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ABSTRACT 

Development and acquisition of naval communication, data, and radar systems for 

ships is an almost entirely modular process. For this reason, virtually all existing systems 

have separate controllers, antennas, and transmitters. However, future systems could use 

existing planar antennas that operate across a range of frequencies and create a variety of 

complex waveforms, eliminating the need to develop separate antennas and transmitters. 

Additionally, frequency use plans are expensive in terms of time and effort to develop 

and change. The “Integrated Topside (InTop) joint Navy industry open architecture 

study” published in 2010 described the need for an integrated sensor and communication 

system that is modular, scalable, and capable of performing multiple functions. Such a 

system requires a scheduling and frequency deconfliction tool that is capable of 

representing the current antenna configuration and matches those capabilities with 

requests for frequency space and time. This thesis describes SPECTRA, an integer linear 

program that can prioritize and optimize the scheduling of available antennas to 

deconflict time, frequencies, systems and capabilities. It can be uniquely tailored to any 

platform including naval warships, aircraft, and ground sites.  
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EXECUTIVE SUMMARY 

Development and acquisition of naval communication, data, and radar systems for 

warships is an almost entirely modular process. Virtually all new communication, data, 

and radar systems have separate controllers, antennas, and transmitters (Office of Naval 

Research 2002). However, new systems could use planar arrays that can operate across a 

range of frequencies and create a variety of complex waveforms, eliminating the need to 

develop unique antennas and transmitters for future systems.  

Frequency use plans are expensive to develop and change in terms of time and 

effort. This is due in part to the inability of warships’ electromagnetic systems to operate 

dynamically across the spectrum (Carter 2013). Bureaucratic and administrative spectrum 

allocations further restrict warships to the parts of the spectrum allowed by agreement 

and law, and each warship’s unique equipment configuration further restricts where it can 

operate inside that framework. During peacetime operations, this rigidity is deceptively 

workable. During wartime, however, movement across the spectrum may be a necessity. 

An ability to adapt quickly to changing demands would likely result in increased 

survivability and lethality.  

The InTop (Integrated Topside) program has resulted in a number of smaller 

multi-function arrays that are capable of performing the same tasks currently performed 

by many different antennas. Adopting a single multifunction array would change 

operational and system development paradigms. Operationally, an electronically 

controlled antenna would have the ability to maneuver rapidly within the spectrum. 

Developmentally, new capabilities could be introduced in the form of a software updates 

or modular central processing units (CPU) that contain the logic for new capabilities. 

This shift in design requires a scheduling program that is capable of optimizing the use of 

the antenna. This scheduling software can be used to deconflict all electronic emissions 

from both onboard and offboard assets. This includes, but is not be limited to, 

communications, data, electronic support, electronic attack, and radar signals. 
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This thesis describes SPECTRA, a mixed integer linear model capable of 

performing the function of frequency and time deconfliction in a multifunction system 

and multiple legacy systems. 

SPECTRA is capable of managing prioritized missions and requests and matching 

them with available antenna resources. SPECTRA provides frequency deconfliction, if 

desired, and ensures that antenna resources are utilized efficiently. SPECTRA is capable 

of scheduling complicated large-scale spectrum use plans, but SPECTRA can also be 

used to rapidly schedule smaller warship operations. Fast schedule generation is a vital 

step toward rapid, dynamic frequency management. Maneuverability across the spectrum 

is necessary for the efficient use of the available spectrum space and is a vital component 

of electromagnetic protection (EP) and electromagnetic attack (EA). The model is also 

capable of allocating unused resources to fulfill additional requests from external sources 

after completing its primary tasks. This expanded capability opens up the reality of radio 

frequency task sharing across platforms or around the world.  

SPECTRA also has the ability to perform dynamic frequency deconfliction that 

might be required because of friendly, neutral, or adversarial interference. New frequency 

usage plans can be generated that move or shift frequencies that have become unavailable 

for use dynamically. Such plans can be shared across platforms for a more efficient use of 

the electromagnetic spectrum.  
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I. PROBLEM AND BACKGROUND 

A. PROBLEM  

The Integrated Topside (InTop) program integrates a series of antenna designs 

allowing for transmissions over a wide frequency spectrum. The particular InTop antenna 

that served as the focus for this thesis is composed of several larger arrays divided into 

smaller sub-arrays. These sub-arrays increase the number of tasks that could be 

performed by a single aperture. The Office of Naval Research (ONR) working with the 

Navy Research Laboratory (NRL) as part of the InTop program is exploring the 

feasibility of placing a series of antennas with these characteristics on U.S. Naval 

warships. Logically, multifunction antennas capable of performing more than one task 

must have a means to schedule and prioritize tasks. A multifunction antenna needs a 

program that rapidly optimizes scheduling of the antenna’s resources, one capable of 

taking multiple requests from multiple missions and prioritizing them according to a 

commander’s intent.  A program is required to take advantage of such multifunction 

systems.  

This thesis describes SPECTRA, a linear optimization model designed to work 

with a ship’s multifunction antenna, which possesses the capability to schedule legacy 

antenna systems. The benefits of SPECTRA include the ability to prioritize tasks, to 

facilitate rapid switching between tasks, and to maximize the use of available radio 

frequency systems to enhance the overall effectiveness of warship capabilities.  

B. BACKGROUND 

Antennas for radio frequency (RF) systems on warships are typically designed for 

a single purpose. Individual antennas are normally optimized for frequency, radiation 

pattern, polarity, and power requirements. In 2002, ONR highlighted the increases in the 

numbers of antennas and the negative effects that they have on warships. 

[A]part from the continuously increasing procurement and maintenance 
costs of individual “stovepipe” antenna types—has increased ships’ radar 
cross-sections. The need for new antennas also has required extensive  
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modifications in ship design to manage the added weight, as well as 
complex restrictions on use to minimize dangerous electronics 
interference. (Office of Naval Research 2002)  

Additionally, warships’ superstructures are cluttered with single purpose 

antennas. The superstructures of ships are metal and antenna transmission patterns 

change because of the presence of metal and other antennas. This typically results in 

three undesirable conditions. First, antenna patterns are unpredictable for both 

transmission and reception. Antennas mounted on metal structures are subject to 

interference from that same structure. In some cases, null zones are created where 

transmission or reception is not possible or severely degraded. Unobscured space on a 

warship’s superstructure is limited. Since these physical limitations are permanent and 

are harder to design away, warships are at times required to execute course corrections to 

compensate for transmission or reception nulls created by their own masts.   

Second, antennas that have similar operational frequencies can receive energy 

from other antennas and often require shielding or filters to remove the extraneous 

signals. In some cases, large portions of the frequency spectrum become unusable due to 

mutual interference between similar systems. Large systems with very high power 

requirements can create interference with other receivers located at higher or lower 

multiples of the larger system’s transmission frequency. These frequencies may become 

unusable unless a system can be retuned to avoid this interference.  

Third, energy is wasted by using increased power for transmissions to compensate 

for the lack of directionality and signal sidelobes. Some antennas are omnidirectional, 

while others are directional. Omnidirectional antennas provide a wider area of 

transmission and reception; in most cases, they are used for large area communication. 

The use of an omnidirectional antenna is inefficient if the direction of the intended 

recipient is known. Using an omnidirectional antenna in this case wastes energy 

transmitting away from the intended recipient.  
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C. CURRENT METHODS 

Changing radio frequencies of systems using existing processes is usually labor 

intensive. First, a new frequency assignment must be administratively deconflicted from 

frequencies used locally by other entities. Second, the new frequency must be 

deconflicted from other frequencies already in use by other systems onboard the warship. 

Finally, the new frequency must be selected on the equipment itself. This process may 

require a significant amount of time. The additional time and effort required to make 

adjustments sometimes results in the systems becoming, in essence, fixed over time and 

predictable. Occasionally, interfering systems are simply turned off and not used when 

they might otherwise be available if the frequency could be changed quickly. When a 

ship operates all of its systems on set frequencies for long periods of time, the ship 

becomes predictable and vulnerable to electronic surveillance and attack.  

D. PROPOSED SOLUTION 

The InTop program includes a multifunction antenna designed to fit on the 

superstructure of a warship in a multiple sector configuration similar to a SPY-1 array. 

Transmission beams are steered electronically and are not as susceptible to unpredictable 

antenna patterns as legacy systems. Mutual interference between similar antennas is 

reduced by the ability to transmit and receive in different sectors. Two similar 

frequencies transmitted in two different sectors can be separated physically and 

directionally.  The beams of the antenna are also steerable, which may further reduce the 

system’s susceptibility to stray energy from other transmissions. Signals can be steered 

toward the intended recipient and the energy transmitted in other sectors is reduced. This 

ability not only protects the signal from being intercepted by unintended recipients, but 

also reduces a receiver’s susceptibility to jamming. 

The InTop system is capable of performing a wide range of functions, but it 

requires a scheduling tool to manage antenna resources. SPECTRA is an optimization-

based decision support tool that allows planners to organize and group requests for 

frequency and time intervals into prioritized missions. These requests are paired to 

available systems while simultaneously ensuring that no frequency overlaps occur 
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between missions or against unavailable frequencies. SPECTRA allows a more efficient 

use of systems onboard a warship by attempting to match high priority requests with 

available antennas. SPECTRA can regenerate schedules rapidly in response to changes in 

spectrum availability, changing priorities, mission adjustments, or even system failures, 

and allow warships to shift frequencies rapidly, greatly enhancing maneuverability within 

the spectrum.   
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II. DEPARTMENT OF DEFENSE EFFORTS 

A. ELECTROMAGNETIC MANEUVER WARFARE 

Summarizing a speech given to the Association of Old Crows in 2013, Julianne 

Metzger reported that then Chief of Naval Operations (CNO) Admiral Jonathan Greenert, 

“stressed the importance of agility in regards to the electromagnetic spectrum and … 

developing radars that can use alternate frequencies” (Metzger 2013). This need for 

agility in the electromagnetic spectrum requires systems that are capable of operating 

across a range of frequencies and have the ability to adjust to a rapidly changing RF 

environment.  

In 2014, Admiral Greenert testified before the House Armed Services Committee 

about the Navy’s need to modernize and enhance its ability to maneuver in  

the electromagnetic spectrum (Greenert 2014). The ability to maneuver in the 

electromagnetic spectrum is a vital part of electromagnetic maneuver warfare (EMW). It 

assumes three basic system capabilities. First, the system must be able to operate on more 

than one frequency. The inability to transmit across a wider range of frequencies is a limit 

that is imposed on many systems, often by the physical limits of the systems design or 

bureaucratic limitations. The second capability required for maneuvering in the spectrum 

is the ability to change frequencies quickly. When it becomes necessary to make 

adjustments, a system must be capable of doing so with minimum delay. Finally, the new 

frequency selected must be deconflicted from other frequency assignments. Transmission 

frequencies need to be chosen that do not overlap with other frequencies and avoid 

restricted frequencies. This process is generally time consuming, and would benefit from 

automation. 

True electromagnetic maneuverability should provide a warship with the ability to 

transmit across a larger range of possible frequencies. Systems would have the ability to 

transmit outside of fixed ranges complicating the identification, classification, and 

jamming of signals (Greenert 2014).  
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B. THE SPECTRUM AS THE NEWEST DOMAIN  

Late in 2015, the Department of Defense Chief Information Officer (CIO) spoke 

to a reporter about a draft proposal to recognize the electromagnetic spectrum (EMS) as a 

warfighting domain. Terry Halverson also confirmed that the CIO office is investigating 

“the potential recognition of the EMS as a domain” (Freedberg Jr 2015a). If the EMS is 

designated as a domain, it will be the first new domain since cyberspace was declared a 

domain in 2006. The Deputy Secretary of Defense, Robert Work announced the creation 

of a new council that will direct all of the Pentagon’s electronic warfare (EW) programs. 

He stressed the reasons behind the new focus in an interview.  

EW is often regarded as a combat enabler. … electronic jamming and 
deception are traditionally [seen] as adjuncts to physical weaponry rather 
as weapons in their own right. Our adversaries don’t think so, …. For 
relatively small investments, you get an extremely high potential payoff. 
…and our competitors are trying to win in the EW competition….Now, 
we still have a lead—I think—[but] that lead is diminishing rapidly. 
(Freedberg Jr  2015b) 

In the 2013 “Electromagnetic Spectrum Strategy” released by then Deputy 

Secretary of Defense Ashton Carter highlighted the government’s goals and objectives 

with regard to the use of the spectrum-dependent systems (SDS). Four of the objectives 

listed in that report are directly supported by work done in this thesis. 

 “Expedite development of technologies that increase an SDS’s ability to: access 
wider frequency ranges; exploit spectrum efficiency gains; utilize less congested 
bands; and adapt rapidly to changing EMEs [Electromagnetic Environments]”  

 “Accelerate the fielding of technologies that enable spectrum sharing and improve 
access opportunities” 

 “Develop the ability to perform near-real-time spectrum operations” 

 “Advance the ability to identify, predict, and mitigate harmful interference” 
(Carter 2013) 

The Department of Defense leadership is emphasizing electromagnetic warfare 

and is considering giving it the same importance as cyberspace. The InTop program is 

designed to achieve the first goal to “Expedite the Development of SDS Capabilities with 

Increased Spectrum Efficiency, Flexibility, and Adaptability” (Carter 2013).  The design 
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of the antenna provides the ability to perform the tasks listed. A scheduling program 

enhances the capabilities of the overall system.   

C. A FULL SPECTRUM OF NEEDS 

At their heart, antennas are a means by which information is transferred from one 

medium to another. Antennas are the single point where information is broadcast into or 

received from airspace. As the amount of information that needs to be exchanged 

increases, the numbers and types of antennas may also tend to increase.   

1. Networks Need Antennas 

In 2002, ONR identified the focus on what was then referred to as “network-

centric warfare” (Office of Naval Research 2002) and the need to enhance the ability to 

exchange data. They recognized the burden that this places on the electromagnetic 

spectrum and the increases in “antennas, transmitters, receivers, and the accompanying 

complexities of operating and supporting new RF systems. The Navy has met each new 

functional requirement for use of the RF spectrum with a new antenna, each needing new 

auxiliary equipment, operator training, and maintenance and logistics support.” They 

continued to highlight that “apertures also will integrate electronic warfare systems, 

which detect, jam, or deceive enemy radars and weapons.”  

Their solution at the time was the advanced multifunction radio frequency 

concept (AMRF-C). ONR’s surveillance, communications, and electronic combat 

division, director Joe Lawrence stated that the AMRF-C program: 

aims at overcoming the antenna-proliferation crisis, with all the cost, ship-
design, and operational problems it creates. Instead of separate transmit 
and receive apertures for each of the multiple radar, communications, and 
electronic warfare systems, a few pairs of AMRF-C apertures would 
handle most microwave RF functions. (Office of Naval Research 2002) 

An example of the “antenna-proliferation crisis” is shown in Figure 1. It depicts 

both the abundance of antennas and the irregular shape of a warships superstructure. The 

multifunction antenna concept is a driving force for the reduction of procurement costs. It 
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will enable the ability to introduce new capabilities and functions with simple software 

changes instead of the lengthy procurement of new systems.  

Figure 1.  Superstructure of a Ticonderoga Class Cruiser 

 

Source: Keller J (2014) Navy to pour more time and money into shipboard antenna 
project to cut RF cross interference. (12 June), Military & Aerospace Electronics, 
http://www.militaryaerospace.com/articles/2014/06/navy-extends-intop.html. 

2. Breaking Communications Stovepipes 

In 2003, the Office of Naval Research released a press statement drawing 

attention to the desire for radios to have the ability to find clear channels to communicate 

in. They also recognize the need to have multifunction communication devices that 

combine a variety of waveforms that will only require software updates to enhance the 

capabilities of the system (Huergo 2003).  

3. InTop As a Solution 

The Naval Research Laboratory published a report in 2010 titled “Integrated 

Topside (InTop) Joint Navy-Industry Open Architecture Study” outlining the benefits of 

an open architecture. In that report, they outlined the fundamental characteristics of open 

architecture as:  
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 “Modular, open RF architecture” 

 “Synchronized RF functions for mission support and [Electromagnetic 
Interference] EMI mitigation” 

 “Reduced life-cycle costs” 

 “More RF functions optimally sited topside” 

 “Rapid adaptability to new threats/requirements through software 
upgrades” 

 “Integrated antenna/array topside designs that are seamlessly compatible 
with the associated platform architecture and design” (Tavik et al. 2010) 

The open design architecture allows multiple subsystems to place demands on a 

multifunction antenna. However, it also creates the need for a means to schedule which 

subsystem is allowed to use the antenna and when. Scheduler logic can be paired with the 

ability to automatically change frequencies and thus provide a complete system that can 

couple prioritized demands with resources and send the necessary data to a switching 

device that is capable of making rapid adjustments.  

The concept of InTop program follows the train of thought used by smartphone 

manufacturers. By designing and building an antenna that is capable of generating a 

variety of waveforms across a wider frequency range, new signal types can be generated 

by simply changing the software that is installed in the system. In effect, the change is 

like an application for a smart phone that is downloaded onto the device to provide new 

capabilities. The InTop program is already capable of generating the waveforms and 

frequencies necessary and SPECTRA is capable of scheduling and deconflicting 

frequency assignments while maximizing the use of the antennas onboard the platform.  

The result is that many users will be able to request transactions on an antenna. 

The system is designed such that any antenna that is available at the required time and 

frequency can be scheduled for use. No longer will systems be limited to one particular 

antenna that is taking up space on the superstructure utilized for a single need. InTop 

could handle multiple requests for a variety of locations efficiently and direct them to a 

multifunction antenna that can be used for a variety of purposes.  
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D. SEIZING THE OPPORTUNITY 

In 2015, the Center for Strategic and Budgetary Assessments released a report 

titled “Winning the Airwaves: Regaining America’s Dominance in the Electromagnetic 

Spectrum” in which they highlight the importance of the electromagnetic spectrum. They 

acknowledge its use for everything from communications, navigation, identification, and 

location of both enemy and friendly units. They also assert that a lack of funding over the 

last 10 years means that the United States has “failed to keep pace” with our adversaries 

(Clark and Gunzinger 2015).  

In their report, they assert that “the U.S. military has an opportunity to make 

another such leap ahead, one that will allow it to regain and maintain an enduring 

advantage in the EMS warfare competition” (Clark and Gunzinger 2015). They believe 

that the following capabilities should be developed: 

 “Networked: able to communicate and coordinate operations with 
neighboring EMS warfare systems using Low Probability of Intercept 
[LPI]/ Low Probability of Detection [LPD] data links;”  

 “Agile: able to maneuver in power, frequency, space, and time to remain 
undetected, target enemy networks, and avoid enemy countermeasures;”  

 “Multifunctional: able to perform multiple EMS warfare functions such as 
communications, active and passive sensing, jamming, deception, or 
decoying;”  

 “Small and affordable: can be procured and deployed in large numbers on 
small unmanned vehicles and systems or large platforms to enable diverse 
EMS warfare networks; and” 

 “Adaptive: able to characterize the EMS, including previously unknown 
emitters, and respond to exploit opportunities or counter enemy EMS 
operations” (Clark and Gunzinger 2015). 

In order to accomplish these capabilities, SPECTRA’s features included the need 

to integrate other antenna systems. SPECTRA assumes that networking of systems is 

possible within the warship, and that requests for antenna use can include 

communication, radar, electronic support, electronic attack, and external sources. The 

model is designed to generate new frequency assignments if areas of the spectrum are 

input as unusable.  
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E. MULTIFUNCTION SYSTEMS NEED A SCHEDULING TOOL  

 In 2009, Knowledge Based Systems, Inc. published a report titled “Advanced 

Spectrum Allocation, Frequency Deconfliction, and Scheduling Optimization decision 

Support,” highlighted six topics of further interest that are ready to be explored.  


 “Baseline and develop a simulation capability reflecting frequency 

demands for both normal and combat operations, thereby providing the 
foundation for defining performance requirements for emerging spectrum 
allocation optimization models and tools.”  

 “Define more relevant measures of effectiveness (MOEs) and measures of 
performance (MOPs) for spectrum allocation and use.”  

 “Develop the mechanisms to measure the parameters that will yield the 
chosen MOEs and MOPs and force critical examination of the cost and 
practical feasibility of those metrics.” 

 “Compile body of knowledge of rule sets for frequency allocation.”  

 “Experiment with the different architectural strategies identified through 
this effort to employ the mechanisms of spectrum allocation and 
management.” 

 “Leverage and extend project developments in solution concept 
development, algorithm research, solution architecture definition, and 
dynamic frequency allocation tool development targeting deployment 
through the InTop initiative.” (Painter et al. 2009) 

This highlights the need for the exploration of strategies for spectrum allocation 

and management. Spectrum management and allocation can be achieved using a variety 

of techniques. The most common, but perhaps not the most efficient, is a line-by-line 

logical algorithm that mimics the thought process that a human scheduler would follow.  

Knowledge Based Systems Incorporated’s report further describes the 

requirements for a scheduling solution. The report contains a description of a framework 

for a scheduling algorithm and listed eight objectives. 

 “Maximize number of requests satisfied”  

 “Maximize the number of high priority requests serviced”  
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 “Maximize flexibility to rapidly accommodate new tasks or to change 
parameters for current assignments.” 

 “Maximize on-time task completion rate”  

 “Minimize queuing time awaiting spectrum” 

 “Maximize the efficient use of spectrum”  

 “Minimize interference / data loss” 

 “Minimize cost” (Painter et al. 2009) 

We present an Integer Linear Programing (ILP) model for assignment of missions 

and requests to shipboard systems to achieve very similar goals as these. 
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III. SPECTRA PLANNING MODEL 

A. GENERAL APPROACH 

The basic unit for planning in the SPECTRA model is the request, which 

represents a particular tasking for an antenna on a warship. The basic resource is a 

system, which is a piece of equipment (i.e., a radio) that provides access to an antenna for 

transmission, reception, or both. In order for a request to be fulfilled, it must be matched 

with an available compatible system. A mission is a collection of requests that fulfill a 

function of the warship. We specify a priority for each mission: priority 1 missions must 

be completed, or the model is infeasible. Likewise, each request has an associated 

priority, and all priority 1 requests in a mission must be completed for that mission to be 

considered complete. Every completed mission and request has an associated reward 

value.  

Requests must be deconflicted in time on each system. No system is capable of 

performing more than one request at a time. The user specifies whether a request tolerates 

other transmissions on the same frequency. If a request can allow an overlap in frequency 

to occur it is considered transmit tolerant. 

B. ASSUMPTIONS 

We assumed that all antennas are omnidirectional, each system can perform one 

task at a time, and systems cannot share requests. We also require that requests cannot be 

partially competed, but missions can be. The allocation of partial missions allows systems 

to be utilized for lower priority requests when the alternative is to remain idle.  

 

 

 



 14

C. PARAMETERS 

The model divides standard antenna characteristics and request requirements into 

a set of parameters. Requests for antenna space contain the following parameters: mission 

code, mission priority, request priority, lower bound of frequency, upper bound of 

frequency, bandwidth, lower bound of start time, upper bound of end time, and duration 

of transmission.  

The system capabilities are presented to the optimization model using the 

following parameters: lowest system frequency, highest system frequency, lower time 

available and upper time available. The range of the frequency is included but it is simply 

the lowest system frequency subtracted from the highest system frequency. Likewise, the 

total time horizon is calculated by subtracting the earliest time available from the latest 

time available. These fields allow the optimization model to handle a variety of system 

types. They also allow the optimization model to be used with a combination of 

multifunction antennas and legacy antennas.  

D. FORMULATION 

This section shows the formulation of the SPECTRA model using a linear 

program. 

1. Sets and Indices 

  m M   missions linked to requests 
  r R    requests (alias r, nr) 
 s S    systems available 
 p P    request priorities 

( , )m r D M R    link between mission and requests 
( , )m p C M P    link between mission and priority 
( , )r p B R P     link between request and priority 
 

2. Data 

 rpri   priority of request r 

_ mm reward  reward of mission m 
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_ pp reward  reward of request of priority p 

 rtransmit  transmission required Boolean for request r 

 rreceive  receive required Boolean for request r 

 _ rtx tolerant  transmission tolerant Boolean for request r 

 rlf   lower bound on frequency for request r 

 ruf   upper bound on frequency for request r 

 rbw   frequency bandwidth for request r 

 rlt   lower bound on start time for request r  

 rut   upper bound on end time for request r 

 rdur   transmission duration for request r 

 stx   transmission capable Boolean for system s 

 srx   transmission capable Boolean for system s 

 slf   lower bound on frequency for system s 

 suf   upper bound on frequency for system s 

srange   frequency range available from system resource 

 slt   lower bound on start time for system s 

 sut   upper bound on end time for system s 

 shorizon  time horizon for system resources 

ms   large value equal to  max( ) min( )s suf lf  

3. Variables 

a. Non-negative Variables 
 rFREQ  lower frequency for request r 

 rSTART  start time for request r on system s 

b. Binary Variables 
 ,r nrEARLY  request r completes transmission before request nr starts 

,r nrLOWER  request r frequency range completely below request nr range 

 ,r sALLOC  request r is allocated to system s 

 mMC   all priority 1 requests from mission m are completely assigned 

 rRC   request r is assigned 
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4. Formulation 
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5. Explanation of Equations 

Equation (S0) is the objective function for the SPECTRA model and calculates a 

large reward for mission completion and a smaller reward for additional assignments 

made. The structure of the reward system is such that the reward for mission completion 

is the greater than the reward for all of the individual requests contained in the mission. 

Each mission reward is also greater than the entire mission rewards at a lower priority 

level. Thus, higher priority missions have the highest rewards available and the model is 

biased toward filling the required requests for each mission over all lower priority 

missions. 

Equation (S1) requires that the frequencies for all assignments to a system do not 

overlap. This is the most basic form of deconfliction and it ensures that transmissions do 

not interfere with each other. Even transmissions from other antennas on different parts 

of the ship may cause interference due to the sensitivity required for most receivers.  

Equation (S2) requires that the start and stop times of the assignments for a 

system do not overlap. This part of the scheduling observes the physical limits of the 

transmitters.  

Equation (S3) requires that all assignments to a system be deconflicted in time or 

frequency. In the event that a request is transmit tolerant this equation will allow for 

overlap of either a transmit assignment or a receive assignment on another system.  

Equation (S4) requires all frequencies to be deconflicted in time or frequency on 

each system. Since each system can only make one assignment at a time this equation 

ensures that all assignments are separated in time on each system. 

Equation (S5) requires all start times to be within the request lower and upper 

time. It works in conjunction with Equation (S6) and ensures that the requested upper and 

lower frequencies are honored.  

Equation (S7) requires the start time to be after the lower time limit of the system. 

Equation (S9) ensures the system is not scheduled after the upper time limit. These two 
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equations ensure that the lower and upper time limits of the system are adhered to by all 

assignments.  

Equation (S8) requires the frequency of all assigned requests to be at or above the 

lowest frequency of the system. Equation (S10) ensures that the frequency is within the 

upper frequency limit of the system. 

Equation (S11) requires all of the requests be complete for a mission to be 

completed. Each mission is defined by the priorities of the requests assigned to the 

mission. Each request that is required for the mission to be completed is listed as a 

priority 1. When all priority 1 assignments are completed the mission is flagged as 

complete.  

Equation (S12) allows for requests, which are both transmit and receive, to be 

allocated to two systems. Some assignments are listed as both transmit and receive, while 

some systems are capable of both and some are only capable of either transmit or receive. 

This equation allows for a request to be allocated to two systems if required.  

Equation (S13) sets RC equal to 1 if required transmit Equation (S14) and receive 

Equation (S15) requirements are completed. In the event that a request is flagged as 

transmit and receive this flag will not change until both parts are satisfied. This will not 

prevent a system that is capable of transmit and receive from fulfilling both parts of the 

request. The model favors using systems that are capable of both transmit and receive 

since it allows for more requests to be allocated to other systems.  

E. INPUTS 

The SPECTRA model has two sets of inputs. The mission requests represent 

demands and the systems represent available resources.  

1. Requests 

Requests contain the parameters for a desired event. Since the model is a 

scheduling tool, basic information regarding the frequency and time of the event are 

necessary. The frequency may be a specific frequency or a range of potential values 

bounded by a lowest possible frequency and a highest possible frequency. The size of the 
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bandwidth tells the model how much of the frequency space is required for the request. 

By making the range of the allowable frequencies the same as the bandwidth of a request, 

we can essentially fix that request in frequency. 

Likewise, time may be a specific time or a range of values bounded by the  

lower time limit and the upper time limit. The length of the duration for the request, 

shown in a separate field, tells the model how much time is required for the request. By 

making the range of the allowable time the same as the duration of a request, we can 

essentially fix that request in time. The time units in this thesis are whole numbers of an 

arbitrary time unit. 

The request also needs to specify whether it requires a transmitter, a receiver, or 

both and whether or not the assignment is tolerant of other transmissions on the same 

frequency. Possible combinations for the Boolean logic flags and the types of request that 

each could represent are shown in Table 1. Since the fields can be populated using any 

combination of 1’s and 0’s each request can be tailored to the specific need of the 

requester. For example, a two-way radio request will normally require the ability to 

transmit and receive, and does not want any other systems to overlap in frequency. A user 

would use the same logical flags as the first line of the table. If some frequency overlap is 

acceptable then the request will be flagged as transmit tolerant and assignments may be 

made that overlap in frequency, as shown in line 2 of Table 1.  

Do Not Transmit frequencies will be unavailable for any transmissions and these 

will be represented using the three logical flags on the bottom line.  
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 Possible Values for Transmit, Receive, and Transmit Tolerant Booleans  Table 1.  
and Potential Uses 

Transmit 
Boolean 

Receive 
Boolean 

Transmit 
tolerant 
Boolean 

Possible types of request 

1  1  0  communication / data link / radar 

1  1  1  ES and EA / high power radar 

0  1  0  ES / data link receive / satellite or broadcast downlink 

1  0  0  EA / datalink transmit / satellite or broadcast uplink 

0  1  1  ES  

1  0  1  EA 

0  0  0  Do Not Transmit / restricted frequencies 

Electronic Surveillance (ES) and Electronic Attack (EA) 

Inputs for a request are shown in Table 2. For each request, the required fields 

include transmit Boolean, receive Boolean, transmit tolerant Boolean, lower frequency, 

upper frequency, bandwidth, lower time, upper time and duration of assignment. The 

sample request in Table 2 shows that the request is transmit only and is not transmit 

tolerant. Since the space between the lower frequency limit and the upper frequency limit 

is equal to the bandwidth, the request is not flexible in frequency. The upper time minus 

the lower time is 199; since this value is larger than the duration, the start time is flexible 

up to the 150th time unit.   

 Request Fields with Sample Data for a Communications Request Table 2.  

Transmit  Receive 
Transmit 
Tolerant 

Lower 
Frequency 

Upper 
Frequency 

Bandwidth 
Lower 
Time 

Upper 
Time 

Duration 

1  0  0  1010.25  1010.75  0.5  1  200  50 

 

2. Available Systems 

The model schedules several different types of shipboard antennas. These 

antennas make up the resources that the requests are required to share. In the SPECTRA 

model, systems are antennas available for use. The minimum required system data is 

shown in Table 3, and includes the lower frequency, upper frequency, the range of the 

frequency block, the lower time, and the time horizon. The time horizon represents the 
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total block of time that the system is available to be scheduled. Finally, the system also 

has transmit and receive Boolean flags that indicate whether the system is capable of 

transmitting, receiving, or both.  

 Sample System Data Table 3.  

Lower 
Frequency 

Upper 
Frequency 

Range  Transmit  Receive 
Lower 
Time 

Upper 
Time 

Time 
Horizon 

1000  2000  1000  1  1  1  200  199 

 

The transmit and receive Boolean flags account for a variety of antenna functions. 

Antennas are capable of transmitting, receiving, or both based on their unique 

characteristics. The model is able to schedule several different types of shipboard 

antennas including the InTop and other legacy antenna systems. The possible variations 

of transmit and receive, and the types of antennas that could be represented to the model, 

are shown in Table 4.  

 Modeling System Capabilities Table 4.  

Transmit  Receive 
Types of Systems or Antenna 

Boolean  Boolean 

0  0  Do Not Transmit System 

0  1  ES / satellite dish/ data link / communication / GPS 

1  0  EA / data link / satellite dish / communication 

1  1  voice communications / radar / two way data 

 

The Do Not Transmit system is a notional system and accepts an unlimited 

number of requests. The Do Not Transmit requests are deconflicted from all other 

assigned requests. The user lists sub-dividable antennas as separate systems. Each system 

can only fulfill one request at a time.  

3. Building a Mission 

A mission is an assortment of requests grouped together and assigned a priority. 

The request priorities are numbered 1 through 4. If a request has a priority of 1 then it 
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must be completed along with all other priority 1 requests in order for the mission to be 

counted as complete. All lower priority requests 2, 3, and 4 are treated as having a value 

that is based on their priority, but are not considered to be required for the mission to be 

completed. If a request is required for a mission then it must have a priority of 1 or it will 

be given the same weight as all of the other requests of that same priority.  

Two sample missions are shown in Table 5. Mission EX1 has five requests. 

Requests r1 and r2 are priority 1; therefore, they are required for the completion of 

mission EX1. Requests r3, r4, and r5 are not required for mission completion. Requests 

r3 and r4 will have priority over request r5. Mission EX1 is given an overall priority of 1 

and will be given priority over all non-priority 1 missions. 

 Two Missions with Mission Priorities and  Table 5.  
Request Priorities 

Mission 
Name 

Mission 
Priority 

Request 
Number

Request 
Priority 

EX1  1 

r1  1 

r2  1 

r3  2 

r4  2 

r5  3 

EX2  2 

r6  1 

r7  1 

r8  2 

r9  3 

r10  4 

r11  4 

 

A more complete list of request data for a separate mission set is shown in Table 

6. Each request will contain all of the fields shown. The table shows two missions. The 

first mission is composed of two requests, but only the first request is required for 

completion of the mission. The request r3 is part of another mission EX4 and has a lower 

reward value than the required assignments from the priority 1 missions. 
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 Full Table of Request Data Including Mission Name, Mission Priority, Request Number, and Request Priority Table 6.  

Mission 
Name 

Mission 
Priority 

Request 
Number 

Request 
Priority 

Transmit  Receive 
Transmit 
Tolerant 

Lower 
Frequency 

Upper 
Frequency 

Bandwidth 
Lower 
Time 

Upper 
Time 

Duration 

EX3  1  r1  1  1  0  0  1010.25  1010.75  0.5  1  200  50 

EX3  1  r2  2  1  0  0  1010.25  1010.75  0.5  1  200  50 

EX4  2  r3  1  1  0  0  1010.25  1010.75  0.5  1  200  50 
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4. Reward Function Values 

The reward value for individual requests is shown in Table 7. These are the 

starting reward levels for each request if an assignment is made to a system. A reward 

value of 4 is rewarded to a priority 1 request, 3 to a priority 2 request, 2 to a priority 

3 request, and 1 to a priority 4 request. This value is divided by 2.5, the midpoint between 

1 and 4.  

 Reward Values by Request Priority Table 7.  

Request 
Priority 

Reward 
Value 

Number Required 
to Equal Priority 1

1  1.6  1 

2  1.2  1+ 

3  0.8  2 

4  0.4  4 

 

Scoring is designed such that an accumulation of requests will always have a 

lesser reward than the completion of any single mission and is described as follows. After 

the complete list of missions is constructed the reward values for the missions are 

constructed. The request reward values are the basis for the creation of the mission 

completion reward values. The total reward value for the lowest priority missions is set at 

the sum of all of the requests for the lowest mission priority increased by a value of 10.  

5 21 22 23 24 10 13.6EX r r r r       

The next highest priority missions are the summation of all of the mission 

completion values of the lower tier missions added to the sum of the request values in the 

current tier with an additional 10 points added.  

4 3 5 12 13 14 15 16 17 18 19 20 10 34.4EX EX EX r r r r r r r r r            
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This process continues until the reward value for mission priority 1 is set.  

2 3 4 5 6 7 8 9 10 11 10 98.4

1 2 3 4 5 1 2 3 4 5 10 183.6

EX EX EX EX r r r r r r

EX EX EX EX EX r r r r r

          
          

 

A sample reward table is shown in Table 8. The highlighted requests indicate the 

required requests for the mission completion reward to be assessed.  

 Sample Reward Table Table 8.  

Mission 
Name 

Mission 
Priority 

Mission 
Reward 

Request 
Number

Request 
Priority 

Request 
Reward 

EX1  1  183.6 

r1  1  1.6 

r2  1  1.6 

r3  2  1.2 

r4  2  1.2 

r5  3  0.8 

EX2  2  98.4 

r6  1  1.6 

r7  1  1.6 

r8  2  1.2 

r9  3  0.8 

r10  4  0.4 

r11  4  0.4 

EX3  3  34.4 

r12  1  1.6 

r13  1  1.6 

r14  3  0.8 

r15  4  0.4 

r16  4  0.4 

EX4  3  34.4 

r17  1  1.6 

r18  1  1.6 

r19  1  1.6 

r20  2  1.2 

EX5  4  13.6 

r21  1  1.6 

r22  3  0.8 

r23  4  0.4 

r24  3  0.8 
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Two missions at the same mission priority will be awarded the same number of 

points for completion. The reward for mission completion will be awarded if all of the 

priority one requests for that mission are assigned. Resultantly, the optimization may 

squeeze out equally scored missions with a higher number of requirements in lieu of 

achieving multiple missions with the same systems. Individual rewards for other lower 

priority requests will be available for assignment, but will never exceed the value for the 

required requests for mission completion.  

This reward structure prevents any combination of reward from lower tiers from 

becoming larger than the reward for the completion of a higher tier mission. It also allows 

additional requests to be assigned if additional systems are available only after the 

required assignments are made for each mission. If any systems are available after 

missions are completed, they will be assigned to requests with the highest request priority 

without regard to mission association. 

The model is designed to perform each of the tasks listed in Table 9 and was 

tested using a series of small tests designed to verify that each of the goals listed was 

accomplished. The results of these tests are listed in the last column. The model testing 

criteria will show the ability of the model to organize and prioritize the requests 

according to a prioritization and reward scheme that allows commanders to ensure that 

missions and elements of a mission that are required are fulfilled before the model 

attempts to fulfill lower priority missions and requests. 
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 List of Tests for SPECTRA Table 9.  

SPECTRA Model Goal  Test Conditions  Expected Output  Result 

Deconflict frequency 
Two requests at the same time 
with same frequency window 

Make both assignments on 
non‐overlapping 
frequencies 

Success 

Deconflict frequency 
Two requests at the same time 

with limited systems 

Make the assignment to 
the request with highest 

priority 
Success 

Deconflict time 
Two requests on same 

frequency with flexible time 
and limited duration 

Shift starting time to 
accommodate both 

requests 
Success 

Deconflict time 

Two requests on same 
frequency with flexible time 
and limited duration and 

limited systems 

Make the assignment with 
highest priority 

Success 

Assign transmit request 
to transmit  capable 

system 

Transmit request and transmit 
capable system 

Make assignment to 
system 

Success 

Assign receive request to 
receive  capable system 

Assign receive request to 
system capable of receiving 

Make assignment to 
system 

Success 

Assign transcieve request 
correctly 

Transcieve request with whip 
antenna 

Make 1 transcieve 
assignment to whip 

system 
Success 

Assign transcieve request 
correctly 

Transcieve request with InTop 
antenna 

Make two assignments to 
InTop‐one; transmit and 

one receive 
Success 

Prevent transmit 
assignment to restricted 

frequencies 

One transmit request and one 
Do Not Transmit request on 

same frequency 

Only allow the Do Not 
Transmit assignment 

Success 

Allow receive assignment 
to restricted frequencies 

One receive request and one 
Do Not Transmit request on 

same frequency 

Allow both assignments to 
be made 

Success 

Prioritize missions 
correctly 

Two missions with different 
priorities and only enough 

systems to accomplish one of 
them 

Assign the higher priority 
mission 

Success 

Prioritize missions and 
requests correctly 

Two missions with different 
priorities and all secondary 
requests from the lower 

priority mission set higher than 
the secondary requests from 

primary mission 

Assign all of the required 
from the higher priority 
mission and all secondary 

from lower priority 
mission 

Success 

Prioritize missions over 
requests 

Two missions with only enough 
systems to accomplish the 
required requests from each 

No assignments made to 
secondary requests 

Success 
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IV. MODEL TESTING 

We developed a sample mission set for SPECTRA with 16 missions with 6 

restricted frequencies. These 16 missions have various numbers of requests associated 

with them and are intended to model a typical schedule for a surface ship over ten hours, 

with 600 time units one minute in duration.  

A. BUILDING REQUESTS 

The list of requests was generated using frequencies and ranges from the data 

shown in Table 10. In practice requests would be generated by a user utilizing an 

interface that started with a broad list of missions areas and would progress through 

functions and down to the request level. The user could then add or subtract individual 

requests as required.  

 Request Characteristics Modeled Table 10.  

Function Unique Characteristics Frequency Ranges Modeled 

navigation and search wide bandwidth 
2700–3100 MHz/ 

8500–10550 MHz 1 

air search and surveillance wide bandwidth 3100–3650 MHz 1 

data link 
TACAN 

satellite communications 
narrow frequency requirements full range of frequencies 

voice or data transmissions narrow frequency requirements 
117.975–150.8 MHz vhf2 

328.6–456 MHz uhf2 

satellite systems – full range 

electronic surveillance and 
monitoring 

wide frequency requirements/ 
adversary dependent 

full range of frequencies 

electronic attack or other 
transmissions 

wide or narrow frequency 
requirements/ 

adversary dependent 
full range of frequencies 

Do Not Transmit restricted 
frequencies 

can be fixed or flexible 
frequency and time 

full range of frequencies 

Adapted from: Frequency ranges for radars derived from U.S. Department of Commerce 
Document Federal Radar Spectrum Requirements (Camacho 2000)1, Radio frequencies 
for UHF/VHF are taken from the FCC Online table of Frequency Allocations (2015)2 
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The list of requests is intended to be a demonstration of the model’s capability to 

handle a wide variety of mission scenarios and system capabilities. The flexibility of the 

model and its ability to accommodate larger and more complicated applications will be 

demonstrated by this problem.  

B. MODELING ANTENNAS 

The model is generalizable to include several types of antenna systems including 

those that have wide frequency ranges and multiple sub-transmitters and receivers; 

however, the model is also able to schedule tasks for existing systems. Even systems that 

are not able to be reprogrammed rapidly can be deconflicted in frequency from the 

transmissions from other systems that are readily reprogrammable.  

1. InTop Multifunction Antenna 

The InTop program contains a variety of multifunction antennas. The Figure 2 is a 

picture of the Advanced Development Model (ADM) prototype of the antenna 

configuration that was used for this model. Each array is capable of only transmitting or 

receiving; therefore, each subsystem is capable of only transmitting or receiving. If a 

request requires transmission and reception then it must be assigned to two sub-arrays 

one located on the transmission sub-array and one on the receiving sub-array.  

For the purpose of this thesis, a simplified proof of concept model is used that 

consists of four arrays, two transmit and two receive that operate over an arbitrary 

frequency range of 1–8 GHz. The four arrays are further divided into two low band (1–4 

GHz) and two high band (4–8 GHz) units. Each band has a separate transmit and receive 

array. Each array is further divided into four sub-arrays that are individually assignable. 

Conveniently, the number of sub-arrays and frequency ranges can be represented in the 

SPECTRA model to accommodate any actual system specifications. This simplified 

model is depicted in Figure 3. 
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Figure 2.  Prototype of InTop Multifunction Advanced Development Model 
(ADM) Antenna 

 

Source: Office of Naval Research. 2015. Integrated Topside (InTop) & Electromagnetic 
Maneuver Warfare Command & Control (EMC2). Power Point Brief, 5 May. 

 

Figure 3.  Simplified Model of InTop ADM Antennas with Sub-arrays 
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2. Legacy Systems 

The model is capable of scheduling services for existing antennas. These include 

radio communication, radar, and satellite antennas. A wire whip antenna is designed 

primarily for voice communications and is capable of both transmitting and receiving. 

The transmission and receiving assignments for traditional voice communications are not 

intended to be conducted simultaneously they normally default to receive and switch to 

transmit only when it is required. Thus, one transcieve voice communication assignment 

can be accomplished by one whip antenna, by two sub-arrays using the InTop antenna, or 

a combination of whip and InTop. If a communication system is full duplex and requires 

separate dedicated transmit and receive frequencies it can be represented to the model as 

two requests—one transmit request and one receive request—which would preclude the 

assignment to a single whip antenna. The full table of antennas and characteristics are 

listed in Table 11.  

 Antenna Systems Modeled, Number of Systems and Capabilities Table 11.  

System Abbreviation Number of Arrays Number of Sub-arrays Transmit Receive 

InTop Antenna 
Transmit Low 

TX_LOW 1 4 Yes No 

InTop Antenna 
Receive Low 

RX_LOW 1 4 No Yes 

InTop Antenna 
Transmit High 

TX_HIGH 1 4 Yes No 

InTop Antenna 
Receive High 

RX_HIGH 1 4 No Yes 

Whip Antenna WHIP 11 1 Yes Yes 

Satellite Dish SAT 4 1 No Yes 

Radar 
Navigation 

RAD_LOW 1 1 Yes Yes 

Do Not Transmit DNT 1 Infinite No No 

Total Systems Available 33  

Systems included in test case. 

C. COMPILING MISSIONS 

The missions are composed of two parts the first part is a two letter abbreviation 

followed by a number. The categories selected for this sample problem were surface 

search (SS), air warfare (AW), data transmission (DT), communications (CM), electronic 
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surveillance (ES), electronic attack (EA), and restricted frequencies (RF). The model is 

capable of handling any naming convention and there is no limit to the number of names 

or types of missions. 

The frequency ranges of the requests are based on the ranges of real systems, but 

the model is flexible and works within the limits of each system and the limits presented 

by the request. The systems modeled and the frequency ranges used in the sample 

problem are shown in Table 12. Missions CM6, CM7, and DT3 demonstrate that 

frequencies can be deconflicted from all ships missions and used by other assets 

operating around the warship. 

 Composition of Mission Types, Requests Per Mission Table 12.  
 and Priorities of Missions 

Mission 
Mission 

Code 
Number of requests Modeled After Mission Priority 

Communication CM1 1 Bridge to bridge radio 1 

Communication CM2 6 Single aircraft radio 1 

Communication CM3 4 Helicopter radio 1 

Data 
Transmission 

DT1 2 
Separate transmit and 
receive data signals 

1 

Communication CM6 4 
Air-to-air and air-to-ship 

data link* 
1 

Communication CM7 2 Air to air communications* 1 

Data 
Transmission 

DT3 2 Two data transmissions* 1 

Restricted 
Frequencies 

RF1 6 
Do not transmit radio 

frequencies* 
1 

Air Warfare AW1 3 Air search radar 2 

Surface Search SS1 1 Surface search radar 2 

Communication CM4 8 Multiple aircraft radios 2 

Communication CM5 5 Helicopters with data-link 3 

Data 
Transmission 

DT2 3 Three data signals 3 

Air Warfare AW2 1 
Aeronautical radio 
navigation signal 

(TACAN) 
3 

Electronic 
Surveillance 

ES1 1 Electronic surveillance 4 

Electronic 
Attack 

EA1 1 Electronic attack 4 

Total Requests 50 Total Missions by Priority 8 / 3 / 3 / 2 = 16 Total 

*Missions include Do Not Transmit frequencies.   
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D. TEST RESULTS 

The test case included 50 requests (full listing in the Appendix). Thirty-three 

systems from Table 11 and the missions listed in Table 12 were scheduled using a laptop 

using General Algebraic Modeling System (GAMS) Integrated Development 

Environment (IDE) Release 24.5.6 r55090 WEX-WEI x86 for a 64bit processor with a 

Windows 10 operating system on with a 2.40 GHz Intel Core i7-4700HQ processor with 

12 GB of RAM. The total solve time using a CPLEX solver to reach an optimal solution 

was 17.94 seconds. The solve time for most of the test cases was less than 1 second using 

the same setup. The standard solve time for a simple mission with few restrictions 

demonstrates that an emergency switch of assignments due to a change in priorities from 

low to high can be accomplished in a very short period of time. The model can 

recommend frequencies quickly should the need arise.  

The calculated reward values for this mission set are listed in Table 13. Table 14 

is a summary of the output from the model, which lists the schedule of completed 

requests, antenna, frequency, and start time of all of the accomplished requests. All of the 

eight priority 1 missions were completed, while two of the three priority 2 missions were 

completed: one priority 2 mission was not completed due to lack of systems available or 

higher priority missions. Half of the priority 3 and half of the priority 4 missions were 

completed; those not completed were also due to lack of resources available or higher 

priority missions taking precedence.  

 Mission Reward Values for Missions Table 13.  

Mission 
Priority 

Reward 

1 734.4 

2 228.8 

3 50.4 

4 13.2 
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 Final Output of SPECTRA Table 14.  

Request 
Number 

Antenna Frequency
Start 
Time 

Request 
Number 

Antenna Frequency 
Start 
Time 

r1 TX_LOW_1_1 1010.25 1 r27 TX_LOW_1_3 1289 66 

r2 WHIP_5_1 455 1 r27 RX_LOW_2_4

r3 WHIP_4_1 455 150 r28 TX_LOW_1_3 1289 140 

r4 WHIP_10_1 149.8 1 r28 RX_LOW_2_4

r5 WHIP_6_1 149.8 180 r31 TX_LOW_1_2 1800 570 

r6 WHIP_4_1 149.8 1 r31 RX_LOW_2_3

r8 WHIP_1_1 450 1 r32 TX_LOW_1_3 1011.25 1 

r9 WHIP_9_1 402 1 r32 RX_LOW_2_4

r10 WHIP_11_1 402 56 r33 TX_LOW_1_3 1011.25 170 

r11 SAT_12_1 402 170 r33 RX_LOW_2_4

r12 WHIP_2_1 402 1 r37 TX_LOW_1_3 1011.25 105 

r13 TX_LOW_1_3 1231 11 r37 RX_LOW_2_4

r14 DNT_0_0 1299 170 r38 RX_LOW_2_4 1290 110 

r15 DNT_0_0 1200 1 r42 TX_LOW_1_4 1101 1 

r16 DNT_0_0 1200 1 r42 RX_LOW_2_2

r17 DNT_0_0 1200 1 r43 DNT_0_0 1000 1 

r18 DNT_0_0 1200 1 r44 DNT_0_0 1200 1 

r19 DNT_0_0 1200 1 r45 DNT_0_0 1400 1 

r20 RAD_LOW 3050 1 r46 DNT_0_0 1600 1 

r21 TX_LOW_1_2 1201 1 r47 DNT_0_0 1603 1 

r21 RX_LOW_2_1 r48 DNT_0_0 1100 1 

r23 RX_LOW_2_3 1126 1 r49 WHIP_3_1 150 1 

Incomplete requests: r7, r22, r24, r25, r26, r29, r30, r34, r35, r36, r39, r40, r41, and r50. 
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E. SPECIAL REQUESTS 

The model is capable of handling requests from both internal and external entities. 

A mission can be generated at a remote location as easily as onboard the ship. The user 

inputs the mission into the request queue with a mission priority and then runs SPECTRA 

to evaluate if the new mission can be accommodated. The model produces a schedule 

according to the mission priority assigned and also makes additional allocations if 

resources are available. This process deconflicts externally produced missions from 

internally generated missions.  

The request text is shown in Table 15 and can be reduced to approximately 

520 bytes of information. It contains a list of 10 requests of mission priority 4, with 

request priority of 1—meaning that individual requests would compete well for “scraps” 

of available resources. Using this structure high priority requests can be accomplished 

without interfering with the resources necessary for the completion of the ship’s regular 

missions. 
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 Sample Special Mission Table 15.  

Mission Request 
Mission 
Priority 

Request 
Priority 

Transmit Receive 
Transmit 
Tolerant 

Lower 
Frequency

Upper 
Frequency

Bandwidth 
Lower 
Time 

Upper 
Time 

Duration 

SP1 r1 4 1 0 1 1 103.1 103.2 0.1 1 200 199 
SP1 r2 4 1 0 1 1 100.2 100.3 0.1 1 200 199 
SP1 r3 4 1 0 1 1 96.3 96.4 0.1 1 200 199 
SP1 r4 4 1 0 1 1 90.5 90.6 0.1 1 200 199 
SP1 r5 4 1 0 1 1 99.8 99.9 0.1 1 200 199 
SP1 r6 4 1 0 1 1 92.6 92.7 0.1 1 200 199 
SP1 r7 4 1 0 1 1 101.7 101.8 0.1 1 200 199 
SP1 r8 4 1 0 1 1 95.5 95.6 0.1 1 200 199 
SP1 r9 4 1 0 1 1 97.9 98.0 0.1 1 200 199 
SP1 r10 4 1 0 1 1 92.4 92.5 0.1 1 200 199 
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The special requests were added to the test mission and the model was rerun  

to see if any of the special requests could be accomplished. The model completed in 

20.47 seconds and was able to schedule 3 of the 10 requests on resources that were 

previously assigned to lower priority requests. Each of the required requests from  

each mission were completed and the list of completed missions did not change from the 

previous iteration. These higher priority requests were accomplished without 

compromising the set of required missions. 
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V. EXTENSIONS, FUTURE WORK, AND CONCLUSION 

A. MULTI-SHIP FREQUENCY DECONFLICTION 

The model is capable of providing a frequency deconfliction plan for large groups 

of ships conducting coordinated operations or within close proximity of one another. The 

process of ensuring that the correct numbers and types of requests are fulfilled is a matter 

of presenting the data to the model using included features.  

When an aircraft carrier is working with another smaller ship, the aircraft carrier 

is almost always the highest priority platform and has priority in frequency choices over 

other US ships operating in its area. The mission planners on the aircraft carrier build 

missions that allocate all required requests between the carrier and the smaller ships. For 

example, data links, bridge to bridge radio, and helicopter inflight frequencies could all 

be set as required requests for a battle group (BG1) mission. The carrier would then run 

the SPECTRA model and the required frequencies would be allocated to systems that the 

carrier had onboard. 

The carrier would then transmit these same shared frequency allocations from 

BG1 to the other ship along with all of the other frequencies allocated to the carrier that 

are not transmit tolerant. The mission BG1 would be imported to the smaller ships 

SPECTRA model with an appropriate mission priority. The remaining assignments 

would be imported as Do Not Transmit requests. The smaller ships SPECTRA model 

would then allocate missions that it needed to perform along with the carrier coordination 

mission BG1 and the output would produce a frequency deconflicted schedule that 

accommodated the coordination mission with the carrier and the commander’s other 

missions.   

B. AIRBORNE PLATFORMS 

The model is generalizable to airborne platforms as well. Missions, requests, and 

systems available can be presented to the model using the same format and the output 

will provide a frequency deconflicted schedule for onboard systems in addition to 

providing allocations for onboard antennas.  
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C. LAND-BASED FREQUENCY SCHEDULING SYSTEM 

The model is also capable of deconflicting frequencies at shore facilities. The 

basic structure of the inputs to the model would remain the same. Requests are demands 

for frequencies and the systems, whether real or notional, would represent the number  

of available allocations. Missions can be used to prioritize groups of requests or all 

missions and requests can be set at the same priority. The available system queue can  

be expanded to contain a list of actual systems available or notional systems with the 

correct parameters.  

If a spectrum controlling authority required 10 frequencies that are deconflicted 

from each other they could be presented to the model as 10 Do Not Transmit frequencies 

with the full lower frequency to upper frequency range and an appropriate bandwidth 

size. The model will produce a list of 10 frequencies that do not interfere with each other 

or any other frequencies already allocated in their area. Those 10 frequencies would be 

available for distribution to whomever the controlling authority desires.  

D. FUTURE WORK 

The model could be made to prioritize persistence of frequencies after it has 

already provided a solution. In many cases it would be advantageous to be able to make 

adjustments while minimizing the number of changes to frequency allocations from a 

previous iteration. The reward function and formulation can be adjusted so that only 

systems that can be rapidly changed are allowed to move while systems that are more 

time consuming to adjust are not moved. In many cases there will be frequencies that 

cannot be changed without a great deal of coordination. This might make changes 

infeasible and once a schedule is set it should not be changed. The format of the request 

can accommodate inflexible frequencies or could be adjusted to heavily penalize  

any changes.   

The formulation of the model can be expanded to accommodate detailed technical 

requirements. Requests can specify transmission polarity, power requirements, direction, 

beam elevation, relative azimuth, and antenna separation rules. For example, an antenna 

with multiple sub-arrays might be designed to allocate to arrays 1, 3, 2, and then 4 in 
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order to perform optimally. These details would take advantage of the more complex 

capabilities of a beam steering multifunction antenna with multiple sub-arrays. The 

system resources will also contain these additional fields of information so that requests 

are matched to systems that are capable of performing the exact functions required.  They 

would also account for the differences in polarity between a communication antenna and 

a radar antenna for example and be able to take advantage of low power transmissions to 

avoid interference or minimize own ship’s electronic signature.  

Mounting planar arrays in quadrants allows them to transmit 360 degrees; 

however, the formulation would change if requests were limited to particular sectors. The 

ability to add directionality will increase the numbers of requests completed and reduce 

the total amount of energy transmitted. It could also prevent signals from being 

intercepted by anyone other than the intended recipient.  

E. CONCLUSION 

The goals expressed in the Knowledge Based Systems, Inc. study conducted in 

2009 could be achieved by integrating SPECTRA with antennas in the InTop program. 

The integer linear program discussed in this thesis is capable of optimizing across all of 

the available resources and demands simultaneously. SPECTRA has the ability to include 

priorities by using a reward system that places a high value on high priority missions. 

This reward system was able to maximize the amount of requests accomplished. 

SPECTRA is also capable of providing provable optimal solutions. SPECTRA is able to 

leverage the speed of simplex solvers and, in most cases, to produce solutions in a few 

seconds. This speed can be leveraged to minimize the time required to maneuver in the 

spectrum which, when matched with a capability to rapidly switch frequencies, will 

reduce the overall time it takes to react to a changing electromagnetic environment. 

SPECTRA is able to provide management for the entire spectrum and can accept 

administrative restrictions from external and internal sources. SPECTRA has the ability 

to make allocations across the entire spectrum resulting in the ability to efficiently 

schedule the spectrums use.  



 42

SPECTRA accomplishes these goals at minimum cost to the government. The 

basic features of the model can be expanded to include additional rules that are particular 

to any naval platform including warships, airships, and ground sites. Any application that 

requires the management of the electromagnetic spectrum and requires frequency 

deconfliction, a rapid solve time, and the ability to find new solutions to a changing 

environment can utilize the basic features in this model as a starting point for the 

development of a platform or mission specific program. The model could be greatly 

enhanced if the inputs were automated or near real time data was available as an input  

to the program.  
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APPENDIX 

The complete request data set is shown in Table 16. It includes a combination of 

all four types of fixed and flexible requests. It also contains more realistic frequency 

ranges although the total range of the model is only limited by the frequency ranges of 

the systems available. The data set for systems available is shown in Table 17 and 

includes a multifunction InTop  antenna, several whip antennas, satellite dish antennas, 

and a super high frequency radar antenna. Table 18 provides a list of the missions that 

were completed and Table 19 lists the requests that were filled.  
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 Request Data  Table 16.  

Mission  Request 
Mission 
Priority 

Request 
Priority 

Transmit  Receive 
Transmit 
Tolerant 

Lower 
Frequency 

Upper 
Frequency 

Bandwidth 
Lower 
Time 

Upper 
Time 

Duration 

CM1  R1  1  1  1  0  0  1010.25  1010.75  0.5  1  200  199 

CM2  R2  1  1  1  1  1  117.975  456  1  1  200  20 

CM2  R3  1  2  1  1  1  117.975  456  1  1  200  20 

CM2  R4  1  2  1  1  1  117.975  150.8  1  1  200  20 

CM2  R5  1  2  1  1  1  117.975  150.8  1  1  200  20 

CM2  R6  1  2  1  1  1  117.975  150.8  1  1  200  20 

CM2  R7  1  2  0  1  0  9000  9001  1  1  600  600 

CM3  R8  1  1  0  1  1  100  500  50  1  600  599 

CM3  R9  1  2  1  0  1  402  403  1  1  200  5 

CM3  R10  1  2  1  0  1  402  403  1  1  200  10 

CM3  R11  1  2  1  0  1  402  403  1  1  200  30 

DT1  R12  1  1  1  0  1  402  403  1  1  200  10 

DT1  R13  1  2  1  0  0  1100  1300  5  1  200  55 

RF1  R14  1  1  0  0  0  1280  1300  1  1  200  30 

RF1  R15  1  1  0  0  0  1200  1300  1  1  200  199 

RF1  R16  1  1  0  0  0  1200  1300  1  1  200  199 

RF1  R17  1  1  0  0  0  1200  1300  1  1  200  199 

RF1  R18  1  1  0  0  0  1200  1300  1  1  200  199 

RF1  R19  1  1  0  0  0  1200  1300  1  1  200  199 

SS1  R20  2  1  1  1  1  3050  3070  20  1  600  599 

AW1  R21  2  1  1  1  1  1100  1300  30  1  200  199 

AW1  R22  2  2  1  1  1  1100  1300  5  1  200  199 

AW1  R23  2  3  0  1  0  1100  1300  5  1  200  199 
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CM4  R24  2  1  1  0  1  1500  1800  20  1  600  599 

CM4  R25  2  1  1  0  1  1700  1900  50  1  600  599 

CM4  R26  2  1  1  0  1  1700  1900  50  1  600  599 

CM4  R27  2  1  1  1  1  1280  1300  10  1  200  30 

CM4  R28  2  1  1  1  1  1280  1300  10  1  200  30 

CM4  R29  2  1  1  1  1  1100  1300  1  1  200  199 

CM4  R30  2  2  1  1  1  1100  1300  1  1  200  199 

CM4  R31  2  3  1  1  1  1800  1900  100  530  600  30 

CM5  R32  3  1  1  1  1  1011.25  1011.5  0.25  1  200  10 

CM5  R33  3  1  1  1  1  1011.25  1012.5  0.25  1  200  30 

CM5  R34  3  2  1  1  1  1100  1300  1  1  200  199 

CM5  R35  3  2  1  1  1  1100  1300  1  1  200  199 

CM5  R36  3  2  1  1  1  1100  1300  1  1  200  199 

DT2  R37  3  1  1  1  1  1011.25  1011.5  0.25  1  200  5 

DT2  R38  3  4  0  1  0  1280  1300  10  1  200  30 

DT2  R39  3  3  1  0  1  1010.25  1010.75  0.5  1  200  199 

AW2  R40  3  1  1  0  1  1500  1800  20  1  600  599 

CM6  R41  1  2  1  1  1  1500  1800  20  1  600  599 

CM6  R42  1  1  1  1  1  1100  1150  25  1  200  199 

CM6  R43  1  1  0  0  0  1000  1001  1  1  200  199 

CM6  R44  1  1  0  0  0  1200  1201  1  1  200  199 

CM7  R45  1  1  0  0  0  1400  1401  1  1  200  199 

CM7  R46  1  1  0  0  0  1600  1601  1  1  200  199 

DT3  R47  1  1  0  0  0  1603  1604  1  1  200  199 

DT3  R48  1  1  0  0  0  1100  1101  1  1  200  199 

ES1  R49  4  1  0  1  1  150  350  200  1  200  199 

EA1  R50  4  1  1  0  1  9040  9060  20  1  200  199 



 46

 

 Systems Available Table 17.  

System 
Lower 

Frequency 
Upper 

Frequency 
Range  Transmit  Receive 

Lower 
Time 

Upper 
Time 

Horizon 

DNT_0_0  100  10000  9900  0  0  1  600  600 

TX_LOW_1_1  1000  4000  3000  1  0  1  600  600 

TX_LOW_1_2  1000  4000  3000  1  0  1  600  600 

TX_LOW_1_3  1000  4000  3000  1  0  1  600  600 

TX_LOW_1_4  1000  4000  3000  1  0  1  600  600 

RX_LOW_2_1  1000  4000  3000  0  1  1  600  600 

RX_LOW_2_2  1000  4000  3000  0  1  1  600  600 

RX_LOW_2_3  1000  4000  3000  0  1  1  600  600 

RX_LOW_2_4  1000  4000  3000  0  1  1  600  600 

TX_HIGH_3_1  4000  8000  4000  1  0  1  600  600 

TX_HIGH_3_2  4000  8000  4000  1  0  1  600  600 

TX_HIGH_3_3  4000  8000  4000  1  0  1  600  600 

TX_HIGH_3_4  4000  8000  4000  1  0  1  600  600 

RX_HIGH_4_1  4000  8000  4000  0  1  1  600  600 

RX_HIGH_4_2  4000  8000  4000  0  1  1  600  600 

RX_HIGH_4_3  4000  8000  4000  0  1  1  600  600 

RX_HIGH_4_4  4000  8000  4000  0  1  1  600  600 

WHIP_1_1  100  500  400  1  1  1  600  600 

WHIP_2_1  100  500  400  1  1  1  600  600 

WHIP_3_1  100  500  400  1  1  1  600  600 

WHIP_4_1  100  500  400  1  1  1  600  600 

WHIP_5_1  100  500  400  1  1  1  600  600 

WHIP_6_1  100  500  400  1  1  1  600  600 

WHIP_7_1  100  500  400  1  1  1  600  600 

WHIP_8_1  100  500  400  1  1  1  600  600 

WHIP_9_1  100  500  400  1  1  1  600  600 

WHIP_10_1  100  500  400  1  1  1  600  600 

WHIP_11_1  100  500  400  1  1  1  600  600 

SAT_12_1  402  403  1  1  0  1  300  300 

SAT_13_1  9000  9001  1  0  1  1  600  600 

SAT_14_1  402  403  1  1  0  300  600  300 

SAT_15_1  9000  9001  1  0  1  300  600  300 

RAD_LOW  3050  3070  20  1  1  1  600  600 
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 Missions Completed Table 18.  

 
 

CM1  1 

CM2  1 

CM3  1 

DT1  1 

RF1  1 

SS1  1 

AW1  1 

CM5  1 

DT2  1 

CM6  1 

CM7  1 

DT3  1 

ES1  1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 List of Requests Completed Table 19.  

 
r1  1 

r2  1 

r3  1 

r4  1 

r5  1 

r6  1 

r8  1 

r9  1 

r10  1 

r11  1 

r12  1 

r13  1 

r14  1 

r15  1 

r16  1 

r17  1 

r18  1 

r19  1 

r20  1 

r21  1 

r23  1 

r27  1 

r28  1 

r31  1 

r32  1 

r33  1 

r37  1 

r38  1 

r42  1 

r43  1 

r44  1 

r45  1 

r46  1 

r47  1 

r48  1 

r49  1 

 
 
 



 48

THIS PAGE INTENTIONALLY LEFT BLANK 



49

LIST OF REFERENCES 

Carter AB (2013) Electromagnetic spectrum strategy 2013: A call to action. Department 
of Defense, (September 11), 
http://www.defenseinnovationmarketplace.mil/resources/DODspectrumstrategy.p
df. 

Clark B, Gunzinger M ( 2015) Winning the airwaves: regaining America’s dominance in 
the electromagnetic spectrum. Study, Center for Strategic and Budgetary 
Assessments, Washington, DC. Accessed February 7, 2016, 
http://csbaonline.org/wp-content/uploads/2015/12/CSBA6147-
EW_Report_Final.pdf. 

Federal Communications Commission (2015) FCC online table of frequency allocations. 
Report, Office of Engineering and Technology, Policy and Rules Division 
(August 13), https://transition.fcc.gov/oet/spectrum/table/fcctable.pdf. 

Freedberg SJ Jr. (2015a) DOD CIO says spectrum may become warfighting domain. 
Breaking Defense (December 9), http://breakingdefense.com/2015/12/DOD-cio-
says-spectrum-may-become-warfighting-domain/. 

Freedberg SJ Jr. (2015b) DOD work elevates electronic warfare, eye on missile defense. 
Breaking Defense (March 17), http://breakingdefense.com/2015/03/raid-breaker-
work-elevates-electronic-warfare-eye-on-missile-defense/. 

Greenert J (2014) FY 2015 Department of the Navy posture Chief of Naval Operations. 
testimony, House Armed Services Committee (12 March). 
http://www.navy.mil/cno/12MAR14_DON_Posutre_CNO_Final_HASC.pdf. 

Huergo J (2003) Breaking communications ‘stovepipes’. Press release, Office of Naval 
Research. (September 3), http://www.onr.navy.mil/Media-Center/Press-
Releases/2003/Breaking-Communications-Stovepipes.aspx. 

Keller J (2014) Navy to pour more time and money into shipboard antenna project to cut 
RF cross interference. (12 June), Military & Aerospace Electronics, 
http://www.militaryaerospace.com/articles/2014/06/navy-extends-intop.html. 

Metzger J (2013) CNO speaks to electronic warfare and information operations 
professionals. (October 30), 
http://www.navy.mil/submit/display.asp?story_id=77340. 

National Telecommunications and Information Administration. Federal radar spectrum 
requirements. Accessed February 7, 2016. 
http://www.ntia.doc.gov/files/ntia/publications/ntia00–40.pdf. 



50

Office of Naval Research (2002) Felling antenna forests ONR’s AMRF. Press release, 
Office of Naval Research. (December 12), http://www.onr.navy.mil/Media-
Center/Press-Releases/2002/Felling-Antenna-Forests-AMRF.aspx. 

Office of Naval Research (2015) Integrated Topside (InTop) & Electromagnetic 
Maneuver Warfare Command & Control (EMC2). PowerPoint brief, delivered (23 
June), Navy Research Laboratory, Washington, DC.  

Painter M, Fernandes R, Ramachandran S, Vadakkeveedu K, Verma A  (2009) Advanced 
spectrum allocation, frequency deconfliction, and scheduling optimization 
decision support. Final Report. (Knowledge Based Systems, Inc.,College Station, 
TX).  

Tavik G, Alter J, Evins J, Thomas N, Patel D, Stapleton R, Faulkner J, Hedges S, 
Moosbrugger P, Hunter W, Normoyle R, Butler M, Kirk T, Mulqueen W, Nespor 
J, Carlson D, Krycia, Kennedy W, McCordic C, and Sarcione M (2010) 
Integrated topside (InTop) joint Navy industry open architecture study. Navy 
Research Laboratory Washington, DC,  
http://www.dtic.mil/dtic/tr/fulltext/u2/a528790.pdf. 



 51

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 
 




