force retransmissions by the sender and disrupt the connection.

4The FIN-WAIT period is the time an endpoint must wait for a TCP connection termination request
from the remote end, or an acknowledgement by the remote end of a termination request issued by the
endpoint [31].

12

2.3.2 Limitations of Tarpits
The usefulness of tarpits, like all honeypots, lies in their deceptive abilities, i.e., their abil-
ity to deceive an attacker into believing some fiction is true. However, sooner or later,
if attackers look carefully for signs of deception, he or she will be able to detect signa-
tures [38]. The stealthiness and undetectability of a tarpit are important characteristics key
to the success of its functionality. Attackers are developing ways to detect tarpits and other
honeypots in an effort to circumvent them. The existence of these detection tools, such as
Degreaser [5] is the main motivation to improve the current state of tarpits, and will be
further discussed in Section 2.4.1.

2.4 Related Work

2.4.1 Honeypot Detection
Attackers are developing new tools and techniques to detect the presence of tarpits and
other honeypots, thereby avoiding these traps and making these tarpits useless.

Degreaser
Alt et al. developed Degreaser [5], a fingerprinting tool designed to scan a list of subnets
and remotely detect tarpits based on tarpit-like signatures [5]. Alt et al.’s motivation for de-
veloping Degreaser stems from defensive security objectives. They empirically investigate
how tarpits pollute network measurement studies, as well as note the negative impact that
even small blocks of tarpit address spaces have on automated scanners. Thus they leverage
the limitations of tarpits due to flaws in their deception, to develop heuristics for tarpit de-
tection. Alt et al. focused on iptables TARPIT [39] plug-in and LaBrea in the development
of Degreaser. They discovered two defining tarpit characteristics. The first is a small TCP
window size where LaBrea typically advertises a default TCP window size of 10 bytes
and iptables TARPIT plug-in returns a window size of 5 bytes. Both LaBrea and iptables
TARPIT plug-in manipulate TCP flow control mechanisms to tarpit a remote host. Both
tarpit applications either hold non-persistent or persistent connections. Degreaser looks for
window sizes less than 20 bytes as the first indicator. The second characteristic is the lack
of TCP options in TCP packets sent by both tarpits, which is fingerprinted by Degreaser. In
addition to deploying degreaser against known, ground-truth tarpits, Alt et al. also perform

13

an Internet-wide scan to deduce the existence of tarpits in the wild. They discover 107
different subnets composed almost entirely of tarpit hosts or consisting of a combination of
tarpit and real hosts. Their findings indicate that existing tarpit applications may be easy to
detect and defeat [5].

Service Exercising
Mukkamala et al. discuss a technique called service exercising [40], that leverages the
incomplete feature set of low interaction honeypots and TCP/IP fingerprinting techniques
to identify honeypots in the wild. One technique described is timing analysis which uses
a stream of ICMP echo requests to measure latency of packets. Their results show that
timing analysis can clearly distinguish honeypots from real systems. In addition they isolate
and test certain uncommon features or operations that low interaction honeypots may not
have implemented in order to determine whether the system is a honeypot or a legitimate
system [40].

2.4.2 Other Existing Tarpits

Honeyd
Honeyd is a virtual honeypot that offers a tarpit option among a slew of other services. It
assumes the identity of any unused IP address to create a honeynet of hosts, with the goal
of forwarding all traffic interacting with these unused IPs to the Honeyd honeypot [24].
This honeypot has the ability to emulate different services and operating systems, thereby
providing a platform for an active response model used to analyze both non-automated and
automated exploits [18]. LaBrea differs from Honeyd in that LaBrea is focused on thwart-
ing an attacker’s reconnaissance, whereas Honeyd is used more like a traditional research
honeypot and detection tool used to detect attacks and unauthorized activity [41]. Ruval-
caba claims that LaBrea and Honeyd are two different but complementary security tools
that could be combined to create a tarpit-honeypot system, with LaBrea as the first line of
defense and Honeyd as the tool for more in-depth analysis of the malware [18]. In addition,
despite offering numerous services on top of the tarpitting functionality, Honeyd’s inherent
statefulness limits its scalability [18]. Greasy’s design attempts to avoid this overhead.

14

SMTP Tarpit
The Simple Mail Transfer Protocol (SMTP) Bulk Mailer tarpit targets the TCP port for
SMTP and slows traffic by reducing the frame size of a packet to the bare minimum, sim-
ulating packet loss, and reducing the window size. The goal of this tarpit is to give the
attacker the impression of a very slow server to discourage spam messages from coming
through the network. Though this tarpit drastically reduces the transmission speed, it also
has the disadvantage of increasing network traffic due to its protocol overheads [42].

In addition to TCP level SMTP tarpitting, other implementations take advantage of SMTP
continuation lines to delay bulk mailers on the application level [43]. RFC 821 [44] states
that SMTP reply messages longer than a single line must be broken up into a multi-line,
(i.e., continuation lines), reply. The format is “<Reply Code>: -”. These application layer
SMTP tarpits send lots of fake continuation lines, slowing down the bulk mailer connection.
But they are not very effective. But these tarpits are not very effective because bulk mailers
connect to multiple mail servers at a time, mail servers accept multiple emails in a single
connection, and these tarpits are only able to delay one connection to a mail server at a
time [43].

HTTP Tarpit
The Hypertext Transfer Protocol (HTTP) tarpits are used to prevent harvesters from col-
lecting email addresses that are ultimately used in a spam mail attack. The goal is to create
random webpages that contain random links, thereby increasing the total amount of web-
pages these harvesters have to comb through in order to collect legitimate email addresses.
This will delay the malicious email acts of the adversary. Unlike the SMTP Bulk Mailer
tarpit that protects a single mail server from spam, HTTP tarpits prevent spam more on the
global scale since they actively prevent the harvester from moving onto other webpages to
collect email addresses [43].

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

CHAPTER 3:
Requirements and Design

This thesis focuses on accomplishing two main objectives. The first objective is to bet-
ter obscure network tarpits from scanners such as Degreaser, while still retaining their
tarpitting behavior. The second objective is to develop a tarpit application with a modular
multi-threaded architecture that can be easily extended to handle other types of packets
and protocols in the future, e.g., IPv6 and application-layer tarpitting capabilities further
discussed in Chapter 5. This chapter discusses the design requirements, development, and
implementation of a new network tarpit called Greasy.5

3.1 Requirements
Based on the literature review and lessons learned from Degreaser we consider the follow-
ing important areas to incorporate in the design of Greasy:

• Deterministic Randomness
• Maintaining Minimal State
• Balance of Costs

3.1.1 Deterministic Randomness
One area of importance is deterministic randomness, which introduces realistic varying be-
havior. Randomness plays a key role in protecting the deceptive quality of a tarpit because
it prevents the tarpit from leaving behind footprints or signatures. However, from the per-
spective of a given adversary, the behavior should not appear random, but should present
the consistent appearance of a realistic remote host – otherwise the random behavior itself
becomes a signature of the deception in place. For instance, if two remote hosts commu-
nicate with the same tarpit, we want the tarpit host to return the same packet information

5Greasy is a new tarpit application developed in response to Alt et al.’s [5] findings, that combines sev-
eral algorithms from LaBrea, new heuristics for random tarpitting behavior, and tarpit signature mitigation
techniques in an effort to better obscure its detectability from Degreaser and other potential tarpit scanners.

17

(e.g., MAC address, TCP options, and available port numbers, among others) to the two
remote hosts.

3.1.2 Maintaining Minimal State
Another key area is maintaining minimal state using low overhead hashing techniques to
mimic state behavior without actually incurring state. Currently the simplicity of existing
tarpits is their statelessness, but implementing new tarpit heuristics may incur the cost of
state, which may decrease tarpit performance due to large overheads (e.g., packet queuing
congestion, increased time utilization, or exhausting memory). For this reason, we deploy
SYN cookie-like [45] heuristics to minimize state maintenance in Greasy.

Minimal State Using SYN Cookies
SYN cookies [45] are used to combat resource exhaustion in the event of a SYN flood-
based attack against a system. The cookie is a known public hash with a secret key, used
to verify a TCP connection, and is composed of the timestamp, maximum segment size
stored by the server, server IP address and port number, and client IP address and port
number. Upon receipt of a SYN packet, the system generates the hash value and discards
the SYN queue entry. This hash value is then sent as the initial sequence number in a TCP
SYN+ACK packet during the TCP handshake. If the server receives a TCP ACK to this
packet with an ACK value of the server’s hash plus one, then the server can verify that
the connection is legitimate. By deploying the SYN cookie, the system does not need to
maintain any state until the connection is verified, which minimizes the system’s burden of
exhausting resources to remember half-open TCP handshakes [45]. We deploy a similar
method throughout Greasy’s design that is further discussed in Section 3.3.

3.1.3 Balance of Costs
A third area of concern is balance of costs in our modifications. It is important to note
that there exists a basic tension in our efforts to improve the network tarpitting capabilities
in Greasy and decreasing its detectability. For instance, in order to mitigate the tarpit’s
distinguishing window size signature, we will not solely change the window field to a
larger size in order to evade detection. Doing so may allow normal data transfer to occur,

18

allowing more traffic to come onto the tarpit’s network, and negating the main functions of
a tarpit. Another example is the notion of state, as discussed in Section 3.1.2. Performing
these improvements on a new tarpit will impose a cost on the attacker as the attacker must
increase his efforts of detecting tarpits and may suffer a greater loss of time and resources
as a result of the increased stickiness of the tarpit. This may, however, also incur a cost
on the defender as well due to the increased overhead (i.e., memory or time) required to
deploy a more advanced tarpit.

3.2 Improvements
We focus our tarpit improvements on several key areas based on recommendations from
Degreaser’s findings. Alt et al. [5] identify discriminating traffic characteristics of network
tarpits deployed in their tarpit detection heuristics, as well as signatures that were interest-
ing but proved unfeasible or unreliable for inclusion in Degreaser’s design; we incorporate
improvements that combat signatures both utilized and not utilized in Degreaser’s heuris-
tics. We divide the types of improvements into two main categories: improvements which
are trivial to implement and should not affect the tarpit’s overall performance, and improve-
ments which may cause an imbalance between tarpit performance and detection.

3.2.1 Light-Weight Enhancements
The following are improvements that will increase the difficulty for an attacker to finger-
print the tarpit without affecting its overall performance.

• Inclusion of TCP options
• MAC address generation
• Number of Open Ports
• Limiting the Number Responding IP addresses

Inclusion of TCP Options
The TCP options [46] are appended to the end of the TCP header and are used to intro-
duce add-ons or additional features to enhance the TCP protocol. Some options include:
Maximum Segment Size (MSS), Window Scale, Selective Acknowledgement (SACK), and

19

Timestamps. Degreaser identifies tarpit hosts by observing the lack of TCP options ap-
pended to the TCP header of packets sent by those hosts [5]. We mitigate this signature by
appending a randomly determined set of TCP options to the end of the TCP header with-
out added costs to tarpit performance. Greasy contains an array of five sets of TCP option
combinations; each tarpit host is assigned a particular set of TCP options to append to the
TCP header of packets they send using a custom hashing function as shown in (3.1).

index = ((targetIPaddr ∗59)⊕ targetPort)%5 (3.1)

The function is a modified version of [47] used to hash a 5-tuple IP, port, and protocol
numbers to identify flows. Our function uses the target IP address and port number from
the incoming TCP packet, and an arbitrary prime number (i.e., 59 in our case [48])6 to
create a random hash value. The hash value modulo 5 determines the index into the array
of TCP option sets. By using this function, we always pair TCP packets from a particular
tarpit host/port with the same set of TCP options without maintaining state and avoid the
costs mentioned in Section 3.1.2. The TCP options combinations were determined based
on documentation from p0f [49], a passive OS fingerprinting tool, as well as through ex-
amination of TCP packets on my LAN. We did not include SACK [50] as an option, as it
would impede our goal of causing the remote end to retransmit the entire data segment vice
small parts of the missing segments.

MAC Address Generation
The MAC address is a physical address assigned to network interfaces for most Institute of
Electrical and Electronics Engineers (IEEE) 802 devices [51]. We focus on the universally7

administered 48-bit EUI-48 address8 [52]. Alt et al. [5] observed that LaBrea uses a hard-
coded Layer-2 Ethernet MAC address (00:00:0f:ff:ff:ff) for all responses regardless of its

6The prime number is used to produce a prime displacement hash function [48] that promotes uniqueness
7MAC addresses are either administered locally or universally. The first 3 octets in an universally admin-

istered MAC address indicate the identifier of the device manufacturer, or Organizationally Unique Identi-
fier (OUI) assigned by the IEEE Registration Authority (RA). Those 3 octets can be overwritten by a network
administrator if the address is administered locally.

8Of the three EUI-48 address schemes, we use the concatenation of a 24-bit OUI and a 24-bit extension
identifier assigned by the organization that belongs to the OUI, which is the addressing scheme for OUIs of
large companies [52].

20

physical network adapter address. However, Alt et al. did not include this signature as
part of Degreaser’s heuristics because they focused on finding remotely identifiable tarpit
characteristics, whereas the MAC address is only discernible inside the LAN containing
the tarpit host [5]. We decide to improve upon this feature for completeness, since our
concern lies with adversaries attached to the same LAN as Greasy, as well as those scanning
remotely. The MAC address sent in the ARP reply and in other packets sent by Greasy is
generated using a deterministically random method. The upper 3 OUI octets is one OUI
out of an array of thirteen company OUIs. The thirteen OUIs represent identifiers from
each of the top thirteen device manufacturers (e.g., Apple, Asus, Cisco, Microsoft, and
HP, among others), which we determined based on information provided by the IEEE OUI
website [53], as well as the number of OUIs allocated to each company. The index into this
array is determined by taking the target IP address modulo 13, as shown in (3.2).

index = targetIPaddr%13 (3.2)

The array of OUIs is listed in Table 3.1:

Table 3.1: The List of OUIs and Corresponding Index into Greasy ’s Array of OUI Used to
Generate the Upper 3 Octets of a Tarpit Host’s MAC Address

Array Index OUI Company
0 0c:15:39 Apple
1 d8:50:e6 Asus
2 7c:69:f6 Cisco
3 a4:77:33 Google
4 8c:dc:d4 HP
5 98:be:94 IBM
6 6c:a1:00 Intel
7 ec:3e:f7 Juniper Networks
8 2c:54:cf LG
9 30:59:b7 Microsoft
10 00:14:4f Oracle
11 1c:66:aa Samsung
12 fc:0f:e6 Sony

The lower 3 octets represent the random 24-bit identifier assigned by the organization of the
OUI. To create this 24-bit identifier, we first take the Message Digest 5 (MD5) [54] hash of

21

the target IP address that produces a 32 character string, and then use the upper 3 octets of
this hash for the lower 3 octets in the MAC address of a particular tarpit host. In this way,
all remote hosts that converse with the same tarpit host should see the same MAC address
associated to the tarpit host. Although the OUI portion could potentially be a signature,
it is only detectable to an adversary on the LAN. This feature is an improvement from
LaBrea’s statically assigned MAC address 00:00:0f:ff:ff:ff, as it provides a more realistic
MAC address.

Number of Open Ports
TCP has 65,535 possible open ports. Ports 0-1023 are well-known ports, 1024-49151 are
registered ports, and 49152-65535 are private or ephemeral ports. Certain ports, such as
those within the well-known ports range are open for long periods of time, but others are
usually only expected to be open for a short amount of time. The EC-Council considers
persistent ephemeral ports as suspicious open ports because ephemeral ports are usually
only short-term ports. Any ephemeral port left open for extended periods of time is sus-
picious, and similarly, it is rare that real live hosts have all 65,535 ports open at the same
time [55]. In their Internet-wide scan, Alt et al. [5] observe that many hosts answer all TCP
ports, and infer that hosts that respond to all TCP ports is indicative of a tarpit behavior9.
They left this signature as a last resort to disambiguate samples of possible tarpit hosts and
did not include this as part of Degreaser’s scanning heuristic because of the exponential
(i.e., 216) number of probes that would be required to scan for open ports for a single host.
This would be especially costly if executed at the Internet scale [5]. We decided to mit-
igate this signature, nonetheless, because we want to ensure that all potential signatures
are removed from the tarpit. Greasy contains an array of five different sets of open ports;
each tarpit host is assigned a particular set of open ports using the same hashing function
shown in (3.1) to determine the index number into the open ports array. Each set consists of
seven to ten well-known ports [56]. Using this method, we are able mitigate this signature
without maintaining any state.

9By default LaBrea has a list of always open ports, and also dynamically opens ports based on the amount
of activity from incoming connections to a closed port [6]. The only way to turn off ports is by manually
excluding ports in LaBrea’s configuration file. Results from Degreaser’s scan may indicate that many hosts
running LaBrea do not have any excluded ports.

22

Limiting the Number of Responding IP Addresses

Alt et al. [5] initially considered high-occupancy subnets as an indicator of tarpit hosts [5].
Normally only a small fraction of address space is actually utilized by real hosts at any
given time, particularly the larger subnets like /16s [57]. However, they determined that this
was not a good selection criterion because many of the /24 subnets they investigated [58]
actually belong to Content Delivery Networks (CDNs) and other web-hosting services that
do have fully occupied subnets. We decide to implement improvements for this signature
based on results from their Internet-wide scan using Degreaser. From their Internet-wide
scan, Alt et al. [5] note their discovery of subnets completely full of fake tarpit IP addresses,
as well as subnets composed of a mix of tarpitting and real IP hosts. For instance, around
50% of all /24 subnets are filled with 95% or greater of IP addresses that exhibit tarpit-like
behavior, 60% of /22 and /23 subnets are composed of 95% or more tarpit hosts, and two of
the /16 subnets are composed of more than 99% tarpit hosts [5]. Greasy subverts the high
subnet occupancy trait by incorporating a method to configure the number of responsive IP
addresses within a subnet to mitigate its detection in the wild. We provide the user with
the flexibility of determining the percent of responsive IP addresses in the configuration
file (Section 3.3.4). To determine if an IP address falls within the fraction of IP addresses
that should respond, we first take the MD5 hash of the target IP address. We then take the
lower 8 hexidecimal digits of the hash and divide this by the baseline hex value "0xffffffff"
to determine a percentage value. If this value is less than or equal to the percentage value
noted in the configuration file, then Greasy will capture this IP address. We chose to only
keep the lower 8 hexidecimal digits of the hash rather than its entirety because we wanted
to minimize the search space. This improvement does not add additional operating costs.

3.2.2 Improvements with Potential Impact to Performance
The following are improvements that may affect tarpit performance and detection.

• Random Legitimate Window Size
• Heuristic for Random Tarpitting Behavior

23

Random Legitimate Window Size
One of the distinguishing tarpit characteristics detected by Degreaser is a small TCP win-
dow size, i.e., 20 bytes or less. We attempt to mitigate this signature by implementing a
configurable maximum TCP window size determined by the user. The configurable TCP
window size is an attempt to thwart the small TCP window size signature by establishing
a random legitimate window size. The maximum window size value is established by the
user in the configuration file (Section 3.3.4), and the window size for a particular TCP
packet is calculated by using rand() % THROTTLE_SIZE, with the current time as the
seed for rand() to create the pseudo-random number. We use a random window size as a
opposed to choosing from a set of candidate window sizes because we want to mitigate
any possible signatures that could be attributed to the window size. By implementing this
improvement we do run the risk of Greasy receiving more network traffic than intended
and experiencing network congestion. However, this is an important signature to mitigate
in order to deceive Degreaser, and our hope is that the increased incoming traffic will cause
only minimal congestion.

Heuristic for Random Tarpitting Behavior
In an effort to improve the effectiveness of the tarpit, we introduce the idea of random
heuristics for tarpitting. Unlike LaBrea, which either executes in non-persistent or per-
sistent modes, Greasy randomly executes non-persistent and persistent modes, as well as
adds two more tarpitting options–duplicate ACK and partial ACK modes. The latter two
are important tarpitting techniques that encourage the remote end to send retransmissions
and keep the connection open, thereby creating the illusion of a legitimate but congested
connection. LaBrea only allows one of the modes to execute at a given time. Persist mode
is essential to tarpitting connections and delaying remote ends from attacking other more
critical systems on the local network. However, the persistent zero TCPwindow size used
in persist mode is too distinguishing of a trait and easily detected by scanning tools like
Degreaser. For this reason we add additional tarpitting capabilities and randomize their
usage to prevent adversaries from identifying a tarpitting fingerprint. The partial ACK
and duplicate ACK modes, like the persistent mode [27], may carry traffic overhead, since
Greasy will have to respond to the incoming packets to ensure the continuation of the
connections. This will generate more traffic than just simply dropping packets in the non-

24

persistent mode. In addition, the duplicate ACK mode does maintain state, since it must
remember the number of duplicate packets it has sent, as well as retain the same ACK
value as those in the series of duplicate ACK packets sent. Despite these costs, we hope the
improvements in the effectiveness of Greasy’s tarpitting capabilities and ability to deceive
Degreaser will far out-weigh costs in tarpit performance.

3.3 Design
Greasy performs three primary functions: dynamically determining unused IP addresses
on the network, impersonating real hosts by responding to ICMP and TCP packets, and
tarpitting TCP connections by holding the connections open and actively preventing data
transfer. These three functionalities are partitioned among three packet handler class mod-
ules, which are critical components of Greasy’s overall modular design. We opted to build
a modular tarpit application from the ground-up instead of building upon LaBrea’s open-
source code because we wanted a platform that could easily extend the tarpitting func-
tionality of the application to other types of packets or protocols in the future. Currently
LaBrea’s code combines the handling of both TCP and ICMP packets into one large func-
tion with over 200 lines of code, making the code difficult to read and modify. In our
design, we encapsulate the data representation and processing of different packet types
as separate modules, which makes future extensions and modifications to Greasy’s code
easier. We utilize LaBrea’s algorithms for dynamically capturing IP addresses, tarpitting
TCP connections using non-persistent and persistent modes, and handling ICMP packets.
Greasy’s modular design is discussed in detail in Section 3.3.1. Besides modularity, other
notable features of Greasy’s design include its multi-threaded application to further mod-
ularize Greasy’s design by partitioning the different concerns of processing into separate
tasks, and heuristics for deterministic random tarpit behavior, both of which will be further
discussed in Section 3.3.2 and Section 3.3.3.

3.3.1 Modular Design Overview
Greasy’s object oriented design partitions all functionalities among four new classes, a Pri-

orityQueue template that orders packets in a queue by earliest arrival time in a First In
First Out (FIFO) method, and Greasy’s main function, as shown in Figure 3.1. Greasy’s

25

main function contains an array of helper objects from the master class GreaseMonkey,
whose job is to process the packets captured by the sniffer in main. The number of Grease-

Monkey objects in the array is determined by the Standard Template Library (STL) func-
tion std::thread::hardware_currency(), which returns the approximate number of hard-
ware thread contexts supported by the particular system on which Greasy is run. Each
GreaseMonkey object in turn invokes one of the three handler classes to process the packet:
ARP_Handler, ICMP_Handler, or TCP_Handler. In order to support the multi-threaded
design, which will be discussed in Section 3.3.3 we implement a new mutex protected Pri-

orityQueue template class. Greasy’s main function also calls the config_parser.cpp module
to parse the configuration file (Section 3.3.4) and initialize variables and settings. But first,
we discuss the features and algorithms of each packet handler class.

Greasy

GreaseMonkey

1..*

ICMP_Handler

TCP_HandlerARP_Handler

PriorityQueue
<unique_ptr<PDU>>

2 Classes from the libtins packet crafting
and sniffing library:

AddressRange
ARP
EthernetII
IP
ICMP
NetworkInterface
PacketSender
RAWPDU
Sniffer
SnifferConfiguration
TCP
Timestamp

Modular Design

Config_Parser<<uses>>

.
Figure 3.1: UML Class Diagram of Greasy . The black diamond signifies composition, or not-
shared association, in which the class closest to the diamond has exclusive ownership over the
classes at the other end of the arrow in a part-whole relationship. In the diagram GreaseMonkey
contains the three packet handler classes. The numbers next to the PriorityQueue and Grease-
Monkey objects indicate the number of instances of each object. The "1...*" next to the number
indicates 1 or more instances of the object. The arrow from Greasy to the config_parser module
represents a usage relationship, where Greasy uses functions from config_parser to parse the
configuration file. The box on the far right are classes used by Greasy from the Libtins packet
crafting library.

26

Algorithm 1 Algorithm for Dynamically Capturing IP Addresses
1: if Gratuitous ARP then
2: Remove IP address from CAPTURED_IP list and add to REAL_IP list
3: end if
4: if ARP request then
5: if Switched environment then
6: Send mirrored ARP request
7: end if
8: if IP already captured then
9: Send ARP reply immediately

10: else if Soft_capture && (IP not in IP_IGNORE || REAL_IP lists) && IP is part of
fraction of responsive subnet then

11: if IP is entry in ARP_PENDING list then
12: if Time val for entry is 0 then
13: Reset val to current timestamp
14: else if Max timeout reached then
15: Reset val to 0
16: else
17: Capture IP and send ARP reply
18: end if
19: end if
20: end if
21: end if
22: if ARP reply then
23: Remove IP address from ARP_PENDING list and add to REAL_IP list
24: end if

3.3.2 Packet Handler Features and Algorithms

ARP_Handler
The ARP_Handler class module uses the following function to handle incoming ARP pack-
ets: void handle_ARP_req(ARP *arp_recv, EthernetII *eth_recv). This function takes as
parameters pointers to the ARP and Ethernet layers of an incoming packet, extracts re-
quired packet information (e.g., source and destination IP addresses, and source MAC ad-
dress) required to build ARP request or reply packets, and sends outgoing packets back to
its GreaseMonkey instance to be placed on the send_q (Section 3.3.3).

The ARP_Handler uses LaBrea’s algorithm for dynamically capturing unused IP addresses

27

Algorithm 2 Algorithm for function: handle_TCP(...)
1: if IP is in captured list && has corresponding open port then
2: Call build_TCP_pkt(...)
3: if build_TCP_pkt(...) returns true then
4: Send TCP packet to GreaseMonkey instance to be added to send_q
5: end if
6: end if

Algorithm 3 Algorithm for function: build_TCP(...)
1: Generate ISN and random window size
2: if TCP::FLAG == RST then
3: Do not respond
4: else if TCP::Flag == FIN then
5: Do not respond
6: else if TCP::Flag == FIN+ACK then
7: Do no respond
8: else if TCP::Flag == SYN then
9: Build TCP SYN+ACK packet and append set of TCP Options and return true

10: else if TCP::Flag == SYN+ACK then
11: Send TCP RST
12: else if TCP::Flag == ACK then
13: Verify incoming ACK is ISN + 1 and initialize entry for TCP session with tuple
14: if Duplicate_bit set to 1 then
15: Choose duplicate ACK tarpitting behavior
16: else if Duplicate_bit set to 0 then
17: Randomly determine tarpitting behavior out of the 4 modes and invoke

tarpit_opt(...)
18: end if
19: end if

in the LAN to be used as tarpit hosts. Like LaBrea, Greasy also offers the option of
hard capturing IP addresses, for which the user can indicate in the configuration file (Sec-
tion 3.3.4) particular IP addresses or ranges of addresses to capture. The other option is
to soft capture IP addresses, or capture them dynamically. Using LaBrea’s method for lis-
tening for consecutive unanswered ARP requests spaced several seconds apart (default is
3 seconds) before capturing the corresponding IP address, Greasy listens for unanswered
ARP requests for a given IP address within a configurable time frame. If the ARP requests
are unanswered after a minimum time value, Greasy will assume this IP is unused, capture

28

Algorithm 4 Algorithm for function: tarpit_opt(...)
1: Enter switch statement
2: if Partial ACK then
3: Store fraction of incoming payload as ACK value and return true
4: else if Persist then
5: Set window size to 0 and return true
6: else if Non-persist then
7: Drop packet and return false
8: else if Duplicate ACK then
9: if Duplicate_bit set to 0 then

10: Set bit to 1 and return false
11: else if Duplicate_ACK bit is set then
12: if Incoming packet sequence number > stored sequence number in entry then
13: Set ACK as stored sequence number value and increment duplicate_count
14: if Duplicate_count > 3 then
15: Reset duplicate_bit and duplicate_count to 0
16: end if
17: return true
18: end if
19: end if
20: end if

the IP address, and send an ARP reply to the requesting endpoint. The benefit of using time
versus simply counting the number of unanswered ARPs to dynamically determine unused
IP addresses is that it minimizes the chance of an adversary using this ARP reply behav-
ior to fingerprint Greasy. An adversary could potentially observe that a certain number
of unanswered ARP requests are followed by an ARP reply, which may seem suspicious.
By using a configurable time interval, the chance of recognizing Greasy’s ARP behavior is
minimized, which is why we opted to keep LaBrea’s time-based algorithm for determin-
ing unused IP addresses. If Greasy sees a gratuitous ARP request/reply for a captured IP
address, Greasy will release the IP and place it in the REAL_IP list. A gratuitous ARP
request/reply packet contains the source and destination IP address of the machine sending
the packet, and broadcast MAC address ff:ff:ff:ff:ff:ff as the destination MAC address. It
is primarily used to notify other machines in the LAN of updates to other machines’ ARP
tables. For instance one of the applications for a gratuitous ARP request/reply is to update
the ARP tables of other local hosts so they know an IP interface or link has gone up; this

29

also notifies other hosts that a particular IP address is now in use, so as to prevent collisions
in IP address usage [59]. Greasy uses the gratuitous ARP request/reply information to
guarantee it does not continue to capture an IP address that is now occupied by a real host.
Greasy also identifies live hosts by looking for ARP replies. In addition, Greasy will only
capture the IP address if the IP address is part of the configured fraction of IP addresses that
should respond in the subnet. In Section 3.2.1 we discussed how high occupancy subnets
may be indicative of the existence of tarpit hosts. The method for determining whether an
IP address should be captured based on the configured occupancy was discussed in Sec-
tion 3.2.1. Algorithm 1 shows the ARP handler algorithm.

TCP_Handler
The TCP_Handler Class Module contains the heart of Greasy’s tarpitting functionality and
is composed of the handler function and two helper functions:

• void handle_TCP(TCP *tcp_recv, IP *ip_recv, EthernetII *eth_recv, RawPDU

*raw_recv)

• bool build_TCP(TCP & myTCP, TCP *recvTCP, IP *recvIP, RawPDU *recvRaw)

• bool tarpit_opt(int switchNum, TCP *t_recv, TCP & my_t, TCP_tuple key, RawPDU

*r_recv)

The purpose for the TCP_Handler Class is to process all incoming TCP packets, and exe-
cute Greasy’s tarpitting functionality by utilizing heuristics for random tarpitting behavior,
as discussed in Section 3.2.2. The following sections explain the roles of each function in
the TCP_Handler Class.

void handle_TCP(...) : The purpose of this function is to check to make sure that the
target IP address of the associated incoming TCP packet is either in the hard-captured or
soft-captured IP lists. If so, it then checks to see if the target port of interest is open on
the particular tarpit hostIP address (Section 3.2.1). The function then invokes the helper
function bool build_TCP(TCP &myTCP, TCP *recvTCP, IP *recvIP, RawPDU *recvRaw)

to construct a TCP packet and determine whether that TCP packet should be sent to the
GreaseMonkey instance to be added to the send_q (Section 3.3.3). This function takes as
parameters pointers to various layers of the incoming packet (i.e., TCP, IP, Ethernet, and

30

Raw payload) to extract required information to construct a TCP packet. The algorithm is
depicted in Algorithm 2.

bool build_TCP(...) : This helper function (Algorithm 3) constructs a TCP packet in re-
sponse to particular flags set in the incoming TCP packet, and randomly chooses one of the
four tarpitting behaviors to execute. Greasy responds to TCP packets as follows:

• Greasy does not respond to TCP packets with Reset (RST), FIN, or FIN+ACK flags
set. FIN or FIN+ACK packets are an indication that the remote end is attempting to
end the established connection. Because we want Greasy to hold that connection for
as long as possible, we ignore their packet, and instead allow the connection to end
after the timeout.
• Greasy sends a SYN+ACK packet in response to an incoming SYN packet
• Greasy sends a RST packet to incoming SYN+ACK packets. Greasy does not send

SYN packets to establish a TCP connection to any endpoint, so this is not a legitimate
packet.
• Greasy may send an ACK packet in response to incoming ACK packets depend-

ing on the particular tarpit behavior chosen. The helper function bool tarpit_opt(int

switchNum, TCP *t_recv, TCP &my_t, TCP_tuple key, RawPDU *r_recv) generates
the particular tarpit mode behavior and finishes preparing TCP packets, if applicable,
for delivery.

In addition, the function generates an Initial Sequence Number (ISN) to be used in the
SYN+ACK packet (i.e., the second packet in a TCP handshake) that will also be used as
a stateless session identifier to verify that incoming ACK packets have already established
a TCP handshake for a particular session. This works in much the same way as the SYN
cookie (Section 3.1.2). We generate the ISN by using a custom hash modified from this
example [47] to create a deterministically random 32-bit value (see (3.3)). All subsequent
ACK packets with an established TCP handshake should have an ACK value of the ISN +
1.10 By using this method, Greasy can verify the legitimacy of TCP ACK packets without

10The ACK value of the third packet in a TCP handshake is the sequence number from the SYN+ACK
packet incremented by 1. Because Greasy never sends any payload, any subsequent ACK packets received
during the TCP session should have the value of the ISN + 1.

31

having to store this information.

((senderIP∗59)⊕ targetIP⊕ (senderPort << 16)⊕ targetPort⊕0x62EA5E) (3.3)

One additional point to make is that state is maintained in order to execute the duplicate
ACK tarpitting behavior, as discussed in Section 3.2.2. After verifying an ACK packet
using the ISN Greasy adds an entry for the session using source and destination IP ad-
dresses and port numbers. The tuple value for the entry will be used by the helper function
bool tarpit_opt(...) to determine how to process the duplicate ACK tarpitting behavior.
This tuple contains information for the sequence number of the last ACK packet received,
the duplicate_bit, and the duplicate_count value. If the duplicate_bit is set to 1, then this
build_TCP(...) function will choose the duplicate ACK tarpitting behavior in lieu of choos-
ing a tarpit mode randomly. Otherwise if this is 0, then this function will choose a tarpitting
mode at random.

The function build_TCP(...) takes as parameters pointers to various layers of the incoming
packet (i.e., TCP, IP, and Raw payload) to extract required information for the construction
of the TCP packet, and a reference to the TCP packet constructed in the handle_TCP(...)

function. build_TCP(...) returns either true or false to tell handle_TCP(...) whether to send
the constructed TCP packet. The algorithm for this function is depicted in Algorithm 3.

bool tarpit_opt(...) : The purpose of this helper function is to generate the specific tarpit-
ting behavior as chosen by the build_TCP(...) function, and returning either true or false
to the build_TCP(...) function, and subsequently the handle_TCP(...) function to indicate
whether or not to send the constructed TCP packet to the GreaseMonkey instance. The four
tarpitting behaviors, implemented as case statements, are:

• Partial ACK mode
• Persistent mode
• Non-persistent mode
• Duplicate ACK mode

The partial ACK mode is generated by taking the size of the raw payload of the incoming
ACK packet and dividing that size using a denominator value chosen at random using

32

rand() from a static set of values (i.e., ranges from 3 to 8). The resultant value is then added
to the incoming ACK packet’s sequence number and stored as the ACK value of Greasy’s
constructed TCP packet. It returns true.

The persist mode is generated by setting the receive window of the constructed TCP packet
to zero and returns true. The non-persistent mode is achieved by not responding to the
incoming ACK packet and returning false.

The duplicate ACK mode first checks the duplicate_bit stored in the tuple value of the TCP
session entry. If the bit is 0, then Greasy sets the bit to 1, drops the packet, and returns
false, forcing the remote end to retransmit the packet. The purpose for dropping the packet
at this step is just to encourage more retransmissions from the remote end. Greasy begins
sending duplicateACK packets the next time it receives an ACK packet. If the bit is set to
1, then Greasy checks to make sure the stored sequence number for the TCP session is less
than or equal to the sequence number of current incoming ACK packet to ensure Greasy

does not ACK a value larger than the current sequence number. If it is, then Greasy sets the
ACK value for the constructed TCP packet using the stored sequence number, increments
the duplicate_count value by 1, and returns true. This mode will send a duplicate ACK
packet two additional times for a total of 3 duplicate ACK packets to mimic the behavior of
out-of-order packets sent by the remote end. After the third duplicate ACK packet is sent,
Greasy sets the duplicate_bit and duplicate_count values to 0.

The tarpit_opt(...) takes as parameters the case statement number that indicates the tarpit-
ting mode chosen, pointers to the TCP and Raw payload layers of the incoming packet,
the TCP session entry key to access the tuple data, and a reference to Greasy’s constructed
TCP packet. The algorithm is depicted here Algorithm 4.

ICMP_Handler
The ICMP_Handler impersonates a real host by sending ICMP [60] echo replies to remote
hosts. The handler first checks to see if the target IP of the incoming ICMP request is
captured. If it is, then the handler will send an echo reply. The goal for handling ICMP
echo requests is to create the illusion of live hosts, as adversaries typically use ICMP pings
to quickly establish a list of active hosts on a network during their information gathering

33

phase. There is no tarpit signature associated with ICMP packet handling, and we do
not expect to see Greasy perform any differently than LaBrea since Greasy uses LaBrea’s
algorithm for handling ICMP packets.

3.3.3 Multi-threaded Application Design
The multi-threaded aspect of Greasy was designed and implemented by Professor Justin
Rohrer. The purpose for including a multi-threaded component to Greasy is two-fold. The
first objective is to parallelize tasks in order to handle the potentially large capacity of
incoming network traffic to produce a highly scalable application. The second objective
is to further modularize Greasy’s design by partitioning the different processing concerns
into separate tasks. Greasy’s multi-threaded design consists of five or more threads, as seen
in Figure 3.2. Greasy contains a main thread, whose primary responsibility is to perform
all of Greasy’s program initializations as well as wait for other threads to finish in order to
exit safely and cleanly. Greasy contains two other threads: sniff_thread and fs_thread. The
purpose for the sniff_thread is to execute the sniffer in order to monitor the network, filter
traffic by packet type, and place the packets onto the mutex protected priority queue called
pdu_q. The fs_thread, also called frame_send thread, takes packets off the PriorityQueue,
send_q, and send those packets off to the network. Each GreaseMonkey worker instance
has a thread whose job is to remove a packet from pdu_q, process the packet using one
of the three packet handlers discussed in Section 3.3.1, and place the packet to send in
response to the processed packet (if applicable) onto send_q. There is also a thread for
Easylogging++, a library package used for logging that is further discussed in Section 3.4.
This thread is used by all the other classes for logging statements.

3.3.4 Configuration File and Parser
Greasy includes a configuration file that provides the user the flexibility to choose ini-
tialization and operational settings. The configuration file is partitioned into three main
areas: initialization, IP capture settings, and tarpit behavior settings. Initialization settings
include:

• Specification of the device interface for Greasy’s sniffer
• Manual specification of the IP address and subnet for a non-configured interface

34

Multithreaded Programming

Greasy

<< sniff_thread >>
sniff_loop():

while(status) {
set pdu_ptr to the pdu object

captured by
sniffer.next_packet();

insert pdu_ptr to pdu_q;
}

<< fs_thread >>

frame_sender():
while(fs_status) {

set frame to the pdu_ptr
removed from send_q;

send *frame using sender.send();
}

<< logger thread >>

Easylogging++
<< main thread >>

<< mutex region>>

send_q

<< mutex region>>

pdu_q

<< the_thread>>

threadMain():
while(!stop_thread) {

remove pdu_ptr from pdu_q;
classify the type of *pdu_ptr;
call the corresponding handler

to process the *pdu object;
add pointer to the responding

pdu object created by the
handler to send_q;

}

worker[i] : GreaseMonkey

Figure 3.2: Multi-Threaded Design. The arrows in the figure show the control flow of tasks
among the threads and queues. Greasy consists of five or more threads.

• And the option to ignore an initial ARP used before the start of the program in order
to determine live hosts and exclude them from being tarpitted.

The IP capture settings include:

• Indication of a switched environment11

• Specification of IP addresses to hard-capture and the option of specifying a particular
fraction of the subnet to capture
• Specification of IP addresses to exclude from capture
• Setting the soft capture option and choosing a particular fraction of the subnet to

capture
• Setting the maximum and minimum values for the ARP handler as explained in Sec-

tion 3.3.2

11A switched environment prevents Greasy from seeing potential ARP replies in response to ARP requests
because the packet frame is sent directly to the port of the requesting host instead of being broadcast to all
ports on a device.

35

The following configuration settings are available for tarpit behavior:

• Setting the maximum receive window size as discussed in Section 3.2.2
• Specifying Greasy listen to all ports. This setting is available but highly discouraged

as described in Section 3.2.1.

3.4 Implementation
Greasy is written in native C++ and uses STLs. A large bulk of the program calls classes
and functions from the Libtins packet crafting library [61]. The Libtins classes used
by Greasy include: AddressRange, ARP, EthernetII, IP, ICMP, NetworkInterface, Pack-

etSender, RawPDU, Sniffer, SnifferConfiguration, TCP, and Timestamp. We chose to use
this particular packet crafting library because it is C++ compatible, IPv4 and IPv6 enabled,
and cross-platform, which is useful for when we extend Greasy to be used on Windows and
other operating system platforms. We also used Libconfig [62] for configuration manage-
ment, Easylogging++ [63] for its light-weight, robust, and performance logging capabili-
ties for C++11 or higher, and POSIX threads (also known as pthreads) [64] for standardized
C++ language threading programming interface. The development platform was a 64-bit
Ubuntu 14.04 virtual machine.

36

CHAPTER 4:
Experiments and Results

We conducted several experiments using a select set of metrics to measure the impact of
implementing new tarpitting capabilities and other improvements in Greasy, particularly
in the areas of deception and tarpitting performance. This chapter describes the chosen
metrics, experimental set-up and design, and analysis of the results.

4.1 Metrics
We chose three metrics to evaluate Greasy’s deceptiveness and tarpitting ability compared
to that of an existing tarpit application, LaBrea. The metrics included are:

• Effectiveness Against Degreaser

• Degree of Stickiness
• Packet Latency

Other metrics examined but not used in our evaluation of Greasy’s improvements include
CPU utilization, memory consumption, and reliability. These metrics are useful in eval-
uating overall tool performance, but are out of the scope of this thesis, since we focus
our attention on measuring one particular aspect of Greasy’s performance (i.e., tarpitting
performance). Our chosen metrics are directed at measuring Greasy’s tarpitting improve-
ments.

4.1.1 Effectiveness Against Degreaser
One of the main objectives for this thesis is to better obscure network tarpits from tarpit
scanners like Degreaser. This metric measures the number of tarpit hosts versus real hosts
identified in a given subnet. Degreaser scans a subnet or list of subnets and classifies
each responding IP address as unresponsive, a tarpit, or a real host. Depending on the
particular tarpit-like behavior observed from incoming TCP SYN+ACK and ACK packets,
Degreaser further classifies the IP as a particular type of tarpit (e.g., LaBrea persistent or
non-persistent, iptables tarpit or iptables delude, or unknown) [5]. We use LaBrea as our

37

control, and run Degreaser on both LaBrea and Greasy tarpit hosts. We expect Degreaser

to classify the large majority of Greasy tarpit hosts as real hosts, since we mitigate tarpit
signatures (i.e., small TCP window size and lack of TCP options) that Degreaser uses to
identify tarpits.

4.1.2 Degree of stickiness
We also want to measure the effectiveness of Greasy’s tarpitting capability (i.e., its sticki-
ness, or ability to hold onto a connection for longer periods of time). We further break this
category into two sub-metrics:

1. Number of Packets Transferred
2. Duration of Tarpit Connections

Number of Packets Generated
We claim that the number of packets transferred during a tarpitted connection between a
tarpit and remote host within a given timeframe may be indicative of the tarpit’s ability to
keep a remote host engaged and the connection open (i.e., an indication of the stickiness
of the connection). For instance, a remote end engaged in a connection with a tarpit host
may end up expending time and bandwidth resources to send large amounts of packet
retransmissions or zero window probes to hold the connection open. However, there is
also the possibility that the remote end may consume resources, like memory, to hold a
connection open without sending or receiving traffic. We use this metric to help us correlate
the number of packets transmitted in a tarpitted connection and Greasy’s ability to hold a
sticky connection.

We measure this metric by calculating the number of packets both sent and received by a
tarpit in a given connection. We define traffic going from one endpoint to another endpoint
in a connection as a flow identified by a 5-tuple identifier: source IP address, destination
IP address, source port number, destination number, and protocol. For instance, traffic
from host A to host B is considered a flow with a 5-tuple identifier, and traffic from host
B to host A is considered another flow with a different 5-tuple identifier. We infer which
two endpoints are associated in a particular tarpitted connection by their respective 5-tuple
identifiers. A flow may expire if it receives a FIN+ACK packet, RST packet, or sees a SYN

38

or SYN+ACK for the establishment of a new TCP handshake [65]. We restart the counters
for the number of packets sent and received by a tarpit when a TCP SYN+ACK packet is
observed in a tarpit flow, indicating the start of a new tarpit connection between the tarpit
and the same remote end.

Duration per Connection
The length of time, in seconds, that a tarpitted connection remains open is also indicative of
the stickiness of the tarpit. Our intuition is that the longer the tarpit can hold a connection
with the remote host, the more effective a tarpit is at exhausting the remote host’s time,
bandwidth, and memory in keeping the connection open, as well as delay the remote host
from scanning elsewhere. We measure this metric by using packet timestamps found in a
packet capture to calculate the duration for a given tarpitted connection. Using the 5-tuple
identifier, we infer the two endpoints associated with a particular tarpitted connection and
calculate the total time of the connection. The counter for the duration of a given tarpitted
connection restarts when a TCP SYN+ACK packet is observed in the flow from the tarpit.

4.1.3 Packet Latency
We also want to measure performance advantages or disadvantages of Greasy compared
to LaBrea using our packet latency metric. Specifically, this metric measures the amount
of overhead in packet handling (if any) Greasy incurs as observed through one aspect of
end-to-end latency. We claim that Greasy may be more detectable if an adversary observes
a noticeable packet latency. End-to-end latency is a function of transmission, propaga-
tion, queuing and processing delays [66]. Thus, we may see a wide variety of observed
Round Trip Time (RTT) results on the Internet from any given vantage point. Transmission
propagation and queuing delays are affected by packet length, link throughput, and link
distance, among other factors, and may be constant values. Processing delay is implemen-
tation specific, and in our case, a potentially variable value. Our goal is to obtain a baseline
RTT measurement for a particular network, and observe whether RTT values deviate from
the expected RTT range. Deviation may be attributable to extra processing delay by the
tarpit application, or perhaps another latency factor, such as queuing delay. We do expect
that RTT measurements between two IP addresses on the same subnetwork will not have

39

a statistical difference between their delay distributions because latencies caused by prop-
agation and transmission delays, for example, should be minimized due to a shorter link
distance. Thus we include a vantage point on the subnetwork to mitigate or minimize the
effects of some end-to-end latencies.

We use a modified version of Trabelsi et al.’s RTT detection technique to measure this met-
ric [67]. In their work, Trabelsi et al. use this technique for the detection of sniffers on the
LAN. Using the RTT of ICMP [68]12 packets and a statistical model (z-statistic [69]) and
hypothesis testing they were able to distinguish between hosts in normal mode and those in
promiscuous mode [70] (i.e., sniffing mode). This technique is used for our packet latency
metric because both LaBrea and Greasy use sniffers that monitor the network promiscu-
ously to capture packets. We first gather training data (i.e., RTT measurements from ICMP
packets sent to a control subnet with real hosts), then gather RTT measurements from both
Greasy and LaBrea subnets. Using this data we compute RTT averages, standard devia-
tions, and percent of change from the training data. To determine whether the RTT samples
of Greasy and LaBrea are distinguishable from that of the control, we use hypothesis test-
ing. Our null hypothesis is that the tarpit sample and control population are the same
population, and our alternative hypothesis is that they represent different populations. We
then calculate the z-statistics for both Greasy and LaBrea using (4.1).

z =
M−µ

SE
(4.1)

M is the sample tarpit mean, μ is the control mean, and SE is the standard error unit. This
z-value indicates the number of standard deviations the average RTT value of the tarpit is
from the average RTT value of the control. SE is defined in (4.2):

SE =
σ√

n
(4.2)

12ICMP offers a system-level feedback communication mechanism independent of the host, and as such
ICMP delays are generally decoupled from a host’s processing load. In fact, many ICMP packets are directly
processed and sent on the Network Interface Card (NIC) [68]. ICMP packets make excellent candidates for
packet latency measurements because their processing delays are typically independent of the host’s load.

40

where σ is the control standard deviation, and n is the sample tarpit count. We use a two-
tailed test [69] to capture extreme z-values, and use the critical values 2.58 and -2.58 to give
us a 99% confidence level whether to reject or accept the null hypothesis. If the calculated
z-statistic is greater than or equal to 2.58 or less than or equal to -2.58, we can then reject the
null hypothesis with 99% confidence. We expect Greasy to have some packet latency due
to packet handling functions and implementation of the Libtins sniffer. The Libtins sniffer
is implemented in kernel-space, and handles all the input and output actions for packets
captured or sent by the sniffer. The sniffer may experience delays due to kernel processing
or the underlying mechanism the Libtins sniffer may interact with the kernel. The rest
of the packet parsing/processing and packet crafting utilities for Greasy are implemented
in user space, which may also be the source of packet latency due to specific function
implementations, as well as delays due to transferring packets and control between kernel
and user space.

4.2 Experimental Setup

4.2.1 Platform
We deployed Greasy and LaBrea on a FreeBSD 10.2-RELEASE-p7 i386 platform located
on an East Coast US network with access to a /17 network telescope [71].13

Figure 4.1 shows the set-up of both Greasy and LaBrea tarpit applications on the Internet-
facing network telescope. Each tarpit application occupies a /24 subnet on the telescope’s
/17 subnet. In the figure, the arrow shows traffic coming into the network telescope from the
Internet. The elipses on either side of the /24 subnets indicate other /24 subnets that are on
the /17 subnet. We wanted to deploy Greasy and LaBrea on two adjacent /24 subnets, how-
ever the amount of incoming traffic to each /24 subnet was a factor we could not control.
In order to decrease the amount of variability in our results due to traffic load variance, we
monitored network traffic on the /17 IP space using tcpdump [72], a command-line packet
analyzer, for one month in October 2015 in order to determine which two adjacent /24
subnets received similar amounts of traffic. For the most part, the majority of /24 subnets

13Network telescopes utilize unused IP address space for monitoring activity on the Internet at large. For
instance, they can passively collect incoming traffic, or “backscatter” from a Distributed Denial of Service
(DDoS) attack [71].

41

.
Figure 4.1: Experimental Setup for Greasy and LaBrea/24 Subnets on the /17 Network Telescope

received around 200,000 packets daily, or approximately 2.3 packets per second. Fig-
ure 4.2 is a snapshot of one day’s worth of incoming network traffic that was seen in our
daily measurements throughout October. There was one subnet in particular that was an

42

outlier for all packet captures, receiving as many as 800,000 packets per day (9.3 packets
per second). This result is attributed to large amounts of ICMP ping scans and TCP SYN
scans to one particular IP address. Other subnets also experienced scanning from the same
IP addresses but no where near as large a scanning volume. Since the majority of the sub-
nets received similar amounts of traffic, we arbitrarily chose to run Greasy and LaBrea on
two adjacent anonymized /24 subnets.

Text

.
Figure 4.2: Number of Packets Received Per /24 Subnet of the /17 Subnet on 10/27/15. This
is just a snapshot of daily traffic seen in October.

43

4.2.2 Procedures

Degreaser Experiment

We ran Degreaser on a CentOS Linux release 7.2.1511 machine located at Naval Postgrad-
uate School (NPS). The Degreaser program takes as inputs the target subnets and network
device interface used to capture packets, and outputs results as specified in Section 4.1.1.

Stickiness Experiment

To measure the stickiness of the tarpits, we conducted the following procedures for the
experiments:

• Configured Greasy to capture 100% of the IP addresses in its /24 subnet. (LaBrea

captures 100% of the IP addresses by default).
• Configured both LaBrea and Greasy to hard-capture IP addresses, rather than capture

IPs dynamically in order to create a more controlled experiment environment.
• Ran Greasy and LaBrea on their respective /24 subnets for 28 days total:

– 14 days with LaBrea configured to tarpit connections in non-persistent mode
– 14 days with LaBrea configured to tarpit in persistent mode

• Collected network traffic using the tcpdump utility, and filtered packet capture files
to isolate packets from Greasy and LaBrea hosts.
• Parsed packet capture files to obtain measurement parameters as noted in Sec-

tion 4.1.2, and calculated Greasy’s degree of stickiness compared to that of LaBrea.

In addition, because both /24 subnets may receive variable amounts of traffic, we ran
Greasy, LaBrea in persistent mode, and LaBrea in non-persistent mode each for 24-hours
and collected network traffic using tcpdump to obtain data for our degree of stickiness
experiments.

We also checked for possible outages by making sure that the programs were still running
on the FreeBSD machine everyday and that there was traffic coming from the two /24
subnetworks. We checked the latter by reviewing the packet capture files. There were no
outages observed for the 28 days.

44

Packet Latency Experiment
Packet RTTs may be altered by distance (i.e., the number of intermediate devices the packet
must travel through to get from point A to point B) and network congestion, among other
factors. The machine running both Greasy and LaBrea is located in Massachusetts, whereas
we are located in California, so our RTT results may be skewed by distance and network
interference. Our control /24 anonymized subnet is also located in Massachusetts. To get
a more accurate picture of packet latency, we used three different vantage points to ping
Greasy and LaBrea hosts: a Mac OS X Version 10.10.5 machine on a home residential net-
work in California, the CentOS Linux release 7.2.1511 machine at NPS, and the FreeBSD

10.2-RELEASE-p7 machine on the telescope. We sent three pings to each host in each sub-
net (i.e., subnets with LaBrea, Greasy, and real hosts), and calculated the average RTTs,
standard deviations, percent of change compared to our control sample, and z-values for
both Greasy and LaBrea. 254 hosts were up on both Greasy’s and LaBrea’s subnets and
only 14 hosts were up on the control subnet. We sent a total of 762 pings to LaBrea and
Greasy’s subnets, and 42 pings to the control subnet. We did not experience any packet loss
when pinging from the local East Coast vantage point, which was expected since it was on
the same subnetwork as the three subnets. We did experience some packet loss from both
our NPS and residential vantage points, around 3-5 packets out of 762 pings to each subnet,
but that did not affect our overall results because of the large amount of RTT measurement
data we obtained and because we ran this experiment three times to verify our results.

4.3 Results and Analysis
The following section details the results of our experiments, and analyses of Greasy’s de-
ceptiveness, degree of stickiness, and measure of packet latency overhead.

4.3.1 Experiment: Deceptiveness
As shown in Table 4.1 Degreaser classified 100% of LaBrea’s hosts as tarpits, whereas
Degreaser was only able to classify 2.8% of Greasy’s hosts as tarpits. Degreaser classified
all hosts without TCP options and/or a window size smaller than 20 bytes as a tarpit. The
2.8% of Greasy’s hosts were identified as LaBrea tarpits because they exhibited window
sizes of 0 bytes when they executed the persistent mode tarpit behavior. We cannot use

45

persist mode with a window greater than 0 bytes because persist mode is required to have
a 0 window. One way to mitigate this detection might be to decrease the number of times
persist mode is chosen for Greasy’s random tarpitting behavior, or eliminate this tarpitting
behavior entirely. However, persist mode proves to be quite effective at tarpitting a connec-
tion, as will be discussed in Section 4.3.2, so we definitely still want to keep persist mode
as a tarpitting option. Despite the small percent of identified tarpits, our results show that
Greasy successfully deceived Degreaser by implementing randomized tarpit behavior and
adding TCP options. We expected this outcome because previously tarpit signatures were
trivial to detect. However, in addition to mitigating these signatures, we further improve
tarpitting features and raise the cost for adversaries to detect Greasy.

Table 4.1: Number of Real Hosts versus Tarpit Hosts Identified by Degreaser
Classification LaBrea Greasy

Number of Real Hosts 0 247
Number of Tarpit Hosts 254 7

4.3.2 Experiment: Degree of Stickiness
We collected two sets of data to measure Greasy’s degree of stickiness compared to LaBrea:
14 days of network traffic with LaBrea running in non-persist mode only and 14 days of
network traffic with LaBrea running in persist mode only. Greasy’s configurations did not
change throughout the 28 days. Because the speed of network scanning occurs on the order
of seconds [73], we measured the degree of stickiness for both tarpits at the hour-level of
granularity and binned all results into one-hour intervals. We also noticed that much of the
network traffic observed from our packet captures are TCP half-open scans, in which the
remote end sends a TCP SYN packet, Greasy responds with a TCP SYN+ACK packet, and
the remote end does not send another ACK to complete the handshake. Because we wanted
to make sure these scans did not skew our data analysis, we created two sets of data for both
14-day periods. One set is comprised of both TCP half open scan traffic and TCP traffic
with an established handshake (which we subsequently refer to as total flows in following
discussions), and the other set only has TCP traffic with an established handshake (which
we refer to as handshake flows).

Using the 5-tuple identifier as a key in a dictionary, we keep count of the number of packets

46

sent by each flow. Everytime the tarpit sends a SYN+ACK packet to establish a new TCP
handshake, we store the previous value for number of packets sent by the flow and restart
the counter. We then plot these values as boxplots and Cumulative Distribution Function
(CDF) plots to get the overall distribution of packets within each hour bin.

In general we noticed that values returned from the data set comprised of total flows con-
sisted of mean and median values 50% less than those from the data set comprised of
handshake flows only. We include the boxplots and CDF plots from our total flows data set
as reference but only mention results that come from the data set with handshake flows in
following discussions. Because our goal is to measure the stickiness of the tarpitted con-
nection, and tarpitting heuristics only begin after the establishment of a TCP handshake,
we want to make sure we tailor our analyses to the tarpitting portion of the connection,
rather than refer to data skewed by incomplete TCP handshakes.

Figure 4.3 shows the boxplots for packets sent per flow for Greasy compared to LaBrea in
non-persist mode during the first 14 days. The distribution of the number of packet sent
by Greasy ranges from 1 to 22,261 packets. The median range among the hour bins is
1 to 6 packets, with a mean of 13.6 packets sent per flow. Most of Greasy’s values lie
below 2,500 packets per flow. The major outlier is the the flow with 22,261 packets. This
value may be attributed to the duplicate ACK tarpitting behavior that requires the tarpit
to send 3 duplicate ACK packets to the remote end to force the remote end to perform a
packet retransmission. LaBrea has a distribution and median range of 1 packet per flow
across all hour bins, and a mean of 1 packet per flow. This is expected because LaBrea

non-persist only sends a TCP SYN+ACK in response to an incoming SYN and drops all
other packets. Figure 4.4 is a CDF plot of the same results.

47

Figure 4.3: Boxplot of Packets Sent per Flow (Greasy versus LaBrea Non-Persist)

Figure 4.4: CDF of Packets Sent per Flow (Greasy versus LaBrea Non-Persist)

48

Figure 4.5 shows the packets received per flow for Greasy compared to LaBrea in non-
persist mode. The distribution of packets received by LaBrea ranges from 1 to 51 packets
per flow, while the median range among the hour bins is 2 to 10 packets per flow, and a
mean of 2.7 packets per flow. The distribution for Greasy’s plots range from 1 to 22,261
packets per flow with a median range of 1 to 2 packets per flow and an average 12.6 packets
per flows. Figure 4.6 represents the packet distribution as a CDF.

Based on our results, LaBrea in non-persist mode receives more packets than it sends,
which is expected since LaBrea only sends 1 packet per flow. Greasy’s overall distribution
of packets per flow, median values and mean values are similar for both packets sent and
received by Greasy. This may indicate that Greasy sends as many packets as it receives to
keep the remote end engaged in the tarpitted connection. The distribution range of packets
received per flow for Greasy is larger than that for LaBrea in non-persist mode. Greasy’s
plots have greater outliers and variability in results compared to LaBrea in non-persist
mode. However, Greasy’s median ranges for packets received are slightly less than those
for LaBrea. One explanation for this is that Greasy experienced many connections that end
immediately after the TCP handshake is established, which is characteristic of some TCP
SYN scans initiated by the remote end. The averages for the number of packets sent and
received by Greasy are larger than those values for LaBrea, by about 300%.

49

Figure 4.5: Boxplot of Packets Received per Flow (Greasy versus LaBrea Non-Persist)

Figure 4.6: CDF of Packets Received per Flow (Greasy versus LaBrea Non-Persist)

50

Figure 4.7 shows packets sent per flow from LaBrea in persist mode versus Greasy. The
distribution of packets sent for LaBrea ranges from 1 to 6,062 packets per flow, with a
median range of 1 to 60 packets among the hour bins, and an average of 38.4 packets sent
per flow. The distribution of packets for Greasy ranges from 1 to 4,572 packets per flow,
with a median range of 1 to 7 packets among all hour bins and an average of 5.2 packets
sent per flow. The CDF plot in Figure 4.8 for total flows shows that the plots for LaBrea in
persist mode sends on average of 33.2 more packets in compared to Greasy.

Figure 4.7: Boxplot of Packets Sent per Flow (Greasy versus LaBrea Persist)

51

Figure 4.8: CDF of Packets Sent per Flow (Greasy versus LaBrea Persist)

Figure 4.9 and Figure 4.10 show the distribution of packets received by Greasy compared
to LaBrea in persist mode. LaBrea’s packet distribution ranges from 1 to 6,062 packets per
flow, with a median range of 2 to 60 packets per flow and an average of 38.4 packets per
flow. Greasy’s packet distribution ranges from 1 to 4,565 packets per flow for handshake

flows and 1 to 5,099 packets per flow for total flows. The median range Greasy is 1 to 2
packets per flow, with a mean value of 5.1 packets per flow.

The median ranges for packets received by LaBrea in persist mode are larger than those for
Greasy. LaBrea has a cluster of values close to 6,000 packets across a number of hour bins
for both plots for packets received and packets sent per flow. The plots show that LaBrea

in persist mode sent and received on average 33 more packets than Greasy, which may be
an indication that LaBrea holds a longer tarpit connection. It is important to note that the
particular mean and median scores a completely dependent on the amount of traffic coming
into subnetworks. During the first 14 days, Greasy had an average of 12 to 13 packets sent
and received per flow. However, during the latter 14 days, Greasy only had an average of
around 5 packets sent and received per flow. So although LaBrea outperformed Greasy by
an average of 33 packets per flow, or 6 times that of Greasy, this magnitude of difference
is not fixed. LaBrea in persist mode may have more packets transmitted per flow due to a
longer connection duration.

52

Figure 4.9: Boxplot of Packets Received per Flow (Greasy versus LaBrea Persist)

Figure 4.10: CDF of Packets Received per Flow (Greasy versus LaBrea Persist)

53

Next we analyze the duration per connection by using the 5-tuple identifier and identify-
ing associated endpoints involved in a tarpitted connection to compute the duration per
connection. Everytime the tarpit sends a SYN+ACK packet to establish a new TCP hand-
shake, we store the previous value for the number of seconds per connection and restart the
counter. We then plot these values as boxplots and CDF plots to get the overall distribution
of duration values within each hour-bin. Similar to the results from number of packets sent
and received per flow, we observe that data sets with total flows do tend to skew the data
analyses by lowering median and mean values, compared to the data set composed only of
flows from connections with TCP established handshakes.

Greasy’s duration distribution ranges from 0 to 3,600 seconds per connection. The median
range is 0 to 99 seconds per connection, with an average of 61.3 seconds per connection.
The duration distribution for LaBrea in non-persist mode ranges from 0 to 2,056 seconds
per connection, with a median range of 0 to 117 seconds per connection, and a mean of 7.1
seconds per connection. Although the maximum median value for LaBrea in non-persist
mode is approximately 18 seconds greater than Greasy’s mean values, Greasy’s average
duration is around 54 seconds greater than LaBrea’s average duration. Because LaBrea

in non-persist mode only sends one packet (i.e., the second packet in the TCP conver-
sation) the duration per connection is dependent on the amount of time spaced between
retransmission packets and the quantity of retransmitted packets. Figure 4.11 shows that
the majority of LaBrea’s duration outliers are approximately 150 seconds per connection
and below, with sparsely scattered values in the 2,000 seconds range. Greasy, on the other
hand, has duration outliers around 250 seconds per connection as well as a large number
of duration values in the 3,500 seconds range. Figure 4.12 shows these results as a CDF
plot. Greasy has a longer duration per connection compared to LaBrea in non-persist mode
because LaBrea drops all packets after the initial TCP handshake, so the connection even-
tually times out on the remote end after a number of retransmission attempts. We expect
Greasy to have a longer duration per connection because of its random tarpitting behavior
that does not simply drop packets.

54

Figure 4.11: Boxplot of Duration per Connection (Greasy versus LaBrea Non-Persist)

Figure 4.12: CDF of Duration per Connection (Greasy versus LaBrea Non-Persist)

Figure 4.13 shows the boxplot for the duration distribution for Greasy compared to LaBrea

55

in persist mode. Greasy’s duration distribution ranges from 0 to 3,562 seconds per connec-
tion. Greasy’s median range spans from 0 to 93 seconds, with an average of 45.7 seconds
per connection. LaBrea’s distribution of values ranges from 0 to 3,600 seconds per con-
nection. The median range of values spans from 0 to 3,535 seconds per connection, with
an average of 2,316.0 seconds per connection. LaBrea’s tarpitted connections last on aver-
age almost 2,300 seconds longer than those of Greasy. Figure 4.14 further highlights the
distribution of duration values from Greasy compared to LaBrea in persist mode. LaBrea’s
duration results are significantly greater than Greasy’s, which were expected because of
the nature of a persistent connection. As discussed in Chapter 2, the length of a persistent
connection is dependent on the configurations of the remote end, so it is possible that a
persistent tarpit connection can last indefinitely.

Because the volume and types of traffic hitting each subnet may vary, we chose a subnet
to run Greasy for 24 hours, LaBrea in persist mode for 24 hours and LaBrea in non-persist
mode for 24-hours. We re-ran the experiments that measure the tarpit’s degree of stickiness
and compare the results to those discussed earlier. We arbitrarily chose to use Greasy’s
subnet to run each of the three tarpit applications during their 24-hour time-slot.

56

Figure 4.13: Boxplot of Duration per Connection (Greasy versus LaBrea Persist)

Figure 4.14: CDF of Duration per Connection (Greasy versus LaBrea Persist)

57

Figure 4.15 and Figure 4.16 show the duration distributions for Greasy, LaBrea in persist
mode, and LaBrea in non-persist mode. We observe that LaBrea in persist mode had the
greatest average duration per connection of 1035.7 seconds. Greasy averaged 18.1 sec-
onds per connection, followed by LaBrea in non-persist mode that averaged 15.9 seconds
per connection. These results are in line with our expectations, which indicates that the
particular subnet on which the tarpit application ran did not affect duration results.

Figure 4.15: Boxplot of Duration per Connection (Same /24 Subnet)

Figure 4.16: CDF of Duration Per Connection (Same /24 Subnet)

58

We observe that the results for the number of packets both received and sent by the tarpit
applications are the same for each tarpit. LaBrea in persist mode sent and received on
average 20 packets per flow, Greasy 7 packets packets per flow, and LaBrea in non-persist
mode 2 packets per flow. Figure 4.17, Figure 4.18, Figure 4.19, and Figure 4.20 show the
distribution of packets for each of the three tarpit applications/modes. These results match
our earlier observations for number of packets per flow.

Figure 4.17: Boxplot of Packets Sent per Flow (Same /24 Subnet)

Figure 4.18: CDF of Packets Sent per Flow (Same /24 Subnet)

59

Figure 4.19: Boxplot of Packets Received per Flow (Same /24 Subnet)

Figure 4.20: CDF of Packets Received per Flow (Same /24 Subnet)

The results from our experiments measuring each tarpit’s degree of stickiness indicate that
there is a correlation between the duration of a connection and the number of packets
transmitted during a connection. Because the duration of a connection is quite indicative
of the tarpit’s stickiness, we can infer that the number of packets transmitted during the
connection also affects the tarpit’s stickiness. LaBrea in persist mode sends and receives the
most packets and holds the longest connections on average, followed by Greasy. LaBrea

60

in non-persist mode comes in third in terms of stickiness.

4.3.3 Packet Latency
We ran the packet latency experiment three times and collected three sets of RTT measure-
ments from each vantage point-subnet pair. For each pair, we calculated the average RTT
and standard deviation. The RTT values are shown in Tables 4.2, 4.3, and 4.4. Then for
each vantage point, we calculated the percent of change of the tarpit sample mean compared
to the control mean. Using the z-statistic model described in Section 4.1.3 we calculated
the z-statistic values as shown in Tables 4.5, 4.6, and 4.7. Overall both LaBrea and Greasy

had z-values much smaller than our left-tail critical value -2.58 and much greater than our
right-tail critical value 2.58, respectively. LaBrea had an average z-value of -39.40 and
Greasy an average z-value of 25.07. We were able to reject our null hypothesis with 99%
confidence indicating that both tarpit samples represented different populations from the
control. The one exception is the z-statistic from the third run using our residential vantage
point, where LaBrea had a z-value of 0.05 between -2.58 and 2.58, well within our null hy-
pothesis, shown in Table 4.7. But because this value was only one out of the nine calculated
z-values for LaBrea that was within range of our critical values, we went with the majority
of LaBrea’s z-values. As expected, the closer the vantage point is to the target subnet, the
smaller the RTT values. It is interesting to note that the largest and percent of change val-
ues for Greasy and LaBrea, respectively, are from observed from our closest vantage point,
the local subnet. This is further observed in the Probability Distribution Function (PDF)
of RTT measurements from each of the runs using each vantage point. Figure 4.21, Fig-
ure 4.22, and Figure 4.23 show the PDFs of results using our residential vantage point. The
distributions are fairly similar in these Figures, with LaBrea’s distribution shifted slightly
to the left of the control distribution, and Greasy’s distribution shifted slightly to the right;
RTT values are generally between 100-200 ms. Figure 4.22 shows Greasy with a wider
range of RTT values, resulting in a wider curve. Figure 4.24, Figure 4.25, and Figure 4.26
show PDFs of results from our NPS vantage point. Again, we see LaBrea’s distribution
located more to the left of the control curve, and Greasy’s distribution located only slightly
more to the right of the control distribution. RTT values range from 80-90ms. The PDFs
of results from our local subnet vantage point show the greatest variability in distribution,
as shown in Figure 4.27, Figure 4.28, and Figure 4.29. The range of RTT values for both

61

Greasy and LaBrea lie within the range of values of the control, but the distributions are
distinct from that of the control. Although the z-values reveal that both LaBrea and Greasy

represent different populations from our control at a millisecond-level of granularity, Ta-
bles 4.2, 4.3, and 4.4 show that both LaBrea and Greasy’s RTT values differ only by less
than a second, which is not a noticeable difference.

Table 4.2: Average RTT Measurements from Run 1
Vantage Points Control LaBrea Greasy

Residential 114.24 ms. 116.28 ms. 116.97 ms.
NPS 82.23 ms. 81.48 ms. 82.56 ms.
Local 1.26 ms. 0.51 ms. 1.65 ms.
Table 4.3: Average RTT Measurements from Run 2

Vantage Points Control LaBrea Greasy
Residential 135.87 ms. 128.92 ms. 133.77 ms.

NPS 82.37 ms. 81.56 ms. 82.64 ms.
Local 1.41 ms. 0.52 ms. 1.63 ms.
Table 4.4: Average RTT Measurements from Run 3

Vantage Points Control LaBrea Greasy
Residential 127.24 ms. 127.25 ms. 130.54 ms.

NPS 82.30 ms. 81.53 ms. 82.95 ms.
Local 1.25 ms. 0.51 ms. 1.66 ms.

Figure 4.21: PDF of RTT
Measurements from Run 1
of Latency Experiment Using
Residential Vantage Point.

Figure 4.22: PDF of RTT
Measurements from Run 2
of Latency Experiment Using
Residential Vantage Point.

Figure 4.23: PDF of RTT
Measurements from Run 3
of Latency Experiment Using
Residential Vantage Point.

62

Table 4.5: Z-statistic and Percent of Change Results from Run 1 of Latency Experiment
Vantage Points LaBrea % Change LaBrea SE Greasy % Change Greasy SE

Residential 1.78% 16.40 2.39% 21.97
NPS -0.92% -248.11 0.40% 108.92
Local -59.32% 28.98 31.05% 15.16

Table 4.6: Z-statistic and Percent of Change Results from Run 2 of Latency Experiment
Vantage Points LaBrea % Change LaBrea SE Greasy % Change Greasy SE

Residential -5.12% -20.62 -1.55% -6.16
NPS -0.98% -35.42 0.33% 11.85
Local -63.22% -24.39 15.66% 6.04

Table 4.7: Z-statistic and Percent of Change Results from Run 3 of Latency Experiment
Vantage Points LaBrea % Change LaBrea SE Greasy % Change Greasy SE

Residential 0.01% 0.05 2.60% 15.48
NPS -0.93% -43.74 0.78% 36.79
Local -59.05% -27.76 33.08% 15.55

Figure 4.24: PDF of RTT
Measurements from Run 1
of Latency Experiment Using
NPS Vantage Point.

Figure 4.25: PDF of RTT
Measurements from Run 2
of Latency Experiment Using
NPS Vantage Point.

Figure 4.26: PDF of RTT
Measurements from Run 3
of Latency Experiment Using
NPS Vantage Point.

63

Figure 4.27: PDF of RTT
Measurements from Run 1
of Latency Experiment Using
Local Subnet Vantage Point.

Figure 4.28: PDF of RTT
Measurements from Run 2
of Latency Experiment Using
Local Subnet Vantage Point.

Figure 4.29: PDF of RTT
Measurements from Run 3
of Latency Experiment Using
Local Subnet Vantage Point.

64

CHAPTER 5:
Conclusion and Future Work

5.1 Conclusion

Using the experiments discussed above, we measured Greasy’s ability to deceive De-

greaser, degree of stickiness compared to LaBrea, and potential processing overhead as
observed by packet latency. Degreaser was only able to successfully identify 2.8% of
Greasy’s tarpit hosts as tarpits. This indicates that we effectively mitigated the two main
tarpit signatures used by Degreaser’s tarpit identification heuristics: lack of TCP options
in TCP packets sent by the tarpit, and TCP receive window size.

One of our biggest contributions for this thesis was to run Greasy in production on an
Internet-facing /24 subnet. We were able to receive real traffic on the network and study
Greasy’s ability to handle and interact with a bombardment of various scans and probes
from unknown remote sources. Our stickiness experiments revealed that Greasy was able
to tarpit a connection longer than LaBrea in non-persist mode. Greasy sent 6 times more
packets than LaBrea, and kept the connection alive 7 times longer than LaBrea. LaBrea in
persist mode outperformed Greasy in stickiness. LaBrea sent around 6 times more pack-
ets than Greasy, and held the connection for a significantly longer duration than Greasy–
around 50 times longer. LaBrea in persist mode is able to keep a stickier connection be-
cause, according to the TCP protocol, it can hold a persistent connection for an indefinite
amount of time until the remote end disconnects, or deadlock indefinitely [34] as discussed
in Chapter 2. For instance, range of values for duration distribution for LaBrea in persist
mode span from 0 to 3600 seconds, which equals 1 hour. Because we bin our results by
hours, it is possible there are connections held indefinitely that are missed in our analysis
because the TCP handshake was established in an earlier bin. Although LaBrea in persist
mode is able to keep a connection tarpitted longer than Greasy, it is easily detected be-
cause of its predictable constant zero window size. Greasy, on the other hand, incorporates
persist mode, along with three other tarpitting modes to create random tarpitting behav-
ior. So although Greasy may not hold the stickiest connection, it successfully improves

65

its tarpitting capabilities, while still evading detection. A simple solution to increasing the
stickiness of Greasy’s connections is to alter its tarpitting algorithm to increase the proba-
bility that persist mode is chosen, but at a rate that still ensures Greasy will not be detected.
Our experiment to measure the degree of stickiness of a tarpit showed that there is a loose
correlation between the number of packets transferred within a tarpit connection and the
total duration of the connection. The longer the duration of a connection, the more pack-
ets transferred in that connection. However, this is only a loose correlation because it is
possible that connections are held open for a long duration while only a few packets are
transferred between two endpoints.

We used the packet latency tests to measure the amount of overhead, as observed by packet
latency, that Greasy may incur due to its implementations and inclusion of the libtins snif-
fer. This experiment revealed that both Greasy and LaBrea have ICMP RTT mean values
that lie outside the normal range of control RTT means at the millisecond level of granu-
larity. We used a two-tailed hypothesis test to test for extreme values from the mean, and
chose critical values -2.58 and 2.58 to decide whether to accept or reject the null hypothe-
sis that the control and tarpit samples are the same population (i.e., normal hosts and tarpit
hosts are indistinguishable by packet latency). Greasy had z-values much larger than 2.58,
an average z-value of 25.07, and LaBrea had z-values much smaller than -2.58, an aver-
age z-value of -39.40. Thus, we reject the null hypothesis with a 99% confidence level.
However, despite rejecting the null hypothesis, the actual mean RTT values for Greasy

and LaBrea differ from the control mean RTTs by about 1 ms, which is not a noticeable
difference, so packet latency as measured using ICMP RTTs is negligible.

In addition to developing a tarpit with overall improved tarpit performance, we also pro-
vide an extensible platform on which to further develop and advance Greasy’s tarpitting
capabilities.

5.2 Future Work

5.2.1 Improvements on Current Implementations
Greasy’s current implementation maintains state to operate the duplicate ACK tarpitting
behavior. This could lead to performance degradation and scalability issues if the machine

66

running Greasy exhausts its memory due to the large volume of connections Greasy must
remember. Ideally a modified implementation will make use of TCP/IP header values and
the SYN cookie-like hashing algorithm to maintain minimal state.

Another improvement is to increase the stickiness of Greasy’s tarpit. Currently, its degree
of stickiness lies between that of LaBrea in non-persist mode and LaBrea in persist mode.
We try to balance the line between detectability and deceptiveness versus improving tarpit-
ting capabilities. Our experiments show that LaBrea in persist mode holds the stickiest
connections but is also trivial to detect because of its constant and predictable zero win-
dow. One of our main goals is to build application-level tarpitting capabilities in Greasy,
so perhaps the level of stickiness can improve at the application-level vice TCP level to
make the tarpit both less detectable and stickier.

5.2.2 Additional Features
Greasy provides a foundational and extensible platform for future tarpit development. The
three main areas we would like to extend Greasy is in IPv6 compatibility, operating system
portability, and Application-Layer tarpitting functionality to create tarpit profiles that corre-
late open ports, TCP options and MAC addresses into a believable Operating System (OS)
stack.

IPv6
Adversaries target both IPv4 and IPv6 hosts in their scanning operations, so we want to ex-
tend Greasy’s functionality to also handle IPv6 packets. The 128-bit IPv6 address increased
the difficulty for a scanner to locate vulnerable targets using IPv4 random scanning tech-
niques [74]. However, worms may be able to overcome this large search space and continue
their scanning operations in IPv6 space by leveraging weaknesses in certain IPv6 features.
For instance, unlike IPv4 which uses ARP to resolve IP addresses to MAC addresses on a
LAN, IPv6 uses a Neighbor Discovery [75] protocol. Through this mechanism, adversaries
may be able to consult host routing tables or passively listen as a participant in the routing
protocol to identify live hosts on the LAN. IPv6 also uses multicast to send packets to all
hosts on the LAN. Adversaries may abuse this feature by sending multicast messages to
find all routers or hosts on the LAN [74].

67

We must add a new module in Greasy to handle IPv6 soft-capturing, since IPv6 uses the
Neighbor Discovery protocol instead of ARP for IP to MAC addresses mapping. The
Neighbor Discovery protocol uses Neighbor Solicitation messages to resolve link-layer
addresses of neighboring nodes or confirm neighbor reachability [75]. Neighbor Adver-
tisement messages are used in response to Solicitation messages, and may also be used
to announce link-layer address changes, similar to the gratuitous ARP. While waiting for
Advertisement messages, the requesting node should retransmit Neighbor Solicitation mes-
sages every RetransTimer milliseconds. If no Neighbor Advertisement message is received
after MAX_MULTICAST_SOLICIT solicitations, then address resolution failed, and an In-
ternet Control Message Protocol Version 6 (ICMPv6) host unreachable message is returned.
Libtins supports both implementations of IPv6 and ICMPv6 packet crafting and handling,
so Greasy will be able to easily add soft-capturing of IPv6 packets using this Neighbor
Discovery protocol [75]. A new module for TCP packet handling of IPv6 hosts must also
be added to Greasy since deterministic random hashing functions have to be modified to
cater to the IPv6 address structure.

Portability
We want to be able to deploy Greasy on any given operating system to cater to users’
preferences and allow for wider deployment of this tarpit. Greasy’s current implementation
is compatible with FreeBSD and Ubuntu Linux distribution platforms. It has not been tested
on other operating systems. The Libtins packet crafting library is portable on Windows,
OSX, in addition to little and big endian GNU/Linux and FreeBSD operating systems [61].
Libtins has special instructions for its packet sniffing and sending functions when running
applications on Windows, but for the most part, the underlying code structure of Greasy

should not change from operating system to operating system.

Application Layer Tarpitting
Besides TCP-level tarpitting, we can leverage specific features of certain protocols to create
an application specific tarpit aimed at producing a more realistic and stickier tarpit product.
We hope to extend Greasy’s tarpitting capabilities by adding application layer tarpitting in
addition to its current TCP layer tarpitting. Motivation for expanding Greasy’s functional-
ity to handle application-level tarpitting stems from a couple of reasons. One reason is to

68

include application-level tarpitting for realism. We want to generate responses an adver-
sary expects to see when connecting to a particular service to help the adversary believe the
tarpit is a real host. We also want to have actual data to send in order to maintain a more per-
sistent connection without being detected. In addition, we want to allow better integration
with existing honeypots that currently perform application-layer functionalities. Several
suggested application layer protocols that Greasy should tarpit include Secure Shell (SSH),
SMTP, and HTTP, among others.

SSH Tarpitting : SSH [76] is an encrypted protocol used to create secure remote log-in
sessions and other network services such as forwarded TCP/IP and X11 connections. SSH
servers that are not public facing require the remote client to enter login credentials (i.e.,
username and password) in order to authenticate to the server. One method of tarpitting the
remote client is to add a configurable delay between the client’s initial SSH login attempt
and the sending of the login prompt.

SMTP Tarpitting : Similar to SMTP tarpits [43] introduced in Chapter 2, we can leverage
certain features like continuation lines in order to tarpit adversaries attempting to send bulk
spam. The goal is to make use of SMTP’s continuation line scheme to clog up the con-
nection by sending tons of continuation lines with fake messages. This forces the remote
end to continue to wait until the multi-line message is finished. As explained in Chapter 2,
this method alone is not at all effective against an adversary as they are able to parallelize
the process, and existing SMTP tarpits can only tarpit one connection at a time. We can
take advantage of Greasy’s multi-threading capabilities to try to parallelize this tarpitting
capability, as well as implement our hashing algorithms to keep track of tarpitted SMTP
connections without maintaining state.

HTTP Tarpitting : Adversaries dig through web pages for information such as email ad-
dresses and domain names to look for vulnerable hosts [43] in addition to IP scanning.
Similar to HTTP tarpits discussed in Chapter 2, we can foil an adversary in their attempt to
gather information via webpages by creating random webpages with fake information and
allow Greasy to tarpit these HTTP connections.

Border Gateway Protocol (BGP) Tarpitting : BGP [77] is used to exchange routing and
reachability information among Autonomous Systems (ASs) [78] (i.e., groups of connected

69

IP prefixes). BGP routing worms take advantage of BGP routing tables to learn about
the distribution of vulnerable hosts in a particular routing space. A suggested BGP tarpit
implementation includes the addition of fake entries in the BGP routing tables to create
the illusion of the existence of vulnerable hosts. This will cause the adversary to spend
additional time interacting with these fake hosts.

Domain Name System (DNS) Tarpitting : DNS [79] is used to resolve domain names
to numerical IP addresses, and vice versa. Adversaries take advantage of the DNS in-
frastructure to guess DNS names instead of IP addresses in order to find likely vulnerable
targets [80]. Additionally, despite the greater costs (e.g., time) of issuing a DNS query
compared to randomly scanning IP addresses, Kamra et al. found that DNS random IPv6
scanning produced worm propagation speeds comparable to that of traditional random IPv4
scanning [80]. We can easily deceive adversaries by associating fake domain names to
Greasy’s pool of fake IP addresses. Althogh this tarpit may be useful, it is currently out of
the scope of Greasy’s current implementation because it would require implementation of
UDP tarpitting.

70

List of References

[1] V. Yegneswaran, P. Barford, and J. Ullrich, “Internet intrusions: global characteris-
tics and prevalence,” ACM SIGMETRICS Performance Evaluation Review, vol. 31,
no. 1, pp. 138–147, 2003.

[2] A. Dainotti, A. King, and K. Claffy, “Analysis of Internet-wide probing using dark-
nets,” in Proceedings of the 2012 ACM Workshop on Building analysis datasets and
gathering experience returns for security. ACM, 2012, pp. 13–14.

[3] M. A. Rajab, F. Monrose, and A. Terzis, “On the Effectiveness of Distributed Worm
Monitoring.” in Usenix Security, 2005.

[4] T. Olzak, “The five phases of a successful network penetration,” TechRepublic, 2008.
[Online]. Available: http://www.techrepublic.com/blog/it-security/the-five-phases-
of-a-successful-network-penetration/

[5] L. Alt, R. Beverly, and A. Dainotti, “Uncovering network tarpits with Degreaser,” in
Proceedings of the 30th Annual Computer Security Applications Conference. ACM,
2014, pp. 156–165.

[6] T. Liston, “LaBrea,” 2003. [Online]. Available: http://labrea.sourceforge.net/labrea.
1.txt

[7] Y. Song, S. Shin, and Y. Choi, “Network Iron Curtain: Hide Enterprise Networks
with Openflow,” in Information Security Applications. Springer, 2014, pp. 218–230.

[8] D. Moore, C. Shannon et al., “Code-Red: a case study on the spread and victims of
an Internet worm,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment. ACM, 2002, pp. 273–284.

[9] S. Shin and G. Gu, “Conficker and beyond: a large-scale empirical study,” in
Proceedings of the 26th Annual Computer Security Applications Conference. ACM,
2010, pp. 151–160.

[10] Z. Durumeric, M. Bailey, and J. A. Halderman, “An Internet-wide view of Internet-
wide scanning,” in USENIX Security Symposium, 2014.

[11] V. Yegneswaran, P. Barford, and D. Plonka, “On the design and use of Internet sinks
for network abuse monitoring,” in Recent Advances in Intrusion Detection. Springer,
2004, pp. 146–165.

71

http://www.techrepublic.com/blog/it-security/the-five-phases-of-a-successful-network-penetration/
http://www.techrepublic.com/blog/it-security/the-five-phases-of-a-successful-network-penetration/
http://labrea.sourceforge.net/labrea.1.txt
http://labrea.sourceforge.net/labrea.1.txt

[12] N. C. Rowe and H. C. Goh, “Thwarting cyber-attack reconnaissance with incon-
sistency and deception,” in Information Assurance and Security Workshop, 2007.
IAW’07. IEEE SMC. IEEE, 2007, pp. 151–158.

[13] F. Cohen, “A note on the role of deception in information protection,” Computers &
Security, vol. 17, no. 6, pp. 483–506, 1998.

[14] D. Evans, A. Nguyen-Tuong, and J. Knight, “Effectiveness of moving target
defenses,” in Moving Target Defense. Springer, 2011, pp. 29–48.

[15] A. Barfar and S. Mohammadi, “Honeypots: intrusion deception,” ISSA Journal, pp.
28–31, 2007.

[16] L. Spitzner, “The Honeynet Project: Trapping the hackers,” IEEE Security & Privacy,
no. 2, pp. 15–23, 2003.

[17] S. O. Hunter, “Virtual Honeypots: Management, attack analysis and democracy,”
2010.

[18] C. Ruvalcaba, “Smart IDS – Hybrid LaBrea Tarpit,” SANS Institute, Report, 2009.

[19] V. Oppleman, “Network Defense Applications using IP Sinkholes.”

[20] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling, “The nepenthes
platform: An efficient approach to collect malware,” in Recent Advances in Intrusion
Detection. Springer, 2006, pp. 165–184.

[21] H. Artail, H. Safa, M. Sraj, I. Kuwatly, and Z. Al-Masri, “A hybrid honeypot
framework for improving intrusion detection systems in protecting organizational
networks,” computers & security, vol. 25, no. 4, pp. 274–288, 2006.

[22] R. Joshi and A. Sardana, Honeypots: A New Paradigm to Information Security. CRC
Press, 2011.

[23] T. Liston, “LaBrea: "sticky" Honeypot and IDS.” [Online]. Available:
http://labrea.sourceforge.net/labrea-info.html

[24] F. Pouget and M. Dacier, “White paper: Honeypot, honeynet: A comparative survey,”
Technical Report RR-03-082, Institut Eurecom, Tech. Rep., 2003.

[25] J. Kristoff, “TCP Congestion Control,” Tech Notes, 2002.

[26] T. Socolofsky and C. Kale, “A TCP/IP Tutorial,” RFC 1180, Internet Engineering
Task Force, 1991. [Online]. Available: https://tools.ietf.org/html/rfc1180

72

http://labrea.sourceforge.net/labrea-info.html
https://tools.ietf.org/html/rfc1180

[27] L. Haig, “LaBrea–A New Approach to Securing our Networks,” SANS Institute,
Report, 2002.

[28] R. Braden, “Requirements for Internet Hosts – Communication Layers,”
RFC 1122, Internet Engineering Task Force, 1989. [Online]. Available:
https://tools.ietf.org/html/rfc1122

[29] S. Cheshire, “IPv4 Address Conflict Detection,” RFC 5227, Internet Engineering
Task Force, 2008. [Online]. Available: https://tools.ietf.org/html/rfc5227

[30] H. Arora, “Hubs vs Switches vs Routers – Networking Device Fundamentals,” The
Geek Stuff, 2013.

[31] “Transmission Control Protocol,” RFC 793, Internet Engineering Task Force, 1981.
[Online]. Available: https://tools.ietf.org/html/rfc793

[32] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Increasing TCP’s Initial
Window,” RFC 6928, Internet Engineering Task Force, 2013. [Online]. Available:
https://tools.ietf.org/html/rfc6928

[33] M. Bashyam, M. Jethanandani, and A. Ramaiah, “TCP Sender Clarification for
Persist Condition,” RFC 6429, Internet Engineering Task Force, 2011. [Online].
Available: https://tools.ietf.org/html/rfc6429

[34] K. R. Fall and W. R. Stevens, TCP/IP illustrated, volume 1: The protocols. addison-
Wesley, 2011.

[35] J. Freniche, “TCP Window Probe Deadlock,” Internet Engineering Task Force, 1998.
[Online]. Available: https://tools.ietf.org/html/draft-rfced-info-freniche-00

[36] M. Allman, V. Paxson, and W. R. Stevens, “TCP Congestion Control,”
RFC 2581, Internet Engineering Task Force, Apr. 1999. [Online]. Available:
https://tools.ietf.org/html/rfc2581#section-3.2

[37] S. Floyd, T. Hnderson, and A. Gurtov, “The NewReno Modification to TCP’s Fast
Recovery Algorithm,” RFC 3782, Internet Engineering Task Force, Apr. 2004.
[Online]. Available: https://www.ietf.org/rfc/rfc3782.txt

[38] T. Holz and F. Raynal, “Detecting honeypots and other suspicious environments,” in
Information Assurance Workshop, 2005. IAW’05. Proceedings from the Sixth Annual
IEEE SMC. IEEE, 2005, pp. 29–36.

[39] A. Hopkins, “TARPIT-iptables TARPIT target.” [Online]. Available: http:
//www.netfilter.org/projects/patch-o-matic/pom-external.html

73

https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc5227
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc6928
https://tools.ietf.org/html/rfc6429
https://tools.ietf.org/html/draft-rfced-info-freniche-00
https://tools.ietf.org/html/rfc2581#section-3.2
https://www.ietf.org/rfc/rfc3782.txt
http://www.netfilter.org/projects/patch-o-matic/pom-external.html
http://www.netfilter.org/projects/patch-o-matic/pom-external.html

[40] S. Mukkamala, K. Yendrapalli, R. Basnet, M. Shankarapani, and A. Sung, “Detection
of virtual environments and low interaction honeypots,” in Information Assurance
and Security Workshop, 2007. IAW’07. IEEE SMC. IEEE, 2007, pp. 92–98.

[41] K. Gubbels, “Hands in the honeypot,” GIAC Security Essentials Certification
(GSEC), 2002.

[42] T. Eggendorfer, “Reducing spam to 20% of its original value with a SMTP tar pit
simulator,” in In MIT Spam Conference. Citeseer, 2007.

[43] T. Eggendorfer, “A proposal for an efficient way to prevent spam by analysing SMTP
and HTTP tar pits towards their efficiency in fighting spam and combining them,”
in Proceedings of the 10th WSEAS international conference on Communications.
World Scientific and Engineering Academy and Society (WSEAS), 2006, pp.
449–454.

[44] J. B. Postel, “Simple Mail Transfer Protocol,” RFC 821, Internet Engineering Task
Force, 1982. [Online]. Available: https://tools.ietf.org/html/rfc821

[45] D. J. Bernstein, “SYN cookies,” 1996.

[46] “TCP Option Kind Numbers,” IANA. [Online]. Available: http://www.iana.org/
assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1

[47] [Online]. Available: http://pastebin.com/u5YWvbVw

[48] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, “Using prime numbers for cache
indexing to eliminate conflict misses,” in Software, IEE Proceedings-. IEEE, 2004,
pp. 288–299.

[49] M. Zalewski, “p0f - fingerprint database.” [Online]. Available: https:
//github.com/p0f/p0f/blob/master/p0f.fp

[50] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgement Options,” RFC 2018, Internet Engineering Task Force, 1996.
[Online]. Available: https://tools.ietf.org/html/rfc2018

[51] D. Eastlake 3rd and J. Abley, “IANA Considerations and IETF Protocol and
Documentation Usage for IEEE 802 Parameters,” RFC 7042, Internet Engineering
Task Force, 2013. [Online]. Available: https://tools.ietf.org/html/rfc7042

[52] “Guidelines for 48-bit Global Identifier (EUI-48),” IEEE Standards Association.
[Online]. Available: https://standards.ieee.org/develop/regauth/tut/eui48.pdf

74

https://tools.ietf.org/html/rfc821
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
http://pastebin.com/u5YWvbVw
https://github.com/p0f/p0f/blob/master/p0f.fp
https://github.com/p0f/p0f/blob/master/p0f.fp
https://tools.ietf.org/html/rfc2018
https://tools.ietf.org/html/rfc7042
https://standards.ieee.org/develop/regauth/tut/eui48.pdf

[53] “IEEE Standards Association Registration Authority.” [Online]. Available:
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries

[54] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321, Internet Engineering
Task Force, 1992. [Online]. Available: https://www.ietf.org/rfc/rfc1321.txt

[55] EC-Council, Penetration Testing: Network Threat Testing. USA: Cengage Learning,
2010.

[56] “Appendix C. Common Ports.” [Online]. Available: http://web.mit.edu/rhel-
doc/4/RH-DOCS/rhel-sg-en-4/ch-ports.html

[57] G. Huston, “IPv4: How long do we have?” The Internet Protocol Journal, vol. 6,
no. 4, pp. 2008–2010, 2003.

[58] “Internet-Wide Scan Data Repository,” 2014. [Online]. Available: https:
//scans.io/study/sonar.http

[59] H.-J. Shiau, “Understanding Gratuitous ARPs,” 2014.

[60] “Internet Control Message Protocol,” RFC 792, Internet Engineering Task Force,
1981. [Online]. Available: https://tools.ietf.org/html/rfc792

[61] M. Fontanini, “Libtins: packet crafting and sniffing library.” [Online]. Available:
http://libtins.github.io

[62] “Libconfig - C/C++ Configuration File Library.” [Online]. Available: http:
//www.hyperrealm.com/libconfig/

[63] “Easylogging.” [Online]. Available: https://github.com/easylogging/easyloggingpp

[64] B. Barney, “POSIX Threads Programming,” Lawrence Livermore National Labora-
tory, 2015.

[65] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954, Internet Engineering Task Force, 2004. [Online]. Available: http:
//tools.ietf.org/html/rfc3954.html

[66] T. Nadeau, M. Morrow, G. Swallow, D. Allan, and S. Matasushima, “Operations
and Management (OAM) Requirements for Multi-Protocol Label Switched (MPLS)
Networks,” RFC 4377, Internet Engineering Task Force, 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4377

75

https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
https://www.ietf.org/rfc/rfc1321.txt
http://web.mit.edu/rhel-doc/4/RH-DOCS/rhel-sg-en-4/ch-ports.html
http://web.mit.edu/rhel-doc/4/RH-DOCS/rhel-sg-en-4/ch-ports.html
https://scans.io/study/sonar.http
https://scans.io/study/sonar.http
https://tools.ietf.org/html/rfc792
http://libtins.github.io
http://www.hyperrealm.com/libconfig/
http://www.hyperrealm.com/libconfig/
https://github.com/easylogging/easyloggingpp
http://tools.ietf.org/html/rfc3954.html
http://tools.ietf.org/html/rfc3954.html
https://tools.ietf.org/html/rfc4377

[67] Z. Trabelsi, H. Rahmani, K. Kaouech, and M. Frikha, “Malicious sniffing sys-
tems detection platform,” in Applications and the Internet, 2004. Proceedings. 2004
International Symposium on. IEEE, 2004, pp. 201–207.

[68] M. A. Sportack, TCP/IP first-step. Pearson Education, 2004.

[69] “Z-score: Definition, Formula and Calculation.” [Online]. Available: http:
//www.statisticshowto.com/how-to-calculate-a-z-score/

[70] “promiscuous mode.” [Online]. Available: http://searchsecurity.techtarget.com/
definition/promiscuous-mode

[71] B. Irwin, “Network Telescope Metrics,” in Southern African Telecommunications
and Applications Conference (SATNAC), 2012.

[72] “TCPDUMP & LIBPCAP.” [Online]. Available: http://www.tcpdump.org

[73] M. Allman, V. Paxson, and J. Terrell, “A brief history of scanning,” in Proceedings
of the 7th ACM SIGCOMM conference on Internet measurement. ACM, 2007, pp.
77–82.

[74] S. M. Bellovin, B. Cheswick, and A. Keromytis, “Worm propagation strategies in an
IPv6 Internet,” LOGIN: The USENIX Magazine, vol. 31, no. 1, pp. 70–76, 2006.

[75] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor Discovery for
IP version 6 (IPv6),” RFC 4861, Internet Engineering Task Force, 2007. [Online].
Available: https://tools.ietf.org/html/rfc4861

[76] T. Ylonen and C. Longvick, “The Secure Shell (SSH) Transport Layer
Protocol,” RFC 4253, Internet Engineering Task Force, 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4253

[77] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),”
RFC 4271, Internet Engineering Task Force, 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4271

[78] J. Hawkinson and T. Bates, “Guidelines for creation, selection, and registration of
an Autonomous System (AS),” RFC 1930, Internet Engineering Task Force, 1996.
[Online]. Available: https://tools.ietf.org/html/rfc1930

[79] P. Mockapetris, “Domain Names - Concepts and Facilities,” RFC 1034, Internet
Engineering Task Force, 1987. [Online]. Available: https://tools.ietf.org/html/rfc1034

76

http://www.statisticshowto.com/how-to-calculate-a-z-score/
http://www.statisticshowto.com/how-to-calculate-a-z-score/
http://searchsecurity.techtarget.com/definition/promiscuous-mode
http://searchsecurity.techtarget.com/definition/promiscuous-mode
http://www.tcpdump.org
https://tools.ietf.org/html/rfc4861
https://tools.ietf.org/html/rfc4253
https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc1930
https://tools.ietf.org/html/rfc1034

[80] A. Kamra, H. Feng, V. Misra, and A. D. Keromytis, “The effect of DNS delays on
worm propagation in an IPv6 Internet,” in INFOCOM 2005. 24th Annual Joint Con-
ference of the IEEE Computer and Communications Societies. Proceedings IEEE,
vol. 4. IEEE, 2005, pp. 2405–2414.

77

THIS PAGE INTENTIONALLY LEFT BLANK

78

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

79

	Introduction
	Motivation
	Research Questions
	Summary of Contributions and Findings
	Thesis Structure

	Background
	Cyber Deception
	Honeypots
	Network Tarpits
	Related Work

	Requirements and Design
	Requirements
	Improvements
	Design
	Implementation

	Experiments and Results
	Metrics
	Experimental Setup
	Results and Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	List of References
	Initial Distribution List

